ABSTRACT
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In this dissertation, we consider three problems: in the first we investigate dis-
tributed state estimation of linear time-invariant (LTI) plants; in the second we study opti-
mal remote state estimation of Markov processes; while in the third we examine stability
of evolutionary game dynamics in large populations.

Problem 1: Consider that an autonomous LTI plant is given and that each member
of a network of LTT observers accesses a portion of the output of the plant. The dissemi-
nation of information within the network is dictated by a pre-specified directed graph in
which each vertex represents an observer. This work proposes a distributed estimation
scheme that is a natural generalization of consensus in which each observer computes
its own state estimate using only the portion of the output vector accessible to it and the
state estimates of other observers that are available to it, according to the graph. Unlike
straightforward high-order solutions in which each observer broadcasts its measurements
throughout the network, the average size of the state of each observer in the proposed

scheme does not exceed the order of the plant plus one. We determine necessary and suf-



ficient conditions for the existence of a parameter choice for which the proposed scheme
attains asymptotic omniscience of the state of the plant at all observers. The conditions
reduce to certain detectability requirements that imply that if omniscience is not possible
under the proposed scheme then it is not viable under any other scheme — including higher
order LTI, nonlinear, and time-varying ones — subject to the same graph. We apply the
proposed scheme to distributed tracking of a group of water buffaloes.

Problem 2: Consider a two-block remote estimation framework in which a sensing
unit accesses the full state of a Markov process and decides whether to transmit informa-
tion about the state to a remotely located estimator given that each transmission incurs a
communication cost. The estimator finds the best state estimate of the process using the
information received from the sensing unit. The main purpose of this work is to design
transmission policies and estimation rules that dictate decision making of the sensing unit
and estimator, respectively, and that are optimal for a cost functional which combines the
expectation of squared estimation error and communication costs. Our main results es-
tablish the existence of transmission policies and estimation rules that are jointly optimal,
and propose an iterative procedure to find ones. Our convergence analysis shows that the
sequence of sub-optimal solutions generated by the proposed procedure has a convergent
subsequence, and the limit of any convergent subsequence is a person-by-person optimal
solution.! 'We apply the proposed scheme to remote estimation of location of a water
buffalo.

Problem 3: We investigate an energy conservation and dissipation (passivity) as-

The definitions of joint optimality and person-by-person optimality are given in Definition 3.1.2 and

Definition 3.1.3, respectively.



pect of evolutionary dynamics in evolutionary game theory. We define a notion of pas-
sivity for evolutionary dynamics, and describe conditions under which dynamics exhibit
passivity. For dynamics that are defined on a finite-dimensional state space, we show
that the conditions can be characterized in connection with state-space realizations of the
dynamics. In addition, we establish stability of passive dynamics in terms of dissipation
of stored energy defined by passivity, and present stability results in population games.
We provide implications of stability for various passive dynamics both analytically and

by means of numerical simulations.



DISTRIBUTED ESTIMATION AND
STABILITY OF EVOLUTIONARY GAME DYNAMICS
WITH APPLICATIONS TO STUDY OF ANIMAL MOTION

by

Shinkyu Park

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2015

Advisory Committee:

Professor Nuno C. Martins, Chair/Advisor
Professor P. S. Krishnaprasad

Professor Richard La

Professor André Tits

Professor Nikhil Chopra



© Copyright by
Shinkyu Park

2015



To my family

il



Acknowledgments

I would like to thank Prof. Nuno C. Martins for giving me an opportunity to work
in his research group, and for being my adviser. He taught me how to look for inter-
esting research problems, and how to present findings in research community. Writing
a paper with him was one of memorable moments during my PhD study. Thanks to his
infinite support, I could enjoy every moment and overcome the most difficult time during
the study. Prof. P. S. Krishnaprasad always encouraged me to “make a contribution to
science.” Because of his moral support and encouragement, I was able to achieve beyond
what I could possibly imagine. Also I learned a lot from his control courses and from
discussions outside the class. When I was first admitted to UMD, it was Prof. André Tits
who encouraged me to take courses in mathematical analysis, from which I have estab-
lished mathematical foundations for my research. I am thankful for always keeping his
door open for me. Prof. Richard La gave me the most critical comments on my evolution-
ary game problem. Thanks to his comments, I was able to make a progress in some part
of the problem. I would like to thank Prof. Nikhil Chopra for being in my dissertation
committee as the Dean’s representative. His feedback and support were very important
to improve my dissertation. Prof. Jeff S. Shamma convinced me to pursue an interesting
problem in evolutionary game theory, and is responsible for steering my research toward
one of the main topics of my dissertation. I am grateful for his time for serious discus-
sions during my visit to Georgia Tech. I would like to thank Dr. Konrad Aschenbach for
the collaboration and help. Working with him in the research project was one of joyful

moments during my study.

il



I also would like to thank ONR UMD-AppEl Center, the Multiscale Systems Cen-
ter, one of six research centers funded under the Focus Center Research Program, Naval
Air Warfare Center Aircraft Division / UMD Cooperative Agreement, AFOSR MURI

FA955009108538, NSF grants 1135726 and 0931878 for financial supports.

v



Table of Contents

List of Figures
1 Introduction
1.1 Design of Distributed LTI Observers for State Omniscience . . . . . . . .

1.2

1.3

1.1.1  Summary of the Main Contributions . . . . . . .. ... ... ..
Optimal Remote State Estimation of Markov Processes . . . . . . . . ..
1.2.1  Summary of the Main Contributions . . . . . . ... ... ....
Evolutionary Game Dynamics and Passivity . . . . . .. ... ... ...
1.3.1 Summary of the Main Contributions . . . . . . .. ... .....
1.3.2  Stability Concept and Landscape Metaphor . . . . . ... .. ..

Design of Distributed LTI Observers for State Omniscience

2.1

2.2

23
24

2.5
2.6

Problem Formulation . . . . ... ... ... .. .............
2.1.1 Notation . . . . . . . . . . . e e
2.1.2  Problem Description . . . . . .. ... ... ... ... ...,
2.1.3 Comparative Survey of Related Work . . . . ... .. ... ...
MainResult . . . . . . . ..

viii

17

2.2.1 Additional Remarks on the Proposed Class of Distributed Observers 19

2.2.1.1  The Effect of Noise on the Estimation Performance

2.2.1.2  The Role of the Augmented States . . . . . ... ...

2.2.1.3  Complexity of the Proposed Scheme . . .. ... ...
Application to the Synchronization of Coupled Multi-agent Systems . . .
Proof of the Main Theorem . . . . . . .. ... ... ... .. ......
2.4.1 Key Results on Weighted Laplacian Matrices . . . . . .. .. ..
2.4.2 A Brief Introduction to Stabilization via Decentralized Control . .
2.4.3 Additional Preliminary Results . . . . . . .. ... .. ... ...
244 Proof of Theorem?2.2.2 . . . . . .. ... ... ... .......
Application to Tracking of Animal Groups and Experimental Results . . .
Summary and Future Work . . . . . ... ... oo oL

19
19
20
21
31
32
34
36
39
43



3 Optimal Remote State Estimation of Markov Processes

3.1 Problem Formulation . . . .. ... .. ... ... ... ... ...,
3.1.1 Notation and Terminologies . . . . . ... ... ... ......
3.1.2  Problem Description . . . . .. ... ... ... ... ...,
3.1.3 Comparative Survey of Related Work . . . . ... .. ... ...
3.2 Two-Player Optimal Stopping Problem . . . . . . ... ... ... ....
3.2.1 Definitions and Preliminary Results . . . . . ... .. ... ...
3.2.2 Existence of a Jointly Optimal Solution . . . . . ... ... ...

3.2.3 Iterative Procedure for Finding a Person-by-Person Optimal So-
lution . . . . . .. L
3.3 Optimal Remote State Estimation . . . .. ... ... ... .......
3.4 Application to Specific System Models . . . . . .. ... ... ......
34.1 Linear SystemModels . . .. ... ... ... .. ........
3.4.2 Self-Propelled Particle Models . . . . . ... ... ........
3.5 Application to Animal Tracking and Experimental Results . . . . . . ..
3.6 Summary and Future Work . . . . . . ... ... .. L.

Evolutionary Game Dynamics and Passivity
4.1 Background . . . . .. .. ...
4.1.1 Notation . . . . . .. .. e
4.1.2 Population Games and Evolutionary Dynamics . . . . . ... ..
4.1.2.1 PopulationGames . . . .. ... ... ... ......
4.1.2.2 Evolutionary Dynamics . . . .. ... ... ......
4.2 Passivity of Evolutionary Dynamics . . . . . ... .. ... .......
4.2.1 Definition of Passivity for Evolutionary Dynamics . . . . .. ..
4.2.2  Characterization of Passivity of Evolutionary Dynamics . . . . .
4.2.3 Properties of Passive Evolutionary Dynamics . . . . . ... ...
4.2.3.1 Payoff Monotonicity and Passivity . . . .. ... ...
4.2.3.2  Equivalence to Closed-loop Stability . . . . ... ...
4.2.3.3  Effect of Control Costs on Passivity . . . . . ... ...
4.3 Stability of Passive Evolutionary Dynamics . . . . . . ... ... ....
4.4 Numerical Examples . . . .. ... ... ... ... ... L.
4.4.1 Replicator dynamics and BNN dynamics under a cumulative pay-
off function . . . . . . . ...
4.4.2 BNN dynamics and logit dynamics in the Hypnodisk game . . . .
4.5 Summary and Future Work . . . . . . .. .. o000

Auxiliary Results for Chapter 2
A.1 Computational Considerations . . . . . . .. ... ... .........
A.1.1 Finding Source Components . . . . . . .. ... ... ......
A.1.2 Computing an Omniscience-achieving Parameter Choice . . . . .
A.12.1  Computation of W = (W), ;cyy -+« - v v oot
A.1.2.2 Computation of {K;, P;, Q;,S; }iev . . . . . . . . ...
A.2 Nondegeneracy of the Dynamic Matrix A . . . ... ...........
A.3 Preliminary Concepts and Proof of Proposition2.3.2 . . . .. ... ...

Vi



A.3.1 A Choice of W = (wij)m@,, {Ki,P;,Qi,Si}icyy - - - - - .
A32 AChoiceof {K{,P{,Qf,S¢} ... ...
A.3.3 Proof of Proposition2.3.2 . . .. ... .. ... .........
A4 Proofs of Lemmas 2.43and24.4 . . . . ... ... ... ..
A.5 Preliminary Results and Proof of Theorem2.4.5 . . . . . ... ... ...
A.5.1 Structural Controllability and Observability . . . . . . ... ...
AS52 AKeyLemma .. ... ... .. ... .. ... ... ... ...

A.5.3 Proofof Theorem2.4.5. . . . . . . . . . . . . ... .. ....

Auxiliary Results for Chapter 3

B.1 OnProduct Metric Space . . . . . .. .. ... ... .. ... ...
B.2 OnRandomized Policies . . . . . .. ... ... ... ..........
B.3 Preliminary Conceptsand Results . . . . . ... ... ..........
B.4 Proof of Proposition 3.2.14 . . . . . . . . ... ... .
B.5 Proofs of Proposition 3.2.16 and Lemma 3.2.18 . . . ... .. ... ...
B.6 Proof of Lemma3.2.24 . . . . .. ... ...
B.7 Proof of Theorem3.3.1 . . . . .. .. ... ... ... .. ........

Auxiliary Results for Chapter 4

C.1 Proof of Proposition4.2.4 . . . . . . . ... ...
C.2 Proof of Proposition4.2.5. . . . . . . . .. ... .
C.3 Proof of Proposition4.2.7 . . . . . . . . . ... ... .
C.4 Proof of Proposition4.2.8 . . . . . . . . . . .. ...
C.5 Proof of Proposition4.2.10 . . . . . . .. .. ... L.
C.6 Proof of Proposition4.2.12 . . . . . . . . . .. ...
C.7 Proof of Corollary 4.2.13 . . . . . . . . . . .. .. ... ...
C.8 Proof of Proposition4.2.14 . . . . . . . . . ... ... ... ...
C.9 Proof of Theorem4.3.1 . . . . .. .. ... ... ... .. ...,
C.10 Proof of Proposition4.3.2 . . . . . . . .. ... ...
C.11 Proof of Proposition4.3.3 . . . . . . . .. .. ... ... ... ...
C.12 Proof of Proposition4.3.5. . . . . . . . . . .. ... .
C.13 Proof of Proposition4.3.7 . . . . . . . . . . . ... ...

Bibliography

vii



1.1
1.2

2.1
2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

3.1
3.2

List of Figures

A framework for distributed state estimation. . . . . ... .. ... ...
A framework for remote state estimation with a Markov process (P), a
sensing unit (S), and an estimator (E). . . . .. ... .. ... ......

A communication graph G for Example 2.2.3. . . . . ... ... ... ..
A diagram showing an example of an overall closed-loop system that con-
sists of a LTI multi-agent system and distributed controller. See Exam-
ple 2.3.3 for a numerical implementation of the closed-loop system.

A simulation result of Example 2.3.3 which depicts the synchronization
of the first components Xgl)(k), X§2)(k), Xg?’)(k),xfl)(k) of the states of
agent 1,2, 3,4, . . . . . L e
A precedence diagram for the proof of Theorem2.2.2 . . . . . . ... ..
System overview of the tracking device in the animal-borne wireless cam-
eranetwork . . . . ...
A screenshot of GPS tracks of water buffaloes in the Google earth
(Timespan: 2015-08-06T00:00:00Z ~ 2015-08-06T04:00:00Z) . . . . . .
Original trajectories of water buffaloes in a local North East Up (NEU)
coordinate system (The origin of the coordinate system: Latitude = -
18.9279877268328, Longitude = 34.5457567343343) . . . . . . ... ..
A communication graph G for designing a distributed observer. . . . . . .
Estimated trajectories of water buffaloes using the proposed distributed
estimation scheme in a local NEU coordinate system . . . ... ... ..
Normalized estimation error at every node (Total traveled distance:
Buffalo 1 = 1694 m, Buffalo 2 = 1505.8 m, Buffalo 3 = 1981.8 m, Buffalo
A4=2129m) . . . . e

The problem solving strategy for Problem 3.1.1 . . . . . ... ... ...
A screenshot of the GPS track of a water buffalo in the Google earth
(Timespan: 2015-08-06T00:00:00Z ~ 2015-08-06T06:00:00Z) . . . . . .

viii

18

23



33

34

3.5

3.6
4.1

4.2

4.3

4.4

4.5

4.6

A.l

The z-coordinate (p, ), y-coordinate (p, ), and heading angle 6 of a
portion of the GPS track (contained in the red rectangle in Figure 3.2) in
a local NEU coordinate system. (Timespan: 2015-08-06T05:40:00Z ~
2015-08-06T05:53:00Z / The origin of the coordinate system :

Latitude = -18.9401136372457, Longitude = 34.5337888580266) . . . . 88
Comparisons between the probability density functions of r; and ¢, un-
der the computed parameter choices and the GPS data. . . . . . . .. .. 91
Estimated trajectory of the water buffalo by the proposed remote estima-
tionscheme . . . . . . . . . ... 92
Estimation error of the remote estimation scheme . . . . . ... ... .. 93

A closed-loop obtained by a feedback interconnection of payoff operators

(4.1) and evolutionary dynamics (4.2). . . . . . . . . .. ... ... ... 112
Simulation results for the replicator dynamics under a cumulative payoff
given by (4.29). E(z) = 32>, «fIn % wherez* =3-1 .. ... .... 119
Simulation results for the BNN dynamics under a cumulative payoff given
by (4.29). Span(p.2) =330 BT - 120
Simulation results for the BNN dynamics in the Hypnodisk game (4.31).
SBNN(p,x) = %Z?:l []51]+ ......................... 123

Simulation results for the logit dynamics (7’ = 0.36) in the Hypnodisk
game (4.31). Siogit(p, ¥) = maxyemx) [pTy — 7' - Zle yiIny;| —pTz+

n - Z§:1 Inx, L 124
Simulation results for the perturbed BNN dynamics (" = 0.36) in the
Hypnodisk game (4.31). Sppyn(p,2) = § 30, [ —p'x], .. .. .. 125

Diagrams depicting a design procedure for finding a distributed controller. 136

X



Chapter 1: Introduction

We consider the following three problems: (i) distributed state estimation of LTI
plants (Chapter 2), (ii) remote state estimation of Markov processes (Chapter 3), and (iii)
stability of evolutionary game dynamics (Chapter 4). The main objective and summary
of main contributions to each problem are described in this chapter.

Main results of each chapter can be applied to study of animal motion: The estima-
tion schemes that will be studied in Chapter 2 and Chapter 3 can be applied to tracking
of animal groups. The data from tracking animal groups are then analyzed to identify
and study collective animal motion. Based on results on stability of evolutionary game
dynamics, which are presented in Chapter 4, we can find a reasoning over which certain

collective motion emerges in animal groups.

1.1 Design of Distributed LTI Observers for State Omniscience

Consider the following linear time-invariant (LTI) plant in state-space form':

o(k + 1) = Az (k)
(1.1)
y(k) = Cx(k)

'In order to simplify the notation, without loss of generality, we omit noise terms in the state-space

equation (1.1). See Section 2.2.1.1 for more discussions.
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Figure 1.1: A framework for distributed state estimation.

where z(k) € R™ and y(k) = (le(k) e yg(/{)>T, with y;(k) = Ciz(k) € R,
represent the state and output, respectively.

We consider the problem of designing a group of m observers so that each observer
can asymptotically resolve the entire state x. Information exchange among observers is
constrained by a pre-selected directed graph G = (V,E) with V. = {1,--- ,m}, where
each vertex in V represents an observer and the edges in E C V xV determine the viability
and direction of information transfer. We refer to a given G as the communication graph
and we denote a group of m observers equipped with G, with each observer accessing an
element of {41, ..., ym}, as a distributed observer (see Figure 1.1 for an illustration).

The internal state of an observer consists of a state estimate Z; and an additional
state z; that is updated based on its portion y; of the output of the plant and the state
estimates of the other observers connected to it via the edges of G. We later refer to z; as
the augmented state of observer . A distributed observer is said to achieve omniscience
asymptotically if limy_, ||Z;(k) — z(k)|| = 0 holds for all ¢ in V, i.e., the state estimate

at every observer converges to the state of the plant.



Our main goals are: (i) Given a plant (1.1) and a graph G, we wish to determine neces-
sary and sufficient conditions for the existence of a LTI distributed observer that achieves
omniscience asymptotically. (ii) Provided it exists, we want to find an omniscience-
achieving solution in which the dimension p; of z;, i.e., z; € R*, satisfies the following
scalability condition:
m
> mi<m (12)
i=1
The main technical challenges are: (i) Each observer accesses only a portion of the
output of the plant. Hence, unless the pair (A, C;) is detectable for all 7 in V, state omni-
science requires information exchange among observers. The exception being the trivial
case in which the state of the plant can be resolved from the portion of the output available
to every observer. (ii) Notice that (1.2) rules out simple LTI schemes in which observers
share their measurements throughout the network.? (iii) The existence of an omniscience-
achieving scheme that conforms with both G and (1.2) cannot be established by existing

results on observer design.

1.1.1 Summary of the Main Contributions

In order to achieve the stated goals, this work focuses on the following two contri-
butions: (i) We propose a parametrized class of LTI distributed observers within which
information exchange conforms to a pre-specified directed communication graph G. (ii)
We find necessary and sufficient conditions for the existence of a parameter choice for the
aforementioned class that is omniscience-achieving and satisfies the scalability constraint

(1.2). We also outline a method to compute such a parameter choice, provided it exists.

2See Section 2.2.1.3 for more details.



In Section 2.4 we provide a detailed analysis that hinges on the fact that asymptotic
omniscience for the proposed class of distributed observers can be cast as the stabiliza-
tion of certain LTI systems via fully decentralized output feedback. Using this analogy, in
Theorem 2.2.2 we show that an omniscience-achieving parameter choice satisfying (1.2)
exists if and only if the state of the plant (1.1) is detectable from the combined output
portions available to each source component® of G. We also ascertain that if such a de-
tectability condition holds then there exists an omniscience-achieving solution for which

the resulting aggregate dimension of all additional internal (augmented) states satisfies:

> wi<m—m, (1.3)
i=1

where m, is the number of source components* of G. It follows from our analysis that if
there is no omniscience-achieving solution in the proposed class satisfying (1.2), then om-
niscience cannot be attained by any other scheme — including higher order LTI, nonlinear,
and time-varying ones — subject to the same graph.

We apply the distributed estimation scheme to tracking of 4 water buffaloes using
animal-borne wireless camera network. In Section 2.5, we present experimental results
using a data set collected from the deployment of animal-borne wireless camera network

in the Gorongosa National Park (Mozambique)

1.2 Optimal Remote State Estimation of Markov Processes

We study a two-block remote state estimation problem: Suppose that a sensing

unit accesses the full state x; of the process at time k, and decides whether to transmit

3The definition of the source component is given in Definition 2.2.1.

4The number of source components of G ranges from 1 to m.

4
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Figure 1.2: A framework for remote state estimation with a Markov process (P), a sensing

unit (S), and an estimator (E).

(Ry = 1) the accessed information x;, to a remotely located estimator or not to transmit
(Rx = 0), where each transmission incurs a positive communication cost ¢;. The esti-
mator computes a state estimate Xy, that is a causal function of information available to it.
The diagram in Figure 1.2 depicts the framework adopted in this work.

Suppose that a transmission policy and an estimation rule at time &, denoted by 7T

and &, respectively, dictate the random variable Ry, and estimate x;, as follows:

Ry =Tk <{Xj}§:0 ) {Rj}f;D (1.4a)

% = & ({xj IR; =1, 1<) <k}, {Rj};?:l) (1.4b)

Based on (1.4a) and (1.4b), let us consider a cost functional given as follows:
N
SB[ (xp %) + xRy ‘ xo = 20, {Tihils » {61 (1.5)
k=1
subject to a Markov process {Xk}szo defined on a metric space (X, d). The total cost (1.5)
consists of the expectation of squared estimation error d? (x;, X;) and communication
costs ¢ - Ry.

Our goal is to find optimal transmission policies {Tk}ivzl and estimation rules

5



{Ek}fj:l for (1.5). To achieve this, we formulate this as a two-player team decision prob-
lem, and find optimal decision functions for both players — sensing unit and estimator.
To assess optimality of solutions obtained in this work, we adopt the notions of joint
optimality and person-by-person optimality: A jointly optimal solution consists of the
transmission policies {Tk}kN:1 and estimation rules {Sk},]::l that achieve the minimum
of (1.5); while a person-by-person optimal solution consists of the transmission policies
{T %}, and estimation rules {&},_, for which given {7 ;},_,, {&x},_,; minimizes

(1.5), and vice versa.

1.2.1 Summary of the Main Contributions

Our main strategy, which is described in Section 3.1, is to divide the aforementioned
problem into a set of NV sub-problems, and sequentially solve each sub-problem. In Sec-
tion 3.2, adapting the notions of joint optimality and person-by-person optimality to each
sub-problem, we focus on the following contributions for each sub-problem: (i) We show
that there exists a jointly optimal solution. As jointly optimal solutions are also person-
by-person optimal, this result ensures that the set of person-by-person optimal solutions
is non-empty. (ii) We propose an iterative procedure to compute a person-by-person op-
timal solution. The procedure, which is inspired from Lloyd’s algorithm originally used
to compute Centroidal Voronoi Tessellations [1-3], alternates between finding a best re-
sponse (transmission policy) of the sensing unit to a decision function (estimation rule)
of the estimator and vice versa, and it generates a sequence of sub-optimal solutions. Our

analysis will show that the sequence has a convergent subsequence, and the limit of any



convergent subsequence is a person-by-person optimal solution. In Section 3.3, we de-
scribe how to recover an optimal solution to the original problem from optimal solutions
of the sub-problems. In Section 3.4, we consider two specific Markov process models —
linear system models and self-propelled particle models, and verify that our main results
are applicable to these models. Lastly, we apply the remote estimation scheme to track-
ing of a water buffalo using animal-borne wireless camera network. In Section 3.5, we
present experimental results using a data set collected from the deployment of animal-

borne wireless camera network in the Gorongosa National Park (Mozambique).

1.3 Evolutionary Game Dynamics and Passivity

Of central interest, in evolutionary game theory [4, 5], is the study of dynamics of
strategically interacting players in large populations. This line of study involves an inves-
tigation of properties of behavioral rules adopted by players and asymptotes of trajectories
induced by the rules in an effort to identify stable equilibria. In this work, we conduct
the investigation by adapting the notion of passivity originated from dynamical system
theory [6,7].

Consider multiple populations of players engaged in a game in which each player
chooses a strategy from a finite set of strategies, and repeatedly revises its strategy choice
in response to given payoffs. Evolutionary dynamics describe such strategy revision pro-
cesses and determine the time-evolution of the population state — the distribution of strat-
egy choices across populations. Assuming that there are infinitely many players in each

population, we express evolutionary dynamics with differential equations and regard these



dynamics as dynamical systems. This point of view allows us to define passivity for evo-
lutionary dynamics and to perform stability analysis based on passivity methods adopted
from dynamical system theory literature.

The study of evolutionary dynamics and associated stability concepts has been one
of active research areas in evolutionary game theory. Brown and von Neumann [8] studied
Brown-von Neumann-Nash (BNN) dynamics to examine the existence of optimal strate-
gies for a zero-sum two-player game. Taylor and Jonker [9] studied replicator dynamics
and established a connection between evolutionarily stable strategies and stable equilib-
ria of replicator dynamics. Later the result was strengthened by Zeeman [10] who also
proposed a stability concept for games under replicator dynamics. Also Gilboa and Mat-
shu [11] considered cyclic stability for games under dynamics exhibiting the best response
choice.

In succeeding work, rather than working on specific forms of dynamics such as ones
considered in [8—11], stability results were established for various classes of evolutionary
dynamics. Swinkels [12] considered a class of myopic adjustment dynamics, and studied
strategic stability of equilibria of these dynamics. Ritzberger and Weibull [13] considered
a class of sign-preserving selection dynamics, and studied asymptotic stability of faces of
the population state space. In particular, the authors discovered that a face spanned by
a set of pure strategies is stable under sign-preserving selection dynamics if the face is
closed under a better-reply correspondence.

In a recent development of evolutionary game theory, Hofbauer and Sandholm [14]
studied stable games and established global stability results for a certain class of evolu-

tionary dynamics, which includes excess payoff/target (EPT) dynamics, pairwise compar-



ison dynamics, and perturbed best response (PBR) dynamics. Fox and Shamma [15] later
revealed that stable games and the aforementioned class of evolutionary dynamics exhibit
passivity. Based on an input-output property of passive dynamical systems, the authors
established [L,-stability of evolutionary dynamics in a class of (generalized) stable games.
In addition, applications of evolutionary game theory to study of animal group motion are
found in [16, 17], where stable strategy choices in animal pursuit-evasion problems are
examined.

Inspired on the passivity analysis in [15], we further investigate passivity in evolu-
tionary game theory. Our main goals are (i) to define passivity for evolutionary dynamics
that admit realizations in a finite-dimensional state space and present systematic methods
to examine passivity of evolutionary dynamics of interest; and (ii) to establish stability of

passive dynamics in population games.

1.3.1 Summary of the Main Contributions

1. We define three notions of passivity — (ordinary) passivity, strict passivity, and strict
output passivity — and explain how passivity defines stored energy of evolutionary
dynamics, which will be used to establish stability of the dynamics. We characterize
passivity in terms of vector fields that define state-space realizations of evolutionary
dynamics. Based on this characterization, we show that the EPT dynamics, pair-
wise comparison dynamics, and PBR dynamics are passive; while the replicator

dynamics are not.

2. We investigate properties of passive evolutionary dynamics in relation to the Nash



stationarity (NS) condition and positive correlation (PC) condition®. We first show
that for passive dynamics satisfying (NS), their equilibrium points coincide with
the set of states that achieve the lowest level of stored energy of the dynamics. In
addition, if the dynamics also satisfy (PC) then we show that these dynamics cannot

be strictly output passive.

3. We show an equivalence between passivity of evolutionary dynamics and (a weak
form of) stability of a closed-loop resulting from a feedback interconnection of
evolutionary dynamics and a certain class of payoff operators. This result leads
us to re-define passivity of evolutionary dynamics using a class of (generalized)
population games. Furthermore, we study the effect of control costs on passivity
where we establish a relation between convexity of control costs and passivity of

evolutionary dynamics.

4. Based on the above contributions, we present stability results for passive evolution-
ary dynamics in population games. In particular, we consider a class of games that
generalizes stable games [14], and show that in this class of games, stored energy of
passive dynamics converges to its lowest level. We provide an interpretation of the
convergence of stored energy for formerly established dynamics both analytically

and by means of numerical simulations.

3See (NS) and (PC) in Section 4.2.3 for their respective definitions.

10



1.3.2 Stability Concept and Landscape Metaphor

A landscape metaphor from genetics suggests that each individual in populations
would move up toward the peak of fitness landscape, and would reside unless external
force is applied [18, 19]. This metaphor suggests a reasoning over which the state of
populations evolves and a ““stable equilibrium” emerges.

In this work, we adopt a concept of stability that is similar to the idea suggested by
the landscape metaphor: Stability implies that along the trajectory of the population state,
stored energy of evolutionary dynamics converges to its lowest level. The convergence to
the lowest energy level would have distinct interpretations which are specific to individual
evolutionary dynamics. In some cases, the convergence implies that the population state
approaches equilibrium points of dynamics; and hence it establishes asymptotic stability
of the equilibrium points. As a case in point, in Section 4.3, we will show that for the
BNN dynamics and Smith dynamics, the convergence implies that the population state
converges to Nash equilibria; and for the logit dynamics, it implies that the population

state converges to the set of best-response strategy distributions.
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Chapter 2:  Design of Distributed LTI Observers for State Omniscience

2.1 Problem Formulation

2.1.1 Notation

m is the number of observers that form the distributed observer.

e G = (V,E)is a graph' formed by a vertex set V and an edge setE C V x V.

I, is the p-dimensional identity matrix.

1, is the p-dimensional vector with all entries equal to one.

* ® represents Kronecker product of matrices.

Foraset {K7,- -, K} of matrices, we define the following block diagonal matrix:

* GivenasetV={1,--- |V

b W = (wy), ;e is @ matrix in RV whose 4, j-th

entry is w;;.

IFor notational convenience, we assume that every vertex of G has a self-loop, i.e., (i,4) € E for all ¢ in

12



e ForasetJ = {j1,---,J,} € {1,---,m} and matrices B and C' formed by con-

catenating conformal submatrices {B;}", and {C;}", as B = ( B, - Bm)
T
and C' = (Cif ... CF > , respectively, we define
def def !
By = (le ij) and Cj = (Oﬂ O};)

2.1.2 Problem Description

We consider that a LTI plant (1.1) and a directed communication graph G are given.
Without loss of generality, we consider that the dynamic matrix A is nondegenerate (see
Appendix A.2) and that the output matrices {C;}!", are nonzero. Each vertex ¢ in V is
associated with an observer that accesses y;(k) = C;x(k). We adopt the convention that
E includes edge (j,4) if information can be transmitted from observer j to observer i.
The neighborhood of observer ¢, denoted as N;, is a subset of V that contains ¢ and all
other vertices with an outgoing edge towards ¢. Essentially, elements of N; represent the
observers that can transmit information to observer <.

In this work, we adopt the following parametrized class of distributed observers
inspired on [20], where for each ¢ in V, observer 7 updates its internal state according to

the following state-space equation:

Ti(k+1)=A Z Wij &@ +Ki (yi(k) —vCii‘i(k)) +P; i(@

JEN;

state estimate measurement innovation augmented state (2 1)
where w;; € R, K; € R™", P; € R"*#, Q,; € R**™ | S; € RF*Hi are the design pa-

rameters and y; is the dimension of the augmented state z;.2 We refer to {K;,P;,Q;,S;} eV

2We use bold font to represent the parameters to be designed. The role of the augmented states in (2.1)

13



as gain matrices and W = (w;;) as a weight matrix’ that must satisfy >,y wi; = 1

ijev
for all 2 in V. The update scheme (2.1) complies with G because the estimate &; of ob-
server ¢ only depends on y; and the estimates {7 }j cn, Of the observers in its neighborhood
N;.

The following Definition of an omniscience-achieving parameter choice will be

used throughout the chapter.

Definition 2.1.1 (Omniscience-achieving Parameter Choice). Consider a LTI plant
(1.1) with state = and a distributed observer whose state estimates {;};cy are computed
according to (2.1). A parameter choice W = (Wij)i’jev and {K;,P;, Q;,S;}, oy for
(2.1) is referred to as omniscience-achieving if the resulting distributed observer achieves

omniscience asymptotically, i.e., limy_, ||Z;(k) — z(k)|| = 0 holds for all i in V.

The following is the main problem addressed in this work.

Problem 2.1.2. Given a LTI plant (1.1) and a graph G, determine necessary and sufficient
conditions for the existence of an omniscience-achieving parameter choice for (2.1) that

satisfies the scalability condition (1.2).

2.1.3 Comparative Survey of Related Work

The work in [21, 22] introduced a computationally tractable distributed state esti-

mation scheme for linear plants. The proposed method, so called Distributed Kalman

is explained in Section 2.2.1.2.

3We assume that w;; = 0if j ¢ N; forall i in V.
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Filtering (DKF)*, alternates between an estimation (Kalman filtering) step and a data-
fusion step that can be viewed as consensus [24].

Results on the performance and stability of the DKF are presented in [25-28]. In
particular, the authors of [25] showed non-convexity of performance optimization for a
simple system model, e.g., a first-order LTI plant. In [27, 28], stability properties of the
DKEF are studied when multiple data-fusion steps are allowed between two consecutive
estimation steps.

Subsequent work [29-36] investigates similar estimation schemes which have the
structure of an estimation-data fusion alternation as in [21,22]. In [31], the authors per-
formed a stability analysis in terms of the plant model and underlying communication
graph to obtain gain parameters for the estimation step; and in [35], these parameters are
obtained via optimization of a quadratic estimation cost. Besides, the data-fusion step is
realized using weighted averaging [29], diffusion strategies [30], gossip algorithms [32],
and internal model average consensus [33].

Other notable approaches to distributed estimation are proposed in [37—41]. The
authors of [37] introduced a design method for the DKF which is based on spatial de-
composition of the plant and a distributed algorithm for matrix computation. In [38], a
distributed estimation algorithm is proposed for plants that consist of overlapping subsys-
tems. In addition, a moving horizon estimation scheme was used in [39], and a Hy/H o,
optimization framework was adopted in [40,41] for distributed state estimation.

Moreover, in [42,43], the authors establish necessary conditions for achieving om-

niscience in distributed state estimation. These conditions specify observability/detectability

4An extensive review of the DKF schemes is found in [23].
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requirements in terms of the plant model and underlying communication graph.

To achieve asymptotic omniscience, some of the existing schemes require (i) strong
observability conditions [26, 30, 38], (ii) multiple data-fusion steps between two consecu-
tive estimation steps [27,28], which imposes a two-time-scale structure, or (iii) imposition
of algebraic constraints on the underlying graph [31,33,36], which are stronger than what
is considered in our work.

In contrast to previous work, we propose a class of distributed observers that operate
on a single time-scale, and we find necessary and sufficient conditions for the existence
of an omniscience-achieving distributed observer in this class for which the scalability
condition (1.2) holds. It will follow from our analysis that if asymptotic omniscience
cannot be achieved under the proposed scheme then it is not possible under any other
scheme — including higher order LTI, nonlinear, and time-varying ones — subject to the
same communication graph.

The use of augmented states as in (2.1) was proposed in [20], where we also
provided sufficient conditions for the existence of an omniscience-achieving parameter
choice. In [44], we developed necessary and sufficient conditions for the existence of
an omniscience-achieving parameter choice for the case where W is a pre-selected sym-

metric matrix. This work extends and unifies our prior results in the following way: we

consider directed communication graphs, which allow asymmetric W, and we investi-
gate necessary and sufficient conditions for the existence of an omniscience-achieving
parameter choice for (2.1). Unlike the methods proposed in [20] and [44], here we also

consider the scalability constraint (1.2).
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2.2  Main Result

In this section, we present our solution to Problem 2.1.2, and an example that illus-

trates it. We start by defining the source component of a graph.

Definition 2.2.1. Given a directed graph G = (V,E), a strongly connected component
(VC, EC) of G is said to be a source component® if there is no edge from V \ V¢ to
VC. Also we define a set of source component representatives® as a subset VI of V that

contains exactly one element (representative) from each source component of G.

The following is our main Theorem.

Theorem 2.2.2. Suppose that the plant is given as in (1.1), that the communication graph

G = (V,E) is pre-selected, and that the following hold:

(i) There are m, source components’ of G which are represented as {(V;, ;) ;7:1.
Each source component G, = (V,,|E)) is associated with a subsystem of the plant

described by the pair (A, Cy,).

(ii) Let VT be a set of source component representatives. For each i in VT, we define
v; to be the order (number of vertices) of the source component to which vertex 1

belongs.

SWe adopt the convention that if the graph G is strongly connected then G itself is a (unique) source

component.
The choice of V may not be unique.

7 According to Definition 2.2.1, every graph has at least one source component, i.e., m, > 1.
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pm e e —————-

Figure 2.1: A communication graph G for Example 2.2.3.

There is an omniscience-achieving parameter choice for (2.1) that satisfies (1.2) if and
only if all the subsystems {(A, Cy,)},, are detectable. In particular, if such a detectabil-

ity condition holds then there is a parameter choice for which ; is given by

vi—1 ifie VE
pi = (2.2)

0 otherwise

foralliinV.

The proof is given in Section 2.4. When the conditions of the Theorem are verified,
the method outlined in Appendix A.1.2 can be used to compute omniscience-achieving
parameters for which (2.2) is satisfied. Notice that because Zz‘eVR v; < m holds, we can
conclude that z; given by (2.2) satisfies (1.2). In fact, since V¥ has m, elements, it also

follows that (1.3) holds.

Example 2.2.3. Consider the communication graph G = (V,E) depicted in Figure 2.1
and a LTI plant (1.1) with m = 7. From Definition 2.2.1, we conclude that G, and G-
are the source components of G, and we select V' = {1,6}. From Theorem 2.2.2, we

conclude that there exists an omniscience-achieving parameter choice for which p; is

18



given by

;

2 ifi=1
=91 ifi=6

0 otherwise

if and only if (A, Cy,) and (A, Cvy,) are both detectable. O

2.2.1 Additional Remarks on the Proposed Class of Distributed Observers

2.2.1.1 The Effect of Noise on the Estimation Performance

Although our formulation focuses on the noiseless case, the fact that the plant and
the distributed observer are LTI guarantees graceful degradation with respect to noise in
the communication links and/or measurements. In particular, if the noise amplitude is
bounded by £ then the limit max;cy limy_,o ||Z;(k) — 2(k)|| may be positive, but one can
find an upper bound that scales linearly with 3. Also, the effect of noise can be quantified

using classical frequency-domain methods.

2.2.1.2 The Role of the Augmented States

As will be discussed in Section 2.4.3, asymptotic omniscience for the proposed
class of distributed observers can be cast as the stabilization of certain LTI systems via
fully decentralized output feedback. The augmented states in (2.1) are directly related
with the internal dynamics of such a decentralized controller which gives us additional

freedom in designing the way local state estimates and measurements are fused.
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2.2.1.3 Complexity of the Proposed Scheme

We evaluate the complexity of the proposed scheme in terms of the dimensions of
the augmented states required to achieve asymptotic omniscience.

For the sake of argument, we compare our method with a simple relay-based cen-
tralized scheme described as follows: Suppose that under the same configuration as in
Figure 1.1, every observer would transmit its local measurement to its neighbors and,
at the same time, would relay local measurements received from neighboring observers
in which each transmission/relay incurs a unit time delay. Under this setting, the fixed-
lag smoothing scheme [45] can be adopted at each observer to determine its update rule
for state estimation. Similar to our scheme, the internal state of each observer in the
centralized scheme consists of a state estimate and an augmented state to account for the
time delay in transmission/relay. However, in what regards to achieving asymptotic omni-
science, this centralized scheme would require augmented states whose dimensions would
be much larger than our scheme. To see this, we note that in the centralized scheme, the
dimension of the augmented state of each observer ¢ is equal to the product of the order
of the plant and the maximum length among the respective shortest paths from the other
vertices to vertex ¢ in the graph G. In contrast, as stated in Theorem 2.2.2, in our scheme
only one observer per source component needs an augmented state, whose dimension
equals the order of the source component minus one. As a case in point, suppose that G is
a directed ring, and let n and m be the orders of the plant and graph G, respectively. Then,
for the centralized scheme, the aggregate dimension of all augmented states could be as

large as n - m - (m — 1); whereas, for the scheme we propose it is no larger than m — 1.
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2.3 Application to the Synchronization of Coupled Multi-agent Systems

Given a graph G = (V,E) with V = {1,--- ;m} and a set VI = {1,--- m,},

consider a LTI multi-agent system whose state-space representation is given as follows:

X+ 1) = FxD k) + Y Fy (k) = xOk) + ) Gyuy(k), i e V!

JEVI\{i} jev

(2.32)
YW (k)

yi(k) = H; : L i€V (2.3b)
X (k)

For each 7 in V/, x() (k) takes a value in R™ and represents the state of agent i. For each
iin V, y;(k) and u;(k) take values in R™ and RP:, and represent the output and control
input of the system (2.3) associated with vertex ¢ of G, respectively.

For each 7, j in V/, the matrix F}; in (2.3a) quantifies the coupling between the state
X of agent i and the state x'/) of agent j. For notational convenience, G/ = (V! E')
represents the coupling among the states of agents in which, for each i in V! and j in
VT \ {i}, an edge (j, %) belongs E’ if and only if F}; # 0 holds. We refer to G’ as the
interaction graph of the multi-agent system (2.3). We remark that if all the agents are
synchronized at time ko 8, i.e., ) (ko) = - - - = x(™) (ky), then they remain synchronized
and the state of each agent ¢ satisfies

X9k +1) = Fx (k)

8In this case, we may assume that u;(k) = 0, Vi € V and k > ko, since there is no need to control

synchronized agents.
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for k > ky. The agent model (2.3) is called homogeneous because the agents have the
same internal dynamics as specified by the dynamic matrix F,.

The goal is to design a set of controllers for which the agents of the system (2.3)
are asymptotically synchronized, i.e., limg_, Hx(i)(k:) —xW(k) H = 0 holds for all 7 in
VI\ {1}. In particular, we suppose that each controller i is represented by vertex i in V

and has the following state-space representation:
Gk +1) =) S5&(k) + Qfyi(k)
JEN;

wi(k) =Y Pg&(k) + Kiyi(k)

JEN;

(2.4)

where &; is the internal state of controller ¢, and N; is the neighborhood of controller ¢
defined by G, which represents the controllers that can transmit information to controller 7.
We refer to a set of controllers equipped with G as a distributed controller. The diagram

in Figure 2.2 depicts the overall system considered here.
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LTI Multi-agent System
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Figure 2.2: A diagram showing an example of an overall closed-loop system that consists
of a LTI multi-agent system and distributed controller. See Example 2.3.3 for a numerical

implementation of the closed-loop system.
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We summarize the problem as follows.

Problem 2.3.1. Given a graph G = (V,E) and a LTI multi-agent system as in (2.3), we

want to

(i) determine parameters {Kf, P, Qi Sfj}ijEV for (2.4) such that the interconnec-
tion of (2.3) and (2.4) results in the asymptotic synchronization of the system (2.3),

ie.,

lim [|x® (k) — xO(h)]| = 0

k—o0

foralliinV!'\ {1}, and

(ii) show that the state of each agent converges to a solution of x,(k + 1) = F,x.(k)

for some initial value x,(0) € R", i.e.,

lim {|x" (k) = xo(k)[| = 0

k—o00

forall iin V.

The literature on the problem of designing distributed controllers for synchroniza-
tion of multi-agent systems is vast (see, for instance, [46—49] and references therein). To
mention a few, the work of [50] considered synchronization of linearly coupled nonlinear
agents, and the authors of [51] formulate synchronization as mixed-integer nonlinear op-
timization. Also, there is recent work [52-59] that focused on studying synchronization
problems with LTT multi-agent models. The framework in these articles assumes that the
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states of agents are completely decoupled, and each agent has an associated controller
that accesses its full state and has full control of it.

Here, we consider a LTI multi-agent system in which (i) agents are interacting ac-
cording to (2.3a), (ii) for each j in V, the j-th control input u;(k) affects the state of

the system according to {G}; } and (iii) for each 7 in V, the i-th output vector y; (k)

ievls
depends on the state of the system according to H;. Due to (i)-(iii), the formulation con-
sidered in Problem 2.3.1 may not be cast as one to which existing results for completely
decoupled multi-agent models can be applied. More specifically, suppose that each agent
has an associated controller that accesses its full state and has full control of it. To trans-
form the agent model (2.3a) into a completely decoupled one, each controller needs to
access the states of the agents on which the state of its associated agent depends, and
generate control to cancel the coupling. However, this may not be possible since the
interaction graph G/ and graph G, whose edges determine the viability and direction of
information transfer among controllers, may not be identical as depicted in Figure 2.2.
The proposed scheme can be applied to frequency synchronization in power grids

[60—62], which ensures stable operation of grids and efficient power transfer from gener-

ators to loads.
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Our solution to Problem 2.3.1 is given as follows.

Proposition 2.3.2. Suppose that a graph G = (V,E) is pre-selected, that a LTI multi-

agent system is given as in (2.3), and that G and the matrices in (2.5) satisfy the following:

(i) The pair (A', B') is stabilizable, where A’ and B’ are defined in (2.5b) and (2.5¢),

respectively.

(ii) The graph G and the pair (A, C) satisfy the detectability condition of Theorem 2.2.2,

where A and C are defined in (2.5a) and (2.5d), respectively.

There exists a distributed controller (2.4) that asymptotically synchronizes the system

(2.3), ie.,

lim (k) ~ X (k)] =0

k—o0

for all i in VI \ {1}. Furthermore, if all eigenvalues of F, lie on or inside the unit circle

in C, then the state of each agent converges to a solution of
Xo(k +1) = Foxo(k)
for some initial value x,(0) € R, i.e.,
tim [[xO (k) = xo (k)| =0

forall iin V.
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Fo| Py Fim,
A= (2.5a)
A o Al
with A’ =
A;na—l,l Alma—l,ma—l
Fij — I, ifi7#j
and A} ,; | = : (2.5b)
FO_ZZGVI\{i}EZ_Fli ifi:j
B = / i I — T "
= B1 . B':n with Bz = (Ggl — Glz) v (Gmaz — Glz) R (250)
T 1 0

]-mafl [mafl
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A constructive proof of Proposition 2.3.2 is given in Appendix A.3, where we use
Theorem 2.2.2 to show the existence of {Kf, Pf, Q7. SE; i eV for (2.4) for which the

interconnection of (2.3) and (2.4) results in the asymptotic synchronization of the system

(2.3).

Example 2.3.3 (Numerical Example). Consider a multi-agent system (2.3) and the graph

G depicted in Figure 2.2, where the matrices in (2.3) are numerically specified as follows:

0.9950 0.0998
F, =

—0.0998 0.9950

—0.11 if(i,5) € {(1,3),(2,1),(3,2),(4,1), (4,3)}
Fy =

0 otherwise

171010 O
(Gn G2 G13):
0/0/0 O

—1{1|0 1
(G21 Gao G23> =

Ol—-1]1 0
(G31 Gso G33) -

00| -1 -1
(G41 Gao G43) =
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(H11H12H13H14)=(1 0[—1 0/0 00 0)

(H21H22H23H24)=(0 0/1 0/—=1 0]0 0)

(H31H32H33H34)=(1 0|0 0|—=1 010 0)

The assumptions (i) and (ii) of Proposition 2.3.2 are satisfied; hence, the existence
of a distributed controller (2.4) that synchronizes the system (2.3) is guaranteed. We com-
pute a parameter choice for (2.4) according to the procedure described in Appendix A.3.1
and Appendix A.3.2. The state trajectories of the resulting closed-loop system are de-

picted in Figure 2.3. U
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Figure 2.3: A simulation result of Example 2.3.3 which depicts the synchronization of

the first components X(ll)(k), X§2) (k), Xf’)(l@), XYD (k) of the states of agent 1,2, 3, 4.
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Remark 2.3.4. Since our results can be applied to any interaction graph G', the assump-
tion (ii) of Proposition 2.3.2 may be stronger than what would be needed for the cases in
which the agents are completely decoupled (cf. Assumption 1 in [58]). As a case in point,
consider a system configuration with the same number of agents and controllers and for
which the agents are all decoupled, i.e., V! =V and E' = |J,y:(4,%). In addition,
assume that the input and output matrices of (2.3), respectively, satisfy G;; = 0 if i # j
foralliinV! and jin'V, and H; = eI @ H! for all i in V and for a matrix H] in R"*",
where e; is the i-th column of the m,-dimensional identity matrix. Under this setting, (ii)
of Proposition 2.3.2 requires the graph G to be strongly connected, while Assumption 1

in [58] only requires G to have a directed spanning tree.

2.4 Proof of the Main Theorem

In this section, we provide a proof for Theorem 2.2.2. If the conditions of the
Theorem hold then Appendix A.1.2 outlines a randomized method to obtain a choice of
omniscience-achieving parameters.

The proof has two parts: It starts with Lemma 2.4.3, Lemma 2.4.4, and Theo-
rem 2.4.5 that describe important spectral properties of a parametrized class of weight
matrices W. The second part, which consists of Proposition 2.4.8, Theorem 2.4.10, and
Remark 2.4.11, determines conditions for a parameter choice W and {K;, P;, Q;, S;},y
to be omniscience-achieving. The structure of the proof is outlined in the diagram of

Figure 2.4.
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Conditions for a parameter choice
W and {K’H Pi7 Qi) S’L}zEV

Spectral properties of W to be omniscience-achieving

( Theorem 2.2.2 ]

Figure 2.4: A precedence diagram for the proof of Theorem 2.2.2

2.4.1 Key Results on Weighted Laplacian Matrices

Definition 2.4.1. Consider a graph G = (V,E) with V. = {1,--- | |V|}. A matrix
L = (Lij)i jev is said to be a Weighted Laplacian Matrix (WLM) of G if the following three

conditions hold:
(i) If (j,i) ¢ Ethenl;; =0 foralliinV and j in'V \ {i}.
(ii) If (j,i) € Ethenl;; <0 foralliinV and j in'V \ {i}.
(iii) It holds that 31, 1;; = 0 for all i in V.

For notational convenience, we define the set of WLMs of G as follows:

L(G) ¥ {L e RIVIXIVI ’ Lisa WLM ofg}

Definition 2.4.2 (UEPP). Given square matrices A and B, A ® B is said to have the

so called Unique Eigenvalue Product Property (UEPP) if every nonzero eigenvalue \ of
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A ® B can be uniquely expressed® as a product \ = Ay - A\, where Ay and \p are

eigenvalues of A and B, respectively.

Lemma 2.4.3. Let G = (V,E) withV = {1,--- | |V|} be a directed graph, and A be a
matrix in R™". Suppose that a matrix W in RV is defined as W = Iyy) — L, where
a is a positive real number and L = (ll-j)l.’jGV is a WLM of G. Given L and o satisfying
0<d < (maXlsiSIV\ lii)_l 10, for almost every o in (0,a’), W is a stochastic matrix

and W ® A satisfies the UEPP.

Lemma 2.4.4. Let a matrix W in R™*™ and a matrix A in R™*"™ be given. If all eigen-
values of W are simple’! and W ® A satisfies the UEPP, then each eigenvector q of
W ® A associated with a nonzero eigenvalue )\ can be written as a Kronecker product
q = v ® p, where v and p are, respectively, eigenvectors of W and A (associated with the

eigenvalues M\ and )\ 5 for which A = \w - A4 holds).
The proofs of Lemmas 2.4.3 and 2.4.4 are given in Appendix A.4.

Theorem 2.4.5. Let G = (V, E) be a strongly connected graph. For almost every element

L of the set 1L(G), the following hold:
(i) Every right and left eigenvectors of L have no zero entries.

(i) Every eigenvalue of L is simple.

For an eigenvalue A of A ® B, let A4, X, be the eigenvalues of A and Ap, A5 be the eigenvalues of B
for which A = A4 - Ap = N - Mg holds. The eigenvalue A is said to be uniquely expressed as a product

A= Ag - Agifitholds that A4 = )\14 and \g = XB'
191f I;; = 0 for all i in V, then we consider that (max; <;<|v| li;) !~ .

1 An eigenvalue of a matrix is simple if both the geometric and algebraic multiplicities of the eigenvalue

are equal to 1.
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Since Theorem 2.4.5 hinges on structured linear system theory, in Appendix A.5

we provide a review of key concepts followed by a proof.

2.4.2 A Brief Introduction to Stabilization via Decentralized Control

We review certain classical results in decentralized control that will be used in the
proof of Theorem 2.2.2. Of special relevance are the fundamental work of [63—66] that
investigates the notion of fixed modes'? for LTI plants, and the work of [68] that studies
the effect of decentralized output feedback on LTI plants. To introduce these results, we

consider the following state-space representation for a LTI plant:

Vi
F(k+1) = AZ(k) + ) _ Biii;(k)
i=1 (2.6)
Ui(k) = Ci(k)
foreachiin V = {1,--- ,|V|}, where 7(k) € R, ;(k) € R, and 7;(k) € R™ are the

state, i-th control input, and -th output, respectively.

Definition 2.4.6. [63,64] A given \ € C is a fixed mode of (2.6) if it is an eigenvalue of

AV_{_ Z?jl észélfOI’ all K; in RPxTi,

Remark 2.4.7. The fixed mode is an eigenvalue of the plant (2.6) which is invariant
under the decentralized output feedback u;(k) = K;y;(k) for all i in V, where K; is a
matrix in RP" In addition, if the plant (2.6) has an unstable fixed mode then it cannot
be stabilized by any decentralized controller that is causal and LTI (see [63, 64] for the

details).

12The notion of fixed modes is analogous to the concept of uncontrollable or unobservable modes adopted

in centralized control problems [67].
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The fixed modes can be characterized by an algebraic rank test described in the

following Proposition.

Proposition 2.4.8. [65, 66] Consider that a LTI plant is given as in (2.6). Let

T
B = (B1 BIV) and C' = (ClT CI?VI)
A given A € C is a fixed mode of the plant if and only if there exists a subset J] C 'V for
which
A-\-I; By
rank <n 2.7

Cle 0

holds, where i is the dimension of g, and J¢ =V \ J.

Definition 2.4.9. Let (V, EP ) be a graph of a LTI plant (2.6) in which the edge set EX
~ -1~
satisfies (j,1) € EF if and only if C; (z Ay — A> B; is nonzero. The plant (2.6) is said

to be strongly connected if its graph (V, E? ) is strongly connected.

In the following Theorem, based on Theorem 4 of [68], we specify the effect of

decentralized output feedback of the following form on a strongly connected LTI plant.

z1(k +1) = Siz1(k) + Q191 (k)
(2.8a)

U (k) = Pizi(k) + K19 (k)

ui(k) = Kiyi(k), i € V\ {1} (2.8b)
where z (k) takes a value in R for a nonnegative integer /.

Theorem 2.4.10. Consider a LTI plant given as in (2.6) and decentralized output feed-
back (2.8). Suppose that the plant is strongly connected and has no unstable fixed mode.
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Then, for almost every choice of {Ki}iGV\{l}’ there exists a choice of K1, Py, (Q1, S1
for which the closed-loop system obtained from the interconnection of (2.6) and (2.8)

described by

z(k+1) A+ BK.Ci BiPy z(k)
z1(k+1) 10y S1 z1(k)

is stable.

Remark 2.4.11. The system (2.9) also can be viewed as the closed-loop system obtained
by applying a (centralized) controller described by (2.8a) to a LTI system described by

the triple
A+ BiKC;, B, Cy (2.10)
=2
We can find a parameter choice K1, Pi, ()1, S for which (2.9) is stable using results on
finding stabilizing (centralized) controllers for LTI systems. In particular, by adopting

the result of [69], we can find a stabilizing controller (2.8a) of order 1, equal to the

controllability index of (2.10) minus one.

2.4.3 Additional Preliminary Results

Let m, be the number of source components of G in which we denote each source
component as G; = (V;, E;), and VZ be the set of source component representatives (see

Definition 2.2.1). Notice that the source components of G impose the following structure
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on W:

w, - 0 0
W — ' ' ' (2.11)
0 .. W,,. 0
WmSJrl,l e ‘Afms+1,mS Wms+1,ms+1
For each [ in {1,--- ,m,}, the sparsity pattern of W; € RIV:*IVil must be consistent'?

with G; so that under a suitable choice of {Wmﬁl,l}?ﬁlﬂ, the sparsity pattern of W
given above is consistent with G.

For notational convenience, we consider that V; = {1,--- | |V;|} and V; N VE = {1}.
To analyze the asymptotic omniscience of the proposed estimation scheme, under the pa-
rameter choice of W and {K;, P;, Q;, S;},. described in Appendix A.1.2, we derive the
state-space representation for the dynamics for the estimation error of (2.1) associated

with G; as follows:

T(k+1) W, A-SMBK,C, —BPy| [ (k)
— 2.12)
Zl<k’ + 1) Qlél Sl Zl(k’)
T
where 7 = (53/{ .. g‘ig/ ) with 7; = z — Z;, and W, is a submatrix of W associated
1

with G, asin (2.11). ForeachiinV,, B, = ¢; ® I, and C; = el @ C; where ¢; is the i-th
column of the |V;|-dimensional identity matrix. Notice that (2.12) can be viewed as the
state-space representation of the closed-loop system obtained by applying decentralized

output feedback, parametrized by Ky, Py, Q1, S, {K;}, ev\ipotoa LTI system described

3The sparsity pattern of a matrix W = (w;;). - cv is consistent with a graph G = (V,E) if w;; = 0 for

(4, 1) ¢ E.
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by the triple

Ch
W, ® A, — (El EWH) , : (2.13)

Crw,
Hence, we can write (2.12) as in (2.9) by selecting A= W, ® A, P =P, Q1 = Qq,
S1 = S; and El = —B,, 5, = (C,, K; = K, for all i in V,. This idea, in conjunction with
Theorem 2.4.10, allows us to connect the stability of the estimation error dynamics (2.12)

with strong connectivity of (2.13) and the absence of unstable fixed modes in (2.13).

The following Lemma states certain spectral properties of W determined by Pro-

cedure 3 in Appendix A.1.2.1. The proof of Theorem 2.2.2 is then followed.

Lemma 2.4.12. The submatrices {W,}}"*, and W, 11 . +1 of W in (2.11) satisfy the

following with probability one:

(P1) For eachlin {1,--- ,m}, every right and left eigenvectors of W, have no zero

entries.

(P2) For each l in {1,--- ,m}, every eigenvector q of W; ® A associated with an
unstable eigenvalue )\ can be written as a Kronecker product ¢ = v ® p, where v
and p are, respectively, eigenvectors of W, and A (associated with the eigenvalue

Aw, and the unstable eigenvalue )\ 4 for which A\ = Aw, - A4 holds).
(P3) Every eigenvalue of W, 1 . +1 ® A is zero.

Proof. Notice that for each [ in {1,--- ,ms}, in Procedure 3 (Line 3-10), we have set
W, = I}y, — aL where « is chosen according to a uniform distribution defined on (0, 1),
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and L = (l;;) is a WLM of G;, each of its nonzero off-diagonal entries /;; is chosen

i,jEV,
according to a uniform distribution defined on (—ﬁ, 0) independent of choices of
other entries. By Theorem 2.4.5, L satisfies (i) of Theorem 2.4.5 which ensures that (P1)
holds with probability one.

In addition, according to Lemma 2.4.3 and Theorem 2.4.5, this choice of o and
L ensures that W, is a stochastic matrix and has all simple eigenvalues, and W; ® A
satisfies the UEPP (see Definition 2.4.2) with probability one. Since W; is stochastic,
its eigenvalues lie on or inside the unit circle in C; hence, an unstable eigenvalue A\ of
W, ® A can be written as A = Aw, - A4 where \w, is an eigenvalue of W, and A4 is an
unstable eigenvalue of A. Therefore, invoking Lemma 2.4.4, we conclude that (P2) holds
with probability one.

Lastly, the way entries of W, 11, 41 are chosen by Procedure 3 (Line 11-14)

ensures that all eigenvalues of W,,,_ ;1 ,,,,4+1 are zero and (P3) holds. 0

2.4.4 Proof of Theorem 2.2.2

First of all notice that if the subsystem (A, Cy,) of the plant (1.1) is not detectable,
then for any choice of Wy, the system (2.13) has an unstable fixed mode. By Re-
mark 2.4.7, there is no parameter choice for which the estimation error dynamics (2.12)
is stable; hence, no omniscience-achieving parameter choice exists for (2.1). This proves
the necessity of Theorem 2.2.2.

Let V.11 = V\ U™, V;. Consider that {W,,_;1,}7"" and {Kiticv, o {itiev,

are determined by Procedure 3 (Line 11-14) and Procedure 4 (Line 9-11) in Appendix A.1.2,
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respectively. Notice that by (P3) of Lemma 2.4.12 and due to the choice of {K;} Vi1
{Mi}ievm .,» to prove the sufficiency of Theorem 2.2.2, we only need to show that for
each [ in {1,--- ,m}, under the detectability condition of Theorem 2.2.2, there exists a

choice of W; and {K;} P, Q, S, for which the estimation error dynamics (2.12) is

i€Vy
stable.'*

Suppose that the choice of W; and {K;},y,\ (1, determined by Procedure 3 (Line
3-10) and Procedure 4 (Line 4-7), respectively, ensures that, with probability one, the LTI

system (2.13) is (i) strongly connected and has (ii) no unstable fixed mode, and (iii) the

controllability index of the LTI system described by the triple

\
W, @ A- ZIEK@, —By, C4 (2.14)

=2
is equal to |V;|. By Theorem 2.4.10 and Remark 2.4.11, there exist matrices K1, P, Q1,S;
with p; = |V;| — 1 that, in conjunction with the chosen W; and {K;} icv,\(1}> €nsure that
the estimation error dynamics (2.12) is stable, where these matrices can be determined by
Procedure 4 (Line 8). Hence, we conclude that the detectability condition is sufficient for
the existence of an omniscience-achieving parameter choice, and for the parameter choice
determined by Procedure 3 and Procedure 4 to be omniscience-achieving with probability
one. It remains to prove the arguments (i)-(iii).

Proof of (i): Suppose that the transfer function matrix given by
Ci(z- Iyyn — Wi @A) ' B, (2.15)

is zero for some 7, j in V;, or equivalently C; (W; ® A)]g Ej = 0 holds for all nonnegative

4“From the overall estimation error dynamics for (2.1), it can be verified that if (2.12) is stable for every

lin{L,---,ms}, then it holds that limy_, ||Z;(k) — 2(k)|| = O forall i € V,,,_41.
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integer k. This yields that
C; (W, A" B; = (el Wie;) CiA* = 0 (2.16)

where we use the fact that Ej = e;® I, and C, = el-T ® ;. Since G is strongly connected,
due to the choice of W by Procedure 3 (Line 3-10), we can see that ¢! W}°¢; # 0 for a
positive integer ko, and hence C; A* = 0 holds. However, this contradicts the fact that A
is nondegenerate and C; is nonzero (see Section 2.1.2). Therefore, the transfer function
matrix (2.15) is nonzero for all ¢, j in V; which, by definition, implies that the system
(2.13) is strongly connected with probability one.

Proof of (ii): Let us define B = (El . EV;) and C' = (UIT . UQZ)T.
According to Proposition 2.4.8, we need to show that the following inequality holds for

every unstable eigenvalue A of W; ® A:

Wl®A_/\'I|Vl\-n EJ
rank > |Vi|-n (2.17)
Ce 0
where J is an arbitrary subset of V;, and J¢ = V; \ J is its complement.

Suppose that J is not empty then by (P1), (P2) of Lemma 2.4.12 and by the defini-

tion of B, it holds that

W, A\ ]|Vl|-n EJ
rank

Cye 0
> rank ( W, @A~ X Ty, B; ) =1V -n (2.18)

Otherwise, since J¢ = V;, by (P1), (P2) of Lemma 2.4.12, by the definition of C, and by
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the detectability of the subsystem (A, C'y, ), it holds that

W oA—M\- I|Vl|~n EJ
rank

Ce 0

W, A—-M\- ]|Vl\-n
= rank =V -n (2.19)

C

Therefore, from (2.18) and (2.19), we can observe that the inequality in (2.17) holds for
every unstable eigenvalue A\ of W; ® A, and by Proposition 2.4.8 the system (2.13) has
no unstable fixed mode with probability one.

Proof of (iii): To verify this, we consider a matrix given by

(El (W, ® A)B; --- (W1®A)|V’|_1§1) (2.20)

Note that (2.20) can be rewritten as

(<61 We, - W}Vzl—lel) ®In> ~diag (I, A, -, AV (2.21)

where we use the fact that B; = e; ® I,,.

By the nondegeneracy of A, the rank of the matrix in (2.20) equals

V-1 .
rank (61 W, --- W} d 61) n

and by (P1) of Lemma 2.4.12, we can see that the matrix in (2.20) has rank |V;|-n. Hence,
the following matrix has generic rank |V;|-n, i.e., for almost every choice of {K;} VA1)

the matrix has rank |V;| - n.
B w0\ i\
B, |W,®A-— Z BK,C.| B, - |WoA- Z B,K,C,; B,

i=2 =2

(2.22)
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Therefore, due to the choice of {K;}, v, 1, by Procedure 4 (Line 4-7), the controllability

index of (2.14) is equal to |V;| with probability one. U

2.5 Application to Tracking of Animal Groups and Experimental Results

In this section, we apply the proposed distributed estimation scheme to tracking of
animal groups, and show preliminary experimental results using a data set collected from
the deployment of animal-borne wireless camera network in the Gorongosa National Park
(Mozambique) in August 2015.!> The main purpose of the development and deployment
of the system was to collect biologically meaningful measurements and videos using GPS,
IMU, and Camera all integrated in a single tracking device, where the proposed estima-
tion scheme can be used to determine how to fuse sensor measurements and location
estimates of tracking devices within the network so that each tracking device in the net-
work learns locations of all other devices connected to the same communication network
(see Figure 2.5). The sensor measurements and videos are used to study animal group
motion. During the deployment, 15 tracking devices were installed on waterbucks and
water buffaloes. Figure 2.6 and Figure 2.7 show GPS tracks of 4 water buffaloes (Buffalo

1,2,3,4).

5The development and deployment of animal-borne wireless camera network were performed under a
research grant NSF ECCS 1135726.
Disclaimer: The author of this dissertation was NOT involved in the deployment in the Gorongosa National

Park.
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Figure 2.5: System overview of the tracking device in the animal-borne wireless camera

network
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Imagery Date: 9/8/2011  18?55:54.247 § - 34°32126/407 E-olev. 74.ft eyealt 6280ft

Figure 2.6: A screenshot of GPS tracks of water buffaloes in the Google earth

(Timespan: 2015-08-06T00:00:00Z ~ 2015-08-06T04:00:00Z)
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Figure 2.7: Original trajectories of water buffaloes in a local North East Up (NEU) co-
ordinate system (The origin of the coordinate system: Latitude = -18.9279877268328,

Longitude = 34.5457567343343)
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To represent animal group motion, we adopt a continuous-time LTI model described

by the following state-space equation: For each i in {1,--- 4},
pg) (t) = Ug(ci)(t) (2.23a)
pz(j)(t) = v(i)(t) (2.23b)
4
o0(0) = = ay (1) — (1) (2230)
j=1
4
HORSD A CHORE0) (223)
j=1

T T
where (pg(ci) (t) péi)(t)> and (chzi)<t) Ué”(f)) denote the location and velocity of

Buffalo i, respectively. We have assumed that a;; = a;; for all 4, j in {1,--- 4}, and
that a node (observer) is associated with each water buffalo and the location and velocity
measurements of each buffalo are available to its associated node every 10 seconds. By

discretizing (2.23), we obtain a discrete-time LTI model described as follows:

z(k+1) = Ax(k) (2.24a)
yi(k) = Ciz(k) (2.24b)
foriin {1,---,4}, where
T
x(k) = ( Wk PR w k) k) e ) B (k) o (k) v§4><k>)

T
vilk) = ( SONAOREIC) vé“(k))
and the system matrices A and C; are determined as follows:

A =exp (10A,)

Ci:€?®]4
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where

0 1 0 0 0 0 0 0

0 — Z#l ai; 0 Q19 0 a3 0 a14

0 0 0 1 0 0 0 0

oo 0 asn 0 —> isa O a3 0 a4 ol

0 0 0 0 0 1 0 0

0 as1 0 Q39 0 — 2#3 as; 0 sy

0 0 0 0 0 0 0 1

0 41 0 (42 0 a43 0 —> j#4 45

and e; is the ¢-column of /. Note that, according to C};, each node has access to the
location and velocity of its associated buffalo.
In practice, the model (2.24) may include a noise term w(k) which is due to the

un-modeled dynamics of animal motion:

z(k+1) = Az(k) + w(k)

To minimize the noise w(k), we have chosen the entries a;; of Ac that minimize the cost

given by

i

(k)|

0

B
Il

where N is the number of available location and velocity measurements, and the resulting

48



O——O—®

Figure 2.8: A communication graph G for designing a distributed observer.

choice of a;; is given by

a9 = a91 = 0.002
a1z = az; = 0.002
a4 = ag =0
a3 = aszy = 0.001
a4 = ago = 0

a34 = Ay3 = 0.003

To design a distributed observer, we assume that the communication graph G is pre-
selected as depicted in Figure 2.8. We find the omniscience-achieving parameter based on
Procedure 3 and Procedure 4 described in Appendix A.1.2. Figure 2.9 shows the estimate
(ﬁg) (k) pg)( k)) ' of the original trajectory of each buffalo, depicted in Figure 2.7, by

every node; and Figure 2.10 shows normalized estimation error computed by

) P (k) P (k)
total traveled distance of Buffalo ¢ () a A (4)
py’ (k) by’ (k)
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Figure 2.10: Normalized estimation error at every node (Total traveled distance:

Buffalo 1 = 1694 m, Buffalo 2 = 1505.8 m, Buffalo 3 = 1981.8 m, Buffalo 4 = 2129 m)
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2.6 Summary and Future Work

We described a parametrized class of LTI distributed observers for state estimation
of a LTI plant, where the information exchange among the members of a distributed ob-
server is constrained by a pre-selected communication graph. We developed necessary
and sufficient conditions for the existence of a parameter choice for a distributed observer
that ensures asymptotic omniscience and satisfies the scalability constraint (1.2). These
conditions can be described by the detectability of the subsystems of the plant that are
associated with the source components of the graph.

As a future direction, we suggest performance analysis of the proposed scheme and
parameter optimization to minimize estimation error in the presence of noise in measure-
ment and communication link. Also it is important to consider distributed state estimation

over time-varying communication graphs.
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Chapter 3: Optimal Remote State Estimation of Markov Processes

3.1 Problem Formulation

3.1.1 Notation and Terminologies

def
* Forelements ay,--- ,ay of X, we define ay.y = (aq,--- ,an).

For functions A, - - - , Ay, we define A;.x = (A, -, An).

When the random variable Ry, is dictated by a policy T, we use same superscript

for Ry and T, e.g., R; and T, or Rl(j) and Tl(;)'

We define

o max{je{l,---,k—l}‘Rjzl} if R, = 1 forsome j € {1,-- ,k —1}
T —

0 otherwise

The value of 7, indicates the most recent time when a transmission has occurred
from the sensing unit to the estimator. We refer to 7, as the last transmission time

before time k.
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3.1.2 Problem Description

In this section, we describe the problem formulation considered throughout the
work in which we seek transmission policies 7 1.y and (state) estimation rules &, that
dictate decision making of the sensing unit and estimator, respectively, and that are op-
timal for the cost functional (1.5). Throughout the work, without loss of optimality, we
consider that transmission policies and estimation rules have the following structures':
The transmission policy at time £ depends only on the last transmission time Ty, the infor-
mation X, transmitted to the estimator at time 7, and the current state x;, of the process.
In particular, we adopt a class of randomized transmission policies.> The estimation rule
at time k depends only on the last transmission time 7, and the information x,, received
from the sensing unit at time 7. Given a transmission policy 7T, and an estimation rule

&, the decision variables Ry and x;, are dictated by 7 and &, respectively, as follows:

Rk = Tk (Tk,XTk,Xk) (313)

(C:k (Tk,XTk) lka =0
X = (3.1b)

X, otherwise

"We do not lose optimality of resulting solutions from the imposition of these structures. This can be

verified by similar arguments as in Lemma 1 and Lemma 3 of [70].

2See Appendix B.2 for a detailed description of randomized policies.
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We formally state our main problem as follows.

Problem 3.1.1. Given a Markov process {x;}x_,, find optimal transmission policies

T 1.n and estimation rules &E,.y for the cost functional given by

N
J (CUO, Tl:N751:N) = ZE [dz (Xk,fik) + ¢, - Ry | X0 = o, Tl:Na Ein (3.2)

k=1

subject to (3.1).3

We consider two notions of optimality for solutions of Problem 3.1.1 described as

follows.

Definition 3.1.2. Transmission policies T 1. and estimation rules E;.\ are said to be

Jjointly optimal for (3.2) if they achieve the global minimum for every xq in X.

Definition 3.1.3. Transmission policies T 7.y and estimation rules £}, are said to be

person-by-person optimal for (3.2) if the following relations hold for every x in X:

j(x()vTT:NJ ik:N) :,g.nilj\llj(Z‘OleiN?gikzN)

= Ignln j (.TO, TT:Na gl:N) (33)

1:N
Equation (3.3) implies that given decision functions T |.n of one player (sensing unit),

& are the best decision functions of the other player (estimator), and vice versa.

We maintain the following assumptions throughout the work.

3The initial condition xg = x and the process model is common knowledge to both the sensing unit

and estimator.

55



Assumption 3.1.4. (X, d) is a complete, separable, proper metric space.*

Assumption 3.1.5. Let pi, : X X B — R be a transition probability of the process, where
B is the Borel o-algebra generated by the metric topology associated with (X,d). We

assume that the following are true:

1. For every non-empty open set Q in *B, the function x — py (x, Q) is positive for all

zin X
2. For each A in B, the function x — py, (x, A) is continuous.

Assumption 3.1.6. For each jin{k —1,--- N}, kin{l,--- N}, and xj_1 in X, we

assume that there is a transformation M;(k — 1, xy_1,-) : X — X for which
1. It holds that My (k — 1, x5, 25_1) = 0.

2. The function x; — M; (k — 1, x_1, x;) is continuous and has a continuous inverse.

We denote the inverse by M, (k — 1,241, ).
3. Forevery x;_1 in X and A in *B, the transition probability p; satisfies
pj (€51, A") = pj (z-1,A)
where

.fE;-_l = Mj_l(k’ — 1, Lh—1, xj—l)

A =M, (k—1,25_1,A)

“4For notional convenience, we suppose that 0 € X.
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4. The metric d is invariant under Mj, i.e., it holds that
d(zj,2;) = d(Mj(k — 1,251, 25), Mji(k — 1,251, %))
forall x;,z;in X.

To find a solution to Problem 3.1.1, we divide the problem into a set of /N sub-
problems, and sequentially solve each sub-problem. We proceed by describing the so-
called Two-Player Optimal Stopping Problem from time k, and show how each sub-

problem can be related to the optimal stopping problem.

Problem 3.1.7. Suppose that a Markov process {x;}I_, | with a transition probability

. .. YN . . . . . <k—1>
pj : XxB — R and positive constants {cj }j:k are given. Find optimal policies T .

and rules %' for the cost functional given by

K
E ) d*(x;,%) + i R | xpm1 = 21, T Enn (3.4)
j=Fk
where
min{j € {k, - 7N}‘Rj = 1} ifR; =1 for some j € {k,--- ,N}
K =

N otherwise
The policy Tj<k71> : X x X — {0, 1} and the rule Sj<k_1> : X = X, respectively, dictate
R; and x; as follows:
Rj = Tj<k71> (J}k_l, Xj) (353.)
5j<k_1> (Ztk_l) lij =0

X; = (3.5b)

X; otherwise
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We adopt two notions of optimality for Problem 3.1.7 as follows.

Definition 3.1.8. Policies T*,f:lf\,_b and rules € *,fff\fb are said to be jointly optimal for

(3.4) if they achieve the global minimum for every xj_, in X.

Definition 3.1.9. Policies T*,f:]f\,—b and rules £ *,ﬁv_b are said to be person-by-person

optimal for (3.4) if the following relations hold for every x_1 in X:

K
2 S / _ x<k—1> x*<k—1>
E E d (XJ7XJ>+CKRK Xk—l—xk—laT k:N 75 k:N ]
Jj=k
K
_ : 2 : 2 S / _ <k—1> cx<k—1>
o I<l’}€171}> E d (Xj7 Xj) + ok RK Xk—1 = Tk—1, Tk:N 78 k:N
K
. . 2 ~ / _ x<k—1> <k—1>
= min_ E E d”(xj,%j) +cx Rk | Xpe 1 =201, Ty &N (3.6)

Problem 3.1.7 can be viewed as a team decision problem [71] in which two players
are involved and the main objective is to find optimal decision functions T,f:]]“\fb and

8§§_1> for the players. Note that the total expected cost (3.4) consists of a running cost

d? (x;,%;) and a stopping cost c,.

Remark 3.1.10. In Section 3.2, we show that using the transformation described in As-
sumption 3.1.6, the value of (3.4) evaluated at an optimal solution does not depend on

the initial condition x;,_1 = xj_1 (see Remark 3.2.2).

Remark 3.1.11. For any polices T /" and rules En ">, if ¢; < ¢ holds for all j in
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{k,---, N}, then we have the following inequality:

K
K E:d%Xw%)+d<lﬁ<Xm&Z$hh7§%DUQ%J1
j=k
K
S E Z d2 (Xj, )A(J) + CII/{ . RK Xgp—1 = Tk—1, T]j:’;\;l>, g,ijk\:;l>] (37)

j=k
Associated with Problem 3.1.7, we describe the k-th sub-problem of Problem 3.1.1

as follows.

N <j—1> N
j—1>
P and {5j:N

Sub-problem k: Given {Tﬁ\,_b ik

Y let us define constants
N
/ .
{cj }j:k as follows:
K

j
g=c;+E Z d? (x;,%;) + C,Kj Ry,
I=j+1

x; =0, T 8 En (3.8)

with ¢y = cn, where c; is the communication cost at time j given as in (3.2), and

min{lE{j+1,---,N}‘Rl:1} ifR; = 1forsomelec {j+1,--- N}
K, =

J

N otherwise

With the stopping costs {¢;}}_, determined by (3.8), find a solution Ty "~ and Egy ">

to Problem 3.1.7.

<j—1>\N <j—1>\N .
Note that Sub-problem £ assumes that {Tj: A S and {Sj: N are given

j=k41

parameters.
Our main strategy in solving Problem 3.1.1 can be described as follows: We solve
the Sub-problems backward in time starting from £ = N, where for each Sub-problem £,

<j—1>1N

we provide solutions {7 iy, and {37 j.V:H | for preceding Sub-problems

59



Remote Estimation Problem

(Problem 3.1.1)

. N , N
: -1 —1
solutions {‘7 e >} and {S X >}
I j=k+1 I j=k+1

[ Sub-problem £ + 1 ] {}

E Two-player Optimal Stopping Problem

[ Sub-problem £ ]

\'\ (Problem 3.1.7)

Sub-problem 1
[ ub-p ] solution 75! and giizlif_b

V

v

T 1.n and &;.y determined by (3.9)

18 a solution to Problem 3.1.1

Figure 3.1: The problem solving strategy for Problem 3.1.1

. N .
to construct the stopping costs {c;} . Once solutions to all the Sub-problems are found,
Jj=k

we determine transmission policies 7 1. and estimation rules &;.y for Problem 3.1.1 in

the following way:

T](]{? — 1,xk_1,xj) = Tj<k_1><$k_1,$j) (393)

Eilk — 1 ap_y) = 1 (w-1) (3.9b)

foreach jin {k,--- ,N}and kin {1,--- , N}.
In Section 3.2, we solve Sub-problem k. In particular, we show that there exists

a jointly optimal solution and describe an iterative procedure for finding a person-by-
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person optimal solution. In Section 3.3, based on the results of Section 3.2, we verify
that the transmission policies and estimation rules determined by (3.9) are a solution to
Problem 3.1.1. The diagram in Figure 3.1 depicts the aforementioned problem solving

strategy.

3.1.3 Comparative Survey of Related Work

The effect of communication costs in remote state estimation problems was studied
in [70,72-78]. Finite time-horizon problem formulations are consider in [70, 74,76,78].
The authors of [74] found a jointly optimal solution for first-order linear processes driven
by Gaussian noise where it is shown that the transmission policy for jointly optimal solu-
tions is of threshold-type. An iterative procedure for finding a transmission policy and es-
timation rule for first-order linear processes is proposed in [70]. The authors performed a
convergence analysis on the proposed procedure for first-order linear processes driven by
Gaussian noise, which essentially provides an alternative proof of the main result of [74].
The work of [76] considered a problem setting where the sensing unit has energy har-
vesting capability. The authors showed that the transmission policy for jointly optimal
solutions is of threshold-type for a certain class of multi-dimensional linear processes.
Preliminary results of our work were presented in [78] for linear processes.

Infinite time-horizon formulations are considered in [72,73,75,77]. The authors
of [72] studied the structure of optimal transmission policies for linear processes driven by
Gaussian noise, and proposed a procedure to compute an optimal policy based on a value

iteration algorithm. In [73], an algorithm for finding a sub-optimal solution was proposed.
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For linear processes driven by Gaussian noise, the authors showed that the cost incurred
by the proposed algorithm is within a constant factor of the optimum. While the question
of whether the transmission policy for jointly optimal solutions is of threshold-type for
multi-dimensional linear processes remains unanswered, the authors of [75] analyzed the
performance of threshold-type transmission policies for such processes. A computation-
ally efficient method for finding a sub-optimal transmission policy based on polynomial
approximation is proposed in [77].

Other interesting remote estimation schemes are reported in [79-92]. The authors
of [79] studied the structure of optimal transmission policies and estimation rules for the
case where a finite number of transmissions is allowed to the sensing unit. The authors
of [80] considered a problem setting where the sensing unit operates with two different
sensing qualities, and found an optimal time-periodic transmission policies for linear pro-
cesses driven by Gaussian noise. A remote estimation problem for continuous dynamical
systems are studied in [85] where performance of various types of transmission policies
is investigated. Results of [85] indicate that for remote estimation under a communica-
tion rate constraint, the transmission policy for jointly optimal solutions may not be of
threshold-type. A framework in which the sensing unit observes noisy outputs of the
process and transmits observed noisy outputs to the estimator is adopted in [83, 84, 87].
On the other hand, a framework in which the sensing unit accesses noisy observations of
the state of the process and transmits its best state estimate to the estimator is adopted
in [81,82,89]. The authors of [92] adopted a certain class of stochastic transmission poli-
cies which ensures that linear estimation rules are optimal. The authors of [86] proposed

an approximate state estimation scheme based on a sum of Gaussians approach. Remote

62



estimation over shared communication networks is considered in [90]. A problem of
scheduling transmission power level for remote estimation was recently studied in [91].
The problem formulation considered in this work is technically different from pre-

vious ones found in literature in following ways:

1. We adopt random process models that may neither be linear nor have unimodal or

symmetric probability distributions.

2. We consider classes of transmission policies and estimation rules on which no struc-
tural assumption is imposed under which the optimality of resulting solutions is

lost.

3. We investigate optimization of the given performance criteria over both transmis-

sion policies and estimation rules.

3.2 Two-Player Optimal Stopping Problem

In this section, we find a solution to Sub-problem k where the constants {c] jV: k

N d
., to preced-

are determined by (3.8) using solutions {’7';?\,_1> ;iH , and {Ejfj‘@_1> ik

ing sub-problems — Sub-problem & + 1 to Sub-problem N. We consider two notions of
optimality — joint optimality and person-by-person optimality. Our main results state the
existence of a jointly optimal solution (Section 3.2.2) and describe an iterative procedure
to find a person-by-person optimal solution (Section 3.2.3).

We proceed by re-writing (3.4) into a suitable form using the following Definition.

Definition 3.2.1. Define a (random) function P; : X — {0, 1} and a variable z; € X for
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each jin{k,--- , N} as follows:
Pj(z;) = T3 (0.25) (3.10)
& =& (0) (3.10b)
We refer to P and i as the (randomized) policy® and estimate at time j (for the initial
condition x;,_1 = 0), respectively.
Given that x;,_; = 0, we can re-write (3.4) as follows:
Ex, [k (Xg, Pr:nN, T (3.11)

where for each j in {k,--- , N},

J;i (%4, PN, Tj:n)

= <d2 (x5, 25) + Ex, oy |1 (%551, Pjgin, Tjgin) ‘Xj:|> -(1-Ry)+¢; Ry
(3.12)

with Jy 1 = 0, and P; dictates R; as follows:
R; =P;(x) (3.13)
Note that J; satisfies
Ey, [Jj (x5, Pj:N>Tj:N) ‘Rk =0, ,Rj1 = 0}
= (Bx, [ (x5025) | R =0, R, = 0]
+Ex, [Jj—i-l (%j11, Pjs1:N> Tj41:N) ’Rk =0,---,R; = 0} )

-P(Rjzo)szo,m,Rj_l:0)+c;~]P(Rj:1‘Rk:o,m,Rj_lzo) (3.14)

3As k is fixed in Sub-problem k, throughout the section, we drop the dependence of policies and esti-

mates on k.

See Appendix B.2 for a detailed description of randomized policies.
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forall jin {k,---,N}.

Remark 3.2.2. Let P;., and T3, be optimal policies and estimates for (3.11), respec-

tively. From (3.14) and our main results, we can see that
By [Tk Xk Preons Tan )] = By, [ (Xis Ty (3.15)
holds where
J; (2, %}.y) = min {d2 (25, 27) + Ex [J;—i-l (%41, 5 41.8) ‘Xj = %} >C;'} (3.16)
with Jy ., = 0.
For any other initial condition x;,_1 = x)_1, define estimates

B =M (k= 1,20, 25) (3.17)

foreach jin{k,--- N}, where M; is the transformation described in Assumption 3.1.6.
Notice that from (3.16) and by the definition of the transformation M;, we can observe

that
Ex, [J¢ (%5 Bhn) [ X1 = 0] = B [T (%0, Bn) | X0m1 = 231

This implies that the value of (3.4) evaluated at an optimal solution does not depend on
the initial condition, and by finding an optimal solution to (3.11), we can derive a solution

to Sub-problem k using the following relation:

T5 (@rer, 7)) = Py (M (k — 1, agq, ;) (3.18a)
gj<k—1> (Ik—l) — Mj—l (k? _ 171’14:—175%;) (318]3)
u
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Based on Remark 3.2.2, to solve Sub-problem £, we will find optimal policies and
estimates for the initial condition x;_; = 0, and derive a solution to Sub-problem k using

(3.18).

3.2.1 Definitions and Preliminary Results

We restate Definition 3.1.8 and Definition 3.1.9 as follows.

Definition 3.2.3. Policies P, 5 and estimates I, are said to be a jointly optimal solu-

tion for (3.11) if they achieve the global minimum.

Definition 3.2.4. Policies P, and estimates T3, are said to be a person-by-person

optimal solution for (3.11) if the following relations hold:

Exk [Jk (Xk? ,PZ::N7 'fZN)] - g}jg Exk [Jk (Xk7 Pk:N7 j;ZN)]

= minExk [Jk (Xk, 'PZ:N, ﬂA?k;N” (319)

Tp:N

Equation (3.19) implies that given decision functions Py, of one player (sensing unit),

T are optimal decision variables of the other player (estimator), and vice versa.

To find an optimal solution for (3.11), we define best response mappings 3 and X

as follows.

Definition 3.2.5. Given estimates 1.y, define W (Zr.n) as a collection of policies P.n

for which it holds that

Ex, [k (Xk, Prn, Te:n)] = g}iﬂ Ex, [Tk Xk, Phons Thv)] (3.20)

kE:N
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Definition 3.2.6. Given policies Py.n, define X (Pr.n) as a collection of estimates Tj.n

for which it holds that
Ex, [Tk (Xk, PrnN, Trn)] = g’,:ljrlexk [k (X, Prens )] (3.21)
Definition 3.2.7. Policies Py are said to be degenerate if there exists jo € {k,--- , N}
for which it holds that
P(Rjozo‘Rk:O,-~~,Rj0,1:O>:0 (3.22)

Remark 3.2.8. Let Py be degenerate policies for which (3.22) holds. Then, from (3.14),

we can derive that

Exjo [Jjo (on’ Pjo:N j:jo:N) Ry =0,--- Rjj1 = 0] - C/‘o (3.23)

J

Proposition 3.2.9. Consider that policies Py.n and estimates Ty.n are given. Suppose

that the policies are non-degenerate. Then Py.n belong to B (Zx.n) if and only if
Ex, |5 (%, P 85:0) ‘Rk =0, Ry = 0]
— K, [J; (%, &jo) )Rk —0,-- Ry, = o] (3.24)
holds for all j in {k,--- , N}, where
Ty (g ) = min { & (5, 25) + By |1 (541, B000) ’xj — ).} (325
with Jy ., = 0.

The proof follows from (3.14), Definition 3.2.5, and the fact that

min By, [Ji (X, Py, Trn)] = B, [T Xk, Tren)]

We omit the detail for brevity.
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Corollary 3.2.10. Given estimates Zy.n, consider (deterministic) policies Py.n defined

by

0 ifx; €D,
Pj(x;) = (3.26)

1 otherwise
for each j in {k,--- , N}, where D; is a measurable set for which D; C D; C D; holds
with
ﬁj = {ZL']‘ eX ‘ d2 (Ij,fifj) + ]Exj-+1 |:J;+1 (Xj+1, fi‘j—i—l:N) ‘ X; = Ij:| S C;} (3273.)

Dj = {lL‘j eX ‘ d2 (ZEj,ZIA’}j) +]EXj+1 |:J;+1 (Xj—l—lai'j—i-l:N) ‘Xj = ZL‘ji| < C;} (327]3)

Then it holds that Py.y € B (Tr.n).

Remark 3.2.11. Given estimates Zy.y, let Pi.n be non-degenerate policies for which

P~ € B (Zx.n) holds. Then Proposition 3.2.9 implies that

1. ]P(Xj eﬁj

Ry =0, R;=0) =1

2. P (xj eD,

R, =0, ,Rj:1) —0
where ﬁj and @j are given in (3.27).

Proposition 3.2.12. Consider that policies Py.n and estimates T. are given. Suppose

that the policies are non-degenerate. Then &y belong to X (Py.n) if and only if

Ey, [d2 (x;, ) ‘Rk ~0,---,R; = 0} — minE,, [d2 (x;,2)) )Rk ~0,---,R; = 0]
(3.28)
holds for all j in {k,--- ,N}.
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The proof follows from (3.14) and Definition 3.2.6. We omit the detail for brevity.

Corollary 3.2.13. Given non-degenerate policies Py.n, consider estimates Ty.n defined
by

i; € argmin By [dQ (x;, ;) ‘ Ry =0, R, — 0] (3.29)

ijGX
foreach jin{k,---, N}. Then it holds that Zy.xy € X (Pr.N).
Proposition 3.2.14. Consider functions {G; };V: , defined by
~ def * ~

gj (IL’jfl,fB]’:N) = Exj [Jj (Xj7$j:N) ‘Xjfl = -ijl:| (3.30)

7

where J; is given in (3.25). {G; }jV:k are all continuous functions.

The proof is given in Appendix B.4. The following is a consequence of Proposi-

tion 3.2.14.
Corollary 3.2.15. Given estimates Ij.n, the sets ﬁj and D; defined in (3.27) are closed

and open, respectively, for all j in {k,--- N}

3.2.2 Existence of a Jointly Optimal Solution
Let us define
G (Zrn) = Ex, [Jg (X, Then)] (3.31)

where J; is given in (3.25). Note that G (Z4.n) = min [, [T (Xks Plons T )]

k:N

"Note that G; is a function defined on X ~9+2, See Appendix B.1 for some remarks on the continuity

of functions on a product space.
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Proposition 3.2.16. Let z;. 5 be the estimates that achieve the global minimum of (3.31).
The policies P, satisfying

,PZ:N € (B (JA’)ZN)

are not degenerate in the sense of Definition 3.2.7.
The proof is given in Appendix B.5.

Theorem 3.2.17. There exist estimates Ty, that achieve the global minimum of (3.31).

Furthermore, in conjunction with these estimates .y, the policies P, satisfying

‘P;;::N € {B (:%ZN)
are a jointly optimal solution for (3.11).
To prove Theorem 3.2.17, we need the following Lemma.

Lemma 3.2.18. There exists a compact set K C XN=5+1 for which

min_ G (Zpn) < G (T.n)
ZTr.NEK

holds for all &} in XN=k+1,

The proof is given in Appendix B.5.
Proof of Theorem 3.2.17: Recall the definitions of G, and G given in (3.30) and (3.31),
respectively. According to Proposition 3.2.14 and by the fact that G (Zx.n) = Gk (0, Tr.n),
we can see that G is a continuous function. Due to Lemma 3.2.18, in what regards
to finding a global minimizer of G, we may assume that the domain of G is compact.
Hence, by the continuity of G and compactness of its domain, there exist estimates
2y, that achieve the global minimum of G. Let us choose policies P;., satisfying
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Pin € P (Z;.y) using, for instance, Corollary 3.2.10. Since ., is a global mini-
mizer of G and Pj. € P (2.) holds, we conclude that the solution Py, and ;. is

jointly optimal for (3.11). U

3.2.3 TIterative Procedure for Finding a Person-by-Person Optimal Solu-
tion

As numerically illustrated in [70], the function G in (3.31) may be non-convex, and
finding a jointly optimal solution to (3.11) would be computationally intractable. Instead,
in this section, we seek a person-by-person optimal solution to (3.11). An iterative pro-
cedure for finding such a solution is described in Procedure 1, where 7 is a pre-selected

non-negative constant that determines a stopping criterion of the procedure.
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Procedure 1: Finding a Person-by-Person Optimal Solution

10

11

12

13

14

15

16

17

input :n >0, 92,530])\,

output: P,Ef;l), :i:,(;)N

begin

j+ N

while 7 > k£ do
Choose 73](-1) using (3.26)
j—j—1

140

repeat
14 1+1
jk

while j < N do
Choose @gi) using (3.29)
j+—J+1

j+< N

while j > £ do
Choose Pj(iﬂ) using (3.26)

Jeg-1

untit g ({7 ) = G (a3 <
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In what follows, we analyze convergence properties of the sequence of solutions
computed by Line 8 — 16 of Procedure 1. We first define convergence of policies and

estimates. To proceed, for each A in B, let us define
u) () =P (x; € A|RP =0, R =0)
Mj|j(A):P<Xj EA’Rk:o’... R; :O)

Definition 3.2.19. Let {’P,(;)N} be a sequence of policies. The sequence is said to
e

converge to Py if it holds that®

plh = g (3.32a)
and
P<R§z) :O‘R;(J) ~0,-- R, :0>
i—°>°P<Rj:o‘Rk:o,---,Rj_1:0> (3.32b)
forall jin {k,---,N}. In addition, two sets of policies Py.x and P,y are said to be
equal if it holds that’
Hili = M) (3.33a)
and
P(Rj:O‘Rk:0,~- R, = )
—P (R, =0|R;=0,-- R, =0) (3.33b)

forall jin{k,--- N}.
8See Definition B.3.6 for the weak convergence of probability measures.

;= 15 ; implies that u;; (A) = pf; ; (A) holds for all A in %B.
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Remark 3.2.20 (Uniqueness of the Limit of Policies). Let {’P,(CZ)N} be a sequence of
' ieN

policies that converge to Py.n and P).n. Then the two sets of the policies Pj.n and

P,.n are equal. To see this, using the definition of the weak convergence of probability

measures, we can derive that

/gdum = /gdu;-u (3.34)
X X

for every bounded, continuous function g : X — R. Then, by applying Lemma 9.3.2

in [93], we can see that (3.33) holds for all j in {k,--- ,N}.

Definition 3.2.21. Let {QS)N} be a sequence of estimates. The sequence is said to
' 1€eN

converge to Ty.y if it holds that

lim d (x§) ﬁzj) —0 (3.35)
1—00
forall jin{k,---,N}. In addition, two sets of estimates Zy.y and T}, are said to be
equal if it holds that
d(2;,%) =0 (3.36)

forall jin{k,--- ,N}.

In the following Theorem, we examine convergence properties of sequences {’P,(;)N}
' ieN

and {:%,(;)N} that satisfy
) ieN

Pin €P (@X?vl)) (3.37a)
iy € x (PL)) (3.37b)

To proceed, we make the following assumption.
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Assumption 3.2.22. Consider sequences {P,(;)N} and { ,(g)N} that satisfy (3.37).
' €N €N
Suppose that the subsequences {'Pg%} , { ,(;ljz,} , and {:U;’Nl)} converge to
' JlenN lEN leN

Pr.N, TN, and Ty, respectively. We assume that ty.n € X (Pr.n)-

Theorem 3.2.23. Let {’P,(;)N} and {x,(;)N} be a sequence of solutions satisfying
' €N 1€N
(3.37). Suppose that Assumption 3.2.22 holds and the policies {'P,(;)N} are strictly
' 1€N

non-degenerate, i.e., there exists a positive constant € for which
P(RY=0|R{ =0, R, =0) > (3.38)

holds for all i in N and j in {k,--- , N}. Then, the sequence of the solutions {’P,(;)N}

) ieN

and {a:k)N} has a convergent subsequence, and the limit of any convergence subse-
‘€N

quence is a person-by-person optimal solution.
To prove Theorem 3.2.23, we need the following Lemma.

Lemma 3.2.24. Consider sequences {'PS)N} and {xk)N} satisfying (3.37). Sup-
N Jien €N

pose that {7’,(;)]\,} are strictly non-degenerate and {ig,]_\,l)} converges to T y.

' ieN ’ ieN '

Then, the sequence {’P,(;)N} has a convergent subsequence, and the limit Py.n of any
’ i€N

convergence subsequence satisfies Pr.n € B (T} )-

The proof is given in Appendix B.6.
Proof of Theorem 3.2.23: We first note that according to Lemma B.5.2, the sequence
of the estimates {ig)N}zeN is contained in a compact set. By the compactness, there
exists an infinite subset I of N for which the subsequences { ,g) }leﬂ and {x,(j Nl) }ie]l are

convergent. Let 2.y and 2., be respective limits of { ,(C)N} and { ,(; Nl)} . Also,
i€l i€l

75



according to Lemma 3.2.24, there is an infinite subset I of I for which the subsequence
{’P,(CZ)N} is convergent. Let Py.y be the limit of {’P,(j)N} )
N er N er

To complete the proof, it remains to show that Py.y and 2.y constitute a person-

by-person optimal solution, i.e., it holds that

PN € B (Tkn) (3.39a)

TN € X (Prn) (3.39b)

Equation (3.39b) is ensured by Assumption 3.2.22, and it remains to show that (3.39a) is
true.

To see this, by contradiction, suppose that Py.n ¢ P (Z.y) holds. Note that by
Lemma 3.2.24, P;.y belong to P (). ,). Then we can see that the following relations
hold for policies P}, satisfying P}y € P (Z4.n):

g (:i'k:N> = Exk [Jk (Xk’a ,P;:N’ :i'k’N)]

1) R
< Exk [Jk (Xka Pk:N7 ka)]

(2)

< Exk [Jk (Xk7 ’Pk:]\h ‘%;CN)] - g (‘%;ﬂN) (340)
(1) follows from the hypothesis that Py.n ¢ P (Zx.n); and (2) is due to (3.39b). On the

other hand, since G is decreasing along the sequence {:%,(;)N} , 1.e.,
’ €N

G (#n) = 6 (#1")
holds for all ¢ in N, it holds that lim; ,., G (3%,2%) = « for some real number . In

conjunction with the continuity of G (see Proposition 3.2.14), this implies that
G (Trn) =G (Fn) = @

which contradicts (3.40). Therefore we conclude that Py.xy € P (Zr.n)- O
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3.3 Optimal Remote State Estimation

Based on the results of Section 3.2, we find a solution to Problem 3.1.1. To proceed,

consider a procedure described in Procedure 2.

Procedure 2: Finding solutions to Sub-problems

N N
output: {T*Z’f{b}k:l and {5*;]]“\,’1>}k:1

1 begin
2 k+ N
3 while £ > 1 do
N
4 Step 1: Compute constants {c;*} - according to (3.8) for the solutions
‘]:
ge<iz>1Y a{er<i->1" Sub-problem & + 1
{ N }j:k—H an { PN }j:k—H to Sub-problem k + 1 to
Sub-problem N.
5 Step 2: Find T* ,f:l]“\fb and £ *;’fv_ > that is an optimal solution of Sub-problem k
N
with the constants {c;*} - obtain in Step 1.
]:

6 k+— k-1

Based on solutions obtained via Procedure 2, we can state the following Theorem.

N
Theorem 3.3.1. Let {T*,f:]f\,_b} and {5*;?\71>}Zﬂ be solutions to Sub-problems
k=1 ' =

obtained via Procedure 2. For each k in {1,--- N}, if T wn'” and E*571> are a
Jjointly optimal (person-by-person optimal) solution of Sub-problem k, then the transmis-

sion policies T 7.y and the estimation rules E5,,, determined by

Ti(k— Lagy,2;) = T (21, 2) (3.41a)

E(k—1ap1) =& (wp1) (3.41b)
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for each j in {k,--- ,N} and k in {1,--- | N} are jointly optimal (person-by-person

optimal) for (3.2).

The proof is given in Appendix B.7

3.4 Application to Specific System Models

In this section, we apply our main results to linear system models and self-propelled

particle models.

3.4.1 Linear System Models
Consider
Xp4+1 = Akxk + Wi (342)

where w,, is a random variable with a Gaussian distribution in R™. We define the metric
d using the Euclidean norm |-||, as d (xy, 2}) = ||z — 2}||,- We note that the metric is

invariant under the transformation defined by

j—1
M;(k—1,x5_1,25) = xj; — H A,
I=k—1
for jin {k — 1,--- N} and k in {1,--- , N}, where we adopt the convention that

H{;ziq A; = I, if j = k — 1. It can be verified that Assumption 3.1.4 - Assumption 3.1.6
hold.
With the Euclidean norm, it is straight-forward to see that for given polices Py.n,

foreach jin {k,--- , N},

Tj € argmin Ky, [||xj _ joQ {Rk =0,---,R; = 0}

. ke
T;€
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and
;= Ey, [Xj|Rk:07"' ,Rj:()} (3.43)

are equivalent, provided that E; [[|x; — 17 |Ry, =0,--- ,R; = 0] is well-defined for
all ; in R". In the following Proposition, we show that the statement in Assump-

tion 3.2.22 is valid for the linear system models.

Proposition 3.4.1. Consider sequences {’P,(;)N} and {:%,(f)N} that satisfy
' N ien

1€EN
Py e (#)) (3.440)
iy € x (Pl (3.44b)

Suppose that the subsequences {'PS’K,} , {i’,(;l]z,} , and {:ﬁﬁj@;”} converge to
e “Jlen ' leN

Pr.N, Tr.n, and Ty, respectively. Then it holds that Ty.xy € X (Pr.n).

Proof. Let NEB and 41;|; be probability measures defined as

Mﬁ@ (A) =P (Xj €A ’ Rl(:) =0, 7R§_i) — O) (3.45)
Mj|j(A):P<XjEA‘Rk:Of"7Rj:0> (3.46)

where A belongs to ‘B, and the random variables Rg-i) and R; are dictated by P and

J

P, respectively. Since {’Pg’]z,}l . converges to Pj.y, it holds that u%) - f; for all
S

jin{k,--- ,N}. Since (R™, || - ||2) is a complete, separable metric space, by the weak

(i)

convergence of { 14 } and the Skorokhod representation theorem [94], there exist
IEN

a sequence of random variables {yj(m} and a random variable y; all defined on a
leN

common probability space (€2, §, v) in which the following three facts are true:
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(F1) ,u%) is the probability measure of y'™ ie., v ({w Y ‘ y(-il)(w) € A}) = ,u%) (A)

J J

for each A in ‘B.

(F2) 1) is the probability measure of y;, i.e., v <{w €N ‘ vi(w) € A}) = 1151, (A) for

each A in *B.
(F3) {y](-m} converges to y; almost surely.
IeN

Hence, by Proposition 3.2.12 and (3.43), we can derive that

jg’il) - Exj [Xj

= [ waufy

Q

R,(;l) =0, - ,R§-il) — 0]

Since {555-“71)} is a convergent sequence, it is bounded. By Remark 3.2.11, (3.44a),
leN

and Lemma B.3.9, there is a compact set K; for which ,u%) (K;) = 1forall/in N. Hence,

there is a positive real « for which it holds that

(@) (@)
_ v (w)dy :/ xduy! =0 (3.48)
/{weQ Hy;ll)(w)‘>a} ! {xeX‘ Ha:||>oz} il

for all [ in N. In conjunction with (F3), by an application of Theorem 10.3.6 in [93], we

have that

lim y§-il)(w) dy:/yj(w) dv (3.49)
Q
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Therefore, from (3.47) and (3.49), we can see that

&y = lim 7" = fim 0 yﬁil)(w) dv

- [ ¥iwar

—/xduﬂj
X

=E[x;|Ry=0,--- ,R; =0] (3.50)

Since this holds for every j in {k,---, N}, by Proposition 3.2.12, we conclude that

TN € X (Prn)- [

3.4.2 Self-Propelled Particle Models

Consider

P1k+1 P1k + I - cos (0 + @)
Poit1 | = | Pok + - sin (0 + ¢p) (3.51)
ek—‘rl ek —+ ¢k

where p x, P2 take values in R, and 6y, takes a value in [—7, 7). ), and ¢ are random
variables with a Weibull distribution and Wrapped Cauchy distribution, respectively. We

define the metric d using the Frobenius norm ||-|| . as follows:

D1k Pl costy —sinb; pig cost, —sind, pj,
d 1 pos | > Do = ||| sinbe cosby  pay | — | sind cosO ph,
01 0, 0 0 1 0 0 i

81



where the metric is invariant under the transformation given by

P1k—1 D1 costp_1 sinfp_; 0 P1j — Pri—1
Mj | k=1, DPok—1 | | P2, = | —sinf_1 costp_; O D2 — P2k—1
bt ]\ g 0 0 1 0, — 6

It can be verified that Assumption 3.1.4 - Assumption 3.1.6 hold.
T T
By defining x; = (pu P2 gj) and 7; = (ﬁu Do éj) , we can derive
E [d2 (x;, ;) (Rk ~0,-- R, = o}
—F hpm —P15)" + (Pay — Do)’ +4- (1 — (01 - éj)) ' Rie =0, Ry = 0}

(3.52)
provided that the conditional expectation is well-defined for all Z; in R x R x [—7, 7).

The first and second order conditions of optimality for (3.52) yield that a minimizer ;

satisfies

Py =E[p;|Re=0,--- ,R; =0] (3.53a)
poj =E[p2;j|Re=0,--- ,R; =0] (3.53b)
s E [sin6; |R; =0, ,R; = 0]
sin0; = -
E? [sin@; |Ry =0,--- ,R; =0] + E?[cos0; | R, =0,--- ,R; = 0]
(3.53¢)
. E[COSHJ"R]C:O,"‘,R]':O}
cosl; = -
2 [sm0j|Rk =0,---,R; :O] + E2 [COSOj’Rk =0,--- R, = 0}
(3.53d)
provided that at least one of
E [sin€; |Ry, =0, -, R; = 0] (3.54a)
E [cos8; | R, =0,--- ,R; = 0] (3.54b)
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is non-zero. In this case, there exists a unique éj that satisfies (3.53¢) and (3.53d). If
both (3.54a) and (3.54b) are zero, then the value of (3.52) does not depend on éj. In the
following Proposition, we show that the statement in Assumption 3.2.22 is valid for the

self-propelled particle models.

Proposition 3.4.2. Consider sequences {’P,(f)N} and {:%,(f)N} that satisfy
' N ien

ieN
Py e (#4)) (3.550)
iy € x (P (3.55b)

Suppose that the subsequences {'Pg%} , {i’,(;l]z,} , and {:i“g.’]f)} converge to
e “Jien ' leN

Pr.N, Tr.n, and Ty, respectively. Then it holds that Ty € X (Pr.n).

Proof. By a similar argument as in the proof of Proposition 3.4.1, we can show that

lim E [pl,j R =0,.-- R = o: ) :plvj R, =0, R, = o] (3.562)
lim E [pzj R =0,--- R = o: —E :pQ,j R, =0, R, = 0] (3.56b)
lim E [sin 6;|RM =0,... R = o: _E :sin 0,|R, =0, R, = 0} (3.56¢)
lim E [cos 6| R{" =0, R = 0| = E |cos6; | R =0, ,R; = 0] (3.56d)

Suppose that at least one of

E [sin 0;

Ry =0, ,Rj:o] (3.57)

E [cos 0;

Ry =0, -- ,Rjzo} (3.58)

T
is non-zero. Note that by Proposition 3.2.12 and (3.53), ig”) = (p(iz) p(iz) é(iz)) and

Lj 23 7
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T
z; = (ﬁu o éj) satisfy

(@) _

byj =E [pl,j R’(jz) =0,--- ,R§il) :0]
Py = E [pay | R =0, \R{" = 0)
sin ) = E |sin6; | RV =0, R} = 0]
Jj ] p i i i
k2 [Slnaj R;gl) =0, aRg.l) = ()] + [E2 [COSOJ- R;l) —0,. ,Rg-l) _ 0}
COSé(il) e E -COSH]' R]E;Zl) 207"' ,R‘E»/Ll) = -
Jj ] p i i i
B [sin6; [ R =0, R = 0] +E2 [cos, | RV =0, R = 0]
and
; N RPN
Jim d (24.3;) = 0 (3.59)
For each j in {k,--- , N}, let us define j;‘ = (ﬁf,j 153,3' é;) as
p){,j:E[pLj Rk:O,,Rj:O}
pz,j:E[ij Rk:o,"',Rj:O}
~ E-Sinej Rk:O, '7Rj:O-
sin@j: _ i _ _ | _
]E2 Sinej Rk:o,,RJZO +]E2 COSHJ' Rk:O?,R]:O
. E-COSOJ‘ R, =0, 'aRj:O-
cos@j: _ | _ _ _ _
E? |sin€; | Ry =0,--- ,R; =0| +E? |cosf; | R, =0,--- ,R; =0

Note that by Proposition 3.2.12 and (3.53), it holds that ;.5 € X (Py.n). From (3.56)

and (3.59), we can observe that

d (i) <d (:c§> xj) +d (a;§> ;ﬁj)

Therefore, we conclude that Z.y € X (Pr.y)-
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If both (3.57) and (3.58) are zero, then the value of (3.52) does not depend on é-,

and by Proposition 3.2.12, we can show that .y € X (Py.n) if it holds that

p;j=E [pu Ry=0,--- ,R; = 0]
P25 =K |:p27j Rk = 07 aR] = 0]
This can be verified by similar arguments given above and (3.56). [

3.5 Application to Animal Tracking and Experimental Results

In this section, we apply the proposed remote estimation scheme to animal tracking,
and show preliminary experimental results using a data set collected from the deployment
of animal-borne wireless camera network in the Gorongosa National Park (Mozambique)
in August 2015.!° The main purpose of the development and deployment of the system
was to collect biologically meaningful measurements and videos using GPS, IMU, and
Camera all integrated in a single tracking device, where the proposed estimation scheme
can be used to determine when to share sensor measurements between tracking devices
and how to determine the best location estimates of nearby devices (see Figure 2.5). The
sensor measurements and videos are used to study animal group motion. During the
deployment, 15 tracking devices were installed on waterbucks and water buffaloes. Figure

3.2 shows the GPS track of a water buffalo, and Figure 3.3 depicts the z-coordinate (p, ),

19The development and deployment of animal-borne wireless camera network were performed under a
research grant NSF ECCS 1135726.
Disclaimer: The author of this dissertation was NOT involved in the deployment in the Gorongosa National

Park.
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y-coordinate (p, ), and heading angle ), of a portion of the GPS track (contained in the

red rectangle in Figure 3.2) in a local North East Up (NEU) coordinate system.
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Figure 3.2: A screenshot of the GPS track of a water buffalo in the Google earth

(Timespan: 2015-08-06T00:00:00Z ~ 2015-08-06T06:00:00Z)
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Figure 3.3: The z-coordinate (p, ), y-coordinate (p, ; ), and heading angle 6, of a portion
of the GPS track (contained in the red rectangle in Figure 3.2) in a local NEU coordinate
system. (Timespan: 2015-08-06T05:40:00Z ~

2015-08-06T05:53:00Z / The origin of the coordinate system :

Latitude =-18.9401136372457, Longitude = 34.5337888580266)
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We model the movement of the water buffalo using the self-propelled particle model

described in Section 3.4.2:

P k+1 Pok + Tk - cos (0 + @)
Py,k+1 = Py.k +r - sin (Ok + ¢k> (360)
11 0, + or

We assume that the sensing unit makes a decision on transmission of information to the
estimator every 10 seconds.
The Weibull random variable r; and Wrapped Cauchy random variable ¢, for the

model have respective probability density functions given as follows:

a—1 a
o) = % (%) e~ forr > 0 (3.61a)
1 sinh ~y

for(9) (3.61b)

T or coshy — cos(¢ — p)

Using the collected GPS data, we compute the maximum likelihood estimates (MLE) of

the parameters for (3.61):

(a,b) = (10.3214, 5.9553)

(1,7) = (0.004,0.001)

Under these parameter choices, the probability density functions are depicted in Fig-
ure 3.4.

Transmission policies and estimation rules are determined based on Procedure 1 and
Procedure 2 for the communication costs ¢, = 5 for all kin {1,--- , N} with N = 78.

T
Figure 3.5 shows the estimate (ﬁx k Dy ék> of the original trajectory of the buffalo,
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depicted in Figure 3.3; and Figure 3.6 shows the estimation error computed by

costy —sinby pui cos ék —sin ék Da e
d(zy, Tr) = sinf, costy pyr| — | sin ék cos ék Dy.k
0 0 1 0 0 1
F

Note that d(z, Zx) = 0 at time & in Figure 3.6 implies that the sensing unit transmitted
information on the full state x;, of the process to the estimator, and the state estimate

at the estimator was set to the state of the process, i.e., ) = xx.
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Figure 3.4: Comparisons between the probability density functions of r; and ¢, under

the computed parameter choices and the GPS data.
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Figure 3.5: Estimated trajectory of the water buffalo by the proposed remote estimation

scheme
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Figure 3.6: Estimation error of the remote estimation scheme
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3.6 Summary and Future Work

We have studied the remote state estimation problem formulated in Section 3.1.
To find a solution to the problem, we re-write the problem into /N sub-problems and
sequentially solve each Sub-problem k. We show that optimal solutions to all the sub-
problems constitute an optimal solution to the original problem. Based on this idea, our
main results show the existence of a jointly optimal solution, and describe an iterative
procedure for finding a person-by-person optimal solution. In addition we have applied
the proposed scheme to the experimental data obtained from the real-world deployment.

As future work, we will find the convergence rate of the proposed procedure de-
scribed in Procedure 1, and if it exists, search for a new algorithm that achieves a faster
convergence rate. Also we are interested in extending the presented results to large scale

dynamical systems which may consist of multiple sensing units and estimators.
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Chapter 4: Evolutionary Game Dynamics and Passivity

4.1

4.1.1

Background

Notation

For a vector a in R", its ¢-th entry is denoted by a;, and we define

la;)+ = max{a;, 0}
o)+ < ([am mu)T

We denote the gradient and Hessian of a real-valued function x — f(x) with respect

to x by V.. f and V2 f, respectively, provided they exist.

We denote the interior and the boundary of a set A by int(A) and bd(A), respec-

tively.

R7 (R’i) is the set of n-dimensional element-wise non-negative (non-positive) vec-

tors. For n = 1, we omit superscript n and adopt R (R_).

1 is the vector with all entries 1, [ is the identity matrix, and e; is the ¢-th column

of I.

|| - || is the Euclidean norm.
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4.1.2 Population Games and Evolutionary Dynamics

Consider a population of players engaged in a game where each player selects a
(pure) strategy from the set of available strategies represented by {1,--- ,n}.! Suppose
that the population consists of a continuum of players. Population states, which describe

the distributions of strategy choices by players, constitute a simplex

x % {x e R} le = 1}
i=1

We denote the tangent space of X as TX = {z eR™| D" 2= O}. A payoff vector

p € R" is assigned to each population state z: p; represents a payoff given to the i-
strategists, the players choosing strategy ¢. Based on this notation, we describe population

games and evolutionary dynamics in Section 4.1.2.1 and Section 4.1.2.2, respectively.

4.1.2.1 Population Games

We identify population games with payoff operators defined as follows:

p(-) = &) (4.1)

® : X — P is a causal operator where X is the set of all differentiable X-valued time-
dependent functions z(-) : Ry — X, and P is the set of all differentiable R™-valued time-
dependent functions p(-) : R, — R™. Equation (4.1) suggests that a payoff trajectory p(-)

is a causal function of a population state trajectory x(-); hence, under (4.1), the payoff p(¢)

'Population games, in general, account multiple populations of players, and the strategy sets are allowed
to be distinct across populations. However, for simple and clear presentation, we restrict our attention to

single-population games. Results for the single-population cases can be extended to multi-population cases.
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at each time ¢ may depend on the entire history of a population state. We note that this
formalism of population games generalizes the conventional ones presented, for instance,
in [4,95].

The following are a few examples of payoff operators (4.1).

Example 4.1.1. Let F be a C* mapping from X to R™.

Time-Delayed Payoff: p(t) = F(a(t — d))
Contrarian Effect Payoff [15]: p(t) = F(z(t)) — Aa(t) — z(t — d))
Cumulative Payoff: pt) = F(a(t))
Anticipatory Payoff [15]: q(t) = ME(x()) — q(t))

where A is a matrix in R™*", d is a positive constant, and k, \ are real numbers. 0
We adopt the notion of Nash equilibrium in the following way.>

Definition 4.1.2 (Nash Equilibrium). Let x € X be a population state and p € R" be a
payoff vector assigned to it. The population state x is a Nash equilibrium if every strategy

in use receives the maximum payoff, i.e., if x; is positive then p; = max;cyy,... n} pj holds.

4.1.2.2 Evolutionary Dynamics

Evolutionary dynamics describe how the population state evolves over time in re-

sponse to a payoff trajectory. Throughout the chapter, we consider dynamics that can be

2When a game is described by a payoff function p = F(x), Definition 4.1.2 coincides with the conven-

tional definition of Nash equilibrium.

97



represented by a differential equation® given by
t=V(p,x), 2(0) =29 € X 4.2)

where p(t), x(t), and 2(t) take values in R™, X, and T'X, respectively. We assume that the
vector field V' : R" x X — TX is well-defined in a sense that for each initial value x( in
X and payoff trajectory p(+) in P, there exists a unique solution x(-) to (4.2) that belongs
to X.

We define the set of equilibrium points of (4.2) as
def n
S= {(p,x) e R" x X|V(p,z) = 0}

and for each z in X its projection on R” x {z} as S, = {peR"|(p,x) € S}. We
assume that for each = in X, the set S, is path-connected, i.e., for every pgy,p; in S,
there exists a piece-wise smooth path from p, to p;. As a case in point, consider a set
Sy that consists of (p, z) for which given the payoff p, the population state z is a Nash
equilibrium. It can be verified that if (pg, z) and (p1, ) both belong to Sy then so does
(A-po+ (1 = A) - p1,z) for all Ain [0,1]. Hence Sy satisfies the path-connectedness
assumption.

The following are a few examples of evolutionary dynamics that are found in liter-

ature.

Example 4.1.3. The replicator dynamics [9], BNN dynamics [8], Smith dynamics [96],

and logit dynamics [97] are representative instances of evolutionary dynamics. The state-

3In the literature of evolutionary game theory, it is a convention to represent evolutionary dynamics as
& = V(F(z), z) to make the dependence on a payoff function F' : X — R" explicit. While, in this work,

we remove the dependence to study evolutionary dynamics under a generalized class of games (4.1).
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space representations of these dynamics are given as follows:

Replicator: Ti = X;D; 4.3)
BNN: &= [Py — 2 Y _[Pyl+ (4.4)
j=1
j=1 j=1
: : exp(n~" - pi)
Logit: Ti = =7 — 4.6)
Zj:l exp(n=' - py)
foreachiin {1,--- ,n}, where p is the excess payoff vector defined as p = p — p'x - 1,
and n is a positive real number. U

4.2 Passivity of Evolutionary Dynamics

We define a notion of passivity for evolutionary dynamics (4.2), and characterize
passivity in terms of the vector field V' in (4.2). Based on the characterization, we ex-
amine passivity of previously established dynamics, and investigate properties of passive

dynamics.

4.2.1 Definition of Passivity for Evolutionary Dynamics

To define passivity for (4.2), let us consider the following inequality for a C'* func-

tion Sgp : R™ x X — R, and a constant 7:

Sep(p(t),x(t)) < Sep(p(to), z(ty)) +/ [pT(r)x'(T) —n- i‘T<T)[IIJ(T)} dr  4.7)

to

fort > tog > 0, where z(-) € X is the trajectory of the population state determined by
(4.2) in response to a payoff trajectory p(-) € P. In terms of (4.7), we state the definition
of passivity as follows.
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Definition 4.2.1. Consider an evolutionary dynamic given as in (4.2).

1. The dynamic is said to be passive if there exists a C* function Spp : R" x X — R,
for which (4.7) holds with n = 0 for t > to > 0 and every payoff trajectory p(+) in

P.

2. The dynamic is said to be strictly passive if there exists a C! function Sgp : R™ x
X — Ry for which (4.7) holds with n = 0 for t > ty > 0 and every payoff

trajectory p(-) in P, and if VL Sgp(p, )V (p, ) = 0 implies V (p,x) = 0.

3. The dynamic is said to be strictly output passive if there exists a C function Sgp :
R™ x X — Ry for which (4.7) holds with n > 0 fort > t, > 0 and every payoff

trajectory p(-) in P.

We refer to Sgp as a storage function and (4.7) as the passivity inequality. Since

Skp is a non-negative function, without loss of generality, we assume that

inf S =0
(p,x)lélR"XX ED(p>$)

It follows from Definition 4.2.1 that strict output passivity entails strict passivity and strict

passivity entails passivity.

Remark 4.2.2. The definition of passivity for evolutionary dynamics is closely related
with the notion of dissipativity from dynamical system theory [98]. To see this, let us

rewrite (4.2) in the following form:

P 0 U
= + (4.8a)

z V(p,x) 0
y=V(p,) (4.8b)



Note that (4.8) is a state-space representation of a control-affine nonlinear system with
the input u, state (p, x), and output y. By the traditional notion of dissipativity [98], the
system (4.8) is dissipative with respect to the supply rate s(u,y) = uTy —n - yy if there

exists a C! function Sgp : R™ x X — R for which

Sep(p(t),z(t)) < Sep(p(to), z(to)) +/ [ (T)y(r) —n-y" (T)y(r)] dr  (4.9)

to
holds for t > ty > 0 and every real-valued function v : Ry — R". Then, by the
equivalence between (4.2) and (4.8), we can verify that the passivity inequality (4.7) is

satisfied for (4.2) if and only if the inequality (4.9) is satisfied for (4.8).

4.2.2 Characterization of Passivity of Evolutionary Dynamics

Let us consider the following two conditions:

VISen(p, )V (p,x) < —n-VT(p,z)V(p, ) (P2)

where Sgp @ R* x X — R, is a C! function, V : R® x X — TX is the vector field
given in (4.2), and 7 is a real number. In the following Theorem, we show that (P1) and
(P2) are passivity requirements for evolutionary dynamics. This result not only provides
an alternative definition of passivity but also is useful in studying properties of passive

evolutionary dynamics.

Theorem 4.2.3. Consider an evolutionary dynamic given as in (4.2). The following state-

ments are true:
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(SI) The dynamic is passive if and only if there exists a C* function Sgp : R"xX — R,

for which the conditions (P1) and (P2) hold with n = 0.

(S2) The dynamic is strictly passive if and only if there exists a C' function Sgp : R" x
X — R, for which the conditions (P1) and (P2) hold with n = 0, and the equality

in (P2) holds only if V (p, z) = 0 holds.

(S3) The dynamic is strictly output passive if and only if there exists a C* function Sgp :

R"” x X — R, for which the conditions (P1) and (P2) hold with n > 0.

Proof. To prove the Theorem, as noted in Remark 4.2.2, recall that (4.2) can be rewritten
as in (4.8) and that passivity of evolutionary dynamics (4.2) is equivalent to dissipativity
of control-affine nonlinear systems (4.8) with the supply rate s(u,y) = uTy —n - yly.
Using dissipativity characterization Theorem (see, for instance, Theorem 1 in [99]), we
can see that there exists a C'* function Sgp for which the conditions (P1) and (P2) hold if
and only if Sgp satisfies the passivity inequality (4.7) for t > ¢, > 0 and every payoff tra-
jectory p(-) in P. The rest of the proof follows from Definition 4.2.1 and the equivalence

between passivity for (4.2) and dissipativity for (4.8). [

Implications of the conditions (P1) and (P2) are as follows: For a fixed z € X,
consider an integral | » V(p, r) e dp of the vector field V" along a piece-wise smooth path
P from p, to p; in the direction of p. (P1) is equivalent to the fact that the value of the
integral does not depend on the choice of the path.* Dissatisfaction of (P1) could lead to

a limit cycle and non-convergence to an equilibrium. (see Example 6.1 in [14]).

A game-theoretic interpretation of (P1) is given in [100].
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Next, suppose that the payoff vector p(t) is constant, i.e., p(t) = p, for all ¢ in
R, . According to (P2), the population state z(¢) evolves along a trajectory for which the
stored energy quantified by Sgp(p(t), z(t)) decreases. In particular, if the dynamic (4.2)
is strictly passive then we can establish asymptotic stability of the set S using LaSalle’s
theorem [101]. In Section 4.3, based on this observation, we establish stability of passive
dynamics in a class of population games.

As an application of Theorem 4.2.3, we evaluate passivity of evolutionary dynamics

found in literature. We start with the replicator dynamics.
Proposition 4.2.4. The replicator dynamics (4.3) are not passive.

The proof is given in Appendix C.1.
In what follows, we examine passivity of the EPT dynamics [102], (impartial) pair-
wise comparison dynamics [103], and PBR dynamics [97].

EPT Dynamics:

i = 0i(p) — x; - 17 0(p) (4.10)

T
where the excess payoff vector is defined as p = p—p? x-1. The function p = ( 01 - Qn)
is called the revision protocol in which each entry is defined as p; : R” — R, and satisfies

following two conditions — Integrability (I) and Acuteness (A):

V() = o(p) for a C* function v : R" — R @I

plo(p) > 0if p € R*\ R™ (A)
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Proposition 4.2.5. The EPT dynamics (4.10) are strictly passive with a storage function®

Sepr(p,r) = v(p)

The proof is given in Appendix C.2.

Pairwise Comparison Dynamics:

T; = Zﬂfjgz‘(ﬂ% - pj) —%ZQj(pj — pi) (4.11)
j=1 j=1
T
The function o = ( 01 - Qn) is called the revision protocol in which each entry is

defined as g; : R — R, and satisfies the following condition — Sign Preservation (SP):°

sgn (0i(pi — pj)) = sgn ([pz - pj]+) (SP)
Proposition 4.2.6. [15] The pairwise comparison dynamics (4.11) are strictly passive
with a storage function Spc(p,v) = Y 1_ >0 ;i JP 0i(s) ds.
PBR Dynamics:
t=C(p)—x (4.12)

where C' : R" — X is defined as C(p) = argmax, gy x) (p"y —v(y)), where v :
int(X) — R is a strictly convex C? function that satisfies 27 V2v(z)z > 0 for all z in X
and z in 7X \ {0}, and ||V, v(z)|| — oo as x — bd(X). We refer to such C as a choice

function, and to such v as an admissible (deterministic) perturbation.

3In the proof of Proposition 4.2.5, we show that there is a non-negative potential function ~ that satisfies

both (I) and (A).
1 ifa>0

6sgn : R — {—1,0,1} is defined as sgn(a) < 0  ifa=0-

-1 ifa<0
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Proposition 4.2.7. The PBR dynamics (4.12) are strictly passive with a storage function

Sper(p, ) = max (pTy — v(y)) — (pTx — v(x)) (4.13)
y€int(X)

Suppose that v is strongly convex satisfying
AV20(x)z >0 22

forall v in X and z in TX, where n > 0. Then the dynamics are strictly output passive

and satisfy the passivity inequality (4.7) for n = 7'

The proof is given in Appendix C.3.

4.2.3 Properties of Passive Evolutionary Dynamics

4.2.3.1 Payoff Monotonicity and Passivity

Using the characterization of passivity given in Theorem 4.2.3, we study properties
of passive evolutionary dynamics in connection with the following two conditions’ — Nash

Stationarity (NS) and Positive Correlation (PC):

V (p, x) = 0if and only if
given the payoff p, the population state x is a Nash equilibrium (NS)

p"V(p,z) > 0 holds for all (p,z) € R x X (PC)

Consider evolutionary dynamics (4.2) in a game in which the payoff is constant, i.e.,

p(t) = po for all ¢ in R, . The conditions (NS) and (PC) have the following implications:

"These conditions are previously considered in literature to establish stability of evolutionary dynamics

[14,104].
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(PC) implies that the population state trajectory z(-) determined by (4.2) evolves along
which the average payoff p{z(t) is increasing, i.e., $plz(t) > 0; and (NS) implies
that the population state does not change if and only if the maximum average payoff is
attained, i.e., #(t) = 0 if and only if plx(t) = max,cx plx. We will refer to these
phenomena as payoff monotonicity, and to the dynamics satisfying both (NS) and (PC) as

payoff monotonic.

Proposition 4.2.8. Consider passive evolutionary dynamics (4.2) with a storage function
Sep : R" x X — R,. A global minimizer of Sgp is an equilibrium point of (4.2). In
addition, if the dynamics satisfy (NS) then every equilibrium point of (4.2) is a global

minimizer of Sgp.
The proof is given in Appendix C.4.

Remark 4.2.9. According to Proposition 4.2.8, given that min, zycrn xx Sep(p, ) = 0,
the inverse image SE})(O) is a subset of the set S of equilibrium points of (4.2), and it is

identical to S if the dynamics satisfy (NS).

Based on Definition 4.2.1, we note that strict output passivity is a stronger notion,
and leads to stronger stability than does ordinary passivity in a sense that strictly output
passive dynamics are stable in a larger class of population games. Hence, in what regards
to achieving stability, it is desired to adopt strictly output passive dynamics. However, in
the following Proposition, we show that the evolutionary dynamics exhibiting the payoff
monotonicity cannot be strictly output passive. Therefore, the payoff monotonicity and

strict output passivity cannot be attained simultaneously.
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Proposition 4.2.10. For n > 3, no payoff monotonic evolutionary dynamics are strictly

output passive.

The proof is given in Appendix C.5.

The following is a direct consequence of Proposition 4.2.10.

Corollary 4.2.11. The EPT dynamics (4.10) and the pairwise comparison dynamics (4.11)

are not strictly output passive.

As it can be verified that both dynamics are payoff monotonic, the proof directly

follows from Proposition 4.2.10.

4.2.3.2 Equivalence to Closed-loop Stability

In Definition 4.2.1, we defined passivity as an input-output property of evolutionary
dynamics: Satisfaction of the passivity inequality (4.7) for each payoff trajectory (input)
p(+) in P and the population state trajectory (output) z(-) determined by (4.2) in response
to p(+). In evolutionary game theory, the main interest lies in examining the time-evolution
of the population state induced in specific games. Hence, it is more natural to define
passivity of evolutionary dynamics in connection with games of interest. To achieve
this, let us consider population games identified by cumulative payoff functions of the

following form:

p(t) = F(x(t)) (4.14)
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where F' admits a C'! potential function, i.e., there is a C* function f : X — R that

satisfies V, f = ®F where = [ — %llT. Then, with a C! function defined by

Sq(x) = max f(z) — f(x) (4.15)

zeX

we can derive that

= /t p’(r)i(r)dr (4.16)

In the following Proposition, we show that passivity can be defined as (a weak form
of) stability of closed-loops formed by cumulative payoff functions (4.14) and evolution-
ary dynamics. This result implies that passivity of evolutionary dynamics is equivalent to
satisfaction of the passivity inequality (4.7) in the class of population games identified by

(4.14).

Proposition 4.2.12. Consider the following closed loop formed by a cumulative payoff

function (4.14) and an evolutionary dynamic (4.2):
p=F(z) (4.17a)
T =V(p,x) (4.17b)
The dynamic (4.2) is passive if and only if for each cumulative payoff function (4.14), the

closed-loop (4.17) has a Lyapunov function E : R" xX — R of the form E = Sg+ FEgp,

where Sg : X — R is given in (4.15) and Erp : R" x X — R is a fixed C* function.

The proof is given in Appendix C.6.
The following is a direct consequence of Proposition 4.2.12, where the proof is
given in Corollary C.7.
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Corollary 4.2.13. An evolutionary dynamic (4.2) is passive if and only if there exists a C"*
function Sgp : R™ x X — R, for which the passivity inequality (4.7) holds for n = 0 in
the class of population games identified by cumulative payoff functions (4.14), i.e., there

exists a C! function Sgp : R" x X — R for which

Sen(p(t), 2(t)) < Sep(plto), #(to)) + / FT(x(r))i(r) dr

to

holds for every function F : X — R" that admits a C* potential function.

4.2.3.3 Effect of Control Costs on Passivity

Consider the total payoff function u : R™ x X — R given by
u(p,z) = p'o —v(x) (4.18)

where a C? function v : X — R is referred to as a control cost [105] or a deterministic
perturbation [106]. A control cost is said to be admissible if it is strictly convex satisfying
2I'V2u(z)z > 0 for all 7 in X and z in TX \ {0}, and ||V, v(z)|| — oo as z — bd (X).
Notice that when there is no control cost, i.e., v = 0, the total payoff coincides with the
average payoff. The idea of imposing control costs on the total payoff appeared in game
theory and economics to study the effect of random perturbations [97, 106] or disutility
[105] on choice models, to model human choice behavior [107], and to analyze the effect
of social norms in economic problems [108]

We consider evolutionary dynamics that depend on u, and investigate the effect of
control costs on passivity of the dynamics. We refer to the dynamics as unperturbed if

v = 0; otherwise they are called perturbed. To proceed, let us consider the state-space
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representation of evolutionary dynamics in terms of revision protocols [14]: For each ¢ in
{1, ... ,n}’
T; = Z 205i(p, ) — T; Z 0ij(p, ) (4.19)
j=1 j=1
where pj; : R" x X — R, is called the revision protocol and denotes the rate at which

J-strategists switch to strategy ¢ given a payoff p and population state .

For instance, the revision protocols can be realized as follows:

0ji(p, ) = [Vyu(p,z) (e; — 2)] (4.20a)

0ji(p, x) = [Viu(p,z) (e; — ¢;)] (4.20b)

The protocol (4.20a) depends on the (instantaneous) increase of u(p, z) when the popu-
lation state changes in the direction of e; — x; and the protocol (4.20b) depends on the
(instantaneous) increase of u(p, ) when the population state changes in the direction of

e; — e;. Based on the revision protocols (4.20a) and (4.20b), we can derive the following

evolutionary dynamics: For each i in {1,--- ,n},
T = [Vfu(p, ) (e; — )] LT Z [VfU(Pa z) (ej — 37)]+ (4.21a)
j=1
T = ij [Vfu(p, x) (e; — ej)Lr — Xy Z [Vfu(p, x)(ej — ei)h (4.21b)
=1 j=1

Note that when no control cost is imposed, 1.e., v = 0, (4.21a) and (4.21b) become the
state-space representations of the BNN dynamics (4.4) and Smith dynamics (4.5), respec-
tively. According to Proposition 4.2.5 and Proposition 4.2.6, the unperturbed dynamics
of (4.21a) and (4.21b) are strictly passive.

Suppose that the control costs are strongly convex. Then, it can be verified that
the resulting perturbed dynamics of (4.21a) and (4.21b) are strictly output passive. In
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what follows, we formalize this idea and show how convexity of control costs affects
passivity of evolutionary dynamics. For our purpose, we consider evolutionary dynamics
(4.19) whose revision protocols depend only on the gradient V,u(p, x) of the total payoff
function (4.18) and the population state z, i.e., g;; is a function of V, u(p, z) and x as in

(4.20).

Proposition 4.2.14. Consider evolutionary dynamics (4.19) whose revision protocols p;;
depend only on the gradient ¥V ,u(p, x) of the total payoff function (4.18) and the popu-
lation state x. Suppose that the unperturbed dynamics of (4.19) are passive. Then the

following are true:

1. If the control cost is admissible then the resulting perturbed dynamics are strictly

passive.

2. If the control cost is admissible and strongly convex then the resulting perturbed

dynamics are strictly output passive.

The proof is given in Proposition C.8.

4.3 Stability of Passive Evolutionary Dynamics

In this section, we establish stability of passive evolutionary dynamics in popula-
tion games in terms of dissipation of stored energy of the dynamics. To achieve this, we
regard evolutionary dynamics and payoff operators as dynamical systems, and we inves-
tigate population state and payoff trajectories induced by a closed-loop formed by these

dynamical systems (see Figure 4.1 for an illustration).
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Payoftf Operators

p() = ()

Evolutionary Dynamics

Figure 4.1: A closed-loop obtained by a feedback interconnection of payoff operators

(4.1) and evolutionary dynamics (4.2).

Consider population games identified by (4.1) that satisfy the following inequality

for some positive o: 8

| @) v i i) dr < )

for every population state trajectory z(-) in X’ and ¢ in R, where v is non-negative real
number and p(-) € P is a payoff trajectory determined by (4.1) in response to x(-). We

represent the closed loop formed by (4.1) and (4.2) as follows:

() = Bz(-) (4.23a)

z(t) = V(p(t), z(t)) (4.23b)

In the following Theorem, we state stability results for the closed-loop described by

(4.23) in which

(CL1) (4.22) holds for v = 0, and (4.23Db) is strictly passive.

8In [15], population games (4.1) satisfying (4.22) for v = 0 are called J-anti-passive.
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(CL2) (4.22) holds for v > 0, and (4.23b) is strictly output passive for a constant 7 satis-

fying n > v.

Theorem 4.3.1. Consider (4.23) in which (CLI) or (CL2) holds. Let Sgp : R"xX — R
be a storage function of (4.23b). Suppose that the following assumptions hold: For any

sequence {(p(l), x(l)) }leN in R" x X,
AD ||V (0, 20) || 22 00 implies Spp (p?, 20) =3 o0
(A2) VI Sup (pU,20) V (p®, 2®) %0 ) implies Sgp (p®, z0) Log

If the time-derivative p of the payoff is bounded, i.e, there is a positive real M for which

|Ip(t)|| < M holds for all t in R, then it holds that lim;_,o, Sgp (p(t), z(t)) = 0.

The proof is given in Appendix C.9.
We note that the class of cumulative payoff functions presented in Section 4.2.3.2
satisfy (4.22). In the following Proposition, we present another class of payoff operators

that satisfy (4.22).

Proposition 4.3.2. For C! mappings F, and F», consider a (time-delayed) payoff function

given by
p(t) = Fi(z(t)) + Fy(x(t — d)) (4.24)
where d is a positive real.® Suppose that

ZDF(2)z <wv -2l 2 (4.25a)

ZIDFE] (x)DFy(x)z < v - 2"z (4.25b)

“Here we assume that z(¢) for  in [—d, 0) satisfies ffd |&(7)||* d < 3 for some positive real number
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hold for all x in X and z in T'X, where vy is a real and v, is a non-negative real. Then,

the payoff function (4.24) satisfies (4.22) with v = vy + vs.

The proof is given in Appendix C.10.

Based on Theorem 4.3.1, in what follows, we present stability results with the EPT
dynamics (4.10), pairwise comparison dynamics (4.11), and PBR dynamics (4.12). As
the EPT dynamics and pairwise comparison dynamics are at most strictly passive, we

only consider (CL1) for these dynamics.

Proposition 4.3.3. Consider (4.23) with the EPT dynamics (4.10) in which (CL1) holds.
Let Sgppr : R® x X — R, be a storage function of (4.10). Suppose that the revision

protocol o : R" — RY of (4.10) satisfies the following conditions: For any sequence
~(1 . n

{p()}leN in R™,

(CI) HQ (ﬁ(l)) H 2% implies S (ﬁ(l)) e

l—00

(€2) [lo (30)|| = 0 implies (V)" ¢ (V) = 0, and

(ﬁ(l))T 0 (ﬁ(l)) =% implies S (ﬁ(l)) =% 0.

where S(p) = [, o(p) ® dp is an integral of ¢ along a piece-wise smooth path P from 0
to p in the direction of p.'° If the time-derivative p of the payoff is bounded, then it holds

that limy_,o, Sgpr (p(t), z(t)) = 0.
The proof is given in Appendix C.11.

Example 4.3.4. The BNN dynamics (4.4) are the EPT dynamics with a revision protocol

given by o (p) = [p|, and a storage function given by Sgpr (p,z) = 3 || []3]+H2. Notice

'"Note that by the condition (I) of the EPT dynamics, [, o(p) ® dp does not depend on the choice of P.
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that

R Lo
LI =5 le @) (4.26)

and

p o) = llo®)|? (4.27)

It follows from (4.26) and (4.27) that (C1) and (C2) of Proposition 4.3.3 hold. We also

note that limy_, Sppr(p(t), z(t)) = 0 implies limy_o ||[p(t)] || = 0. Notice that given

a payoff p, a population state x is a Nash equilibrium if and only if the excess payoff

p = p— pla -1 satisfies || ] +H = 0. Hence the convergence of Sgpr implies that the

population state trajectory converges to a set of Nash equilibria.

Proposition 4.3.5. Consider (4.23) with the pairwise comparison dynamics (4.11) in

which (CL1) holds. Let Spc : R" x X — R, be a storage function of (4.11). Sup-
T

pose that the revision protocol o = (01 Qn> of (4.11) satisfies the following

conditions for each i, j in {1,---  n}: For any sequence {(p(l), :c(l)) }ZGN inR" x X,
(€1) 200, (17— p0) 7% o0 implies S, (5~ p"2) 173 o0
(€2) o; (1" = p") = 0 implies S () — p", (") =0

where S;(p; — pi,x;) = w; Opj_pi 0j(s)ds. If the time-derivative p of the payoff is

bounded, then it holds that lim;_, ., Spc (p(t), z(t)) = 0.
The proof is given in Appendix C.12.

Example 4.3.6. The Smith dynamics (4.5) are the pairwise comparison dynamics (4.11)
with a revision protocol given by o; (p; — pi) = [p; — pil, and a storage function given
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by Spo(p, ) = 5 Y1y 25—y Tilp; — pili. We can derive the following:

Pj—Di
Si(pj — pis i) = xZ/ [s]4 ds (4.28a)
0
1 2
= 5%[1?;' - it (4.28b)
1
= 520, (p; = pi) (4.28¢)
1
> 5 [0 (p; — )]’ (4.284d)

It follows from (4.28c) and (4.28d) that (C1) and (C2) of Proposition 4.3.5 hold. By the

fact that 377 xi[p; — pil, > [p;ly, we note that lim_, Spc(p(t), x(t)) = 0 implies

limy o0 || [P(2)] H = 0. Hence, the convergence of Spc implies that the population state

trajectory converges to a set of Nash equilibria.

Proposition 4.3.7. Consider (4.23) with the PBR dynamics (4.12) in which (CLI) or
(CL2) holds. Let Sppr : R™ x X — R, be a storage function of (4.12). If the time-

derivative p of the payoff is bounded, then it holds that lim,;_,, Sppr (p(t), z(t)) = 0.
The proof is given in Appendix C.13.

Remark 4.3.8. Due o (C.6b), by letting yy = C(p), it holds that [p — V,v(C(p))]" z =0
for all z in TX, where C' is the choice function of the PBR dynamics (4.12). Then, we can

see that the storage function (4.13) satisfies
Sper(p,x) = Viv(y) (y — =) — (v(y) — v(x))
By strict convexity of v and by the fact that y € X, we can see that
Jim Span(p(t). (1)) = 0 implies lim [|C(p(t)) ~ (t)]| =0

i.e., the population state trajectory converges to the best response choice C(p).
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4.4 Numerical Examples

To illustrate the main results, we provide numerical examples and simulations. We
consider two different types of examples. In the first example, we consider the replica-
tor dynamics and BNN dynamics in population games identified by a cumulative payoff
function. In the second example, we consider the BNN dynamics and logit dynamics in
the Hypnodisk game [104], which is used in the proof of Proposition 4.2.10. Simula-
tion results will show that the population state trajectories induced by the BNN dynamics
converge to a limit cycle; while the trajectories induced by the logit dynamics converge
to an equilibrium point. In addition, we examine the case in which the BNN dynamics
are perturbed by the control cost v(z) = 7 - 2?21 x;Inx; as in (4.21a). Simulation re-
sults will show that the perturbed BNN dynamics have strong stability properties than the

unperturbed ones.

4.4.1 Replicator dynamics and BNN dynamics under a cumulative pay-
off function

Consider a cumulative payoff function given by

pi(t) —z1(t) + 3
pa(t) | = | —22(t) + 3 (4.29)
p3(t) —x3(t) + %
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We note that under (4.29), both the replicator dynamics (4.3) and BNN dynamics (4.4)

are stationary at each element of the set given by

{(p,x) eR®*x X

1
pr=p2=pzand 1 = 15 = T3 = 5} (4.30)

The population state trajectories induced by these dynamics under (4.29) are illus-
trated in Figure 4.2 and Figure 4.3, respectively. From the illustrations, we can observe
that for the replicator dynamics, the Kullback-Leibler (KL) divergence between the pop-
ulation state z(t) and the equilibrium % - 1 does not converge to zero; while the storage
function of the BNN dynamics converges to zero, which implies that the population state

1

trajectory converges to the equilibrium 3 - 1.
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(b) Time-evolution of the KL divergence E(z(t)) along the trajectory
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Figure 4.2: Simulation results for the replicator dynamics under a cumulative payoff given

by (4.29). E(z) =327z} 1n % where 2 =1 -1
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4.4.2 BNN dynamics and logit dynamics in the Hypnodisk game
Consider the Hypnodisk game whose payoff function is given by

pi(t) z1(1)

pg(t) =H xQ(t)

ps(t) w3(t)
ni(t) — 3
= cos (0(z1(t), 22(t), 23(1))) | 2y(t) — L
w3(t) — 3
xo(t) — w3(t) 1

+ ? sin (0(21(¢), 22(t), 23(1))) | 25(t) — 21 () | + % 1 (4.31)

x1(t) — z2(t) 1
where 6 is a smooth function as described in the proof of Proposition 4.2.10.

We note that under (4.31), both the BNN dynamics (4.4) and logit dynamics (4.6)
have a unique equilibrium point at (p,z) = (% -1, % . 1). The population state trajec-
tories induced by these dynamics under (4.31) are illustrated in Figure 4.4 and Figure
4.5, respectively. From the illustrations, we can observe that the logit dynamics have a
stronger stability property than do the BNN dynamics as the population state trajectory of
the former converges to the equilibrium z = % - 1; while that of the latter dynamics forms

a limit cycle.

Now consider that a control cost given by v(z) = 7 - Z?Zl x; Inz; is imposed on
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the BNN dynamics as in (4.21a). The resulting perturbed dynamics are represented by
3
= [pi—pa), —w Y [p -], (4.32)
j=1
where p = p — V,v. Since v is a strongly convex function, according to Proposi-

tion 4.2.14, we can see that (4.32) is strictly output passive. The population state trajectory

induced by (4.32) under the payoff function (4.31) is depicted in Figure 4.6, which shows

that the trajectory converges to equilibrium z = % - 1.
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4.5 Summary and Future Work

We have exploited the notion of passivity in evolutionary game theory. We have
defined passivity for evolutionary dynamics and characterized it in terms of vector fields
that define the state-space realizations of the dynamics. Based on the characterization,
we have studied certain properties of passive dynamics and established stability in a gen-
eralized class of population games. Numerical simulations are provided to illustrate the
stability results.

To benefit from the presented passivity methods, as a future direction, we suggest to
investigate the following design problems: How to design passive evolutionary dynamics
whose storage function achieves its minimum at desired states; while maintaining their

stability in population games of interest.

126



Appendix A: Auxiliary Results for Chapter 2

A.1 Computational Considerations

We proceed to outlining how to find the source components of a directed graph and
how to compute an omniscience-achieving parameter choice for (2.1) that satisfies (1.2),

provided that the conditions of Theorem 2.2.2 hold.

A.1.1 Finding Source Components

In Chapter 22.5 of [109], the Strongly-Connected Components (SCC) algorithm is
described for finding all strongly connected components of a directed graph. For each
strongly connected component given by the SCC algorithm, we can check whether there
are no incoming edges from outside of it, in which case it is a source component. Since
both the SCC algorithm and subsequent checks have linear-time complexity, the overall

procedure for finding source components is a linear-time algorithm.

A.1.2  Computing an Omniscience-achieving Parameter Choice

We proceed to describing randomized procedures to compute a parameter choice

for (2.1). Under the detectability condition of Theorem 2.2.2, it follows from our anal-
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ysis in Section 2.4.3 that the parameter choice obtained from the following randomized
procedures satisfies (1.2) and is omniscience-achieving with probability one.
A.12.1 Computation of W = (w;;); .y

Let {G;})" with G, = (V,,E;) be the source components of G, and let us define
Vine+1 = V\ U, Vi We first find a spanning subgraph G’ of G for which {G, },", are the
source components of G, and the subgraph of G’ induced' by V,, |, has no cycle. Then
we select a weight matrix W whose sparsity pattern is consistent with G and, hence, with
g.

In order to obtain G’, we perform multiple rounds of the depth-first search on G
where each round of the search starts from a (unvisited) vertex in V,,_,, that is a neighbor
of a source component. We continue this search until every vertex in V,,,_; is visited
exactly once. The overall search operation gives a disjoint collection of directed trees.
Next, we eliminate certain edges of G to obtain a new graph G’ such that G’ is same as G
except that the subgraph of G’ induced by V,,_; is the union of the trees obtained from
the aforementioned search operation. By our construction of G’, it can be verified that
{G,}}, are the source components of G’, and the subgraph of G’ induced by V,, ., has
no cycle.

For each i in V, let N be the neighborhood of vertex ¢ defined by G’. We choose the
submatrices of W in (2.11) as described by the following randomized procedure (Proce-
dure 3). Here, we use ¢ ~ U (a, b) to denote a randomization in which ¢ is the realization

of a random variable uniformly distributed in the interval (a, b). We assume that the ran-

Y(V’, /) is a subgraph of (V, E) induced by V' C V if E’ contains every edge (i, j) in E with 4, j € V'.
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domizations presented in the procedure are drawn from independent random variables.
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Procedure 3: Computation of W = (w;;)

i,5EV

10

11

12

13

14

input : G’ = (V,E)
output: W = (Wij)meV
begin

fori € {1,--- ,ms} do

/* computation of W; in (2.11)
a~U(0,1)

fori € V;do

for j € V;\ {i} do

if j € N, \ {i} then

1
a~U (‘Nw‘))

Wij < —Q-q

else w;; <0

Wi < 1= 2 jenp iy Wi

/* computation of {Wms+1,l};isl+1 in (2.11)
fori €V, ;1 do
for j € Vdo

if j € N/ \ {i} then w;; + W

else w;; <0

*/
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It follows from Lemmas 2.4.3 - 2.4.4 and Theorem 2.4.5 that Procedure 3 will select
a weight matrix W randomly from a parametrized set for which almost all parameters
lead to a suitable choice, with the possible exception of a subset of measure zero. Our
particular choice for the distributions governing the randomizations in Procedure 3 is not
important, and any other choice that assigns null probability to a subset of measure zero

would work.

A.1.2.2  Computation of {K;, P;, Q;,S; }icv

In what follows, we describe a randomized method (Procedure 4) to choose gain
matrices {K;, P;,Q;,S;},.y that, in conjunction with W obtained from Procedure 3,
are omniscience-achieving with probability one, provided that the conditions of Theo-
rem 2.2.2 are satisfied. In fact, it follows from Theorem 2.4.10 that if the conditions of
Theorem 2.2.2 are satisfied then the procedure will be selecting from a set in which almost
all choices are omniscience-achieving.

Given a positive real ¢, we use K ~ U, ((—¢,¢)™") to denote a randomization
leading to a matrix K in R™*" whose entries are the realizations of n - r independent
random variables uniformly distributed in the interval (—c,c). For each i in V,, let
B; = ¢ ®1I, and C; = eI ® C;, where ¢; is the i-th column of the |V;|-dimensional
identity matrix. We choose {K;, P;, Q;, Si}z‘eV as described below, where repeated ran-

domizations are drawn from independent random variables.
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Procedure 4: Computation of {K;, P;, Q;,S;},.y

input : G’ = (V,E'), W given as in (2.11), and (A, C) given as in (1.1)
output: {K;, P;,Q;,S;}, .y

1 begin

2 select VI as in Definition 2.2.1

3 forl € {1,--- ,m,} do

/* computation of {K; P;, Q;, Si}ie\\]l */
4 iy e V;NVE // a singleton
5 fori € V;\ {i;} do
6 Ki ~ Upr, ((—¢,0)"")
7 wi =0
8 compute K;,, P;;, Q;,, S;, with p;, = |V;| — 1 for which

W, ® A— ZieVl Eszéz _BilPil

Q;,C, Si,
| is stable, provided they exist.
/+ computation of {K; P; Q;, Si}ieVmSH %/
9 fori €V, 41 do
10 K;,«<0
11 wi =0
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A.2 Nondegeneracy of the Dynamic Matrix A

Here, we justify the nondegeneracy assumption on the dynamic matrix A in (1.1).
Suppose that the dynamic matrix A is degenerate. Let M be the real matrix for which

J = M~'AM is a real block diagonal matrix in the following form:

J =diag (J1,- -+, Jp) (A.1)
where for each i in {1, -- - , p}, the submatrix J; is the i-th real Jordan block. In particular,
suppose that J,, 11, - -+ , J, are all the Jordan blocks associated with the zero eigenvalue.

Notice that there exists a positive integer ko for which J¥ = 0 for all k& > k¢ and i in

{po+1,-- . p}

By applying a similarity transform to the plant (1.1) with M, we obtain

xa(k + 1) Aa 0 .fa(k')
zp(k+ 1) 0 Ay \x(k)
(A.2)
zq(k)
y(k) = (ca cb)
l’b<k)
q(k)
where = M 'z(k), A, = diag (J1, -, Jp)s Ay = diag (Jpgs1, - 5 Jp)s
(k)

and (Ca Cb) = CM. Since the block diagonal elements of A, are the Jordan blocks
associated with the zero eigenvalue, it holds that z; (k) = 0 for all & > kg, and from (A.2)
we can derive the following state-space equation:

ok +1) = Auz,(k)

(A.3)
y(k) = Coxa(k)
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for k > ko, where A, is a nondegenerate matrix. For this reason, in what regards to
achieving asymptotic omniscience, we may design a distributed observer (2.1) for (A.3) to

asymptotically resolve the state z,(k), from which the state 2 (k) of (1.1) can be obtained

(k)
using the relation (k) = M for k > k.

0

A.3 Preliminary Concepts and Proof of Proposition 2.3.2

Let us define
X (k) = xW (k)
z(k) = where 2/ (k) =

XU (k) = x W (k)

We can re-write (2.3) as follows:

w(k+1) = Az(k) + Y Byuj(k)
i€V (A4)
yi(k) = Ciz(k)

for each 7 in V, where

ol Py Fim,
A pr—
T
o (A.5)
5= (ot )
1 0

1ma71 Imafl

In (A5), I, {Flj};”:“Q, G, H; are from (2.3), and A" and B; are defined in (2.5b) and
(2.5¢), respectively.
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To achieve asymptotic synchronization of the system (2.3), we need to find a dis-
tributed controller for which the partial state 2’(k) of (A.4) converges to zero as k — oo.
To find such distributed controller, we adopt the following procedure (also see Figure A.1

for an illustration):

1. Using the method described in Section 2.2, we first design a distributed observer

(2.1) for the multi-agent system (A.4) subject to the pre-selected graph G.

2. Then, using results on the synthesis of decentralized control systems, we find fully
decentralized controllers for the multi-agent/distributed observer system obtained

in Step 1.

3. Finally, we recover a distributed controller from the distributed observer and the

fully decentralized controllers obtained in Step 1 and Step 2, respectively.
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Figure A.1: Diagrams depicting a design procedure for finding a distributed controller.
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Based on the aforementioned design procedure, we note that the resulting dis-

tributed controller has the following state-space representation:

zi(k+1) | = Qi (yi(k) — Cizi(k)) + Sizi(k) (A.6a)
wi(k +1) Stwi(k) + Qf;(k)
wi(k) = Piw;(k) + Kizj(k) (A.6b)

for each 7 in V, where (k) = (0 Im 1)_n> Z;(k), and A and C; are defined in (A.5).
It can be verified that (A.6) is a special case of (2.4). Hence, it remains to consider a
parameter choice for (A.6) such that the resulting distributed controller synchronizes the

system (2.3). In what follows, we describe particular choices of

W = <W1j> {K'u Pi7 Qia Si}iGV and {K(ziu P;i7 ?7 Sg}iev

4,JEV?

for (A.6) in Appendix A.3.1 and Appendix A.3.2, respectively. A proof of Proposi-

tion 2.3.2 is then followed.

A3.1 A Choice of W = (w;;), .oy {Ki, Py, Qi, Si}icy

We design a distributed observer (2.1) for the system (A.4) subject to the given
graph G. The estimation error z; = = — Z; of (2.1) evolves according to the following
state-space equation:

T(k+1) WoA-KC —P z(k) L, @ (X ,cv Biwi(k))
z(k+1) QC S z(k) 0

(A.7)
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where

T T
= 7T ... 7T z=|,T ... T

T
C= (@f 551) with C; = e] ® Cj, (A.8)

K = diag (Ky,--- ,K,,), P =diag(Py,---,P,),
deiag<Q17'”7Qm)7 gzdzag(shasm)
In (A.8), e; is the i-th column of the m-dimensional identity matrix.

By writing (A.4) and (A.7) altogether and by omitting ") from « in (A.4), we can

derive the following equation:?

2k +1) A 0 0 o' (k) ey Blui(k)
zk+1)|=| 0 WeA-KC -P (k) | T 1 ® (X,cv Biui(k))
2(k+1) 0 QC S z(k) 0
(A.92)
(k)
2i(k) = E; | %(k) (A.9b)
z(k)

for each 7 in V, where F; = < Ttma—1)n —eiT ® <0 Iim _1)%) 0 ) e; 1s the i-th

column of the m-dimensional identity matrix, and A, A’, B;, B, and C; are defined in

2This is valid since (A.9) does not depend on y1).
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(A.5) and (A.8), respectively. In (A.9b), we note that

Bl 50 | =50 (0 Toi) 50 = (0 11y )

Essentially, the state-space equation (A.9) describes a LTI system with state
T
(x’T 7T zT) , output vector &}, and inputs {u; };cy. If there is no input, i.e., u; = 0

for all 7 in V, and the matrix given by

WA-KC —-P
(A.10)

o
Q
0!

is stable, then we can see that the output Z/(k) converges to z/(k) as k — oc.

The following Lemma states the stabilizability and detectability of (A.9).

Lemma A.3.1. Let a graph G = (V,E) and a LTI system (A.4) be given. Suppose that

assumptions (i) and (ii) of Proposition 2.3.2 hold. We can find W, K, P, Q, S in (A.9)

for which the resulting system (A.9) is both stabilizable and detectable for all i in V.

Proof. Notice that because of (ii) of Proposition 2.3.2, by Theorem 2.2.2 and the pro-
cedures in Appendix A.1.2, we can find W, K, P, Q, S for which the matrix (A.10)
is stable. Under this choice of W, K, P, Q, S, we show the stabilizability and de-
tectability of (A.9). The stabilizability directly follows from (i) of Proposition 2.3.2. The

detectability can be verified by the fact that if u; = 0 for all ¢ in V, then it holds that
(k)

limy, o0 ||2(k) — 2/(K)|| = 0 for all i in V and limy,_, o =0. n
z(k)
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A3.2 A Choice of {K{, P} Qf,S7}

Consider a set of fully decentralized controllers whose state-space representation is

given as follows:

wik + 1) = St (k) + Q' (k)

v (A.11)
wi(k) = Plw;(k) + K&} (k)
foreach ¢ in V.

Consider the closed-loop system obtained by interconnecting (A.9) and (A.11) where
the parameters W, K, P, Q.S of (A.9) are chosen as described in Lemma A.3.1. By the
stabilizability and detectability of (A.9) for all 7 in V, using the results on the synthesis of
decentralized control systems [63,64], we can find a parameter choice {K¢, P{, Qf, S{'}.

for (A.11) that ensures the stability of the closed-loop system.

A.3.3 Proof of Proposition 2.3.2

Suppose that W, K, P, Q,S and {K‘},Pf, Q¢, S?}i oy are respective parameter
choices made by the procedures described in Appendix A.3.1 and Appendix A.3.2. By
Lemma A.3.1 and the discussion in Appendix A.3.2, such parameter choices ensure the
stability of the closed-loop system resulting from an interconnection of (A.9) and (A.11).
We note that, under the same parameter choice, the stability of this closed-loop ensures
the synchronization of the multi-agent system (2.3) via the distributed controller described
by (A.6), which is a special case of (2.4). Therefore, with the aforementioned parameter
choices, we conclude that the distributed controller (A.6) (hence (2.4)) synchronizes the

multi-agent system (2.3). This proves the first statement.
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Next, we prove the second statement of Proposition 2.3.2. We proceed by writing

the state-space equation for agent 1 using (2.3a) and (A.6b) as follows:

WOk 1) = Fx (k) + 3 By ((O(k) — xO(8))

+ 3 Gy (Pw;(k) + Kia) (k) (A.12)
j=1
Fov 0
Without loss of generality, suppose that £, = where F,, ;; and F, g are un-
0 F,s
)
stable and stable parts of F,,, respectively. Accordingly, we obtain a partition of
1
W
Gu
X(l) and a partition of (F12 cee Flma GHP% cee GlmPgn GHK% ce Glngn)
Gs
For notational convenience, let
Y@ — xM wy &
= LW = , 1 =
x(me) — x W W T

Since 2/(k), w(k), 2'(k) converge to zero exponentially as & — oo, it holds that
limy, o0 H XS) (k) H = 0. Now, we consider the unstable dynamics of (A.12), which can be

represented by the following state-space equation:

z'(k)
Xtk +1) = Fooxty () + Gu | w(k) (A.13)
(k)

Since eigenvalues of F, ;; lie on or outside the unit circle in C, we can verify that a solution
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to (A.13) satisfies

(For) " x (k) = X (0 +Z L0) G | w (A.14)

Xowr = X7 ( +Z W) TGy w(l)
1=0

be the limit point of (A.14).

To complete the proof, let us consider the following state-space equation:

Xo,U
Xo(k +1) = Foxo(k), Xo(0) =
Xo,S
for any vector Y, s of a proper dimension. Since F, ;; has the unit spectral radius by the
assumption of the second statement, due to the exponential convergence rate of (A.14),
we can see that limy_,o || X" (k) — xo(k)|| = 0 holds.
Using the fact that limy_o ||[x® (k) — x" (k)| = 0 holds for all i in V' \ {1},

we conclude that limy,_, Hx(i)(k’) — Xo(k) || = 0 holds for all 7 in V!, This proves the

Proposition.

A.4 Proofs of Lemmas 2.4.3 and 2.4.4

Proof of Lemma 2.4.3: Since the matrix L is a WLM of the graph G and the positive
real number o satisfies o < (maxlggw‘ lii)_l, for every « in (0, '), the matrix W is
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stochastic. Hence, it remains to show that for almost every « in (0, '), W ® A satisfies
the UEPP.

Let {vy,---,vs} and {A,- -+, A} be the sets of distinct eigenvalues of A and L,
respectively. Under the choice W = Iy — a.L, we can observe that if W ® A does not

satisfy the UEPP, then its nonzero eigenvalue can be expressed as a product

(1—aXNv=(1-aXN)

for distinct A\, X in {\1, -, \;} and for distinct v, v" in {vy, -+ ,vs}. Since the sets of
distinct eigenvalues of A and L are both finite, we conclude that the set of the values of «
for which the UEPP does not hold is finite. Hence, for almost every « in (0, /), W @ A
satisfies the UEPP. U
Proof of Lemma 2.4.4: By the UEPP of W ® A, for each nonzero eigenvalue A of W ® A,
we can find the unique pair of eigenvalues A\w and A\ 4 of W and A, respectively, for which
A = Aw A4 holds. Since W has all simple eigenvalues and W ® A satisfies the UEPP, we
can show that there is a unique eigenvector (unique up to a scale factor), say v, associated
with \w, and the geometric multiplicities of \ and )4 are equal®. Hence, we can see that
an eigenvector ¢ of W ® A associated with A can be written as ¢ = v ® p where p is an

eigenvector of A associated with A 4. This proves the Lemma. U

A.5 Preliminary Results and Proof of Theorem 2.4.5

In this section, we provide a proof of Theorem 2.4.5. The proof hinges on some

results from structured linear system theory [110,111]. To this end, we briefly review the

3 A proof of this argument is along similar lines as that of Lemma 3.8 in [20]
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structural controllability and observability of structured linear systems in Appendix A.5.1

and provide the detailed proof of Theorem 2.4.5 in Appendix A.5.3.

A.5.1 Structural Controllability and Observability

Consider a graph G = (V,E) with V = {1,--- | |V|} and an associated structured

linear system whose state-space representation is given as follows:

x(k+1) = [Alz(k) + [b;]u(k)
(A.15)

y(k) = [e;] = (k)

where [A] € RVI*IVI'is a structure matrix, and [b;] € RVl and [c;] € RV are structure
vectors. Depending on respective sparse structures, entries of structure matrices and vec-
tors are either zero or indeterminate. In particular, we suppose that [A] is consistent* with
the graph G, and all entries of [b;] and [c;] are zero except the i-th entry and j-th entry,
respectively. Under this setting, there are (|E| + 2) indeterminate entries of [A], [b;], and
[cj], and if we allow each indeterminate entry to take a value in R, then a choice of these
entries can be represented by a vector in RI®+2. In other words, the vectors in RIFI*2
specity all numerical realizations of (A.15).

The following Definition describes the structural controllability and observability

of structured linear systems (A.15).

Definition A.5.1. Let a graph G = (V,E) and an associated structured linear system

as in (A.15) be given. Let p be a vector in R®1*2 that specifies a numerical realization

4A structure matrix [A] is consistent with a graph G if the (i, j)-th entry of [A] is indeterminate if

(j,1) € E, and the entry is zero otherwise.
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of (A.15). The pair ([A], [b;]) is said to be structurally controllable if for almost all p in
RE2 the resulting numerical realizations of ([A], [b;]) are controllable. The structural

observability is similarly defined for the pair ([A], [cj}T).

We can characterize the structural controllability and observability for the system

(A.15) in terms of its associated graph as in the following Proposition.

Proposition A.5.2. Let a strongly connected graph G = (V,E) and an associated struc-
tured linear system as in (A.15) be given. Then, for each i, j in V, the pair ([A], [bi]) is

structurally controllable and the pair ([A), [c;]") is structurally observable.

Proof. The proof directly follows from relevant results from the structured linear sys