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In this dissertation, we consider three problems: in the first we investigate dis-

tributed state estimation of linear time-invariant (LTI) plants; in the second we study opti-

mal remote state estimation of Markov processes; while in the third we examine stability

of evolutionary game dynamics in large populations.

Problem 1: Consider that an autonomous LTI plant is given and that each member

of a network of LTI observers accesses a portion of the output of the plant. The dissemi-

nation of information within the network is dictated by a pre-specified directed graph in

which each vertex represents an observer. This work proposes a distributed estimation

scheme that is a natural generalization of consensus in which each observer computes

its own state estimate using only the portion of the output vector accessible to it and the

state estimates of other observers that are available to it, according to the graph. Unlike

straightforward high-order solutions in which each observer broadcasts its measurements

throughout the network, the average size of the state of each observer in the proposed

scheme does not exceed the order of the plant plus one. We determine necessary and suf-



ficient conditions for the existence of a parameter choice for which the proposed scheme

attains asymptotic omniscience of the state of the plant at all observers. The conditions

reduce to certain detectability requirements that imply that if omniscience is not possible

under the proposed scheme then it is not viable under any other scheme – including higher

order LTI, nonlinear, and time-varying ones – subject to the same graph. We apply the

proposed scheme to distributed tracking of a group of water buffaloes.

Problem 2: Consider a two-block remote estimation framework in which a sensing

unit accesses the full state of a Markov process and decides whether to transmit informa-

tion about the state to a remotely located estimator given that each transmission incurs a

communication cost. The estimator finds the best state estimate of the process using the

information received from the sensing unit. The main purpose of this work is to design

transmission policies and estimation rules that dictate decision making of the sensing unit

and estimator, respectively, and that are optimal for a cost functional which combines the

expectation of squared estimation error and communication costs. Our main results es-

tablish the existence of transmission policies and estimation rules that are jointly optimal,

and propose an iterative procedure to find ones. Our convergence analysis shows that the

sequence of sub-optimal solutions generated by the proposed procedure has a convergent

subsequence, and the limit of any convergent subsequence is a person-by-person optimal

solution.1 We apply the proposed scheme to remote estimation of location of a water

buffalo.

Problem 3: We investigate an energy conservation and dissipation (passivity) as-

1The definitions of joint optimality and person-by-person optimality are given in Definition 3.1.2 and

Definition 3.1.3, respectively.



pect of evolutionary dynamics in evolutionary game theory. We define a notion of pas-

sivity for evolutionary dynamics, and describe conditions under which dynamics exhibit

passivity. For dynamics that are defined on a finite-dimensional state space, we show

that the conditions can be characterized in connection with state-space realizations of the

dynamics. In addition, we establish stability of passive dynamics in terms of dissipation

of stored energy defined by passivity, and present stability results in population games.

We provide implications of stability for various passive dynamics both analytically and

by means of numerical simulations.
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Chapter 1: Introduction

We consider the following three problems: (i) distributed state estimation of LTI

plants (Chapter 2), (ii) remote state estimation of Markov processes (Chapter 3), and (iii)

stability of evolutionary game dynamics (Chapter 4). The main objective and summary

of main contributions to each problem are described in this chapter.

Main results of each chapter can be applied to study of animal motion: The estima-

tion schemes that will be studied in Chapter 2 and Chapter 3 can be applied to tracking

of animal groups. The data from tracking animal groups are then analyzed to identify

and study collective animal motion. Based on results on stability of evolutionary game

dynamics, which are presented in Chapter 4, we can find a reasoning over which certain

collective motion emerges in animal groups.

1.1 Design of Distributed LTI Observers for State Omniscience

Consider the following linear time-invariant (LTI) plant in state-space form1:

x(k + 1) = Ax(k)

y(k) = Cx(k)

(1.1)

1In order to simplify the notation, without loss of generality, we omit noise terms in the state-space

equation (1.1). See Section 2.2.1.1 for more discussions.

1



LTI Plant

Observer 1

...

Observer m

Communication

Graph G

y1

ym

...

Distributed Observer

Figure 1.1: A framework for distributed state estimation.

where x(k) ∈ Rn and y(k) =

(
yT1 (k) · · · yTm(k)

)T
, with yi(k) = Cix(k) ∈ Rri ,

represent the state and output, respectively.

We consider the problem of designing a group of m observers so that each observer

can asymptotically resolve the entire state x. Information exchange among observers is

constrained by a pre-selected directed graph G = (V,E) with V = {1, · · · ,m}, where

each vertex in V represents an observer and the edges in E ⊆ V×V determine the viability

and direction of information transfer. We refer to a given G as the communication graph

and we denote a group of m observers equipped with G, with each observer accessing an

element of {y1, . . . , ym}, as a distributed observer (see Figure 1.1 for an illustration).

The internal state of an observer consists of a state estimate x̂i and an additional

state zi that is updated based on its portion yi of the output of the plant and the state

estimates of the other observers connected to it via the edges of G. We later refer to zi as

the augmented state of observer i. A distributed observer is said to achieve omniscience

asymptotically if limk→∞ ||x̂i(k) − x(k)|| = 0 holds for all i in V, i.e., the state estimate

at every observer converges to the state of the plant.

2



Our main goals are: (i) Given a plant (1.1) and a graph G, we wish to determine neces-

sary and sufficient conditions for the existence of a LTI distributed observer that achieves

omniscience asymptotically. (ii) Provided it exists, we want to find an omniscience-

achieving solution in which the dimension µi of zi, i.e., zi ∈ Rµi , satisfies the following

scalability condition:
m∑

i=1

µi < m (1.2)

The main technical challenges are: (i) Each observer accesses only a portion of the

output of the plant. Hence, unless the pair (A,Ci) is detectable for all i in V, state omni-

science requires information exchange among observers. The exception being the trivial

case in which the state of the plant can be resolved from the portion of the output available

to every observer. (ii) Notice that (1.2) rules out simple LTI schemes in which observers

share their measurements throughout the network.2 (iii) The existence of an omniscience-

achieving scheme that conforms with both G and (1.2) cannot be established by existing

results on observer design.

1.1.1 Summary of the Main Contributions

In order to achieve the stated goals, this work focuses on the following two contri-

butions: (i) We propose a parametrized class of LTI distributed observers within which

information exchange conforms to a pre-specified directed communication graph G. (ii)

We find necessary and sufficient conditions for the existence of a parameter choice for the

aforementioned class that is omniscience-achieving and satisfies the scalability constraint

(1.2). We also outline a method to compute such a parameter choice, provided it exists.
2See Section 2.2.1.3 for more details.
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In Section 2.4 we provide a detailed analysis that hinges on the fact that asymptotic

omniscience for the proposed class of distributed observers can be cast as the stabiliza-

tion of certain LTI systems via fully decentralized output feedback. Using this analogy, in

Theorem 2.2.2 we show that an omniscience-achieving parameter choice satisfying (1.2)

exists if and only if the state of the plant (1.1) is detectable from the combined output

portions available to each source component3 of G. We also ascertain that if such a de-

tectability condition holds then there exists an omniscience-achieving solution for which

the resulting aggregate dimension of all additional internal (augmented) states satisfies:

m∑

i=1

µi ≤ m−ms (1.3)

where ms is the number of source components4 of G. It follows from our analysis that if

there is no omniscience-achieving solution in the proposed class satisfying (1.2), then om-

niscience cannot be attained by any other scheme – including higher order LTI, nonlinear,

and time-varying ones – subject to the same graph.

We apply the distributed estimation scheme to tracking of 4 water buffaloes using

animal-borne wireless camera network. In Section 2.5, we present experimental results

using a data set collected from the deployment of animal-borne wireless camera network

in the Gorongosa National Park (Mozambique)

1.2 Optimal Remote State Estimation of Markov Processes

We study a two-block remote state estimation problem: Suppose that a sensing

unit accesses the full state xk of the process at time k, and decides whether to transmit
3The definition of the source component is given in Definition 2.2.1.
4The number of source components of G ranges from 1 to m.

4



P S E
{xk}Nk=0

{
xk
∣∣Rk = 1, 1 ≤ k ≤ N

}

Rk =





1 Transmission

0 No Transmission

{x̂k}Nk=1

Figure 1.2: A framework for remote state estimation with a Markov process (P), a sensing

unit (S), and an estimator (E).

(Rk = 1) the accessed information xk to a remotely located estimator or not to transmit

(Rk = 0), where each transmission incurs a positive communication cost ck. The esti-

mator computes a state estimate x̂k that is a causal function of information available to it.

The diagram in Figure 1.2 depicts the framework adopted in this work.

Suppose that a transmission policy and an estimation rule at time k, denoted by T k

and Ek, respectively, dictate the random variable Rk and estimate x̂k as follows:

Rk = T k

(
{xj}kj=0 , {Rj}k−1

j=1

)
(1.4a)

x̂k = Ek
({

xj
∣∣Rj = 1, 1 ≤ j ≤ k

}
, {Rj}kj=1

)
(1.4b)

Based on (1.4a) and (1.4b), let us consider a cost functional given as follows:

N∑

k=1

E
[
d2 (xk, x̂k) + ck ·Rk

∣∣∣x0 = x0, {T k}Nk=1 , {Ek}
N
k=1

]
(1.5)

subject to a Markov process {xk}Nk=0 defined on a metric space (X, d). The total cost (1.5)

consists of the expectation of squared estimation error d2 (xk, x̂k) and communication

costs ck ·Rk.

Our goal is to find optimal transmission policies {T k}Nk=1 and estimation rules
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{Ek}Nk=1 for (1.5). To achieve this, we formulate this as a two-player team decision prob-

lem, and find optimal decision functions for both players – sensing unit and estimator.

To assess optimality of solutions obtained in this work, we adopt the notions of joint

optimality and person-by-person optimality: A jointly optimal solution consists of the

transmission policies {T k}Nk=1 and estimation rules {Ek}Nk=1 that achieve the minimum

of (1.5); while a person-by-person optimal solution consists of the transmission policies

{T k}Nk=1 and estimation rules {Ek}Nk=1 for which given {T k}Nk=1, {Ek}Nk=1 minimizes

(1.5), and vice versa.

1.2.1 Summary of the Main Contributions

Our main strategy, which is described in Section 3.1, is to divide the aforementioned

problem into a set of N sub-problems, and sequentially solve each sub-problem. In Sec-

tion 3.2, adapting the notions of joint optimality and person-by-person optimality to each

sub-problem, we focus on the following contributions for each sub-problem: (i) We show

that there exists a jointly optimal solution. As jointly optimal solutions are also person-

by-person optimal, this result ensures that the set of person-by-person optimal solutions

is non-empty. (ii) We propose an iterative procedure to compute a person-by-person op-

timal solution. The procedure, which is inspired from Lloyd’s algorithm originally used

to compute Centroidal Voronoi Tessellations [1–3], alternates between finding a best re-

sponse (transmission policy) of the sensing unit to a decision function (estimation rule)

of the estimator and vice versa, and it generates a sequence of sub-optimal solutions. Our

analysis will show that the sequence has a convergent subsequence, and the limit of any
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convergent subsequence is a person-by-person optimal solution. In Section 3.3, we de-

scribe how to recover an optimal solution to the original problem from optimal solutions

of the sub-problems. In Section 3.4, we consider two specific Markov process models –

linear system models and self-propelled particle models, and verify that our main results

are applicable to these models. Lastly, we apply the remote estimation scheme to track-

ing of a water buffalo using animal-borne wireless camera network. In Section 3.5, we

present experimental results using a data set collected from the deployment of animal-

borne wireless camera network in the Gorongosa National Park (Mozambique).

1.3 Evolutionary Game Dynamics and Passivity

Of central interest, in evolutionary game theory [4, 5], is the study of dynamics of

strategically interacting players in large populations. This line of study involves an inves-

tigation of properties of behavioral rules adopted by players and asymptotes of trajectories

induced by the rules in an effort to identify stable equilibria. In this work, we conduct

the investigation by adapting the notion of passivity originated from dynamical system

theory [6, 7].

Consider multiple populations of players engaged in a game in which each player

chooses a strategy from a finite set of strategies, and repeatedly revises its strategy choice

in response to given payoffs. Evolutionary dynamics describe such strategy revision pro-

cesses and determine the time-evolution of the population state – the distribution of strat-

egy choices across populations. Assuming that there are infinitely many players in each

population, we express evolutionary dynamics with differential equations and regard these
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dynamics as dynamical systems. This point of view allows us to define passivity for evo-

lutionary dynamics and to perform stability analysis based on passivity methods adopted

from dynamical system theory literature.

The study of evolutionary dynamics and associated stability concepts has been one

of active research areas in evolutionary game theory. Brown and von Neumann [8] studied

Brown-von Neumann-Nash (BNN) dynamics to examine the existence of optimal strate-

gies for a zero-sum two-player game. Taylor and Jonker [9] studied replicator dynamics

and established a connection between evolutionarily stable strategies and stable equilib-

ria of replicator dynamics. Later the result was strengthened by Zeeman [10] who also

proposed a stability concept for games under replicator dynamics. Also Gilboa and Mat-

shu [11] considered cyclic stability for games under dynamics exhibiting the best response

choice.

In succeeding work, rather than working on specific forms of dynamics such as ones

considered in [8–11], stability results were established for various classes of evolutionary

dynamics. Swinkels [12] considered a class of myopic adjustment dynamics, and studied

strategic stability of equilibria of these dynamics. Ritzberger and Weibull [13] considered

a class of sign-preserving selection dynamics, and studied asymptotic stability of faces of

the population state space. In particular, the authors discovered that a face spanned by

a set of pure strategies is stable under sign-preserving selection dynamics if the face is

closed under a better-reply correspondence.

In a recent development of evolutionary game theory, Hofbauer and Sandholm [14]

studied stable games and established global stability results for a certain class of evolu-

tionary dynamics, which includes excess payoff/target (EPT) dynamics, pairwise compar-
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ison dynamics, and perturbed best response (PBR) dynamics. Fox and Shamma [15] later

revealed that stable games and the aforementioned class of evolutionary dynamics exhibit

passivity. Based on an input-output property of passive dynamical systems, the authors

established L2-stability of evolutionary dynamics in a class of (generalized) stable games.

In addition, applications of evolutionary game theory to study of animal group motion are

found in [16, 17], where stable strategy choices in animal pursuit-evasion problems are

examined.

Inspired on the passivity analysis in [15], we further investigate passivity in evolu-

tionary game theory. Our main goals are (i) to define passivity for evolutionary dynamics

that admit realizations in a finite-dimensional state space and present systematic methods

to examine passivity of evolutionary dynamics of interest; and (ii) to establish stability of

passive dynamics in population games.

1.3.1 Summary of the Main Contributions

1. We define three notions of passivity – (ordinary) passivity, strict passivity, and strict

output passivity – and explain how passivity defines stored energy of evolutionary

dynamics, which will be used to establish stability of the dynamics. We characterize

passivity in terms of vector fields that define state-space realizations of evolutionary

dynamics. Based on this characterization, we show that the EPT dynamics, pair-

wise comparison dynamics, and PBR dynamics are passive; while the replicator

dynamics are not.

2. We investigate properties of passive evolutionary dynamics in relation to the Nash
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stationarity (NS) condition and positive correlation (PC) condition5. We first show

that for passive dynamics satisfying (NS), their equilibrium points coincide with

the set of states that achieve the lowest level of stored energy of the dynamics. In

addition, if the dynamics also satisfy (PC) then we show that these dynamics cannot

be strictly output passive.

3. We show an equivalence between passivity of evolutionary dynamics and (a weak

form of) stability of a closed-loop resulting from a feedback interconnection of

evolutionary dynamics and a certain class of payoff operators. This result leads

us to re-define passivity of evolutionary dynamics using a class of (generalized)

population games. Furthermore, we study the effect of control costs on passivity

where we establish a relation between convexity of control costs and passivity of

evolutionary dynamics.

4. Based on the above contributions, we present stability results for passive evolution-

ary dynamics in population games. In particular, we consider a class of games that

generalizes stable games [14], and show that in this class of games, stored energy of

passive dynamics converges to its lowest level. We provide an interpretation of the

convergence of stored energy for formerly established dynamics both analytically

and by means of numerical simulations.
5See (NS) and (PC) in Section 4.2.3 for their respective definitions.
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1.3.2 Stability Concept and Landscape Metaphor

A landscape metaphor from genetics suggests that each individual in populations

would move up toward the peak of fitness landscape, and would reside unless external

force is applied [18, 19]. This metaphor suggests a reasoning over which the state of

populations evolves and a “stable equilibrium” emerges.

In this work, we adopt a concept of stability that is similar to the idea suggested by

the landscape metaphor: Stability implies that along the trajectory of the population state,

stored energy of evolutionary dynamics converges to its lowest level. The convergence to

the lowest energy level would have distinct interpretations which are specific to individual

evolutionary dynamics. In some cases, the convergence implies that the population state

approaches equilibrium points of dynamics; and hence it establishes asymptotic stability

of the equilibrium points. As a case in point, in Section 4.3, we will show that for the

BNN dynamics and Smith dynamics, the convergence implies that the population state

converges to Nash equilibria; and for the logit dynamics, it implies that the population

state converges to the set of best-response strategy distributions.
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Chapter 2: Design of Distributed LTI Observers for State Omniscience

2.1 Problem Formulation

2.1.1 Notation

• m is the number of observers that form the distributed observer.

• G = (V,E) is a graph1 formed by a vertex set V and an edge set E ⊆ V× V.

• Ip is the p-dimensional identity matrix.

• 1p is the p-dimensional vector with all entries equal to one.

• ⊗ represents Kronecker product of matrices.

• For a set {K1, · · · , Kp} of matrices, we define the following block diagonal matrix:

diag (K1, · · · , Kp)
def
=




K1 · · · 0

... . . . ...

0 · · · Kp




• Given a set V = {1, · · · , |V|}, W = (wij)i,j∈V is a matrix in R|V|×|V| whose i, j-th

entry is wij .
1For notational convenience, we assume that every vertex of G has a self-loop, i.e., (i, i) ∈ E for all i in

V.
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• For a set J = {j1, · · · , jp} ⊆ {1, · · · ,m} and matrices B and C formed by con-

catenating conformal submatrices {Bi}mi=1 and {Ci}mi=1 as B =

(
B1 · · · Bm

)

and C =

(
CT

1 · · · CT
m

)T
, respectively, we define

BJ
def
=

(
Bj1 · · · Bjp

)
and CJ

def
=

(
CT
j1
· · · CT

jp

)T

2.1.2 Problem Description

We consider that a LTI plant (1.1) and a directed communication graph G are given.

Without loss of generality, we consider that the dynamic matrix A is nondegenerate (see

Appendix A.2) and that the output matrices {Ci}mi=1 are nonzero. Each vertex i in V is

associated with an observer that accesses yi(k) = Cix(k). We adopt the convention that

E includes edge (j, i) if information can be transmitted from observer j to observer i.

The neighborhood of observer i, denoted as Ni, is a subset of V that contains i and all

other vertices with an outgoing edge towards i. Essentially, elements of Ni represent the

observers that can transmit information to observer i.

In this work, we adopt the following parametrized class of distributed observers

inspired on [20], where for each i in V, observer i updates its internal state according to

the following state-space equation:

x̂i(k + 1) = A
∑

j∈Ni

wij x̂j(k)︸ ︷︷ ︸
state estimate

+Ki (yi(k)− Cix̂i(k))︸ ︷︷ ︸
measurement innovation

+Pi zi(k)︸︷︷︸
augmented state

zi(k + 1) = Qi (yi(k)− Cix̂i(k)) + Sizi(k)

(2.1)

where wij ∈ R, Ki ∈ Rn×ri , Pi ∈ Rn×µi , Qi ∈ Rµi×ri , Si ∈ Rµi×µi are the design pa-

rameters and µi is the dimension of the augmented state zi.2 We refer to {Ki,Pi,Qi,Si}i∈V
2We use bold font to represent the parameters to be designed. The role of the augmented states in (2.1)
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as gain matrices and W = (wij)i,j∈V as a weight matrix3 that must satisfy
∑

j∈Ni wij = 1

for all i in V. The update scheme (2.1) complies with G because the estimate x̂i of ob-

server i only depends on yi and the estimates {x̂j}j∈Ni of the observers in its neighborhood

Ni.

The following Definition of an omniscience-achieving parameter choice will be

used throughout the chapter.

Definition 2.1.1 (Omniscience-achieving Parameter Choice). Consider a LTI plant

(1.1) with state x and a distributed observer whose state estimates {x̂i}i∈V are computed

according to (2.1). A parameter choice W = (wij)i,j∈V and {Ki,Pi,Qi,Si}i∈V for

(2.1) is referred to as omniscience-achieving if the resulting distributed observer achieves

omniscience asymptotically, i.e., limk→∞ ||x̂i(k)− x(k)|| = 0 holds for all i in V.

The following is the main problem addressed in this work.

Problem 2.1.2. Given a LTI plant (1.1) and a graph G, determine necessary and sufficient

conditions for the existence of an omniscience-achieving parameter choice for (2.1) that

satisfies the scalability condition (1.2).

2.1.3 Comparative Survey of Related Work

The work in [21, 22] introduced a computationally tractable distributed state esti-

mation scheme for linear plants. The proposed method, so called Distributed Kalman

is explained in Section 2.2.1.2.
3We assume that wij = 0 if j /∈ Ni for all i in V.
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Filtering (DKF)4, alternates between an estimation (Kalman filtering) step and a data-

fusion step that can be viewed as consensus [24].

Results on the performance and stability of the DKF are presented in [25–28]. In

particular, the authors of [25] showed non-convexity of performance optimization for a

simple system model, e.g., a first-order LTI plant. In [27, 28], stability properties of the

DKF are studied when multiple data-fusion steps are allowed between two consecutive

estimation steps.

Subsequent work [29–36] investigates similar estimation schemes which have the

structure of an estimation-data fusion alternation as in [21, 22]. In [31], the authors per-

formed a stability analysis in terms of the plant model and underlying communication

graph to obtain gain parameters for the estimation step; and in [35], these parameters are

obtained via optimization of a quadratic estimation cost. Besides, the data-fusion step is

realized using weighted averaging [29], diffusion strategies [30], gossip algorithms [32],

and internal model average consensus [33].

Other notable approaches to distributed estimation are proposed in [37–41]. The

authors of [37] introduced a design method for the DKF which is based on spatial de-

composition of the plant and a distributed algorithm for matrix computation. In [38], a

distributed estimation algorithm is proposed for plants that consist of overlapping subsys-

tems. In addition, a moving horizon estimation scheme was used in [39], and a H2/H∞

optimization framework was adopted in [40, 41] for distributed state estimation.

Moreover, in [42, 43], the authors establish necessary conditions for achieving om-

niscience in distributed state estimation. These conditions specify observability/detectability

4An extensive review of the DKF schemes is found in [23].
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requirements in terms of the plant model and underlying communication graph.

To achieve asymptotic omniscience, some of the existing schemes require (i) strong

observability conditions [26,30,38], (ii) multiple data-fusion steps between two consecu-

tive estimation steps [27,28], which imposes a two-time-scale structure, or (iii) imposition

of algebraic constraints on the underlying graph [31,33,36], which are stronger than what

is considered in our work.

In contrast to previous work, we propose a class of distributed observers that operate

on a single time-scale, and we find necessary and sufficient conditions for the existence

of an omniscience-achieving distributed observer in this class for which the scalability

condition (1.2) holds. It will follow from our analysis that if asymptotic omniscience

cannot be achieved under the proposed scheme then it is not possible under any other

scheme – including higher order LTI, nonlinear, and time-varying ones – subject to the

same communication graph.

The use of augmented states as in (2.1) was proposed in [20], where we also

provided sufficient conditions for the existence of an omniscience-achieving parameter

choice. In [44], we developed necessary and sufficient conditions for the existence of

an omniscience-achieving parameter choice for the case where W is a pre-selected sym-

metric matrix. This work extends and unifies our prior results in the following way: we

consider directed communication graphs, which allow asymmetric W, and we investi-

gate necessary and sufficient conditions for the existence of an omniscience-achieving

parameter choice for (2.1). Unlike the methods proposed in [20] and [44], here we also

consider the scalability constraint (1.2).
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2.2 Main Result

In this section, we present our solution to Problem 2.1.2, and an example that illus-

trates it. We start by defining the source component of a graph.

Definition 2.2.1. Given a directed graph G = (V,E), a strongly connected component

(
VC ,EC

)
of G is said to be a source component5 if there is no edge from V \ VC to

VC . Also we define a set of source component representatives6 as a subset VR of V that

contains exactly one element (representative) from each source component of G.

The following is our main Theorem.

Theorem 2.2.2. Suppose that the plant is given as in (1.1), that the communication graph

G = (V,E) is pre-selected, and that the following hold:

(i) There are ms source components7 of G which are represented as {(Vl,El)}msl=1.

Each source component Gl = (Vl,El) is associated with a subsystem of the plant

described by the pair (A,CVl).

(ii) Let VR be a set of source component representatives. For each i in VR, we define

νi to be the order (number of vertices) of the source component to which vertex i

belongs.

5We adopt the convention that if the graph G is strongly connected then G itself is a (unique) source

component.
6The choice of VR may not be unique.
7According to Definition 2.2.1, every graph has at least one source component, i.e., ms ≥ 1.
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G1 = (V1,E1) G2 = (V2,E2)

Figure 2.1: A communication graph G for Example 2.2.3.

There is an omniscience-achieving parameter choice for (2.1) that satisfies (1.2) if and

only if all the subsystems {(A,CVl)}msl=1 are detectable. In particular, if such a detectabil-

ity condition holds then there is a parameter choice for which µi is given by

µi =





νi − 1 if i ∈ VR

0 otherwise

(2.2)

for all i in V.

The proof is given in Section 2.4. When the conditions of the Theorem are verified,

the method outlined in Appendix A.1.2 can be used to compute omniscience-achieving

parameters for which (2.2) is satisfied. Notice that because
∑

i∈VR νi ≤ m holds, we can

conclude that µi given by (2.2) satisfies (1.2). In fact, since VR has ms elements, it also

follows that (1.3) holds.

Example 2.2.3. Consider the communication graph G = (V,E) depicted in Figure 2.1

and a LTI plant (1.1) with m = 7. From Definition 2.2.1, we conclude that G1 and G2

are the source components of G, and we select VR = {1, 6}. From Theorem 2.2.2, we

conclude that there exists an omniscience-achieving parameter choice for which µi is
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given by

µi =





2 if i = 1

1 if i = 6

0 otherwise

if and only if (A,CV1) and (A,CV2) are both detectable. �

2.2.1 Additional Remarks on the Proposed Class of Distributed Observers

2.2.1.1 The Effect of Noise on the Estimation Performance

Although our formulation focuses on the noiseless case, the fact that the plant and

the distributed observer are LTI guarantees graceful degradation with respect to noise in

the communication links and/or measurements. In particular, if the noise amplitude is

bounded by β then the limit maxi∈V limk→∞ ‖x̂i(k)−x(k)‖ may be positive, but one can

find an upper bound that scales linearly with β. Also, the effect of noise can be quantified

using classical frequency-domain methods.

2.2.1.2 The Role of the Augmented States

As will be discussed in Section 2.4.3, asymptotic omniscience for the proposed

class of distributed observers can be cast as the stabilization of certain LTI systems via

fully decentralized output feedback. The augmented states in (2.1) are directly related

with the internal dynamics of such a decentralized controller which gives us additional

freedom in designing the way local state estimates and measurements are fused.
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2.2.1.3 Complexity of the Proposed Scheme

We evaluate the complexity of the proposed scheme in terms of the dimensions of

the augmented states required to achieve asymptotic omniscience.

For the sake of argument, we compare our method with a simple relay-based cen-

tralized scheme described as follows: Suppose that under the same configuration as in

Figure 1.1, every observer would transmit its local measurement to its neighbors and,

at the same time, would relay local measurements received from neighboring observers

in which each transmission/relay incurs a unit time delay. Under this setting, the fixed-

lag smoothing scheme [45] can be adopted at each observer to determine its update rule

for state estimation. Similar to our scheme, the internal state of each observer in the

centralized scheme consists of a state estimate and an augmented state to account for the

time delay in transmission/relay. However, in what regards to achieving asymptotic omni-

science, this centralized scheme would require augmented states whose dimensions would

be much larger than our scheme. To see this, we note that in the centralized scheme, the

dimension of the augmented state of each observer i is equal to the product of the order

of the plant and the maximum length among the respective shortest paths from the other

vertices to vertex i in the graph G. In contrast, as stated in Theorem 2.2.2, in our scheme

only one observer per source component needs an augmented state, whose dimension

equals the order of the source component minus one. As a case in point, suppose that G is

a directed ring, and let n andm be the orders of the plant and graph G, respectively. Then,

for the centralized scheme, the aggregate dimension of all augmented states could be as

large as n ·m · (m− 1); whereas, for the scheme we propose it is no larger than m− 1.

20



2.3 Application to the Synchronization of Coupled Multi-agent Systems

Given a graph G = (V,E) with V = {1, · · · ,m} and a set VI = {1, · · · ,ma},

consider a LTI multi-agent system whose state-space representation is given as follows:

χ(i)(k + 1) = Foχ
(i)(k) +

∑

j∈VI\{i}

Fij
(
χ(j)(k)− χ(i)(k)

)
+
∑

j∈V

Gijuj(k), i ∈ VI

(2.3a)

yi(k) = Hi




χ(1)(k)

...

χ(ma)(k)



, i ∈ V (2.3b)

For each i in VI , χ(i)(k) takes a value in Rn and represents the state of agent i. For each

i in V, yi(k) and ui(k) take values in Rri and Rpi , and represent the output and control

input of the system (2.3) associated with vertex i of G, respectively.

For each i, j in VI , the matrix Fij in (2.3a) quantifies the coupling between the state

χ(i) of agent i and the state χ(j) of agent j. For notational convenience, GI =
(
VI ,EI

)

represents the coupling among the states of agents in which, for each i in VI and j in

VI \ {i}, an edge (j, i) belongs EI if and only if Fij 6= 0 holds. We refer to GI as the

interaction graph of the multi-agent system (2.3). We remark that if all the agents are

synchronized at time k0
8, i.e., χ(1)(k0) = · · · = χ(ma)(k0), then they remain synchronized

and the state of each agent i satisfies

χ(i)(k + 1) = Foχ
(i)(k)

8In this case, we may assume that ui(k) = 0, ∀i ∈ V and k ≥ k0, since there is no need to control

synchronized agents.

21



for k ≥ k0. The agent model (2.3) is called homogeneous because the agents have the

same internal dynamics as specified by the dynamic matrix Fo.

The goal is to design a set of controllers for which the agents of the system (2.3)

are asymptotically synchronized, i.e., limk→∞
∥∥χ(i)(k)− χ(1)(k)

∥∥ = 0 holds for all i in

VI \ {1}. In particular, we suppose that each controller i is represented by vertex i in V

and has the following state-space representation:

ξi(k + 1) =
∑

j∈Ni

Scijξj(k) + Qc
iyi(k)

ui(k) =
∑

j∈Ni

Pc
ijξj(k) + Kc

iyi(k)

(2.4)

where ξi is the internal state of controller i, and Ni is the neighborhood of controller i

defined by G, which represents the controllers that can transmit information to controller i.

We refer to a set of controllers equipped with G as a distributed controller. The diagram

in Figure 2.2 depicts the overall system considered here.
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Fo

F21 F41

Fo

F32

Fo

F43

F13 Fo

GI

LTI Multi-agent System

Controller 1

Controller 2

Controller 3

y1

y2

y3

u1

u2

u3

G

Distributed Controller

Figure 2.2: A diagram showing an example of an overall closed-loop system that consists

of a LTI multi-agent system and distributed controller. See Example 2.3.3 for a numerical

implementation of the closed-loop system.
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We summarize the problem as follows.

Problem 2.3.1. Given a graph G = (V,E) and a LTI multi-agent system as in (2.3), we

want to

(i) determine parameters
{
Kc
i ,P

c
ij,Q

c
i ,S

c
ij

}
i,j∈V for (2.4) such that the interconnec-

tion of (2.3) and (2.4) results in the asymptotic synchronization of the system (2.3),

i.e.,

lim
k→∞

∥∥χ(i)(k)− χ(1)(k)
∥∥ = 0

for all i in VI \ {1}, and

(ii) show that the state of each agent converges to a solution of χo(k + 1) = Foχo(k)

for some initial value χo(0) ∈ Rn, i.e.,

lim
k→∞

∥∥χ(i)(k)− χo(k)
∥∥ = 0

for all i in VI .

The literature on the problem of designing distributed controllers for synchroniza-

tion of multi-agent systems is vast (see, for instance, [46–49] and references therein). To

mention a few, the work of [50] considered synchronization of linearly coupled nonlinear

agents, and the authors of [51] formulate synchronization as mixed-integer nonlinear op-

timization. Also, there is recent work [52–59] that focused on studying synchronization

problems with LTI multi-agent models. The framework in these articles assumes that the
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states of agents are completely decoupled, and each agent has an associated controller

that accesses its full state and has full control of it.

Here, we consider a LTI multi-agent system in which (i) agents are interacting ac-

cording to (2.3a), (ii) for each j in V, the j-th control input uj(k) affects the state of

the system according to {Gij}i∈VI , and (iii) for each i in V, the i-th output vector yi(k)

depends on the state of the system according to Hi. Due to (i)-(iii), the formulation con-

sidered in Problem 2.3.1 may not be cast as one to which existing results for completely

decoupled multi-agent models can be applied. More specifically, suppose that each agent

has an associated controller that accesses its full state and has full control of it. To trans-

form the agent model (2.3a) into a completely decoupled one, each controller needs to

access the states of the agents on which the state of its associated agent depends, and

generate control to cancel the coupling. However, this may not be possible since the

interaction graph GI and graph G, whose edges determine the viability and direction of

information transfer among controllers, may not be identical as depicted in Figure 2.2.

The proposed scheme can be applied to frequency synchronization in power grids

[60–62], which ensures stable operation of grids and efficient power transfer from gener-

ators to loads.
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Our solution to Problem 2.3.1 is given as follows.

Proposition 2.3.2. Suppose that a graph G = (V,E) is pre-selected, that a LTI multi-

agent system is given as in (2.3), and that G and the matrices in (2.5) satisfy the following:

(i) The pair (A′, B′) is stabilizable, where A′ and B′ are defined in (2.5b) and (2.5c),

respectively.

(ii) The graph G and the pair (A,C) satisfy the detectability condition of Theorem 2.2.2,

where A and C are defined in (2.5a) and (2.5d), respectively.

There exists a distributed controller (2.4) that asymptotically synchronizes the system

(2.3), i.e.,

lim
k→∞

∥∥χ(i)(k)− χ(1)(k)
∥∥ = 0

for all i in VI \ {1}. Furthermore, if all eigenvalues of Fo lie on or inside the unit circle

in C, then the state of each agent converges to a solution of

χo(k + 1) = Foχo(k)

for some initial value χo(0) ∈ Rn, i.e.,

lim
k→∞

∥∥χ(i)(k)− χo(k)
∥∥ = 0

for all i in VI .
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A =




Fo F12 · · · F1ma

0 A′


 (2.5a)

with A′ =




A′1,1 · · · A′1,ma−1

... . . . ...

A′ma−1,1 · · · A′ma−1,ma−1




and A′i−1,j−1 =





Fij − F1j if i 6= j

Fo −
∑

l∈VI\{i} Fil − F1i if i = j

, (2.5b)

B′ =

(
B′1 · · · B′m

)
with B′i =

(
(G2i −G1i)

T · · · (Gmai −G1i)
T
)T

, (2.5c)

C =

(
CT

1 · · · CT
m

)T
with Ci = Hi







1 0

1ma−1 Ima−1


⊗ In


 (2.5d)
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A constructive proof of Proposition 2.3.2 is given in Appendix A.3, where we use

Theorem 2.2.2 to show the existence of
{
Kc
i ,P

c
ij,Q

c
i ,S

c
ij

}
i,j∈V for (2.4) for which the

interconnection of (2.3) and (2.4) results in the asymptotic synchronization of the system

(2.3).

Example 2.3.3 (Numerical Example). Consider a multi-agent system (2.3) and the graph

G depicted in Figure 2.2, where the matrices in (2.3) are numerically specified as follows:

Fo =




0.9950 0.0998

−0.0998 0.9950




Fij =





−0.1I2 if (i, j) ∈ {(1, 3), (2, 1), (3, 2), (4, 1), (4, 3)}

0 otherwise

(
G11 G12 G13

)
=




1 0 0 0

0 0 0 0




(
G21 G22 G23

)
=



−1 1 0 1

0 0 0 0




(
G31 G32 G33

)
=




0 −1 1 0

0 0 0 0




(
G41 G42 G43

)
=




0 0 −1 −1

0 0 0 0




28



(H11 H12 H13 H14) =

(
1 0 −1 0 0 0 0 0

)

(H21 H22 H23 H24) =

(
0 0 1 0 −1 0 0 0

)

(H31 H32 H33 H34) =

(
1 0 0 0 −1 0 0 0

)

The assumptions (i) and (ii) of Proposition 2.3.2 are satisfied; hence, the existence

of a distributed controller (2.4) that synchronizes the system (2.3) is guaranteed. We com-

pute a parameter choice for (2.4) according to the procedure described in Appendix A.3.1

and Appendix A.3.2. The state trajectories of the resulting closed-loop system are de-

picted in Figure 2.3. �
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Remark 2.3.4. Since our results can be applied to any interaction graph GI , the assump-

tion (ii) of Proposition 2.3.2 may be stronger than what would be needed for the cases in

which the agents are completely decoupled (cf. Assumption 1 in [58]). As a case in point,

consider a system configuration with the same number of agents and controllers and for

which the agents are all decoupled, i.e., VI = V and EI =
⋃
i∈VI (i, i). In addition,

assume that the input and output matrices of (2.3), respectively, satisfy Gij = 0 if i 6= j

for all i in VI and j in V, and Hi = eTi ⊗H ′i for all i in V and for a matrix H ′i in Rri×n,

where ei is the i-th column of the ma-dimensional identity matrix. Under this setting, (ii)

of Proposition 2.3.2 requires the graph G to be strongly connected, while Assumption 1

in [58] only requires G to have a directed spanning tree.

2.4 Proof of the Main Theorem

In this section, we provide a proof for Theorem 2.2.2. If the conditions of the

Theorem hold then Appendix A.1.2 outlines a randomized method to obtain a choice of

omniscience-achieving parameters.

The proof has two parts: It starts with Lemma 2.4.3, Lemma 2.4.4, and Theo-

rem 2.4.5 that describe important spectral properties of a parametrized class of weight

matrices W. The second part, which consists of Proposition 2.4.8, Theorem 2.4.10, and

Remark 2.4.11, determines conditions for a parameter choice W and {Ki,Pi,Qi,Si}i∈V

to be omniscience-achieving. The structure of the proof is outlined in the diagram of

Figure 2.4.
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Lemma 2.4.3

Lemma 2.4.4

Theorem 2.4.5

Spectral properties of W

Remark 2.4.11

Theorem 2.4.10

Proposition 2.4.8

Conditions for a parameter choice

W and {Ki,Pi,Qi,Si}i∈V

to be omniscience-achieving

Theorem 2.2.2

Figure 2.4: A precedence diagram for the proof of Theorem 2.2.2

2.4.1 Key Results on Weighted Laplacian Matrices

Definition 2.4.1. Consider a graph G = (V,E) with V = {1, · · · , |V|}. A matrix

L = (lij)i,j∈V is said to be a Weighted Laplacian Matrix (WLM) of G if the following three

conditions hold:

(i) If (j, i) /∈ E then lij = 0 for all i in V and j in V \ {i}.

(ii) If (j, i) ∈ E then lij < 0 for all i in V and j in V \ {i}.

(iii) It holds that
∑|V|

j=1 lij = 0 for all i in V.

For notational convenience, we define the set of WLMs of G as follows:

L(G)
def
=
{
L ∈ R|V|×|V|

∣∣∣ L is a WLM of G
}

Definition 2.4.2 (UEPP). Given square matrices A and B, A ⊗ B is said to have the

so called Unique Eigenvalue Product Property (UEPP) if every nonzero eigenvalue λ of
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A ⊗ B can be uniquely expressed9 as a product λ = λA · λB, where λA and λB are

eigenvalues of A and B, respectively.

Lemma 2.4.3. Let G = (V,E) with V = {1, · · · , |V|} be a directed graph, and A be a

matrix in Rn×n. Suppose that a matrix W in R|V|×|V| is defined as W = I|V|−αL, where

α is a positive real number and L = (lij)i,j∈V is a WLM of G. Given L and α′ satisfying

0 < α′ ≤
(
max1≤i≤|V| lii

)−1 10, for almost every α in (0, α′), W is a stochastic matrix

and W ⊗ A satisfies the UEPP.

Lemma 2.4.4. Let a matrix W in Rm×m and a matrix A in Rn×n be given. If all eigen-

values of W are simple11 and W ⊗ A satisfies the UEPP, then each eigenvector q of

W ⊗ A associated with a nonzero eigenvalue λ can be written as a Kronecker product

q = v⊗ p, where v and p are, respectively, eigenvectors of W and A (associated with the

eigenvalues λW and λA for which λ = λW · λA holds).

The proofs of Lemmas 2.4.3 and 2.4.4 are given in Appendix A.4.

Theorem 2.4.5. Let G = (V,E) be a strongly connected graph. For almost every element

L of the set L(G), the following hold:

(i) Every right and left eigenvectors of L have no zero entries.

(ii) Every eigenvalue of L is simple.
9For an eigenvalue λ of A⊗B, let λA, λ′A be the eigenvalues of A and λB , λ′B be the eigenvalues of B

for which λ = λA · λB = λ′A · λ′B holds. The eigenvalue λ is said to be uniquely expressed as a product

λ = λA · λB if it holds that λA = λ′A and λB = λ′B .
10If lii = 0 for all i in V, then we consider that

(
max1≤i≤|V| lii

)−1
=∞.

11An eigenvalue of a matrix is simple if both the geometric and algebraic multiplicities of the eigenvalue

are equal to 1.
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Since Theorem 2.4.5 hinges on structured linear system theory, in Appendix A.5

we provide a review of key concepts followed by a proof.

2.4.2 A Brief Introduction to Stabilization via Decentralized Control

We review certain classical results in decentralized control that will be used in the

proof of Theorem 2.2.2. Of special relevance are the fundamental work of [63–66] that

investigates the notion of fixed modes12 for LTI plants, and the work of [68] that studies

the effect of decentralized output feedback on LTI plants. To introduce these results, we

consider the following state-space representation for a LTI plant:

x̃(k + 1) = Ãx̃(k) +

|V|∑

i=1

B̃iũi(k)

ỹi(k) = C̃ix̃(k)

(2.6)

for each i in V = {1, · · · , |V|}, where x̃(k) ∈ Rñ, ũi(k) ∈ Rp̃i , and ỹi(k) ∈ Rr̃i are the

state, i-th control input, and i-th output, respectively.

Definition 2.4.6. [63, 64] A given λ ∈ C is a fixed mode of (2.6) if it is an eigenvalue of

Ã+
∑|V|

i=1 B̃iKiC̃i for all Ki in Rp̃i×r̃i .

Remark 2.4.7. The fixed mode is an eigenvalue of the plant (2.6) which is invariant

under the decentralized output feedback ũi(k) = Kiỹi(k) for all i in V, where Ki is a

matrix in Rp̃i×r̃i . In addition, if the plant (2.6) has an unstable fixed mode then it cannot

be stabilized by any decentralized controller that is causal and LTI (see [63, 64] for the

details).
12The notion of fixed modes is analogous to the concept of uncontrollable or unobservable modes adopted

in centralized control problems [67].
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The fixed modes can be characterized by an algebraic rank test described in the

following Proposition.

Proposition 2.4.8. [65, 66] Consider that a LTI plant is given as in (2.6). Let

B̃ =

(
B̃1 · · · B̃|V|

)
and C̃ =

(
C̃T

1 · · · C̃T
|V|

)T

A given λ ∈ C is a fixed mode of the plant if and only if there exists a subset J ⊆ V for

which

rank



Ã− λ · Iñ B̃J

C̃Jc 0


 < ñ (2.7)

holds, where ñ is the dimension of Ã, and Jc = V \ J.

Definition 2.4.9. Let
(
V,EP

)
be a graph of a LTI plant (2.6) in which the edge set EP

satisfies (j, i) ∈ EP if and only if C̃i
(
z · Iñ − Ã

)−1

B̃j is nonzero. The plant (2.6) is said

to be strongly connected if its graph
(
V,EP

)
is strongly connected.

In the following Theorem, based on Theorem 4 of [68], we specify the effect of

decentralized output feedback of the following form on a strongly connected LTI plant.

z1(k + 1) = S1z1(k) +Q1ỹ1(k)

ũ1(k) = P1z1(k) +K1ỹ1(k)

(2.8a)

ũi(k) = Kiỹi(k), i ∈ V \ {1} (2.8b)

where z1(k) takes a value in Rµ1 for a nonnegative integer µ1.

Theorem 2.4.10. Consider a LTI plant given as in (2.6) and decentralized output feed-

back (2.8). Suppose that the plant is strongly connected and has no unstable fixed mode.
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Then, for almost every choice of {Ki}i∈V\{1}, there exists a choice of K1, P1, Q1, S1

for which the closed-loop system obtained from the interconnection of (2.6) and (2.8)

described by


x̃(k + 1)

z1(k + 1)


 =



Ã+

∑|V|
i=1 B̃iKiC̃i B̃1P1

Q1C̃1 S1






x̃(k)

z1(k)


 (2.9)

is stable.

Remark 2.4.11. The system (2.9) also can be viewed as the closed-loop system obtained

by applying a (centralized) controller described by (2.8a) to a LTI system described by

the triple

Ã+

|V|∑

i=2

B̃iKiC̃i, B̃1, C̃1


 (2.10)

We can find a parameter choice K1, P1, Q1, S1 for which (2.9) is stable using results on

finding stabilizing (centralized) controllers for LTI systems. In particular, by adopting

the result of [69], we can find a stabilizing controller (2.8a) of order µ1 equal to the

controllability index of (2.10) minus one.

2.4.3 Additional Preliminary Results

Let ms be the number of source components of G in which we denote each source

component as Gl = (Vl,El), and VR be the set of source component representatives (see

Definition 2.2.1). Notice that the source components of G impose the following structure
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on W:

W =




W1 · · · 0 0

... . . . ...
...

0 · · · Wms 0

Wms+1,1 · · · Wms+1,ms Wms+1,ms+1




(2.11)

For each l in {1, · · · ,ms}, the sparsity pattern of Wl ∈ R|Vl|×|Vl| must be consistent13

with Gl so that under a suitable choice of {Wms+1,l}ms+1
l=1 , the sparsity pattern of W

given above is consistent with G.

For notational convenience, we consider that Vl = {1, · · · , |Vl|} and Vl ∩ VR = {1}.

To analyze the asymptotic omniscience of the proposed estimation scheme, under the pa-

rameter choice of W and {Ki,Pi,Qi,Si}i∈V described in Appendix A.1.2, we derive the

state-space representation for the dynamics for the estimation error of (2.1) associated

with Gl as follows:


x̃(k + 1)

z1(k + 1)


 =



Wl ⊗ A−

∑|Vl|
i=1BiKiCi −B1P1

Q1C1 S1






x̃(k)

z1(k)


 (2.12)

where x̃ =

(
x̃T1 · · · x̃T|Vl|

)T
with x̃i = x− x̂i, and Wl is a submatrix of W associated

with Gl as in (2.11). For each i in Vl, Bi = ei ⊗ In and Ci = eTi ⊗ Ci where ei is the i-th

column of the |Vl|-dimensional identity matrix. Notice that (2.12) can be viewed as the

state-space representation of the closed-loop system obtained by applying decentralized

output feedback, parametrized by K1, P1, Q1, S1, {Ki}i∈Vl\{1}, to a LTI system described

13The sparsity pattern of a matrix W = (wij)i,j∈V is consistent with a graph G = (V,E) if wij = 0 for

(j, i) /∈ E.
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by the triple


Wl ⊗ A, −

(
B1 · · · B|Vl|

)
,




C1

...

C |Vl|







(2.13)

Hence, we can write (2.12) as in (2.9) by selecting Ã = Wl ⊗ A, P1 = P1, Q1 = Q1,

S1 = S1 and B̃i = −Bi, C̃i = Ci, Ki = Ki for all i in Vl. This idea, in conjunction with

Theorem 2.4.10, allows us to connect the stability of the estimation error dynamics (2.12)

with strong connectivity of (2.13) and the absence of unstable fixed modes in (2.13).

The following Lemma states certain spectral properties of W determined by Pro-

cedure 3 in Appendix A.1.2.1. The proof of Theorem 2.2.2 is then followed.

Lemma 2.4.12. The submatrices {Wl}msl=1 and Wms+1,ms+1 of W in (2.11) satisfy the

following with probability one:

(P1) For each l in {1, · · · ,ms}, every right and left eigenvectors of Wl have no zero

entries.

(P2) For each l in {1, · · · ,ms}, every eigenvector q of Wl ⊗ A associated with an

unstable eigenvalue λ can be written as a Kronecker product q = v ⊗ p, where v

and p are, respectively, eigenvectors of Wl and A (associated with the eigenvalue

λWl
and the unstable eigenvalue λA for which λ = λWl

· λA holds).

(P3) Every eigenvalue of Wms+1,ms+1 ⊗ A is zero.

Proof. Notice that for each l in {1, · · · ,ms}, in Procedure 3 (Line 3-10), we have set

Wl = I|Vl|− αL where α is chosen according to a uniform distribution defined on (0, 1),
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and L = (lij)i,j∈Vl is a WLM of Gl, each of its nonzero off-diagonal entries lij is chosen

according to a uniform distribution defined on
(
− 1
|Ni|−1

, 0
)

independent of choices of

other entries. By Theorem 2.4.5, L satisfies (i) of Theorem 2.4.5 which ensures that (P1)

holds with probability one.

In addition, according to Lemma 2.4.3 and Theorem 2.4.5, this choice of α and

L ensures that Wl is a stochastic matrix and has all simple eigenvalues, and Wl ⊗ A

satisfies the UEPP (see Definition 2.4.2) with probability one. Since Wl is stochastic,

its eigenvalues lie on or inside the unit circle in C; hence, an unstable eigenvalue λ of

Wl ⊗ A can be written as λ = λWl
· λA where λWl

is an eigenvalue of Wl and λA is an

unstable eigenvalue of A. Therefore, invoking Lemma 2.4.4, we conclude that (P2) holds

with probability one.

Lastly, the way entries of Wms+1,ms+1 are chosen by Procedure 3 (Line 11-14)

ensures that all eigenvalues of Wms+1,ms+1 are zero and (P3) holds.

2.4.4 Proof of Theorem 2.2.2

First of all notice that if the subsystem (A,CVl) of the plant (1.1) is not detectable,

then for any choice of Wl, the system (2.13) has an unstable fixed mode. By Re-

mark 2.4.7, there is no parameter choice for which the estimation error dynamics (2.12)

is stable; hence, no omniscience-achieving parameter choice exists for (2.1). This proves

the necessity of Theorem 2.2.2.

Let Vms+1 = V \⋃ms
l=1 Vl. Consider that {Wms+1,l}ms+1

l=1 and {Ki}i∈Vms+1
, {µi}i∈Vms+1

are determined by Procedure 3 (Line 11-14) and Procedure 4 (Line 9-11) in Appendix A.1.2,
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respectively. Notice that by (P3) of Lemma 2.4.12 and due to the choice of {Ki}i∈Vms+1
,

{µi}i∈Vms+1
, to prove the sufficiency of Theorem 2.2.2, we only need to show that for

each l in {1, · · · ,ms}, under the detectability condition of Theorem 2.2.2, there exists a

choice of Wl and {Ki}i∈Vl ,P1,Q1,S1 for which the estimation error dynamics (2.12) is

stable.14

Suppose that the choice of Wl and {Ki}i∈Vl\{1}, determined by Procedure 3 (Line

3-10) and Procedure 4 (Line 4-7), respectively, ensures that, with probability one, the LTI

system (2.13) is (i) strongly connected and has (ii) no unstable fixed mode, and (iii) the

controllability index of the LTI system described by the triple

Wl ⊗ A−

|Vl|∑

i=2

BiKiCi, −B1, C1


 (2.14)

is equal to |Vl|. By Theorem 2.4.10 and Remark 2.4.11, there exist matrices K1,P1,Q1,S1

with µ1 = |Vl| − 1 that, in conjunction with the chosen Wl and {Ki}i∈Vl\{1}, ensure that

the estimation error dynamics (2.12) is stable, where these matrices can be determined by

Procedure 4 (Line 8). Hence, we conclude that the detectability condition is sufficient for

the existence of an omniscience-achieving parameter choice, and for the parameter choice

determined by Procedure 3 and Procedure 4 to be omniscience-achieving with probability

one. It remains to prove the arguments (i)-(iii).

Proof of (i): Suppose that the transfer function matrix given by

Ci

(
z · I|Vl|·n −Wl ⊗ A

)−1
Bj (2.15)

is zero for some i, j in Vl, or equivalentlyCi (Wl ⊗ A)k Bj = 0 holds for all nonnegative

14From the overall estimation error dynamics for (2.1), it can be verified that if (2.12) is stable for every

l in {1, · · · ,ms}, then it holds that limk→∞ ‖x̂i(k)− x(k)‖ = 0 for all i ∈ Vms+1.
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integer k. This yields that

Ci (Wl ⊗ A)k Bj =
(
eTi W

k
l ej
)
CiA

k = 0 (2.16)

where we use the fact thatBj = ej⊗In and Ci = eTi ⊗Ci. Since Gl is strongly connected,

due to the choice of Wl by Procedure 3 (Line 3-10), we can see that eTi W
k0
l ej 6= 0 for a

positive integer k0, and hence CiAk0 = 0 holds. However, this contradicts the fact that A

is nondegenerate and Ci is nonzero (see Section 2.1.2). Therefore, the transfer function

matrix (2.15) is nonzero for all i, j in Vl which, by definition, implies that the system

(2.13) is strongly connected with probability one.

Proof of (ii): Let us define B =

(
B1 · · · B|Vl|

)
and C =

(
C
T

1 · · · C
T

|Vl|

)T
.

According to Proposition 2.4.8, we need to show that the following inequality holds for

every unstable eigenvalue λ of Wl ⊗ A:

rank



Wl ⊗ A− λ · I|Vl|·n BJ

CJc 0


 ≥ |Vl| · n (2.17)

where J is an arbitrary subset of Vl, and Jc = Vl \ J is its complement.

Suppose that J is not empty then by (P1), (P2) of Lemma 2.4.12 and by the defini-

tion of B, it holds that

rank




Wl ⊗ A− λ · I|Vl|·n BJ

CJc 0




≥ rank

(
Wl ⊗ A− λ · I|Vl|·n BJ

)
= |Vl| · n (2.18)

Otherwise, since Jc = Vl, by (P1), (P2) of Lemma 2.4.12, by the definition of C, and by
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the detectability of the subsystem (A,CVl), it holds that

rank




Wl ⊗ A− λ · I|Vl|·n BJ

CJc 0




= rank




Wl ⊗ A− λ · I|Vl|·n

C


 = |Vl| · n (2.19)

Therefore, from (2.18) and (2.19), we can observe that the inequality in (2.17) holds for

every unstable eigenvalue λ of Wl ⊗ A, and by Proposition 2.4.8 the system (2.13) has

no unstable fixed mode with probability one.

Proof of (iii): To verify this, we consider a matrix given by

(
B1 (Wl ⊗ A)B1 · · · (Wl ⊗ A)|Vl|−1B1

)
(2.20)

Note that (2.20) can be rewritten as

((
e1 Wle1 · · · W

|Vl|−1
l e1

)
⊗ In

)
· diag

(
In, A, · · · , A|Vl|−1

)
(2.21)

where we use the fact that B1 = e1 ⊗ In.

By the nondegeneracy of A, the rank of the matrix in (2.20) equals

rank

(
e1 Wle1 · · · W

|Vl|−1
l e1

)
· n

and by (P1) of Lemma 2.4.12, we can see that the matrix in (2.20) has rank |Vl|·n. Hence,

the following matrix has generic rank |Vl|·n, i.e., for almost every choice of {Ki}i∈Vl\{1},

the matrix has rank |Vl| · n.

B1


Wl ⊗ A−

|Vl|∑

i=2

BiKiCi


B1 · · ·


Wl ⊗ A−

|Vl|∑

i=2

BiKiCi



|Vl|−1

B1




(2.22)
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Therefore, due to the choice of {Ki}i∈Vl\{1} by Procedure 4 (Line 4-7), the controllability

index of (2.14) is equal to |Vl| with probability one. �

2.5 Application to Tracking of Animal Groups and Experimental Results

In this section, we apply the proposed distributed estimation scheme to tracking of

animal groups, and show preliminary experimental results using a data set collected from

the deployment of animal-borne wireless camera network in the Gorongosa National Park

(Mozambique) in August 2015.15 The main purpose of the development and deployment

of the system was to collect biologically meaningful measurements and videos using GPS,

IMU, and Camera all integrated in a single tracking device, where the proposed estima-

tion scheme can be used to determine how to fuse sensor measurements and location

estimates of tracking devices within the network so that each tracking device in the net-

work learns locations of all other devices connected to the same communication network

(see Figure 2.5). The sensor measurements and videos are used to study animal group

motion. During the deployment, 15 tracking devices were installed on waterbucks and

water buffaloes. Figure 2.6 and Figure 2.7 show GPS tracks of 4 water buffaloes (Buffalo

1, 2, 3, 4).

15The development and deployment of animal-borne wireless camera network were performed under a

research grant NSF ECCS 1135726.

Disclaimer: The author of this dissertation was NOT involved in the deployment in the Gorongosa National

Park.
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Figure 2.6: A screenshot of GPS tracks of water buffaloes in the Google earth

(Timespan: 2015-08-06T00:00:00Z ∼ 2015-08-06T04:00:00Z)

45



x-coordinate (meters)
-1000 -500 0 500

y-
co

or
di

na
te

 (m
et

er
s)

-1000

-800

-600

-400

-200

0

200
Original Trajectories

Buffalo 1
Buffalo 2
Buffalo 3
Buffalo 4

Figure 2.7: Original trajectories of water buffaloes in a local North East Up (NEU) co-

ordinate system (The origin of the coordinate system: Latitude = -18.9279877268328,

Longitude = 34.5457567343343)
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To represent animal group motion, we adopt a continuous-time LTI model described

by the following state-space equation: For each i in {1, · · · , 4},

ṗ(i)
x (t) = v(i)

x (t) (2.23a)

ṗ(i)
y (t) = v(i)

y (t) (2.23b)

v̇(i)
x (t) = −

4∑

j=1

aij
(
v(i)
x (t)− v(j)

x (t)
)

(2.23c)

v̇(i)
y (t) = −

4∑

j=1

aij
(
v(i)
y (t)− v(j)

y (t)
)

(2.23d)

where
(
p

(i)
x (t) p

(i)
y (t)

)T
and

(
v

(i)
x (t) v

(i)
y (t)

)T
denote the location and velocity of

Buffalo i, respectively. We have assumed that aij = aji for all i, j in {1, · · · , 4}, and

that a node (observer) is associated with each water buffalo and the location and velocity

measurements of each buffalo are available to its associated node every 10 seconds. By

discretizing (2.23), we obtain a discrete-time LTI model described as follows:

x(k + 1) = Ax(k) (2.24a)

yi(k) = Cix(k) (2.24b)

for i in {1, · · · , 4}, where

x(k) =

(
p

(1)
x (k) p

(1)
y (k) v

(1)
x (k) v

(1)
y (k) · · · p

(4)
x (k) p

(4)
y (k) v

(4)
x (k) v

(4)
y (k)

)T

yi(k) =

(
p

(i)
x (k) p

(i)
y (k) v

(i)
x (k) v

(i)
y (k)

)T

and the system matrices A and Ci are determined as follows:

A = exp (10Ac)

Ci = eTi ⊗ I4
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where

AC =




0 1 0 0 0 0 0 0

0 −∑j 6=1 a1j 0 a12 0 a13 0 a14

0 0 0 1 0 0 0 0

0 a21 0 −∑j 6=2 a2j 0 a23 0 a24

0 0 0 0 0 1 0 0

0 a31 0 a32 0 −∑j 6=3 a3j 0 a34

0 0 0 0 0 0 0 1

0 a41 0 a42 0 a43 0 −∑j 6=4 a4j




⊗ I2

and ei is the i-column of I4. Note that, according to Ci, each node has access to the

location and velocity of its associated buffalo.

In practice, the model (2.24) may include a noise term w(k) which is due to the

un-modeled dynamics of animal motion:

x(k + 1) = Ax(k) + w(k)

yi(k) = Cix(k)

To minimize the noise w(k), we have chosen the entries aij of AC that minimize the cost

given by

N−1∑

k=0

‖w(k)‖2

whereN is the number of available location and velocity measurements, and the resulting
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1 234

Figure 2.8: A communication graph G for designing a distributed observer.

choice of aij is given by

a12 = a21 = 0.002

a13 = a31 = 0.002

a14 = a41 = 0

a23 = a32 = 0.001

a24 = a42 = 0

a34 = a43 = 0.003

To design a distributed observer, we assume that the communication graph G is pre-

selected as depicted in Figure 2.8. We find the omniscience-achieving parameter based on

Procedure 3 and Procedure 4 described in Appendix A.1.2. Figure 2.9 shows the estimate
(
p̂

(i)
x (k) p̂

(i)
y (k)

)T
of the original trajectory of each buffalo, depicted in Figure 2.7, by

every node; and Figure 2.10 shows normalized estimation error computed by

1

total traveled distance of Buffalo i
·

∥∥∥∥∥∥∥∥



p

(i)
x (k)

p
(i)
y (k)


−



p̂

(i)
x (k)

p̂
(i)
y (k)




∥∥∥∥∥∥∥∥
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Figure 2.9: Estimated trajectories of water buffaloes using the proposed distributed esti-

mation scheme in a local NEU coordinate system
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Figure 2.10: Normalized estimation error at every node (Total traveled distance:

Buffalo 1 = 1694 m, Buffalo 2 = 1505.8 m, Buffalo 3 = 1981.8 m, Buffalo 4 = 2129 m)
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2.6 Summary and Future Work

We described a parametrized class of LTI distributed observers for state estimation

of a LTI plant, where the information exchange among the members of a distributed ob-

server is constrained by a pre-selected communication graph. We developed necessary

and sufficient conditions for the existence of a parameter choice for a distributed observer

that ensures asymptotic omniscience and satisfies the scalability constraint (1.2). These

conditions can be described by the detectability of the subsystems of the plant that are

associated with the source components of the graph.

As a future direction, we suggest performance analysis of the proposed scheme and

parameter optimization to minimize estimation error in the presence of noise in measure-

ment and communication link. Also it is important to consider distributed state estimation

over time-varying communication graphs.
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Chapter 3: Optimal Remote State Estimation of Markov Processes

3.1 Problem Formulation

3.1.1 Notation and Terminologies

• For elements a1, · · · , aN of X, we define a1:N
def
= (a1, · · · , aN).

• For functions A1, · · · ,AN , we define A1:N
def
= (A1, · · · ,AN).

• When the random variable Rk is dictated by a policy T k, we use same superscript

for Rk and T k, e.g., R∗k and T ∗k, or R(i)
k and T (i)

k .

• We define

τk
def
=





max
{
j ∈ {1, · · · , k − 1}

∣∣∣Rj = 1
}

if Rj = 1 for some j ∈ {1, · · · , k − 1}

0 otherwise

The value of τk indicates the most recent time when a transmission has occurred

from the sensing unit to the estimator. We refer to τk as the last transmission time

before time k.
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3.1.2 Problem Description

In this section, we describe the problem formulation considered throughout the

work in which we seek transmission policies T 1:N and (state) estimation rules E1:N that

dictate decision making of the sensing unit and estimator, respectively, and that are op-

timal for the cost functional (1.5). Throughout the work, without loss of optimality, we

consider that transmission policies and estimation rules have the following structures1:

The transmission policy at time k depends only on the last transmission time τk, the infor-

mation xτk transmitted to the estimator at time τk, and the current state xk of the process.

In particular, we adopt a class of randomized transmission policies.2 The estimation rule

at time k depends only on the last transmission time τk and the information xτk received

from the sensing unit at time τk. Given a transmission policy T k and an estimation rule

Ek, the decision variables Rk and x̂k are dictated by T k and Ek, respectively, as follows:

Rk = T k (τk,xτk ,xk) (3.1a)

x̂k =





Ek (τk,xτk) if Rk = 0

xk otherwise

(3.1b)

1We do not lose optimality of resulting solutions from the imposition of these structures. This can be

verified by similar arguments as in Lemma 1 and Lemma 3 of [70].
2See Appendix B.2 for a detailed description of randomized policies.
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We formally state our main problem as follows.

Problem 3.1.1. Given a Markov process {xk}Nk=0, find optimal transmission policies

T 1:N and estimation rules E1:N for the cost functional given by

J (x0,T 1:N , E1:N) =
N∑

k=1

E
[
d2 (xk, x̂k) + ck ·Rk

∣∣∣x0 = x0,T 1:N , E1:N

]
(3.2)

subject to (3.1).3

We consider two notions of optimality for solutions of Problem 3.1.1 described as

follows.

Definition 3.1.2. Transmission policies T ∗1:N and estimation rules E∗1:N are said to be

jointly optimal for (3.2) if they achieve the global minimum for every x0 in X.

Definition 3.1.3. Transmission policies T ∗1:N and estimation rules E∗1:N are said to be

person-by-person optimal for (3.2) if the following relations hold for every x0 in X:

J (x0,T ∗1:N , E∗1:N) = min
T 1:N

J (x0,T 1:N , E∗1:N)

= min
E1:N
J (x0,T ∗1:N , E1:N) (3.3)

Equation (3.3) implies that given decision functions T ∗1:N of one player (sensing unit),

E∗1:N are the best decision functions of the other player (estimator), and vice versa.

We maintain the following assumptions throughout the work.
3The initial condition x0 = x0 and the process model is common knowledge to both the sensing unit

and estimator.
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Assumption 3.1.4. (X, d) is a complete, separable, proper metric space.4

Assumption 3.1.5. Let pk : X×B→ R be a transition probability of the process, where

B is the Borel σ-algebra generated by the metric topology associated with (X, d). We

assume that the following are true:

1. For every non-empty open set O in B, the function x 7→ pk (x,O) is positive for all

x in X.

2. For each A in B, the function x 7→ pk (x,A) is continuous.

Assumption 3.1.6. For each j in {k − 1, · · · , N}, k in {1, · · · , N}, and xk−1 in X, we

assume that there is a transformation Mj(k − 1, xk−1, ·) : X→ X for which

1. It holds that Mk−1 (k − 1, xk−1, xk−1) = 0.

2. The function xj 7→Mj (k − 1, xk−1, xj) is continuous and has a continuous inverse.

We denote the inverse by M−1
j (k − 1, xk−1, ·).

3. For every xj−1 in X and A in B, the transition probability pj satisfies

pj
(
x′j−1,A′

)
= pj (xj−1,A)

where

x′j−1 = Mj−1(k − 1, xk−1, xj−1)

A′ = Mj (k − 1, xk−1,A)

4For notional convenience, we suppose that 0 ∈ X.
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4. The metric d is invariant under Mj , i.e., it holds that

d (xj, x̂j) = d (Mj(k − 1, xk−1, xj),Mj(k − 1, xk−1, x̂j))

for all xj, x̂j in X.

To find a solution to Problem 3.1.1, we divide the problem into a set of N sub-

problems, and sequentially solve each sub-problem. We proceed by describing the so-

called Two-Player Optimal Stopping Problem from time k, and show how each sub-

problem can be related to the optimal stopping problem.

Problem 3.1.7. Suppose that a Markov process {xj}Nj=k−1 with a transition probability

pj : X×B→ R and positive constants
{
c′j
}N
j=k

are given. Find optimal policies T <k−1>
k:N

and rules E<k−1>
k:N for the cost functional given by

E

[
K∑

j=k

d2 (xj, x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

]
(3.4)

where

K =





min
{
j ∈ {k, · · · , N}

∣∣∣Rj = 1
}

if Rj = 1 for some j ∈ {k, · · · , N}

N otherwise

The policy T <k−1>
j : X×X→ {0, 1} and the rule E<k−1>

j : X→ X, respectively, dictate

Rj and x̂j as follows:

Rj = T <k−1>
j (xk−1,xj) (3.5a)

x̂j =





E<k−1>
j (xk−1) if Rj = 0

xj otherwise

(3.5b)
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We adopt two notions of optimality for Problem 3.1.7 as follows.

Definition 3.1.8. Policies T ∗<k−1>
k:N and rules E∗<k−1>

k:N are said to be jointly optimal for

(3.4) if they achieve the global minimum for every xk−1 in X.

Definition 3.1.9. Policies T ∗<k−1>
k:N and rules E∗<k−1>

k:N are said to be person-by-person

optimal for (3.4) if the following relations hold for every xk−1 in X:

E

[
K∑

j=k

d2 (xj, x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T ∗<k−1>
k:N , E∗<k−1>

k:N

]

= min
T <k−1>
k:N

E

[
K∑

j=k

d2 (xj, x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E∗<k−1>

k:N

]

= min
E<k−1>
k:N

E

[
K∑

j=k

d2 (xj, x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T ∗<k−1>
k:N , E<k−1>

k:N

]
(3.6)

Problem 3.1.7 can be viewed as a team decision problem [71] in which two players

are involved and the main objective is to find optimal decision functions T <k−1>
k:N and

E<k−1>
k:N for the players. Note that the total expected cost (3.4) consists of a running cost

d2 (xj, x̂j) and a stopping cost c′j .

Remark 3.1.10. In Section 3.2, we show that using the transformation described in As-

sumption 3.1.6, the value of (3.4) evaluated at an optimal solution does not depend on

the initial condition xk−1 = xk−1 (see Remark 3.2.2).

Remark 3.1.11. For any polices T <k−1>
k:N and rules E<k−1>

k:N , if c′j ≤ c′′j holds for all j in
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{k, · · · , N}, then we have the following inequality:

E

[
K∑

j=k

d2 (xj, x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

]

≤ E

[
K∑

j=k

d2 (xj, x̂j) + c′′K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

]
(3.7)

Associated with Problem 3.1.7, we describe the k-th sub-problem of Problem 3.1.1

as follows.

Sub-problem k: Given
{
T <j−1>
j:N

}N
j=k+1

and
{
E<j−1>
j:N

}N
j=k+1

, let us define constants

{
c′j
}N
j=k

as follows:

c′j = cj + E




Kj∑

l=j+1

d2 (xl, x̂l) + c′Kj
·RKj

∣∣∣∣∣xj = 0,T <j>
j+1:N , E<j>j+1:N


 (3.8)

with c′N = cN , where cj is the communication cost at time j given as in (3.2), and

Kj =





min
{
l ∈ {j + 1, · · · , N}

∣∣∣Rl = 1
}

if Rl = 1 for some l ∈ {j + 1, · · · , N}

N otherwise

With the stopping costs {c′j}Nj=k determined by (3.8), find a solution T <k−1>
k:N and E<k−1>

k:N

to Problem 3.1.7.

Note that Sub-problem k assumes that
{
T <j−1>
j:N

}N
j=k+1

and
{
E<j−1>
j:N

}N
j=k+1

are given

parameters.

Our main strategy in solving Problem 3.1.1 can be described as follows: We solve

the Sub-problems backward in time starting from k = N , where for each Sub-problem k,

we provide solutions
{
T <j−1>
j:N

}N
j=k+1

and
{
E<j−1>
j:N

}N
j=k+1

for preceding Sub-problems
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Sub-problem N

...
Sub-problem k + 1

Sub-problem k

...
Sub-problem 1

Two-player Optimal Stopping Problem

(Problem 3.1.7)

solutions
{
T <j−1>
j:N

}N
j=k+1

and
{
E<j−1>
j:N

}N
j=k+1

solution T <k−1>
k:N and E<k−1>

k:N

Remote Estimation Problem

(Problem 3.1.1)

T 1:N and E1:N determined by (3.9)

is a solution to Problem 3.1.1

Figure 3.1: The problem solving strategy for Problem 3.1.1

to construct the stopping costs
{
c′j
}N
j=k

. Once solutions to all the Sub-problems are found,

we determine transmission policies T 1:N and estimation rules E1:N for Problem 3.1.1 in

the following way:

T j(k − 1, xk−1, xj) = T <k−1>
j (xk−1, xj) (3.9a)

Ej(k − 1, xk−1) = E<k−1>
j (xk−1) (3.9b)

for each j in {k, · · · , N} and k in {1, · · · , N}.

In Section 3.2, we solve Sub-problem k. In particular, we show that there exists

a jointly optimal solution and describe an iterative procedure for finding a person-by-
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person optimal solution. In Section 3.3, based on the results of Section 3.2, we verify

that the transmission policies and estimation rules determined by (3.9) are a solution to

Problem 3.1.1. The diagram in Figure 3.1 depicts the aforementioned problem solving

strategy.

3.1.3 Comparative Survey of Related Work

The effect of communication costs in remote state estimation problems was studied

in [70, 72–78]. Finite time-horizon problem formulations are consider in [70, 74, 76, 78].

The authors of [74] found a jointly optimal solution for first-order linear processes driven

by Gaussian noise where it is shown that the transmission policy for jointly optimal solu-

tions is of threshold-type. An iterative procedure for finding a transmission policy and es-

timation rule for first-order linear processes is proposed in [70]. The authors performed a

convergence analysis on the proposed procedure for first-order linear processes driven by

Gaussian noise, which essentially provides an alternative proof of the main result of [74].

The work of [76] considered a problem setting where the sensing unit has energy har-

vesting capability. The authors showed that the transmission policy for jointly optimal

solutions is of threshold-type for a certain class of multi-dimensional linear processes.

Preliminary results of our work were presented in [78] for linear processes.

Infinite time-horizon formulations are considered in [72, 73, 75, 77]. The authors

of [72] studied the structure of optimal transmission policies for linear processes driven by

Gaussian noise, and proposed a procedure to compute an optimal policy based on a value

iteration algorithm. In [73], an algorithm for finding a sub-optimal solution was proposed.

61



For linear processes driven by Gaussian noise, the authors showed that the cost incurred

by the proposed algorithm is within a constant factor of the optimum. While the question

of whether the transmission policy for jointly optimal solutions is of threshold-type for

multi-dimensional linear processes remains unanswered, the authors of [75] analyzed the

performance of threshold-type transmission policies for such processes. A computation-

ally efficient method for finding a sub-optimal transmission policy based on polynomial

approximation is proposed in [77].

Other interesting remote estimation schemes are reported in [79–92]. The authors

of [79] studied the structure of optimal transmission policies and estimation rules for the

case where a finite number of transmissions is allowed to the sensing unit. The authors

of [80] considered a problem setting where the sensing unit operates with two different

sensing qualities, and found an optimal time-periodic transmission policies for linear pro-

cesses driven by Gaussian noise. A remote estimation problem for continuous dynamical

systems are studied in [85] where performance of various types of transmission policies

is investigated. Results of [85] indicate that for remote estimation under a communica-

tion rate constraint, the transmission policy for jointly optimal solutions may not be of

threshold-type. A framework in which the sensing unit observes noisy outputs of the

process and transmits observed noisy outputs to the estimator is adopted in [83, 84, 87].

On the other hand, a framework in which the sensing unit accesses noisy observations of

the state of the process and transmits its best state estimate to the estimator is adopted

in [81,82,89]. The authors of [92] adopted a certain class of stochastic transmission poli-

cies which ensures that linear estimation rules are optimal. The authors of [86] proposed

an approximate state estimation scheme based on a sum of Gaussians approach. Remote
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estimation over shared communication networks is considered in [90]. A problem of

scheduling transmission power level for remote estimation was recently studied in [91].

The problem formulation considered in this work is technically different from pre-

vious ones found in literature in following ways:

1. We adopt random process models that may neither be linear nor have unimodal or

symmetric probability distributions.

2. We consider classes of transmission policies and estimation rules on which no struc-

tural assumption is imposed under which the optimality of resulting solutions is

lost.

3. We investigate optimization of the given performance criteria over both transmis-

sion policies and estimation rules.

3.2 Two-Player Optimal Stopping Problem

In this section, we find a solution to Sub-problem k where the constants {c′j}Nj=k

are determined by (3.8) using solutions
{
T <j−1>
j:N

}N
j=k+1

and
{
E<j−1>
j:N

}N
j=k+1

to preced-

ing sub-problems – Sub-problem k + 1 to Sub-problem N . We consider two notions of

optimality – joint optimality and person-by-person optimality. Our main results state the

existence of a jointly optimal solution (Section 3.2.2) and describe an iterative procedure

to find a person-by-person optimal solution (Section 3.2.3).

We proceed by re-writing (3.4) into a suitable form using the following Definition.

Definition 3.2.1. Define a (random) function Pj : X→ {0, 1} and a variable x̂j ∈ X for
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each j in {k, · · · , N} as follows:5

Pj (xj) = T <k−1>
j (0, xj) (3.10a)

x̂j = E<k−1>
j (0) (3.10b)

We refer to Pj and x̂j as the (randomized) policy6 and estimate at time j (for the initial

condition xk−1 = 0), respectively.

Given that xk−1 = 0, we can re-write (3.4) as follows:

Exk [Jk (xk,Pk:N , x̂k:N)] (3.11)

where for each j in {k, · · · , N},

Jj (xj,Pj:N , x̂j:N)

=
(
d2 (xj, x̂j) + Exj+1

[
Jj+1 (xj+1,Pj+1:N , x̂j+1:N)

∣∣∣xj
])
· (1−Rj) + c′j ·Rj

(3.12)

with JN+1 = 0, and Pj dictates Rj as follows:

Rj = Pj (xj) (3.13)

Note that Jj satisfies

Exj

[
Jj (xj ,Pj:N , x̂j:N )

∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

=
(
Exj

[
d2 (xj , x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

+ Exj+1

[
Jj+1 (xj+1,Pj+1:N , x̂j+1:N )

∣∣∣Rk = 0, · · · ,Rj = 0
] )

· P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)
+ c′j · P

(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(3.14)

5As k is fixed in Sub-problem k, throughout the section, we drop the dependence of policies and esti-

mates on k.
6See Appendix B.2 for a detailed description of randomized policies.
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for all j in {k, · · · , N}.

Remark 3.2.2. Let P∗k:N and x̂∗k:N be optimal policies and estimates for (3.11), respec-

tively. From (3.14) and our main results, we can see that

Exk [Jk (xk,P∗k:N , x̂
∗
k:N)] = Exk [J∗k (xk, x̂

∗
k:N)] (3.15)

holds where

J∗j
(
xj, x̂

∗
j:N

)
= min

{
d2
(
xj, x̂

∗
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

∗
j+1:N

) ∣∣∣xj = xj

]
, c′j

}
(3.16)

with J∗N+1 = 0.

For any other initial condition xk−1 = xk−1, define estimates

x̂′∗j = M−1
j

(
k − 1, xk−1, x̂

∗
j

)
(3.17)

for each j in {k, · · · , N}, where Mj is the transformation described in Assumption 3.1.6.

Notice that from (3.16) and by the definition of the transformation Mj , we can observe

that

Exk

[
J∗k (xk, x̂

∗
k:N)

∣∣xk−1 = 0
]

= Exk

[
J∗k (xk, x̂

′∗
k:N)

∣∣xk−1 = xk−1

]

This implies that the value of (3.4) evaluated at an optimal solution does not depend on

the initial condition, and by finding an optimal solution to (3.11), we can derive a solution

to Sub-problem k using the following relation:

T <k−1>
j (xk−1, xj) = P∗j (Mj (k − 1, xk−1, xj)) (3.18a)

E<k−1>
j (xk−1) = M−1

j

(
k − 1, xk−1, x̂

∗
j

)
(3.18b)

�
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Based on Remark 3.2.2, to solve Sub-problem k, we will find optimal policies and

estimates for the initial condition xk−1 = 0, and derive a solution to Sub-problem k using

(3.18).

3.2.1 Definitions and Preliminary Results

We restate Definition 3.1.8 and Definition 3.1.9 as follows.

Definition 3.2.3. Policies P∗k:N and estimates x̂∗k:N are said to be a jointly optimal solu-

tion for (3.11) if they achieve the global minimum.

Definition 3.2.4. Policies P∗k:N and estimates x̂∗k:N are said to be a person-by-person

optimal solution for (3.11) if the following relations hold:

Exk [Jk (xk,P∗k:N , x̂
∗
k:N)] = min

Pk:N

Exk [Jk (xk,Pk:N , x̂
∗
k:N)]

= min
x̂k:N

Exk [Jk (xk,P∗k:N , x̂k:N)] (3.19)

Equation (3.19) implies that given decision functions P∗k:N of one player (sensing unit),

x̂∗k:N are optimal decision variables of the other player (estimator), and vice versa.

To find an optimal solution for (3.11), we define best response mappings P and X

as follows.

Definition 3.2.5. Given estimates x̂k:N , define P (x̂k:N) as a collection of policies Pk:N

for which it holds that

Exk [Jk (xk,Pk:N , x̂k:N)] = min
P ′k:N

Exk [Jk (xk,P ′k:N , x̂k:N)] (3.20)
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Definition 3.2.6. Given policies Pk:N , define X (Pk:N) as a collection of estimates x̂k:N

for which it holds that

Exk [Jk (xk,Pk:N , x̂k:N)] = min
x̂′k:N

Exk [Jk (xk,Pk:N , x̂
′
k:N)] (3.21)

Definition 3.2.7. Policies Pk:N are said to be degenerate if there exists j0 ∈ {k, · · · , N}

for which it holds that

P
(
Rj0 = 0

∣∣∣Rk = 0, · · · ,Rj0−1 = 0
)

= 0 (3.22)

Remark 3.2.8. Let Pk:N be degenerate policies for which (3.22) holds. Then, from (3.14),

we can derive that

Exj0

[
Jj0 (xj0 ,Pj0:N , x̂j0:N)

∣∣∣Rk = 0, · · · ,Rj0−1 = 0
]

= c′j0 (3.23)

Proposition 3.2.9. Consider that policies Pk:N and estimates x̂k:N are given. Suppose

that the policies are non-degenerate. Then Pk:N belong to P (x̂k:N) if and only if

Exj

[
Jj (xj,Pj:N , x̂j:N)

∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

= Exj

[
J∗j (xj, x̂j:N)

∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

(3.24)

holds for all j in {k, · · · , N}, where

J∗j (xj, x̂j:N) = min
{
d2 (xj, x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N)

∣∣∣xj = xj

]
, c′j

}
(3.25)

with J∗N+1 = 0.

The proof follows from (3.14), Definition 3.2.5, and the fact that

min
P ′k:N

Exk [Jk (xk,P ′k:N , x̂k:N)] = Exk [J∗k (xk, x̂k:N)]

We omit the detail for brevity.
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Corollary 3.2.10. Given estimates x̂k:N , consider (deterministic) policies Pk:N defined

by

Pj(xj) =





0 if xj ∈ Dj

1 otherwise

(3.26)

for each j in {k, · · · , N}, where Dj is a measurable set for which Dj ⊆ Dj ⊆ Dj holds

with

Dj =
{
xj ∈ X

∣∣∣ d2 (xj, x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N)

∣∣∣xj = xj

]
≤ c′j

}
(3.27a)

Dj =
{
xj ∈ X

∣∣∣ d2 (xj, x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N)

∣∣∣xj = xj

]
< c′j

}
(3.27b)

Then it holds that Pk:N ∈P (x̂k:N).

Remark 3.2.11. Given estimates x̂k:N , let Pk:N be non-degenerate policies for which

Pk:N ∈P (x̂k:N) holds. Then Proposition 3.2.9 implies that

1. P
(
xj ∈ Dj

∣∣∣Rk = 0, · · · ,Rj = 0
)

= 1

2. P
(
xj ∈ Dj

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0

where Dj and Dj are given in (3.27).

Proposition 3.2.12. Consider that policies Pk:N and estimates x̂k:N are given. Suppose

that the policies are non-degenerate. Then x̂k:N belong to X (Pk:N) if and only if

Exj

[
d2 (xj, x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

= min
x̂′j∈X

Exj

[
d2
(
xj, x̂

′
j

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.28)

holds for all j in {k, · · · , N}.

68



The proof follows from (3.14) and Definition 3.2.6. We omit the detail for brevity.

Corollary 3.2.13. Given non-degenerate policies Pk:N , consider estimates x̂k:N defined

by

x̂j ∈ arg min
x̂j∈X

Exj

[
d2 (xj, x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.29)

for each j in {k, · · · , N}. Then it holds that x̂k:N ∈ X (Pk:N).

Proposition 3.2.14. Consider functions {Gj}Nj=k defined by

Gj (xj−1, x̂j:N)
def
= Exj

[
J∗j (xj, x̂j:N)

∣∣∣xj−1 = xj−1

]
(3.30)

where J∗j is given in (3.25). {Gj}Nj=k are all continuous functions.7

The proof is given in Appendix B.4. The following is a consequence of Proposi-

tion 3.2.14.

Corollary 3.2.15. Given estimates x̂k:N , the sets Dj and Dj defined in (3.27) are closed

and open, respectively, for all j in {k, · · · , N}.

3.2.2 Existence of a Jointly Optimal Solution

Let us define

G (x̂k:N)
def
= Exk [J∗k (xk, x̂k:N)] (3.31)

where J∗k is given in (3.25). Note that G (x̂k:N) = min
P ′k:N

Exk [Jk (xk,P ′k:N , x̂k:N)].

7Note that Gj is a function defined on XN−j+2. See Appendix B.1 for some remarks on the continuity

of functions on a product space.
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Proposition 3.2.16. Let x̂∗k:N be the estimates that achieve the global minimum of (3.31).

The policies P∗k:N satisfying

P∗k:N ∈P (x̂∗k:N)

are not degenerate in the sense of Definition 3.2.7.

The proof is given in Appendix B.5.

Theorem 3.2.17. There exist estimates x̂∗k:N that achieve the global minimum of (3.31).

Furthermore, in conjunction with these estimates x̂∗k:N , the policies P∗k:N satisfying

P∗k:N ∈P (x̂∗k:N)

are a jointly optimal solution for (3.11).

To prove Theorem 3.2.17, we need the following Lemma.

Lemma 3.2.18. There exists a compact set K ⊂ XN−k+1 for which

min
x̂k:N∈K

G (x̂k:N) ≤ G (x̂′k:N)

holds for all x̂′k:N in XN−k+1.

The proof is given in Appendix B.5.

Proof of Theorem 3.2.17: Recall the definitions of Gk and G given in (3.30) and (3.31),

respectively. According to Proposition 3.2.14 and by the fact that G (x̂k:N) = Gk (0, x̂k:N),

we can see that G is a continuous function. Due to Lemma 3.2.18, in what regards

to finding a global minimizer of G, we may assume that the domain of G is compact.

Hence, by the continuity of G and compactness of its domain, there exist estimates

x̂∗k:N that achieve the global minimum of G. Let us choose policies P∗k:N satisfying
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P∗k:N ∈ P (x̂∗k:N) using, for instance, Corollary 3.2.10. Since x̂∗k:N is a global mini-

mizer of G and P∗k:N ∈ P (x̂∗k:N) holds, we conclude that the solution P∗k:N and x∗k:N is

jointly optimal for (3.11). �

3.2.3 Iterative Procedure for Finding a Person-by-Person Optimal Solu-

tion

As numerically illustrated in [70], the function G in (3.31) may be non-convex, and

finding a jointly optimal solution to (3.11) would be computationally intractable. Instead,

in this section, we seek a person-by-person optimal solution to (3.11). An iterative pro-

cedure for finding such a solution is described in Procedure 1, where η is a pre-selected

non-negative constant that determines a stopping criterion of the procedure.
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Procedure 1: Finding a Person-by-Person Optimal Solution

input : η ≥ 0, x̂(0)
k:N

output: P(i+1)
k:N , x̂

(i)
k:N

1 begin

2 j ← N

3 while j ≥ k do

4 Choose P(1)
j using (3.26)

5 j ← j − 1

6 i← 0

7 repeat

8 i← i+ 1

9 j ← k

10 while j ≤ N do

11 Choose x̂(i)
j using (3.29)

12 j ← j + 1

13 j ← N

14 while j ≥ k do

15 Choose P(i+1)
j using (3.26)

16 j ← j − 1

17 until
∣∣∣G
(
x̂

(i)
k:N

)
− G

(
x̂

(i−1)
k:N

)∣∣∣ ≤ η
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In what follows, we analyze convergence properties of the sequence of solutions

computed by Line 8 − 16 of Procedure 1. We first define convergence of policies and

estimates. To proceed, for each A in B, let us define

µ
(i)
j|j (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

Definition 3.2.19. Let
{
P (i)
k:N

}
i∈N

be a sequence of policies. The sequence is said to

converge to Pk:N if it holds that8

µ
(i)
j|j

w−→ µj|j (3.32a)

and

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

i→∞−→ P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(3.32b)

for all j in {k, · · · , N}. In addition, two sets of policies Pk:N and P ′k:N are said to be

equal if it holds that9

µj|j = µ′j|j (3.33a)

and

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

= P
(
R′j = 0

∣∣∣R′k = 0, · · · ,R′j−1 = 0
)

(3.33b)

for all j in {k, · · · , N}.
8See Definition B.3.6 for the weak convergence of probability measures.
9µj|j = µ′j|j implies that µj|j (A) = µ′j|j (A) holds for all A in B.
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Remark 3.2.20 (Uniqueness of the Limit of Policies). Let
{
P (i)
k:N

}
i∈N

be a sequence of

policies that converge to Pk:N and P ′k:N . Then the two sets of the policies Pk:N and

P ′k:N are equal. To see this, using the definition of the weak convergence of probability

measures, we can derive that

∫

X
g dµj|j =

∫

X
g dµ′j|j (3.34)

for every bounded, continuous function g : X → R. Then, by applying Lemma 9.3.2

in [93], we can see that (3.33) holds for all j in {k, · · · , N}.

Definition 3.2.21. Let
{
x̂

(i)
k:N

}
i∈N

be a sequence of estimates. The sequence is said to

converge to x̂k:N if it holds that

lim
i→∞

d
(
x̂

(i)
j , x̂j

)
= 0 (3.35)

for all j in {k, · · · , N}. In addition, two sets of estimates x̂k:N and x̂′k:N are said to be

equal if it holds that

d
(
x̂j, x̂

′
j

)
= 0 (3.36)

for all j in {k, · · · , N}.

In the following Theorem, we examine convergence properties of sequences
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

that satisfy

P (i)
k:N ∈P

(
x̂

(i−1)
k:N

)
(3.37a)

x̂
(i)
k:N ∈ X

(
P (i)
k:N

)
(3.37b)

To proceed, we make the following assumption.
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Assumption 3.2.22. Consider sequences
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

that satisfy (3.37).

Suppose that the subsequences
{
P (il)
k:N

}
l∈N

,
{
x̂

(il)
k:N

}
l∈N

, and
{
x̂

(il−1)
k:N

}
l∈N

converge to

Pk:N , x̂k:N , and x̂′k:N , respectively. We assume that x̂k:N ∈ X (Pk:N).

Theorem 3.2.23. Let
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

be a sequence of solutions satisfying

(3.37). Suppose that Assumption 3.2.22 holds and the policies
{
P (i)
k:N

}
i∈N

are strictly

non-degenerate, i.e., there exists a positive constant ε for which

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)
> ε (3.38)

holds for all i in N and j in {k, · · · , N}. Then, the sequence of the solutions
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

has a convergent subsequence, and the limit of any convergence subse-

quence is a person-by-person optimal solution.

To prove Theorem 3.2.23, we need the following Lemma.

Lemma 3.2.24. Consider sequences
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

satisfying (3.37). Sup-

pose that
{
P (i)
k:N

}
i∈N

are strictly non-degenerate and
{
x̂

(i−1)
k:N

}
i∈N

converges to x̂′k:N .

Then, the sequence
{
P (i)
k:N

}
i∈N

has a convergent subsequence, and the limit Pk:N of any

convergence subsequence satisfies Pk:N ∈P (x̂′k:N).

The proof is given in Appendix B.6.

Proof of Theorem 3.2.23: We first note that according to Lemma B.5.2, the sequence

of the estimates
{
x̂

(i)
k:N

}
i∈N

is contained in a compact set. By the compactness, there

exists an infinite subset I of N for which the subsequences
{
x̂

(i)
k:N

}
i∈I

and
{
x̂

(i−1)
k:N

}
i∈I

are

convergent. Let x̂k:N and x̂′k:N be respective limits of
{
x̂

(i)
k:N

}
i∈I

and
{
x̂

(i−1)
k:N

}
i∈I

. Also,
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according to Lemma 3.2.24, there is an infinite subset I′ of I for which the subsequence
{
P (i)
k:N

}
i∈I′

is convergent. Let Pk:N be the limit of
{
P (i)
k:N

}
i∈I′

.

To complete the proof, it remains to show that Pk:N and x̂k:N constitute a person-

by-person optimal solution, i.e., it holds that

Pk:N ∈P (x̂k:N) (3.39a)

x̂k:N ∈ X (Pk:N) (3.39b)

Equation (3.39b) is ensured by Assumption 3.2.22, and it remains to show that (3.39a) is

true.

To see this, by contradiction, suppose that Pk:N /∈ P (x̂k:N) holds. Note that by

Lemma 3.2.24, Pk:N belong to P (x̂′k:N). Then we can see that the following relations

hold for policies P ′k:N satisfying P ′k:N ∈P (x̂k:N):

G (x̂k:N) = Exk [Jk (xk,P ′k:N , x̂k:N)]

(1)
< Exk [Jk (xk,Pk:N , x̂k:N)]

(2)

≤ Exk [Jk (xk,Pk:N , x̂
′
k:N)] = G (x̂′k:N) (3.40)

(1) follows from the hypothesis that Pk:N /∈ P (x̂k:N); and (2) is due to (3.39b). On the

other hand, since G is decreasing along the sequence
{
x̂

(i)
k:N

}
i∈N

, i.e.,

G
(
x̂

(i)
k:N

)
≥ G

(
x̂

(i+1)
k:N

)

holds for all i in N, it holds that limi→∞ G
(
x̂

(i)
k:N

)
= α for some real number α. In

conjunction with the continuity of G (see Proposition 3.2.14), this implies that

G (x̂k:N) = G (x̂′k:N) = α

which contradicts (3.40). Therefore we conclude that Pk:N ∈P (x̂k:N). �
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3.3 Optimal Remote State Estimation

Based on the results of Section 3.2, we find a solution to Problem 3.1.1. To proceed,

consider a procedure described in Procedure 2.

Procedure 2: Finding solutions to Sub-problems

output:
{
T ∗<k−1>

k:N

}N
k=1

and
{
E∗<k−1>

k:N

}N
k=1

1 begin

2 k ← N

3 while k ≥ 1 do

4 Step 1: Compute constants
{
c′∗j

}N
j=k

according to (3.8) for the solutions
{
T ∗<j−1>

j:N

}N
j=k+1

and
{
E∗<j−1>

j:N

}N
j=k+1

to Sub-problem k + 1 to

Sub-problem N .

5 Step 2: Find T ∗<k−1>
k:N and E∗<k−1>

k:N that is an optimal solution of Sub-problem k

with the constants
{
c′∗j

}N
j=k

obtain in Step 1.

6 k ← k − 1

Based on solutions obtained via Procedure 2, we can state the following Theorem.

Theorem 3.3.1. Let
{
T ∗<k−1>

k:N

}N
k=1

and
{
E∗<k−1>

k:N

}N
k=1

be solutions to Sub-problems

obtained via Procedure 2. For each k in {1, · · · , N}, if T ∗<k−1>
k:N and E∗<k−1>

k:N are a

jointly optimal (person-by-person optimal) solution of Sub-problem k, then the transmis-

sion policies T ∗1:N and the estimation rules E∗1:N determined by

T ∗j(k − 1, xk−1, xj) = T ∗<k−1>
j (xk−1, xj) (3.41a)

E∗j (k − 1, xk−1) = E∗<k−1>
j (xk−1) (3.41b)
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for each j in {k, · · · , N} and k in {1, · · · , N} are jointly optimal (person-by-person

optimal) for (3.2).

The proof is given in Appendix B.7

3.4 Application to Specific System Models

In this section, we apply our main results to linear system models and self-propelled

particle models.

3.4.1 Linear System Models

Consider

xk+1 = Akxk + wk (3.42)

where wk is a random variable with a Gaussian distribution in Rn. We define the metric

d using the Euclidean norm ‖·‖2 as d (xk, x
′
k) = ‖xk − x′k‖2. We note that the metric is

invariant under the transformation defined by

Mj (k − 1, xk−1, xj) = xj −
j−1∏

l=k−1

Alxk−1

for j in {k − 1, · · · , N} and k in {1, · · · , N}, where we adopt the convention that

∏j−1
l=k−1Al = In if j = k− 1. It can be verified that Assumption 3.1.4 - Assumption 3.1.6

hold.

With the Euclidean norm, it is straight-forward to see that for given polices Pk:N ,

for each j in {k, · · · , N},

x̂j ∈ arg min
x̂j∈Rn

Exj

[
‖xj − x̂j‖2

∣∣Rk = 0, · · · ,Rj = 0
]
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and

x̂j = Exj

[
xj
∣∣Rk = 0, · · · ,Rj = 0

]
(3.43)

are equivalent, provided that Exj

[
‖xj − x̂j‖2

∣∣Rk = 0, · · · ,Rj = 0
]

is well-defined for

all x̂j in Rn. In the following Proposition, we show that the statement in Assump-

tion 3.2.22 is valid for the linear system models.

Proposition 3.4.1. Consider sequences
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

that satisfy

P (i)
k:N ∈P

(
x̂

(i−1)
k:N

)
(3.44a)

x̂
(i)
k:N ∈ X

(
P (i)
k:N

)
(3.44b)

Suppose that the subsequences
{
P (il)
k:N

}
l∈N

,
{
x̂

(il)
k:N

}
l∈N

, and
{
x̂

(il−1)
k:N

}
l∈N

converge to

Pk:N , x̂k:N , and x̂′k:N , respectively. Then it holds that x̂k:N ∈ X (Pk:N).

Proof. Let µ(i)
j|j and µj|j be probability measures defined as

µ
(i)
j|j (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

(3.45)

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

(3.46)

where A belongs to B, and the random variables R
(i)
j and Rj are dictated by P (i)

j and

Pj , respectively. Since
{
P (il)
k:N

}
l∈N

converges to Pk:N , it holds that µ(il)
j|j

w−→ µj|j for all

j in {k, · · · , N}. Since (Rn, ‖ · ‖2) is a complete, separable metric space, by the weak

convergence of
{
µ

(il)
j|j

}
l∈N

and the Skorokhod representation theorem [94], there exist

a sequence of random variables
{
y

(il)
j

}
l∈N

and a random variable yj all defined on a

common probability space (Ω,F, ν) in which the following three facts are true:
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(F1) µ(il)
j|j is the probability measure of y(il)

j , i.e., ν
({
ω ∈ Ω

∣∣∣y(il)
j (ω) ∈ A

})
= µ

(il)
j|j (A)

for each A in B.

(F2) µj|j is the probability measure of yj , i.e., ν
({
ω ∈ Ω

∣∣∣yj(ω) ∈ A
})

= µj|j (A) for

each A in B.

(F3)
{
y

(il)
j

}
l∈N

converges to yj almost surely.

Hence, by Proposition 3.2.12 and (3.43), we can derive that

x̂
(il)
j = Exj

[
xj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

=

∫

Rn
x dµ

(il)
j|j

=

∫

Ω

y
(il)
j (ω) dν (3.47)

Since
{
x̂

(il−1)
j

}
l∈N

is a convergent sequence, it is bounded. By Remark 3.2.11, (3.44a),

and Lemma B.3.9, there is a compact set Kj for which µ(il)
j|j (Kj) = 1 for all l in N. Hence,

there is a positive real α for which it holds that

∫{
ω∈Ω

∣∣∣
∥∥∥y(il)

j (ω)
∥∥∥>α} y

(il)
j (ω) dν =

∫
{
x∈X
∣∣ ‖x‖>α

} x dµ
(il)
j|j = 0 (3.48)

for all l in N. In conjunction with (F3), by an application of Theorem 10.3.6 in [93], we

have that

lim
l→∞

∫

Ω

y
(il)
j (ω) dν =

∫

Ω

yj(ω) dν (3.49)
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Therefore, from (3.47) and (3.49), we can see that

x̂j = lim
l→∞

x̂
(il)
j = lim

l→∞

∫

Ω

y
(il)
j (ω) dν

=

∫

Ω

yj(ω) dν

=

∫

X
x dµj|j

= E
[
xj
∣∣Rk = 0, · · · ,Rj = 0

]
(3.50)

Since this holds for every j in {k, · · · , N}, by Proposition 3.2.12, we conclude that

x̂k:N ∈ X (Pk:N).

3.4.2 Self-Propelled Particle Models

Consider



p1,k+1

p2,k+1

θk+1




=




p1,k + rk · cos (θk + φk)

p2,k + rk · sin (θk + φk)

θk + φk




(3.51)

where p1,k, p2,k take values in R, and θk takes a value in [−π, π). rk and φk are random

variables with a Weibull distribution and Wrapped Cauchy distribution, respectively. We

define the metric d using the Frobenius norm ‖·‖F as follows:

d







p1,k

p2,k

θk



,




p′1,k

p′2,k

θ′k







=

∥∥∥∥∥∥∥∥∥∥∥∥




cos θk − sin θk p1,k

sin θk cos θk p2,k

0 0 1



−




cos θ′k − sin θ′k p′1,k

sin θ′k cos θ′k p′2,k

0 0 1




∥∥∥∥∥∥∥∥∥∥∥∥
F
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where the metric is invariant under the transformation given by

Mj



k − 1,




p1,k−1

p2,k−1

θk−1



,




p1,j

p2,j

θj







=




cos θk−1 sin θk−1 0

− sin θk−1 cos θk−1 0

0 0 1



·




p1,j − p1,k−1

p2,j − p2,k−1

θj − θk−1




It can be verified that Assumption 3.1.4 - Assumption 3.1.6 hold.

By defining xj =

(
p1,j p2,j θj

)T
and x̂j =

(
p̂1,j p̂2,j θ̂j

)T
, we can derive

E
[
d2 (xj, x̂j)

∣∣∣Rk = 0, · · · ,Rj = 0
]

= E
[
(p1,j − p̂1,j)

2 + (p2,j − p̂2,j)
2 + 4 ·

(
1− cos

(
θj − θ̂j

)) ∣∣∣∣Rk = 0, · · · ,Rj = 0

]

(3.52)

provided that the conditional expectation is well-defined for all x̂j in R × R × [−π, π).

The first and second order conditions of optimality for (3.52) yield that a minimizer x̂j

satisfies

p̂1,j = E
[
p1,j

∣∣Rk = 0, · · · ,Rj = 0
]

(3.53a)

p̂2,j = E
[
p2,j

∣∣Rk = 0, · · · ,Rj = 0
]

(3.53b)

sin θ̂j =
E
[
sinθj

∣∣Rk = 0, · · · ,Rj = 0
]

E2
[
sinθj

∣∣Rk = 0, · · · ,Rj = 0
]

+ E2
[
cosθj

∣∣Rk = 0, · · · ,Rj = 0
]

(3.53c)

cos θ̂j =
E
[
cosθj

∣∣Rk = 0, · · · ,Rj = 0
]

E2
[
sinθj

∣∣Rk = 0, · · · ,Rj = 0
]

+ E2
[
cosθj

∣∣Rk = 0, · · · ,Rj = 0
]

(3.53d)

provided that at least one of

E
[
sinθj

∣∣Rk = 0, · · · ,Rj = 0
]

(3.54a)

E
[
cosθj

∣∣Rk = 0, · · · ,Rj = 0
]

(3.54b)
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is non-zero. In this case, there exists a unique θ̂j that satisfies (3.53c) and (3.53d). If

both (3.54a) and (3.54b) are zero, then the value of (3.52) does not depend on θ̂j . In the

following Proposition, we show that the statement in Assumption 3.2.22 is valid for the

self-propelled particle models.

Proposition 3.4.2. Consider sequences
{
P (i)
k:N

}
i∈N

and
{
x̂

(i)
k:N

}
i∈N

that satisfy

P (i)
k:N ∈P

(
x̂

(i−1)
k:N

)
(3.55a)

x̂
(i)
k:N ∈ X

(
P (i)
k:N

)
(3.55b)

Suppose that the subsequences
{
P (il)
k:N

}
l∈N

,
{
x̂

(il)
k:N

}
l∈N

, and
{
x̂

(il−1)
k:N

}
l∈N

converge to

Pk:N , x̂k:N , and x̂′k:N , respectively. Then it holds that x̂k:N ∈ X (Pk:N).

Proof. By a similar argument as in the proof of Proposition 3.4.1, we can show that

lim
l→∞

E
[
p1,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
p1,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.56a)

lim
l→∞

E
[
p2,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
p2,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.56b)

lim
l→∞

E
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.56c)

lim
l→∞

E
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

= E
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.56d)

Suppose that at least one of

E
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.57)

E
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

(3.58)

is non-zero. Note that by Proposition 3.2.12 and (3.53), x̂(il)
j =

(
p̂

(il)
1,j p̂

(il)
2,j θ̂

(il)
j

)T
and
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x̂j =

(
p̂1,j p̂2,j θ̂j

)T
satisfy

p
(il)
1,j = E

[
p1,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

p
(il)
2,j = E

[
p2,j

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

sin θ̂
(il)
j =

E
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

E2
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

+ E2
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

cos θ̂
(il)
j =

E
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

E2
[
sinθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

+ E2
[
cosθj

∣∣∣R(il)
k = 0, · · · ,R(il)

j = 0
]

and

lim
l→∞

d
(
x̂

(il)
j , x̂j

)
= 0 (3.59)

For each j in {k, · · · , N}, let us define x̂∗j =

(
p̂∗1,j p̂∗2,j θ̂∗j

)
as

p∗1,j = E
[
p1,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

p∗2,j = E
[
p2,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

sin θ̂∗j =
E
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

E2
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

+ E2
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

cos θ̂∗j =
E
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

E2
[
sinθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

+ E2
[
cosθj

∣∣∣Rk = 0, · · · ,Rj = 0
]

Note that by Proposition 3.2.12 and (3.53), it holds that x̂∗k:N ∈ X (Pk:N). From (3.56)

and (3.59), we can observe that

d
(
x̂j, x̂

∗
j

)
≤ d

(
x̂

(il)
j , x̂∗j

)
+ d

(
x̂

(il)
j , x̂j

)
l→∞−→ 0

Therefore, we conclude that x̂k:N ∈ X (Pk:N).
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If both (3.57) and (3.58) are zero, then the value of (3.52) does not depend on θ̂j ,

and by Proposition 3.2.12, we can show that x̂k:N ∈ X (Pk:N) if it holds that

p1,j = E
[
p1,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

p2,j = E
[
p2,j

∣∣∣Rk = 0, · · · ,Rj = 0
]

This can be verified by similar arguments given above and (3.56).

3.5 Application to Animal Tracking and Experimental Results

In this section, we apply the proposed remote estimation scheme to animal tracking,

and show preliminary experimental results using a data set collected from the deployment

of animal-borne wireless camera network in the Gorongosa National Park (Mozambique)

in August 2015.10 The main purpose of the development and deployment of the system

was to collect biologically meaningful measurements and videos using GPS, IMU, and

Camera all integrated in a single tracking device, where the proposed estimation scheme

can be used to determine when to share sensor measurements between tracking devices

and how to determine the best location estimates of nearby devices (see Figure 2.5). The

sensor measurements and videos are used to study animal group motion. During the

deployment, 15 tracking devices were installed on waterbucks and water buffaloes. Figure

3.2 shows the GPS track of a water buffalo, and Figure 3.3 depicts the x-coordinate (px,k),

10The development and deployment of animal-borne wireless camera network were performed under a

research grant NSF ECCS 1135726.

Disclaimer: The author of this dissertation was NOT involved in the deployment in the Gorongosa National

Park.
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y-coordinate (py,k), and heading angle θk of a portion of the GPS track (contained in the

red rectangle in Figure 3.2) in a local North East Up (NEU) coordinate system.
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Figure 3.2: A screenshot of the GPS track of a water buffalo in the Google earth

(Timespan: 2015-08-06T00:00:00Z ∼ 2015-08-06T06:00:00Z)
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Figure 3.3: The x-coordinate (px,k), y-coordinate (py,k), and heading angle θk of a portion

of the GPS track (contained in the red rectangle in Figure 3.2) in a local NEU coordinate

system. (Timespan: 2015-08-06T05:40:00Z ∼

2015-08-06T05:53:00Z / The origin of the coordinate system :

Latitude = -18.9401136372457, Longitude = 34.5337888580266)
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We model the movement of the water buffalo using the self-propelled particle model

described in Section 3.4.2:



px,k+1

py,k+1

θk+1




=




px,k + rk · cos (θk + φk)

py,k + rk · sin (θk + φk)

θk + φk




(3.60)

We assume that the sensing unit makes a decision on transmission of information to the

estimator every 10 seconds.

The Weibull random variable rk and Wrapped Cauchy random variable φk for the

model have respective probability density functions given as follows:

frk(r) =
a

b

(r
b

)a−1

e−(r/b)a , for r ≥ 0 (3.61a)

fφk(φ) =
1

2π
· sinh γ

cosh γ − cos(φ− µ)
(3.61b)

Using the collected GPS data, we compute the maximum likelihood estimates (MLE) of

the parameters for (3.61):

(a, b) = (10.3214, 5.9553)

(µ, γ) = (0.004, 0.001)

Under these parameter choices, the probability density functions are depicted in Fig-

ure 3.4.

Transmission policies and estimation rules are determined based on Procedure 1 and

Procedure 2 for the communication costs ck = 5 for all k in {1, · · · , N} with N = 78.

Figure 3.5 shows the estimate
(
p̂x,k p̂y,k θ̂k

)T
of the original trajectory of the buffalo,
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depicted in Figure 3.3; and Figure 3.6 shows the estimation error computed by

d (xk, x̂k) =

∥∥∥∥∥∥∥∥∥∥∥∥




cos θk − sin θk px,k

sin θk cos θk py,k

0 0 1



−




cos θ̂k − sin θ̂k p̂x,k

sin θ̂k cos θ̂k p̂y,k

0 0 1




∥∥∥∥∥∥∥∥∥∥∥∥
F

Note that d(xk, x̂k) = 0 at time k in Figure 3.6 implies that the sensing unit transmitted

information on the full state xk of the process to the estimator, and the state estimate x̂k

at the estimator was set to the state of the process, i.e., x̂k = xk.
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Figure 3.4: Comparisons between the probability density functions of rk and φk under

the computed parameter choices and the GPS data.
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Figure 3.5: Estimated trajectory of the water buffalo by the proposed remote estimation

scheme
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Figure 3.6: Estimation error of the remote estimation scheme
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3.6 Summary and Future Work

We have studied the remote state estimation problem formulated in Section 3.1.

To find a solution to the problem, we re-write the problem into N sub-problems and

sequentially solve each Sub-problem k. We show that optimal solutions to all the sub-

problems constitute an optimal solution to the original problem. Based on this idea, our

main results show the existence of a jointly optimal solution, and describe an iterative

procedure for finding a person-by-person optimal solution. In addition we have applied

the proposed scheme to the experimental data obtained from the real-world deployment.

As future work, we will find the convergence rate of the proposed procedure de-

scribed in Procedure 1, and if it exists, search for a new algorithm that achieves a faster

convergence rate. Also we are interested in extending the presented results to large scale

dynamical systems which may consist of multiple sensing units and estimators.
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Chapter 4: Evolutionary Game Dynamics and Passivity

4.1 Background

4.1.1 Notation

• For a vector a in Rn, its i-th entry is denoted by ai, and we define

[ai]+
def
= max{ai, 0}

[a]+
def
=

(
[a1]+ · · · [an]+

)T

• We denote the gradient and Hessian of a real-valued function x 7→ f(x) with respect

to x by ∇xf and ∇2
xf , respectively, provided they exist.

• We denote the interior and the boundary of a set A by int(A) and bd(A), respec-

tively.

• Rn
+

(
Rn
−
)

is the set of n-dimensional element-wise non-negative (non-positive) vec-

tors. For n = 1, we omit superscript n and adopt R+ (R−).

• 1 is the vector with all entries 1, I is the identity matrix, and ei is the i-th column

of I .

• ‖ · ‖ is the Euclidean norm.
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4.1.2 Population Games and Evolutionary Dynamics

Consider a population of players engaged in a game where each player selects a

(pure) strategy from the set of available strategies represented by {1, · · · , n}.1 Suppose

that the population consists of a continuum of players. Population states, which describe

the distributions of strategy choices by players, constitute a simplex

X def
=

{
x ∈ Rn

+

∣∣∣∣∣
n∑

i=1

xi = 1

}

We denote the tangent space of X as TX =
{
z ∈ Rn

∣∣∣
∑n

i=1 zi = 0
}

. A payoff vector

p ∈ Rn is assigned to each population state x: pi represents a payoff given to the i-

strategists, the players choosing strategy i. Based on this notation, we describe population

games and evolutionary dynamics in Section 4.1.2.1 and Section 4.1.2.2, respectively.

4.1.2.1 Population Games

We identify population games with payoff operators defined as follows:

p(·) = Gx(·) (4.1)

G : X → P is a causal operator where X is the set of all differentiable X-valued time-

dependent functions x(·) : R+ → X, and P is the set of all differentiable Rn-valued time-

dependent functions p(·) : R+ → Rn. Equation (4.1) suggests that a payoff trajectory p(·)

is a causal function of a population state trajectory x(·); hence, under (4.1), the payoff p(t)

1Population games, in general, account multiple populations of players, and the strategy sets are allowed

to be distinct across populations. However, for simple and clear presentation, we restrict our attention to

single-population games. Results for the single-population cases can be extended to multi-population cases.
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at each time t may depend on the entire history of a population state. We note that this

formalism of population games generalizes the conventional ones presented, for instance,

in [4, 95].

The following are a few examples of payoff operators (4.1).

Example 4.1.1. Let F be a C1 mapping from X to Rn.

Time-Delayed Payoff: p(t) = F (x(t− d))

Contrarian Effect Payoff [15]: p(t) = F (x(t))− Λ(x(t)− x(t− d))

Cumulative Payoff: ṗ(t) = F (x(t))

Anticipatory Payoff [15]: q̇(t) = λ(F (x(t))− q(t))

p(t) = F (x(t)) + k(F (x(t))− q(t))

where Λ is a matrix in Rn×n, d is a positive constant, and k, λ are real numbers. �

We adopt the notion of Nash equilibrium in the following way.2

Definition 4.1.2 (Nash Equilibrium). Let x ∈ X be a population state and p ∈ Rn be a

payoff vector assigned to it. The population state x is a Nash equilibrium if every strategy

in use receives the maximum payoff, i.e., if xi is positive then pi = maxj∈{1,··· ,n} pj holds.

4.1.2.2 Evolutionary Dynamics

Evolutionary dynamics describe how the population state evolves over time in re-

sponse to a payoff trajectory. Throughout the chapter, we consider dynamics that can be

2When a game is described by a payoff function p = F (x), Definition 4.1.2 coincides with the conven-

tional definition of Nash equilibrium.
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represented by a differential equation3 given by

ẋ = V (p, x), x(0) = x0 ∈ X (4.2)

where p(t), x(t), and ẋ(t) take values in Rn, X, and TX, respectively. We assume that the

vector field V : Rn × X → TX is well-defined in a sense that for each initial value x0 in

X and payoff trajectory p(·) in P , there exists a unique solution x(·) to (4.2) that belongs

to X .

We define the set of equilibrium points of (4.2) as

S def
=
{

(p, x) ∈ Rn × X
∣∣V (p, x) = 0

}

and for each x in X, its projection on Rn × {x} as Sx
def
=
{
p ∈ Rn

∣∣ (p, x) ∈ S
}

. We

assume that for each x in X, the set Sx is path-connected, i.e., for every p0, p1 in Sx,

there exists a piece-wise smooth path from p0 to p1. As a case in point, consider a set

SNE that consists of (p, x) for which given the payoff p, the population state x is a Nash

equilibrium. It can be verified that if (p0, x) and (p1, x) both belong to SNE then so does

(λ · p0 + (1 − λ) · p1, x) for all λ in [0, 1]. Hence SNE satisfies the path-connectedness

assumption.

The following are a few examples of evolutionary dynamics that are found in liter-

ature.

Example 4.1.3. The replicator dynamics [9], BNN dynamics [8], Smith dynamics [96],

and logit dynamics [97] are representative instances of evolutionary dynamics. The state-
3In the literature of evolutionary game theory, it is a convention to represent evolutionary dynamics as

ẋ = V (F (x), x) to make the dependence on a payoff function F : X → Rn explicit. While, in this work,

we remove the dependence to study evolutionary dynamics under a generalized class of games (4.1).
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space representations of these dynamics are given as follows:

Replicator: ẋi = xip̂i (4.3)

BNN: ẋi = [p̂i]+ − xi
n∑

j=1

[p̂j]+ (4.4)

Smith: ẋi =
n∑

j=1

xj[pi − pj]+ − xi
n∑

j=1

[pj − pi]+ (4.5)

Logit: ẋi =
exp(η−1 · pi)∑n
j=1 exp(η−1 · pj)

− xi (4.6)

for each i in {1, · · · , n}, where p̂ is the excess payoff vector defined as p̂ = p − pTx · 1,

and η is a positive real number. �

4.2 Passivity of Evolutionary Dynamics

We define a notion of passivity for evolutionary dynamics (4.2), and characterize

passivity in terms of the vector field V in (4.2). Based on the characterization, we ex-

amine passivity of previously established dynamics, and investigate properties of passive

dynamics.

4.2.1 Definition of Passivity for Evolutionary Dynamics

To define passivity for (4.2), let us consider the following inequality for a C1 func-

tion SED : Rn × X→ R+ and a constant η:

SED(p(t), x(t)) ≤ SED(p(t0), x(t0)) +

∫ t

t0

[
ṗT (τ)ẋ(τ)− η · ẋT (τ)ẋ(τ)

]
dτ (4.7)

for t ≥ t0 ≥ 0, where x(·) ∈ X is the trajectory of the population state determined by

(4.2) in response to a payoff trajectory p(·) ∈ P . In terms of (4.7), we state the definition

of passivity as follows.
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Definition 4.2.1. Consider an evolutionary dynamic given as in (4.2).

1. The dynamic is said to be passive if there exists a C1 function SED : Rn×X→ R+

for which (4.7) holds with η = 0 for t ≥ t0 ≥ 0 and every payoff trajectory p(·) in

P .

2. The dynamic is said to be strictly passive if there exists a C1 function SED : Rn ×

X → R+ for which (4.7) holds with η = 0 for t ≥ t0 ≥ 0 and every payoff

trajectory p(·) in P , and if ∇T
xSED(p, x)V (p, x) = 0 implies V (p, x) = 0.

3. The dynamic is said to be strictly output passive if there exists a C1 function SED :

Rn × X → R+ for which (4.7) holds with η > 0 for t ≥ t0 ≥ 0 and every payoff

trajectory p(·) in P .

We refer to SED as a storage function and (4.7) as the passivity inequality. Since

SED is a non-negative function, without loss of generality, we assume that

inf
(p,x)∈Rn×X

SED(p, x) = 0

It follows from Definition 4.2.1 that strict output passivity entails strict passivity and strict

passivity entails passivity.

Remark 4.2.2. The definition of passivity for evolutionary dynamics is closely related

with the notion of dissipativity from dynamical system theory [98]. To see this, let us

rewrite (4.2) in the following form:


ṗ

ẋ


 =




0

V (p, x)


+



u

0


 (4.8a)

y = V (p, x) (4.8b)
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Note that (4.8) is a state-space representation of a control-affine nonlinear system with

the input u, state (p, x), and output y. By the traditional notion of dissipativity [98], the

system (4.8) is dissipative with respect to the supply rate s(u, y) = uTy − η · yTy if there

exists a C1 function SED : Rn × X→ R+ for which

SED(p(t), x(t)) ≤ SED(p(t0), x(t0)) +

∫ t

t0

[
uT (τ)y(τ)− η · yT (τ)y(τ)

]
dτ (4.9)

holds for t ≥ t0 ≥ 0 and every real-valued function u : R+ → Rn. Then, by the

equivalence between (4.2) and (4.8), we can verify that the passivity inequality (4.7) is

satisfied for (4.2) if and only if the inequality (4.9) is satisfied for (4.8).

4.2.2 Characterization of Passivity of Evolutionary Dynamics

Let us consider the following two conditions:

∇pSED(p, x) = V (p, x) (P1)

∇T
xSED(p, x)V (p, x) ≤ −η · V T (p, x)V (p, x) (P2)

where SED : Rn × X → R+ is a C1 function, V : Rn × X → TX is the vector field

given in (4.2), and η is a real number. In the following Theorem, we show that (P1) and

(P2) are passivity requirements for evolutionary dynamics. This result not only provides

an alternative definition of passivity but also is useful in studying properties of passive

evolutionary dynamics.

Theorem 4.2.3. Consider an evolutionary dynamic given as in (4.2). The following state-

ments are true:
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(S1) The dynamic is passive if and only if there exists a C1 function SED : Rn×X→ R+

for which the conditions (P1) and (P2) hold with η = 0.

(S2) The dynamic is strictly passive if and only if there exists a C1 function SED : Rn ×

X→ R+ for which the conditions (P1) and (P2) hold with η = 0, and the equality

in (P2) holds only if V (p, x) = 0 holds.

(S3) The dynamic is strictly output passive if and only if there exists a C1 function SED :

Rn × X→ R+ for which the conditions (P1) and (P2) hold with η > 0.

Proof. To prove the Theorem, as noted in Remark 4.2.2, recall that (4.2) can be rewritten

as in (4.8) and that passivity of evolutionary dynamics (4.2) is equivalent to dissipativity

of control-affine nonlinear systems (4.8) with the supply rate s(u, y) = uTy − η · yTy.

Using dissipativity characterization Theorem (see, for instance, Theorem 1 in [99]), we

can see that there exists a C1 function SED for which the conditions (P1) and (P2) hold if

and only if SED satisfies the passivity inequality (4.7) for t ≥ t0 ≥ 0 and every payoff tra-

jectory p(·) in P . The rest of the proof follows from Definition 4.2.1 and the equivalence

between passivity for (4.2) and dissipativity for (4.8).

Implications of the conditions (P1) and (P2) are as follows: For a fixed x ∈ X,

consider an integral
∫
P
V (p, x) • dp of the vector field V along a piece-wise smooth path

P from p0 to p1 in the direction of p. (P1) is equivalent to the fact that the value of the

integral does not depend on the choice of the path.4 Dissatisfaction of (P1) could lead to

a limit cycle and non-convergence to an equilibrium. (see Example 6.1 in [14]).

4A game-theoretic interpretation of (P1) is given in [100].
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Next, suppose that the payoff vector p(t) is constant, i.e., p(t) = p0 for all t in

R+. According to (P2), the population state x(t) evolves along a trajectory for which the

stored energy quantified by SED(p(t), x(t)) decreases. In particular, if the dynamic (4.2)

is strictly passive then we can establish asymptotic stability of the set S using LaSalle’s

theorem [101]. In Section 4.3, based on this observation, we establish stability of passive

dynamics in a class of population games.

As an application of Theorem 4.2.3, we evaluate passivity of evolutionary dynamics

found in literature. We start with the replicator dynamics.

Proposition 4.2.4. The replicator dynamics (4.3) are not passive.

The proof is given in Appendix C.1.

In what follows, we examine passivity of the EPT dynamics [102], (impartial) pair-

wise comparison dynamics [103], and PBR dynamics [97].

EPT Dynamics:

ẋi = %i(p̂)− xi · 1T%(p̂) (4.10)

where the excess payoff vector is defined as p̂ = p−pTx·1. The function % =

(
%1 · · · %n

)T

is called the revision protocol in which each entry is defined as %i : Rn → R+ and satisfies

following two conditions – Integrability (I) and Acuteness (A):

∇p̂γ(p̂) = %(p̂) for a C1 function γ : Rn → R (I)

p̂T%(p̂) > 0 if p̂ ∈ Rn \ Rn
− (A)
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Proposition 4.2.5. The EPT dynamics (4.10) are strictly passive with a storage function5

SEPT (p, x) = γ(p̂)

The proof is given in Appendix C.2.

Pairwise Comparison Dynamics:

ẋi =
n∑

j=1

xj%i(pi − pj)− xi
n∑

j=1

%j(pj − pi) (4.11)

The function % =

(
%1 · · · %n

)T
is called the revision protocol in which each entry is

defined as %i : R→ R+ and satisfies the following condition – Sign Preservation (SP):6

sgn (%i(pi − pj)) = sgn
(
[pi − pj]+

)
(SP)

Proposition 4.2.6. [15] The pairwise comparison dynamics (4.11) are strictly passive

with a storage function SPC(p, x) =
∑n

i=1

∑n
j=1 xi

∫ pj−pi
0

%j(s) ds.

PBR Dynamics:

ẋ = C(p)− x (4.12)

where C : Rn → X is defined as C(p) = arg maxy∈int(X)

(
pTy − v(y)

)
, where v :

int(X) → R is a strictly convex C2 function that satisfies zT∇2
xv(x)z > 0 for all x in X

and z in TX \ {0}, and ‖∇xv(x)‖ → ∞ as x → bd(X). We refer to such C as a choice

function, and to such v as an admissible (deterministic) perturbation.
5In the proof of Proposition 4.2.5, we show that there is a non-negative potential function γ that satisfies

both (I) and (A).

6sgn : R→ {−1, 0, 1} is defined as sgn(a)
def
=





1 if a > 0

0 if a = 0

−1 if a < 0

.
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Proposition 4.2.7. The PBR dynamics (4.12) are strictly passive with a storage function

SPBR(p, x) = max
y∈int(X)

(
pTy − v(y)

)
−
(
pTx− v(x)

)
(4.13)

Suppose that v is strongly convex satisfying

zT∇2
xv(x)z ≥ η′ · zT z

for all x in X and z in TX, where η′ > 0. Then the dynamics are strictly output passive

and satisfy the passivity inequality (4.7) for η = η′.

The proof is given in Appendix C.3.

4.2.3 Properties of Passive Evolutionary Dynamics

4.2.3.1 Payoff Monotonicity and Passivity

Using the characterization of passivity given in Theorem 4.2.3, we study properties

of passive evolutionary dynamics in connection with the following two conditions7 – Nash

Stationarity (NS) and Positive Correlation (PC):

V (p, x) = 0 if and only if

given the payoff p, the population state x is a Nash equilibrium (NS)

pTV (p, x) ≥ 0 holds for all (p, x) ∈ Rn × X (PC)

Consider evolutionary dynamics (4.2) in a game in which the payoff is constant, i.e.,

p(t) = p0 for all t in R+. The conditions (NS) and (PC) have the following implications:

7These conditions are previously considered in literature to establish stability of evolutionary dynamics

[14, 104].
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(PC) implies that the population state trajectory x(·) determined by (4.2) evolves along

which the average payoff pT0 x(t) is increasing, i.e., d
dt
pT0 x(t) ≥ 0; and (NS) implies

that the population state does not change if and only if the maximum average payoff is

attained, i.e., ẋ(t) = 0 if and only if pT0 x(t) = maxx∈X p
T
0 x. We will refer to these

phenomena as payoff monotonicity, and to the dynamics satisfying both (NS) and (PC) as

payoff monotonic.

Proposition 4.2.8. Consider passive evolutionary dynamics (4.2) with a storage function

SED : Rn × X → R+. A global minimizer of SED is an equilibrium point of (4.2). In

addition, if the dynamics satisfy (NS) then every equilibrium point of (4.2) is a global

minimizer of SED.

The proof is given in Appendix C.4.

Remark 4.2.9. According to Proposition 4.2.8, given that min(p,x)∈Rn×X SED(p, x) = 0,

the inverse image S−1
ED(0) is a subset of the set S of equilibrium points of (4.2), and it is

identical to S if the dynamics satisfy (NS).

Based on Definition 4.2.1, we note that strict output passivity is a stronger notion,

and leads to stronger stability than does ordinary passivity in a sense that strictly output

passive dynamics are stable in a larger class of population games. Hence, in what regards

to achieving stability, it is desired to adopt strictly output passive dynamics. However, in

the following Proposition, we show that the evolutionary dynamics exhibiting the payoff

monotonicity cannot be strictly output passive. Therefore, the payoff monotonicity and

strict output passivity cannot be attained simultaneously.

106



Proposition 4.2.10. For n ≥ 3, no payoff monotonic evolutionary dynamics are strictly

output passive.

The proof is given in Appendix C.5.

The following is a direct consequence of Proposition 4.2.10.

Corollary 4.2.11. The EPT dynamics (4.10) and the pairwise comparison dynamics (4.11)

are not strictly output passive.

As it can be verified that both dynamics are payoff monotonic, the proof directly

follows from Proposition 4.2.10.

4.2.3.2 Equivalence to Closed-loop Stability

In Definition 4.2.1, we defined passivity as an input-output property of evolutionary

dynamics: Satisfaction of the passivity inequality (4.7) for each payoff trajectory (input)

p(·) in P and the population state trajectory (output) x(·) determined by (4.2) in response

to p(·). In evolutionary game theory, the main interest lies in examining the time-evolution

of the population state induced in specific games. Hence, it is more natural to define

passivity of evolutionary dynamics in connection with games of interest. To achieve

this, let us consider population games identified by cumulative payoff functions of the

following form:

ṗ(t) = F (x(t)) (4.14)
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where F admits a C1 potential function, i.e., there is a C1 function f : X → R that

satisfies∇xf = ΦF where Φ = I − 1
n
11T . Then, with a C1 function defined by

SG(x) = max
x∈X

f(x)− f(x) (4.15)

we can derive that

SG(x(t))− SG(x(t0)) = −
∫ t

t0

d

dτ
f(x(τ)) dτ

= −
∫ t

t0

ṗT (τ)ẋ(τ) dτ (4.16)

In the following Proposition, we show that passivity can be defined as (a weak form

of) stability of closed-loops formed by cumulative payoff functions (4.14) and evolution-

ary dynamics. This result implies that passivity of evolutionary dynamics is equivalent to

satisfaction of the passivity inequality (4.7) in the class of population games identified by

(4.14).

Proposition 4.2.12. Consider the following closed loop formed by a cumulative payoff

function (4.14) and an evolutionary dynamic (4.2):

ṗ = F (x) (4.17a)

ẋ = V (p, x) (4.17b)

The dynamic (4.2) is passive if and only if for each cumulative payoff function (4.14), the

closed-loop (4.17) has a Lyapunov functionE : Rn×X→ R+ of the formE = SG+EED,

where SG : X→ R+ is given in (4.15) and EED : Rn × X→ R+ is a fixed C1 function.

The proof is given in Appendix C.6.

The following is a direct consequence of Proposition 4.2.12, where the proof is

given in Corollary C.7.
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Corollary 4.2.13. An evolutionary dynamic (4.2) is passive if and only if there exists a C1

function SED : Rn × X→ R+ for which the passivity inequality (4.7) holds for η = 0 in

the class of population games identified by cumulative payoff functions (4.14), i.e., there

exists a C1 function SED : Rn × X→ R+ for which

SED(p(t), x(t)) ≤ SED(p(t0), x(t0)) +

∫ t

t0

F T (x(τ))ẋ(τ) dτ

holds for every function F : X→ Rn that admits a C1 potential function.

4.2.3.3 Effect of Control Costs on Passivity

Consider the total payoff function u : Rn × X→ R given by

u(p, x) = pTx− v(x) (4.18)

where a C2 function v : X → R is referred to as a control cost [105] or a deterministic

perturbation [106]. A control cost is said to be admissible if it is strictly convex satisfying

zT∇2
xv(x)z > 0 for all x in X and z in TX \ {0}, and ‖∇xv(x)‖ → ∞ as x → bd (X).

Notice that when there is no control cost, i.e., v = 0, the total payoff coincides with the

average payoff. The idea of imposing control costs on the total payoff appeared in game

theory and economics to study the effect of random perturbations [97, 106] or disutility

[105] on choice models, to model human choice behavior [107], and to analyze the effect

of social norms in economic problems [108]

We consider evolutionary dynamics that depend on u, and investigate the effect of

control costs on passivity of the dynamics. We refer to the dynamics as unperturbed if

v = 0; otherwise they are called perturbed. To proceed, let us consider the state-space
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representation of evolutionary dynamics in terms of revision protocols [14]: For each i in

{1, · · · , n},

ẋi =
n∑

j=1

xj%ji(p, x)− xi
n∑

j=1

%ij(p, x) (4.19)

where %ji : Rn × X → R+ is called the revision protocol and denotes the rate at which

j-strategists switch to strategy i given a payoff p and population state x.

For instance, the revision protocols can be realized as follows:

%ji(p, x) =
[
∇T
xu(p, x) (ei − x)

]
+

(4.20a)

%ji(p, x) =
[
∇T
xu(p, x) (ei − ej)

]
+

(4.20b)

The protocol (4.20a) depends on the (instantaneous) increase of u(p, x) when the popu-

lation state changes in the direction of ei − x; and the protocol (4.20b) depends on the

(instantaneous) increase of u(p, x) when the population state changes in the direction of

ei − ej . Based on the revision protocols (4.20a) and (4.20b), we can derive the following

evolutionary dynamics: For each i in {1, · · · , n},

ẋi =
[
∇T
xu(p, x) (ei − x)

]
+
− xi

n∑

j=1

[
∇T
xu(p, x) (ej − x)

]
+

(4.21a)

ẋi =
n∑

j=1

xj
[
∇T
xu(p, x) (ei − ej)

]
+
− xi

n∑

j=1

[
∇T
xu(p, x) (ej − ei)

]
+

(4.21b)

Note that when no control cost is imposed, i.e., v = 0, (4.21a) and (4.21b) become the

state-space representations of the BNN dynamics (4.4) and Smith dynamics (4.5), respec-

tively. According to Proposition 4.2.5 and Proposition 4.2.6, the unperturbed dynamics

of (4.21a) and (4.21b) are strictly passive.

Suppose that the control costs are strongly convex. Then, it can be verified that

the resulting perturbed dynamics of (4.21a) and (4.21b) are strictly output passive. In
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what follows, we formalize this idea and show how convexity of control costs affects

passivity of evolutionary dynamics. For our purpose, we consider evolutionary dynamics

(4.19) whose revision protocols depend only on the gradient∇xu(p, x) of the total payoff

function (4.18) and the population state x, i.e., %ji is a function of ∇xu(p, x) and x as in

(4.20).

Proposition 4.2.14. Consider evolutionary dynamics (4.19) whose revision protocols %ji

depend only on the gradient ∇xu(p, x) of the total payoff function (4.18) and the popu-

lation state x. Suppose that the unperturbed dynamics of (4.19) are passive. Then the

following are true:

1. If the control cost is admissible then the resulting perturbed dynamics are strictly

passive.

2. If the control cost is admissible and strongly convex then the resulting perturbed

dynamics are strictly output passive.

The proof is given in Proposition C.8.

4.3 Stability of Passive Evolutionary Dynamics

In this section, we establish stability of passive evolutionary dynamics in popula-

tion games in terms of dissipation of stored energy of the dynamics. To achieve this, we

regard evolutionary dynamics and payoff operators as dynamical systems, and we inves-

tigate population state and payoff trajectories induced by a closed-loop formed by these

dynamical systems (see Figure 4.1 for an illustration).
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Payoff Operators

p(·) = Gx(·)

Evolutionary Dynamics

ẋ(t) = V (p(t), x(t))

p

x

Figure 4.1: A closed-loop obtained by a feedback interconnection of payoff operators

(4.1) and evolutionary dynamics (4.2).

Consider population games identified by (4.1) that satisfy the following inequality

for some positive α: 8

∫ t

0

[
ṗT (τ)ẋ(τ)− ν · ẋT (τ)ẋ(τ)

]
dτ ≤ α (4.22)

for every population state trajectory x(·) in X and t in R+, where ν is non-negative real

number and p(·) ∈ P is a payoff trajectory determined by (4.1) in response to x(·). We

represent the closed loop formed by (4.1) and (4.2) as follows:

p(·) = Gx(·) (4.23a)

ẋ(t) = V (p(t), x(t)) (4.23b)

In the following Theorem, we state stability results for the closed-loop described by

(4.23) in which

(CL1) (4.22) holds for ν = 0, and (4.23b) is strictly passive.

8In [15], population games (4.1) satisfying (4.22) for ν = 0 are called δ-anti-passive.
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(CL2) (4.22) holds for ν > 0, and (4.23b) is strictly output passive for a constant η satis-

fying η > ν.

Theorem 4.3.1. Consider (4.23) in which (CL1) or (CL2) holds. Let SED : Rn×X→ R+

be a storage function of (4.23b). Suppose that the following assumptions hold: For any

sequence
{(
p(l), x(l)

)}
l∈N in Rn × X,

(A1)
∥∥V
(
p(l), x(l)

)∥∥ l→∞−→ ∞ implies SED
(
p(l), x(l)

) l→∞−→ ∞

(A2) ∇T
xSED

(
p(l), x(l)

)
V
(
p(l), x(l)

) l→∞−→ 0 implies SED
(
p(l), x(l)

) l→∞−→ 0

If the time-derivative ṗ of the payoff is bounded, i.e, there is a positive real M for which

‖ṗ(t)‖ < M holds for all t in R+, then it holds that limt→∞ SED (p(t), x(t)) = 0.

The proof is given in Appendix C.9.

We note that the class of cumulative payoff functions presented in Section 4.2.3.2

satisfy (4.22). In the following Proposition, we present another class of payoff operators

that satisfy (4.22).

Proposition 4.3.2. ForC1 mappings F1 and F2, consider a (time-delayed) payoff function

given by

p(t) = F1(x(t)) + F2(x(t− d)) (4.24)

where d is a positive real.9 Suppose that

zTDF1(x)z ≤ ν1 · zT z (4.25a)

zTDF T
2 (x)DF2(x)z ≤ ν2

2 · zT z (4.25b)

9Here we assume that x(t) for t in [−d, 0) satisfies
∫ 0

−d ‖ẋ(τ)‖
2
dτ < β for some positive real number

β
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hold for all x in X and z in TX, where ν1 is a real and ν2 is a non-negative real. Then,

the payoff function (4.24) satisfies (4.22) with ν = ν1 + ν2.

The proof is given in Appendix C.10.

Based on Theorem 4.3.1, in what follows, we present stability results with the EPT

dynamics (4.10), pairwise comparison dynamics (4.11), and PBR dynamics (4.12). As

the EPT dynamics and pairwise comparison dynamics are at most strictly passive, we

only consider (CL1) for these dynamics.

Proposition 4.3.3. Consider (4.23) with the EPT dynamics (4.10) in which (CL1) holds.

Let SEPT : Rn × X → R+ be a storage function of (4.10). Suppose that the revision

protocol % : Rn → Rn
+ of (4.10) satisfies the following conditions: For any sequence

{
p̂(l)
}
l∈N in Rn,

(C1)
∥∥%
(
p̂(l)
)∥∥ l→∞−→ ∞ implies S

(
p̂(l)
) l→∞−→ ∞.

(C2)
∥∥%
(
p̂(l)
)∥∥ l→∞−→ 0 implies

(
p̂(l)
)T
%
(
p̂(l)
) l→∞−→ 0, and

(
p̂(l)
)T
%
(
p̂(l)
) l→∞−→ 0 implies S

(
p̂(l)
) l→∞−→ 0.

where S(p̂) =
∫
P
%(p̂) • dp̂ is an integral of % along a piece-wise smooth path P from 0

to p̂ in the direction of p̂.10 If the time-derivative ṗ of the payoff is bounded, then it holds

that limt→∞ SEPT (p(t), x(t)) = 0.

The proof is given in Appendix C.11.

Example 4.3.4. The BNN dynamics (4.4) are the EPT dynamics with a revision protocol

given by % (p̂) = [p̂]+ and a storage function given by SEPT (p, x) = 1
2

∥∥[p̂]+
∥∥2. Notice

10Note that by the condition (I) of the EPT dynamics,
∫
P
%(p) • dp does not depend on the choice of P .
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that

S(p̂) =

∫ 1

0

s ·
∥∥[p̂]+

∥∥2
ds =

1

2

∥∥[p̂]+
∥∥2

=
1

2
‖% (p̂)‖2 (4.26)

and

p̂T% (p̂) = ‖% (p̂)‖2 (4.27)

It follows from (4.26) and (4.27) that (C1) and (C2) of Proposition 4.3.3 hold. We also

note that limt→∞ SEPT (p(t), x(t)) = 0 implies limt→∞
∥∥[p̂(t)]+

∥∥ = 0. Notice that given

a payoff p, a population state x is a Nash equilibrium if and only if the excess payoff

p̂ = p − pTx · 1 satisfies
∥∥[p̂]+

∥∥ = 0. Hence the convergence of SEPT implies that the

population state trajectory converges to a set of Nash equilibria.

Proposition 4.3.5. Consider (4.23) with the pairwise comparison dynamics (4.11) in

which (CL1) holds. Let SPC : Rn × X → R+ be a storage function of (4.11). Sup-

pose that the revision protocol % =

(
%1 · · · %n

)T
of (4.11) satisfies the following

conditions for each i, j in {1, · · · , n}: For any sequence
{(
p(l), x(l)

)}
l∈N in Rn × X,

(C1) x(l)
i %j

(
p

(l)
j − p(l)

i

)
l→∞−→ ∞ implies Sj

(
p

(l)
j − p(l)

i , x
(l)
i

)
l→∞−→ ∞

(C2) %j
(
p

(l)
j − p(l)

i

)
l→∞−→ 0 implies Sj

(
p

(l)
j − p(l)

i , x
(l)
i

)
l→∞−→ 0.

where Sj(pj − pi, xi) = xi
∫ pj−pi

0
%j(s) ds. If the time-derivative ṗ of the payoff is

bounded, then it holds that limt→∞ SPC (p(t), x(t)) = 0.

The proof is given in Appendix C.12.

Example 4.3.6. The Smith dynamics (4.5) are the pairwise comparison dynamics (4.11)

with a revision protocol given by %j (pj − pi) = [pj − pi]+ and a storage function given
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by SPC(p, x) = 1
2

∑n
i=1

∑n
j=1 xi[pj − pi]2+. We can derive the following:

Sj(pj − pi, xi) = xi

∫ pj−pi

0

[s]+ ds (4.28a)

=
1

2
xi[pj − pi]2+ (4.28b)

=
1

2
xi%

2
j(pj − pi) (4.28c)

≥ 1

2
[xi%j(pj − pi)]2 (4.28d)

It follows from (4.28c) and (4.28d) that (C1) and (C2) of Proposition 4.3.5 hold. By the

fact that
∑n

i=1 xi [pj − pi]+ ≥ [p̂j]+, we note that limt→∞ SPC(p(t), x(t)) = 0 implies

limt→∞
∥∥[p̂(t)]+

∥∥ = 0. Hence, the convergence of SPC implies that the population state

trajectory converges to a set of Nash equilibria.

Proposition 4.3.7. Consider (4.23) with the PBR dynamics (4.12) in which (CL1) or

(CL2) holds. Let SPBR : Rn × X → R+ be a storage function of (4.12). If the time-

derivative ṗ of the payoff is bounded, then it holds that limt→∞ SPBR (p(t), x(t)) = 0.

The proof is given in Appendix C.13.

Remark 4.3.8. Due to (C.6b), by letting y = C(p), it holds that [p−∇xv(C(p))]T z = 0

for all z in TX, where C is the choice function of the PBR dynamics (4.12). Then, we can

see that the storage function (4.13) satisfies

SPBR(p, x) = ∇T
x v(y) (y − x)− (v(y)− v(x))

By strict convexity of v and by the fact that y ∈ X, we can see that

lim
t→∞

SPBR(p(t), x(t)) = 0 implies lim
t→∞
‖C(p(t))− x(t)‖ = 0

i.e., the population state trajectory converges to the best response choice C(p).
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4.4 Numerical Examples

To illustrate the main results, we provide numerical examples and simulations. We

consider two different types of examples. In the first example, we consider the replica-

tor dynamics and BNN dynamics in population games identified by a cumulative payoff

function. In the second example, we consider the BNN dynamics and logit dynamics in

the Hypnodisk game [104], which is used in the proof of Proposition 4.2.10. Simula-

tion results will show that the population state trajectories induced by the BNN dynamics

converge to a limit cycle; while the trajectories induced by the logit dynamics converge

to an equilibrium point. In addition, we examine the case in which the BNN dynamics

are perturbed by the control cost v(x) = η ·∑3
i=1 xi lnxi as in (4.21a). Simulation re-

sults will show that the perturbed BNN dynamics have strong stability properties than the

unperturbed ones.

4.4.1 Replicator dynamics and BNN dynamics under a cumulative pay-

off function

Consider a cumulative payoff function given by



ṗ1(t)

ṗ2(t)

ṗ3(t)




=




−x1(t) + 1
3

−x2(t) + 1
3

−x3(t) + 1
3




(4.29)
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We note that under (4.29), both the replicator dynamics (4.3) and BNN dynamics (4.4)

are stationary at each element of the set given by

{
(p, x) ∈ R3 × X

∣∣∣∣ p1 = p2 = p3 and x1 = x2 = x3 =
1

3

}
(4.30)

The population state trajectories induced by these dynamics under (4.29) are illus-

trated in Figure 4.2 and Figure 4.3, respectively. From the illustrations, we can observe

that for the replicator dynamics, the Kullback-Leibler (KL) divergence between the pop-

ulation state x(t) and the equilibrium 1
3
· 1 does not converge to zero; while the storage

function of the BNN dynamics converges to zero, which implies that the population state

trajectory converges to the equilibrium 1
3
· 1.
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(a) Population state trajectory on simplex X
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(b) Time-evolution of the KL divergence E(x(t)) along the trajectory

starting from (p0, x0) = (−1, 0, 1, 0.2, 0.2, 0.6)

Figure 4.2: Simulation results for the replicator dynamics under a cumulative payoff given

by (4.29). E(x) =
∑3

i=1 x
∗
i ln

x∗i
x

where x∗ = 1
3
· 1
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(b) Time-evolution of storage function SBNN (p(t), x(t)) along the tra-

jectory starting from (p0, x0) = (−1, 0, 1, 0.2, 0.2, 0.6)

Figure 4.3: Simulation results for the BNN dynamics under a cumulative payoff given by

(4.29). SBNN(p, x) = 1
2

∑3
i=1 [p̂i]

2
+
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4.4.2 BNN dynamics and logit dynamics in the Hypnodisk game

Consider the Hypnodisk game whose payoff function is given by



p1(t)

p2(t)

p3(t)




= H




x1(t)

x2(t)

x3(t)




= cos (θ(x1(t), x2(t), x3(t)))




x1(t)− 1
3

x2(t)− 1
3

x3(t)− 1
3




+

√
3

3
sin (θ(x1(t), x2(t), x3(t)))




x2(t)− x3(t)

x3(t)− x1(t)

x1(t)− x2(t)




+
1

3




1

1

1




(4.31)

where θ is a smooth function as described in the proof of Proposition 4.2.10.

We note that under (4.31), both the BNN dynamics (4.4) and logit dynamics (4.6)

have a unique equilibrium point at (p, x) =
(

1
3
· 1, 1

3
· 1
)
. The population state trajec-

tories induced by these dynamics under (4.31) are illustrated in Figure 4.4 and Figure

4.5, respectively. From the illustrations, we can observe that the logit dynamics have a

stronger stability property than do the BNN dynamics as the population state trajectory of

the former converges to the equilibrium x = 1
3
·1; while that of the latter dynamics forms

a limit cycle.

Now consider that a control cost given by v(x) = η ·∑3
i=1 xi lnxi is imposed on
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the BNN dynamics as in (4.21a). The resulting perturbed dynamics are represented by

ẋi =
[
p̃i − p̃Tx

]
+
− xi

3∑

j=1

[
p̃j − p̃Tx

]
+

(4.32)

where p̃ = p − ∇xv. Since v is a strongly convex function, according to Proposi-

tion 4.2.14, we can see that (4.32) is strictly output passive. The population state trajectory

induced by (4.32) under the payoff function (4.31) is depicted in Figure 4.6, which shows

that the trajectory converges to equilibrium x = 1
3
· 1.
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(b) Time evolution of storage function SBNN (p(t), x(t)) along the tra-

jectory starting from p0 = H(x0), x0 = (0.5203, 0.3394, 0.1403)

Figure 4.4: Simulation results for the BNN dynamics in the Hypnodisk game (4.31).

SBNN(p, x) = 1
2

∑3
i=1 [p̂i]+
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(b) Time evolution of storage function Slogit(p(t), x(t)) along the tra-

jectory starting from p0 = H(x0), x0 = (0.4677, 0.3709, 0.1614)

Figure 4.5: Simulation results for the logit dynamics (η′ = 0.36) in the Hypnodisk game

(4.31). Slogit(p, x) = maxy∈int(X)

[
pTy − η′ ·∑3

i=1 yi ln yi
]
− pTx+ η′ ·∑3

i=1 xi lnxi
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(b) Time evolution of storage function SPBNN (p(t), x(t)) along the tra-

jectory starting from p0 = H(x0), x0 = (0.4269, 0.3876, 0.1855)

Figure 4.6: Simulation results for the perturbed BNN dynamics (η′ = 0.36) in the Hypn-

odisk game (4.31). SPBNN(p, x) = 1
2

∑3
i=1

[
p̃i − p̃Tx

]
+
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4.5 Summary and Future Work

We have exploited the notion of passivity in evolutionary game theory. We have

defined passivity for evolutionary dynamics and characterized it in terms of vector fields

that define the state-space realizations of the dynamics. Based on the characterization,

we have studied certain properties of passive dynamics and established stability in a gen-

eralized class of population games. Numerical simulations are provided to illustrate the

stability results.

To benefit from the presented passivity methods, as a future direction, we suggest to

investigate the following design problems: How to design passive evolutionary dynamics

whose storage function achieves its minimum at desired states; while maintaining their

stability in population games of interest.
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Appendix A: Auxiliary Results for Chapter 2

A.1 Computational Considerations

We proceed to outlining how to find the source components of a directed graph and

how to compute an omniscience-achieving parameter choice for (2.1) that satisfies (1.2),

provided that the conditions of Theorem 2.2.2 hold.

A.1.1 Finding Source Components

In Chapter 22.5 of [109], the Strongly-Connected Components (SCC) algorithm is

described for finding all strongly connected components of a directed graph. For each

strongly connected component given by the SCC algorithm, we can check whether there

are no incoming edges from outside of it, in which case it is a source component. Since

both the SCC algorithm and subsequent checks have linear-time complexity, the overall

procedure for finding source components is a linear-time algorithm.

A.1.2 Computing an Omniscience-achieving Parameter Choice

We proceed to describing randomized procedures to compute a parameter choice

for (2.1). Under the detectability condition of Theorem 2.2.2, it follows from our anal-
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ysis in Section 2.4.3 that the parameter choice obtained from the following randomized

procedures satisfies (1.2) and is omniscience-achieving with probability one.

A.1.2.1 Computation of W = (wij)i,j∈V

Let {Gl}msl=1 with Gl = (Vl,El) be the source components of G, and let us define

Vms+1 = V \⋃ms
l=1 Vl. We first find a spanning subgraph G ′ of G for which {Gl}msl=1 are the

source components of G ′, and the subgraph of G ′ induced1 by Vms+1 has no cycle. Then

we select a weight matrix W whose sparsity pattern is consistent with G ′ and, hence, with

G.

In order to obtain G ′, we perform multiple rounds of the depth-first search on G

where each round of the search starts from a (unvisited) vertex in Vms+1 that is a neighbor

of a source component. We continue this search until every vertex in Vms+1 is visited

exactly once. The overall search operation gives a disjoint collection of directed trees.

Next, we eliminate certain edges of G to obtain a new graph G ′ such that G ′ is same as G

except that the subgraph of G ′ induced by Vms+1 is the union of the trees obtained from

the aforementioned search operation. By our construction of G ′, it can be verified that

{Gl}msl=1 are the source components of G ′, and the subgraph of G ′ induced by Vms+1 has

no cycle.

For each i in V, let N′i be the neighborhood of vertex i defined by G ′. We choose the

submatrices of W in (2.11) as described by the following randomized procedure (Proce-

dure 3). Here, we use q ∼ U (a, b) to denote a randomization in which q is the realization

of a random variable uniformly distributed in the interval (a, b). We assume that the ran-

1(V′,E′) is a subgraph of (V,E) induced by V′ ⊆ V if E′ contains every edge (i, j) in E with i, j ∈ V′.
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domizations presented in the procedure are drawn from independent random variables.

129



Procedure 3: Computation of W = (wij)i,j∈V
input : G′ = (V,E′)

output: W = (wij)i,j∈V

1 begin

2 for l ∈ {1, · · · ,ms} do

/* computation of Wl in (2.11) */

3 α ∼ U (0, 1)

4 for i ∈ Vl do

5 for j ∈ Vl \ {i} do

6 if j ∈ N′i \ {i} then

7 q ∼ U
(
− 1

|N′i|−1
, 0

)

8 wij ← −α · q

9 else wij ← 0

10 wii ← 1−∑j∈N′i\{i}
wij

/* computation of {Wms+1,l}ms+1
l=1 in (2.11) */

11 for i ∈ Vms+1 do

12 for j ∈ V do

13 if j ∈ N′i \ {i} then wij ← 1

|N′i|−1

14 else wij ← 0
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It follows from Lemmas 2.4.3 - 2.4.4 and Theorem 2.4.5 that Procedure 3 will select

a weight matrix W randomly from a parametrized set for which almost all parameters

lead to a suitable choice, with the possible exception of a subset of measure zero. Our

particular choice for the distributions governing the randomizations in Procedure 3 is not

important, and any other choice that assigns null probability to a subset of measure zero

would work.

A.1.2.2 Computation of {Ki,Pi,Qi,Si}i∈V

In what follows, we describe a randomized method (Procedure 4) to choose gain

matrices {Ki,Pi,Qi,Si}i∈V that, in conjunction with W obtained from Procedure 3,

are omniscience-achieving with probability one, provided that the conditions of Theo-

rem 2.2.2 are satisfied. In fact, it follows from Theorem 2.4.10 that if the conditions of

Theorem 2.2.2 are satisfied then the procedure will be selecting from a set in which almost

all choices are omniscience-achieving.

Given a positive real c, we use K ∼ Un·r ((−c, c)n·r) to denote a randomization

leading to a matrix K in Rn×r whose entries are the realizations of n · r independent

random variables uniformly distributed in the interval (−c, c). For each i in Vl, let

Bi = ei ⊗ In and Ci = eTi ⊗ Ci, where ei is the i-th column of the |Vl|-dimensional

identity matrix. We choose {Ki,Pi,Qi,Si}i∈V as described below, where repeated ran-

domizations are drawn from independent random variables.
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Procedure 4: Computation of {Ki,Pi,Qi,Si}i∈V
input : G′ = (V,E′), W given as in (2.11), and (A,C) given as in (1.1)

output: {Ki,Pi,Qi,Si}i∈V

1 begin

2 select VR as in Definition 2.2.1

3 for l ∈ {1, · · · ,ms} do

/* computation of {Ki,Pi,Qi,Si}i∈Vl */

4 il ∈ Vl ∩ VR // a singleton

5 for i ∈ Vl \ {il} do

6 Ki ∼ Un·ri ((−c, c)n·ri)

7 µi = 0

8 compute Kil , Pil , Qil , Sil with µil = |Vl| − 1 for which



Wl ⊗A−

∑
i∈Vl BiKiCi −BilPil

QilCil Sil




is stable, provided they exist.

/* computation of {Ki,Pi,Qi,Si}i∈Vms+1 */

9 for i ∈ Vms+1 do

10 Ki ← 0

11 µi = 0
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A.2 Nondegeneracy of the Dynamic Matrix A

Here, we justify the nondegeneracy assumption on the dynamic matrix A in (1.1).

Suppose that the dynamic matrix A is degenerate. Let M be the real matrix for which

J = M−1AM is a real block diagonal matrix in the following form:

J = diag (J1, · · · , Jp) (A.1)

where for each i in {1, · · · , p}, the submatrix Ji is the i-th real Jordan block. In particular,

suppose that Jp0+1, · · · , Jp are all the Jordan blocks associated with the zero eigenvalue.

Notice that there exists a positive integer k0 for which Jki = 0 for all k ≥ k0 and i in

{p0 + 1, · · · , p}.

By applying a similarity transform to the plant (1.1) with M , we obtain


xa(k + 1)

xb(k + 1)


 =



Aa 0

0 Ab






xa(k)

xb(k)




y(k) =

(
Ca Cb

)


xa(k)

xb(k)




(A.2)

where



xa(k)

xb(k)


 = M−1x(k), Aa = diag (J1, · · · , Jp0), Ab = diag (Jp0+1, · · · , Jp),

and
(
Ca Cb

)
= CM . Since the block diagonal elements of Ab are the Jordan blocks

associated with the zero eigenvalue, it holds that xb(k) = 0 for all k ≥ k0, and from (A.2)

we can derive the following state-space equation:

xa(k + 1) = Aaxa(k)

y(k) = Caxa(k)

(A.3)
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for k ≥ k0, where Aa is a nondegenerate matrix. For this reason, in what regards to

achieving asymptotic omniscience, we may design a distributed observer (2.1) for (A.3) to

asymptotically resolve the state xa(k), from which the state x(k) of (1.1) can be obtained

using the relation x(k) = M



xa(k)

0


 for k ≥ k0.

A.3 Preliminary Concepts and Proof of Proposition 2.3.2

Let us define

x(k) =



χ(1)(k)

x′(k)


 where x′(k) =




χ(2)(k)− χ(1)(k)

...

χ(ma)(k)− χ(1)(k)




We can re-write (2.3) as follows:

x(k + 1) = Ax(k) +
∑

i∈V

Biui(k)

yi(k) = Cix(k)

(A.4)

for each i in V, where

A =




Fo F12 · · · F1ma

0 A′




Bi =

(
GT

1i (B′i)
T

)T

Ci = Hi







1 0

1ma−1 Ima−1


⊗ In




(A.5)

In (A.5), Fo, {F1j}maj=2, G1i, Hi are from (2.3), and A′ and B′i are defined in (2.5b) and

(2.5c), respectively.
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To achieve asymptotic synchronization of the system (2.3), we need to find a dis-

tributed controller for which the partial state x′(k) of (A.4) converges to zero as k →∞.

To find such distributed controller, we adopt the following procedure (also see Figure A.1

for an illustration):

1. Using the method described in Section 2.2, we first design a distributed observer

(2.1) for the multi-agent system (A.4) subject to the pre-selected graph G.

2. Then, using results on the synthesis of decentralized control systems, we find fully

decentralized controllers for the multi-agent/distributed observer system obtained

in Step 1.

3. Finally, we recover a distributed controller from the distributed observer and the

fully decentralized controllers obtained in Step 1 and Step 2, respectively.
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Figure A.1: Diagrams depicting a design procedure for finding a distributed controller.
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Based on the aforementioned design procedure, we note that the resulting dis-

tributed controller has the following state-space representation:



x̂i(k + 1)

zi(k + 1)

wi(k + 1)




=




A
∑

j∈Ni wijx̂j(k) + Ki (yi(k)− Cix̂i(k)) + Pizi(k)

Qi (yi(k)− Cix̂i(k)) + Sizi(k)

Sdiwi(k) + Qd
i x̂
′
i(k)




(A.6a)

ui(k) = Pd
iwi(k) + Kd

i x̂
′
i(k) (A.6b)

for each i in V, where x̂′i(k) =

(
0 I(ma−1)·n

)
x̂i(k), and A and Ci are defined in (A.5).

It can be verified that (A.6) is a special case of (2.4). Hence, it remains to consider a

parameter choice for (A.6) such that the resulting distributed controller synchronizes the

system (2.3). In what follows, we describe particular choices of

W = (wij)i,j∈V, {Ki,Pi,Qi,Si}i∈V and
{
Kd
i ,P

d
i ,Q

d
i ,S

d
i

}
i∈V

for (A.6) in Appendix A.3.1 and Appendix A.3.2, respectively. A proof of Proposi-

tion 2.3.2 is then followed.

A.3.1 A Choice of W = (wij)i,j∈V, {Ki,Pi,Qi,Si}i∈V

We design a distributed observer (2.1) for the system (A.4) subject to the given

graph G. The estimation error x̃i = x − x̂i of (2.1) evolves according to the following

state-space equation:


x̃(k + 1)

z(k + 1)


 =




W ⊗ A−K C −P

Q C S






x̃(k)

z(k)


+



1m ⊗

(∑
i∈VBiui(k)

)

0




(A.7)
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where

x̃ =

(
x̃T1 · · · x̃Tm

)T
, z =

(
zT1 · · · zTm

)T
,

C =

(
C
T

1 · · · C
T

m

)T
with Ci = eTi ⊗ Ci, (A.8)

W = (wij)i,j∈V ,

K = diag (K1, · · · ,Km) , P = diag (P1, · · · ,Pm) ,

Q = diag (Q1, · · · ,Qm) , S = diag (S1, · · · ,Sm)

In (A.8), ei is the i-th column of the m-dimensional identity matrix.

By writing (A.4) and (A.7) altogether and by omitting χ(1) from x in (A.4), we can

derive the following equation:2




x′(k + 1)

x̃(k + 1)

z(k + 1)




=




A′ 0 0

0 W ⊗ A−K C −P

0 Q C S







x′(k)

x̃(k)

z(k)




+




∑
i∈VB

′
iui(k)

1m ⊗
(∑

i∈VBiui(k)
)

0




(A.9a)

x̂′i(k) = Ei




x′(k)

x̃(k)

z(k)




(A.9b)

for each i in V, where Ei =

(
I(ma−1)·n −eTi ⊗

(
0 I(ma−1)·n

)
0

)
, ei is the i-th

column of the m-dimensional identity matrix, and A, A′, Bi, B′i and Ci are defined in

2This is valid since (A.9) does not depend on χ(1).
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(A.5) and (A.8), respectively. In (A.9b), we note that

Ei




x′(k)

x̃(k)

z(k)




= x′(k)−
(
0 I(ma−1)·n

)
x̃i(k) =

(
0 I(ma−1)·n

)
x̂i(k)

Essentially, the state-space equation (A.9) describes a LTI system with state
(
x′T x̃T zT

)T
, output vector x̂′i, and inputs {ui}i∈V. If there is no input, i.e., ui = 0

for all i in V, and the matrix given by


W ⊗ A−K C −P

Q C S


 (A.10)

is stable, then we can see that the output x̂′i(k) converges to x′(k) as k →∞.

The following Lemma states the stabilizability and detectability of (A.9).

Lemma A.3.1. Let a graph G = (V,E) and a LTI system (A.4) be given. Suppose that

assumptions (i) and (ii) of Proposition 2.3.2 hold. We can find W, K, P, Q, S in (A.9)

for which the resulting system (A.9) is both stabilizable and detectable for all i in V.

Proof. Notice that because of (ii) of Proposition 2.3.2, by Theorem 2.2.2 and the pro-

cedures in Appendix A.1.2, we can find W, K, P, Q, S for which the matrix (A.10)

is stable. Under this choice of W, K, P, Q, S, we show the stabilizability and de-

tectability of (A.9). The stabilizability directly follows from (i) of Proposition 2.3.2. The

detectability can be verified by the fact that if ui = 0 for all i in V, then it holds that

limk→∞ ‖x̂′i(k)− x′(k)‖ = 0 for all i in V and limk→∞

∥∥∥∥∥∥∥∥



x̃(k)

z(k)




∥∥∥∥∥∥∥∥
= 0.
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A.3.2 A Choice of
{
Kd
i ,P

d
i ,Q

d
i ,S

d
i

}
i∈V

Consider a set of fully decentralized controllers whose state-space representation is

given as follows:

wi(k + 1) = Sdiwi(k) + Qd
i x̂
′
i(k)

ui(k) = Pd
iwi(k) + Kd

i x̂
′
i(k)

(A.11)

for each i in V.

Consider the closed-loop system obtained by interconnecting (A.9) and (A.11) where

the parameters W,K,P,Q,S of (A.9) are chosen as described in Lemma A.3.1. By the

stabilizability and detectability of (A.9) for all i in V, using the results on the synthesis of

decentralized control systems [63,64], we can find a parameter choice
{
Kd
i ,P

d
i ,Q

d
i ,S

d
i

}
i∈V

for (A.11) that ensures the stability of the closed-loop system.

A.3.3 Proof of Proposition 2.3.2

Suppose that W,K,P,Q,S and
{
Kd
i ,P

d
i ,Q

d
i ,S

d
i

}
i∈V are respective parameter

choices made by the procedures described in Appendix A.3.1 and Appendix A.3.2. By

Lemma A.3.1 and the discussion in Appendix A.3.2, such parameter choices ensure the

stability of the closed-loop system resulting from an interconnection of (A.9) and (A.11).

We note that, under the same parameter choice, the stability of this closed-loop ensures

the synchronization of the multi-agent system (2.3) via the distributed controller described

by (A.6), which is a special case of (2.4). Therefore, with the aforementioned parameter

choices, we conclude that the distributed controller (A.6) (hence (2.4)) synchronizes the

multi-agent system (2.3). This proves the first statement.
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Next, we prove the second statement of Proposition 2.3.2. We proceed by writing

the state-space equation for agent 1 using (2.3a) and (A.6b) as follows:

χ(1)(k + 1) = Foχ
(1)(k) +

ma∑

j=2

F1j

(
χ(j)(k)− χ(1)(k)

)

+
m∑

j=1

G1j

(
Pd
jwj(k) + Kd

j x̂
′
j(k)

)
(A.12)

Without loss of generality, suppose that Fo =



Fo,U 0

0 Fo,S


 where Fo,U and Fo,S are un-

stable and stable parts of Fo, respectively. Accordingly, we obtain a partition



χ

(1)
U

χ
(1)
S


 of

χ(1) and a partition



GU

GS


 of

(
F12 · · · F1ma G11P

d
1 · · · G1mP

d
m G11K

d
1 · · · G1mK

d
m

)
.

For notational convenience, let

x′ =




χ(2) − χ(1)

...

χ(ma) − χ(1)



, w =




w1

...

wm



, x̂′ =




x̂′1

...

x̂′m




Since x′(k), w(k), x̂′(k) converge to zero exponentially as k → ∞, it holds that

limk→∞

∥∥∥χ(1)
S (k)

∥∥∥ = 0. Now, we consider the unstable dynamics of (A.12), which can be

represented by the following state-space equation:

χ
(1)
U (k + 1) = Fo,Uχ

(1)
U (k) +GU




x′(k)

w(k)

x̂′(k)




(A.13)

Since eigenvalues of Fo,U lie on or outside the unit circle in C, we can verify that a solution
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to (A.13) satisfies

(Fo,U)−k χ
(1)
U (k) = χ

(1)
U (0) +

k−1∑

l=0

(Fo,U)−l−1GU




x′(l)

w(l)

x̂′(l)




(A.14)

where the right hand side of (A.14) converges exponentially as k →∞. Let

χo,U = χ
(1)
U (0) +

∞∑

l=0

(Fo,U)−l−1GU




x′(l)

w(l)

x̂′(l)




be the limit point of (A.14).

To complete the proof, let us consider the following state-space equation:

χo(k + 1) = Foχo(k), χo(0) =



χo,U

χo,S




for any vector χo,S of a proper dimension. Since Fo,U has the unit spectral radius by the

assumption of the second statement, due to the exponential convergence rate of (A.14),

we can see that limk→∞
∥∥χ(1)(k)− χo(k)

∥∥ = 0 holds.

Using the fact that limk→∞
∥∥χ(i)(k)− χ(1)(k)

∥∥ = 0 holds for all i in VI \ {1},

we conclude that limk→∞
∥∥χ(i)(k)− χo(k)

∥∥ = 0 holds for all i in VI . This proves the

Proposition.

A.4 Proofs of Lemmas 2.4.3 and 2.4.4

Proof of Lemma 2.4.3: Since the matrix L is a WLM of the graph G and the positive

real number α′ satisfies α′ ≤
(
max1≤i≤|V| lii

)−1, for every α in (0, α′), the matrix W is
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stochastic. Hence, it remains to show that for almost every α in (0, α′), W ⊗ A satisfies

the UEPP.

Let {υ1, · · · , υs} and {λ1, · · · , λt} be the sets of distinct eigenvalues of A and L,

respectively. Under the choice W = I|V| − αL, we can observe that if W ⊗ A does not

satisfy the UEPP, then its nonzero eigenvalue can be expressed as a product

(1− αλ)υ = (1− αλ′)υ′

for distinct λ, λ′ in {λ1, · · · , λt} and for distinct υ, υ′ in {υ1, · · · , υs}. Since the sets of

distinct eigenvalues of A and L are both finite, we conclude that the set of the values of α

for which the UEPP does not hold is finite. Hence, for almost every α in (0, α′), W ⊗ A

satisfies the UEPP. �

Proof of Lemma 2.4.4: By the UEPP of W⊗A, for each nonzero eigenvalue λ of W⊗A,

we can find the unique pair of eigenvalues λW and λA of W andA, respectively, for which

λ = λW ·λA holds. Since W has all simple eigenvalues and W⊗A satisfies the UEPP, we

can show that there is a unique eigenvector (unique up to a scale factor), say v, associated

with λW, and the geometric multiplicities of λ and λA are equal3. Hence, we can see that

an eigenvector q of W ⊗ A associated with λ can be written as q = v ⊗ p where p is an

eigenvector of A associated with λA. This proves the Lemma. �

A.5 Preliminary Results and Proof of Theorem 2.4.5

In this section, we provide a proof of Theorem 2.4.5. The proof hinges on some

results from structured linear system theory [110,111]. To this end, we briefly review the

3A proof of this argument is along similar lines as that of Lemma 3.8 in [20]
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structural controllability and observability of structured linear systems in Appendix A.5.1

and provide the detailed proof of Theorem 2.4.5 in Appendix A.5.3.

A.5.1 Structural Controllability and Observability

Consider a graph G = (V,E) with V = {1, · · · , |V|} and an associated structured

linear system whose state-space representation is given as follows:

x(k + 1) = [A]x(k) + [bi]u(k)

y(k) = [cj]
Tx(k)

(A.15)

where [A] ∈ R|V|×|V| is a structure matrix, and [bi] ∈ R|V| and [cj] ∈ R|V| are structure

vectors. Depending on respective sparse structures, entries of structure matrices and vec-

tors are either zero or indeterminate. In particular, we suppose that [A] is consistent4 with

the graph G, and all entries of [bi] and [cj] are zero except the i-th entry and j-th entry,

respectively. Under this setting, there are (|E|+ 2) indeterminate entries of [A], [bi], and

[cj], and if we allow each indeterminate entry to take a value in R, then a choice of these

entries can be represented by a vector in R|E|+2. In other words, the vectors in R|E|+2

specify all numerical realizations of (A.15).

The following Definition describes the structural controllability and observability

of structured linear systems (A.15).

Definition A.5.1. Let a graph G = (V,E) and an associated structured linear system

as in (A.15) be given. Let p be a vector in R|E|+2 that specifies a numerical realization

4A structure matrix [A] is consistent with a graph G if the (i, j)-th entry of [A] is indeterminate if

(j, i) ∈ E, and the entry is zero otherwise.
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of (A.15). The pair ([A], [bi]) is said to be structurally controllable if for almost all p in

R|E|+2, the resulting numerical realizations of ([A], [bi]) are controllable. The structural

observability is similarly defined for the pair
(
[A], [cj]

T
)
.

We can characterize the structural controllability and observability for the system

(A.15) in terms of its associated graph as in the following Proposition.

Proposition A.5.2. Let a strongly connected graph G = (V,E) and an associated struc-

tured linear system as in (A.15) be given. Then, for each i, j in V, the pair ([A], [bi]) is

structurally controllable and the pair
(
[A], [cj]

T
)

is structurally observable.

Proof. The proof directly follows from relevant results from the structured linear system

literature (see, for instance, Theorem 1 in [110]). The detail is omitted for brevity.

A.5.2 A Key Lemma

The following Lemma is used in the proof of Theorem 2.4.5.

Lemma A.5.3. Given a strongly connected graph G = (V,E) with V = {1, · · · , |V|},

for any fixed vertex r in V, the following are true:

(i) There exists a WLM L1 of G for which the pair
(
L1, e

T
r

)
is observable.

(ii) There exists a WLM L2 of G for which the pair (L2, er) is controllable.

(iii) There exists a WLM L3 of G for which all eigenvalues of L3 are simple.

where er is the r-th column of the |V|-dimensional identity matrix.
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Proof. We provide a two-part proof: In the first part, we prove (i) and (ii) using Proposi-

tion A.5.2; and then we provide a constructive proof of (iii).

Proof of (i) and (ii): Consider a structured linear system that is associated with

G as in (A.15). By Proposition A.5.2, we can find numerical realizations
(
A1, c

T
r

)
and

(A2, br) that are, respectively, observable and controllable. In particular, we may choose

A1 and A2 to be irreducible and (element-wise) nonnegative.

We compute L1 from A1 by applying a special similarity transform used in [112].

This procedure is described as follows: By the Perron-Frobenius Theorem, we can find

a right eigenvector ṽ (of A1) with all positive entries, which corresponds to the Perron-

Frobenius eigenvalue λ̃. Let M be a diagonal matrix whose diagonal elements are the

entries of ṽ. Then, by applying a similarity transform to
(
A1, c

T
r

)
with M , we obtain

(
M−1A1M, cTrM

)
. Since the observability is preserved under any similarity transform,

the new pair
(
M−1A1M, cTrM

)
is also observable. Note that M−1A1M and A1 have the

same sparsity pattern, and so do cTr and cTrM .

Let us define

L1 = I|V| −
1

λ̃
M−1A1M (A.16)

Notice that L1 is a WLM of G, and that eigenvectors of L1 are same as those ofM−1A1M .

Since
(
M−1A1M, cTrM

)
is observable, by the PBH rank test, we can see that

(
L1, e

T
r

)
is

observable.

By a similar argument, we can explicitly find a WLM L2 of G for which (L2, er) is

a controllable pair. This completes the first part of the proof.
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Proof of (iii): For a WLM L of G, we represent L as follows:

L =

(
l1 · · · l|V|

)T
(A.17)

where lTi is the i-th row of L. By re-scaling each row of L, we construct a WLM L3 of G

whose eigenvalues are all simple.

First of all, it is not difficult to show that for a positive real number α1, the following

matrix has all simple eigenvalues except at the origin.

(
α1l1 0 · · · 0

)T
∈ R|V|×|V|, (A.18)

where 0 is the |V|-dimensional zero vector. Suppose that for some positive real numbers

α1, · · · , αk, the following matrix has all simple eigenvalues except at the origin.

(
α1l1 · · · αklk 0 · · · 0

)T
∈ R|V|×|V| (A.19)

Recall that eigenvalues of a matrix depend continuously on entries of the matrix. Since

(A.19) has all simple eigenvalues except at the origin, for a sufficiently small positive real

number αk+1, the following matrix has all simple eigenvalues except at the origin.

(
α1l1 · · · αklk αk+1lk+1 0 · · · 0

)T
∈ R|V|×|V| (A.20)

By induction, we obtain

L3 =

(
α1l1 · · · α|V|l|V|

)T
(A.21)

that is a WLM of G and has all simple eigenvalues except at the origin for the selected

positive real numbers α1, · · · , α|V|. Since G is a strongly connected graph, the eigenvalue

of L3 at the origin is also simple [113]. This completes the second part of the proof.
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A.5.3 Proof of Theorem 2.4.5

To begin with, for the graph G = (V,E), we define sets

Lc1,r(G)
def
=
{
L ∈ L(G)

∣∣ (L, eTr
)

is not observable
}

Lc2,r(G)
def
=
{
L ∈ L(G)

∣∣ (L, er) is not controllable
}

Lc1(G)
def
=
{
L ∈ L(G)

∣∣A right eigenvector of L has a zero entry
}

Lc2(G)
def
=
{
L ∈ L(G)

∣∣A left eigenvector of L has a zero entry
}

Lc3(G)
def
=
{
L ∈ L(G)

∣∣An eigenvalue of L is not simple
}

and a natural bijective mapping

π : L(G)→ R|E|−|V|<0 ,

where er is the r-th column of the |V|-dimensional identity matrix, and R|E|−|V|<0 is the

set of the (|E| − |V|)-dimensional vectors whose entries are all negative. To prove The-

orem 2.4.5, it is sufficient to show that the sets π (Lc1(G)), π (Lc2(G)), π (Lc3(G)) have the

Lebesgue measure zero in R|E|−|V|<0 .

In [110], the observability is shown to be a generic property of structured linear

systems. In words, unless every numerical realization of a given structured linear system

is not observable, almost every numerical realization is observable. By an application

of this principle, we can show that unless Lc1,r(G) = L(G) holds, π
(
Lc1,r(G)

)
has the

Lebesgue measure zero in R|E|−|V|<0 . By a similar argument for the controllability of struc-

tured linear systems, we conclude that unless Lc2,r(G) = L(G) holds, π
(
Lc2,r(G)

)
has the

Lebesgue measure zero in R|E|−|V|<0 .
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Since G is a strongly connected graph, by Lemma A.5.3, we can show that for any r

in V, Lc1,r(G) and Lc2,r(G) are proper subsets of L(G); hence, π
(
Lc1,r(G)

)
and π

(
Lc2,r(G)

)

have the Lebesgue measure zero in R|E|−|V|<0 . Since it holds that Lc1(G) =
⋃
r∈V Lc1,r(G)

and Lc2(G) =
⋃
r∈V Lc2,r(G), we conclude that π (Lc1(G)) and π (Lc2(G)) have the Lebesgue

measure zero in R|E|−|V|<0 .

Next, to prove that π (Lc3(G)) has the Lebesgue measure zero, we adopt the follow-

ing argument from algebra (see, for instance, Chapter 14.6 of [114]). For a matrix L in

Rm×m, all solutions to a polynomial equation

∆(λ)
def
= det(L− λI) = amλ

m + · · ·+ a1λ+ a0 = 0 (A.22)

are distinct if the discriminant

D(∆)
def
= a2m−1

m

∏

1≤i<j≤m

(λi − λj)2

is nonzero, where λi and λj are solutions to (A.22). This particular discriminant can be

written as the resultant R
(
∆, d

dλ
∆
)

of ∆(λ) and d
dλ

∆(λ) as follows:

D(∆) = (−1)
m(m−1)

2 ·R
(

∆,
d

dλ
∆

)
(A.23)

The resultant R(f, g) of two polynomials f and g is a polynomial function of co-

efficients of f and g. Hence, by (A.23), we can see that the discriminant D(∆) can be

written as a polynomial function of coefficients of ∆(λ) and d
dλ

∆(λ). Since coefficients

of ∆(λ) and d
dλ

∆(λ) are polynomial functions of entries of L, the discriminant D(∆) is

a polynomial function of entries of L.

Also, notice that for a polynomial function D̃ defined on Rm̃, solutions

{
q ∈ Rm̃

∣∣ D̃ (q) = 0
}
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to the polynomial equation D̃ (q) = 0 form either the entire space Rm̃ or a proper alge-

braic variety in Rm̃, which has the Lebesgue measure zero [115].

For a strongly connected graph G, we have seen from Lemma A.5.3 that there exists

L3 ∈ L(G) whose eigenvalues are all simple. Therefore, Lc3(G) is a proper subset of

L(G), and by the aforementioned principles, π (Lc3(G)) has the Lebesgue measure zero in

R|E|−|V|<0 . �
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Appendix B: Auxiliary Results for Chapter 3

B.1 On Product Metric Space

Given a metric space (X, d), we define a metric d on the product space Xk as fol-

lows: For x1:k = (x1, · · · , xk) and y1:k = (y1, · · · , yk) in Xk,

d(x1:k, y1:k) =
[
d2 (x1, y1) + · · ·+ d2 (xk, yk)

]1/2 (B.1)

Note that
(
Xk, d

)
is a (product) metric space.

For (X, d) and
(
Xk, d

)
, the following are true:

(F1) For each i in {1, · · · , k}, let Ki be a compact subset of X. Then K1× · · · ×Kk is a

compact subset of Xk.

(F2) For a sequence
{
x

(i)
1:k

}
i∈N

in Xk,
{
x

(i)
1:k

}
i∈N

converges to x1:k in Xk, i.e.,

lim
i→∞

d
(
x

(i)
1:k, x1:k

)
= 0

if and only if
{
x

(i)
j

}
i∈N

converges to xj for all j in {1, · · · , k}, i.e.,

lim
i→∞

d
(
x

(i)
j , xj

)
= 0

for all j in {1, · · · , k}.
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Consider a function G : Xk → R. By (F2), G is continuous at x1:k ∈ Xk if for any

sequence
{
x

(i)
1:k

}
i∈N

for which limi→∞ d
(
x

(i)
j , xj

)
= 0 holds for all j in {1, · · · , k}, it

holds that limi→∞

∣∣∣G
(
x

(i)
1:k

)
− G (x1:k)

∣∣∣ = 0.

B.2 On Randomized Policies

In our problem formulation described in Section 3.1, the randomized transmission

policy T k : N×X×X→ {0, 1} dictates the random variable Rk as in (3.1). Then given

respective realizations τk, xτk , and xk of the last transmission time τk, state xτk of the

underlying process at time τk, and state xk of the process at time k, it holds that

Rk =





0 with probability P
(
T k (τk,xτk ,xk) = 0

∣∣∣ τk = τk,xτk = xτk ,xk = xk

)

1 with probability P
(
T k (τk,xτk ,xk) = 1

∣∣∣ τk = τk,xτk = xτk ,xk = xk

)

In Section 3.2, the randomized policy Pj : X→ {0, 1} dictates the random variable

Rj as in (3.13). Then given a realization xj of the state xj of the underlying process at

time j, it holds that

Rj =





0 with probability P
(
Pj (xj) = 0

∣∣∣xj = xj

)

1 with probability P
(
Pj (xj) = 1

∣∣∣xj = xj

)

Throughout the work, we restrict our attention to the policies in which

P
(
Pj (xj) = 0

∣∣∣xj = xj

)

is a measurable function of xj on the measurable space (X,B). As a case in point,
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consider a (deterministic) policy defined by

Pj(xj) =





0 if xj ∈ Dj

1 otherwise

where Dj ∈ B. It can be verified that

P
(
Pj (xj) = 0

∣∣∣xj = xj

)
=





0 if xj ∈ Dj

1 otherwise

is a measurable function of xj .

B.3 Preliminary Concepts and Results

We first review some of key definitions and results from probability theory [93,116].

Let (X, d) be the metric space defined in Section 3.1, and let T and B be a topology and

a Borel σ-algebra derived from the metric, respectively. Recall that (X, d) is assumed to

be complete, separable, and proper (see Assumption 3.1.4).

Definition B.3.1. Let µ be a probability measure on (X,B). The probability measure is

said to be tight if for each ε > 0, there exists a compact subset K of (X, T ) for which

µ (K) > 1− ε holds.

The following is adopted from Theorem 7.1.4 in [93].

Lemma B.3.2. Any probability measure µ on (X,B) is tight.

Definition B.3.3. A probability measure µ defined on (X,B) is said to be closed regular

if for every A in B, it holds that

µ(A) = sup
{
µ(F)

∣∣F ∈ B closed,F ⊂ A
}

(B.2)
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From Theorem 7.1.3 in [93], we can state the following Lemma.

Lemma B.3.4. Any probability measure µ on (X,B) is closed regular.

Remark B.3.5. For a probability measure µ,

µ (A) = 1− µ (X \ A) (B.3)

where A in B. If µ is closed regular then for every δ > 0, there exists a closed set F for

which F ⊂ X \ A and µ (X \ A) < µ (F) + δ. Let us define an open set O = X \ F. We

can see that O satisfies O ⊃ A and µ (O) < µ (A) + δ. Hence we conclude that

µ (A) = inf
{
µ (O)

∣∣O ∈ B open,O ⊃ A
}

(B.4)

Definition B.3.6 (Convergence of Probability Measures). Let
{
µ(i)
}
i∈N and µ be a se-

quence of probability measures and a probability measure defined on (X,B), respec-

tively, and Cb (X) be the set of all bounded, continuous, real-valued functions on X. The

sequence is said to weakly converge to µ if it holds that

lim
i→∞

∫
g dµ(i) =

∫
g dµ

for every g in Cb (X). We denote the weak convergence as µ(i) w−→ µ.

Definition B.3.7. Let
{
µ(i)
}
i∈N be a sequence of probability measures defined on (X,B).

The probability measures are said to be uniformly tight if for each ε > 0, there exists a

compact subset K of (X, T ) for which µ(i) (K) > 1− ε holds for all i in N.

A subset A of X is said to be a µ-continuity set if its boundary set has the zero

measure with respect to µ, i.e., µ (bd (A)) = 0. The following is the portmanteau theorem

(See Theorem 11.1.1 in [93]).
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Theorem B.3.8. For a sequence
{
µ(i)
}
i∈N of probability measures and a probability mea-

sure µ on (X,B), the following are equivalent:

1. µ(i) w−→ µ

2. lim supi→∞ µ
(i) (F) ≤ µ (F) for any closed subset F of X

3. lim infi→∞ µ
(i) (O) ≥ µ (O) for any open subset O of X

4. limi→∞ µ
(i) (A) = µ (A) for all µ-continuity subset A of X.

Based on Remark 3.2.11, we can state the following Lemma.

Lemma B.3.9. Given estimates x̂k:N , let Pk:N be non-degenerate policies satisfying

Pk:N ∈P (x̂k:N). Consider compact sets {Kj}Nj=k given by1

Kj =
{
x ∈ X

∣∣∣ d2 (x, x̂j) ≤ c′j

}
(B.5)

Then under the policies Pk:N it holds that

P
(
xj ∈ Kj

∣∣∣Rk = 0, · · · ,Rj = 0
)

= 1 (B.6)

for all j in {k, · · · , N}.

The proof follows from the fact that for each j in {k, · · · , N}, Kj contains the set

Dj defined in (3.27a) and Remark 3.2.11-1.

Remark B.3.10. Given policies Pk:N , for each j in {k, · · · , N}, let us define

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

(B.7a)

µj|j−1 (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(B.7b)

1Due to the properness assumption on the metric space (X, d) , every closed ball is a compact set.
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where A belongs to B. Then, the probability measure of the process {xj}Nj=k evolves as

follows:

1. Policy update:

µj|j (A) =

∫
A P
(
Rj = 0

∣∣xj = x,Rk = 0, · · · ,Rj−1 = 0
)

dµj|j−1

P
(
Rj = 0

∣∣Rk = 0, · · · ,Rj−1 = 0
)

provided

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

=

∫

X
P
(
Rj = 0

∣∣xj = x,Rk = 0, · · · ,Rj−1 = 0
)

dµj|j−1 > 0

where P
(
Rj = 0

∣∣xj = x,Rk = 0, · · · ,Rj−1 = 0
)

is the probability specified by

the given policy Pj , i.e.,

P
(
Rj = 0

∣∣xj = x,Rk = 0, · · · ,Rj−1 = 0
)

= P
(
Pj (xj) = 0

∣∣∣xj = x
)

2. Process update:

µj|j−1 (A) =

∫

X
pj (x,A) dµj−1|j−1

where pj is the transition probability of the process {xj}Nj=k.

B.4 Proof of Proposition 3.2.14

To start with, we note that for each j in {k, · · · , N}, Gj can be written as follows:

Gj (xj−1, x̂j:N) = Exj

[
min

{
d2 (xj, x̂j) + Gj+1 (xj, x̂j+1:N) , c′j

} ∣∣∣xj−1 = xj−1

]

with GN+1 = 0.
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We prove the Proposition by induction. First, notice that since GN+1 = 0, it is

a continuous function. Suppose that Gj+1 is a continuous function. To show that Gj is

continuous, we rewrite Gj as follows:

Gj (xj−1, x̂j:N) = Exj

[
g (xj, x̂j:N)

∣∣xj−1 = xj−1

]
(B.8)

where g(x, x̂j:N) = min
{
d2 (x, x̂j) + Gj+1 (x, x̂j+1:N) , c′j

}
. Note that g is a continuous

function.

To verify the continuity of Gj , let {x(i)
j−1}i∈N and {x̂(i)

j:N}i∈N be sequences that con-

verge to xj−1 and x̂j:N , respectively. For each set A in B, let us define

µ
(i)
j (A) = P

(
xj ∈ A

∣∣∣xj−1 = x
(i)
j−1

)
(B.9)

µj (A) = P
(
xj ∈ A

∣∣∣xj−1 = xj−1

)
(B.10)

By Assumption 3.1.5-2 and Theorem B.3.8,
{
µ

(i)
j

}
i∈N

weakly converges to µj . Since

(X, d) is a complete, separable metric space (see Assumption 3.1.4), by the Skorokhod

representation theorem [94], there exist a sequence of random variables
{
y

(i)
j

}
i∈N

and

a random variable yj all defined on a common probability space (Ω,F, ν) in which the

following three facts are true:

(F1) µ(i)
j is the probability measure of y(i)

j , i.e., ν
({
ω ∈ Ω

∣∣∣y(i)
j (ω) ∈ A

})
= µ

(i)
j (A)

for each A in B.

(F2) µj is the probability measure of yj , i.e., ν
({
ω ∈ Ω

∣∣∣yj(ω) ∈ A
})

= µj (A) for

each A in B.

(F3)
{
y

(i)
j

}
i∈N

converges to yj almost surely.
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From (F1) and (F2), we can derive

Gj
(
x

(i)
j−1, x̂

(i)
j:N

)
− Gj (xj−1, x̂j:N)

= Exj

[
g
(
xj, x̂

(i)
j:N

) ∣∣∣xj−1 = x
(i)
j−1

]
− Exj

[
g (xj, x̂j:N)

∣∣∣xj−1 = xj−1

]

=

∫

Ω

g
(
y

(i)
j (ω), x̂

(i)
j:N

)
dν −

∫

Ω

g (yj(ω), x̂j:N) dν (B.11)

Notice that by the fact that c′j is a fixed constant, the sequence
{
g
(
y

(i)
j (·), x̂(i)

j:N

)}
i∈N

is uniformly bounded. i.e., for every ω ∈ Ω , it holds that g
(
y

(i)
j (ω), x̂

(i)
j:N

)
≤ c′j for all i

in N.2 Also, by the continuity of g and (F3), it holds that

lim
i→∞

g
(
y

(i)
j (ω), x̂

(i)
j:N

)
= g (yj(ω), x̂j:N)

for almost every ω in Ω. Using the bounded convergence theorem (see Theorem 16.5

in [116]), we have that

lim
i→∞

∣∣∣Gj
(
x

(i)
j−1, x̂

(i)
j:N

)
− Gj (xj−1, x̂j:N)

∣∣∣

= lim
i→∞

∣∣∣∣
∫

Ω

g
(
y

(i)
j (ω), x̂

(i)
j:N

)
dν −

∫

Ω

g (yj(ω), x̂j:N) dν

∣∣∣∣ = 0

Finally, by induction, we conclude that the functions {Gj}Nj=k are all continuous. �

B.5 Proofs of Proposition 3.2.16 and Lemma 3.2.18

Lemma B.5.1. For each j0 in {k, · · · , N}, there exist estimates x̂j0:N for which the set

given by

Dj0
=
{
xj0 ∈ X

∣∣∣ d2 (xj0 , x̂j0) + Exj0+1

[
J∗j0+1 (xj0+1, x̂j0+1:N)

∣∣∣xj0 = xj0

]
< c′j0

}

(B.12)

is non-empty, where J∗j0+1 is defined in (3.25).
2Note that g is a non-negative function.
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Proof. Recall how
{
c′j
}N
j=k

are determined by (3.8) with the solutions
{
T <j−1>
j:N

}N
j=k+1

and
{
E<j−1>
j:N

}N
j=k+1

to the preceding sub-problems – Sub-problem k+1 to Sub-problemN .

Let us fix xj0 in X. Under the choice of x̂j0 = xj0 and x̂l = E<j0>l (xj0) for each l in

{j0 + 1, · · · , N}, by a similar argument as in Remark 3.2.2, we can see that

Exj0+1

[
J∗j0+1 (xj0+1, x̂j+1:N)

∣∣∣xj0 = xj0

]
= Exj0+1

[
J∗j0+1

(
xj0+1, x̂

′
j0+1:N

) ∣∣∣xj0 = 0
]

where x̂′l = E<j0>l (0) for each l in {j0 + 1, · · · , N}. Hence, at xj0 = x̂j0 , it holds that

d2 (xj0 , x̂j0) + Exj0+1

[
J∗j0+1 (xj0+1, x̂j0+1:N)

∣∣∣xj0 = xj0

]

= Exj0+1

[
J∗j0+1 (xj0+1, x̂j0+1:N)

∣∣∣xj0 = xj0

]

< cj0 + Exj0+1

[
J∗j0+1 (xj0+1, x̂j0+1:N)

∣∣∣xj0 = xj0

]

= cj0 + Exj0+1

[
J∗j0+1

(
xj0+1, x̂

′
j0+1:N

) ∣∣∣xj0 = 0
]

= c′j0

This proves the Lemma.

Proof of Proposition 3.2.16: By contradiction, suppose that x̂∗k:N is a global minimizer

of (3.31) in which the policies P∗k:N satisfying P∗k:N ∈ P (x̂∗k:N) are degenerate. Let

j0 ∈ {k, · · · , N} be the smallest integer for which

P
(
R∗j0 = 0

∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
)

= 0 (B.13)

holds. Since j0 is the smallest such integer, by Remark B.3.10, the probability measure

µj0|j0−1 of xj0 is well-defined.

Using Lemma B.5.1, let us choose x̂oj0:N ∈ XN−j0+1 for which the set given by

Dj0
=
{
xj0 ∈ X

∣∣∣ d2
(
xj0 , x̂

o
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣xj0 = xj0

]
< c′j0

}

(B.14)
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is non-empty. Note that according to Corollary 3.2.15, the set Dj0
is open; hence, from

Assumption 3.1.5-1 and Remark B.3.10-2, we have that

P
(
xj0 ∈ Dj0

∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
)
> 0 (B.15)

Consider functions Poj0:N defined as

Poj (xj) =





0 if xj ∈ Dj

1 otherwise

where

Dj =
{
xj ∈ X

∣∣∣ d2
(
xj, x̂

o
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

o
j+1:N

) ∣∣∣xj = xj

]
< c′j

}

Let us select new policies P ′k:N and estimates x̂′k:N as follows:

P ′j =





P∗j for j ∈ {k, · · · , j0 − 1}

Poj for j ∈ {j0, · · · , N}

x̂′j =





x̂∗j for j ∈ {k, · · · , j0 − 1}

x̂oj for j ∈ {j0, · · · , N}

By definition, under the new policies P ′k:N , it holds that

P
(
xj0 ∈ Dj0

∣∣∣R′k = 0, · · · ,R′j0 = 1
)

= 0 (B.16)

which implies that

P
(
xj0 ∈ Dj0

∣∣∣R′k = 0, · · · ,R′j0−1 = 0
)

= P
(
xj0 ∈ Dj0

∣∣∣R′k = 0, · · · ,R′j0 = 0
)
· P
(
R′j0 = 0

∣∣∣R′k = 0, · · · ,R′j0−1 = 0
)

(B.17)
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By the fact that P ′j = P∗j for j in {k, · · · , j0 − 1}, from (B.15) and (B.17), we can see

that

P
(
R′j0 = 0

∣∣∣R′k = 0, · · · ,R′j0−1 = 0
)
> 0 (B.18)

Due to (B.13), from Remark 3.2.8, we can see that

Exj0

[
Jj0
(
xj0 ,P∗j0:N , x̂

∗
j0:N

) ∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
]

= c′j0

While, by the way new policies and estimates are defined for j in {j0, · · · , N}, using

(3.14) and (B.18), we can see that

Exj0

[
Jj0
(
xj0 ,P ′j0:N , x̂

′
j0:N

) ∣∣∣R′k = 0, · · · ,R′j0−1 = 0
]

= Exj0

[
J∗j0
(
xj0 , x̂

′
j0:N

) ∣∣∣R′k = 0, · · · ,R′j0−1 = 0
]
< c′j0

These relations imply that

Exj0

[
Jj0
(
xj0 ,P ′j0:N , x̂

′
j0:N

) ∣∣∣R′k = 0, · · · ,R′j0−1 = 0
]

< Exj0

[
Jj0
(
xj0 ,P∗j0:N , x̂

∗
j0:N

) ∣∣∣R∗k = 0, · · · ,R∗j0−1 = 0
]

Using the facts that P ′j = P∗j and x̂′j = x̂∗j for j in {k, · · · , j0 − 1}, and j0 is the smallest

integer for which (B.13) holds, from (3.14), we can infer that

G (x̂′k:N) ≤ Exk [Jk (xk,P ′k:N , x̂
′
k:N)] < Exk [Jk (xk,P∗k:N , x̂

∗
k:N)] = G (x̂∗k:N)

which violates the optimality of the global minimizer. Therefore, the global minimizer

has to be non-degenerate. �

Lemma B.5.2. Consider policies
{
P (i)
k:N

}
i∈N

and estimates
{
x̂

(i)
k:N

}
i∈N

that satisfy

P (i)
k:N ∈P

(
x̂

(i−1)
k:N

)
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Suppose that the policies are strictly non-degenerate, i.e., there exists ε > 0 for which

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)
≥ ε (B.19)

holds for all i in N and j in {k, · · · , j0}. Then the sequence
{
x̂

(i)
j

}
i∈N

is bounded for all

j in {k, · · · , j0}.

Proof. By contradiction, suppose that there exists j′ in {k, · · · , j0} such that for a subse-

quence
{
x̂

(il−1)
j′

}
l∈N

of
{
x̂

(i)
j′

}
i∈N

, it holds that

d
(

0, x̂
(il−1)
j′

)
l→∞−→ ∞ (B.20)

For each l in N, let us choose a compact set K(il)
j′ =

{
x ∈ X

∣∣∣ d2
(
x, x̂

(il−1)
j′

)
≤ c′j

}
.

Then, according to Lemma B.3.9, under the policies
{
P (il)
k:N

}
l∈N

, it holds that

P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′ = 0
)

= 1 (B.21)

for all l in N. Using (B.19), we can derive the following:

P
(
R

(il)
j′ = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

=
P
(
R

(il)
j′ = 0

∣∣∣xj′ ∈ K(il)
j′ ,R

(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′ = 0
)

· P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

≤ P
(
xj′ ∈ K(il)

j′

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

=
P
(
xj′ ∈ K(il)

j′ ,R
(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

∏j′−1
j=k P

(
R

(il)
j = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j−1 = 0
)

≤ εk−j′ · P
(
xj′ ∈ K(il)

j′

)
(B.22)

holds for all l in N. Hence, by Lemma B.3.2 and (B.20), we can see that

lim
l→∞

P
(
xj′ ∈ K(il)

j′

)
= 0 (B.23)
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In conjunction with (B.22), we conclude that

lim
l→∞

P
(
R

(il)
j′ = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j′−1 = 0
)

= 0 (B.24)

This contradicts the fact that (B.19) holds for all j in {k, · · · , j0}.

Proof of Lemma 3.2.18: For a positive real r, let us define

Kr
def
=
{
x̂k:N ∈ XN−k+1

∣∣∣ d (0, x̂j) ≤ r for all j in {k, · · · , N}
}

(B.25)

To prove the Lemma, it is sufficient to show that there exists r > 0 for which with

K = Kr, the statement of the Lemma is true. By contradiction, suppose that there exists

a sequence
{
x̂

(i)
k:N

}
i∈N
⊂ XN−k+1 that satisfies the following hypotheses:

(H1) For each element x̂(i)
k:N of the sequence, it holds that x̂(i)

k:N /∈ Ki.

(H2) For every x̂k:N in Ki, it holds that G (x̂k:N) > G
(
x̂

(i)
k:N

)
.

We constructively show that the hypothesis (H2) is violated for sufficiently large i

in N. To proceed, let us select policies
{
P (i)
k:N

}
i∈N

that satisfy P (i)
k:N ∈ P

(
x̂

(i−1)
k:N

)
. Let

j0 ∈ {k, · · · , N} be the smallest integer such that there is a subsequence
{
P (il)
k:j0

}
l∈N

of
{
P (i)
k:j0

}
i∈N

satisfying3

lim
l→∞

P
(
R

(il)
j0

= 0
∣∣∣R(il)

k = 0, · · · ,R(il)
j0−1 = 0

)
= 0 (B.26)

Note that according to (3.14), (B.26) implies that

lim
l→∞

Exj0

[
Jj0

(
xj0 ,P

(il)
j0:N , x̂

(il−1)
j0:N

) ∣∣∣R(il)
k = 0, · · · ,R(il)

j0−1 = 0
]

= c′j0 (B.27)

3Such j0 always exists; otherwise according to Lemma B.5.2, the sequence
{
x̂
(i)
k:N

}
i∈N

is bounded,

which violates (H1).
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Also, according to Lemma B.5.2, the sequence
{
x̂

(i)
j

}
i∈N

is bounded for all j in {k, · · · , j0 − 1}.

Using Lemma B.5.1, let us choose x̂oj0:N ∈ XN−j0+1 for which the set given by

Dj0
=
{
xj0 ∈ X

∣∣∣ d2
(
xj0 , x̂

o
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣xj0 = xj0

]
< c′j0

}

(B.28)

is non-empty, where J∗j0+1 is defined in (3.25). Note that by Proposition 3.2.14

d2
(
xj0 , x̂

o
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣xj0 = xj0

]

is a continuous function of xj0 . Hence, for some ε > 0, the set defined by

B =
{
xj0 ∈ X

∣∣∣ d2
(
xj0 , x̂

o
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣xj0 = xj0

]
< c′j0 − ε

}

(B.29)

is non-empty and open.

Consider functions Poj0:N defined as

Poj (xj) =





0 if xj ∈ Dj

1 otherwise

where

Dj =
{
xj ∈ X

∣∣∣ d2
(
xj, x̂

o
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

o
j+1:N

) ∣∣∣xj = xj

]
< c′j

}

Let us select sequences of policies
{
P ′(i)k:N

}
i∈N

and estimates
{
x̂
′(i)
k:N

}
i∈N

as follows:

P ′(i)j =





P (i)
j for j ∈ {k, · · · , j0 − 1}

Poj for j ∈ {j0, · · · , N}

x̂
′(i)
j =





x̂
(i)
j for j ∈ {k, · · · , j0 − 1}

x̂oj for j ∈ {j0, · · · , N}
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We argue that for sufficiently large i, it holds that x̂′(i−1)
k:N ∈ Ki−1 and G

(
x̂
′(i−1)
k:N

)
< G

(
x̂

(i−1)
k:N

)
.

This contradicts the hypothesis (H2), and completes the proof of the Lemma. In what fol-

lows, we show that this argument is valid.

Since the sequence
{
x̂

(i−1)
j0−1

}
i∈N

is bounded, by Lemma B.3.9, and by the fact that

P ′(i)j = P (i)
j for i in N and j in {k, · · · , j0 − 1}, there exists a compact set Kj0−1 for

which

P
(
xj0−1 ∈ Kj0−1

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

= P
(
xj0−1 ∈ Kj0−1

∣∣∣R(i)
k = 0, · · · ,R(i)

j0−1 = 0
)

= 1

holds for all i in N. Hence, due to Assumption 3.1.5 and the compactness of Kj0−1, for

some δj0 > 0, it holds that

P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

=

∫

Kj0−1

pj0 (x,B) dµ
′(i)
j0−1|j0−1 ≥ δj0 · µ′(i)j0−1|j0−1 (Kj0−1) = δj0 (B.30)

for all i in N, where the set B is given in (B.29) and the probability measure µ′(i)j0−1|j0−1 is

defined as

µ
′(i)
j0−1|j0−1 (A) = P

(
xj0−1 ∈ A

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

for each A in B.

Since the sequence
{
x̂

(i−1)
j

}
i∈N

is bounded for all j in {k, · · · , j0 − 1}, for suf-

ficiently large i, we can see that x̂′(i−1)
k:N ∈ Ki−1. In addition, by the way the policies

{
P ′(i)k:N

}
i∈N

and estimates
{
x̂
′(i)
k:N

}
i∈N

are defined, using (3.14), (B.29) and (B.30), we

can derive the following relations:

Exj0

[
Jj0

(
xj0 ,P

′(i)
j0:N , x̂

′(i−1)
j0:N

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
]
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=
(
Exj0

[
d2
(
xj0 , x̂

o
j0

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0
= 0
]

+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0
= 0
] )

· P
(
R
′(i)
j0

= 0
∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0

)

+ c′j0 ·
(

1− P
(
R
′(i)
j0

= 0
∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0

))

(1)

≤
(
Exj0

[
d2
(
xj0 , x̂

o
j0

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0,xj0 ∈ B
]

+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0,xj0 ∈ B
] )

· P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

+ c′j0 ·
(

1− P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
))

(2)
<
(
c′j0 − ε

)
· P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
)

+ c′j0 ·
(

1− P
(
xj0 ∈ B

∣∣∣R′(i)k = 0, · · · ,R′(i)j0−1 = 0
))

(3)

≤ c′j0 − ε · δj0 (B.31)

holds for all i in N. To obtain (1), we use the fact that

d2
(
xj0 , x̂

o
j0

)
+ Exj0+1

[
J∗j0+1

(
xj0+1, x̂

o
j0+1:N

) ∣∣∣xj0
]
< c′j0

if R′(i)j0
= 0 (or equivalently xj0 ∈ Dj0

), and B is a subset of Dj0
; whereas (2) and (3)

follow from (B.29) and (B.30), respectively. By a similar argument as in the proof of

Proposition 3.2.16, from (B.27) and (B.31), we can observe that for sufficiently large i,

there exists x̂(i−1)
k:N in Ki−1 for which it holds that

G
(
x̂
′(i−1)
k:N

)
≤ Exk

[
Jk

(
xk,P ′(i)k:N , x̂

′(i−1)
k:N

)]
< Exk

[
Jk

(
xk,P (i)

k:N , x̂
(i−1)
k:N

)]
= G

(
x̂

(i−1)
k:N

)

�
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B.6 Proof of Lemma 3.2.24

Lemma B.6.1. Let
{
x̂

(i)
k:N

}
i∈N

be a sequence of estimates that converges to x̂k:N . The

following hold for all j in {k, · · · , N}:

Dj ⊃
⋂

i∈N

⋃

l≥i

D(l)

j (B.32a)

Dj ⊂
⋃

i∈N

⋂

l≥i

D(l)
j (B.32b)

where

Dj =
{
xj ∈ X

∣∣∣ d2 (xj, x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N)

∣∣∣xj = xj

]
≤ c′j

}

Dj =
{
xj ∈ X

∣∣∣ d2 (xj, x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N)

∣∣∣xj = xj

]
< c′j

}

and

D(i)

j =
{
xj ∈ X

∣∣∣ d2
(
xj, x̂

(i)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i)
j+1:N

) ∣∣∣xj = xj

]
≤ c′j

}

D(i)
j =

{
xj ∈ X

∣∣∣ d2
(
xj, x̂

(i)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i)
j+1:N

) ∣∣∣xj = xj

]
< c′j

}

where J∗j+1 is defined in (3.25).

Proof. Let xj be an element of
⋂
i∈N
⋃
l≥iD

(l)

j . By definition, there exists an infinite index

set {il}l∈N for which xj ∈ D(il)

j holds for all l in N. Hence, we can see that

d2
(
xj, x̂

(il)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(il)
j+1:N

) ∣∣∣xj = xj

]
≤ c′j (B.33)

holds for all l in N. Using Proposition 3.2.14 and by the fact that
{
x̂

(i)
k:N

}
i∈N

converges to

x̂k:N , we can derive

d2 (xj, x̂j) + Exj+1

[
J∗j+1 (xj+1, x̂j+1:N)

∣∣∣xj = xj

]
≤ c′j (B.34)
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which shows that xj ∈ Dj . This proves (B.32a).

To show that (B.32b) is true, we consider

Dc
j ⊃

⋂

i∈N

⋃

l≥i

(
D(l)
j

)c
(B.35)

As the rest of the proof is similar to the above arguments, we omit the detail for brevity.

Proof of Lemma 3.2.24: Under the policies
{
P (i)
k:N

}
i∈N

, let us define

µ
(i)
j|j−1 (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(B.36a)

µ
(i)
j|j (A) = P

(
xj ∈ A

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

(B.36b)

for each i in N and j in {k, · · · , N}, where A belongs to B. Since
{
x̂

(i−1)
k:N

}
i∈N

is a

convergent sequence, according to Lemma B.3.9, there exist compact subsets {Kj}Nj=k

for which

µ
(i)
j|j (Kj) = 1 (B.37)

holds for all i in N and j in {k, · · · , N}. Hence, the probability measures
{
µ

(i)
j|j

}
i∈N

are

uniformly tight in the sense of Definition B.3.7 for all j in {k, · · · , N}. According to

Theorem 11.5.4 in [93], for each j in {k, · · · , N}, there exists a subsequence
{
µ

(il)
j|j

}
l∈N

of
{
µ

(i)
j|j

}
i∈N

that weakly converges to a probability measure µj|j . In addition, since

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1

)
takes a value in a compact set [ε, 1], for an infinite

index set {il}l∈N, it holds that

lim
l→∞

P
(
R

(il)
j = 0

∣∣∣R(il)
k = 0, · · · ,R(il)

j−1 = 0
)

= qj
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where qj takes a value in [ε, 1]. For these reasons, without loss of generality, we prove the

Lemma under the following assumptions: For each j in {k, · · · , N},

(F1) There exists a probability measure µj|j such that µ(i)
j|j

w−→ µj|j holds.

(F2) limi→∞ P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

= qj whose value belongs to [ε, 1].

We proceed by showing that there exist policies Pk:N for which

(A1) For every A in B, it holds that

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

(B.38a)

and

qj = P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(B.38b)

where Rj is dictated by Pj for each j in {k, · · · , N}.

(A2) Pk:N belongs to P (x̂′k:N), where x̂′k:N is the limit of
{
x̂

(i−1)
k:N

}
i∈N

.

For our purpose, we define

Dj =
{
xj ∈ X

∣∣∣ d2
(
xj, x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj = xj

]
≤ c′j

}
(B.39a)

Dj =
{
xj ∈ X

∣∣∣ d2
(
xj, x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj = xj

]
< c′j

}
(B.39b)

and

D(i)

j =
{
xj ∈ X

∣∣∣ d2
(
xj, x̂

(i−1)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i−1)
j+1:N

) ∣∣∣xj = xj

]
≤ c′j

}

(B.40a)

D(i)
j =

{
xj ∈ X

∣∣∣ d2
(
xj, x̂

(i−1)
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

(i−1)
j+1:N

) ∣∣∣xj = xj

]
< c′j

}

(B.40b)
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for each i in N and j in {k, · · · , N}, where J∗j+1 is defined in (3.25). Note that according

to Corollary 3.2.15, the sets (B.39a) and (B.40a) are closed, and the sets (B.39b) and

(B.40b) are open.

We first make the following two claims to show that (A1) is true.

Claim 1: For each A in B, let us define

µj|j−1 (A)
def
=

∫

X
pj (x,A) dµj−1|j−1 (B.41)

where pj is the transition probability of the process {xj}Nj=k. Then, µj|j−1 is a probability

measure on (X,B), and the following holds:

lim
i→∞

µ
(i)
j|j−1 (A) = µj|j−1 (A)

for all A in B.

To prove the claim, based on Remark B.3.10-2, we note that

µ
(i)
j|j−1 (A) =

∫

X
pj (x,A) dµ

(i)
j−1|j−1 (B.42)

holds for each A in B, and by definition, for each x in X, A 7→ pj(x,A) is a prob-

ability measure on (X,B). In conjunction with Assumption 3.1.5-2, we can see that

x 7→ pj (x,A) is a bounded, continuous function. Hence, using (F1), we have that

lim
i→∞

µ
(i)
j|j−1 (A) = lim

i→∞

∫

X
pj (x,A) dµ

(i)
j−1|j−1

=

∫

X
pj (x,A) dµj−1|j−1 = µj|j−1 (A) (B.43)

Lastly, the claim that µj|j−1 is a probability measure on (X,B) follows from the

fact that A 7→ pj(x,A) is a probability measure on (X,B). �
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Claim 2: There exists a measurable function fj : X→ [0, 1] for which

µj|j (A) =

∫
A fj dµj|j−1

qj
(B.44)

holds for all A in B, where µj|j−1 is defined in (B.41).

Based on Lemma B.3.8 and Remark B.3.10-1, for any open set O, we can see that

the following relations hold:

µj|j (O) ≤ lim inf
i→∞

µ
(i)
j|j (O)

(1)

≤ lim
i→∞

µ
(i)
j|j−1 (O)

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(2)
=
µj|j−1 (O)

qj
(B.45)

where (1) follows from Remark B.3.10-1, and (2) follows from Claim 1 and (F2). We

argue that

µj|j (A) ≤ µj|j−1 (A)

qj
(B.46)

holds for any set A in B. To justify the argument, by contradiction, suppose that for a set

A in B it holds that

µj|j (A) >
µj|j−1 (A)

qj
(B.47)

By the closed regularity theorem (see Theorem 7.1.3 in [93]) and Remark B.3.5, we can

choose an open set O containing A for which

µj|j (O) ≥ µj|j (A) >
µj|j−1 (O)

qj

≥ µj|j−1 (A)

qj
(B.48)

holds. This contradicts (B.45).
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Notice that (B.46) implies that µj|j is absolutely continuous with respect to µj|j−1.

According to the Radon-Nikodym theorem, there is a measurable function fj : X → R+

for which

µj|j (A) =

∫
A fj dµj|j−1

qj
(B.49)

holds for all A in B. In addition, it can be verified that fj(x) ≤ 1 for almost every x in

X; otherwise (B.46) would be violated. �

Proof of (A1): Define policies Pk:N as follows:

P
(
Pj(xj) = 0

∣∣∣xj = x
)

= fj(x) (B.50)

Then we can verify that under the policies Pk:N

P
(
Rj = 0

∣∣∣xj = x,Rk = 0, · · · ,Rj−1 = 0
)

= fj(x)

and from (B.49), we have that

µj|j (A) =

∫
A P
(
Rj = 0

∣∣∣xj = x,Rk = 0, · · · ,Rj−1 = 0
)

dµj|j−1

qj
(B.51)

Since it holds that µk|k−1 (A) = P (xk ∈ A), from (B.51), we can see that

qk = P (Rk = 0)

Hence, in conjunction with Remark B.3.10-1, we can see that

µk|k (A) = P
(
xk ∈ A

∣∣Rk = 0
)

Then, using (B.41) and Remark B.3.10-2, we can observe that

µk+1|k (A) = P
(
xk+1 ∈ A

∣∣Rk = 0
)
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By repeating this verification for each j in {k, · · · , N}, we conclude that

µj|j (A) = P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

and

qj = P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

hold for all j in {k, · · · , N}. �

Henceforth, we make two additional claims under the policies Pk:N determined as

in (B.50) to show that (A2) is valid.

Claim 3: For any Borel measurable subset A contained in Dc

j , it holds that

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 0
)

= 0

To prove the claim, let O be an open set contained in Dc

j . By Remark 3.2.11-1 and

Remark B.3.10-1, we can derive the following:

µ
(i)
j|j (O) = µ

(i)
j|j

(
O ∩ D(i)

j

)
≤

µ
(i)
j|j−1

(
O ∩ D(i)

j

)

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
) (B.53)

By applying Lemma B.3.8, we obtain

µj|j (O) ≤ lim inf
i→∞

µ
(i)
j|j (O)

≤ lim inf
i→∞

µ
(i)
j|j−1

(
O ∩ D(i)

j

)

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

≤ lim inf
i→∞

µ
(i)
j|j−1

(
O ∩

(⋃
l≥iD

(l)

j

))

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(1)

≤
µj|j−1

(
O ∩

(⋃
l≥i0 D

(l)

j

))

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
) (B.54)
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holds for all i0 in N, where (1) follows from Claim 1, (A1), and the fact that
{⋃

l≥iD
(l)

j

}
i∈N

is a decreasing sequence of measurable sets. Hence, from Lemma B.6.1, we have that

µj|j (O) ≤
µj|j−1

(
O ∩

(⋂
i∈N
⋃
l≥iD

(l)

j

))

P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
) = 0 (B.55)

Since Dc

j is an open set, by selecting O = Dc

j , we conclude that

µj|j (A) ≤ µj|j
(
Dc

j

)
= 0 (B.56)

holds for every Borel measurable subset A of Dc

j . �

Claim 4: Suppose that P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)
> 0. Then, for any Borel

measurable subset A contained in Dj , it holds that

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0

To prove the claim, let F be a closed set contained in Dj . Notice that by Re-

mark 3.2.11-2

P
(
xj ∈ F ∩ D(i)

j

∣∣∣R(i)
k = 0, · · · ,R(i)

j = 0
)

=
P
(
xj ∈ F ∩ D(i)

j

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

P
(
R

(i)
j = 0

∣∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
) (B.57)

174



Using (B.57) and Theorem B.3.8, we can derive the following:

µj|j (F) ≥ lim sup
i→∞

µ
(i)
j|j (F)

≥ lim sup
i→∞

µ
(i)
j|j

(
F ∩ D(i)

j

)

= lim sup
i→∞

µ
(i)
j|j−1

(
F ∩ D(i)

j

)

P
(
R

(i)
j = 0

∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

≥ lim sup
i→∞

µ
(i)
j|j−1

(
F ∩

(⋂
l≥iD

(l)
j

))

P
(
R

(i)
j = 0

∣∣R(i)
k = 0, · · · ,R(i)

j−1 = 0
)

(1)

≥
µj|j−1

(
F ∩

(⋂
l≥i0 D

(l)
j

))

P
(
Rj = 0

∣∣Rk = 0, · · · ,Rj−1 = 0
) (B.58)

holds for all i0 in N, where (1) follows from Claim 1, (A1), and the fact that
{⋂

l≥iD
(l)
j

}
i∈N

is an increasing sequence of measurable sets. Hence, from Lemma B.6.1, we have that

µj|j (F) ≥
µj|j−1

(
F ∩

(⋃
i∈N
⋂
l≥iD

(l)
j

))

P
(
Rj = 0

∣∣Rk = 0, · · · ,Rj−1 = 0
)

=
µj|j−1 (F)

P
(
Rj = 0

∣∣Rk = 0, · · · ,Rj−1 = 0
) (B.59)

Using this relation, we can see that

µj|j−1 (F)

= P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

= P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 0
)
· P
(
Rj = 0

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

+ P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 1
)
· P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

≥ µj|j−1 (F)

+ P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 1
)
· P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)

(B.60)
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Using the fact that P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)
> 0, we can derive that

P
(
xj ∈ F

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0 (B.61)

From the closed regularity theorem (see Theorem 7.1.3 in [93]), for any Borel measurable

set A contained in Dj , we obtain

P
(
xj ∈ A

∣∣∣Rk = 0, · · · ,Rj = 1
)

= 0 (B.62)

�

Proof of (A2): Recall the definitions of

Exj

[
Jj
(
xj,Pj:N , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

and J∗j given in (3.14) and (3.25), respectively.

For j = N , using Claim 3 and Claim 4, we can derive the following:

ExN

[
d2 (xN , x̂

′
N)
∣∣∣Rk = 0, · · · ,RN = 0

]

= ExN

[
min

{
d2 (xN , x̂

′
N) , c′N

} ∣∣∣Rk = 0, · · · ,RN = 0
]

(B.63a)

and

c′N = ExN

[
min

{
d2 (xN , x̂

′
N) , c′N

} ∣∣∣Rk = 0, · · · ,RN = 1
]

(B.63b)

provided that P
(
RN = 1

∣∣∣Rk = 0, · · · ,RN−1 = 0
)
> 0. From (3.14), (3.25), and

(B.63), we can derive that

ExN

[
JN (xN ,PN , x̂

′
N)
∣∣∣Rk = 0, · · · ,RN−1 = 0

]

= ExN

[
J∗N (xN , x̂

′
N)
∣∣∣Rk = 0, · · · ,RN−1 = 0

]
(B.64)
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Suppose that

Exj+1

[
Jj+1

(
xj+1,Pj+1:N , x̂

′
j+1:N

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

= Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

(B.65)

holds. Then, using Claim 3 and Claim 4, we can derive the following:

Exj

[
d2
(
xj , x̂

′
j

)
+ Exj+1

[
Jj+1

(
xj+1,Pj+1:N , x̂

′
j+1:N

) ∣∣∣xj
] ∣∣∣Rk = 0, · · · ,Rj = 0

]

= Exj

[
min

{
d2
(
xj , x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj
]
, c′j

} ∣∣∣Rk = 0, · · · ,Rj = 0
]

= Exj

[
J∗j
(
xj , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj = 0
]

(B.66a)

and

c′j = Exj

[
min

{
d2
(
xj , x̂

′
j

)
+ Exj+1

[
J∗j+1

(
xj+1, x̂

′
j+1:N

) ∣∣∣xj
]
, c′j

} ∣∣∣Rk = 0, · · · ,Rj = 1
]

= Exj

[
J∗j
(
xj , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj = 1
]

(B.66b)

provided that P
(
Rj = 1

∣∣∣Rk = 0, · · · ,Rj−1 = 0
)
> 0. From (3.14), (3.25), and (B.66),

we can derive that

Exj

[
Jj
(
xj,Pj:N , x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

= Exj

[
J∗j
(
xj, x̂

′
j:N

) ∣∣∣Rk = 0, · · · ,Rj−1 = 0
]

(B.67)

By induction, we conclude that (B.67) holds for all j in {k, · · · , N}. By Defini-

tion 3.2.5 and the fact that

min
P ′k:N

Exk [Jk (xk,P ′k:N , x̂
′
k:N)] = Exk [J∗k (xk, x̂

′
k:N)]

it holds that Pk:N ∈P (x̂′k:N). �
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B.7 Proof of Theorem 3.3.1

Notice that under (3.41), the cost-to-go of (3.2) from time k can be written as fol-

lows:

Jk (xk−1,T k:N , Ek:N )

=

N∑

j=k

E
[
d2 (xj , x̂j) + cj ·Rj

∣∣∣xk−1 = xk−1,Rk−1 = 1,T k:N , Ek:N

]

= E

[
K∑

j=k

d2 (xj , x̂j)

+ (cK + JK+1 (xK,T K+1:N , EK+1:N )) ·RK

∣∣∣∣∣xk−1 = xk−1,Rk−1 = 1,T k:N , Ek:N

]

= E

[
K∑

j=k

d2 (xj , x̂j)

+ (cK + JK+1 (xK,T K+1:N , EK+1:N )) ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

]

(B.68)

with JN+1 = 0, where

K =





min
{
j ∈ {k, · · · , N}

∣∣∣Rj = 1
}

if Rj = 1 for some j ∈ {k, · · · , N}

N otherwise

First we consider the case where for each k in {1, · · · , N}, T ∗<k−1>
k:N and E∗<k−1>

k:N

are a jointly optimal solution of Sub-problem k. We will show that for any transmission

polices T 1:N and estimation rules E1:N ,

Jk (xk−1,T ∗k:N , E∗k:N) ≤ Jk (xk−1,T k:N , Ek:N) (B.69)

holds for all xk−1 in X and all k in {1, · · · , N}.
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For k = N , note that (B.68) can be written as

JN (xN−1,T N , EN)

= E
[
d2 (xN , x̂N) + cN ·RN

∣∣∣xN−1 = xN−1,T <N−1>
N , E<N−1>

N

]

By joint optimality of the solution T ∗<N−1>
N and E∗<N−1>

N , we can see that

JN (xN−1,T ∗N , E∗N) ≤ JN (xN−1,T N , EN)

holds for all xN−1 in X.

Suppose that

Jj+1

(
xj,T ∗j+1:N , E∗j+1:N

)
≤ Jj+1 (xj,T j+1:N , Ej+1:N) (B.70)

holds for all xj in X and all j in {k, · · · , N −1}. Let {c′∗j }Nj=k be the stopping costs deter-

mined by (3.8) with the jointly optimal solutions
{
T ∗<j−1>

j:N

}N
j=k+1

and
{
E∗<j−1>

j:N

}N
j=k+1

,

and let {c′j}Nj=k be constants determined by

c′j = cj + inf
xj∈X
Jj+1 (xj,T j+1:N , Ej+1:N) (B.71)

From Remark 3.1.10 and (3.8), we note that the stopping costs
{
c′∗j
}N
j=k

satisfy

c′∗j = cj + Jj+1

(
xj,T ∗k+1:N , E∗k+1:N

)

which does not depend on xj . Then, from (B.68), we can derive the following relations
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for each xk−1 in X:

Jk (xk−1,T ∗k:N , E∗k:N)

= E

[
K∑

j=k

d2 (xj, x̂j) + c′∗K ·RK

∣∣∣∣∣xk−1 = xk−1,T ∗<k−1>
k:N , E∗<k−1>

k:N

]

(1)

≤ E

[
K∑

j=k

d2 (xj, x̂j) + c′∗K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

]

(2)

≤ E

[
K∑

j=k

d2 (xj, x̂j) + c′K ·RK

∣∣∣∣∣xk−1 = xk−1,T <k−1>
k:N , E<k−1>

k:N

]

(3)

≤ Jk (xk−1,T k:N , Ek:N) (B.72)

where (1) follows from the fact that T ∗<k−1>
k:N and E∗<k−1>

k:N are a jointly optimal solution

of Sub-problem k, (2) follows from Remark 3.1.11 and the fact that c′∗j ≤ c′j holds for all

j in {k, · · · , N}, and (3) follows from (B.68) and (B.71).

By induction, we can see that (B.69) holds for all xk−1 in X and all k in {1, · · · , N}.

Hence, we conclude that the solution T ∗1:N and E∗1:N determined by (3.41) is jointly opti-

mal for (3.2).

To prove the statement for person-by-person optimality, we note that for every k in

{1, · · · , N}, with T ∗<k−1>
k:N

(
E∗<k−1>

k:N

)
fixed, E∗<k−1>

k:N

(
T ∗<k−1>

k:N

)
is a global minimizer

of (3.4) for Sub-problem k. By a similar argument as for the joint optimality case, we

can observe that with T ∗k:N fixed, E∗k:N determined by (3.41) minimizes (B.68), and vice

versa for all xk−1 in X and all k in {1, · · · , N}. This proves that T ∗1:N and E∗1:N are

person-by-person optimal for (3.2). �
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Appendix C: Auxiliary Results for Chapter 4

C.1 Proof of Proposition 4.2.4

We proceed by showing that for any C1 function SRD : Rn × X → R+ satisfying

(P1), the condition (P2) does not hold. Then, from Theorem 4.2.3, we conclude that the

replicator dynamics (4.3) are not passive.

Let us re-write (4.3) in the following form:

ẋi =
n∑

j=1

xixj (pi − pj) (C.1)

Note that any C1 function SRD satisfying (P1) should be of the form

SRD(p, x) =
1

4

n∑

i=1

n∑

j=1

xixj(pi − pj)2 + S(x)

where S is a C1 function. By taking a partial derivative of SRD with respect to x, we

obtain

∇T
xSRD(p, x)V (p, x) =







1
2

∑n
j=1 xj(p1 − pj)2

...

1
2

∑n
j=1 xj(pn − pj)2




+∇xS(x)




T 


∑n
j=1 x1xj(p1 − pj)

...

∑n
j=1 xnxj(pn − pj)




181



Let us choose xj = 0 for all j ≥ 3. Then, we obtain

∇TxSRD(p, x)V (p, x) =




1
2x2(p1 − p2)

2 + ∂S
∂x1

(x)

1
2x1(p1 − p2)

2 + ∂S
∂x2

(x)




T 

x1x2(p1 − p2)

−x1x2(p1 − p2)




= −1

2
x1x2(p1 − p2)

[
(x1 − x2)(p1 − p2)

2 + 2

(
∂S

∂x2
(x)− ∂S

∂x1
(x)

)]

Note that for fixed x1, x2 (except for the points at which∇T
xSRD(p, x)V (p, x) = 0 holds

for all p in Rn), there exists p ∈ Rn for which∇T
xSRD(p, x)V (p, x) > 0 holds. Therefore,

the function SRD does not satisfy (P2). Since we made an arbitrary choice of SRD, we

conclude that no C1 function satisfies (P1) and (P2) for the replicator dynamics. �

C.2 Proof of Proposition 4.2.5

We first note that the condition (A) implies so-called the Strict Positive Correla-

tion (SPC) [102] given by

V (p, x) 6= 0 implies pTV (p, x) > 0 (SPC)

Let γ : Rn → R be a C1 function for which (I) holds. It can be verified that γ

satisfies

∇pγ(p̂) = V (p, x) (C.2a)

∇T
x γ(p̂)V (p, x) = −

(
1T%(p̂)

) (
pTV (p, x)

)
(C.2b)

Let us select a candidate storage function as SEPT (p, x) = γ(p̂) where p̂ = p − 1 · pTx.

Due to (C.2a), the function SEPT satisfies (P1). In conjunction with the fact that %(p̂) = 0

implies V (p, x) = 0, due to (SPC) and (C.2b), we can see that (P2) holds for η = 0
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and the equality in (P2) holds only if V (p, x) = 0. According to the statement (S2) in

Theorem 4.2.3, to complete the proof, it remains to show that γ is non-negative.

We argue that the following inequality holds for every p̂ in Rn:

γ(p̂) ≥ γ(0) (C.3)

Then, without loss of generality by setting γ(0) = 0, we conclude that SEPT (p, x) = γ(p̂)

is non-negative. In what follows, we show that (C.3) is valid.

We first claim that (C.3) holds for all (p, x) in S, where S is the set of equilibrium

points of (4.10). Note that for each x in X, due to (SPC), it holds that V (0, x) = 0, i.e.,

0 ∈ Sx. By the fact that ∇pγ(p̂) = V (p, x), for fixed x, the following equality holds for

all p in Rn:

γ (p̂) = γ (0) +

∫ 1

0

ṗT (s)V (p(s), x) ds (C.4)

where p : [0, 1] → R is a parameterization of a piece-wise smooth path from 0 to p.

According the path-connectedness assumption (see Section 4.1.2.2), for each p in Sx,

there is a path from 0 to p in which the entire path is contained in Sx, i.e., V (p(s), x) = 0

holds for all s in [0, 1]; hence

γ (p̂)− γ (0) =

∫ 1

0

ṗT (s)V (p(s), x) ds = 0 (C.5)

holds for every p in Sx. Since (C.5) holds for every (p, x) in S, this proves the claim.

To see that (C.3) also holds for (p, x) in (Rn × X)\S, by contradiction, let us assume

that there is (p′, x′) /∈ S for which SEPT (p′, x′) = γ(p̂′) < γ(0). Let x(·) be a population

state trajectory induced by (4.10) for the initial condition x(0) = x′ and constant payoff

p(t) = p′ for all t in R+. By (SPC) and (C.2b), the value of SEPT (p′, x(t)) is strictly
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decreasing unless V (p′, x(t)) = 0. By the hypothesis that SEPT (p′, x′) < γ(0) and by

(C.5), for every (p, x) in S, it holds that

SEPT (p′, x′) < SEPT (p, x)

and the trajectory (p′, x(·)) never converges to S. On the other hand, by LaSalle’s Theo-

rem [101], since p(t) is constant and the population state x(t) is contained in a compact

set, x(t) converges to an invariant subset of
{
x ∈ X

∣∣∇T
xSEPT (p′, x)V (p′, x) = 0

}
. By

(SPC) and (C.2b), the invariant set is contained in S. This contradicts the fact that the

trajectory (p′, x(·)) does not converge to S; hence γ(p̂) ≥ γ(0) holds for all (p, x) in

(Rn × X) \ S. �

C.3 Proof of Proposition 4.2.7

The analysis used in Theorem 2.1 of [106] suggests that the following hold:

zT∇p

[
max
y∈int(X)

(pTy − v(y))

]
= zTC(p) (C.6a)

zT∇xv(x) = zTp if and only if C(p) = x (C.6b)

for all p in Rn, x in X, and z in TX. Using (C.6), we can show that

∇pSPBR(p, x) = C(p)− x = V (p, x) (C.7)

and

∇T
xSPBR(p, x)V (p, x) = − (p−∇xv(x))T V (p, x)

= − (∇yv(y)−∇xv(x))T (y − x) (C.8)
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where y = C(p). By the fact that v is strictly convex, it holds that∇T
xSPBR(p, x)V (p, x) ≤ 0

where the equality holds only if V (p, x) = 0. According to Theorem 4.2.3, we conclude

that the PBR dynamics are strictly passive.

Furthermore, if the perturbation v is strongly convex, i.e.,

(∇yv(y)−∇xv(x))T (y − x) ≥ η′ · ‖y − x‖2

holds for all x, y in X, then from (C.8), we can derive that

∇T
xSPBR(p, x)V (p, x) ≤ −η′ · ‖V (p, x)‖2 (C.9)

Hence, by Theorem 4.2.3, we conclude that the PBR dynamics are strictly output passive

and satisfies the passivity inequality (4.7) for η = η′. �

C.4 Proof of Proposition 4.2.8

The first part of the statement directly follows from the condition (P1) and the fact

that at a global minimizer (p∗, x∗) of SED, it holds that∇pSED(p∗, x∗) = 0.

Now suppose that the dynamics satisfy (NS). To prove the second statement, it is

sufficient to show that at each equilibrium point (p, x) of (4.2), it holds that SED(p, x) =

0. To this end, let us consider an anti-coordination game whose payoff function is given

by Fxo(x) = −(x − xo) for a fixed xo ∈ X. Notice that xo is a unique Nash equilibrium

of the game. In what follows, we show that SED(po, xo) = 0 holds for any choice of xo

from X and po from Sxo .

Let (p∗, x∗) be a global minimizer of SED, i.e., SED (p∗, x∗) = 0. By the first part

of the statement and (NS), we have that V (s · p∗, x∗) = 0 for all s in R+; hence it holds
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that

SED(0, x∗) = SED(p∗, x∗)−
∫ 1

0

(p∗)T V (s · p∗, x∗) ds = 0

By the continuity of SED, for each ε > 0 there exists δ > 0 for which it holds that

SED (δ · Fxo(x∗), x∗) < ε.

According to the passivity conditions (P1) and (P2) for η = 0, the following relation

holds for every positive constant δ:

d

dt
SED(δ · Fxo(x(t)), x(t))

≤ δ · V T (δ · Fxo(x(t)), x(t))DFx0(x(t))ẋ(t)

= −δ · ‖V (δ · Fxo(x(t)), x(t))‖2 (C.10)

where the trajectory x(·) starts from x∗. By an application of LaSalle’s theorem [101]

and by (NS), we can verify that (δ · Fxo(x(t)), x(t)) converges to (0, xo) as t → ∞. In

addition, due to (C.10), we have that

SED (0, xo) ≤ SED (δ · Fx0(x∗), x∗) < ε

Since this holds for every ε > 0, we conclude that SED(0, xo) = 0. By the fact that

V (s · po, xo) = 0 for all s in R+ if po belongs to Sxo , we can see that

SED(po, xo) = SED(0, xo) +

∫ 1

0

pTo V (s · po, xo) ds = 0 (C.11)

holds for every po in Sxo .

Since the choice of xo from X in constructing the game was arbitrary, we conclude

that (C.11) holds for every (po, xo) in S. This proves the Proposition. �
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C.5 Proof of Proposition 4.2.10

We first construct a game F based on the Hypnodisk game [104], which is described

by the following payoff function:



H1(x1, x2, x3)

H2(x1, x2, x3)

H3(x1, x2, x3)




= cos (θ(x1, x2, x3))




x1 − 1
3

x2 − 1
3

x3 − 1
3




+

√
3

3
sin (θ(x1, x2, x3))




x2 − x3

x3 − x1

x1 − x2




+
1

3




1

1

1




where

θ(x1, x2, x3) = π ·
[

1− b
(

3∑

i=1

∣∣∣∣xi −
1

3

∣∣∣∣
2
)]

and b is a bump function that satisfies

1. b(a) = 1 if a ≤ R2
I

2. b(a) = 0 if a ≥ R2
O

3. b(a) is decreasing if R2
I < a < R2

O

with 0 < RI < RO <
1√
6
. Consider a payoff function F ′ given by

F ′i (x) =





Hi(x1, x2, x3 + · · ·+ xn) if i ∈ {1, 2}

H3(x1, x2, x3 + · · ·+ xn) otherwise

(C.12)

Note that the set of Nash equilibria for F ′ is given by

{
x ∈ X

∣∣∣∣ x1 = x2 = x3 + · · ·+ xn =
1

3

}
(C.13)

187



Since θ is a smooth function, F ′ is continuously differentiable, and its differential map

DF ′ is bounded, i.e., for some δ > 0, it holds that zTDF ′(x)z < δ · zT z for all x in X

and z in TX. Finally, for a given constant ν > 0, we define a new payoff function by

Fν = ν
δ
· F ′.

Using the payoff function Fν , we prove the statement of the Proposition. By con-

tradiction, suppose that there is a payoff monotonic dynamic, i.e., the dynamic satisfies

both (NS) and (PC), that is strictly output passive. By definition, the dynamic satisfies

the passivity inequality (4.7) for η > 0. Consider a population game described by Fν in

which ν < η holds. Then the time derivative of the storage function SED(Fν(x(t)), x(t))

satisfies

d

dt
SED(Fν(x(t)), x(t)) ≤ −(η − ν) · ‖V (Fν(x(t)), x(t))‖

By an application of LaSalle’s theorem [101] and by (NS), we can verify that x(t) con-

verges to the set of Nash equilibria given as in (C.13).

On the other hand, when x(t) is contained in the set
{
x ∈ X

∣∣∣∣∣

(
x1 −

1

3

)2

+

(
x2 −

1

3

)2

+

(
x3 + · · ·+ xn −

1

3

)2

≤ R2
I

}

by the condition (PC), it holds that

F T
ν (x(t))V (Fν(x(t)), x(t))

=
ν

2δ
· d

dt

[(
x1(t)− 1

3

)2

+

(
x2(t)− 1

3

)2

+

(
x3(t) + · · ·+ xn(t)− 1

3

)2
]
≥ 0

(C.14)

Hence, the population state x(t) never converges to the set of Nash equilibria. This is a

contradiction. Therefore, the dynamic cannot be strictly output passive. �
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C.6 Proof of Proposition 4.2.12

The sufficiency directly follows from the choice ofEED = SED and the inequalities

in (4.7) and (4.16), where SED is a storage function of the passive evolutionary dynamic.

To prove the necessity, we consider a set of population games represented by cumulative

payoff functions ṗ = Ax, where A is a symmetric matrix in Rn×n. It can be verified that

each game satisfies (4.16) for a C1 function

SG(x) =
1

2
max
x∈X

xTAx− 1

2
xTAx

Let us select a candidate Lyapunov function E = SG + EED for a C1 function

EED : Rn × X→ R+. The time derivative of E leads to the following:

d

dt
E(p, x) = ∇T

xSG(x)ẋ+∇T
pEED(p, x)ṗ+∇T

xEED(p, x)ẋ

= −V T (p, x)Ax+∇T
pEED(p, x)Ax+∇T

xEED(p, x)V (p, x)

= (∇pEED(p, x)− V (p, x))T Ax+∇T
xEED(p, x)V (p, x) ≤ 0 (C.15)

Since x belongs to X and A could be any symmetric matrix in Rn×n, the inequal-

ity in (C.15) holds for every choice of A if and only if ∇pEED(p, x) = V (p, x) and

∇T
xEED(p, x)V (p, x) ≤ 0 hold. By Theorem 4.2.3, we conclude that the dynamic is

passive with a storage function SED = EED. �

C.7 Proof of Corollary 4.2.13

The sufficiency directly follows from the definition of passivity. To prove the ne-

cessity, by contradiction, suppose that the dynamic is not passive. Then, by Proposi-
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tion 4.2.12, for any choice of SED, we can construct a game identified by a cumulative

payoff function given as in (4.14) for which

SG (x(t)) + SED (p(t), x(t)) > SG (x(t0)) + SED (p(t0), x(t0)) (C.16)

holds, where SG is given in (4.15). According to (4.16), this yields that

SED(p(t), x(t)) > SED(p(t0), x(t0)) +

∫ t

t0

F T (x(τ))ẋ(τ) dτ (C.17)

which contradicts the fact that the dynamic satisfies the passivity inequality (4.7) for every

cumulative payoff function (4.14). �

C.8 Proof of Proposition 4.2.14

As the revision protocol depends only on the the gradient∇xu(p, x) = p−∇xv(x)

and the population state x, we represent the revision protocol and vector field of the

dynamic as %ji (∇xu(p, x), x) and V (∇xu(p, x), x), respectively. Since unperturbed dy-

namics are passive, by Theorem 4.2.3, we can find a storage function SED : Rn × X→ R+

for which the conditions (P1) and (P2) hold for η = 0. In what follows, we show that the

resulting perturbed dynamics are strictly passive with a storage function

S̃ED(p, x)
def
= SED (p−∇xv(x), x)

We first compute the gradient of S̃ED with respect to p and x as follows:

∇pS̃ED (p, x) = ∇p′SED (p′, x)
∣∣∣
p′=p−∇xv(x)

= V (p−∇xv(x), x) (C.18)
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and

∇xS̃ED(p, x)

= ∇T
x (p−∇xv(x)) ∇p′SED(p′, x)

∣∣∣
p′=p−∇xv(x)

+∇xSED(p′, x)
∣∣∣
p′=p−∇xv(x)

= −
(
∇2
xv(x)

)T
V (p−∇xv(x), x) +∇xSED(p′, x)

∣∣∣
p′=p−∇xv(x)

(C.19)

Using (C.19), we can derive the following:

∇T
x S̃ED(p, x)V (p−∇xv(x), x)

= −V T (p−∇xv(x), x)∇2
xv(x)V (p−∇xv(x), x) +∇T

xSED(p′, x)V (p′, x)
∣∣∣
p′=p−∇xv(x)

(1)

≤ −V T (p−∇xv(x), x)∇2
xv(x)V (p−∇xv(x), x) (C.20)

where (1) is due to passivity of the unperturbed dynamics. Since v satisfies zT∇2
xv(x)z > 0

for all x in X and nonzero z in TX,

∇T
x S̃ED(p, x)V (p−∇xv(x), x) = 0

holds only if V (p−∇xv(x), x) = 0. Using Theorem 4.2.3, we can see that the perturbed

dynamics are strictly passive.

Now suppose that v is strongly convex satisfying

zT∇2
xv(x)z ≥ η · zT z (C.21)

for all x in X and z in TX, where η′ is a positive constant. From (C.20), we can see that

∇T
x S̃ED(p, x)V (p−∇xv(x), x)

≤ −η · V T (p−∇xv(x), x)V (p−∇xv(x), x)

holds. Hence, from Theorem 4.2.3, we conclude that the perturbed dynamics are strongly

output passive. �
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C.9 Proof of Theorem 4.3.1

First of all, we note that for any sequence
{(
p(l), x(l)

)}
l∈N in Rn × X, if

∇T
xSED

(
p(l), x(l))V (p(l), x(l)

)
+ ν · V T

(
p(l), x(l)

)
V
(
p(l), x(l)

) l→∞−→ 0

then, in both (CL1) and (CL2), we can see that ∇T
xSPBR(p(l), x(l))V (p(l), x(l))

l→∞−→ 0.

Hence, in conjunction with (A2), we have that the following relation: For any sequence

{(
p(l), x(l)

)}
l∈N in Rn × X,

(A2’) ∇T
xSED

(
p(l), x(l)

)
V
(
p(l), x(l)

)
+ ν · V T

(
p(l), x(l)

)
V
(
p(l), x(l)

) l→∞−→ 0

implies SED
(
p(l), x(l)

) l→∞−→ 0

To prove the Theorem, for each ε > 0 let us define a set given by

Oε
def
=
{
t > 0

∣∣∣ SED(p(t), x(t)) >
ε

2

}

Since SED(p(t), x(t)) > ε
2

holds for all t in Oε, by the contrapositive of (A2’), there exists

δ1 > 0 for which

∇T
xSED(p(t), x(t))V (p(t), x(t)) + ν · V T (p(t), x(t))V (p(t), x(t)) ≤ −δ1
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holds1 for all t in Oε. Note that using (4.22), we can derive the following relations:

SED(p(t), x(t))− SED(p(0), x(0))− α

≤
∫ t

0

d

dτ
SED(p(τ), x(τ)) dτ +

∫ t

0

[
−ṗT (τ)ẋ(τ) + ν · ẋT (τ)ẋ(τ)

]
dτ

=

∫ t

0

[
∇T
xSED(p(τ), x(τ))V (p(τ), x(τ)) + ν · V T (p(τ), x(τ))V (p(τ), x(τ))

]
dτ

(C.22)

Since SED is a non-negative function, we can infer that (C.22) is lower-bounded by

−SED(p(0), x(0))− α for all t ≥ 0, which yields that

− SED(p(0), x(0))− α

≤
∫ ∞

0

[
∇T
xSED(p(τ), x(τ))V (p(τ), x(τ)) + ν · V T (p(τ), x(τ))V (p(τ), x(τ))

]
dτ

≤
∫

Oε

[
∇T
xSED(p(τ), x(τ))V (p(τ), x(τ)) + ν · V T (p(τ), x(τ))V (p(τ), x(τ))

]
dτ

≤ −δ1 · L (Oε) (C.23)

whereL (Oε) is the Lebesgue measure of Oε. Hence, we have thatL (Oε) ≤ SED(p(0),x(0))+α
δ1

.

Since Oε is an open set, we can represent Oε as an union of disjoint open intervals,

i.e., Oε =
⋃
i∈N Ii where {Ii}i∈N is a set of disjoint open intervals. Notice that by our

construction of Oε, by letting Ii = (ai, bi), we have that SED(p(ai), x(ai)) ≤ ε
2

and

SED(p(t), x(t)) > ε
2

for t ∈ Ii. Since Oε has finite Lebesgue measure, it holds that

limi→∞ L (Ii) = 0.

1Notice that under the configurations as in (CL1) or (CL2), it holds that

∇T
xSED(p(t), x(t))V (p(t), x(t)) + ν · V T (p(t), x(t))V (p(t), x(t)) ≤ 0
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In what follows, we show that for each ε > 0, there exists Tε > 0 for which

SED(p(t), x(t)) < ε holds for all t ≥ Tε, and we conclude that limt→∞ SED(p(t), x(t)) = 0.

To achieve this, by contradiction, suppose that there exists an infinite subset J of N for

which

max
t∈cl(Ij)

SED(p(t), x(t)) ≥ ε

for each j in J, where cl (Ij) is the closure of Ij . Let tj ∈ cl (Ij) be for which

SED(p(tj), x(tj)) = max
t∈cl(Ij)

SED(p(t), x(t))

holds. By letting Ij = (aj, bj), we can derive the following:

SED(p(tj), x(tj))− SED(p(aj), x(aj))

=

∫ tj

aj

d

dτ
SED(p(τ), x(τ)) dτ

(1)

≤
∫ tj

aj

ṗT (τ)V (p(τ), x(τ)) dτ

(2)
< M · δ2 · L (Ij) (C.24)

The inequality (1) can be derived using Theorem 4.2.3. To see that (2) holds, recall that

from (C.22), SED(p(t), x(t)) ≤ SED(p(0), x(0)) + α holds for all t ≥ 0, and that ṗ is

bounded, i.e, there is a positive realM for which ‖ṗ(t)‖ < M holds for all t in R+. Hence,

according to the contrapositive of (A1), we can derive ṗT (τ)V (p(τ), x(τ)) < M · δ2 for

some δ2 > 0, which yields (2).

Since SED(p(aj), x(aj)) ≤ ε
2

and limj→∞ L (Ij) = 0, from (C.24), we can see that

SED(p(tj), x(tj)) < ε for sufficiently large j in J. This contradicts the hypothesis that

SED(p(tj), x(tj)) ≥ ε holds for all j in J. Since this holds for every ε > 0, we can infer
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that for each ε > 0, there exists Tε > 0 for which SED(p(t), x(t)) < ε holds for all t ≥ Tε.

�

C.10 Proof of Proposition 4.3.2

Suppose that ν2 > 0. We proceed by showing that the following relations hold:

∫ t

0

ṗT (τ)ẋ(τ) dτ

=

∫ t

0

ẋT (τ)DF T
1 (x(τ))ẋ(τ) dτ +

∫ t

0

ẋT (τ − d)DF T
2 (x(τ − d))ẋ(τ) dτ

(1)

≤ ν1

∫ t

0

ẋT (τ)ẋ(τ) dτ +
ν2

2

∫ t

0

ẋT (τ)ẋ(τ) dτ

+
1

2ν2

∫ t

0

ẋT (τ − d)DF T
2 (x(τ − d))DF2(x(τ − d))ẋ(τ − d) dτ

(2)

≤ ν1

∫ t

0

ẋT (τ)ẋ(τ) dτ +
ν2

2

∫ t

0

ẋT (τ)ẋ(τ) dτ +
ν2

2

∫ t

0

ẋT (τ − d)ẋ(τ − d) dτ

≤ (ν1 + ν2)

∫ t

0

ẋT (τ)ẋ(τ) dτ +
ν2

2

∫ 0

−d
ẋT (τ)ẋ(τ) dτ (C.25)

To show (1), we use (4.25a) and the following fact:

ẋT (τ)DF2(x(τ − d))ẋ(τ − d)

≤ ν2

2
ẋT (τ)ẋ(τ) +

1

2ν2

ẋT (τ − d)DF T
2 (x(τ − d))DF2(x(τ − d))ẋ(τ − d)

To see (2), we use (4.25b). Then, by defining α = ν2
2
·
∫ 0

−d ẋ
T (τ)ẋ(τ)dτ , we can see that

the payoff function (4.24) satisfies (4.22) with ν = ν1 + ν2.

If ν2 = 0 then we can see that DF2(x)z = 0 for all x in X and z in TX. Based on

the above analysis, by defining α = 0, we can conclude that (4.24) satisfies (4.22) with

ν = ν1. �
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C.11 Proof of Proposition 4.3.3

First of all, we note that with a choice of P as p̂(s) = s · p̂, according to (A) of the

EPT dynamics, we can see that S (p̂) =
∫ 1

0
p̂T%(s · p̂) ds ≥ 0. We proceed the proof by

choosing a storage function for the dynamics as SEPT (p, x) = S (p̂), and show that (A1)

and (A2) of Theorem 4.3.1 hold. To start with, we verify that the contrapositive of (A1)

is true. Notice that

‖V (p, x)‖ =
∥∥%(p̂)− x1T%(p̂)

∥∥

≤ ‖%(p̂)‖+ ‖x‖
∣∣1T%(p̂)

∣∣

≤ (
√
n+ 1) · ‖%(p̂)‖ (C.26)

where the last inequality follows from the Cauchy-Schwarz inequality. Suppose that there

exists ε > 0 for which SEPT (p, x) < ε holds. By the contrapositive of (C1), there exists

δ′ > 0 for which ‖%(p̂)‖ < δ′ holds. By (C.26), it holds that ‖V (p, x)‖ < (
√
n+1)·δ′ = δ;

hence the contrapositive of (A1) holds.

To verify that (A2) of Theorem 4.3.1 holds, notice that

∇T
xSEPT (p, x)V (p, x) = −

(
1T%(p̂)

) (
p̂T%(p̂)

)

We claim that if SEPT (p, x) ≥ ε holds for a positive real ε, then there exist δ1, δ2 > 0

for which 1T%(p̂) ≥ δ1 and p̂T%(p̂) ≥ δ2 hold. Hence we have that

∇T
xSEPT (p, x)V (p, x) ≤ −δ1 · δ2 = −δ

This proves that the contrapositive of (A2) is true. We prove the claim by contradic-

tion. Suppose that there exists a sequence
{(
p(l), x(l)

)}
l∈N ⊂ Rn × X for which either
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liml→∞ 1T%
(
p̂(l)
)

= 0 or limi→∞
(
p̂(l)
)T
%
(
p̂(l)
)

= 0 or both and SEPT (p(l), x(l)) ≥ ε

hold for all l ∈ N. Then it follows from (C2) that liml→∞ SEPT
(
p(l), x(l)

)
= 0, which

contradicts our hypothesis that SEPT (p(l), x(l)) ≥ ε holds for all l ∈ N. �

C.12 Proof of Proposition 4.3.5

According to Proposition 4.2.6, we can choose a storage function for the pairwise

comparison dynamics as

SPC(p, x) =
n∑

i=1

n∑

j=1

Sj(pj − pi, xi) (C.27)

The partial derivative of (C.27) with respect to x satisfies2

∇T
xSPC(p, x)V (p, x) =

n∑

i=1

n∑

j=1

[
xi%j(pj − pi)

n∑

k=1

∫ pk−pj

pk−pi
%k(s) ds

]
(C.28)

To prove the Proposition, we show that (A1) and (A2) of Theorem 4.3.1 hold. We

first show that the contrapositive of (A1) of Theorem 4.3.1 is true. Suppose that for

some ε > 0, it holds that SPC(p, x) < ε. Then Sj(pj − pi, xi) < ε holds for all i, j in

{1, · · · , n}, and by (C1), there exists δ′ > 0 for which xi%j(pj − pi) < δ′ holds for all

i, j ∈ {1, · · · , n}. From the following inequality

|Vi(p, x)| ≤
n∑

j=1

xj%i(pi − pj) +
n∑

j=1

xi%j(pj − pi) (C.29)

we have that |Vi(p, x)| < 2n · δ′ which implies that ‖V (p, x)‖ < 2n3/2 · δ′ = δ. This

shows that the contrapositive of (A1) is true.

Next, we consider the contrapositive of (A2). Suppose that SPC(p, x) ≥ ε for some

2This fact directly follows from the analysis in the proof of Theorem 7.1 in [14]
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ε > 0. We note that according to (C.27), there exists δ1 > 0, e.g., δ1 = ε
n2 , for which

max
i,j∈{1,··· ,n}

Sj (pj − pi, xi) = max
i,j∈{1,··· ,n}

xi

∫ pj−pi

0

%j(s) ds ≥ δ1 (C.30)

holds. Let i∗, j∗ ∈ {1, · · · , n} be indices that satisfy

xi∗

∫ pj∗−pi∗

0

%j∗(s) ds = max
i,j∈{1,··· ,n}

xi

∫ pj−pi

0

%j(s) ds (C.31)

Then by the contrapositive of (C2), there exists δ2 > 0 for which it holds that

%j∗(pj∗ − pi∗) ≥ δ2 (C.32)

Since xi%j(pj − pi)
∫ pk−pj
pk−pi

%k(s) ds ≤ 0 holds, according to (C.28), we can derive

the following:

∇T
xSPC(p, x)V (p, x) ≤ xi∗%j∗(pj∗ − pi∗)

∫ pk∗−pj∗

pk∗−pi∗
%k∗(s) ds

for any i∗, j∗, k∗ in {1, · · · , n}. In particular, we choose i∗, j∗ that satisfy (C.31) and

k∗ = j∗. Then, in conjunction with (C.30) and (C.32), we have that

∇T
xSPC(p, x)V (p, x) ≤ xi∗%j∗(pj∗ − pi∗)

∫ 0

pj∗−pi∗
%j∗(s) ds ≤ −δ1 · δ2 = −δ

This verifies (A2) of Theorem 4.3.1. This completes the proof of the Proposition. �

C.13 Proof of Proposition 4.3.7

From Proposition 4.2.7, we have seen that

SPBR(p, x) = max
y∈int(X)

(
pTy − v(y)

)
−
(
pTx− v(x)

)

is a storage function of the PBR dynamics. We verify that the assumptions (A1) and (A2)

of Theorem 4.3.1 hold.
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The verification of (A1) directly follows from the facts that ‖V (p, x)‖ ≤ ‖C(p)‖+ ‖x‖

and C(p) belongs to X for every p in Rn. To show (A2), consider the following relations:

SPBR(p, x) =
(
pTC(p)− v(C(p))

)
−
(
pTx− v(x)

)

= pT (C(p)− x)− (v(C(p))− v(x))

(1)

≤ (p−∇xv(x))T (C(p)− x)

(2)
= −∇T

xSPBR(p, x)V (p, x) (C.33)

To obtain (1), we use the fact that v is a convex function; and to show (2), we use (C.8) in

the proof of Proposition 4.2.7. Therefore, from (C.33), we conclude that (A2) is true. �
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