
ABSTRACT

Title of dissertation: HAMILTONIAN PATHS AND STRANDS
FOR UNIFIED GRID APPROACH
FOR COMPUTING AERODYNAMIC FLOWS

Yong Su Jung
Doctor of Philosophy, 2019

Dissertation directed by: Professor James D. Baeder
Department of Aerospace Engineering

A solution algorithm using Hamiltonian paths and strand grids is presented

for compressible Reynolds-Averaged Navier–Stokes (RANS) formulation as a uni-

fied grid approach. The hidden line-structure is robustly identified on the general

unstructured grid with mixed elements which provides a framework for line-solvers

similar to that with a structured grid solver. A pure quadrilateral/hexahedral mesh

is a prerequisite for the line identification and enables approximate factorization

along the lines on the unstructured grid. Among various methods, subdivision is

the easiest way to obtain a pure quadrilateral/hexahedral mesh from the general

unstructured grid.

Strand based grids have been employed to extend to three-dimension by ex-

truding the surface mesh. As a result, Hamiltonian paths on the surface mesh

represents two distinct surface coordinate directions and the strand grids represent

the wall normal direction. These structures are analogous to the grid coordinate

directions in a structured grid solver, therefore the current method is directly ap-

plicable on the typical structured grid.

The numerical accuracy and convergence rate are investigated under various

flow conditions. The numerical efficiency was improved with a line-implicit method

compared to a point-implicit method on the unstructured grid. Both stencil- and

gradient-based reconstructions are available on the unstructured grid and the numer-

ical accuracy for each method was evaluated on both structured and unstructured

grids. The combined reconstruction method was also proposed for the current mesh

system which uses both stencil- and gradient-based reconstructions simultaneously

but for different grid directions. The solution convergence rate has been improved

further using Generalized Minimum Residual (GMRES) method. GMRES requires

a preconditioning step which is performed using the line-implicit method. GMRES

provides better convergence rate than the pure line-implicit method at various flow

conditions.

Both parts of mesh generation and flow solver are parallelized to be executed

in parallel using METIS and MPI. During the mesh generation, two different domain

partitioning methods are suggested for the strand grid and the unstructured volume

mesh, respectively. The capability of the flow solver has been extended for ro-

tary wing simulations: time-accurate method, turbulence model, moving grids, and

overset meshes. The flow solver is also integrated into a multi-mesh/multi-solver

paradigm through a Python framework which enables a more efficient solution al-

gorithm than a single-solver. The integrated framework has been applied to various

practical problems, such as wind turbine, rotor hub, and elastic rotor blades.

HAMILTONIAN PATHS AND STRANDS
FOR UNIFIED GRID APPROACH

FOR COMPUTING AERODYNAMIC FLOWS

by

Yong Su Jung

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Dr. James D. Baeder, Chair/Advisor
Dr. Inderjit Chopra
Dr. Christopher Cadou
Dr. Anubhav Datta
Dr. Johan Larsson, Dean’s Representative

c© Copyright by
Yong Su Jung

2019

Dedication

This dissertation is dedicated to my mother, Soon-Ok Lee, and my father,

Woon-Do Jung for their love and support throughout my life.

ii

Acknowledgments

I owe my gratitude to all the people who have made this dissertation possible.

First and foremost, I would like to express my sincere gratitude to my advisor Dr.

James Baeder for his continuous support during my Ph.D. study. It is a pleasure

and honor for me being his student and working on such an interesting study under

his guidance. His immense knowledge and patience have helped me to proceed from

obstacles throughout the research. From every discussion with him, I have learned

about the attitudes towards the obstacles as a research scientist.

I also would like to thank my dissertation and qualifying exam committee: Dr.

Inderjit Chopra, Dr. Christopher Cadou, Dr. Anubhav Datta, and Dr. Johan Lars-

son for their time to serve on my committee and guidance with insightful feedback

on my research.

I would like to acknowledge the financial support provided for this research

work by Air Vehicle element of the HPCMP CREATE program and Army Research

Laboratory (ARL). I wish to thank Dr. Jayanarayanan Sitaraman for his guidance

that helped me to get started with this study.

I am grateful to all my friends and colleagues whom I have met at the Uni-

versity of Maryland over the years. First, Bharath has helped me in all aspects

since I first came. I was able to finish this work with his helps. I also would like to

thank many friends: Dylan, Seung-Joon, Nishan, Ananth, Masahiko, Daigo, Camli,

Bumseok, Vera, Alex, Jannik, Xing, Luke and Minwook. They have affected my

everyday life as a graduate student in different ways and I have learned a lot from

iii

them. I would like to specially thank Jiseon for all the good memories she has given

me out of the campus. I cannot forget her helps over the years.

I also wish to thank my aunt and her family. They have given a lot of helps to

settle down here since I left from home. They always give a warm welcome to me.

Finally, none of this could have happened without my family - my mother,

father, and brother who have supported me throughout my entire life. My mother

always understands and encourages me better than anyone. My father always wishes

for my career. No words can express the gratitude I owe them.

iv

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Abbreviations xiii

1 Introduction 1
1.1 Background . 4

1.1.1 Concept of Structured and Unstructured Grid for Flow Sim-
ulation . 4

1.1.2 Implicit Time Integration . 5
1.1.3 Spatial Discretization . 7
1.1.4 Multi-Mesh/Multi-Solver Paradigm 9

1.2 Related Previous Works . 12
1.3 Objectives . 19
1.4 Scope and Organization of Thesis . 21

2 Computational Methodology of Mesh Generation 23
2.1 Robust Line Identification . 23

2.1.1 Quadrilateral Subdivision and Hamiltonian Path 23
2.1.2 Hamiltonian Path on Structured Grids 28
2.1.3 Mesh Smoothing . 30
2.1.4 All Quadrilateral Meshing . 31

2.2 Extension to Three-Dimensions . 34
2.2.1 Strand Grids . 35
2.2.2 Unstructured Volume Grid . 38

2.3 Domain Decomposition . 40
2.4 Data Structure . 44
2.5 Summary . 46

v

3 Computational Methodology of Flow Solver 49
3.1 Governing Equations . 49

3.1.1 Non-Dimensional Form of Equations 53
3.1.2 Reynolds-Averaged Navier–Stokes Equations 54

3.2 Evaluation of fluxes . 56
3.2.1 Finite Volume Method . 56
3.2.2 Inviscid Fluxes . 57
3.2.3 Viscous Fluxes . 63
3.2.4 Initial Conditions . 64
3.2.5 Boundary Conditions . 65

3.3 Time Integration . 66
3.3.1 Implicit Operator . 66
3.3.2 Approximate Factorization . 69
3.3.3 Generalized Minimum Residual Method 72
3.3.4 Dual Time Stepping . 75

3.4 Turbulence and Transition Modeling 76
3.4.1 Turbulence Modeling . 76
3.4.2 Laminar-Turbulent Transition Model Formulation 79

3.5 Overset Technique . 80
3.6 Solver Architecture . 82
3.7 Python Integration Framework . 82
3.8 Summary . 85

4 Validation 88
4.1 Solution Accuracy Analysis . 88

4.1.1 Method of Manufactured Solution 88
4.1.2 Isentropic Vortex . 91
4.1.3 Two-Dimensional Bump in Channel 94
4.1.4 Three-Dimensional Robin-Mod7 Fuselage 95

4.2 Performance Analysis . 101
4.2.1 Transonic Flow Past NACA0012 Airfoil 101
4.2.2 Laminar Flow Past a Sphere 106
4.2.3 Fully Turbulent Flow Past NACA0012 Airfoil 115
4.2.4 Fully Turbulent Flow Past NACA0015 Wing 119

4.3 Validation of Overset Method . 121
4.4 Summary . 126

5 Solution Convergence 128
5.1 Loop Crossing . 128
5.2 Solution Convergence of Preconditioned GMRES Method 132

5.2.1 Overset Lifting Rotor . 132
5.2.2 Unsteady Laminar Flow over a Sphere 137
5.2.3 MD 30P-30N Airfoil . 139

5.3 Scalability . 145
5.4 Summary . 147

vi

6 Applications 149
6.1 Pressure Sensitive Paint (PSP) Hovering Rotor Simulation 150
6.2 NREL Phase VI Wind Turbine Simulation 157

6.2.1 Isolated Rotor Computation 161
6.2.2 Full Configuration Computation 165

6.3 Rotor Hub Simulation . 169
6.4 Slowed Mach-Scaled Rotor at High Advance Ratio 181
6.5 Summary . 190

7 Conclusions 193
7.1 Summary . 193
7.2 Contributions . 201
7.3 Recommendations for Future Work 202

A Extension of Laminar-Turbulent Transition Model 204
A.1 Crossflow-Induced Transition . 207
A.2 Surface Roughness-Induced Transition 209

B Mesh Deformation Technique 214
B.1 Spring Analogy . 214
B.2 Algebraic Method . 218
B.3 Validation . 219

Bibliography 222

vii

List of Tables

2.1 Distribution of cells across different processors by either volume or
surface subdivision. 42

2.2 Grid data structures. 47

4.1 Two-dimensional structured mesh information for Bump simulation. . 94
4.2 CPU execution time for drag prediction within 1% of converged value

(S: structured grid, U: unstructured grid). 106
4.3 Lift and Drag coefficient comparison using SA turbulence model. . . . 117
4.4 Lift and Drag coefficient comparison using SST turbulence model. . . 118
4.5 Comparison of CPU execution time per iteration for different implicit

inversion methods. 120

5.1 Grid information for MD 30P-30N airfoil. 141

6.1 Comparison of thrust and torque predictions for NREL Phase VI
turbine, experimental data from [38]. 162

6.2 NREL Phase VI operating conditions. 165
6.3 Near-body domain grid information for rotor hub simulation. 173
6.4 Comparison of control angle for trim state of rotor at µ = 0.8. 185

A.1 Combination of constants for crossflow model. 207

viii

List of Figures

1.1 Computational mesh for trapezoidal high-lift wing model (left: per-
spective view and right: cross-sectional view at 50% span [1]. 3

1.2 Possible candidate for finite control volume, indicated by Ωi, its
boundary ∂Ωi, normal vector nij, and neighbor cell-j. 8

1.3 Multi-Mesh/Multi-Solver paradigm: Unstructured near-body with
adaptive Cartesian off-body [6]. 11

1.4 Construction of relaxation lines (snake line) on an unstructured grid [8]. 14
1.5 Comparison of snake line and linelets on an unstructured grid [9]. . . 14
1.6 Directional-implicit line method for RAE 2822 airfoil simulation [10]. 15
1.7 Solution bands for ACDI method on a unstructured airfoil grid [11]. . 16
1.8 Examples of strand grids for near-body volume domain [13]. 17
1.9 Schematic showing quadrilateral sub-division and construction of Hamil-

tonian paths [14]. 19

2.1 Quadrilateral subdivision on a two-dimensional element. 24
2.2 Schematic showing Hamiltonian loops formed on a mixed triangle and

quadrilateral mesh. 26
2.3 Hamiltonian path on multi-mesh system for NACA0012 airfoil. 27
2.4 Multiple level quadrilateral subdivision and application for a two-

dimensional airfoil mesh. 29
2.5 Hamiltonian paths on airfoil structured grids at near the trailing edge. 30
2.6 Various distributions of cells within a triangle. 32
2.7 Quadrilateral meshes categories [17]. 33
2.8 Different pure quadrilateral meshing technique [18]. 33
2.9 Hamiltonian path on two different quadrilateral mesh for Robin-Mod7

fuselage. 35
2.10 Schematic depicting the creation of strand layers from multiple layers

of Hamiltonian surface loops. 36
2.11 Longitudinal slice of the mesh around Robin-Mod7 fuselage highlight-

ing the curved strands in regions of concave ramp region. 38
2.12 Schematic showing Hamiltonian paths on unstructured volume mesh

(left: initial prisms and tetrahedrons, right: Hamiltonian paths on
hexahedrons). 39

ix

2.13 Unstructured volume mesh around a sphere. 40
2.14 Representative surface and volume partitioning of a sphere using

METIS. 42
2.15 Hamiltonian path on partitioned unstructured surface mesh. 44
2.16 Chain-to-face connectivity (left) and required grid data for each face

(right). 45

3.1 Schematic showing the numbering scheme along Hamiltonian loops
used for reconstruction strategy. 59

3.2 Gradient based reconstruction stencil. 62
3.3 Schematic showing the finite different method for gradient evaluation. 64
3.4 Wrapping stencil of least-squares approach for gradient estimation at

mid-point edge. 64
3.5 Schematic showing ghost cell set up for solid wall and free-stream

boundary conditions. 67
3.6 Flowchart of Python framework for time-accurate simulations. 85

4.1 Representative 2D meshes for MMS analysis. 90
4.2 Solution error convergence using MMS analysis. 91
4.3 Grid and density profiles across the vortex core at different solution

times for the case of isentropic vortex convection. 93
4.4 Comparison of skin friction at three different locations on the bump. . 95
4.5 Three different resolution surface meshes for Robin-Mod7 fuselage. . . 96
4.6 Robin-Mod7 fuselage surface pressure distribution on longitudinal

plane (y/L = 0) at AoA=0◦. 98
4.7 Robin-Mod7 fuselage span-wise surface pressure distribution (z/L =

−0.0375) at AoA=0◦. 99
4.8 Robin-Mod7 fuselage drag comparison at AoA=0◦ (N is the number

of surface node points). 100
4.9 Computational mesh for transonic NACA0012 airfoil simulation. . . . 102
4.10 Comparison results with TURNS for transonic NACA0012 airfoil sim-

ulation. 103
4.11 Solution convergence comparison with TURNS for transonic NACA0012

airfoil simulation. 105
4.12 Surface and volume mesh for flow over a sphere. 108
4.13 Streamline showing separation bubble for flow over sphere. 111
4.14 Comparison results of laminar flow over sphere with references [13,47].112
4.15 Solution convergence rate using the strand grid for laminar flow over

a sphere at Re = 100. 113
4.16 Solution convergence rate using the unstructured volume grid for lam-

inar flow over a sphere at Re = 100. 114
4.17 Pressure coefficient comparison for NACA0012 airfoil simulation. . . . 116
4.18 Solution convergence comparison with TURNS. 119
4.19 Sectional surface pressure comparison for NACA0015 wing simulation. 122

x

4.20 Solution convergence comparison with OVERTURNS for NACA0015
wing simulation. 122

4.21 iblank map for dual sphere nearbody and Cartesian offbody. 124
4.22 Simulation results for dual sphere case. 125
4.23 Comparison of simulation results for dual sphere. 126

5.1 Self-crossing loops on unstructured mesh for NACA0012 airfoil. . . . 129
5.2 Comparison of simulation results between with and without self-

crossing loops for transonic flow over airfoil. 130
5.3 Hamiltonian paths overlaid on the pressure contour for Robin-Mod7

fuselage simulation. 133
5.4 Solution convergence comparison for Robin-Mod7 fuselage simulation. 134
5.5 Computational mesh for Caradonna-Tung hovering rotor simulation. . 135
5.6 Comparison of solution convergence rate for Caradonna-Tung rotor

simulation. 137
5.7 Pressure coefficient distributions on the blade at different radial sta-

tions for Caradonna-Tung rotor simulation. 138
5.8 Laminar flow over a sphere simulation at Re = 800. 139
5.9 Comparison of solution convergence rate for laminar flow (Re = 800)

over sphere. 140
5.10 Different types of grid for MD 30P-30N airfoil. 141
5.11 Comparison of experimental and computational lift coefficient for

30P-30N airfoil at Re = 9× 106. 142
5.12 Comparison of surface pressure distribution for MD 30P-30N airfoil

at Re = 9× 106. 143
5.13 Comparison of solution convergence for MD 30P-30N airfoil at AoA=8◦.144
5.14 Strong scalability test for turbulent flow simulation over sphere. . . . 146
5.15 Convergence of residual for turbulent flow simulation over a sphere. . 147

6.1 PSP blade planform, inches [61]. 150
6.2 Computational overset mesh system for PSP rotor simulation. 152
6.3 Comparison of figure of merit (FM) with experimental and other

simulation data. 154
6.4 Intermittency contours and transition location for θ0.75 = 6◦. 155
6.5 Intermittency contours and transition location for θ0.75 = 8◦. 156
6.6 Intermittency contours and transition location for θ0.75 = 10◦. 156
6.7 NREL Phase VI turbine blade planform. 158
6.8 Computational model for full NREL Phase VI turbine simulation. . . 159
6.9 Computational mesh for blade and overset system for NREL Phase

VI turbine simulation. 160
6.10 Sectional surface pressure for NREL Phase VI turbine blade. 163
6.11 Streamline overlaid on skin friction contour for NREL Phase VI blade

at wind speed of 7 m/s. 164
6.12 Normal force coefficient variation on a NREL Phase VI turbine blade

for downwind configuration. 166

xi

6.13 Computational wake visualization of NREL Phase VI turbine using
iso-surfaces (Qciteria=0.00015) colored by vorticity. 168

6.14 Blade torque variations of NREL Phase VI turbine for upwind con-
figuration. 169

6.15 Experimental setup in the Garfield Thomas 48 inch diameter water
tunnel [75]. 171

6.16 Computational PSU hub models. 172
6.17 Computational mesh for hub model and hub stand. 172
6.18 Overset mesh system for baseline hub model simulation. 174
6.19 Drag coefficients for baseline and low-drag hub. 175
6.20 Mean hub drag breakdown by component for baseline and low-drag

hubs. 177
6.21 Computational wake visualization of baseline hub. 178
6.22 Computational wake visualization of low-drag hub. 179
6.23 Comparison of streamwise velocity wake profiles of the baseline hub

without the stabilizer. 180
6.24 Experimental setup for slowed rotor at Glenn L. Martin wind tunnel

(left: rear view, right: side view) [78]. 181
6.25 Overset grid system for the slowed rotor simulation. 183
6.26 Convergence of control cyclic angle during CFD-CSD coupling steps. 184
6.27 30% rotor radius sectional airload at θ0 = 11◦. 186
6.28 30% rotor radius sectional airload at θ0 = 3◦. 187
6.29 Pressure variations at 30% rotor radius section at θ0 = 11◦. 188
6.30 Pressure variations at 30% rotor radius section at θ0 = 3◦. 189

A.1 NLF(2)-0415 infinite swept wing simulation results. 210
A.2 Transitional flow over zero pressure rough surface flat plate simulation

results. 213

B.1 Mesh deformation technique using: (a) Linear spring analogy, and
(b) Ball-vertex analogy. 215

B.2 Algebraic method for deformation of prismatic elements. 219
B.3 Spring analogy and algebraic mesh deformation methods for the swim-

ming fish-like body. 220
B.4 Unsteady non-dimensional force hysteresis for a pitching NACA0012

airfoil. 221

xii

Nomenclature

a Speed of sound
c Chord length of the airfoil
Cd Drag coefficient
Cf Skin friction coefficient
Cl Lift coefficient
Cm Moment coefficient
Cn Sectional normal force coeffcient
Cp Pressure coefficient
CT Thrust coefficient
M Mach number
p Pressure
R Radius of the rotor
Re Reynolds number
Reθ Momentum thickness Reynolds number
Reθt Reθ at transition onset
Reθ Transported Reθt
u, v, w Velocity components in the Cartesian directions
x, y, z Cartesian coordinates

y+ Nondimensional wall distance, (y/ν)
(√

τ/ρ
)

α Angle of attack
γ Ratio of specific heats / Intermittency
µ Molecular viscosity
µt Eddy viscosity
ν Kinematic viscosity
ξ, η, ζ Computational coordinates
ρ Density
ψ Blade azimuthal angle

Subscripts
i, j, k Spatial cell indices
∞ Freestream flow variables

Abbreviations
2D Two dimensional
3D Three dimensional
ADI Alternating Direction Implicit
BDF1 Backward Difference formulation, first-order
BDF2 Backward Difference formulation, second-order
CFL Courant-Friedrichs-Lewy

xiii

DADI Diagonalized Alternating Direction Implicit
DDADI Diagonally Dominant ADI
DDLGS Diagonally Dominant LGS
DDES Delayed Detached Eddy Simulation
FM Figure of Merit
GMRES Generalized Minimum Residual Method
GPU Graphic processing unit
LGS Line Gauss-Seidel
LHS Left hand side
LLS Linear Least-Squares
LU-SGS Lower-upper Symmetric Gauss-Seidel
MUSCL Monotone Upstream-Centered Scheme for Conservation Laws
PGS Point Gauss-Seidel
RANS Reynolds Averaged Navier–Stokes
RHS Right hand side
RPM Revolutions per minute
SA Spalart-Allmaras
WENO Weighted Essentially Non-Oscillatory scheme

xiv

Chapter 1: Introduction

Aerospace applications are largely driven by the advances and development

in the field of aerodynamics and have become reliant on advances in computational

technology and simulation tools. Accurate modeling of the flow field around vehicle

components is required to predict not only airloads from each component such as a

wing or rotor blade, but also the effect of interactional aerodynamics between the

components. Traditional low-order numerical techniques such as free-wake method

or panel methods make modeling assumptions and limit their solutions from cap-

turing detailed aerodynamic effects. With rapid advances in computational power

and resources, high-fidelity computational fluid dynamics (CFD) are considered to

be a principle technology in the analysis and design of air vehicles. Both solution

algorithms for Euler or Navier-Stokes equations and meshing techniques have been

matured to improve its robustness, efficiency, and accuracy across various speed

ranges from subsonic to supersonic.

In most of the present day CFD codes which are based on the finite volume

method, two types of mesh are utilized: structured/ block-structured grid or un-

structured grid systems for discretizing the computational domain. It is a matter

of choice to decide on what kind of grid structure or solution algorithm is more

1

suitable for any specific application. This is because every method has relative ad-

vantages and disadvantages compared with one another for each case. Traditionally,

structured/ block-structured method has been used, which rely on regular arrays of

quadrilateral or hexahedral elements in each two or three-dimensions, respectively.

Unstructured grid methods originally emerged as an alternative to structured grid

methods for discretizing complex geometries.

Figure 1.1 shows examples of structured and unstructured grids for a complex

geometry. This trapezoidal high-lift wing model was tested at NASA Langley in 1998

and NASA Ames in 1999. The multi-block structured grid consists of 586 blocks

with about 7.5 million mesh points. More than one month was required to generate

the mesh by an expert. On the other hand, the unstructured grid was generated

with 13 million mesh points and it took only a few days from CAD data. The more

number of mesh points were used on the unstructured grid than the structured grid

because it usually requires a larger number of mesh points at the leading-edge and

trailing edge sections [1].

With greater flexibility in meshing technique, unstructured grid CFD has been

used in diverse applications and easily expanded outside the realm of pure research

through most commercial CFD codes in engineering field. However, unstructured

grid CFD usually requires more computational costs than structured CFD to solve

the same number of unknowns, and this issue is still an important research topic in

CFD field. As current CFD methods are aimed to simulate large three-dimensional

viscous flow cases, more efficient solution algorithms associated with unstructured

grid techniques are highly desirable.

2

(a) Multi-block structured grid

(b) Unstructured grid

Figure 1.1: Computational mesh for trapezoidal high-lift wing model (left: perspec-

tive view and right: cross-sectional view at 50% span [1].

3

1.1 Background

1.1.1 Concept of Structured and Unstructured Grid for Flow Simu-

lation

A structured grid has identical connectivity for all interior nodes and elements

as a finite difference type grid. All grid points lie on the intersection of two (or

three) families of lines, which is considered as defining curvilinear coordinate lines.

The goal of creating grids is to ensure every interior node is connected to four (or

eight) elements respectively. This results in the type of element to be quadrilateral

(or hexahedron). With this inflexibility, the generation of a fully structured grid

has substantial disadvantages, especially on a complex geometry or if one requires

local modifications (mesh adaptation). Although this limitation leads to the concept

of multi-block structured grids, where the domain is divided into sub-regions, the

automated identification and creating of the blocks are non-trivial.

Conversely, an unstructured grid can have nodes and elements with irregular

connectivity. As a finite element type mesh, it is formed by any type of element,

and a combination of triangular and quadrilateral cells (or tetrahedron and prism) is

typically used. Unlike a structured grid, the mesh points cannot be identified with

coordinate lines, therefore, they cannot be represented by a set of integers, such

as i, j. Consequently, unstructured grid techniques for flow simulation employ a

generalized indexing schemes which requires an additional grid information such as

connectivity between cells, nodes, and faces. On the other hand, the unstructured

4

grid technique can provide greater flexibility for discretizing a complex geometry as

well as the easy implementation of adaptive meshing techniques, where mesh points

may be added, deleted, or moved while mesh connectivity is updated locally.

1.1.2 Implicit Time Integration

The simplest method of integrating the system of equations from space dis-

cretization is the use of an explicit time marching scheme. In this form, the time

derivative is discretized using a finite difference formula at the current time step

(n) and the residual is evaluated at the same time step. Runge-Kutta methods are

one of many representative explicit methods used in flow simulations. Although the

explicit schemes have the advantage of requiring only a simple update, the allowable

time step size is limited for the reason of stability. For recent high Reynolds number

flow simulations, the explicit time marching methods are too restrictive in terms of

time steps and efficiency because of the demand of adequate boundary layer and

complicated geometric resolution.

Therefore, implicit time marching methods are widely used for more practical

problems. In an implicit method, the residual is evaluated at the next time step

(n+1) as a backward finite difference, which results in unconditionally stability

in terms of time step size. The Euler implicit method is a representative implicit

method. After employing an Euler implicit method, the nonlinear vector of the next

time step residual is commonly linearlized in time with a first-order discretization.

The linearlization results in a large system of linear equations. To increase time

5

accuracy a subiteration scheme must be used to reduce the linearlization error.

In the case of a structured grid, the form of the matrix is rather simple because

of its regular connectivity, such as a block pentadiagonal form for two-dimensions.

Generally, a line-implicit method is used for solving the system; approximate fac-

torizations are made to the linear system itself which results in multiple block tri-

diagonal systems. For example, the Alternating Directional Implicit (ADI) method

is often used as a factorization method and the resultant block tri-diagonal systems

are solved using the Thomas algorithm.

On the other hand, the form of the linear system of equations is very sparse

in an unstructured grid. It is hard to apply approximate factorization due to the

irregular grid connectivity. The large sparse linear system requires quite expensive

computations to solve at each time step. Therefore, an explicit time marching

is generally used for an unstructured grid. Although implicit methods have been

utilized using simple iterative schemes such as point Jacobi and Gauss-Seidel, it

could not achieve similar efficiency with their structured grid counterparts. This is

because their convergence rate degrades dramatically with grid size using the local

technique.

To enhance convergence rates and efficiency, more advanced iterative tech-

niques such as the multigrid technique or a Krylov method have been used on

unstructured grids. Multigrid techniques consist of an operator to be defined on a

sequence of coarser grids, an iterative method that evolves the solution, and an in-

terpolation operator that transfer information between the grids. As a result, both

low and high-frequency errors are damped efficiently through the successive process.

6

Generalized Minimum Residual Method (GMRES) is the most widely used

method in flow simulations and is one of the Krylov methods. From the approximate

solution of the system, GMRES finds the best possible solution over Krylov subspace

by solving a minimization problem. Typically, preconditioning of the matrix is done

first to minimize the required size of the subspace because both storage and the

number of operations increase linearly and quadratically as the size of the Krylov

subspace increases.

These advanced iterative techniques for unstructured grids require additional

process and memory storage compared to the line-based implicit method for struc-

tured grids. Implicit time marching schemes for unstructured methods are still an

active area of research.

1.1.3 Spatial Discretization

In most unstructured grid CFD solvers, a finite-volume strategy is used as

a spatial discretization technique and the numerical algorithms typically involve a

reconstruction step to achieve the desired spatial accuracy. A distinction between

vertex-based and cell-centered schemes can be made depending on the location where

flow variables are stored. In a cell-centered scheme, each mesh-element represents a

control volume, and the flow variables are located at the centroid of cell elements.

On the other hand, a vertex-based scheme stores the flow variables at the vertices

of the mesh and uses the concept of a dual mesh as the control volume.

Finite volume discretization is formed by integrating the fluxes over the bound-

7

Figure 1.2: Possible candidate for finite control volume, indicated by Ωi, its bound-

ary ∂Ωi, normal vector nij, and neighbor cell-j.

ary of the control volume as shown in Fig. 1.2. The interface fluxes are computed

using the values on either side of the interface which are often referred to as “left”

and “right” values in Riemann-based methods (see Eq. 1.1). Here, the reconstruc-

tion is required to evaluate the “left” and “right” values from the flow variables

which are stored in each control volume.

(~F∆S)i+1/2,j ≈ ~F (~UL, ~UR,∆Si+1/2,j) (1.1)

where ~F is the convective flux vector, ~U is the vector of flow variables and ∆S is

the area of the face.

Typical unstructured flow solvers are limited to second-order schemes which

involve only nearest neighbors as stencils. It assumes the flow variables vary lin-

early over the control volumes, and the interface values must be extrapolated from

centroidal values to the interface. This is known as gradient-based reconstruction.

The gradient for linear reconstruction is usually computed using either least-square

or Green-Gauss, along with limiters [2]. Higher-order schemes may be formed sim-

8

ilarly by using higher-order derivatives of the solution variables. However, it has

not been used much in three-dimensional practical problems because it requires a

much larger stencil and thus a much larger number of unknowns compared to a

second-order scheme.

On the other hand, the use of a high-order scheme is relatively much easier

on a structured grid. This is because the line reconstruction methods are applied

along grid coordinate directions, and it only requires adding extra stencils along

the line for a high-order scheme. It is known as stencil-based reconstruction. As

examples, Monotone upstream conservative limited (MUSCL) [3] and weighted es-

sentially non-oscillatory (WENO) [4] schemes are widely used. The use of these line

reconstructions on the finite volume method does not guarantee its formal order of

accuracy on the mesh system with varying curvature and stretching. However, less

computational resources are required compared to gradient-based reconstructions.

Details of the methods are explained in section 3.2.

1.1.4 Multi-Mesh/Multi-Solver Paradigm

The use of multiple domains with overset technique has become prevalent in

current CFD solvers, which allows for relative motion between the domains and

efficient grid generation. Typically, the multiple domains were generated using the

same type of grid: either structured or unstructured. However, more recently devel-

oped multi-mesh/multi-solver paradigms combine the advantages of different grid

types, while avoiding the associated disadvantages [5]. They combine unstructured

9

or curvilinear structured grids in the near-body region and adaptive Cartesian grids

in the off-body region through an overset domain connectivity. Further advantage of

grid generation for complex geometries can be obtained by employing unstructured

grids as compared with structured grids.

Helios software [5] is one well known example of the use of the multi-mesh/multi-

solver paradigm; which is the High Performance Computing Modernization Program

(HPCMP) Computational Research and Engineering for Acquisition Tools and En-

vironments (CREATETM) for Air Vehicle (AV), rotary-wing. In the Helios frame-

work, a well-established structured or unstructured grid based solver (OVERFLOW

and NSU3D, etc.) is employed in the near-body domain and each solver is modular-

ized to be easily plugged in or out from the integrated framework. For the off-body

region, the ARC3D code is applied which uses efficient high-order finite difference

on a Cartesian grid. The high-order scheme on the Cartesian grid is an effective

way to preserve wake structures generated from the near-body domain with much

fewer grid points. Also, finite difference based high order schemes on a Cartesian

grid is only marginally more expensive as compared to a second-order scheme [6].

Figure 1.3 shows an example of the use of a multi-mesh/multi-solver paradigm

using the Helios software for a full UH60 rotorcraft simulation. Unstructured grid

methods are used in the near-body domain for the region encompassing the fuselage

and blades; while a Cartesian mesh is used in the off-body region. The unstructured

solver interfaces in an overset manner with a background structured Cartesian high-

order solver. The Cartesian solver can apply adaptive mesh refinement (AMR) to

improve computational efficiency further as shown in Fig. 1.3.

10

Figure 1.3: Multi-Mesh/Multi-Solver paradigm: Unstructured near-body with adap-

tive Cartesian off-body [6].

Helios adopts a high-level Python-based software integration framework to

implement multi-mesh/multi-solver paradigm efficiently. Within the framework,

each of the flow solvers is called as a library and data exchange between the various

solvers are performed. The advantage of the Python-based approach is that it

allows for loose integration of the component solvers, thus each component is easy

to be incorporated/ separated as it is plugged-in/ out. Each solver can utilize its

own preferred language and data structures and can be developed separately. Data

exchanges are executed without memory copies or file I/O and the infrastructure

is run in parallel on large multiprocessor computer systems. Python code is only

used at a high level for method calls and setting pointers and all computationally

intensive numerics are done inside the component solvers [6].

Although the multi-mesh/multi-solver paradigm can provide more efficient

11

meshing technique and solution algorithm compared to a single-solver, the limita-

tions associated with unstructured grid based solvers still remain in the near-body

region. For example, an unstructured flow solver showed more dissipated wake struc-

tures due to lower accuracy in space and less solution convergence rate compared

to a structured flow solver in the references [5, 7].

1.2 Related Previous Works

Numerous studies have been conducted to improve solution algorithm associ-

ated with unstructured grid based solvers, especially for solution accuracy and con-

vergence. To use high-order schemes in space, several methods have been proposed

in addition to finite-volume method: finite-element type disretizations, spectral vol-

ume method, spectral element methods, etc. However, all of these methods have

large penalties in terms of efficiency and robustness and are still limited to more

pure research problems.

To accelerate solution convergence, Newton-Krylov solvers or multi-grid tech-

niques are generally used. However, they are not as efficient as line-implicit methods

of structured grid solvers, especially for unsteady flow simulations. In this section,

several previous studies are introduced, which tried to take advantage of line-based

methods on unstructured grids using pseudolines. However, most of the solution al-

gorithms showed limited success because of the difficulties in identifying lines in pure

unstructured grids. Even when they were identified, it proved difficult to achieve

nesting that is required for approximate factorization methods. Furthermore, the

12

identification of lines was not unique.

Hassan et al [8] first constructed continuous lines by connecting neighbor edges

of an unstructured triangular mesh. These lines were also called as a “snake line”

which passed once through each node of the unstructured mesh (See, Fig. 1.4). On

a two-dimensional grid, a total of two lines were generated to be used for implicit

solution algorithm; one is for vertical and the other is for horizontal direction. Then,

the system of equations was solved using a line relaxation procedure.

In order to use line relaxation along each line, renumbering on the nodal

unknown was required in the order implied by the line. During sweeping each line,

a block tridiagonal system of equations was solved at every time step. For a three-

dimensional grid, the implicit solution algorithm was combined with an explicit

method. The implicit method was employed only for the region in the vicinity of

a solid surface, otherwise an explicit method was used for the remainder of the

domain. This is because the line construction was not robust enough to be applied

on unstructured volume elements, such as tetrahedron.

Martin and Lohnor [9] suggested an improved line generation method for a

two-dimensional unstructured domain based on the previous snake line by Hassan

et al. They re-generated the line structures in a way that flow information could be

propagated quickly for better solution convergence. They called this line structures

as a “linelet”. In this previous study, the information could indeed be propagated

to the boundary in a faster way using linelets as compared to snake lines.

Figure 1.5 compares the snake line and linelet on the same two dimensional

unstructured grid. The snake line, which often exhibit folding on an unstructured

13

(a) Unstructured grid (b) First line (c) Second line

Figure 1.4: Construction of relaxation lines (snake line) on an unstructured grid [8].

(a) Unstructured grid (b) snake line (c) linelet

Figure 1.5: Comparison of snake line and linelets on an unstructured grid [9].

grid, was broken into multiple linelets and the scheme was made implicitly along

these linelets. Although the sensitivity to the orientation could be alleviated by

using multiple linelets with different orientations, the approach was not satisfactory

because the direction of propagation was still predetermined. Without robust line

identification which achieves nesting, both methods showed limitations on general

flow simulations.

Mavriplis [10] utilized line structures for the implicit method on high Reynolds

14

(a) Unstructured grid for RAE 2822 airfoil (b) Line structures for implicit method

Figure 1.6: Directional-implicit line method for RAE 2822 airfoil simulation [10].

number flow simulation. Most of the line structures were generated along the wall

normal direction in the viscous grid region of a hybrid mesh system. In order to do

this, the computational domains were grouped by using a weighted-graph algorithm,

and the line structures could be made only on the highly stretched quadrilateral cells

in the vicinity of the wall using the algorithm. Then, a line implicit method along

the line structures was combined with an explicit method for the remaining region,

which is called a directional-implicit line scheme.

Figure 1.6 (a) shows the unstructured grid over a RAE 2822 airfoil with fine

initial wall normal spacing of 10−6 chord length. In Fig. 1.6 (b), the line structures

for the implicit method were generated mostly on the highly stretched cells using

the weighted-graph method as shown in the right figure. As a result, the use of the

line implicit method for that region nearly doubled the convergence rate compared

to an explicit method for the whole domain. Also, the directional-implicit method

was unaffected by the degree of grid anisotropy in the vicinity of the wall.

Alternating cell direction implicit formulation (ACDI) [11] was proposed to

15

(a) Shortest solution band (b) Longest solution band

Figure 1.7: Solution bands for ACDI method on a unstructured airfoil grid [11].

apply a line implicit method on a two-dimensional unstructured grid including mixed

type quadrilateral and triangular cells. In this algorithm, a line implicit method

similar to line Gauss-Seidel was applied along a chain of contiguous cells which was

called the solution band. The direction of the solution band was designated by

passing through opposite faces of cells, therefore, the line could achieve nesting for

factorization.

Figure 1.7 shows two examples of solution bands on an airfoil unstructured

grid with mixed elements. Each solution band has it’s own length, and the shortest

band and the longest band is shown on the left and the right, respectively. This

method is limited in the two-dimensional domain and remained in the conceptual

stage.

For the line-structure on a three-dimensional domain, the concept of strand

grids has been introduced [12]. The strands could be projected in the wall-normal

direction from any surface tessellation. As a result, it provided automated viscous

16

(a) Strand grid for UH60 fuselage (b) Multi-strand grid for Martin rotor blade

Figure 1.8: Examples of strand grids for near-body volume domain [13].

volume mesh generation and line structures for a line-based flow solver. Recently,

Helios software [6] adopted the concept of strand grid in the near-body domain. As

shown in Fig. 1.8 (a), the strands extruded a short distance from the solid boundary

and intersected with adaptive Cartesian grids, which covered the rest of the domain

to the outer boundaries. The strand and the Cartesian grids were connected though

an overset interface.

For further extension, the concept of multi-strand grid has been developed

for the region of a sharp corner such as a trailing edge, where the multiple strands

were extruded from a single node on the surface. (See, Fig. 1.8 (b)). As one of the

near-body solvers in the Helios framework, mStrand [13] used the strand grid for

both accelerating solution convergence and automated mesh generation. While the

strands grids were used for the line-based method in the wall-normal direction, the

other two surface directions on the unstructured grid limited the achievable gains

without identified line structure in the wall-tangential directions.

Recently, the concept of Hamiltonian paths has been developed on a purely

17

unstructured two-dimensional triangular mesh to obtain lines [14]. The primary

idea of this method lain in the subdivision of triangles into multiple quadrilaterals.

Based on quadrilaterals which possess even number of mutual edges, a unique set

of paths were identified by connecting edges to serve as the surface line structures.

Figure 1.9(a) shows the initial unstructured grid with triangles around a

NACA0012 airfoil. As the first process for identifying lines, each of the triangle

elements has been sub-divided into 12 quadrilaterals as shown in Fig 1.9 (b). Then,

colored loops, which is called as “Hamiltonian paths”, are identified by connecting

opposite face centers along the quadrilateral cells as shown in Fig 1.9 (c). The

resultant line structure became loop-shaped as shown in Fig 1.9 (d) and the associ-

ated flow solver uniquely used both stencil-based reconstruction and a line implicit

method along the Hamiltonian path. Once the process was finished through the

whole domain, each edge of a quadrilateral element is part of a unique Hamiltonian

path and two distinct Hamiltonian paths intersect at each quadrilateral cell center

as shown in Fig 1.9 (e).

This in turn facilitated stencil based discretization and approximate factoriza-

tion of the implicit operator. The methodology showed promising results for both

solution convergence and computational cost when it was compared with a struc-

tured grid based flow solver on a transonic inviscid airfoil flow simulation. However,

the application was limited only to two-dimensions and execution on a serial pro-

cessor. To be competitive for realistic applications, this methodology needs to be

enhanced for application in three dimensional flows and execution on massively par-

allel computer systems.

18

Figure 1.9: Schematic showing quadrilateral sub-division and construction of Hamil-

tonian paths [14].

1.3 Objectives

The first objective of the present study is to investigate robust line identification on

general unstructured grids in order to use efficient line-based methods such as stencil-

based reconstructions and line-implicit time marching methods on two- and three-

dimensional domains. In order to do this, the following objectives are accomplished.

• Two-dimensional Hamiltonian path approach is extended to general two- and

three-dimensional unstructured grids with mixed elements. In the previous

study, the robust path identification was achieved by ensuring the even number

of edges per two-dimensional element. Therefore, each element should be

converted to quadrilaterals/hexahedra in the mesh generation process.

19

• A third direction of line structures is identified by employing the strand grids

from the Hamiltonian paths on the unstructured surface mesh. The nature

of a strand grid allows line-based method to be used along the wall-normal

direction. Also, the Hamiltonian paths on the surface can be preserved in each

strand layer, which results in efficient data access inside the flow solver.

• The solution accuracy and the convergence rate are investigated through vari-

ous flow conditions: inviscid transonic, laminar, and turbulent flows. Depend-

ing on the flow condition, proper grid systems are required to better capture

the flow features, such as boundary layer, wake structure, shock, etc. The

numerical efficiency of a line-implicit method and the solution accuracy of

stencil-based reconstruction are compared with the conventional flow solver

techniques on the unstructured grid. Similarly, a comparison study with an

in-house structured grid based flow solver is also conducted to evaluate the

performance of the current flow solver.

The second objective of the current study is to develop a CFD framework for inves-

tigating practical problems involving rotary wing systems with overset meshes.

• The developed flow solver and mesh generation code are both parallelized such

that it can be executed on distributed computer memory systems. The over-

all grid is evenly divided into multiple subdomains and the communication

between multiple subdomains is performed using a message passing interface

(MPI). The concept of ghost cell is adopted along the boundary between sub-

domains.

20

• The mesh system is extended to utilize overset meshes. The overset technique

allows for multiple mesh systems, which consists of a near-body Hamilto-

nian/Strand grid and off-body Cartesian nested meshes. Using the overset

mesh system, the current flow solver is integrated with the other solver within

the multi-mesh/multi-solver paradigm. The integrated framework provides

more efficient meshing technique and solution algorithm than a single-solver.

• The capability of the flow solver is extended for unsteady viscous flow sim-

ulation with grid motion. The Reynolds-Averaged Navier–Stokes (RANS)

formulation is used by applying the turbulence model. In order to allow for

laminar-turbulent boundary layer transition, a transition model is also coupled

with the turbulence model. For the time-accurate flow simulation capability,

a second-order time marching method with dual-time-stepping strategy is ex-

plored.

1.4 Scope and Organization of Thesis

This thesis is focused on extending a two-dimensional solution algorithm using

Hamiltonian paths to three-dimensional RANS method for the interactional aero-

dynamic problems with overset meshes. The current methodology is improved and

verified in both parts of mesh generation and flow solver and the current thesis is

organized as follows.

Chapter 2 describes the computational methodology for the mesh genera-

tion. The improvements in terms of robust line identification, extension to three-

21

dimension, smoothing technique and domain decomposition are detailed.

Chapter 3 describes the computational methodology for the flow solver. It in-

cludes the evaluation of both inviscid and viscous fluxes on the finite volume method,

implicit operators, turbulence and transition modeling, the flow solver architecture,

and the Python integration framework using overset method.

The verification and validation of the developed methodology is presented

in Chapter 4. The solution accuracy and performance (solution convergence rate

and execution CPU time) of the flow solver are investigated through various cases

with different types of grid and flow flow conditions. Especially, the computational

efficiency of line-implicit method over point-implicit method is validated.

In Chapter 5, the solution convergence rates are further evaluated for the case

of loop crossing. Preconditioned GMRES method is also applied in the current

method to improve solution convergence rate further. The performance of the GM-

RES method is validated by comparing the result with the line-implicit method

alone. Finally, the parallel efficiency of the flow solver is tested through the strong

scalability test.

The developed framework is applied to rotary wing problems: hovering isolated

rotor, full wind turbine configuration, rotating rotor hub, and high advance ratio

forward flight rotor simulations. Within the multi-mesh/multi-solver paradigm, the

current solver is used for the near-body domains with complex configurations. The

approaches and the following results are presented in Chapter 6.

Conclusions and observations noted during the development, validation, and

application of the methodology are summarized in the Chapter 7.

22

Chapter 2: Computational Methodology of Mesh Generation

In this chapter, the numerical methods for the current mesh generation code

are described. The chapter will initially explain the robust path identification

method for general structured and unstructured surface grids. The mesh smoothing

and all quadrilateral meshing techniques are also included in this chapter. Following

this, the methods for the extension to three-dimensions are discussed. Finally, the

domain decomposition method for the current mesh system will be described.

2.1 Robust Line Identification

2.1.1 Quadrilateral Subdivision and Hamiltonian Path

The generation of Hamiltonian paths has been extended to general two di-

mensional unstructured grids with both quadrilateral and triangular elements. The

process begins by subdividing every triangle into three quadrilaterals and every

quadrilateral in the original mesh into four additional quadrilaterals. This subdivi-

sion is accomplished by connecting the midpoint of each edge and cell-centroid as

shown in Fig. 2.1. Figure 2.1(a) shows the subdivision process on an initial triangle

element which is consisted of nodes A, B, and C. Each triangle is divided into three

23

(a) Initial triangular element (b) Initial quadrilateral element

Figure 2.1: Quadrilateral subdivision on a two-dimensional element.

quadrilaterals by creating edges of DO, EO, and FO (quad-level 0). As shown in

Fig. 2.1(b), an initial quadrilateral which is consisted of nodes A, B, C, and D is also

divided into four smaller ones by connecting each midpoint edges and cell-centroid.

Once a pure quadrilateral mesh is obtained from the initial mesh, each of these

quadrilaterals can be refined further into four additional ones if desired using the

same approach as shown in Fig. 2.1(b). Then, resultant 12 quadrilaterals are made

from an initial triangle and 16 quadrilaterals from an initial quadrilateral (quad-level

1). In the end, the goal of the subdivision process is to arrive at an even number

of mutual edges for each cell element starting from an arbitrary unstructured mesh

which can consist of mixed triangle and quadrilateral elements.

The process of Hamiltonian path identification for a given surface mesh begins

by identifying any edge that dose not have a chain passing through it and the cell

associated with this edge. From the edge, the chain is grown by connecting midpoints

of opposite edges in the quadrilateral cell, and this process is repeated until either a

24

closed chain is formed or the chain encounters a boundary (such as wall or far-field).

Once all of the edges in the mesh have been linked to a chain, the path identification

is complete. Figure 2.2 shows the resulting Hamiltonian paths which are colored line

structures obtained from an initial mix of triangles and quadrilaterals. As a result,

each edge is part of only one distinct loop and each cell centroid is intersected by two

distinct loops. It is also recognized that, for a given mesh, there is only one possible

topology of the resulting Hamiltonian paths, making the process unique and robust.

These structures are analogous to the grid coordinate directions in a structured grid

solver, thus similar solver strategy is applicable along the Hamiltonian loops on the

unstructured grid. Most importantly, this quadrilateral subdivision process ensures

an even number of edges per elements and guarantees that nesting for a factorization

method will always be satisfied. Therefore, line-implicit methods are available along

the hidden line structure on the unstructured surface grid.

This process allows the Hamiltonian paths to traverse grids that are both

structured and unstructured. Figure 2.3(a) shows a point continuous multi-block

system around a NACA0012 airfoil, which consists of a curvilinear structured grid,

an unstructured grid, and a Cartesian grid. The curvilinear near body grid is gener-

ated using a hyperbolic mesh generator with 160 points in the wrap-around direction

and 10 layers in the wall-normal direction. Then, the triangle elements are gener-

ated using the Delaunay formulation [15]. Then, the all quadrilateral mesh system

is obtained using the subdivision method from the initial mesh system as shown in

Fig. 2.3(b). By using quad-level 0 subdivision, each triangle is divided into three

quadrilaterals and each quadrilateral is subdivided into four smaller quadrilaterals.

25

Figure 2.2: Schematic showing Hamiltonian loops formed on a mixed triangle and

quadrilateral mesh.

Note that the mesh has been smoothed using a simple Laplacian smoothing operator

with fixed boundary nodes to improve the cell and Hamiltonian loop quality. Based

on the pure quadrilateral mesh system, Hamiltonian paths are found as shown in

Fig. 2.3(c). Here, the Hamiltonian paths are passing through the various domains,

thus the mesh systems are united and treated as a single unstructured quadrilateral

mesh. Each cell has two loops of distinct colors that pass through it, which act as

the coordinate lines for each cell. Note that the Hamiltonian paths on the struc-

tured or Cartesian domains are similar with the grid coordinate directions used with

a structured grid flow solver.

An arbitrary level of refinement (subdivision) is referred as quad-level in this

study. After one additional quad-level, the resulting meshes have four times the

number of quadrilateral cells with twice the number of Hamiltonian loops; each

26

(a) Point continuous multi-block system (b) All-quadrilateral mesh system

(c) Hamiltonian paths passing through the different domains

Figure 2.3: Hamiltonian path on multi-mesh system for NACA0012 airfoil.

27

loop now being twice as long. Figure 2.4 shows the NACA 0012 airfoil grids which

are subdivided to quad-level 1 and quad-level 2 from the same initial triangular

mesh. In this example, the newly created points on the edges of the triangles are

flushed to the airfoil surface using the analytic equations for the surface definition

of a NACA airfoil. For the two-dimensional surfaces which are not defined by an

analytic equation, a cubic interpolation is used to flush newly added points on the

surface. Different quad-levels can serve as efficient ways to perform grid-refinement

and grid-convergence studies. The additional subdivision of quadrilaterals can also

be used to potentially improve the quality of the mesh and resultant Hamiltonian

paths (For details, see reference [16]).

2.1.2 Hamiltonian Path on Structured Grids

The generation of Hamiltonian paths can be applied on any structured mesh

directly because a structured mesh has pure quadrilaterals. The Hamiltonian paths

can be assumed as grid coordinate directions of the structured grid in most of the

regions. However, the path can across any coordinate cuts as a continuous line on

the structured mesh, which is defined by the boundaries of computational space

and required due to grid mapping from physical space. Figure 2.5 shows identified

Hamiltonian paths on two different types of structured airfoil grids near the trailing

edge; O-type and C-type meshes. The paths are denoted by red and blue colors

and the structured mesh is represented by the black line. It should be noted that

only two different colors are required for two-dimensional structure grids to make

28

(a) Quad-level 1 subdivision

(b) Quad-level 2 subdivision

Figure 2.4: Multiple level quadrilateral subdivision and application for a two-

dimensional airfoil mesh.

29

(a) O-type structured grid (b) C-type structured grid

Figure 2.5: Hamiltonian paths on airfoil structured grids at near the trailing edge.

two loops of distinct color intersect at every cell center. In the figures, the paths

shown as blue lines can cross the coordinate cuts, where an appropriate boundary

condition is typically required in structured grid based solvers. Therefore, in the

current method, coordinate cuts can be handled as a continuous domain without

boundary conditions for both reconstruction and the implicit operator.

2.1.3 Mesh Smoothing

Ideal Hamiltonian loops have a high radius of curvature and the cell sizes

are equal or changing gradually from one cell to the next along a given loop. An

approach for increasing the radius of curvature is to use less number of initial trian-

gular cells with multiple number of quadrilateral subdivisions to maintain the total

number of quadrilateral cells. As quad-level increases, it is necessary to re-position

the internal nodes to improve accuracy and convergence of the solution when high-

30

order stencil-based reconstructions are used along the loops. A naive implementa-

tion involves the placement of the internal nodes in any arrangement followed by a

smoothing operation, such as a Laplacian smoothing, to ensure smooth Hamiltonian

paths. In this smoothing, any given node that is not on the domain boundaries is re-

positioned based on the simple average of the position of the connecting nodes. The

process is repeated until the positions do not change between subsequent iterations.

However, Laplacian smoothing results in a wide variation of the quadrilateral cell

size; the cells getting smaller towards the center and larger at the corners, as shown

in Fig. 2.6(a). Figure 2.6(b) shows the distribution of nodes such that the resulting

quadrilaterals are all of equal area, forming a shape-preserving pattern. Note that

the loops formed through this distribution have varying curvature. Therefore, a

blended mesh is obtained, as shown in Fig. 2.6(c), where the node positions of the

previous two node distributions are averaged. The resulting blended mesh produced

a distribution that is more appealing than either procedure by themselves and the

quadrilateral cell sizes are more uniform than with the previous Laplacian smooth-

ing. A comparison of the flow solution convergence between Laplacian smoothing

and blended smoothing can be found in the reference [16].

2.1.4 All Quadrilateral Meshing

Current requirement for the robust line identification is an all quadrilateral

mesh generation and the resulting quadrilateral meshes can be classified into several

classes based on the degree of regularity as shown in Fig. 2.7. First, a regular mesh

31

(a) Laplacian (b) Equal area (c) Blended

Figure 2.6: Various distributions of cells within a triangle.

which corresponds to structured mesh can be globally mapped to a 2D arrays of

quadrilaterals like computational space. In the regular mesh, all node points have

four valence which is the number of its incident edges, and this limitation makes it

difficult to be used on an arbitrary shape. Second, in a semi-regular mesh, most of its

nodes have four valence, but not every node. Even with a small number of valence

semi-regular, the mesh generation can be much simpler than for a regular mesh.

Last, an unstructured mesh has a larger fraction of its nodes which are irregular

compared to the semi-regular mesh [17].

The quadrilateral subdivision method from a pure triangular mesh corresponds

to the unstructured all-quad mesh and it naturally provides circle-shaped loops

which become rather short and curved when compared to the shape of loops on a

structured grids (grid coordinate lines). For smoother and longer shape of paths

from an initial triangular mesh, the HAMSTRAN method [18] has been introduced

to mimic the semi-regular mesh type. In this method, triangles or mixed elements

are converted to all quadrilaterals mostly by re-locating node points and recreating

the nodal connectivity information. A subdivision process is not required in this

32

(a) Multi-block structured (b) Valance semi-regular (c) Unstructured

Figure 2.7: Quadrilateral meshes categories [17].

(a) Initial triangular mesh (b) Subdivision (c) HAMSTRAN

Figure 2.8: Different pure quadrilateral meshing technique [18].

method, thus the number of elements can be better preserved compared to the

subdivision method.

Figure 2.8 shows a simple example of two different quadrilateral meshing on a

hexagon. From the initial triangular mesh with 384 elements, the pure quadrilateral

mesh with 1,152 elements or 384 elements can be obtained using either subdivision

or HAMSTRAN method. The HAMSTRAN method can ensure that most of the

node points have valence four, as shown in Fig. 2.8 (c), which means better grid

quality with less skewness for the pure quadrilateral mesh.

33

As shown in Fig. 2.9, part of the resultant paths using either the HAMSTRAN

method or subdivision method have been compared with each other on the Robin-

Mod7 fuselage surface mesh which originally consists of all triangles. The Robin-

Mod7 fuselage was developed at NASA Langley to be representative of a generic he-

licopter. When it is compared to the mesh using the subdivision method (quad-level

0) in Fig. 2.9 (a), the quadrilateral mesh using the HAMSTRAN method becomes a

more semi-regular type as shown in Fig. 2.9 (b). For the two different quadrilateral

meshes, the shapes of resultant loops are quite different as well. The smoother and

longer resultant loops on the semi-regular mesh can take better advantage of line

based methods in the flow solver, such as for numerical accuracy and convergence

(for details, see reference [18]).

One interesting phenomenon is that the paths on a semi-regular mesh can

potentially self cross as shown in Fig. 2.9 (b). The current flow solver strategy

can handle the self-crossing of loops robustly and the solution convergence was not

affected by the self-crossing loops. Further investigation is shown in section 5.1.

2.2 Extension to Three-Dimensions

To extend the formulation to three-dimensions, two different types of volume

grids have been employed in the present study: a strand based grid and a traditional

unstructured volume grid.

34

(a) Unstructured mesh with quadrilateral

subdivision

(b) Valence semi-regular mesh without

quadrilateral subdivision

Figure 2.9: Hamiltonian path on two different quadrilateral mesh for Robin-Mod7

fuselage.

2.2.1 Strand Grids

The role of the strand grids is to provide a structure in the wall normal di-

rection, thus allowing for line-implicit methods and stencil-based reconstructions to

be used along this direction. Figure 2.10 shows a schematic of the construction of

the strand grids from a triangular mesh element. This triangular element is subdi-

vided into quadrilaterals and the construction of Hamiltonian loops around a given

triangular node can be performed. Therefore, two loops pass through each quadri-

lateral and are the local coordinate directions. Strand grids emanate from the cells

on the surface of the body and are extruded in the wall-normal direction. These

strand grids pass through multiple layers of Hamiltonian loops and form the third

cell coordinate direction, as shown in Figs. 2.10(a). Therefore, for a given surface

geometry, Hamiltonian loops are constructed on the surface of the body representing

two “in-plane” spatial directions and the strands represent the third “out-of-plane”

35

spatial direction. Each strand grid is based on the strand template as shown in

Fig. 2.10(b). The strand template is identified as a wall normal direction vector and

a one-dimensional grid point distribution along the strand which originates from

each node on the surface mesh. The grid spacing on each strand grid is identical.

Consequently, layers of hexahedra are generated by extruding the surface.

(a) Construction of strands (b) Strand template

Figure 2.10: Schematic depicting the creation of strand layers from multiple layers

of Hamiltonian surface loops.

By using a strand grid to form the volume domain, Hamiltonian paths on the

surface are preserved along the strand grid. Therefore, efficient solution algorithms

are possible and storage requirements are minimal as the structured data on the sur-

face grid is maintained in the wall normal direction. Furthermore, strand grids are

also readily amenable to parallelization techniques. However, it is relatively difficult

to use a strand grid around complex geometries, especially with a concave corner, as

compared to a typical unstructured volume mesh which uses tetrahedrons. This is

because the strands eventually cross each other as they extrude along straight lines

36

in the wall normal direction at a concave corner. Although strand-clipping technol-

ogy [12] was developed to handle strands crossing over each other, an alternative

strategy is employed in the present study.

This uses a modified advancing front-like technique to generate the volume

mesh and prevent the stands from crossing over each other [16,19]. In this formula-

tion, the strands are no longer assumed to be straight lines but can be curvilinear,

which means the normal direction of the strand can be varied along the strand.

Strands are marched from the wall surface using the local normal to a finite dis-

tance to the next outer surface. At this new surface, the normals of the strands

are recomputed and averaged based on the surrounding normals, following which

they are marched out again to form the subsequent outer surface. This process of

averaging the normals and marching out is repeated for the total number of strand

layers in the volume mesh.

The resulting volume mesh around the Robin-Mod7 fuselage is shown in Fig. 2.11.

57 strands are used with an initial wall spacing of 5 × 10−6 fuselage length as an

initial wall normal spacing. However, the smoothing of the normals by itself is in-

sufficient to prevent the normals from intersecting in the ramp region of the fuselage

for relatively large cell sizes. Therefore, preferential weighting of the normals in the

radial direction is applied to be necessary in the highlighted regions as shown in

Fig. 2.11. The use of the weighting factor is dependent upon the simulation model

geometry and whether it has concave corners or not.

37

Figure 2.11: Longitudinal slice of the mesh around Robin-Mod7 fuselage highlighting

the curved strands in regions of concave ramp region.

2.2.2 Unstructured Volume Grid

Second extension to three dimensions uses a typical unstructured volume mesh

which usually consists of both prisms and tetrahedrons. Unlike a strand grid which

is based on hexahedrons, robust line identification is not possible on a typical un-

structured volume mesh, because each element does not have an even number of

faces. Therefore, each initial element is subdivided into multiple hexahedrons in a

manner similar to that in two-dimensions. Each tetrahedron is divided into four

hexahedrons and each prism is divided into three hexahedrons. Then, Hamiltonian

paths are constructed on the divided volume domain by connecting opposite face

centers of each hexahedron, which is exactly the same algorithm as the one used for

a two-dimensional surface mesh. Figure 2.12 shows an example of Hamiltonian path

generation on two prisms and three tetrahedrons. After the subdivision process, a

total of 18 hexahedra are used to form the Hamiltonian paths which are shown as

colored loops. Unlike with a strand volume grid, a Hamiltonian path can be either

38

opened loop or closed loop. Compared to a strand grid, the use of both prisms

and tetrahedrons makes the robust volume meshing to be possible around complex

geometries which have concave corners. However, the Hamiltonian paths on surface

are not preserved in the wall normal direction and the resultant loops on volume

domain are formed with much shorter length and various curvatures. These are

not favorable to line based flow solvers especially for stencil based reconstruction

schemes.

Figure 2.12: Schematic showing Hamiltonian paths on unstructured volume mesh

(left: initial prisms and tetrahedrons, right: Hamiltonian paths on hexahedrons).

Figure 2.13 (a) shows an example of current unstructured volume meshing

around a sphere. As a typical unstructured mesh, the viscous domain extrudes a

short distance from the surface using prism layers with 29,480 elements and it is

transitioned to tetrahedrons with 114,618 elements for the space between the outer

surface of the prism domain and the far-field boundary. After subdivision (quad-

level 0), a pure hexahedral mesh was obtained with 546,952 elements as shown

in Fig. 2.13 (b). It is recognized that for the simple geometry of a sphere, the

39

unstructured volume grid may not be required. However, the goal of the example

is to show the capability of the current subdivision and path identification methods

in three-dimensions.

(a) Initial prism and tetrahedron vol-

ume mesh

(b) All hexahedral volume mesh

Figure 2.13: Unstructured volume mesh around a sphere.

2.3 Domain Decomposition

Typical grid-based CFD meshes contain millions of volume cells making it

impractical for the solution to be executed on a single processor. The developed

Hamiltonian flow solver and mesh generation code are both parallelized such that it

can be executed on distributed computer memory systems. The communication be-

tween multiple subdomains is performed using the Message Passing Interface (MPI).

Therefore, the overall grid is split into multiple subdomains to be computed in par-

allel. METIS [20], an open-source program used for graph partitioning, is employed

in the current mesh generation code.

40

The decomposition of the three-dimensional grid system can be performed in

two different ways; divide the three-dimensional volume grid as “volume partition-

ing” or divide the two-dimensional surface mesh and subsequently create the strands

within each subdomain as “surface partitioning”. Figure 2.14 shows an example of

the surface and volume partitioning of a strand grid around a sphere using METIS,

with each color indicating a unique subdomain. For better visualization, only a

few number of strand layers are used for the volume domain with relatively large

wall-normal spacing. Table 2.1 shows the decomposed number of cells and nodes

within each subdomain when partitioned either using the surface grid or the volume

grid. The overall volume domain contains 2,160 cells and 2,420 nodes. The number

of cells is almost evenly balanced using surface partitioning as well as volume parti-

tioning. Although either division of the surface or volume domain will result in the

Hamiltonian paths on a surface mesh being broken, surface division can keep each

strand grid in a single domain. Therefore, surface division is used for a strand grid

volume mesh, otherwise volume division is used for a typical unstructured volume

mesh.

41

(a) Surface partitioning (b) Volume partitioning

Figure 2.14: Representative surface and volume partitioning of a sphere using

METIS.

Table 2.1: Distribution of cells across different processors by either volume or surface

subdivision.

Surface partition Volume partition

Subdomain Cells Nodes Cells Nodes

1 360 530 360 526

2 360 530 360 545

3 360 540 360 541

4 369 550 360 531

5 360 540 361 530

6 351 530 359 525

42

The surface domain partitioning can be performed either at the triangular

cell stage or the quadrilateral cell stage after quadrilateral subdivision. In this

study, the partitioning is performed at the quadrilateral cell stage. This is because

more algorithmic work is required to identify neighbor cells between adjacent sub-

domains if partitioning is performed at the triangular cell stage. Once a domain is

partitioned at the triangular cell stage, the subsequent processes, such as quadri-

lateral subdivision and path identification are performed in each processor, and it

requires additional communications between subdomains to identify its neighboring

of quadrilateral element. For the same reason, the partitioning for an unstructured

volume mesh is also performed at the hexahedral cell stage after the subdivision

process from the mixed tetrahedrons and prisms.

It should be noted that Hamiltonian paths on the partitioned surface domain

can cross more than two subdomains as the whole domain is divided into more num-

ber of subdomains using METIS. As shown in Fig 2.15, an initial closed loop which

consisted of 12 cell elements is divided into 4 smaller opened loops through domain

partitioning. This will result in the minimum length of the loop, only consisting

of 2 elements at second and third subdomains. However, when stencil-based recon-

struction is used along the line structures, it usually requires a size of stencil more

than 2 for third- or fifth-order schemes. To guarantee a large enough stencil size

for the high-order reconstruction methods, a concept using ghost cells which is also

known as dummy cells is adopted in both mesh generation and the flow solver. The

ghost cells are additional layers of grid points outside the physical domain along the

boundaries between subdomains. The ghost cells are only virtual, and geometrical

43

Figure 2.15: Hamiltonian path on partitioned unstructured surface mesh.

quantities like volume and face vectors of ghost cells are not required in the recon-

struction methods. Note that the required layers of ghost cell vary depending on the

reconstruction methods with a maximum of three layers used in the current method

for fifth-order reconstruction. More explanation about reconstruction methods is

shown in section 3.2.

2.4 Data Structure

Unlike with a classical unstructured grid, unique data structures along each

line are provided to the flow solver for its line-based solution algorithm. The face of

an element is the basic building block of the current data structure, and faces are

arranged in an order along each Hamiltonian path or strand grid. Figure 2.16 shows

an example of face indexing for the first two opened-loops on a two-dimensional

domain. Between the paths, the face index can be increased without any duplication

and the Hamiltonian path and strand grid can be represented as a chain of face

44

Figure 2.16: Chain-to-face connectivity (left) and required grid data for each face

(right).

indices because each face is part of one unique Hamiltonian path.

Once chain-to-face connectivity is created, a group of grid data for each face

is stored as an array. In two-dimension, the array has four integers per face. They

are the indices of the two nodes that form the face and the indices of the left and

right cells of the face. The array can be extended easily for a three-dimensional

grid, with a total of six integers required per face by adding two more integers for

the additional nodes that form the face. The array for a three-dimensional grid is

shown in Eq. 2.1.

face[i] = [node1, node2, node3, node4, leftCell, rightCell] (2.1)

For the communication between partitioned domains which run in parallel in

the flow solver, the additional grid data structure is required. The array for the

communication is made with [nmpiface × 13] size for each partitioned subdomain

45

(see Eq. 2.2). nmpiface is the number of boundary faces for each domain along

which the partitioned domains are connected to each other. At each boundary face,

a total of 6 neighbor cell indices are stored with corresponding processor ID (proc):

each side of the face has three cells and corresponding processor IDs, respectively. It

should be noted that at each side of the face, different subdomains can occur within

the successive three cells, thus processor ID information is required for each cell.

mpiface[i] = [face, cell1, proc1, cell2, proc2, cell3, proc3,

cell4, proc4, cell5, proc5, cell6, proc6]

(2.2)

In addition to these arrays, the number of total paths, starting face index for

each path, and chain-to-face connectivity are provided to the flow solver. Table 2.2

summarizes the current grid data structures utilized for organizing the data.

2.5 Summary

In this chapter, the computational methodology of the mesh generation is

presented. First, the generation of Hamiltonian paths has been extended to general

unstructured surface grids with both quadrilateral and triangular elements. From

an initial mix of elements, each element is subdivided into quadrilaterals to obtain

pure quadrilateral mesh. The process of Hamiltonian path identification is also

improved to be applied robustly and uniquely in any pure quadrilateral/hexahedral

mesh including typical structured grids. Self-crossed paths can occur when paths

are identifed on a semi-regular type grid.

For three-dimensions, two different types of volume grid have been employed:

46

Table 2.2: Grid data structures.

variables description

nnodes total number of nodes

ncells total number of quadrilateral cells

nfaces total number of faces

nchians total number of chains

faceStartPerChain starting face index for each path

chainConn chain-to-face connectivity

face list of faces (6 integers per face in three-dimension)

mpiface lift of cells and processor ID (12 integers per mpiface)

coord node coordinates

conn cell-to-node connectivity

strand based grids and traditional unstructured volume grids. The strand grids are

generated from the surface grid by extruding in a wall-normal direction. Therefore,

third “out-of-plane” spatial direction is easily identified along each strand. To pre-

vent strands from crossing over each other at concave corner, the strand grids are

allowed to be curvilinear which is generated using a advancing front-like technique.

The generation of Hamiltonian path is applicable to an initial mix of unstruc-

tured volume elements of tetrahedron and prism. In order to do this, each element

is subdivided into multiple hexahedrons as a prerepuisite. Then, the Hamiltonian

paths are constructured on the divided volume domain using the same algorithm as

47

the one used for the surface mesh.

The overall grid is split into multiple subdomains using METIS in order to

be computed in parallel. The decomposition of the three-dimensional grid is per-

formed using “surface partitioning” or “volume partitioning” for strand grids and

unstructured volume grids, respectively. To guarantee a large enough stencil size for

stencil-based reconstructions, a concept of ghost cell with multiple layers is applied

along the boundary between subdomains.

48

Chapter 3: Computational Methodology of Flow Solver

In this chapter, the fundamental fluid dynamics equations along with the nu-

merical solution algorithms are described. The solution algorithms are focused on

the use of Hamiltonian paths and strand grids in the evaluation of numerical fluxes

and the application of various line-implicit methods to current mesh system. Fol-

lowing this, turbulence and transition modeling are described briefly. Finally, the

integration of current flow solver into the overset framework using multi-mesh/multi-

solver paradigm will be discussed.

3.1 Governing Equations

The three-dimensional, unsteady, Navier–Stokes equations describe the behav-

ior of fluid flow. In this work, they are used to represent compressible, non-reacting,

ideal gas flow across the boundary of a closed domain known as a control volume.

They ensure universal laws of conservation of mass, momentum, and energy in the

control volume. The integral form of the system of equation in conservation form is

given by Eq. 3.1.

∂

∂t

∫
V

QdV +

∮
∂V

F (Q) · ~nds =

∮
∂V

G(Q) · ~nds+

∫
V

S(Q)dV (3.1)

49

where V is control volume and ~n is the unit normal vector to the face. The vector

of conserved variables is represented as Q, and F (Q) and G(Q) correspond to the

convective and viscous fluxes, respectively. S(Q) represents the source terms that

have to be included to account for the centrifugal and Coriolis accelerations if the

equations are formulated in a non-inertial frame of reference. In the current work,

the equations are formulated in an inertial frame of reference for all of the simulations

with rotating motion. Therefore, the source terms are zero. The vector of conserved

variables is given by:

Q = [ρ, ρu, ρv, ρw, E]T (3.2)

where ρ is the fluid density, and u, v, w are components of the fluid velocity along

the Cartesian coordinate system (x, y, z). E is the total energy per unit volume

given by:

E = ρ

[
e+

1

2
(u2 + v2 + w2)

]
(3.3)

where, e is the internal energy per unit mass. The inviscid and viscous flux vectors

are given by Eqs. 3.4, 3.5.

50

F (Q) · ~n = ((~V − ~Vg) · ~n)

ρ

ρu

ρv

ρw

E

+ p

0

nx

ny

nz

~V · ~n

(3.4)

G(Q) · ~n = nxG1 + nyG2 + nzG3

Gi = [0, τi1, τi2, τi3, ujτij − qi]T
(3.5)

where, ~V is the velocity vector and ~Vg is the grid velocity vector. p is pressure and q

is heat conduction term expressed as a function of temperature (T) and coefficient

of thermal conductivity (k) according to Fourier’s law.

qi = − 1

(γ − 1)

(
µ

Pr
+

µt
Prt

)
∂T

∂xi
(3.6)

where, Pr is Prandtl’s number for laminar flow as 0.72 and Prt is for turbulent flow

as 0.9 for air. µ is the molecular viscosity and µt is the eddy viscosity which is

determined by a turbulence model. The value of the ratio of specific heats γ is 1.4

for air at standard temperature and pressure.

The viscous stress tensor for Newtonian fluids, τij, formulated using Stokes’

hypothesis is given by:

τij = (µ+ µt)

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(3.7)

The coefficient of molecular viscosity is given by Sutherland’s formula.

51

µ = C1
T

3
2

T + C2

(3.8)

where, C1 = 1.4× 10−6 kg/(ms
√
K) and C2 = 110.4 K for air at standard temper-

ature and pressure.

To close the system of equations, the equation of state for ideal gases is used:

p = ρRT (3.9)

where, R is the gas constant. Since all the flows studied in this work involve air at

standard temperature and pressure, the calorically perfect gas assumption is valid.

A calorically perfect gas is an ideal gas with constant specific heats. Specific heat

at constant volume cv and specific heat at constant pressure cp are given by:

cv =
R

γ − 1
cp =

γR

γ − 1
(3.10)

The following relations between thermodynamic quantities are applicable to

calorically perfect gases:

e = cvT (3.11)

p = (γ − 1)ρe (3.12)

The total energy per unit volume, E, can now be re-written in terms of pressure

and velocity components as follows:

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
(3.13)

When using mesh deformation techniques within a finite volume method, Ge-

ometric Conservation Law (GCL) much be satisfied to ensure free-stream preserva-

52

tion. In this study, the contravariant grid velocity (~Vg ·~n) of the i-th face is computed

by calculating sweeping volume of the face.

(
~Vg · ~n

)n+1

i
=

∆V n
i

sn+1
i ∆t

(3.14)

where ∆V n
i represents the volume sweep by the i-th face between the time layer n

and n+ 1. si represents the area of the i-th face.

The validation of GCL is performed through a pitching airfoil simulation in

Appendix B.

3.1.1 Non-Dimensional Form of Equations

The governing equations are often solved in their non-dimensional form. There

are two advantages of doing this: (1) parameters such as Mach number and Reynolds

number can be varied independently, (2) all flow variables are normalized to fall in

the vicinity of (0,1), thereby reducing numerical inaccuracies that may occur due to

mathematical operations between largely different values.

x∗ =
x

L
, y∗ =

y

L
, z∗ =

z

L
, t∗ =

t

L/a∞
(3.15)

u∗ =
u

a∞
, v∗ =

v

a∞
, w∗ =

w

a∞
, µ∗ =

µ

µ∞
(3.16)

ρ∗ =
ρ

ρ∞
, p∗ =

p

ρ∞a2
∞
, T ∗ =

T

T∞
(3.17)

53

where the nondimensional variables are denoted by an asterisk, free stream condi-

tions are denoted by∞, and L is the reference length used in the Reynolds number:

ReL =
ρ∞V∞L

µ∞
(3.18)

Substituting the above relations into the governing equations in Eq. 3.1 gives

a new set of equations in terms of the non-dimensional variables.

3.1.2 Reynolds-Averaged Navier–Stokes Equations

The Reynolds-Averaged Navier–Stokes (RANS) equations is an affordable al-

ternative to Direct Numerical Simulation (DNS) or Large-eddy simulation (LES)

for turbulent flow simulation in engineering applications. Therefore, the RANS ap-

proach is used in this study. In the RANS approach, dependent variables in the

baseline governing equations shown in Eq. 3.1 are decomposed into their mean and

fluctuating components and the resulting equations are averaged over an appropriate

time interval.

In the Reynolds-averaging procedure, the mean or time-averaged quantity f

is defined as:

f ≡ 1

∆t

∫ t0+∆t

t0

fdt (3.19)

where ∆t is large compared to the period of the random fluctuations associated

with the turbulence, but small compared to the time scales of mean flow variation

in unsteady flows. By definition, the time-averaged value of a fluctuating quantity

is zero:

54

f ′ ≡ 1

∆t

∫ t0+∆t

t0

f ′dt = 0 (3.20)

The following relations hold for sum and product of any two fluctuating quan-

tities:

fg′ = 0 fg = fg f + g = f + g (3.21)

The most important identity is that the time-average of the product of two

fluctuating quantities is not zero:

f ′f ′ 6= 0 f ′g′ 6= 0 (3.22)

In the Reynolds decomposition approach, the randomly changing flow variables

are replaced by time averages plus fluctuations as shown below:

u = u+ u′ v = v + v′ w = w + w′ ρ = ρ+ ρ′ p = p+ p′ (3.23)

The turbulence field is said to be isotropic when u′ = v′ = w′. Turbulent

intensity of turbulence level (Tu) is defined as the ratio of the root-mean-square of

turbulent velocity fluctuations (U ′) and the mean velocity magnitude (U):

Tu =
U ′

U
(3.24)

U ′ =

√
1

3
[(u′)2 + (v′)2 + (w′)2] U =

√
(u)2 + (v)2 + (w)2 (3.25)

Substitution of the Reynolds-decomposed dependent variables in Eq. 3.23 into

the instantaneous, unsteady Navier-Stokes equations in Eq. 3.1, followed by time-

averaging of the equations gives rise to a new set of governing equations. These are

known as the Reynolds-Averaged Navier-Stokes equations. These are almost identi-

cal in form to the unsteady Navier-Stokes equations except that the time-averaged

55

quantities f have replaced the instantaneous quantities f . The additional term is

also derived which behaves as an apparent stress tensor due to the transport of

momentum by turbulent fluctuations. Hence it is commonly known as the Reynolds

Stress Tensor ρu′iu
′
j, given by:

(τ ij)turb = −ρu′iu′j (3.26)

With the introduction of Reynolds-stress terms, six additional unknowns are

obtained in the Reynolds-averaged momentum equations. In order to close the

RANS equation, the Reynolds-stress term is approximated using a turbulence model.

Details of turbulence modeling will be discussed in Section 3.4.

3.2 Evaluation of fluxes

3.2.1 Finite Volume Method

The governing equations are discretized by using a cell-centered finite-volume

method. The flow domain is divided into a finite number of control volumes. Each

one of the arbitrary volumes is Vi and closed by a boundary ∂Vi. Since each con-

trol volume Vi shares common boundaries with its neighbors, this approach retains

the conservative property inherent to the integral equations. This feature ensures

that the contributions from the fluxes across all of the interior boundaries within

the global domain will exactly cancel each other. The control volume Vi can be

represented by any arbitrary cell elements, i.e. hexahedron, tetrahedron, etc.

The cell-centered approach in the current study contrasts with the more com-

56

monly used node-centered approach for an unstructured grid based solver. The pri-

mary reason for choosing the cell-centered approach is to use a line-based method on

the unstructured grid along the Hamiltonian paths and strand grid. A node-centered

approach uses dual control volumes which are created by connecting midpoints of

the cells having the respective node in common. In this case, it cannot guarantee

that the dual control volume has an even number of mutual faces, which is a prereq-

uisite for Hamiltonian path identification. Also, the cell-centered approach is more

straightforward to program because the control volumes are identical with the grid

cells.

The conserved variables Q are the volume-averaged values in the finite volume

method and defined by:

Qi =
1

Vi

∫
V

QdV (3.27)

By using a semi-discrete approximation, the unsteady Navier-Stokes equations

in Eq. 3.1 can be written as:

∂(QiVi)

∂t
+

∑
j ∈ nfaces

F (Q)i,jsi,j =
∑

j ∈ nfaces

G(Q)i,jsi,j (3.28)

3.2.2 Inviscid Fluxes

The spatial discretization and time integration procedures are fully decoupled

in the finite volume approach. Evaluation of inviscid fluxes involves two steps:

(1) reconstruction of the conservative variables at cell faces, and (2) evaluation of

the fluxes at interfaces using reconstructed conservative variables. Reconstruction

schemes for systems with hyperbolic properties are often based on some form of

57

upwinding. This ensures that the numerical scheme respects the direction of wave

propagation and uses information only from the upstream direction.

In this study, both stencil-based and gradient-based reconstructions are used.

It should be noted that stencil-based reconstructions cannot be used on a general

unstructured grid. However, the current method can use it on both structured and

unstructured grids along the paths and strand grids.

Stencil-Based Reconstruction

Figure 3.1 shows a schematic of loops passing through a quadrilateral cell

along with the associated cell and face numbers. The quadrilateral cells can be

obtained from either a structured grid or an unstructured grid with subdivided

triangle elements. The reconstruction of left states (qL) and right states(qR) are

accomplished along the cells of a given loop from the cell-averaged values. Because

each of the paths is treated like a coordinate direction of a structured grid, any

stencil-based reconstruction methods used in a structured grid based solver can be

applied along each of the paths.

In the current study, the third-order Monotone Upstream-Centered Scheme

for Conservation Laws (MUSCL) [3] and fifth-order Weighted Essentially Non-

Oscillatory (WENO) scheme [4] are used for reconstruction. With a MUSCL scheme,

the reconstructed conservative variables at each interface is expressed as a function

of the cell-averaged values with a three-point stencil:

58

Figure 3.1: Schematic showing the numbering scheme along Hamiltonian loops used

for reconstruction strategy.

qL
i+ 1

2
= qi + φi

[
1

3

(
qi+1 − qi

)
+

1

6

(
qi − qi−1

)]
qR
i− 1

2
= qi − φi

[
1

3

(
qi+1 − qi

)
+

1

6

(
qi − qi−1

)] (3.29)

where φ is the Koren’s differentiable limiter given by.

φi =
3∆qi∇qi + ε

2 (∆qi −∇qi)
2 + 3∆qi∇qi + ε

(3.30)

where ε is a small number used to prevent division by zero, and ∆ and ∇ are

the forward and backward difference operators defined by ∆qi =
(
qi+1 − qi

)
and

∇qi =
(
qi − qi−1

)
.

The fifth-order finite difference WENO scheme is briefly explained in Eq. 3.31.

The same weights, ω1, ω2 and ω3, are used as proposed by Jiang and Shu [4].

59

qL
i+ 1

2
=
ω1

3
qi−2 −

1

6
(7ω1 + ω2)qi−1 +

1

6
(11ω1 + 5ω2 + 2ω3)qi

+
1

6
(2ω2 + 5ω3)qi+1 −

ω3

6
qi+2

qR
i− 1

2
=
ω1

3
qi+2 +

1

6
(7ω1 + ω2)qi+1 +

1

6
(11ω1 + 5ω2 + 2ω3)qi

+
1

6
(2ω2 + 5ω3)qi−1 −

ω3

6
qi−2

(3.31)

Gradient-Based Reconstruction

The gradient-based reconstruction is also applied for inviscid flux evaluation in

addition to stencil-based reconstructions. It is assumed that the solution is piecewise

linearly distributed over the control volume. Then, the left and right state for a cell-

centered scheme are estimated from Eq. 3.32.

qL
i+ 1

2
= qi + φi(∇qi · ~rL)

qR
i− 1

2
= qi + φi(∇qi · ~rR)

(3.32)

where ∇qi is the gradient of q (
[
∂q
∂x
, ∂q
∂y
, ∂q
∂z

]T
) at the cell center i and φ denotes

a multi-dimensional limiter function [2]. The vectors ~rL and ~rR point from the

cell-centroid to each face-midpoint.

To compute the solution gradient (∇qi), two approaches are usually used on

an unstructured grid: Green-Gauss and least-squares. In this study, least-squares

approach is applied because the least-squares gradient estimation provides more reli-

able results than Green-Gauss on poor quality meshes [21]. The linear least-squares

(LLS) approach is based upon the use of a first-order Taylor series approximation

60

from each cell-centroid. The gradient can be computed by a summation of field

variables at neighboring cell-centroids (qj) and their corresponding weights (βj) as

shown in Eq. 3.33.

∇qi =
N∑
j=1

βjqj (3.33)

where N is the number of neighbor cells of the cell i.

To find weights of each neighbor, a system of equations is solved as shown in

Eq. 3.34. The dimension of the matrix, (xj − xi)T , is N by 2 for two-dimensions (N

by 3 for three-dimensions). The dimension of vector, C, is N by 1 with all elements

of 1. More details of the least-squares procedure may be found in the reference [22].

qj = qi +∇qi(xj − xi)T[
(xj − xi)T , C

]
[∇qi, qi]T = qj

(3.34)

The number of neighbors, N , can vary for each cell on an unstructured grid

system. Figure. 3.2 shows two different sets of neighbor cell stencils for the linear

least-squares method; standard stencil and wrapping stencil. For standard second-

order, the computational stencil composed of face-neighbors is a natural choice.

However, a wrapping stencil composed of not only the face-neighbors but also node-

neighbors was also considered as proposed by [23]. This is because the wrapping

stencil provides a better reconstruction and ensures an adequate number of neighbor

cells even along the boundary.

61

(a) Standard stencil (b) Wrapping stencil

Figure 3.2: Gradient based reconstruction stencil.

Flux-Difference Splitting Schemes

The reconstructed left and right states are used to compute inviscid fluxes at

each interface using Roe’s flux difference splitting scheme with an entropy fix, as

shown below:

F
(
qL, qR

)
=

1

2

{(
F (qL) + F (qR)

)
− |ARoe(q

L, qR)|(qR − qL)
}

(3.35)

where, F (qL) and F (qR) are the left and right state fluxes, and ARoe is the Roe-

averaged Jacobian matrix. The second term on the right-hand side of the above

equation represents numerical dissipation. The dissipation term is scaled by nor-

mal velocity to prevent excessive dissipation in low Mach number flow condition

using the all-Mach correction proposed by Rieper [24]. The entropy correction of

Harten [25] is used to modify the eigenvalues of the flux Jacobian to prevent non-

physical phenomena at a stagnation point or sonic point.

62

3.2.3 Viscous Fluxes

The viscous fluxes are calculated using velocity and temperature gradients

obtained from either a finite central difference scheme or linear least-squares, which

are both second-order accurate. Figure 3.3 explains the schematic procedure of the

contribution of the cells toward the streamwise and cross term evaluations of the

gradients using a finite difference method. Using two values at cell centered (0,1)

and two values at nodes (a,b), Eq 3.36 shows the gradient computation in two-

dimensions at each interface. φ is the velocity component or temperature and ξ, η

are the spatial directions in two-dimensions.

∂φ

∂x
= ξx

∂φ

∂ξ
+ ηx

∂φ

∂η

∂φ

∂y
= ξy

∂φ

∂ξ
+ ηy

∂φ

∂η

(3.36)

where φξ = φ1 − φ0, xξ = x1 − x0, yξ = y1 − y0, φη = φb − φa, xη = xb − xa,

yη = yb − ya.

Similarly, the gradient at a mid-point edge can be computed using a linear

least-squares approach. Compared to the finite different method, the least-squares

approach can compute the gradient using field values only at cell-centers, thus node

value evaluation is not required in the least-squares approach. For the gradient at

mid-point edge the wrapping stencil is used as shown in Fig. 3.4.

63

(a) Node value evaluation (b) Stream-wise and cross-term evalua-

tion of flux

Figure 3.3: Schematic showing the finite different method for gradient evaluation.

Figure 3.4: Wrapping stencil of least-squares approach for gradient estimation at

mid-point edge.

3.2.4 Initial Conditions

To perform the time integration of the Navier–Stokes equations, an initial flow

field consisting of the primitive variables (ρ, u, v, w, p) must be specified at each grid

point. In simulations of external aerodynamic flows, the entire flow field is typically

initialized with the freestream values.

64

3.2.5 Boundary Conditions

Wall Boundary

In the case of an inviscid wall, the fluid slips over the surface. The velocity

vector must be tangent to the surface. This is equivalent to the condition that there

is no flow normal to the surface.

~V · ~n = 0 (3.37)

where ~V is the local flow velocity vector and ~n denotes the unit normal vector at the

surface. Within the cell-centered scheme, multiple layers of ghost cells are employed

at the wall boundary (e.g. MUSCL uses two layers of ghost cells and WENO uses

three layers of ghost cells).

The velocity components in the ghost cells are obtained by reflecting the ve-

locity vectors in the boundary cells at the wall (See Fig. 3.5(a)).

~V−1 = ~V1 − 2V1~n

~V−2 = ~V2 − 2V2~n

(3.38)

where V1 = u1nx + v1ny + w1nz is the contravariant velocity and ~n stands for the

wall unit-normal vector. The pressure and density in the ghost cells are set equal

to the values in the corresponding boundary cells.

For a viscous wall, the relative velocity between the surface and the fluid at

the surface is assumed to be zero (no-slip boundary condition). Within the cell-

centered scheme which utilizes ghost cells, an adiabatic wall boundary condition is

65

set as shown in the equation below (see Fig. 3.5(b)).

ρ−1 = ρ1, E−1 = E1, u−1 = −u1, v−1 = −v1, w−1 = −w1 (3.39)

Since the pressure gradient normal to the wall is zero, the pressure in the boundary

is prescribed in the ghost cells (p−1 = p1).

Far-field Boundary

In external flow simulations, the computational domain is truncated to a fi-

nite size, thus creating an artificial boundary. In this study, a Dirichlet boundary

condition using freestream flow conditions is imposed on far-field boundaries of the

domain (see Fig. 3.5(c)). Therefore, meshes for external flow problems are typically

generated with the far-field boundary located at large distances from regions of flow

activity, such as flow past a solid body. Mesh stretching is also employed towards

the far-field boundary to numerically dissipate strong flow gradients.

3.3 Time Integration

3.3.1 Implicit Operator

The simplest methods of time integrating the semi-discrete form of the un-

steady Navier-Stokes equations (Eq. 3.28) is the use of the explicit schemes. In the

explicit schemes, the time derivative is discretized using a finite difference formula

at time step n, and the residual R is evaluated at the same time step n. Therefore,

66

(a) Inviscid wall/ symmetric

B.C.

(b) Viscous wall B.C. (c) Far-field B.C.

Figure 3.5: Schematic showing ghost cell set up for solid wall and free-stream bound-

ary conditions.

unknown quantities in the difference equation can be directly evaluated in terms of

known quantities. For example, forward differences in time can be written as

(QV)n+1 − (QV)n

∆t
= −R(Qn) (3.40)

The primary disadvantage of the explicit method is a restriction on the time

step size for the stability of difference schemes. Courant, Friedrichs, and Lewy (CFL)

convergence condition for hyperbolic equations limit the time step. An implicit

scheme requires the simultaneous solution of a system of equations involving all of

the unknowns at the new time level, n + 1 as shown in Eq 3.41. The resulting

non-linear equation obtained using the backward difference formulations, first-order

(BDF1) or second-order (BDF2) methods are shown below:

∂(QV)n+1

∂t
= −R(Qn+1) (3.41)

67

where BDF1 method is shown below,

∂(QV)n+1

∂t
=

(QV)n+1 − (QV)n

∆t
(3.42)

where BDF2 method is shown below,

∂(QV)n+1

∂t
=

3(QV)n+1 − 4(QV)n + (QV)n−1

∆t
(3.43)

On the right-hand side of Eq. 3.41, R(Qn+1) is the solution residual at time

level n+ 1, which is computed as below,

R(Qn+1) =
∑

i∈nfaces

Fi(Q
n+1) · dsi (3.44)

The above non-linear equation is linearized in time using a Taylor series ex-

pansion about Qn as follows:

F n+1 = F n + A∆Qn +O(∆t2) (3.45)

where term A represents the Jacobian matrices of the flux vectors with respect to

the conservative variables, ∂F
∂Q

.

Linearizing the nonlinear residual function Rn+1 yields a linear algebraic sys-

tem of equations as shown in Eq. 3.46, which is solved using an iterative technique.

[
I

∆t
+

(
∂R

∂Q

)n]
∆Qn = −R(Qn) (3.46)

In this study, the implicit operator is constructed based on a first-order lin-

earization of the nonlinear residual function, and therefore, entails contributions

68

only from the neighboring cells. With the computational coordinates, the implicit

operator can be written as

[
I

∆t
+
∂R

∂Q

]
=

[
I

∆t
+
∂Rζ

∂Q
+
∂Rη

∂Q
+
∂Rξ

∂Q

]
(3.47)

where the operators are given by:

∂Rx

∂Q
= [Ax]∆Qx−1 + [Bx]∆Qjkl + [Cx]∆Qx+1

Ax =
∂Fx
∂QR

Bx =
∂Fx
∂QL

− ∂Fx+1

∂QR

Cx = −∂Fx+1

∂QL

(3.48)

where x denotes each of the three spatial directions, ζ, η and ξ, and j, k, and l

are their indices, respectively. The three spatial directions directly correspond to

the Hamiltonian paths and strand grids passing through it. Terms ∂F/∂QL and

∂F/QR are the linearizations of the Roe flux function with respect to the left and

right states, respectively.

3.3.2 Approximate Factorization

The implicit operator shown in Eq. 3.47 can be factorized in the coordinate

direction given by Hamiltonian paths. Three different line-implicit methods are

applied in the current study: ADI, DDADI and DDLGS. Details of each method

can be found in Ref [26]. Unlike with grid coordinate directions in a structured

grid, the coordinate direction along Hamiltonian paths is a local direction at each

element. This means spatial direction, ζ of cell i does not necessarly need to be the

69

same direction as for neighbor cell j. Because each face is part of a unique path, the

factorized implicit operator can be solved for the whole domain by sweeping each

loop from first to last cell regardless of spatial direction.

Alternating Direction Implicit (ADI)

In the case of ADI, the implicit operator in Eq. 3.47 is simply factorized for

each direction given by the Hamiltonian paths and strand grid lines. The factorized

system can be expressed as:

[
I

∆t
+
∂Rζ

∂Q

] [
I

∆t
+
∂Rη

∂Q

] [
I

∆t
+
∂Rξ

∂Q

]
∆Q = −R (Qn) (3.49)

Diagonally Dominant ADI (DDADI)

In the case of DDADI, the factorized system is written such that there is a

more diagonally dominant term that aids in solution convergence and adds to the

numerical stability of the scheme when compared to the ADI scheme. The DDADI

factorized scheme is expressed as:

(D + Oζ)D
−1 (D + Oη)D

−1 (D + Oξ) = −R (Qn) (3.50)

where the diagonal term D and the O matrices are given by

D =

[
I

∆t
+ [Bj] + [Bk] + [Bl]

]
(3.51)

70

Oζ = ([Aj] , 0, [Cj]) Oη = ([Ak] , 0, [Ck]) Oξ = ([Al] , 0, [Cl]) (3.52)

Diagonally Dominant Line Gauss Seidel (DDLGS)

In the case of DDLGS, the factorization is not performed and a Gauss-Seidel

is performed on a line basis, i.e. implicit inversion is performed for each line and

the changes in the conservative variables (∆Q) are updated to the right-hand-side

of subsequent lines as soon as a new update is available. The DDLGS method is

given by:

[Aj] ∆Qj + [D]∆Qjkl + [Cj]∆Qj+1 = −R(Qn)− [Ak]∆Q
∗
k−1 − [Ck]∆Q

∗
k+1

−[Al]∆Q
∗
l−1 − [Cl]∆Q

∗
l+1

(3.53)

where the diagonal term D is given by

D =

[
I

∆t
+ [Bj] + [Bk] + [Bl]

]
(3.54)

The values with the asterisk (*) indicate intermediate values obtained during

the Gauss-Seidel sweep. To eliminate the sweep bias, symmetry is obtained by

sweeping once in a prescribed direction through the Hamiltonian loops and strand

grid and then sweeping again in the reverse direction.

Using one of the above line-implicit methods, the left hand side of an implicit

operator becomes a block-tridiagonal system for each path, and it can be either

a periodic system for the closed loop or a non-periodic system for the open loop.

Then, each block-tridiagonal system is inverted directly using a modified Thomas

algorithm.

71

For the comparison with DDLGS method, a point Gauss-Seidel (PGS) method

is implemented in the current flow solver, which is a well-known implicit method

typical for an unstructured grid flow solver. As a point relaxation method, the PGS

method iteratively solves the implicit operator (Eq. 3.47) by multiplying all the

non-main block diagonals by the conservative variables (∆Q∗) and moving this to

the RHS. This is done for each cell, sweeping from first to last cell index and then

sweeping again in the reverse direction.

3.3.3 Generalized Minimum Residual Method

GMRES is a minimization algorithm for the norm of the residual vector of a

linear equation system, which is initially developed by Saad and Schultz [27]. Given

the equation system Ax = B, an initial guess x0, and a preconditioner matrix M , the

process leads to an approximate solution vector x which minimizes the residual of

the initial system. The residual is minimized by using orthogonal search directions

in a Krylov subspace. The rate of convergence of Krylov subspace methods is

influenced by the condition number of the matrix A. Therefore, in most cases, a

preconditioning of the original system is required to achieve reasonable convergence

rates. The current study uses a right-preconditioned GMRES which is given by:

AM−1(Mx) = B (3.55)

The right-preconditioned GMRES is preferred over the left-preconditioned

GMRES because it preserves the magnitude of the residual within the linear it-

72

erations. Once the solution Mx of Eq. 3.55 is obtained, the solution of the original

system, i.e., the x vector itself, is easily computed. This is because applying M−1

is typically matrix-free, therefore it does not require storing a matrix. Algorithm 1

outlines the GMRES algorithm as presented by Behr [28]. The inner iteration loop

constructs the Krylov space and projects the original equation system to this space.

As the number of Krylov vector m increases, both required storage and the number

of operations increases linearly and quadratically. Therefore, outer iterations are

often required to minimize the required number of Krylov vector. Given a fixed

number of Krylov iterations, the process can be repeated using the outer iterations

which is referred to as restarts. The restarted GMRES procedure improves the

quality of the initial guess x0.

In the current study, the GMRES method is applied to the linear system of

equations shown in Eq. 3.46. As a preconditioner, one of the approximate factoriza-

tion methods (ADI, DDADI, DDLGS) is applied. To save computational cost, the

matrix-vector product process within the GMRES algorithm is approximated with

finite difference as shown in Eq. 3.56.

[
∂R

∂Q

]
x ≈ R(Q+ εx)−R(Q)

ε
(3.56)

where R(Q + εx) is the residual evaluated by using perturbed state quantities. In

this study, the ε is a small scalar chosen based on the magnitude of Q and it is

independent of the size of the mesh. This resulting implementation of GMRES is

termed matrix free. This approximaion has been validated in both inviscid and

73

Algorithm 1 Right-Preconditioned GMRES Algorithm [28]

for l = 1, nouter do

Compute initial residual r0 := B − Ax0

Compute initial residual norm β := r0

Define first Krylov vector v1 = r0/β

for j = 1,m do

preconditioning zj := M−1
j vj

matrix-vector product w := Azj

for i = 1, j do

hi,j := (w, vi)

w := w − hi,jvi

end for

hj+1,j := ‖w‖

Define next Krylov vector vj+1 := w/hj+1,j

end for

Define reduced system matrix H := hi,j

Solver reduced system matrix y := argmin ‖βe1 −Hŷ‖

Form approximate solution x := x0 +
∑m

i=1 yizi

if ‖βe1 −Hy‖ ≤ ε then

exit

else

Restart x0 := x

end if

end for
74

viscous flow simulations [29, 30].

3.3.4 Dual Time Stepping

In the use of an implicit time marching method, many simplifications are

used in order to make it more computationally efficient: factorization, low order

spatial discretization, linearization, etc. Therefore, minimizing the errors from the

simplifications is conducted by iterating at each time step using a dual time stepping

method. To carry out these iterations, Eq. 3.41 can be modified to consider a term

that contains a fictitious pseudo time, τ :

∂(QV)p+1

∂τ
+
∂(QV)p+1

∂t
= −R(Qp+1) (3.57)

where p represents the solution at the pth subiteration.

Once BDF2 method is applied, the above equation is expressed as below,

Qp+1 −Qp

∆τ
+

3Qp+1 − 4Qn +Qn−1

2∆t
= −R(Qp+1) (3.58)

It should be noted that in the subiteration process in pseudo time, one starts by

setting Qp=0 ≡ Qn and when one has finished the process one should have Qp+1 =

Qn+1.

The generalized dual time stepping approach using delta form (∆Qp ≡ Qp+1−

Qp) results in:

[
I

h
+

(
∂R

∂Q

)p]
∆Qp = −3Qp − 4Qn +Qn−1

2∆t
−R(Qp) (3.59)

75

where, h =
2
3

∆t

1+ 2
3

∆t
∆τ

The above equation has a similar form as Eq. 3.46 and therefore can be solved

using the above line-based methods. The unsteady residual at each sub-iteration

time step (p) is given by:

3Qp − 4Qn +Qn−1

2∆t
−R(Qp) (3.60)

3.4 Turbulence and Transition Modeling

3.4.1 Turbulence Modeling

The turbulence modeling is to close the RANS equation by approximating the

Reynolds-stress term (Eq. 3.26). With the assumption of isotropic eddy viscosity,

the Reynolds-stress can be represented by:

τRij = µt

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(3.61)

where µt is the turbulent viscosity. The evaluation of turbulent viscosity can be per-

formed using various turbulence models. In the current study, either the Spalart–

Allmaras (SA) turbulence model or the Menter Shear Stress Transport (SST) tur-

bulence model was used.

Spalart–Allmaras (SA) Turbulence Model

In the SA model, a single transport equation is solved for the eddy viscosity,

νt. The model is designed for external aerodynamic flows, such as transonic flow

76

over airfoils, including boundary-layer separation. The model is widely used in

aerospace applications because of its accuracy and numerical robustness. However,

it is incapable of accounting for the decay of νt in isotropic turbulence.

The transport equation is of the form

Dν̃

Dt
= cb1S̃ν̃ +

1

cσ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2]− cw1fw

[
ν̃

d̃

]2

(3.62)

The eddy viscosity νt is computed from ν̃ as shown in Eq. 3.63,

νt = ν̃fv1 with fv1 =
χ3

χ3 + cv1
3

and χ =
ν̃

ν
(3.63)

The left hand side of Eq. 3.62 accounts for the convection of ν̃ at the local

mean flow velocity. The first term of the right hand side represents the diffusion,

followed by the production and destruction terms. Further details and expressions

are provided in the reference [31].

Menter Shear Stress Transport (SST) Turbulence Model

As a two-equation model, the Menter SST turbulence model is utilized, which

uses a blending function to combine k−ω and k− ε. Close to the walls the blending

function is zero (leading to the standard ω equation), whereas remote from the walls

the blending function is unity (corresponding to the standard ε equation).

The two equation model is given by:

Dk

Dt
= P − β∗ρω2k +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
+ β∗ρωambkamb (3.64)

77

Dω

Dt
=
γ

νt
P − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2 (1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj
+ βρωamb

2

(3.65)

The details of the current form of the SST model can be found in the refer-

ence [32].

Hybrid RANS-LES method

A hybrid RANS-LES method is used to extend the applicable flow conditions

to high Reynolds number with massively separated flows as well as attached and

mildly separated regions. Detached-eddy simulation (DES) as originally proposed

is designed to treat the entire boundary layer using a RANS model and to apply

an LES treatment to separated regions. Delayed-detached-eddy simulation (DDES)

approach was proposed to better preserve the RANS mode, or delay LES mode,

under the use of more general grids which have large cell aspect ratio [33]. In the

current study, the formulation resulting in the DDES approach based on the SA

turbulence model is used by modifying the length scale in the SA model. The

modified length scale definition in DDES is given by:

d̃ ≡ d− fd max (0, d− CDES∆) (3.66)

where d is the wall normal distance, ∆ is the local grid spacing, fd is the boundary

layer shielding function, and CDES = 0.65.

The local grid spacing is computed using a technique proposed by Scotti et al.

78

to account for anisotropy in the grid [34]. Below is the shielding function, which is

given by the reference [33].

fd = 1− tanh (8rd)
3 (3.67)

In the above shielding function, the modified rd is defined as:

rd ≡
νt + ν√
Ui,jUi,jκ2d2

(3.68)

where Ui,j are the velocity gradients and κ is the Von Karman constant, 0.41.

3.4.2 Laminar-Turbulent Transition Model Formulation

In the current study, γ − Reθt−SA transition model is used and is coupled

with the one equation SA turbulence model. Similar with the γ − Reθt tran-

sition model [35], the current model can predict Tollmien-Schlichting instability,

separation-induced transition, and bypass transition using empirical criteria deduced

from experimental data. The baseline formulation of the γ − Reθt−SA transition

model has a limitation on predicting the transition onset due to crossflow instabili-

ties in the three-dimensional boundary layer. Recently, the baseline model has been

extended to account for instability due to crossflow by incorporating an existing

crossflow model [36, 37]. In the current framework, the extended transition model

has been implemented for more accurate simulation inside the boundary layer. The

form of the extended γ −Reθt−SA transition model is presented in Appendix A. A

more detailed description of the model can be found in the references [36–38].

The current transition model is based on two transport equations: one is for

79

intermittency and the other one is for transition momentum thickness Reynolds

number. The transport equation for the intermittency, γ, is given by:

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[
(µ+ µt)

∂γ

∂xj

]
(3.69)

The transport equation for transition momentum thickness Reynolds number,

Reθt, is given by:

D
(
ρReθt

)
Dt

= Pθt + PCF +
∂

∂xj

[
2.0(µ+ µt)

∂Reθt
∂xj

]
(3.70)

Once the transport equations for intermittency, γ, and transition momentum

thickness Reynolds number, Reθt, are solved separately using DDADI, the solution

of the intermittency transport equation is used to control only the production term

of eddy viscosity in the SA turbulence model as follows:

Dν̃

Dt
= γPν −Dν +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
(3.71)

3.5 Overset Technique

Practical problems rely heavily on multiple mesh systems (one for each com-

ponent of the geometry or multiple nested systems) which interact with each other.

Therefore, the capabilities of the current mesh generator and solver have been ex-

tended to handle multiple mesh systems using an overset technique. Overset meshes

can be particularly useful when dealing with strand grids because the near-body do-

main can transition to the background Cartesian mesh before the strands cross each

80

other at concave corners. The overset methodology typically involves three major

steps: (1) identification of hole, fringe, and field cells, (2) finding donor cells and

interpolation weights, and (3) performing interpolation on a data set from donor

cells to a fringe cell.

The hole cells are defined as the grid elements which lie inside solid walls of

another domain. These hole cells are excluded from being a part of the flow solution.

Field cells are those cells in which the flow equations should be solved. Fringe cells

have their conservative variables which are interpolated from field cells in another

domain. The donor cells are chosen from the other domains using a search algorithm.

In the case of multiple other domains overlapping, the donor cells with smaller cell

volumes have been chosen.

This identification of grid elements is done using an integer iblank array. Each

hole, fringe, and field element is tagged using an iblank of 0, -1, and 1, respectively.

In this study, the Topology Independent Overset Grid Assembler (TIOGA) [39], is

used to generate the iblank map between overset meshes. Once the iblank map is

generated, the flow data is passed to TIOGA for the interpolation and exchange

between the overset meshes. TIOGA performs second order transfinite linear inter-

polation for a given data from all interpolation donor points to fringe points.

The current solver is based on a cell-centered scheme; however, TIOGA re-

quires grid coordinates and solutions be stored at the same location. Therefore,

flow solutions are interpolated between cell-center and node points whenever the

flow solutions are exchanged through TIOGA. The interpolation is performed using

either a simple average or a least-squares approach.

81

3.6 Solver Architecture

Programming for the current solution algorithm is performed based on the

Alg. 2 and 3. Algorithm 2 explains the residual calculation process which corre-

sponds to net fluxes of each control volume. Algorithm 3 explains the inversion

process after constructing the system of equations for each loop. Because the de-

tailed inversion processes are different between the factorization methods (ADI,

DDADI, DDLGS), only common executions are shown in the Alg. 3.

3.7 Python Integration Framework

The current method (HAMSTR) is developed as an alternative for near-body

unstructured grid flow solvers within the multi-mesh/multi-solver paradigm. Thus,

the flow solver is wrapped in Python to allow for ease of integration with other codes

within a framework. HAMSTR is coupled with other in-house flow solvers which are

written in different languages (FORTRAN, CUDA) and also wrapped in Python.

In an overset framework, each solver is initialized separately and passes a dictionary

of data pointers to Python. The grid information is used in the initialization of

TIOGA for overset grid connectivity. In this implementation, TIOGA has direct

access to the same memory passed through Python. Thus, the communication be-

tween flow solvers at a sub-iteration level can be performed efficiently by eliminating

data transfer using file I/O. The flowchart for the current framework is shown in

Fig. 3.6. This light-weight Python framework has been used for the simulations

82

Algorithm 2 Residual calculation

for i = 1 to nchains do

Collect all the faces forming the chain

Collect all the cells forming the chain

for j = 1 to chainsize do

Copy conservative variables to one-dimensional array for the chain

Apply boundary conditions (wall, far-field, MPI, etc.)

end for

Reconstruct left and right states using selected reconstruction scheme

for j = 1 to chainsize do

Use Riemann solver to find interface inviscid fluxes and Jacobians

Compute interface viscous fluxes and Jacobians

Add interface fluxes at each face to corresponding cells

if turbulent or transition model then

Compute residuals and Jacobians of transport equations

end if

end for

end for

83

Algorithm 3 Inversion

for i = 1 to nchains do

Collect all the faces forming the chain

Find left and right state Jacobians along the faces

if Chain is closed then

Construct a periodic block tri-diagonal system

Invert periodic block tri-diagonal system using Sherman-Morrison algorithm

else if Chain is opened then

Construct a non-periodic block tri-diagonal system

Invert block tri-diagonal system using Thomas algorithm

end if

Update right hand side with result from the inversion

end for

84

Figure 3.6: Flowchart of Python framework for time-accurate simulations.

of complete configurations, such as complete rotorcraft/wind turbine configurations

(see references [40,41]).

3.8 Summary

In this chapter, the computational methodology of the flow solver is presented.

The capability of the flow solver is extended for rotaty wing system simulations.

85

• The inviscid fluxes are reconstructed using either stencil- or gradient-based

reconstruction depending on the type of mesh. For example, the stencil-based

reconstruction such as third-order MUSCL or fifth-order WENO can be used

for a domain of structured or semi-regular surface mesh. The gradient-based

reconstruction which uses linear least-squares to estimate gradient can be ap-

plied in a domain of unstructured type mesh. For a strand volume grid, a

combined method can be used; the stencil-based reconstruction is used in a

wall-normal direction, otherwise the gradient-based reconstruction is used in

wall-tangential directions for a unstructured type surface grid.

• The viscous fluxes are computed using either finite difference or least-squares

method which are both second-order accurate on any type of grid.

• One equation Spalart-Allmaras (SA) and two equations Menter Shear Stress

Transport (SST) turbulence models are integrated to the current method for

Reynolds Averaged Navier–Stokes (RANS) simulations.

• Various line-implicit methods are applicable along a line structure: Alter-

nating Direction Implicit (ADI), Diagonally Dominant ADI (DDADI), and

Diagonally Dominant Line Gauss Seidel (DDLGS). Implicit operator becomes

block-tridiagonal system for each path and it can have periodic system for

closed loop or non-periodic system for open loop.

• A right-preconditioned Generalized Minimum Residual (GMRES) method is

implemented to improve solution convergece rate. Preconditioned step is per-

86

formed using DDLGS method.

• Time-accurate methods with dual-time-stepping strategies are implemented

for time-dependent problems. Non-uniform grid motion is accounted for the

simulation with rotating objects. In a computation of grid velocity, Geometric

Conservation Law (GCL) is considered to ensure free-stream preservation in

the case with deformed grids.

• The flow solver is parallelized using a Massage Passing Interface (MPI).

• The capabilities of the mesh generator and flow solver have been extended

to handle multiple mesh system using an overset technique. The TIOGA, a

overset grid assembler, is used to generate iblank map and interpolate flow

variables at an overset boundary.

• The flow solver is wrapped in Python to allow for ease of integration with

other codes within a framework. The current solver is coupled with other in-

house flow solvers which are written in different languages (Fortran, CUDA)

and architecture (GPU) within the Python framework.

87

Chapter 4: Validation

In this chapter, the current method will be validated in terms of both numer-

ical accuracy and efficiency. The validations are conducted using relatively simple

and well-known problems before applying the current method to complex rotaty

wing systems. First, formal spatial order of accuracy is evaluated on both struc-

tured and unstructured grids. Following this, the implementations for turbulent flow

simulation are validated. Finally, the performance of current flow solver is evaluated

by comparing the results with either well-established flow solvers or a traditional

unstructured grid based method.

4.1 Solution Accuracy Analysis

4.1.1 Method of Manufactured Solution

The formal order of solution accuracy is tested using a Method of Manufac-

tured Solution (MMS) [42]. With MMS, the “manufactured solution” can be pre-

scribed arbitrarily, which is not physically realistic but should be simple, smooth,

and exercise all terms in the governing equations. By substituting the arbitrary

solution into the governing equations, analytic source terms can be obtained. Then,

88

the discretized equation is solved with the addition of the source terms. Finally, the

solution error can be estimated by comparing with the exact manufactured solution.

In this study, the manufactured solution from reference [13] is used, which is given

by:

ρ(x, y, z) = ρ0 + ρ1exp

(
−x2 − y2 − z2

L2

)
u(x, y, z) = u1sin

(
x2 + y2 + z2

L2

)
v(x, y, z) = v1cos

(
x2 + y2 + z2

L2

)
w(x, y, z) = w1sin

(
xy + xz + yz

L2

)
p(x, y, z) = p0 + p1sin

(x
L

)
sin
(y
L

)
sin
(z
L

)

(4.1)

where ρ0 is 1.0, p0 is 1
γ
, ρ1,u1,v1,w1 and p1 are set to 0.1 and L is the size of the

domain, which is set to 1.0.

The MMS analysis is performed using either a stencil-based reconstruction or a

gradient-based reconstruction on the representative two-dimensional Cartesian and

unstructured domains. For a stencil-based reconstruction, both MUSCL and WENO

schemes are tested. For a gradient-based reconstruction, two different stencils are

used; standard stencil and wrapping stencil. The solution errors are computed by

refining the mesh in both directions. When the meshes are refined, the size of

domain is fixed as 1 by 1.

Figure 4.1 shows one of the test grids from each Cartesian and unstructured

grid. In the case of an unstructured grid, the initial triangles are subdivided into 12

quadrilaterals using quad-level 1. While computing the discrete solution, a Dirich-

89

let boundary condition is imposed along the outer boundary, which is the exact

manufactured solution. The L2 norm of solution error (density, ρ) is defined by:

L2
error =

[∑N
i=1 error

2|J |∑N
i=1 |J |

]1/2

(4.2)

where J corresponds to the cell volume and N is the number of cells.

(a) Cartesian grid (b) Unstructured grid

Figure 4.1: Representative 2D meshes for MMS analysis.

As shown in Fig. 4.2 (a), the errors from both reconstruction methods show

second order of accuracy on the Cartesian grid. The results are expected because

the current finite volume method evaluates the fluxes at each face-midpoint using

one quadrature point (as many other finite volume based flow solvers do). It should

be noted that the line reconstruction methods can provide formal order of accuracy

(third and fifth order for MUSCL and WENO, respectively) using a finite different

formulation. However, it is limited to a simple Cartesian grid. On an unstructured

grid as shown in Fig. 4.2 (b), both MUSCL and WENO show only the first order

90

of accuracy due to the varying cell size and curvature along the loops. This result

highlights the limitation of the finite volume approach in the use of line reconstruc-

tion method on a general unstructured grid. However, gradient-based methods show

its formal order of accuracy (second order) on the unstructured grid as we expected.

When the results using least-squares method are compared with each other, the

solution accuracy is rarely improved by using the wrapping stencil on either the

Cartesian or unstructured grid.

(a) Cartesian grid (b) Unstructured grid

Figure 4.2: Solution error convergence using MMS analysis.

4.1.2 Isentropic Vortex

The convection of a two dimensional inviscid isentropic vortex is simulated to

examine the accuracy of stencil-based reconstruction methods on an unstructured

grid. During the time-accurate simulation, the intermediate solutions are extracted

and these solutions are compared against the exact solution. Considering there is no

91

dissipation of this canonical isentropic vortex, the exact solution at any time is the

same as the initial condition shifted in space. The freestream flow values are set as

(ρ∞, u∞, v∞, p∞, T∞) = (1, 0.5, 0, 1, 1). The solution domain is [−7, 7]× [−3.5, 3],

and all boundary conditions are periodic in nature. The solution domain is composed

of 11,700 quadrilateral cell elements which are generated from the 975 equilateral

triangles using quad-level 1 subdivision. The non-dimensional time step size is set

as 0.2. At t = 0, the flow is perturbed by an isentropic vortex (δu, δv, δT) centered

at (x0, y0) given by

δu = − α

2π
(y − y0)eφ(1−r2)

δv =
α

2π
(x− x0)eφ(1−r2)

δT =
α2(γ − 1)

16φγπ2
e2φ(1−r2)

(4.3)

where φ = 1.0, α = 4.0 and r =
√

(x− x0)2 + (y − y0)2.

The solutions are extracted at times t = 4, t = 10, t = 20 and t = 50 using the

second order accurate backward difference formula (BDF2) time marching scheme

and three different reconstruction schemes: MUSCL, WENO, CRWENO [43].

Figure 4.3 (a) illustrates the computational mesh and the initial density con-

tours in the domain. For quantitative comparison, the computed density profiles

along the horizontal centerline are compared against the exact solution at times

t = 4, t = 10, t = 20 and t = 50 as shown in Fig. 4.3 (b). For ease of comparison,

the density profiles are aligned at the same vertical line (x = 5) for all cases. From

the figure, it can be seen that the vortex core is better conserved using a higher order

scheme, such as fifth-order CRWENO or fifth-order WENO scheme, than using a

92

third-order MUSCL scheme as the solution evolves.

(a) Grid and initial density contours for the case of isentropic vortex convection.

(b) Comparison of the density distribution across the vortex core.

Figure 4.3: Grid and density profiles across the vortex core at different solution

times for the case of isentropic vortex convection.

From the solution accuracy tests, although the stencil-based reconstructions

do not guarantee its formal order of accuracy along the Hamiltonian path on an

unstructured grid, the higher-order type method provides less dissipation error then

a lower-order method.

93

4.1.3 Two-Dimensional Bump in Channel

The 2-D bump-in-channel case is conducted as a turbulence flow validation

of the current method [44]. This case assumes fully turbulent flow and the SA

turbulence model is used. As shown in Fig. 4.4, the top of the bump is located at

x = 0.75, and the adiabatic solid-wall boundary condition is imposed from x = 0 to

x = 1.5; otherwise, the symmetric boundary condition is imposed along the surface

at y = 0. The freestream Mach number of 0.2 and Reynolds number of 3 million

per grid unit are used for this case. The grid refinement study is performed using

the structured 2-D grid family obtained from the TMR website [44] and the detailed

grid information is shown in Table 4.1.

Table 4.1: Two-dimensional structured mesh information for Bump simulation.

Tiny Coarse Medium Fine

Size(points on the wall) 89x41(41) 177x81(81) 353x161(161) 705x321(321)

Initial normal spacing(y+) 8e-6(0.95) 4e-6(0.47) 2e-6(0.24) 1e-6(0.12)

The grid refinement study is performed by comparing the surface skin friction

value against the values from the other flow solvers as shown in Fig. 4.4. The three

different test points are located near the top of the bump. The current results are

converged to the same value with the reference results from CFL3D and FUN3D flow

solvers. It should be also noted that the current skin friction values are converged

relatively faster using the fifth-order WENO scheme for the reconstruction than

the reference values (especially from FUN3D which uses the unstructured MUSCL

scheme).

94

(a) Boundary conditions on 2D bump (b) At x = 0.6321975

(c) At x = 0.75 (d) At x = 0.8678025

Figure 4.4: Comparison of skin friction at three different locations on the bump.

4.1.4 Three-Dimensional Robin-Mod7 Fuselage

A grid refinement study for the Robin-Mod7 fuselage configuration is also per-

formed using the current method. The boundary layer is assumed as fully turbulent

flow at the freestream Mach number of 0.1 and Reynolds number of 1.6 million based

on the fuselage length.

Three different resolution surface grids are generated from the same 2,096

95

(a) Quad-level 0 (6,288 elements) (b) Quad-level 1 (25,152 elements)

(c) Quad-level 2 (100,608 elements)

Figure 4.5: Three different resolution surface meshes for Robin-Mod7 fuselage.

triangle elements by applying additional quad-levels. Figure 4.5 shows the resultant

quadrilateral elements on the surface near the fuselage ramp. The grid spacing in

the wall-normal direction is kept sufficiently fine as 5× 10−6 fuselage length, which

corresponds to a y+ = 0.3.

In this grid refinement study, the inviscid fluxes of the wall-tangential direc-

tions are reconstructed using two different schemes; WENO or LLS. Otherwise,

the inviscid fluxes of the wall-normal direction are reconstructed using only WENO

scheme along each strand. For the fully turbulent flow simulation, the SA turbulence

model is used.

The surface pressure distributions on longitudinal plane (y/L = 0) are com-

pared between the different meshes at 0◦ angle of attack as shown in Fig. 4.6. Cur-

96

rent predictions are also compared against results from OVERFLOW and elsA [45].

Both OVERFLOW and elsA solvers used the same multi-block structured meshes

which include a total of about 128,000 grid points on the surface. The current pre-

dictions from both WENO and LLS-WENO schemes approach the reference results

especially from OVERFLOW solver as the surface grid is refined. In Figs. 4.6 (c)

and (d), the flow separation location on the rear ramp region is well captured using

the quad-level 2 surface mesh, otherwise the separation is predicted earlier using the

quad-level 0 surface mesh.

The span-wise surface pressure distributions are extracted halfway down the

ramp at z/L = −0.0375 as shown in Fig. 4.7, where the surface pressure taps were

installed along the line in the experiment [45]. To ensure a fully-developed turbulent

boundary layer, boundary-layer trips were installed near the nose of the fuselage in

the experiment. The current predictions using the different meshes are compared

against the result from OVERFLOW (128,000 surface grid points). The current

predictions using the quad-level 1 and 2 meshes are generally matched with the

result from OVERFLOW over the current span which includes the separated flow

region. It is observed that the differences between the results using either WENO

or LLS-WENO schemes are less as the surface grid is further refined.

Figure 4.8 shows the predicted fuselage drag coefficients using the different

resolution surface meshes. The current results are also compared with the available

reference simulation results [45]. In Fig. 4.8 (a), the current predictions from both

schemes are converged asymptotically to the reference result. It should be noted

that some differences between the solvers are observed because the pressure drag

97

(a) WENO reconstruction (b) LLS-WENO reconstruction

(c) WENO reconstruction (zoomed-in) (d) LLS-WENO reconstruction (zoomed-in)

Figure 4.6: Robin-Mod7 fuselage surface pressure distribution on longitudinal plane

(y/L = 0) at AoA=0◦.

98

(a) WENO reconstruction (b) LLS-WENO reconstruction

Figure 4.7: Robin-Mod7 fuselage span-wise surface pressure distribution (z/L =

−0.0375) at AoA=0◦.

is highly dependent on the predicted separation location at the ramp region (see

Fig. 4.8 (b)). Otherwise, less deviation occurs between the solvers for the viscous

drag component as shown in Fig. 4.8 (c). Figure 4.8 (d) shows the fuselage drag

coefficient break down of the viscous and pressure contributions. In this comparison,

both OVERFLOW and elsA results were obtained from the surface mesh including

about 128,000 points which is similar to the current quad-level 2 mesh. The current

results using the quad-level 2 mesh are well matched with the reference results

especially from OVERFLOW solver. Also, minor differences are observed between

the current results using either WENO or LLS-WENO schemes.

99

(a) Total drag coefficient (b) Pressure drag coefficient

(c) Viscous drag coefficient (d) Drag ratio: WENO (WENO-LLS)

Figure 4.8: Robin-Mod7 fuselage drag comparison at AoA=0◦ (N is the number of

surface node points).

100

4.2 Performance Analysis

4.2.1 Transonic Flow Past NACA0012 Airfoil

Stability and accuracy of the current method on both a structured and an

unstructured grid are evaluated using a standard test case; inviscid transonic flow

over a NACA0012 airfoil at M = 0.8 and α = 1.25◦. For the unstructured grid,

the initial grid has 1,732 triangles, and total of 20,784 quadrilateral elements are

obtained after quad-level 1 subdivision (see Fig. 4.9 (a)). The domain is extended

until 50 chords length from the airfoil surface and the far-field boundary condition is

imposed along the far-boundary. For the structured grid, an O-type topology mesh

is obtained with 400× 53 dimensions (see Fig. 4.9 (b)).

For a fair comparison, the number of total elements (20,784), the number of

surface grid points (400), and the size of far-boundary (50 chords) are matched

between the unstructured and structured grids. The current solver performance is

compared with an in-house solver at the University of Maryland, TURNS, which

is one of the fast structured grid based flow solver [46]. TURNS uses the same

structured grid in this comparison.

HAMSTR flow solver uses either stencil-based reconstruction (MUSCL) or

gradient-based reconstruction (LLS) for each structured or unstructured grid, re-

spectively. For implicit inversion, DDLGS approximate line method is compared

with point Gauss-Seidel (PGS) which is a traditional method of typical unstruc-

tured grid solvers. TURNS flow solver uses MUSCL reconstruction for inviscid fluxes

101

(a) Unstructured grid for HAMSTR (b) Structured grid for both HAMSTR and

TURNS

Figure 4.9: Computational mesh for transonic NACA0012 airfoil simulation.

and either LU-SGS (Lower-upper Symmetric Gauss-Seidel) or DDLGS method for

implicit inversion. The LU-SGS scheme is a popular inversion algorithm for struc-

tured grids and can also be implemented for unstructured grids using a coloring

scheme. For a steady simulation, both solvers use a constant CFL number over

the domain. The maximum allowable CFL number for convergence is used for each

implicit method; CFL number of 20 for DDLGS and PGS, and 50 for LU-SGS.

Figure 4.10 (a) shows the comparison results of density contour around the

airfoil using the structured grid for TURNS and the unstructured gird for HAMSTR.

In both solutions, the shocks on both the upper and lower surfaces are captured

with a good agreement. Figure 4.10 (b) shows the comparison results of surface

pressure distribution. In addition to the upper surface shock, the lower surface

shock is resolved quite accurately on both structured and unstructured grids using

the current method when it is compared with TURNS.

Figure 4.11 shows the comparison of residual convergence rate and drag history

102

(a) Density contour (b) Surface pressure coefficient

Figure 4.10: Comparison results with TURNS for transonic NACA0012 airfoil sim-

ulation.

with corresponding solution results from TURNS. The solution residuals drop to

machine zero precision in all of simulation results as shown in Fig. 4.11 (a). First, the

convergence rates from TURNS are quite different between LU-SGS and DDLGS;

DDLGS shows a much faster convergence rate than LU-SGS. The main reason for

the difference is due to the different linearization methods. The current DDLGS

method is working with the linearization of the Roe flux for the flux Jacobian;

on the other hand, the LU-SGS method uses the spectral radius approximation.

Although the use of the approximation saves the computational cost per iteration,

it generally provides less convergence rate per iteration. Consequently, the DDLGS

convergence rate per CPU time is about four times faster than the LU-SGS results

as shown in Fig. 4.11 (b).

103

The convergence rate from HAMSTR for the structured grid is quite simiar

to the corresponding result from TURNS in terms of both per iteration and CPU

time. This result demonstrates the good efficiency of HAMSTR on structured grids.

The convergence rates from HAMSTR are also compared between the structured

and unstructured grids. On the unstructured grid, the slower convergence rate per

iteration is observed mostly because of the use of a different reconstruction scheme

(LLS).

Finally, the solution convergence rates between a line-implicit method (DDLGS)

and a point-implicit method (PGS) are compared on the unstructured grid. The con-

vergence rate per iteration is significantly improved by using the DDLGS method as

shown in Fig. 4.11 (a). This demonstrates the improved efficiency using line-implicit

methods on unstructured grids. The difference becomes less significant when com-

paring CPU time as shown in Fig. 4.11 (b). This is because the PGS method does

not require solving a large block-tridiagonal system but does require solving a 4× 4

matrix at each cell in two-dimensions, which makes it more efficient on a per cycle

basis. It should be noted that the difference in convergence rate between PGS and

DDLGS becomes more noticeable as the grid size or the average length of loops

increases; because the point Gauss-Seidel is a local technique.

The comparison of drag convergence history per CPU time is shown in Fig. 4.11

(c). Overall, a similar trend is observed in the drag as with the result of residual

convergence rate. Almost identical results are observed between TURNS and HAM-

STR on the same structured grid. The convergence rate using DDLGS is faster than

the result using PGS on the same unstructured grid. Table 4.2 shows the required

104

CPU time for each simulaion to obtain the converged drag prediction within 1%

error from the converged value. On one hand, a similar CPU time is observed be-

tween TURNS and HAMSTR using the same schemes and grid. On the other hand,

about 28% more computational efficiency is acheived using DDLGS method than

PGS method on the unstructured grid.

(a) Solution residual vs iterations (b) Solution residual vs CPU time

(c) Drag coefficient vs CPU time

Figure 4.11: Solution convergence comparison with TURNS for transonic

NACA0012 airfoil simulation.

105

Table 4.2: CPU execution time for drag prediction within 1% of converged value (S:

structured grid, U: unstructured grid).

Solver Grid Inversion Reconstruction CPU time (seconds)

TURNS S LU-SGS MUSCL 140

TURNS S DDLGS MUSCL 66

HAMSTR S DDLGS MUSCL 60

HAMSTR U PGS LLS 100

HAMSTR U DDLGS LLS 72

4.2.2 Laminar Flow Past a Sphere

Laminar flow past a sphere for a range of Reynolds number from 25 to 200 is

simulated to validate the current viscous flux implementation and to examine the

solution convergence rate of the current method.

Spherical Grid Generation

A prerequisite to generate Hamiltonian paths and strand grids around a sphere

is to first generate a triangular surface mesh. The surface triangular mesh is gener-

ated using repeated subdivision of an icosahedron. The icosahedron is a polyhedron

with 20 triangular faces whose nodes all lie on a sphere. At each stage of the subdi-

vision, each triangle is subdivided into four more triangles resulting in a quadruple

increase in the number of cells. The newly formed nodes of the triangles are flushed

to the surface of the sphere and the node connectivity is recreated. Figure 4.12 (a)

shows 5,120 isotropic triangles on the surface of a sphere starting from an icosahe-

106

dron, and Fig. 4.12 (b) shows the colored paths on the resulting 15,360 quadrilaterals

which are obtained using quad-level 0. Strand grids are projected from the surface

in the radially outward direction as shown in Fig 4.12 (c). The sphere has a unit

diameter and the volume mesh extends until 42 diameters using 55 layers of strand

grid, which results in a total of 829,440 hexahedrons. The initial wall spacing is set

to 1 × 10−3 diameter and a mesh stretching ratio of 1.17 is chosen for the laminar

flow simulation.

As another option for the volume meshing, the unstructured elements are used

around the sphere. From the 9,754 triangular surface elements, 23 prismatic layers

are generated using the same initial wall spacing as with the strand grid. The region

outwards from the last prismatic layer until the far-boundary surface is then filled

with 382,564 tetrahedral elements. Using quad-level 0 subdivision for the volume

elements, the surface is discretized with 29,262 quadrilaterals and a total of 2.2

million hexahedra are generated for the simulation (see Fig. 4.12 (d)).

Simulation Results

Laminar flow over a sphere is performed at the freestream Mach number of 0.2

and Reynolds number ranging from 25 to 200. Figure 4.13 shows streamlines around

the sphere at each Reynolds number. For qualitative comparison of the size of the

separation bubble, the results from Johnson and Patel [47] are shown in Fig. 4.13

(a). Current results are shown in Fig. 4.13 (b) and (c) by using the strand grid or

the unstructured volume grid, respectively.

107

(a) Initial triangles on a sphere (b) Hamiltonian paths on quadrilaterals

(c) Strand grid sectional view (d) Unstructured volume grid sectional view

Figure 4.12: Surface and volume mesh for flow over a sphere.

The current solutions are obtained using gradient-based reconstruction in the

wall-tangential directions and WENO scheme in the wall-normal direction for the

inviscid flux (LLS-WENO). Symmetric wake structures behind the sphere are ob-

served at these low Reynolds numbers and the size of the wake region increases as

the Reynolds number increases. The flow structures remain topologically similar

108

between Reynolds numbers with changes only in the separation distance (separa-

tion bubble length) and the center of the separation bubble. The symmetric wake

structures are captured better using the strands grid than the unstructured grid.

This is because the grid is symmetric itself and the grid quality in the wake region

is better using the strand grid.

Current predicted drag coefficients are compared with experiment and other

simulation results [13, 47] as shown in Fig. 4.14 (a). mStrand results are obtained

using a similar number of surface elements (16,180) with the current strand mesh.

Overall the current predictions are well matched with both the experimental and

mStrand results. Additionally, separation distance and location of the separation

bubble are compared with other simulation results as shown in Fig. 4.14 (b) and

(c). All of the predicted flow features show a good agreement with results from the

references.

Figure 4.14 (d) shows the residual convergence histories at four different Reynolds

numbers. The same CFL number of 50 is used for all of the cases. Using the strands

grid, the residuals are observed to converge about 9 orders in the cases up to 150

Reynolds number, and 6 orders at 200 Reynolds number within 3,000 iterations.

Although reduced convergence rates are observed using the unstructured volume

grid, overall similar trends are observed between the different grids. Note that the

rapid convergence is shown initially for all cases, which corresponds to the damping

of the higher frequencies in the solution.

The solution convergence rates are compared between PGS and DDLGS meth-

ods at 100 Reynolds number using both strands and unstructured grids. The same

109

reconstruction method (LLS-WENO) is used during the comparison. Figure 4.15

shows the solution residual convergence along with the drag coefficient history in

the case of the strand grid. The maximum allowable CFL number of 20 is used

for the PGS method. Overall, a similar trend with the previous two-dimensional

results are observed: the DDLGS method outperforms the PGS method in both

per iteration and CPU time. However, the effect of line-implicit method on the

convergence becomes more significant in this three-dimensional viscous simulation.

This is because the line-implicit method is allowed along each strands in the wall-

normal direction. To reach machine zero precision residual, about 3 times higher

computational efficiency is observed from the DDLGS method.

Figure 4.16 shows the solution residual convergence along with the drag coef-

ficient history in the case of the unstructured volume grid. The same CFL number

of 50 is able to be used for both the DDLGS and PGS methods. To reach the same

solution residual drop (e.g. 2 × 10−8), the DDLGS method shows about 2 times

higher computational efficiency than the PGS method as shown in Fig. 4.16 (b).

The advantage of the DDLGS method on the efficiency is decreased from the results

using the strands grid. One of the possible reasons is that the average length of the

loops is reduced by using tetrahedral elements instead of strands.

110

(a) Reference streamlines [47]

(b) Current results using the strands grid

(c) Current results using the unstructured grid

Figure 4.13: Streamline showing separation bubble for flow over sphere.

111

(a) Drag coefficient (b) Separation distance

(c) Center of separation bubble (d) Solution convergence rate from HAMSTR

Figure 4.14: Comparison results of laminar flow over sphere with references [13,47].

112

(a) Residual convergence per iteration (b) Residual convergence per CPU time

(c) Drag Coefficient per CPU time

Figure 4.15: Solution convergence rate using the strand grid for laminar flow over a

sphere at Re = 100.

113

(a) Residual convergence per iteration (b) Residual convergence per CPU time

(c) Drag Coefficient per CPU time

Figure 4.16: Solution convergence rate using the unstructured volume grid for lam-

inar flow over a sphere at Re = 100.

114

4.2.3 Fully Turbulent Flow Past NACA0012 Airfoil

Solution Accuracy Analysis

Turbulent flow past a NACA0012 airfoil is computed at a freestream Mach

number of 0.15, a Reynolds number of 6 million, and three angles of attack (0, 10,

and 15 degrees). To validate the turbulence models implemented in HAMSTR, both

Spalart-Allmaras one-equation turbulence model and Menter Shear Stress Transport

two-equation turbulence model are used. Current predictions are compared against

the results provided by the NASA Turbulence Modeling Resource (TMR) [44]. A

structured airfoil C-type mesh (897 × 257) is used for current simulation which

is provided by TMR website and the same mesh is used for the other reference

simulation results. The mesh has fine enough wall normal spacing at wall of 1×10−6

chord which corresponds to y+ = 0.25, and the far field extends out to 500 chords.

For this structured grid, WENO reconstruction scheme is used in current simulation.

Figure 4.17 (a)-(c) shows the quantitative distribution of the pressure coeffi-

cient on the upper and lower surfaces of the airfoil at various angles of attack. For

the pressure coefficient, the experimental results [48] could be obtained and com-

pared at only the upper surface of the airfoil. The measurements were obtained

by tripping the flow to make it fully turbulent. The current predictions using both

turbulence models show excellent agreement in all cases. Figure 4.17 (d) shows the

drag histories during current simulations for all cases. All of the drag coefficient val-

ues are converged within 10,000 iterations using the same CFL number of 30. The

115

convergence rate of the values is not affected much by the different flow conditions

and turbulence models.

(a) At α = 5◦ (b) At α = 10◦

(c) At α = 15◦ (d) Drag coefficient history

Figure 4.17: Pressure coefficient comparison for NACA0012 airfoil simulation.

NASA TMR website provides the lift and drag coefficients which are predicted

by several well-established flow solvers using either the SA turbulence model or the

SST turbulence model for the considered angles of attack. As shown in Table 4.3,

the current predictions using HAMSTR are compared with the values from the other

116

flow solvers in the case of the SA turbulence model. The relatively recent prediction

from mStrand is also appended to it, which is extracted from the reference [13]. The

force coefficients predicted by HAMSTR are comparable to the results predicted by

all of the other flow solvers. Table 4.4 shows the comparison of the lift and drag

coefficients using the SST turbulence model. Current predictions show a good agree-

ment with other simulation results as well. Similar trend in the predictions between

the two turbulence models are predicted with other flow solvers. For example, the

SST turbulence model predicts lower lift coefficients and higher drag coefficients

compared to the predictions from the SA turbulence model at positive angles of

attack.

Table 4.3: Lift and Drag coefficient comparison using SA turbulence model.

Codes
Cl Cl Cl Cd Cd Cd

(α = 0◦) (α = 10◦) (α = 15◦) (α = 0◦) (α = 10◦) (α = 15◦)

CFL3D approx 0 1.0909 1.5461 0.00819 0.01231 0.02124

FUN3D approx 0 1.0983 1.5547 0.00812 0.01242 0.02159

TURNS approx 0 1.1000 1.5642 0.00830 0.01230 0.02140

mStrand approx 0 1.0967 1.5621 0.00804 0.01251 0.02195

HAMSTR approx 0 1.0907 1.5459 0.00812 0.01232 0.02127

Solution Convergence Analysis

The current solution convergence rate for the turbulent flow over a NACA0012

airfoil is compared with TURNS at 10 degrees angle of attack as a representative

flow condition. Both flow solvers use the same C-type mesh (449x129) which is

117

Table 4.4: Lift and Drag coefficient comparison using SST turbulence model.

Codes
Cl Cl Cl Cd Cd Cd

(α = 0◦) (α = 10◦) (α = 15◦) (α = 0◦) (α = 10◦) (α = 15◦)

CFL3D approx 0 1.0778 1.5068 0.00809 0.01236 0.02219

FUN3D approx 0 1.0840 1.5109 0.00808 0.01253 0.02275

NTS approx 0 1.0765 1.5100 0.00809 0.01251 0.02187

HAMSTR approx 0 1.0771 1.5057 0.00810 0.01248 0.02225

provided by TMR [44]. TURNS requires an averaged boundary condition along the

coordinate cuts. For the reconstruction, the same WENO methods were used in

both flow solvers.

In Fig. 4.18 (a), the solution convergence rate of the current DDLGS method

is compared with the approximate inversion methods in TURNS per iteration: LU-

SGS, DADI (Diagonalized ADI), and DDLGS. The same CFL number of 30 is used

in all methods for the current comparison. It is evident that the current DDLGS

method shows faster convergence per iteration than the other line-implicit methods

on TURNS (LU-SGS and DADI). When the same DDLGS method on TURNS

is compared with the current result, very similar convergence rates are observed

between each other. It should be noted that only the DDLGS method on TURNS

uses the same linearization of the Roe flux for the flux Jacobian as HAMSTR does.

Table 4.5 compares the CPU time per iteration for the various line-implicit

methods on both TURNS and HAMSTR. First, DDLGS method in HAMSTR re-

quires similar CPU time per iteration with DDLGS method in TURNS. The reason

for the small difference (about 10 %) is that the HAMSTR flow solver is programmed

118

based on an unstructured grid data format, thus the access to the structured grid

data cannot be exactly the same as with the structured grid flow solver. For exam-

ple, i, j indices of the structured grid data are not utilized in HAMSTR. This can

make difference especially in the viscous flux computation which requires gradient

evaluations not only in the streamwise direction but also in the crossterm direction.

Second, LU-SGS and DADI in TURNS require slightly less execute time per

iteration than the DDLGS method on both flow solvers. The operators themselves

are more efficient than for the DDLGS method and the use of spectral radius ap-

proximation for the flux Jacobian can save further CPU time.

(a) Residual convergence per iteration (b) Residual convergence per CPU time

Figure 4.18: Solution convergence comparison with TURNS.

4.2.4 Fully Turbulent Flow Past NACA0015 Wing

Fully turbulent flow over a NACA0015 wing is simulated for the accuracy

and solution convergence validation of a three dimensional flow solver. While the

experiments [49] were performed using a half-span wing, the numerical prediction

119

Table 4.5: Comparison of CPU execution time per iteration for different implicit

inversion methods.

Scheme Ratio

TURNS (LU-SGS) 1.0

TURNS (DADI) 1.03

TURNS (DDLGS) 2.14

HAMSTR (DDLGS) 2.35

using HAMSTR is conducted for a full-span wing. The wing aspect ratio is 6.6

(measured tip-to-tip) and the wing contains a rounded tip cap at both ends. To be

compared with the predictions using structured grid flow solver (OVERTURNS [46]),

an O-O type mesh (195 × 143 × 96) is used for the case. The initial wall normal

spacing is 5 × 10−6 chord which corresponds to y+ = 0.2, and the far field extends

out to 20 chords. Flow solutions are obtained for an angle of attack of 12◦ at a

Reynolds number of 1 × 106 and Mach number of 0.21. The solution is executed

in parallel using 16 processors with both HAMSTR and OVERTURNS. For the

reconstruction scheme, both flow solvers use the fifth-order WENO scheme.

Figure 4.19 shows the surface pressure distributions at three spanwise locations

near the wing tip (i.e. y/span = 0.676, 0.824, 0.971). The simulation results from

both HAMSTR and OVERTURNS show reasonable agreement with the experimen-

tal data at all three sections. Both simulation results are exactly aligned with each

other at y/span=0.676 and 0.824, otherwise the result from HAMSTR shows better

agreement with experiment at y/span=0.971. This is because the wing tip vortex at

the tip is better preserved in HAMSTR. It should be noted that HAMSTR is able

120

to use the same reconstruction method over the whole domain, otherwise OVER-

TURNS used the wake average boundary condition along the coordinate cuts at the

wing tip.

Figure 4.20 shows the comparison of solution residual convergence in terms

of both iteration and CPU time. For the comparison, DDLGS on HAMSTR is

compared with LU-SGS on OVERTURNS at the same CFL number of 50. Similar

to the results of the two-dimensional domain, DDLGS on HAMSTR shows faster

convergence rates than LU-SGS on OVERTURNS as shown in Fig. 4.20 (a). Current

DDLGS method on HAMSTR requires about 2.65 more CPU times per iteration

than LU-SGS method on OVERTURNS for the three-dimensional flow simulation,

which is increased by about 10 % from the results of the two-dimensional flow

simulation (see Table 4.5). As a result, comparable solution convergence rates in

terms of CPU time are observed between the solvers as shown in Fig. 4.20 (b).

HAMSTR shows slightly better convergence at the end of the simulation, as TURNS

shows evidence of the convergence stalling (possibly due to wake average boundary

condition).

4.3 Validation of Overset Method

The overset capability has been tested and validated using the case of two

spheres placed side-by-side to predict interactions between the bodies. The freestream

Mach number is 0.2 and the flow is laminar at a Reynolds number of 100. The angle

of attack between the two spheres is 0◦. Figure 4.21 shows the geometrical place-

121

Figure 4.19: Sectional surface pressure comparison for NACA0015 wing simulation.

(a) Residual convergence per iteration (b) Residual convergence per CPU time

Figure 4.20: Solution convergence comparison with OVERTURNS for NACA0015

wing simulation.

122

ment of the two spheres relative to each other. The sphere centers are separated by

1.5 sphere diameter.

The surface mesh of the sphere is obtained after subdividing the 5,120 isotropic

triangles to 15,360 quadrilaterals using quad-level 0. The initial wall normal spacing

is 0.1% of the diameter and 34 strands layers are used for the volume domain. Then,

each near-body sphere domain is connected with an off-body Cartesian domain using

TIOGA.

Figure 4.21 shows the iblank map of the top sphere and the background do-

main. Each cell is classified into one of three categories; field cell, fringe cell, and

hole cell as stated in section 3.5. It should be noted that the number of fringe

layers is determined based on the reconstruction scheme stencil. For example, three

fringe layers are necessary for the WENO reconstruction scheme. In the top sphere

domain, the fringe cells are modified according to the hole cells which are within

the bottom sphere as shown in Fig. 4.21 (a). In the off-body domain, the hole cells

inside the dual spheres are recognized and the fringe cells are tagged around the

hole cells as shown in Fig. 4.21 (b).

Figure 4.22 (a) shows the density contour around the two spheres along the

longitudinal plane with the flow coming from the left of the figure. The black lines

show the overset boundaries of each near-body and off-body domains. It should be

noted that the line contour is shown only in the field cell region (iblank=1), thus

there are a few void regions in the figure. Overall, smooth line contours are observed

across the overset boundaries between either the two near-bodies or the near-body

and off-body.

123

(a) Near-body sphere domain (b) Off-body Cartesian domain

Figure 4.21: iblank map for dual sphere nearbody and Cartesian offbody.

The solution residual convergence from each near-body and off-body domains

are shown in Fig. 4.22 (b). In both domains, the DDLGS method is used for implicit

inversion with CFL of 50. The inviscid fluxes are reconstructed using a combined

least-square in the wall-tangential direction and WENO scheme in the strand direc-

tion (LLS-WENO). The solution converges to machine precision in the both domains

after approximately 6,000 iterations. It should be noted that the current conver-

gence rate of the near-body domain is very similar with the convergence of the single

sphere mesh without overset from section 4.2.

In Fig. 4.23, the current surface pressure and skin friction distributions are

compared with other simulation results using a structured finite different based

Navier–Stokes solver [50]. Due to the interference between the two spheres, asym-

metric results were observed between the top and bottom of the surface at 0◦ angle

124

of attack. Although they are not exactly aligned with each other, reasonable agree-

ments are observed between current and reference results by commonly showing a

few features. First, the pressure on the near surface is higher than the pressure on

the far surface before the minimum pressure occurs. Second, the minimum pressure

occurred at an angle greater than 90◦ on the near surface and the minimum pressure

is lower than the minimum pressure on the far surface. Third, the skin friction on

the far surface is higher than the near surface before the maximum friction occurs

and the trend is opposite after the maximum friction occurs. Fourth, the separation

point where the skin friction becomes negative is slightly behind on the near sur-

face than the far surface. The slight differences with the reference results could be

attributed to slight differences in the solution strategies or wall normal grid spacing.

(a) Density contour for dual sphere. (black line:

domain boundary)

(b) Solution residual convergence from top

sphere domain

Figure 4.22: Simulation results for dual sphere case.

125

(a) Surface pressure distribution (b) Skin friction distribution

Figure 4.23: Comparison of simulation results for dual sphere.

4.4 Summary

In this chapter, the solution accuracy and residual convergence rate are eval-

uated through canonical problems as validations. The implementations in the flow

solver are also validated by comparing the results with well-established other flow

solvers. The validations are performed for both two- and three-dimensional flow

solvers.

• The accuracy of stencil- and gradient-based reconstruction methods have been

evaluated through Method of Manufactured Solution (MMS). On a unstruc-

tured surface mesh, the gradient-based method shows its formal order of ac-

curacy of second-order, otherwise the stencil-based methods limit its accuracy

to first-order due to varying cell size and curvature along the loop.

• The accuracy of different stencil-based reconstruction schemes are compared

126

with each other through an isentropic vortex simulation on a unstructured

grid: MUSCL, WENO, and CRWENO. It is observed that the higher-order

type method provides less dissipation error than the lower-order method.

• The efficiency of line-implicit method (DDLGS) is validated through compar-

ing with a point-implicit method (point Gauss-Seidel, PGS) on unstructured

grids. Higher efficiency is observed in three-dimensional viscous flow simula-

tions than a two-dimensional inviscid flow simulation, becuase the line-implicit

method is applied to not only the wall-tangential directions but also the wall-

normal direction.

• The performance of the current flow solver is validated through compari-

son studies with in-house structured grid based flow solver, OVERTURNS.

The comparable solution residual convergence was obtained for both two- and

three-dimensional problems in terms of executive CPU time.

• The implementations of both SA and SST turbulence models are validated

through two cases: two-dimensional bump in channel and NACA0012 airfoil.

Using the same structured grid with references, detailed comparisons are per-

formed such as grid refinement study.

• The overset capability is validated using a case of two spheres placed side-

by-side. The interactions between the bodies are captured similarly as the

referenced result.

127

Chapter 5: Solution Convergence

The preformance evaluations are continuously conducted in this chapter. First,

the numerical performance is studied in the case with self-crossing loops. Second, the

implementation of precondition GMRES method is validated. Solution convergence

rates are compared with the results from a pure line-implicit method for various

problems at different flow conditions. Finally, the parallel efficiency of the flow

solver is evaluated using a strong scalability test.

5.1 Loop Crossing

The Hamiltonian path can cross itself when the paths are generated on un-

structured grid with initially mixed elements of triangles and quadrilaterals. It is

recognized that one of the ways that Hamiltonian loops can be forced to cross each

is by inserting a quadrilateral in the middle of a purely triangular mesh. Figure 5.1

shows an example of such a self-crossing loop by inserting a quadrilateral element

on a pure triangle mesh before quadrangulation for a NACA0012 airfoil. After

quad-level 1 subdivision, it is observed that two Hamiltonian loops pass through

this modified region and self-intersect eight times each. It should be noted that the

number of intersections is dependent on the subdivision level. The formulation of the

128

(a) Quadrilateral in a initial triangular mesh (b) Self-crossing Hamiltonian path

Figure 5.1: Self-crossing loops on unstructured mesh for NACA0012 airfoil.

solver can handle this phenomenon without modifications, thus both stencil-based

reconstructions and line-implicit methods are still feasible along the self-crossing

loop. The simulation results of transonic flow (M=0.8 and AoA=1.25◦) are com-

pared between the meshes with the self-crossing loops and without the self-crossing

loops as shown in Fig. 5.2. MUSCL reconstruction for the inviscid flux computation

and DDLGS for the implicit inversion are used at a CFL number of 40. It is observed

that the solution is not affected by the existence of the self-crossing loops above the

airfoil, thus very similar surface pressure and solution residual convergence rates are

obtained.

The self-crossed loops can also be found when the Hamiltonian paths are

constructed on a semi-regular quadrilateral surface (see section 2.1). Thus, a further

convergence study with self-crossing loops is conducted for the fully turbulent flow

simulation around the Robin-Mod7 fuselage at a flow condition given by: freestream

Mach number of 0.1, Reynolds number of 1.6 million based on the fuselage length

129

(a) Surface pressure distribution (b) Solution residual convergence

Figure 5.2: Comparison of simulation results between with and without self-crossing

loops for transonic flow over airfoil.

and 0◦ angle of attack.

As shown in Fig. 5.3, two different surface meshes are used for the comparison.

For the unstructured surface mesh, a total 25,152 quadrilaterals are generated on the

surface from the initial 2,096 triangles using quad-level 1 subdivision method. For

the semi-regular surface, a total 35,248 quadrilaterals are generated from the initial

2,203 quadrilaterals using the same quad-level 1 subdivision method. From each

surface domain, the volume domain of the fuselage is generated using 57 strand layers

in the wall-normal direction. The initial wall-normal spacing is 5 × 10−6 fuselage

length, which corresponds to a y+ = 0.3. The near-body domain is connected

with the Cartesian background domain using the overset method. Each near-body

domain is partitioned using either 21 processors or 30 processors, which results in

a similar number of elements per processor: 67,000 cells for the unstructured mesh

130

and 66,000 cells for the semi-regular mesh. WENO reconstruction is used for the

inviscid fluxes and the DDLGS method is used for the implicit inversion at a CFL

number of 30. For the fully turbulent flow assumption, the SA turbulence model is

used.

Figure 5.3 (a) and (b) show a portion of the resultant paths on the Robin-

Mod7 fuselage surface, from either an unstructured surface mesh or a semi-regular

mesh, which are overlaid on surface pressure contours. The resultant loops on the

semi-regular mesh are self-crossed as shown in Fig 5.3 (b), otherwise the loops have a

circle-shape without self-crossing on the unstructured mesh as shown in Fig 5.3 (a).

In the case of the semi-regular mesh, a total 19 loops are generated on the surface

where the shortest loop contains 65 cells and the longest loop contains 13,569 cells.

In the case of the unstructured mesh, a total 2,099 loops are generated where the

shortest loop contains 21 cells and the longest loop contains 29 cells. Clearly, the

resultant paths for the semi-regular mesh are quite different in length compared to

the loops on the unstructured mesh.

The variations of pressure coefficient along the upper and lower surface of the

fuselage in longitudinal plane are compared as shown in Fig. 5.3 (c). Current pre-

dictions are also compared against results from experiment and OVERFLOW [45].

Overall, it shows reasonable agreement with the reference results. However, the both

simulation results predict a smaller pressure peak than experiment at the ramp re-

gion because the current results and OVERFLOW result are obtained in the free-air

condition without modeling of the wind tunnel walls. When the current results are

compared to each other, the result from the semi-regular mesh has a smoother curve

131

after the ramp region than the result from the unstructured mesh although they are

quite similar to each other.

Then, the solution residual convergence rates are compared in terms of both

per iteration and CPU time as shown in Fig. 5.4. In both simulations, the solu-

tion residual drops by 7 orders of magnitude within 20,000 iterations. Although, a

slightly better solution convergence rate is observed using the unstructured surface

mesh than the semi-regular one, the difference is not significant.

5.2 Solution Convergence of Preconditioned GMRES Method

The use of high-order reconstruction and high aspect ratio cells inside bound-

ary layer usually limits the solution convergence rate with a factorized line-implicit

method, which is because the convergence of Jacobi or Gauss-Seidel type methods

is affected by the size of stiffness of the flux Jacobian matrix. GMRES, based on

Krylov subspace methods, can be an option to improve convergence rates with high

CFL values. In this section, GMRES preconditioned using DDLGS is used and the

solution residuals are compared against the line-implicit method alone (DDLGS).

5.2.1 Overset Lifting Rotor

Inviscid flow around the Caradonna-Tung rotor is computed using an overset

mesh system, which is a two-bladed rotor with an aspect ratio of 6 [53]. Among

the various hovering flight conditions in the experiment, a transonic blade tip Mach

number of 0.866 and a collective of 8◦ is simulated.

132

(a) Hamiltonian paths without self-crossing on unstructured surface mesh

(b) Hamiltonian paths with self-crossing on semi-regular surface mesh

(c) Surface pressure distribution on longitudinal plane (y = 0)

Figure 5.3: Hamiltonian paths overlaid on the pressure contour for Robin-Mod7

fuselage simulation.
133

(a) Residual convergence per iterations (b) Residual convergence per CPU time

Figure 5.4: Solution convergence comparison for Robin-Mod7 fuselage simulation.

As shown in Fig. 5.5, an O-O type structured grid is used for the blades which

is connected with off-body Cartesian meshes using the overset method. The blade

mesh consists of 211 points in the airfoil-wrap direction, 70 points in the normal

direction, and 100 points in the span-wise direction. For the inviscid flow simulation,

an initial wall-normal spacing is 1× 10−3 chord. The off-body mesh system consists

of two nested meshes and a background mesh, which are also connected with each

other using the overset method. For the nearest nested mesh, uniform grid spacing

of 0.1 chord is used.

The blade domain is computed using HAMSTR and the Cartesian domain

is computed using a GPU-based structured grid flow solver [54] within a Python

framework. The inviscid fluxes are computed using MUSCL and WENO reconstruc-

tion for each near-body domain and off-body domain, respectively. The solution is

evolved using time-accurate BDF2 method with sub-iterations.

As shown in Fig. 5.6, the solution convergence rates are compared between

134

(a) Structured blade mesh (211× 100× 70) (b) Off-body Cartesian meshes with overset

Figure 5.5: Computational mesh for Caradonna-Tung hovering rotor simulation.

DDLGS and preconditioned GMRES. For the off-body domain, a Diagonalized Al-

ternating Direction Implicit (DADI) method is used during the test. The simulation

with GMRES is able to use a larger time step compared to the line-implicit method

applied alone. Thus, a CFL number of 500 is used for GMRES, otherwise a CFL

number of 50 is used for the DDLGS method. In the use of the GMRES method,

two different numbers of outer iterations (1 and 3) are used with the same number

of Krylov vectors of 5. It should be noted that the number of Krylov vectors of 5

is sufficient for the current inviscid flow simulation; otherwise, more Krylov vectors

are typically required for viscous flow simuations.

The number of sub-iterations is set as a user input and a specified tolerance

is not applied to exit the iteration as soon as the solution is converged. In this

study, 50 and 10 sub-iterations are used for each DDLGS and GMRES method,

respectively.

In Fig. 5.6 (a), it is observed that a good convergence rate is achieved in

135

the GMRES results with drops of 3-4 orders of magnitude per iteration. The use

of multiple outer iterations helps the residual convergence as well. Otherwise, a

relatively poor convergence rate is observed using only DDLGS. The current case

is numerically challenging to obtain a good convergence rate because of the flow

condition: inviscid transonic flow over the blade. Without viscosity, the numerical

convergence rate is typically degraded.

Every iteration of the GMRES method includes multiple preconditioning steps

based on the number of Krylov vectors and outer iterations. Because one precondi-

tion corresponds to a step of the DDLGS method, the use of 5 Krylov vectors and

3 outer iterations requires 15 DDLGS calls per GMRES iteration. In Fig. 5.6 (b),

the residual convergence is compared in terms of CPU time. Although the GM-

RES method is more expensive than the DDLGS method per each sub-iteration,

the GMRES can be an alternative method if the residual is stalled using DDLGS.

Typically, two order of convergence per time-step is sufficient for the applications

and the results from GMRES satisfy the convergence criteria within 5 sub-iterations.

In Fig. 5.7, the sectional pressure distributions on the blade surface are ex-

tracted at spanwise locations of 50%, 68%, 80%, 89% and 96% and are compared

against the experimental data. A shock appears at the 80% radial station and gets

stronger at 89%. At the 96% radial station, the effect from the shock is smeared out

due to the tip effect. Overall, the pressure distribution is in good agreement with

those from experiment. However, the pressure distributions on the suction side of

blade are somewhat over-predicted and a stronger discontinuity is observed on the

predicted shock than that measured in the experiment as a result of the inviscid

136

(a) Residual convergence per iteration (b) Residual convergence per CPU time

Figure 5.6: Comparison of solution convergence rate for Caradonna-Tung rotor sim-

ulation.

flow assumptions. The fully turbulent flow was also simulated for this case using

the current flow solver. The observed deviations disappeared in the turbulent flow

simulation result, and the agreement with experimental data was improved [55].

The detailed results are not included in this section because it is beyond the scope

of the current section. Although the DDLGS method shows poor convergence rate

compared against the GMRES method, it is observed that the predicted pressure

distribution of the blade is not affected by the less converged solution.

5.2.2 Unsteady Laminar Flow over a Sphere

Unsteady laminar flow over a sphere is simulated using an overset mesh system.

The mesh system consists of a near-body sphere domain and an off-body Cartesian

domain as shown in Fig. 5.8 (a). A strand grid is generated from the surface mesh

of the sphere with the initial wall normal spacing of 0.1% of the diameter. The

137

Figure 5.7: Pressure coefficient distributions on the blade at different radial stations

for Caradonna-Tung rotor simulation.

nearbody domain is connected with the background domain, which has the minimum

grid spacing of 0.07 diameter. Both domains are simulated using HAMSTR flow

solver. The inviscid fluxes are reconstructed using the 5th order WENO scheme

and either DDLGS or GMRES was used to compare the unsteady solution residual

convergence rate. The solution is evolved using BDF2 method with time step size

of 0.05.

The freestream Mach number is 0.2 and the Reynolds number is set to Re =

800 in order to ensure asymmetric wake shedding behind the sphere. Figure 5.8 (b)

shows the instantaneous streamlines overlaid on the pressure coefficient contours in

the x− z plane. The black lines show the edge of the domains. It is observed that

the vortices are located across the overset boundary.

Figure 5.9 compares the solution convergence rate between DDLGS (30 sub-

138

(a) Overset mesh system (b) Unsteady shedding behind a sphere

Figure 5.8: Laminar flow over a sphere simulation at Re = 800.

iterations) and GMRES (5 sub-iterations). The GMRES uses 5 Krylov vectors

with 5 outer iterations at each sub-iteration. From both DDLGS and GMRES, the

convergence rates are quite good, thus the residual drops by more than 4 orders of

magnitude during the sub-iterations. Also, the residual stall does not occur in the

DDLGS results, which is different from the previous result from the rotor simulation

at transonic inviscid flow condition. In Fig. 5.9 (b), the convergence rate is compared

in terms of CPU time. As expected, the current GMRES is more expensive than

DDLGS per iteration because a total of 25 preconditions are required at every sub-

iteration for the GMRES.

5.2.3 MD 30P-30N Airfoil

Turbulent flow over an MD 30P-30N airfoil is simulated in this section, which

is a McDonnell-Douglas three-element airfoil with a 30◦ slat deflection and a 30◦ flap

deflection. This configuration was the subject of an experimental study performed

by Chin et. al. [56]. Also, various efforts for simulating the flow around the airfoil

139

(a) Residual convergence per iteration (b) Residual convergence per CPU time

Figure 5.9: Comparison of solution convergence rate for laminar flow (Re = 800)

over sphere.

were conducted through the high-lift workshop CFD challenge at NASA Langley

research center in 1993.

Figure 5.10 shows grid examples for the configuration: multi-block structured

grid [57], unstructured grid, and overset structured grid [58]. In the current simula-

tion, an unstructured grid is used which consists of all quadrilateral elements [59].

Current simulations are performed at the flow condition of Reynolds number of 9

million and the freestream Mach number of 0.2. For the fully turbulent flow as-

sumption, the SA turbulence model is used. The inviscid fluxes are reconstructed

using WENO scheme.

In this case, a grid convergence study is conducted using three different mesh

resolutions. The grid information is summarized in Table. 5.1. It should be noted

that the wall normal spacing is reduced by half as the level of grid refinement

increases.

140

Figure 5.10: Different types of grid for MD 30P-30N airfoil.

Table 5.1: Grid information for MD 30P-30N airfoil.
Coarse mesh Medium mesh Fine mesh

Surface grid points 434 606 944

Normal spacing (y+) 6× 10−6 (2.0) 3× 10−6 (1.0) 1.5× 10−6 (0.5)

Total grid elements 56,000 80,000 124,000

Figure 5.11 compares the individual lift from the three components and the

total lift in the range of -4 to 24 degrees angles of attack. Besides experimental data,

other simulation results are also compared with the current results, which were ob-

tained using well-established RANS solvers: FLO103-MB [57] and INS2D [60]. For

the reference simulations, the multi-block structured grids were used for this config-

uration where the wall normal spacing was less than 2×10−6. Including the current

simulation, all of the simulation results are obtained using the SA turbulence model.

Overall, the current results show reasonable agreement with both experimental and

other simulation results. It should also be noted that the current solutions were

converged over the increasing levels of grid refinement.

However, some deviations with experimental data are also observed in the

141

(a) Slat element (b) Main airfoil element

(c) Flap element (d) Total airfoil

Figure 5.11: Comparison of experimental and computational lift coefficient for 30P-

30N airfoil at Re = 9× 106.

current prediction. For example, the lift coefficient is somewhat over-predicted

compared to experimental data. There are various possible sources of discrepancy:

measuring error, grid quality, limitation of turbulence model, etc. Also, none of

the simulation results agree with the experimental value of maximum lift. This is

because the experiment starts to experience three-dimensional flow effects at the

high value of lift which are ignored in the two-dimensional RANS simulations [60].

Current surface pressure predictions are compared with experimental data at

142

(a) At 8◦ angle of attack

(b) At 19◦ angle of attack

Figure 5.12: Comparison of surface pressure distribution for MD 30P-30N airfoil at

Re = 9× 106.

two different angles of attack of 8◦ and 19◦ as shown in Fig. 5.12. The comparison

is conducted for each component at each angle of attack. In general, the agreement

with experiment is good. The biggest discrepancy occurs at 8◦ angle of attack on the

slat. The suction peak is over-predicted as the level of grid refinement increases. The

possible reason for the discrepancy is the use of a fully-turbulent flow assumption

in the current simulation. The same trend is captured in the INS2D result [60] as

shown in Fig. 5.12 (a).

The solution residual convergence rates are compared between the DDLGS and

GMRES methods at the angle of attack of 8◦ as shown in Fig. 5.13. The residual

143

(a) Residual convergence per iteration (b) Drag coefficient per CPU time

Figure 5.13: Comparison of solution convergence for MD 30P-30N airfoil at AoA=8◦.

is easily stalled using the DDLGS method for all the different resolution grids. The

reason for the residual stall can be both from the use of high order reconstruction

(WENO) and the first order approximations in the line-implicit method. The use

of GMRES method can increase the convergence rate for all the test grids. For the

results, 10 Krylov vectors are used for the coarse and medium mesh, and 20 Krylov

vectors are used for the fine mesh. It should be noted that the current GMRES is

used only for the mean flow equations and the SA turbulence model is solved using

DDADI, which is loosely coupled with the mean flow equation.

The advantage in the current GMRES method is that the converged drag

values could be obtained much faster than the DDLGS method as shown in Fig 5.13

(b). For the medium mesh, the drag is converged to within 1 % of the final value

within 500 seconds using GMRES, otherwise it takes about 5,000 seconds using

DDLGS. The similar trend is also observed for both coarse and fine mesh cases.

144

5.3 Scalability

The current flow solver is parallelized using MPI to be executed in parallel for

realistic problems which typically include millions of cell elements. In this section,

the flow solver scalability is tested through a strong scalability test, which is defined

as how the solution time varies with the number of processors for a fixed total

problem size. The current parallelized codes are executed on the University of

Maryland’s Deepthought II cluster, which is a high-performance computing facility

that has a peak performance of about 160 TFlops/s.

The case for the scalability test is the time-accurate turbulent flow simulation

over a sphere (Re=1.14 million and M=0.2). For the surface mesh, the initial 20,480

isotropic triangles are subdivided into 61,440 quadrilaterals using quad-level 0, and

the surface mesh is extruded in the wall normal direction using 74 strand layers.

Thus, the total problem size is 4.5 million hexahedra. Initial wall normal spacing

is 1 × 10−5 of the sphere diameter which corresponds to a y+ of 0.5. MUSCL

reconstruction is used for the inviscid flux computation and the DDLGS method is

used for the implicit inversion.

The number of processors is varied from 16 to 250 and the averaged CPU

time is measured after enough iterations. Figure 5.14 compares the current speed-

up result against the ideal speed-up line. The code demonstrates parallel efficiency

close to ideal with 64 processors and 90% efficiency with 250 processors. There can

be multiple reasons for the decreased parallel efficiency at large number of CPUs.

As one of the reasons, the current solver adopts a concept of ghost cells along the

145

boundary between partitioned domains (see section 2.3), thus the total number of

elements increases as the number of partitioning increases, even for the fixed size of

the total domain. The use of additional processors also results in additional MPI

communications.

Figure 5.14: Strong scalability test for turbulent flow simulation over sphere.

Figure 5.15 shows the convergence of the mean flow residual and the turbulence

model residual for a couple of time steps. In the current simulation, 20 sub-iterations

are used at each time step. It is observed that the residual drops by two orders of

magnitude in the mean flow and three orders of magnitude in the SA model. The

solution convergence rates are not affected by the number of processors in both the

mean flow and the SA model.

146

(a) Mean flow residual convergence (b) SA turbulence model residual conver-

gence

Figure 5.15: Convergence of residual for turbulent flow simulation over a sphere.

5.4 Summary

In this chapter, following topics are covered as a further investigation of the

current flow solver performance.

• Solution convergence rate and accuracy are evaluated for the case with self-

crossed loops. In both two- and three-dimensional simulations, the results are

compared between the grids with and without the self-crossed loops. It is ob-

served that the current line-implicit method and stencil-based reconstruction

are not affected much by the existence of the self-crossed loops.

• Solution convergence rates are evaluated for the preconditioned GMRES method

with the DDLGS method as a preconditioner. Improved convergence rates are

observed compared to the results from the pure DDLGS method. The compar-

isons are conducted through various test cases: transonic inviscid flow around

147

hovering rotor, unsteady laminar flow around a sphere, and fully-turbulent

flow around MD 30P-30N airfoil. The use of GMRES method alleviates resid-

ual stall problems in both steady and unsteady simulations by allowing a larger

drop of residual per iteration. Also, aerodynamic coefficients are converged

much faster in terms of CPU time compared with the results from the pure

DDLGS method. However, more executive CPU time per iteration is required

for the GMRES method, which depends on the size of Krylov subspace.

• The scalability test of flow solver is conducted by comparing executive CPU

time per iteration at varying number of processors from 16 to 250. Time-

accurate turbulent flow simulation around a sphere is used for the test and

unsteady residual convergence rates are compared between the results at dif-

ferent number of processors. The code demonstrates 90% of ideal parallel

efficiency with 250 processors. The solution convergence rates are not affected

by the number of processors in both mean flow and SA model.

148

Chapter 6: Applications

In this chapter, the Python-based CFD framework has been applied to heli-

copter/wind turbine flow simulations. In the framework, the developed method is

utilized for either the near-body domains or all of the domains including the off-body

region.

First, hovering rotor simulations are conducted including laminar-turbulent

boundary layer transition. The effect of boundary layer transition on hovering per-

formance will be discussed. Second, a full wind turbine configuration is simulated

as an interactional aerodynamic problem between sub-components. The predicted

interations are compared with the experimental data. Third, the flow around com-

plex rotor hub geometries are simulated using unstructured volume meshes. The

unsteady hub drag and wake deficits at the wake regions are compared with the

experimental data and other simulation results. Finally, forward flight rotor with

high advance ratio simulations are performed using the CFD-CSD coupled method.

Current simulation is focused on sectional airloads prediction at 30% rotor radius.

The accuracy of the coupled method is compared with the results obtained from

either CSD alone and CFD alone.

149

6.1 Pressure Sensitive Paint (PSP) Hovering Rotor Simulation

In 2016, a Mach-scale hovering rotor test was conducted in the NASA Langley

Research Center to investigate the hover performance as a function of the laminar-

turbulent transition state of the boundary layer [61]. The hover performance was

measured for natural and forced transition cases. For the natural transition test,

boundary layer transition locations were measured on the upper and lower blade

surfaces via infrared (IR) thermography. The PSP rotor is a four-bladed configu-

ration and has a radius of 66.5 inches with a chord of 5.45 inches. The blade used

RC-series airfoils as shown in Fig. 6.1 and had a linear twist of -14 degrees start-

ing at r/R = 0.252 and ending at the rotor tip. The rotor solidity (σ) is 0.1033.

The operating tip Mach number is 0.58, and the tip Reynolds number is 1.7 million

based on the reference chord length. The test was conducted with a ROBIN-Mod 7

fuselage beneath the rotor.

Figure 6.1: PSP blade planform, inches [61].

In the current work, both fully turbulent and transitional flow simulations are

conducted for the isolated rotor at three different collective angles (6◦, 8◦, and 10◦)

150

and the predicted hovering performance results are compared with experimental

data. For the transitional flow simulations, the γ − Reθt−SA transition model

is coupled with the SA turbulence model. The freestream turbulence intensity is

prescribed as 0.75% according to the previous study [62].

Figure 6.2 shows the computational overset mesh system for the simulation,

which consists of a structured O-O type grid for the blade domain and a Carte-

sian background domain. The current flow solver, HAMSTR, computes the blade

domain, otherwise the background domain is computed using OVERTURNS [46].

Owing to the periodic nature of the flow, the simulations are performed only for the

single blade of the rotor with an assumed periodic boundary condition.

151

(a) Blade surface mesh

(b) O-O mesh topology for blade vol-

ume mesh

(c) 1/4 Cartesian background mesh

Figure 6.2: Computational overset mesh system for PSP rotor simulation.

The blade mesh has 265 × 275 × 70 points in the chordwise, spanwise, and

wall-normal directions respectively. The initial wall normal spacing is 5× 10−6 the

reference chord length which corresponds to a y+ = 0.5. For the background domain,

the radial outer boundary is at 3.2R and the top and bottom boundaries are at 2.0R

and 3.5R, respectively. At the outer boundaries, the point-sink/momentum theory

boundary condition is applied to account for far-field conditions.

The inviscid fluxes are computed using WENO reconstruction and the SA-

DDES model is used for a turbulence closure for both domains. Otherwise, the

152

transition model is applied only for the blade domain. The connectivity between

the overset meshes is computed using TIOGA once before the iterations, and both

computational domains are rotated together by 0.5◦ at every iteration.

Figure 6.3 shows the predicted figure of merit (FM) for both laminar-turbulent

transition and fully-turbulent simulations. The results are compared with the ex-

perimental data and other simulation results which used either γ −Reθt [63] or the

SA amplification factor [64] transition model. In the experiment, trip dots were

placed at x/c = 0.05 on the upper and lower surfaces to obtain the fully turbulent

boundary layer. The current predictions are conducted at three different collective

angles and the points are connected as shown in the bold lines.

Overall, there is good agreement between the current predictions and the ref-

erence data. In the current results, higher figure of merit are predicted for the fully

turbulent flow condition than the results of the transitional flow simulation at all of

the collective angles. The same trends are observed in both experimental data and

the other simulation results. Although the current prediction for the fully turbulent

flow is underpredicted at 10◦ collective pitch, a similar trend is also observed in the

other predictions.

153

Figure 6.3: Comparison of figure of merit (FM) with experimental and other simu-

lation data.

The predicted transition locations on the blade surface are compared with the

experimental data for the collective angles of 6◦, 8◦, and 10◦ as shown in Figs. 6.4, 6.5,

and 6.6, respectively. In the intermittency contours, the blue and red region approxi-

mately represents the laminar and turbulent boundary layers, respectively. It should

be noted that only the source term of the turbulence model is dependent on the in-

termittency, otherwise the convection and diffusion terms are not dependent on the

intermittency. The transition onset location is determined by picking up the point

where the intermittency value reaches 0.5.

Overall, the predicted transition location moves towards the leading edge on

the upper surface and towards the trailing edge on the lower surface as the collective

154

angle increases. This is because the boundary layer becomes less stable under an

adverse pressure gradient and more stable under a favorable pressure gradient con-

dition. This trend is also captured in the experimental data. In detail, the predicted

locations are somewhat delayed on the mid-span of the lower surface at the collective

angles of 6◦ and 8◦ compared with the experimental data. This might be due to

the use of prescribed freestream turbulence intensity (FSTI) over the domain in the

current transition model. In the current SA turbulence model, the local freestream

turbulence intensity is not predictable unlike with the k−ω SST turbulence model.

Due to the rotor wake, a higher FSTI can occur underneath the blade, which might

cause the transition to occur earlier on the lower surface in the experiment. This

interference becomes more severe at the lower collective angles.

(a) Intermittency contours (top: upper, bottom: lower)

(b) Comparison of experimental and predicted transition location

Figure 6.4: Intermittency contours and transition location for θ0.75 = 6◦.

155

(a) Intermittency contours (top: upper, bottom: lower)

(b) Comparison of experimental and predicted transition location

Figure 6.5: Intermittency contours and transition location for θ0.75 = 8◦.

(a) Intermittency contours (top: upper, bottom: lower)

(b) Comparison of experimental and predicted transition location

Figure 6.6: Intermittency contours and transition location for θ0.75 = 10◦.

156

6.2 NREL Phase VI Wind Turbine Simulation

Wind turbines are effective means of obtaining environmental-friendly sustain-

able energy. In recent years, the number of turbines operated around the world has

dramatically increased. Because the aerodynamic efficiency is directly linked to the

efficiency of wind power generation, wind turbine aerodynamics research has been

conducted using both low-fidelity models such as an actuator disk or a vortex-panel

method [65] and high-fidelity CFD simulations [66, 67].

Unlike a low-fidelity model, the CFD simulation allows for accurate prediction

of the boundary layer on the rotating blades and various unsteady flow features

such as dynamic stall. Also, the use of a transition model improves the performance

prediction of a wind turbine by capturing the laminar-turbulent transition point

along the boundary layer. In the case of a horizontal-axis wind turbine (HAWT), the

unsteady aerodynamic effects associated with the blade tower interference (upwind

configuration) or tower shadow effect (downwind configuration) cannot be ignored

and must be included in the analysis as well. Thus, the flow simulations around full

wind turbine configuration are conducted in the present work.

The computations are performed for the National Renewable Energy Labo-

ratory (NREL) Phase VI turbine rotor using the Python-based framework. The

experiment was carried out in the NASA-Ames wind tunnel and the experimental

data set has been used extensively in many other works to compare with CFD simu-

lation results [68]. Most CFD studies have been conducted for the isolated rotor case

with zero coning and yaw angles at wind speeds between 7 m/s and 20 m/s [66,67].

157

This two-bladed turbine has a diameter of 10.06 m and rotates with a constant

rotational speed of 72 RPM. As the HAWT configuration, both upwind and down-

wind configuration experimental data are available. The blade features a cylindrical

cross-section at the root and the transition region connects the circular section to

the root airfoil section as shown in Fig. 6.7. The blade has a linear taper and has

a non-linear twist with the tip pitch angle set as 3◦. The pitch and twist axes are

located at 30% chord [68].

Figure 6.7: NREL Phase VI turbine blade planform.

The Phase VI turbine is mounted on the top of the tower, which has a diameter

of 0.4 m and a hub height of 12.2 m from the ground. The turbine has a 1.4 m

longitudinal clearance from the tower, which corresponds to 3.5 times the tower

diameter. The computational model of the full wind turbine is shown in Fig. 6.8.

The nacelle is represented using a simplistic rectangular shape with the dimensions

based on the actual size of the model.

The computational mesh for the full configuration consists of five individual

overset mesh groups; three Hamiltonian-Strand grids for the two turbine blades

and combined tower-nacelle configuration, and two background grids (cylindrical

158

nested mesh and Cartesian background mesh). The dimensions of the background

domain is determined based on the NASA Ames wind tunnel test section as shown

in Fig. 6.8. An inviscid wall boundary condition is applied to the test section wall

faces and a freestream boundary condition is used for the inlet and outlet faces.

(a) Cartesian background mesh (b) Cylindrical nested mesh

Figure 6.8: Computational model for full NREL Phase VI turbine simulation.

Each blade comprises of 9,082 triangles forming the cylindrical inboard section

and the blade tip region, and 27,007 quadrilaterals in the transition and main body

regions. In the main body of the blade region, the structured mesh consists of 240

points in the wrap-around direction and 90 points in the spanwise direction. After

converting to an all-quadrilateral element mesh, a total of 32,639 quadrilaterals are

used for each blade surface as shown in Fig. 6.9 (a). The blade grid contains 52

strands layers for the volume mesh with an initial wall spacing of 1 × 10−5 of the

root chord, which corresponds to a y+ = 0.5.

In order to better capture the blade tip vortex, a grid spacing of about 4%

root chord is used along the blade tip path in the cylindrical nested mesh. A grid

159

spacing of about 6% root chord is used between the blade and tower to capture

possible interference. A total of 5.8 million and 4 million elements are used in

the nested mesh and the Cartesian background mesh, respectively. Within the

Python framework, the near-body domains including the blades, nacelle, and tower

are computed using HAMSTR and the off-body domains are computed using the

GPU-based solver (Garfield) [54].

To simulate the relative motion between the blade and non-rotating compo-

nents, the blades are rotated at a time step size of 0.5◦ around the rotational axis.

WENO reconstruction is used for the inviscid flux in all of the domains. For the im-

plicit inversion, DDLGS and DADI methods are used for the near-body and off-body

domain, respectively.

(a) Blade surface mesh at root region (b) Overset connections between blade and

tower at 63% R plane

Figure 6.9: Computational mesh for blade and overset system for NREL Phase VI

turbine simulation.

160

6.2.1 Isolated Rotor Computation

The simulations for an isolated rotor are performed to compare against ex-

perimental data at various flow conditions and to capture the effect of the laminar-

turbulent transition model on turbine performance. For the transition simulation,

the freestream turbulence intensity (FSTI) is set as 0.1%. Owing to the largely pe-

riodic nature of the flow without tower interaction, the calculations are performed

only for a single blade of the rotor and a periodic boundary condition is applied at

the plane between the blades.

As shown in Fig. 6.10, the instantaneous chordwise surface pressure distribu-

tions are obtained with and without the transition model and the current predictions

are compared against the experimental data at wind speeds of 7, 10, and 20 m/s.

The pressure distributions are compared at five spanwise sections where the experi-

mental data is available; r/R of 0.3, 0.47, 0.63, 0.8, and 0.95. The sectional pressure

coefficient is defined as given by:

Cp =
P − P∞

0.5ρ(W∞
2 + (rω)2)

(6.1)

where W∞ is freestream windspeed and ω is the rotational speed.

At a wind speed of 7 m/s, the flow is fully attached over the blade. The

current predictions from both fully turbulent and transitional flow simulations show

a good agreement with the experiment. At 10 m/s, the flow separation appears at

mid-chord on the suction side. Some deviations with experiment are observed on

the suction side of the blade; this phenomenon is similar to that observed in other

161

numerical studies [66]. This is because the separation point on the suction side is

sensitive to the numerical scheme and turbulence model used in the simulation. At

20 m/s, the flow is fully separated from the leading edge over the whole region of

the suction side. Thus, the flat pressure distribution is captured on the suction side

in both experiment and prediction.

The thrust and torque predictions obtained from fully turbulent and transi-

tional flow simulations are compared with the experimental data in table 6.1. At an

operating wind speed of 7 m/s, the use of a transition model estimates better torque,

while the fully turbulent simulation is under-predicted. This is because a transition

model captures the laminar portion of the boundary layer on the blade where the

skin friction is lower than the value in the turbulent flow region. Once the flow

is separated on the suction side at higher wind speeds, the transition model has a

lesser impact on the torque prediction. Overall, all torque predictions are improved

using the transition model and show reasonable agreement with experimental data.

The thrust is only moderately affected by transition.

Table 6.1: Comparison of thrust and torque predictions for NREL Phase VI turbine,

experimental data from [38].

Case(m/s)
Thrust (N) Torque (N −m)

Experiment Transition Turbulence Experiment Transition Turbulence

7.0 1,154 1,185 1,126 805 766 696
10.0 1,675 1,673 1,665 1,340 1,196 1,172
20.0 3,005 3,278 3,261 1,110 1,134 1,084

At a wind speed of 7 m/s, the streamlines overlaid on skin friction contours

162

(a) Wind speed of 7 m/s

(b) Wind speed of 10 m/s

(c) Wind speed of 20 m/s

Figure 6.10: Sectional surface pressure for NREL Phase VI turbine blade.
163

(a) Windward side of blade (left:fully turbulent, right:transition)

(b) Leeward side of blade (left:fully turbulent, right:transition)

Figure 6.11: Streamline overlaid on skin friction contour for NREL Phase VI blade

at wind speed of 7 m/s.

are shown in Fig. 6.11. The results from fully turbulent and transition simulations

are compared with each other on both windward and leeward sides. The results in-

cluding a transition model clearly show the presence of a laminar-separation bubble

along the mid-chord of the entire span on both sides of the blade.

Once the flow is separated, the flow spreads towards the blade tip due to the

centrifugal force from the rotating motion and the turbulent flow re-attaches right

after the bubble. Especially on the leeward side of blade, the use of a transition

model predicts much less skin friction before the separation than the result from

a fully turbulent flow. This difference results in the better agreement with the

experiment in the turbine torque prediction.

164

6.2.2 Full Configuration Computation

For the full configuration, including the nacelle and tower components, both

upwind and downwind tests are simulated at a wind speed of 7 m/s. Details of the

operating conditions are explained in table 6.2. For the downwind configuration, the

rotor is modeled without coning and teetered hub in the current simulation, which

is the same assumption as in the referenced study [69].

Table 6.2: NREL Phase VI operating conditions.

Condition Rigid/Teetered Coning angle Blade tip pitch

Upwind Rigid 3.4◦ 3.0◦

Downwind Teetered 0.0◦ 3.0◦

In the downwind configuration, the blade-tower interaction occurs due to the

tower shed wake interference on the blade aerodynamic loading. Because the shed

vortices from the tower directly interact with the blade, the effect on blade airload

is more severe than the upwind configuration. One case from Sequence ‘B’ in the

experiment is chosen [68], where the nominal inflow velocity was 7 m/s. However, in

this study, the actual inflow velocity of 6.7 m/s is used due to wind tunnel anomalies

as mentioned in the referenced study by Zahle et. al [69].

The validation for this interaction is performed by comparing the azimuthal

variation of normal force coefficients with the experimental data at the five spanwise

locations (0.3R, 0.47R, 0.63R, 0.8R and 0.95R). Figure 6.12 shows the computed

normal force coefficient variation during a rotor revolution. The current predic-

tions are compared against the averaged experimental data over the 35 consecutive

165

Figure 6.12: Normal force coefficient variation on a NREL Phase VI turbine blade

for downwind configuration.

revolutions.

The acute interaction is observed at all of the spanwise locations and the

rate of reduction is greater at the inner section than the outer section. This trend

is observed in both experiment and the current prediction. This is because the

decrease in effective angle of attack is more severe at the inner section which has

lower tangential velocity. This resulted in almost 50% of reduction in the normal

force at the 0.3R section.

In the upwind configuration, the free-stream wind shear due to the atmospheric

boundary layer is also applied in addition to the uniform flow condition in order to

study the effect on the rotor performance. The free-stream wind shear is described

by the normal wind profile (NWP) model [70] using a power law as given by:

166

W (Z) = Whub(
Z

Zhub
)α (6.2)

where Whub is the wind speed at the hub height as 7 m/s and Zhub is the hub height

from the ground.

The value of α (0.2023) is determined using the correlation equation suggested

by Justus [71] based on the reference hub height and the reference wind speed of

7 m/s. The maximum velocity on the rotor disc is about 7.53 m/s at the top and

the minimum velocity is about 6.25 m/s at the bottom. The wind shear profile

is imposed as both an initial value in the background domain and the Dirichlet

far-boundary condition.

Figure 6.13 shows the wake structure from the NREL Phase VI wind turbine

at both uniform inflow and at the wind shear condition. Both the blade tip and

root vortices interact with nacelle and tower components. It is observed that the tip

wake distances are different between the top and bottom of the rotor for the wind

shear condition. This phenomenon can induce the low momentum zone to be lifted

upward in the far-wake region due to more mutual interaction between the wake

structures at the bottom [65].

Figure 6.14 (a) shows the single blade torque variation during a rotor revolution

for both the uniform flow and wind shear cases. For the uniform flow, the region

affected by the tower is not a single point, but the interaction is extended to almost

half of a rotor revolution. The same trend is also captured in the experimental data.

Compared to the acute interaction from the downwind configuration, this interaction

167

(a) Uniform inflow condition (b) Wind shear condition

Figure 6.13: Computational wake visualization of NREL Phase VI turbine using

iso-surfaces (Qciteria=0.00015) colored by vorticity.

is less severe but it occurs over a wider range. For the wind shear flow, the variation

of individual blade torque becomes severe which can induce highly unsteady hub

moment of the turbine. However, the trends are quite opposite between the blades,

thus most of the variation can be canceled out after both torques are summed up

for the rotor torque. The experimental data for the wind shear flow condition is not

available for the current wind turbine model.

Figure 6.14 (b) compares the sectional torque force (tangential force) distri-

bution on the rotor disk plane between the cases of uniform flow (on top) and wind

shear (on bottom). A strong asymmetric force is obtained in the presence of the wind

shear because of the change in local effective angle of attack. Also, the asymmetric

force is more severe at the blade tip region. Otherwise, under the uniform inflow

condition the sectional airloads distribution is symmetric except at 180◦ azimuth

168

(a) Blade torque azimuthal variation (b) Tangential force contour on ro-

tor disk

Figure 6.14: Blade torque variations of NREL Phase VI turbine for upwind config-

uration.

due to the tower blockage effect.

6.3 Rotor Hub Simulation

Accurate flow simulation around a rotor hub is important in helicopter design.

This is because the rotor hubs can contribute significant (30% or more) drag at

conventional speeds, and even more at the high speeds (230 kts) planned for some

future vertical lift designs [72]. Also, the wake from the rotor hub induces aero-

dynamic interference at the empennage which may result in stability issues. The

169

rotor hub typically consists of various components such as hub arms, swashplate,

and shaft. Thus, the use of advanced CFD tools is motivated to provide accurate

simulation and better understanding of the complex flow around the rotor hub.

Recently, a combined computational and experimental efforts have been conducted

through two Rotor Hub Flow Prediction Workshops which were held at Penn State

University (PSU) in 2016 and 2018 [73, 74]. The main objective of the workshops

is to understand both unsteady hub drag and wake characteristics from near to far

wake from a rotating hub. In the current work, the flow simulations around the

PSU hub models were conducted using the developed CFD framework.

The current hub models are based on a 4-bladed large commercial helicopter

and were simplified for computational validation. Phase III hub (baseline hub)

model resembles a modern commercial helicopter and a low-drag hub was designed

to represent a future vertical lift hub [75]. The hub radius is assumed to be 15%

of the rotor radius and the hub models were sized to have the same frontal area of

59.96 in2.

The full-scale Reynolds number experiment is conducted in the Garfield Thomas

Water tunnel at Penn State University (see Fig. 6.15). Both hub models are mounted

on the wing-shape stand (NACA0025 section) at a 5 degree forward angle in refer-

ence to forward flight. The horizontal stabilizer is also installed downstream of the

hub model. The water tunnel speed is 22 ft/s and the rotation rate of the hub is

152 RPM.

Figure 6.16 compares the two hub models. The baseline hub model includes

upper and lower spiders, main hub arms, swashplate, and scissors. For the low-drag

170

Figure 6.15: Experimental setup in the Garfield Thomas 48 inch diameter water

tunnel [75].

hub, the sharp corners of the baseline hub arms were replaced with a reverse flow

airfoil (DBLN 526) arms and the upper spider was removed. Also, the low-drag hub

has a larger shaft diameter than the baseline hub (Phase III).

For the near-body domain of both the baseline and low-drag hub models,

unstructured volume elements are used which includes both prisms and tetrahedra.

Then, each element is subdivided into hexahedrons to identify Hamiltonian paths on

the volume domain as shown in Fig. 6.17 (a). The hub stand is also modeled inside

the water tunnel and the hub model is mounted on the top of the hub stand. The

initial surface mesh of the hub stand is generated by combining quadrilaterals and

triangles which are eventually subdivided into all-quadrilaterals. Then, the strand

grid is generated from the surface mesh as shown in Fig. 6.17 (b). Table 6.3 shows

the resultant grid information of both baseline and low-drag hubs as well as the hub

stand domain.

171

(a) Baseline hub model (b) Low-drag hub model

Figure 6.16: Computational PSU hub models.

(a) Unstructured volume element for hub

model

(b) Strand grid for hub stand

Figure 6.17: Computational mesh for hub model and hub stand.

172

Table 6.3: Near-body domain grid information for rotor hub simulation.

Baseline Low-drag Hub stand

Surface element 84,738 225,000 22,074

Normal spacing (y+) 3× 10−5 (2.5) 1× 10−5 (1.0) 1× 10−5 (1.0)

Volume element 3.9 million 12.5 million 0.9 million

Each of the near-body domains are connected with the off-body domains using

the overset method. The overset mesh system consists of a total of 8 groups; hub,

hub stand, hub nested, hub stand nested, stabilizer, stabilizer nested, tunnel, and

tunnel nested. Figure 6.18 shows the side-view of the mesh system near the hub

and stabilizer. The tunnel wall is a cylindrical structured mesh and viscous no-slip

boundary condition was imposed on the wall. The tunnel wall ranges from -11 to

28.9 hub radius and has 1,435,140 grid elements. To better preserve the wake flows

from the hub, four overset nested meshes are additionally used. Each hub nested

domain and foil nested domain has a uniform grid spacing of 0.015 and 0.02 hub

diameter, respectively. The total number of grid elements for the nested meshes are

about 15.40 million. The off-body domains and the horizontal stabilizer domain are

computed using the GPU-based structured grid flow solver (Garfield) [54] within

the Python framework.

The simulations are conducted at a Reynolds number of 4.3×106 based on the

hub diameter and freestream Mach number of 0.1 which corresponds to 0.2 advance

ratio based on the rotor. The unsteady time step of 0.5 degree is used with sub-

iterations. In all of the domains, the flow is assumed as fully turbulent flow and the

SA-DDES model is used for a turbulence closure.

173

Figure 6.18: Overset mesh system for baseline hub model simulation.

In the near-body domain, WENO reconstruction is used for the baseline hub

model and combined WENO and least-square reconstruction method is used for the

low-drag hub model. In both cases, the DDLGS method is used for the implicit

inversion. In the off-body domain, WENO reconstruction and the DADI methods

are used for the inviscid flux and the implicit inversion, respectively.

Figure 6.19 (a) shows the azimuthal drag variations from the current predic-

tions and experimental data [74]. It should be noted that the lower shaft component

was excluded for the hub drag calculation in both experiment and simulations. As a

validation, the current prediction from both baseline and low-drag hub models are

compared against the measured drag from the same hub model. For the baseline

hub model, a good agreement with the experiment is observed in terms of both

mean value and unsteady trend. The current mean drag is slightly over-predicted

by 4% from the experiment. For the low-drag hub model, the predicted mean drag is

over-predicted by 14% although the unsteady trend is matched with the experiment

174

(a) Phase-averaged drag coefficient (b) Harmonics associated with hub drag

Figure 6.19: Drag coefficients for baseline and low-drag hub.

counterpart. The over-predicted drag in the low-drag hub model might be a result

of poor mesh quality near the leading edge of hub-arms as stated in the previous

study [76].

Frequency content analysis of the unsteady drag is shown in Fig. 6.19 (b). For

the baseline hub, 2/rev and 4/rev are dominant in both experiment and prediction.

Although the current result under-predicted 4/rev component and over-predicted

2/rev component, overall the current prediction shows reasonable agreement with

the experiment. In the case of the low-drag hub, 2/rev and 4/rev are dominant

in both experiment and prediction. However, the magnitudes are over-predicted at

2/rev and 4/rev components.

Mean drag breakdown by component is shown in Fig. 6.20. The components

are divided into three groups: the first component includes lower shaft, the second

175

component includes swashplate, scissors, and mid-shaft, and the third component

includes arms and spiders. As a validation, current results are compared with pre-

dictions using the Helios CFD framework [72, 77]. Noted that the drag of the first

component for the low-drag hub model is not available in the Helios results.

For the baseline hub model, the third component has the highest drag due to

their size, which corresponds to about 70% of the total drag in both the current

and Helios results. The drag from the second component accounts for about 25% of

total drag and less than 5% of total drag was predicted in the first component. It is

observed that about 30% of the third component drag is reduced for the low-drag

hub model in the current result, which is lower than a reduction from the Helios

result (about 40%). The difference might be due to the poor mesh quality near the

leading edge in the current simulation as mentioned before. The thicker shaft of the

low-drag hub does not account for much of a drag increment.

Figures 6.21 and 6.22 show the wake visualization of the rotating baseline and

low-drag hub models at a specific time instance, respectively. The top of each figure

shows the Q-criterion iso-surfaces colored by vorticity magnitude and the bottom

figure shows the vorticity magnitude contours on the horizontal plane of the water

tunnel at Z/R = −0.1. In both results, the wake structures from the hub model are

well preserved in the off-body domain using the overset method. It should be noted

that the use of the SA-DDES turbulence method in the current simulation prevents

the excessive dissipation of wake structures in the off-body domain compared to a

RANS simulation. Thus, it is observed that the large wake structures were broken

down into small eddies at downstream locations

176

Figure 6.20: Mean hub drag breakdown by component for baseline and low-drag

hubs.

Compared to the result from the baseline hub model, less wake structures are

predicted from the low-drag hub model especially on the retreating side. This is

because the whole retreating side of the hub corresponds to a reverse flow region

and the use of a reverse flow airfoil in the low-drag hub generates less wake structures

than the baseline hub arm with sharp corners.

For the baseline hub model, the current predictions of the mean streamwise

velocities are compared with the experimental LDV wake measurements at X/R

= 2.09 (near-wake), 4.14 (mid-wake), and 7.15 (far-wake). As a feature of this

experimental data, the wake was measured at the far downstream from the hub. In

this comparison, the stabilizer is not included in both experiment and simulation.

For the current prediction, the mean velocities are computed by time-averaging over

3 hub revolutions.

177

(a) Iso-surfaces (Qciteria=0.04) colored by vorticity (side view)

(b) vorticity magnitude at Z/R = −0.1 plane

Figure 6.21: Computational wake visualization of baseline hub.

178

(a) Iso-surfaces (Qciterion=0.04) colored by vorticity (side view)

(b) vorticity magnitude at z/R=-0.1 plane

Figure 6.22: Computational wake visualization of low-drag hub.

179

(a) Varying spanwise locations at Z/R = −0.05 (b) Varying vertical locations at Y/R = −0.10

Figure 6.23: Comparison of streamwise velocity wake profiles of the baseline hub

without the stabilizer.

Figure 6.23 (a) shows the streamwise velocity profile along the spanwise di-

rection at a height of Z/R = -0.05. Figure 6.23 (b) shows the streamwise velocity

profile along the vertical direction at Y/R = -0.10. The current simulation results

capture a general trend of wake deficit. For example, a more wake deficit is observed

at the advancing side of the hub (positive y-axis). However, overll the current re-

sults under-predict the wake deficit compared to experimental data. As a validation,

available Helios results [72] are included in the comparison as shown in Fig. 6.23

(b). It is observed that the current predictions are very similar with the Helios re-

sults especially at near-wake and mid-wake regions. Overall, both simulation results

under-predict the wake deficit compared to experimental data.

180

6.4 Slowed Mach-Scaled Rotor at High Advance Ratio

Reducing rotor RPM in forward flight is a key feature in many new high-speed

rotorcraft. Reducing the rotor tip speed by slowing down the main rotor can enable

a compound helicopter to expand the cruise speed envelope. Slowed rotors have

been employed in the Sikorsky X2 and Eurocopter X3 helicopters. However, many

aerodynamic phenomena in the high advance ratio flight conditions (µ > 0.5) are

still unclear, such as dynamic stall due to the reverse flow on the retreating side.

Recently, a series of wind tunnel tests were performed for a 4-bladed articulated

slowed rotor at the Glenn L. Martin wind tunnel at the University of Maryland [78].

In the experiment, pressure data were obtained at 30% rotor radius using blade

embedded sensors to calculate the integrated sectional airloads (see Fig. 6.24).

Figure 6.24: Experimental setup for slowed rotor at Glenn L. Martin wind tunnel

(left: rear view, right: side view) [78].

In this work, the slowed Mach-scale rotor is simulated using the current CFD

181

framework to compare against the experimental data and to better understand the

aerodynamic phenomena. To reach a trim state, the current CFD method is coupled

with a Computational Structural Dynamics (CSD) model to improve the prediction

of aeroelastic effects of the rotor blade.

The current CFD-CSD coupled method is achieved using a loose coupling

method, which follows the delta-airload method [79]. The airloads and blade defor-

mations are transferred between CFD and CSD at 100 spanwise points. For the CSD

code, PrasadUM is used which was developed at the University of Maryland [80].

Using the CSD code, trim states are computed. For the trim approach, the collective

angle is prescribed with the experimental value, and only the two cyclis are adjusted

for zero hub moment. On the other hand, zero 1/rev flap angles (β1c, β1s) was the

trim target in the experiment.

Figure 6.25 shows the computational mesh system for the simulation. The

rotor radius is 10.63 chords and the root cutout was 16.4% of the rotor radius.

The blade is untwisted and untapered with a symmetric NACA0012 airfoil. Each

rectangular blade is modeled with a sharp blade tip which is consistent with the

experimental blade shape.

As shown in Fig. 6.25 (b), the blade mesh consists of 200 points in the airfoil-

wrap direction and 100 points in the span-wise direction. Only the blade tip region

was discretized using an unstructured grid. The surface mesh is extruded for the

volume mesh using 47 strand layers, which resulted in a total of 4 million hexahedral

elements for the rotor. The initial wall-normal spacing is 5 × 10−5 chord which

corresponds to a y+ of 0.7. As shown in Fig. 6.25 (a), a simplified hub/shaft model

182

is included in the simulation to consider the effect of wake from the hub/shaft

on the blade airloads. 0.51 million hexahedral elements are used for the hub/shaft

near-body domain. Using the overset method, the near-body domains are connected

with the off-body domain where the uniform grid spacing of 10% chord is distributed

around the rotor. All of the domains are computed using the HAMSTR flow solver.

The simulations are conducted at a Reynolds number of 4.72×105 which is

based on the advancing side tip Mach number of 0.327. The freestream Mach number

is 0.145 which corresponds to the advance ratio of 0.8. Although the experiments are

conducted at various advance ratios ranging from 0.3 to 0.8, the current simulation

focuses on the advance ratio of 0.8 at 3◦ and 11◦ collective angles. In all domains,

flow is assumed as fully turbulent flow and the SA model is used for a turbulence

closure. The azimuthal time step of 1.0 degree is used with 15 sub-iterations. In

all domains, WENO reconstruction is used for the inviscid flux and the DDLGS

method is used for the implicit inversion.

(a) Rotor blade with hub/shaft model (b) Sharp blade tip shape

Figure 6.25: Overset grid system for the slowed rotor simulation.

The instantaneous pitch angle (θ) at each rotor blade azimuth angle (ψ) is

183

determined using:

θ = θ0 + θ1ccosψ + θ1ssinψ (6.3)

where θ0, θ1c, and θ1s represent the collective, lateral cyclic, and longitudinal cyclic

control angles required to trim the rotor, respectively.

During the CFD-CSD coupled method, the collective angle is fixed and only

the control cyclic angles are allowed to be corrected based on the CFD airloads.

Figure 6.26 shows the convergence history of control cyclic angles during cou-

pling iterations. The control cyclics are converged within 10 coupling steps in both

θ0 = 11◦ and θ0 = 3◦ cases. It is observed that θ1c experienced more corrections for

the trim state, otherwise minor variation was observed in θ1s.

(a) At θ0 = 11◦ (b) At θ0 = 3◦

Figure 6.26: Convergence of control cyclic angle during CFD-CSD coupling steps.

Table 6.4 compares the converged control inputs with the experimental data.

Compared to the result from CSD, the current CFD-CSD result shows closer lateral

trim angle (θ1c) to the value from experiment in both the cases. However, the

184

deviation with the experiment still remained. The cause of this discrepancy is not

clear. However, the lack of test stand model in the simulation can be one of possible

reason (see Fig. 6.24). The longitudinal cyclic in CSD shows a reasonable agreement

with the experiment and the values from CFD-CSD method did not change much

from the CSD prediction.

Table 6.4: Comparison of control angle for trim state of rotor at µ = 0.8.

Collective Cyclics Experiment CSD(PrasadUM) CFD/CSD

θ0 = 3◦
θ1c 2.79◦ -0.2◦ 0.36◦

θ1s -5.27◦ -3.54◦ -3.58◦

θ0 = 11◦
θ1c 5.51◦ 1.17◦ 2.09◦

θ1s -13.94◦ -12.80◦ -12.69◦

Figure 6.27 shows the comparison of sectional airloads between the experiment

and predictions at the 30% radial station at θ0 = 11◦. It should be noted that

only the periodic components of the results are shown, and the mean values are

removed for all airload results. This is because there are a few limitations for a

direct comparison: 1. deviation of lateral trim angle, 2. limited pressure sensor

locations at ≤ 0.8 chord. Especially, the lack of pressur sensor near the trailing edge

(> 0.8 chord) can affect sectional pitching moment.

The CSD aerodynamic model is based on the blade element theory and free

wake model. The prescribed CFD result is obtained by assuming rigid blade and

using experimental control setting and flap angles. Although the result from CSD

shows a good agreement with experiment as a general trend, the details of the reverse

flow or vortex interactions are not captured.

185

(a) Normal force (b) Pitching moment

Figure 6.27: 30% rotor radius sectional airload at θ0 = 11◦.

The current CFD-CSD method improves agreement with the experiment over

all azimuth angles. First of all, the sectional airloads on the retreating side (ψ '

270◦) are better predicted where the reverse flow is dominant. The dynamic stall

phenomenon is well predicted by showing normal force loss and nose up moment

peak. Secondly, the pitching moment variation is better captured than for the CSD

result in the advancing side. Thirdly, the hub wake is accurately predicted. The

interference with the hub wake results in normal force loss and a change in pitching

moment at 0◦ azimuth angle.

Figure 6.28 shows the comparison of results at the lower collective angle of 3◦.

The improvement in CFD-CSD result are also observed compared to the results from

CSD or prescribed CFD. First of all, the effect of hub wake is more severe than the

higher collective angle case. Both loss of normal force and nose up moment at 0◦ are

in a good agreement between CFD-CSD result and experiment. Secondly, the phase

of normal force variation is better matched with the experiment. However, CFD-

186

(a) Normal force (b) Pitching moment

Figure 6.28: 30% rotor radius sectional airload at θ0 = 3◦.

CSD result still over-predicts the dynamic stall phenomenon on the retreating side.

Overall, the agreement with experiment is less satisfactory at the lower collective

angle especially at pitching moment.

The comparison of surface pressure at 14 points along the chordwise direction

at the 30% radial station is performed at both collective angles. At each upper and

lower surface of the blade, the seven sensors are located from 0.08 to 0.8 chord.

Figure 6.29 compares the unsteady pressure time history between the simulation

results and experimental data over the rotor azimuth angles at θ0 = 11◦. It should

be noted that only the periodic components of the results are shown, and the mean

values are removed for all pressure results. The general trend of pressure variation is

captured in the simulation result on both the upper and lower surfaces including the

hub wake interaction at the leading edge at 0◦ and the dynamic stall phenomenon

at the lower surface trailing edge at 270◦. However, the current result overpredicts

the pressure loss due to the dynamic stall at the lower surface.

187

A similar comparison is conducted for θ0 = 3◦ case as shown in Fig. 6.30.

The prediction shows reasonable agreement with the measured data on both the

upper and lower surfaces. Some discrepancies observed at the upper surface leading

edge on the advancing side and the lower surface trailing edge on the retreating

side. These discrepancies might be due to the mismatch of the control cyclic angles

between the experiment and the simulation.

(a) Upper surface (b) Lower surface

Figure 6.29: Pressure variations at 30% rotor radius section at θ0 = 11◦.

188

(a) Upper surface (b) Lower surface

Figure 6.30: Pressure variations at 30% rotor radius section at θ0 = 3◦.

189

6.5 Summary

In this chapter, the current method within the Python framework is applied

to the rotary wing system problems. The summerized observations are provided as

below for each problems.

• Pressure Sensitive Paint (PSP) hovering rotor simulations are conducted to

validate a capability for aerodynamic performance prediction including a laminar-

turbulent boundary layer transition. In this simulation, structured O-O type

grid is used for the blade domain. The predicted figure of merits (FM) are

reasonably matched with the experimental data at both laminar-turbulent

transition and fully-turbulent flow conditions. The increase in the figure of

merit is observed in both experiment and simulation when a boundary layer

is allowed to have natural transition. This is because the skin friction is much

lower in the laminar boundary layer than the turbulent boundary layer.

• NREL Phase VI wind turbine simulations are conducted to validate a ca-

pability for predicting interactional aerodynamics between sub-components.

Therefore, a full configuration is used in the simulation including blades, na-

celle, and tower. The unstructured surface grid and strand volume grid are

used for the full configuration of the wind turbine model. Different blade-tower

interactions are captured between the upwind and downwind configurations.

For the downwind configuration, the acute severe interactions in the blade

normal force are observed at all spanwise locations. Otherwise, the interac-

190

tion is less severe but it occurs over a wider range in the azimuthal direction

for the upwind configuration. The characteristics of each interaction are well

matched with the experimental data. The effect of freestream wind shear due

to the atmospheric boundary layer on rotor performance is studied for the up-

wind configuration. Highly unsteady blade torque in the azimuthal direction

is observed due to the wind shear.

• Rotor hub simulations are conducted to validate a capability for flow simu-

lations around complex geometries. In this simulation, unstructured volume

meshes are used for both baseline and low-drag hub models. Strand volume

grid is used for the hub stand model. For the validation, unsteady hub drag

and associated drag harmonics are compared with the experimental data for

both baseline and low-drag hub models. For the baseline hub, current predic-

tion shows a good agreement with experiment and other simulation prediction.

However, mean drag is over-predicted for the low-drag hub because of the poor

mesh quality near the leading edge of hub arms. In both simulation and ex-

periment, less drag is predicted for the low-drag hub model than the baseline

hub model. Wake deficits at near-wake, mid-wake, and far-wake are compared

with both expriemental data and other simulation’s prediction. Although gen-

eral trend is matched with the experiment, wake deficits are under-predicted

in the current prediction. The under-prediction is also observed in the other

simulation’s result.

• Slowed Mach-scaled rotor at a high advance ratio simulations are conducted

191

to validate a capability for elastic rotor blade simulations. Current method is

coupled with a Computational Structured Dynamics (CSD) solver to account

blade structure deformation and reach trim state. By using a CFD-CSD cou-

pled method, the sectional airloads prediction at 30% rotor radius is improved

compared to a pure low-fidelity aerodynamic model (e.g. blade element the-

ory) or CFD simulation with prescribed motions. However, the comparisons

are conducted only for the periodic components of the results due to the sim-

plifications in the current simulation.

192

Chapter 7: Conclusions

7.1 Summary

The overall objective of this research is to develop and validate a novel CFD

approach using Hamiltonian path and strand grid for an unstructured grid based

compressible Reynolds Averaged Navier–Stokes (RANS) solver. The method entails

the identification of Hamiltonian paths, which are created on pure quadrilateral el-

ements to represent two distinct surface coordinate directions, and strands to rep-

resent the wall normal direction. Starting from a purely unstructured surface mesh,

these line structures are identified uniquely and robustly for a three-dimensional

domain.

The path identification is also possible for an initially mixed element unstruc-

tured volume elements. In this case, each element (tetrahedron and prism) is divided

into hexahedra and the same algorithm used for the surface mesh is valid for the path

identification. As a result, each hexahedron is visited by three distinct Hamiltonian

paths. Ensuring the even number of edges/faces per element makes the nesting for

the factorization method to be always satisfied. Therefore, the novel approach allows

for line implicit methods and stencil-based discretization along the line structures,

which is similar to the strategies of a structured grid based flow solver to be applied

193

to an unstructured mesh.

Initially, the concept of Hamiltonian path was developed in the reference [14].

However, the application of the method was limited to two-dimensional laminar flow

and executed on a serial processor. To be applied to realistic problems, this method-

ology had to be further improved and verified in both parts of mesh generation and

flow solver.

Improvement on mesh generation

1. The generation of Hamiltonian paths is extended to general two-dimensional

and three-dimensional unstructured grids. The prerequisite for the robust line iden-

tification is the generation of pure quadrilateral or hexahedral elements from mixed

elements which can be achieved using quadrilateral or hexahedral subdivision. Start-

ing from any midpoint edge/face, the resulting Hamiltonian paths are grown by

connecting midpoints of opposite edge/face until all the edge/face are part of the

loop. This process allows the Hamiltonian paths to traverse both structured and

unstructured grids robustly and uniquely. One interesting feature is the self-crossing

path, which occurs when a quadrilateral element is surrounded by triangles before

subdivision. In this case, all edges/faces for each element are still part of the loops

and the current formulation of the flow solver can handle the situation without

special treatment.

2. Two-dimensional Hamiltonian paths are extended to three-dimension by

applying strand grids. The strand grids emanate from the cells on the surface of the

194

object and are extruded in the wall-normal direction, thus they represent the third

“out-of-plane” spatial direction. The nature of a strand grid allows for the generation

of line structures in the wall-normal direction and preservation of Hamiltonian paths

on the surface-direction in each strand layers. Also, each strand easily remains in a

single domain without being broken during the domain decomposition process.

3. The mesh generation code is parallelized to be executed on distributed

computer memory system using a message passing interface (MPI). METIS [20]

is used for graph partitioning and the number of cells is evenly balanced in each

partitioned domain. The partitioning process was applied to either surface domain

or volume domain for the case of strand grids or an unstructured volume mesh,

respectively.

4. The mesh system is extended to utilize overset meshes. This overset tech-

nique allows for multiple mesh systems, which consists of a near-body Hamilto-

nian/Strand grid and off-body Cartesian nested meshes, for example. The con-

nectivity between the different overset meshes is computed using a topology inde-

pendent overset grid assembler (TIOGA) [39]. The overset meshes are particularly

useful with the strand grids for the near-body domain. This is because the near-

body domain can transition to the off-body Cartesian domain before the strands

cross each other in concave regions.

195

Improvement on flow solver technique

1. The capability of the flow solver is provided to simulate viscous flows. The

viscous fluxes are computed using either a finite difference scheme or least-squares

approach which both provide second-order accuracy. In order to predict turbu-

lent flow features, the one equation Spalart-Allmaras (SA) and the two equations

Menter Shear Stress Transport (SST) turbulence models have been implemented

and validated through the comparison against several well-established flow solvers

for representative cases. As a hybrid RANS/LES method, the delayed detached

eddy simulation (DDES) method was integrated to the SA model for the case of

massively separated flows. The accuracy of the RANS simulation is further im-

proved by allowing for laminar-turbulent boundary layer transition. The existing

transition model has been extended for crossflow instability on three-dimensional

bodies and evaluated though a variety of test cases within the current framework.

The transition model is coupled with the SA turbulence model.

2. Various reconstruction schemes are applicable for the different types of

grid structure. Both stencil- and gradient-based reconstruction methods have been

tested in the current grid system to evaluate their accuracy. The identification of

line-structures on the unstructured grid facilitates the stencil-based reconstructions

along those lines. In the current work, three stencil-based reconstruction schemes

are available: third-order MUSCL, fifth-order WENO and CRWENO. Although the

higher-order schemes provide less dissipation error than the lower-order scheme, the

formal order of accuracy of each scheme are not obtained on unstructured grids.

196

The gradient-based reconstruction scheme using least-squares is also enabled in the

current method. As a conventional method for unstructured grids, this formula-

tion provided second-order accuracy through the Method of Manufactured Solution

(MMS) on the unstructured surface mesh. Alternatively, a combined least-squares

for the wall-tangential directions and MUSCL/WENO scheme for the strand direc-

tion is proposed for the Hamiltonian/Strands grid system.

3. The efficiency of the flow solver is validated through comparison studies

with the well-established structured grid based solver, OVERTURNS [46]. For two-

and three-dimensional comparison studies, both structured and unstructured grids

were used in the current flow solver. The performance of Diagonally Dominant Line

Gauss-Seidel (DDLGS) method in the current solver is compared with various line-

implicit methods (LU-SGS, DADI, and DDGLS) in OVERTURNS. Comparable

solution residual convergence was obtained in the current solver as with OVER-

TURNS in terms of CPU time at various flow conditions: transonic inviscid and

fully turbulent flows.

4. The performance of the current line-implit method (DDLGS) is validated

by comparing the residual convergence rate with the point-implicit method (point

Gauss-Seidel) which is a traditional implicit method for typical unstructured grid

based solvers. The comparisons were conducted using various types of grid: two-

dimensional unstructured, three-dimensional strand, and three-dimensional unstruc-

tured volume meshes. Overall, the line-implicit method outperformed the point-

implicit method for all of the test meshes.

5. The Generalized Minimum Residual (GMRES) method is implemented as

197

another option for the implicit time integration method. GMRES, a Krylov sub-

space class of methods, has strong convergence properties and shows better solution

convergence rate compared to line-implicit methods. In the current work, GMRES

method requires the preconditioned step which is performed using Diagonally Dom-

inant Line Gauss-Seidel (DDLGS). GMRES does not exhibit as much improvement

for turbulent flow simulations as for inviscid or laminar flow simulations. This is

because the current GMRES is used only for the mean flow equations and the tur-

bulence model is solved using the line-implicit method, separately.

6. The flow solver has been extended for time-accurate unsteady flow simu-

lations with grid motion, which is required for the simulation of rotary-wing sys-

tems. A second order time-accurate method with dual-time-stepping strategy was

explored. Through various test cases, reasonable unsteady residual convergence

rates were observed during the dual-time-stepping using the CFL number scaled

pseudo time step size. Grid motion terms are augmented into both the LHS and

RHS of the flow solver assuming either first- or second-order discretization in time.

7. The flow solver is parallelized using a message passing interface (MPI). The

concept of ghost cells is adopted along the boundary between sub-domains, which

enables to apply the same reconstruction scheme and implicit operator between

the interior and boundary domains. In the current work, a maximum of three

ghost layers are used for fifth-order reconstruction scheme on the RHS and a single

ghost layer is used for the implicit operator on the LHS. A strong scalability test

was conducted to validate the parallelized flow solver performance using up to 250

CPUs. It was observed that the solution residual convergence rate is not affected by

198

the number of processors in both the mean flow and turbulence model. Also, about

90 % parallel efficiency is obtained at 250 CPUs in terms of the speed up.

8. The flow solver is originally developed as an alternative for near-body

unstructured grid solvers within a multi-mesh/multi-solver paradigm. Therefore,

the flow solver is wrapped in Python to allow for ease of integration with the other

codes. Through the Python-based interface, the current CPU-based flow solver is

coupled with a GPU-based structured grid solver as a heterogeneous, overset solution

framework. Through the lightweight Python-based framework, the communication

between flow solvers can be performed efficiently by sharing data pointers without

data transfer using file I/O. The coupled CFD framework has been applied to various

interactional aerodynamic flow problems of the rotary wing system with the complex

geometries and the multiple sub-components.

Observations from rotary wing simulations

The extended novel method has been integrated in the Python framework

for multi-mesh/multi-solver paradigm and applied to helicopter/wind turbine flow

simulations.

1. Pressure Sensitive Paint (PSP) hovering rotor simulations are conducted

to study a effect of boundary layer transition on a hovering rotor performance. The

flow around the rotor blade is computed using the current method and the O-O

type structured grid is used for the domain. The blade domain is connected with

the off-body Cartesian domain where the in-house OVERTURNS code is used. As

199

results, the increase in the figure of merit is observed by allowing the boundary layer

to have natural transition at three different collective angles (6◦,8◦, and 10◦). The

same trends are observed in the experimental data and the other simulation results.

2. NREL Phase VI wind turbine full configuration including blades, tower,

and nacelle is simulated to predict interactional aerodynamics between the sub-

components. All of the near-body domains with strand grids are computed using

the current method and the domains are connected with the off-body wind tun-

nel domain which is computed using GPU-based structured flow solver (Garfield).

As results, two different types of blade-tower interaction are captured between the

upwind and downwind configurations. The characteristics of each interaction are

well matched with the experiment. Additionally, the effect of freestream wind shear

due to atmospheric boundary layer on rotor performance is studied for the upwind

configuration.

3. Penn State University (PSU) rotor hub simulations are conducted to vali-

date the current method for problems with complex geometries. The unstructured

volume mesh is used for the hub model and the strand grid is used for the test

stand model. The unsteady hub drag predictions are compared against the mea-

sured drags for both baseline and low-drag hub models. For the baseline hub model,

a good agreement is observed in terms of both mean value and unsteady trend. For

the low-drag hub model, the predicted mean drag is over-predicted by 14% although

the unsteady trend is reasonably matched with the experiment counterpart. The

wake deficits are validated by comparing the current result with other simulation

result. The wake profiles are well matched between the simulation results.

200

4. Slowed Mach-scaled rotor at the advance ratio of 0.8 is simulated to validate

a capability for trimmed elastic rotor blade simulation. Current method is coupled

with CSD solver as a CFD-CSD loose coupled method. The sectional airloads at

30% rotor radius are compared between the predictions and experimental data. The

improved predictions are observed using the CFD-CSD coupled method compared

to the predictions using either CSD alone or CFD alone. However, the comparisons

are conducted only for the periodic components of the results.

7.2 Contributions

The contributions from the current study are listed below.

• The in-house mesh generation code is provided which runs in parallel using

multiple processors. The mesh generation code generates novel unstructured

grid data for both two- and three-dimensional simulations. Either initial sur-

face mesh data or volume mesh data is required as an input file for strand

grids or unstructured volume grids generation, respectively.

• The in-house (two- and three-dimensional) flow solvers are provided which

can use pure line-based methods in both flux evaluation and implicit time

integration even on unstructured grids. Efficiency of the current method has

been demonstrated with comparable execution time as a structured grid flow

solver on a structured grid and less than a factor of two times slower on an

unstructured grid with similar grid resolution. The developed flow solver has

been integrated into in-house Python CFD framework for the demonstration

201

of multi-mesh/multi-solver paradigm.

• The current solution algorithm explores pure line-based methods for three-

dimensional simulations for the first time, which can start from either un-

structured surface mesh or unstructured volume mesh. Therefore, not only it

can be applied to various flow simulations, but it also can be provided as a

basic framework for the future solution algorithm improvements.

7.3 Recommendations for Future Work

1. The current subdivision process generates the new points on the edges/faces

of the initial element. For example, one grid point is newly created on each edge

using quad-level 0 subdivision and the number of new points increases as the quad-

level increases. The newly created points especially on the object surface should

be flushed carefully to be located on the actual object. The analytic equation for

the surface definition can be used to flush the points. However, the unstructured

meshing typically starts with a CAD geometry and the analytic equation for the

geometry is often not available. Therefore, a robust flushing technique for the arbi-

trary geometry needs to be developed inside the mesh generation code.

2. The current stencil-based reconstruction schemes on the finite volume for-

mulation limit the solution order of accuracy. On irregular unstructured grids, the

accuracy of WENO scheme decreased to first-order because the varying curvature

and grid spacing along the loop are not considered in the formulation. In order to

obtain formal high-order accuracy (higher than second-order) on an irregular un-

202

structured grid, other existing methods can be explored: quadratic reconstruction,

finite-element type discretization, or spectral volume method. As an alternative a

conservative finite difference approach with grid metrics should also be examined.

3. The current GMRES implementation is limited in the mean flow equations.

Therefore, the strong convergence property of GMRES is not fully obtained with

the addition of the turbulence model. Once the transport equation of the turbulence

model is integrated into the current GMRES implementation, better convergence

rate is expected for the turbulent flow simulations.

4. The flow solver can be extended to the adjoint formulation for sensitiv-

ity capability, which is desirable for design optimization. The adjoint method is

well known and advantageous for cases with a large number of design parameters.

Because the current method can use an unstructured grid and handle a deformed

mesh system, the surface of the model can be deformed easily during the optimiza-

tion process.

5. The current CPU-based flow solver can execute on multiple graphic pro-

cessing units (GPUs) for further speed up in wall clock time (by higher than 5 times,

typically). For this, the entire source code needs to be re-written into a GPU pro-

gramming language, such as CUDA (which is NVIDIA’s C-based language). Since

line structures are identified the resulting code will be in may ways similar to that

for an implicit structured solver on the GPUs (such as Garfield [54]).

203

Appendix A: Extension of Laminar-Turbulent Transition Model

The present transition model formulation (γ − Reθt−SA) is described in this

appendix, a detailed description of the model can be found in the previous work [36–

38]. The transport equation for the intermittency, γ, is given by:

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[
(µ+ µt)

∂γ

∂xj

]
(A.1)

Pγ = ρFonsetGonset max

[
Ω

Flength
,

1.0

Flength,min

]
, if γ > 1.0, Pγ = (1− γ) (A.2)

Dγ = ρΩγ(1.0−Gonset) (A.3)

where Gonset is computed as summation of Fonset along a grid line in a wall normal

direction. The purpose of Gonset is to turn on/off the intermittency production term

uniformly along the height of a transitional boundary layer at the transition onset

location. The non-local variable Gonset is computed easily by using the strand grid

concept, even from an unstructured surface grid, within the current solver strategy.

Fonset = max(Fonset2 − Fonset3, 0) (A.4)

204

Fonset1 =
Rev

2.193Reθc
(A.5)

Fonset2 = min(max(Fonset1, F
2
onset1), 4.0) (A.6)

Fonset3 = max(2− (0.25RT)3, 0) (A.7)

Rev =
ρd2S

µ
, RT =

µt
µ
, Reθc = αReθt, α = 0.62 (A.8)

Flength = 10.0, Flength,min = 2.5 (A.9)

The transport equation for the transition momentum thickness Reynolds num-

ber, Reθt, is given by:

D
(
ρReθt

)
Dt

= Pθt +
∂

∂xj

[
2.0(µ+ µt)

∂Reθt
∂xj

]
(A.10)

Pθt = 0.03
ρ

t
(Reθt −Reθt)(1.0− Fθt) (A.11)

t =
500µ

ρU2
(A.12)

t is a timescale, which is present for dimensional reason [35] and U is local velocity

which is defined as in Eq. A.22.

Fθt = min
(
e−(d

δ
)4

, 1.0
)

(A.13)

205

θBL =
Reθtµ

ρU
; δBL = 7.5θBL; δ =

50Ωd

U
δBL (A.14)

Reθt is computed by solving experimental correlations as shown in Eq. A.15

and A.16 iteratively, such as by the Newton-Raphson method.

Reθt =

[1173.51− 589.428Tu+ 0.2196

Tu2]F (λθ), Tu ≤ 1.3

331.50[Tu− 0.5658]−0.671F (λθ), Tu > 1.3

(A.15)

F (λθ) =

1− [−12.986λθ − 123.66λ2

θ − 405.689λ3
θ]e
−[Tu1.5]

1.5

, λθ ≤ 0

1 + 0.275[1− e[−35λθ]]e−[Tu0.5], λθ > 0

(A.16)

The pressure gradient parameter, λθ, and the momentum thickness, θ, are

given by:

λθ =
ρθ2

µ

dU

ds
, θ =

Reθtµ

ρU
(A.17)

dU

ds
=
u

U

dU

dx
+
v

U

dU

dy
+
w

U

dU

dz
(A.18)

dU

dx
=

1

2U

[
2u
du

dx
+ 2v

dv

dx
+ 2w

dw

dx

]
(A.19)

dU

dy
=

1

2U

[
2u
du

dy
+ 2v

dv

dy
+ 2w

dw

dy

]
(A.20)

dU

dz
=

1

2U

[
2u
du

dz
+ 2v

dv

dz
+ 2w

dw

dz

]
(A.21)

U =
√
u2 + v2 + w2 (A.22)

206

A.1 Crossflow-Induced Transition

The current γ−Reθt−SA transition model is extended for a three-dimensional

boundary layer by integrating the model of crossflow-induced transition, which was

proposed by Muller and Herbst [81]. This crossflow transition model is based on six

calibration constants and was originally developed to extend the γ − Reθt formula-

tion. The additional production term as shown in below equation is only required

in the transport equation for Reθt as a sink term. The additional production term

acts inside the boundary layer by lowering Reθt, which results in a decrease of Reθc.

Then this destabilizes the boundary layer further to trigger crossflow transition.

PCF = −min(max[0, (
ρ

1000 · t
· (ReH

6
)c1 · (ReΩ)c2

· (12θ

d
)c3 − c4) · c5], c6) · c7

(A.23)

The set of constants used in the current study are the same values with refer-

ence [81] except the constant c4 and c7, which were changed through NLF(2)-0415

swept wing simulations (see table A.1).

Table A.1: Combination of constants for crossflow model.

c1 c2 c3 c4 c5 c6 c7

0.548 0.1912 -0.298 5.0 60.0 1666.5 1.5

In the crossflow model, the first term is the Reynolds number based on local

helicity.

ReH =
θ

ν

√
θH (A.24)

where H (local helicity) is defined as H = |ui·ωi| and θ is used from Eq. A.17. For

207

two-dimensional flow, the local helicity naturally equates to zero and this results in

the additional production term, PCF , to be zero as well.

Second term is the modified vorticity Reynolds number and defined as below.

ReΩ =
ρd2

µ
Ω (A.25)

The vorticity Reynolds number is similar to the formulation of Langtry and Menter [35],

though it is rather based on the magnitude of vorticity for the accuracy at the stag-

nation point [81].

The current extended transition model was applied to the infinite swept NLF(2)-

0415 wing to validate crossflow transition. The wing has a geometric sweep angle

of 45◦ and the angle of attack was fixed as -4◦ in the experiment [82]. For the val-

idation, a total of six different Reynolds number were tested which vary from 1.92

million to 3.73 million. The FSTI was set as 0.05 %. To simulate an infinite swept

wing configuration, a structured C-type airfoil mesh was extended in the spanwise

direction by 0.3 chord length with 0.005 chord length grid spacing. At each end of

the boundary surface, the periodic boundary condition was imposed. The number

of points on the airfoil was 272 and the wall normal spacing was 1 × 10−5 which

corresponds to a y+ value from 0.8 to 1.5 depending on the test Reynolds number.

Figure A.1 (a) shows the chordwise skin friction coefficient distribution on the

upper surface (pressure side) of the NLF(2)-0415 wing. The sharp increases in skin

friction (transition onset location) are clearly shown at all the Reynolds numbers

and the locations move towards the leading edge as the Reynolds number increases.

Also, note that the friction is close to zero right before transition at the lowest

208

Reynolds number. This indicates the separation-induced transition, otherwise the

transitions occur due to pure crossflow instability at the other Reynolds numbers.

Figure A.1 (b) shows the comparison of transition onset location against exper-

imental data [82] on the upper surface of the NLF(2)-0415 wing. It should be noted

that the stationary crossflow transition is influenced by the surface roughness, and

three different surface characteristics were tested in the experiment: painted surface

which has peak-to-peak roughness of 9 µm and two polished surfaces which have

rms roughness of 0.25 and 0.5 µm respectively.

The current crossflow model was calibrated based on the experimental data

of the painted surface and the model is not able to consider the effect of different

roughness heights on the crossflow transition. In the comparison, the transition

onset location is defined as the point of intermittency crossing 0.5 on the surface,

and the current prediction has a good agreement with experiment (painted surface)

over the range of Reynolds numbers as shown in Fig. A.1 (b).

A.2 Surface Roughness-Induced Transition

The current transition model has been further extended by incorporating the

effect of surface roughness on the boundary layer transition process [85]. In this

work, an additional transport equation for the “roughness amplification (Ar)” pa-

rameter is used which was originally developed to be coupled with the γ − Reθt

model as proposed by Dassler et al [83].

209

(a) Skin friction profile on the upper surface (b) Transition onset location on the upper sur-

face

Figure A.1: NLF(2)-0415 infinite swept wing simulation results.

∂ (ρAr)

∂t
+
∂ (ρUjAr)

∂xj
=

∂

∂xj

[
σar (µ+ µt)

∂Ar
∂xj

]
(A.26)

where σar = 10.

The roughness amplification (Ar) variable is treated as an additional non-

physical quantity that will be produced at rough surface boundaries. The quantity is

transported through the flow field by the convection and diffusive terms of Eq. A.26.

This behavior enables the flow history effects to be taken into account. Through

interaction of Ar with the Reθt transport equation, the transition onset is triggered

by reducing Reθt . It should be noted that the Ar equation does not include a

production term, alternatively the distribution of Ar is determined with a boundary

condition at rough walls as given by:

210

Ar = 8.0× k+ (A.27)

where the user inputs a non-dimensional equivalent sand grain roughness height.

k+ =

√
τw
ρw

ks
ν

(A.28)

Thus, the current model is able to simulate different roughness heights on the

object and to capture the effect on transition due to varying roughness height over

the surface. Once Ar is solved throughout the entire computational domain, the

FAr expression is given by:

FAr =

cAr2(Ar)

3, if Ar < CAr

cAr3 (Ar − CAr) + cAr2 (CAr)
3 , if Ar ≥ CAr

(A.29)

The function is switched at CAr =
√
cAr3/3cAr2 to allow for a smooth transition

between the cubic and linear functions. The same model parameters are used as

Langel et al. [84] which is given by:

cAr2 = 0.0005 cAr3 = 2.0 (A.30)

The final production term of the transport equation for transition momentum

thickness Reynolds number, Reθt, is given by:

Pθt = 0.03
ρ

t

[
(Reθt −Reθt)(1.0− Fθt)− FAr

]
+ PCF (A.31)

where the FAr and PCF are the corrections for roughness-induced and crossflow-

induced transition, respectively. It should be noted that Reθt was limited with a

211

minimum value of 20.0 to avoid nonphysical overshoots of shear stress for the cases

with high Reynolds number and high roughness height [83].

The extended transition model for the surface roughness has been validated

through the same zero pressure gradient flat plate test case as for the original vali-

dation of the model by Dassler et al [83]. Various equivalent sand grain roughness

heights have been applied along the no-slip boundary, which ranges from Rek = 0

(smooth surface) to Rek = 381. The Rek (the equivalent sand grain roughness

height Reynolds number) was achieved as given by:

Rek =
Uks
ν

(A.32)

According to Dassler et al. [83], FSTI was set in a way that the predicted

transition onset on the smooth wall is the same as in the experiment because FSTI

was not given in the experiment. In the current study, FSTI was set in the same

way and 1.0 % was chosen for the simulations, which is somewhat higher than the

value (0.91 %) from Dassler et al.

Figure A.2 (a) shows the skin friction (Cf) distribution along the wall with

varying Rek. The initial wall normal spacing for the case was 2 × 10−6 which cor-

responds to a y+ = 0.1. As expected, the transition onset location moves upstream

as roughness height increases.

The predicted transition onset locations were compared with experiment and

other numerical simulation results [83, 84] as shown in Fig A.2 (b). The transition

onset location, Rext was defined in this case as the point of minimum skin friction

212

as in Dassler et al. [83]. The current model can predict the overall trends of onset

location when the results are compared with the scattered experimental data. It is

also observed that the effect of surface roughness on skin friction becomes important

starting from Rext of 110, which is similar with the experimental data.

The sensitivity of aerodynamic coefficients to varying surface roughness was

compuated for both a rotorcraft fuselage (ROBIN-Mod7) and an airfoil (SC1095)

using the extended transition model in the previous study [85].

(a) Skin friction distribution (b) Comparison of transition onset locations

Figure A.2: Transitional flow over zero pressure rough surface flat plate simulation

results.

213

Appendix B: Mesh Deformation Technique

The mesh deformation technique for current unstructured grids is described in

this appendix. This technique is necessary for moving boundary problems, such as

fluid-structure interaction or shape optimization to avoid repeated mesh generation

every time after the boundary points are re-positioned. The most widely used

mesh deformation technique for traditional unstructured grids is the spring analogy

method [86]. In this method, each edge is replaced by a spring, whose stiffness is

inversely proportional to the edge length. For a given displacement of the boundary

points, the displacement of the interior mesh points are determined by solving static

force equilibrium equations of the spring network system. This spring analogy is

applied in the current mesh system [87].

B.1 Spring Analogy

For the current quadrilateral mesh system in two-dimensions and hexahedral

mesh system in three-dimensions, each element was assumed as triangles or tetra-

hedra by sub-dividing a quadrilateral into two triangles or a hexahedron into five

tetrahedra. With the assumption, the traditional spring analogy for a triangle or a

tetrahedron can be directly applied in the current mesh system.

214

Figure B.1 shows schematics of the linear spring method and ball-vertex spring

method. In both methods, each edge of the mesh is considered as a linear spring

whose stiffness is inversely proportional to edge length

(a) Linear spring (b) Ball-vertex spring

Figure B.1: Mesh deformation technique using: (a) Linear spring analogy, and (b)

Ball-vertex analogy.

kij =
1

√
xij · xij

(B.1)

where xij indicates the vector from vertex i to vertex j. Therefore, longer edges

become “softer” while shorter edges are “stiffer.” The force applied to the vertex i

and j because of their displacements of ui and uj can be written as

fi,ij = kij(uj − ui) · iij = −fj,ij (B.2)

where iij is the unit vector of xij.

For static equilibrium, the total force acting on the vertex i should be zero.

215

ne∑
j=1

fi,ij = 0 (B.3)

where ne is the number of edges that are connected to vertex i.

The static equilibrium equation can be rewritten in the matrix formulation.

−kijI kijI

kijI −kijI

ui
uj

 =

fi,ij
fj,ij

 (B.4)

where I is a ndim × ndim identity matrix and ndim is the number of dimensions.

By applying to all mesh vertices, the global force-displacement equation is

given by:

KU = b (B.5)

The vector b includes boundary mesh displacements, and by solving this sys-

tem of equations, the unknown interior mesh displacements can be obtained. The

matrix K is a block matrix, and each size of block is a ndim × ndim.

However, the linear spring analogy method often fails due to possible face-

vertex intersection when the boundary movements are not small compared to the

local mesh size. To overcome this limitation, a ball-vertex spring method [86] is

utilized by employing additional linear springs, which connect the vertex i to the

closest point p in the plane of opposite face, as shown in Fig. B.1 (b).

xp = xi + xij · n (B.6)

216

where n is the unit normal vector of edge jk. The existence of spring ip creates an

additional spring force that is applied to both vertices i and p.

fip = kip(up − ui) · iip = −fp,ip (B.7)

where kip is the stiffness of spring ip, up and ui are the displacements of vertices p

and i, respectively. As vertex p is located on the edge jk, up can be written using

area coordinates ξ and η of the face as follow:

up = ξuj + ηuk (B.8)

where ξ + η = 1.

The forces at the vertices j and k, which are induced by the spring ip, can be

written as follows:

fj,ip = ξfp,ip

fk,ip = ηfp,ip (B.9)

Finally, Eq. B.7 and Eq. B.9 can be written as the following matrix form as
fi,ip

fj,ip

fk,ip

=

−kip ξkip ηkip

ξkip −ξ2kip −ξηkip

ηkip −ξηkip −η2kip

ui

uj

uk

(B.10)

This additional spring, called ball-vertex spring, effectively constrains each

vertex within the polyhedral ball that encloses it, and therefore the face-vertex

crossover can be avoided as shown in Fig. B.1 (b).

217

The global force-displacement equations are solved using one of iterative meth-

ods, such as point Gauss-Seidel (for detail see [87]).

B.2 Algebraic Method

Meshes that are used for high Reynolds number flow simulations typically

require thin and highly stretched cells in a boundary layer. In this region, the

spring analogy method is too expensive to be used, and it can be failed due to the

face-vertex crossover. Therefore, the algebraic method is used for the boundary

layer region [88].

This algebraic method displaces the nodes along the strand grid that originate

on the surface through the surface and normal vectors. In detail, the vectors VAD

from nodes on the surface A to the nodes on upper layer D along the strand are

expressed in terms of the basis vectors (one normal vector nA and two surface vectors

nAB and nAC) through the use of dot products (see Fig. B.2).

VAD = C1nA + C2nAB + C3nAC (B.11)

where C1 = VAD · nA, C2 = VAD · nAB, and C3 = VAD · nAC ,

When the nodes A,B,C are moved to their new positions A′, B′, C ′, the new

coordinate D′ is produced by applying the components of VAD expressed in nA,

nAB, and nAC directions to the new basis vector. This procedure was applied along

the strand grid to propagate the deformation of surface while strand grid remains

normal to the surface.

218

D′ = A′ + C1n
′
A + C2n

′
AB + C3n

′
AC (B.12)

(a) Basis decomposition of a normal edge

vector in original initial mesh

(b) New normal edge vector in deformed

mesh

Figure B.2: Algebraic method for deformation of prismatic elements.

B.3 Validation

The current grid deformation method is tested with a simulated fish locomo-

tion, where the surface points experience large displacement (many orders greater

than the cell size) [89]. Figure B.3 shows the example of deformed interior nodes

from the initial hybrid mesh around the NACA0012 airfoil. The interior nodes are

re-located using both the algebraic method for the structured grid and the spring

analogy for the unstructured domain. It is observed that the mesh deformation

technique is robust for both the unstructured and structured meshes, and there is

no instance of any mesh crossover.

In addition to grid deformation technique, Geometric Conservation Law (GCL)

is also validated by comparing the results of pitching airfoil simulation between from

219

Figure B.3: Spring analogy and algebraic mesh deformation methods for the swim-

ming fish-like body.

rigid grid rotation and grid deformation method. For the rigid grid rotation, the

entire grid is rotated about the quarter-chord of the airfoil, whereas for the case of

grid deformation, only the node points on the airfoil surface are rotated keeping the

node points on the far-boundary stationary.

The variation of angle of attack is defined by α(t) = α0 + αm sin(2M∞kt),

where α0 (0.016◦) is initial angle of attack, αm (2.51◦) is the pitching amplitude, k

(0.0814) is reduced frequency, and t is non-dimensional time step. The freestream

Mach number (M∞) is 0.755 and the Reynolds number is 5.5 × 106 based on the

chord length. The grid for this calculation has a initial wall normal spacing of

1× 10−5 chord and 41 viscous mesh layers.

Figure B.4 compares the unsteady force hysteresis for the pitching airfoil be-

tween the results using either grid rotation and grid deformation. It is observed that

the results obtained from the different methods are well matched with each other.

The current method is also applied to the forward flight rotor simulation with

220

prescribed deflection in the previous study [87]. In this previous study, only a few

strand layers near the blade surface are treated as viscous mesh where the algebraic

mesh deformation is applied and the other part of domains are treated using the

spring analogy with the ball-vertex method.

(a) Lift coefficient (b) Moment coefficient

Figure B.4: Unsteady non-dimensional force hysteresis for a pitching NACA0012

airfoil.

221

Bibliography

[1] Murayama, M., Yamamoto, K., and Kobayashi, K., “Validation of Compu-
tations Around High-Lift Configurations by Structured- and Unstructured-
Mesh,” Journal of Aircraft, Vol. 43, No. 2, 2006, pp. 395–406.

[2] Venkatakrishnan, V., “Convergence to Steady State Solutions of the Euler
Equations on Unstructured Grids with Limiters,” Journal of Computational
Physics, Vol. 118, No. 1, 1995, pp. 120–130.

[3] Koren, B., “A Robust Upwind Discretization Method for Advection, Diffusion
and Source Terms,” Notes on Numerical Fluid Mechanics, Vol. 45, 1993, pp.
117–138.

[4] Jiang, G. S., and Shu, C. W., “Efficient Implementation of Weighted ENO
Schemes,” Journal of Computational Physics, Vol. 126, No. 1, 1996, pp. 202–
228.

[5] Sitaraman, J., Katz, A., Jayaraman, B., Wissink, A., and Sankaran, V., “Eval-
uation of a Multi-Solver Paradigm for CFD using Overset Unstructured and
Structured Adaptive Cartesian Grids,” 46th AIAA Aerospace Sciences Meeting,
AIAA Paper 2008-660, Reno, NV, January 2008.

[6] Wissink, A., Potsdam, M., Sankaran, V., Sitaraman, J., and Mavriplis, D., “A
Dual-Mesh Unstructured Adaptive Cartesian Computational Fluid Dynamics
Approach for Hover Prediction,” Journal of the American Helicopter Society,
Vol. 61, No. 1, 2016, pp. 1–19.

[7] Kamkar, S., Wissink, A., Jameson, A., and Sankaran, V., “Feature-Driven
Cartesian Adaptive Mesh Refinement in the Helios Code,” 48th AIAA
Aerospace Sciences Meeting, AIAA Paper 2010-171, Orlando, FL, January
2010.

222

[8] Hassan, O., Morgan, K., and Peraire, J., “An Implicit Finite-Element Method
for High-Speed Flows,” International Journal for Numerical Methods in Engi-
neering, Vol. 32, 1991, pp. 183–205.

[9] Martin, D., and Lohner, R., “An Implicit Linelet-Based Solver for Incompress-
ible Flows,” 30th AIAA Aerospace Sciences Meeting, AIAA Paper 1993-0668,
Reno, NV, January 1992.

[10] Mavriplis, D., “Multigrid Strategies for Viscous Flow Solvers on Anisotropic
Unstructured Meshes,” Journal of Computational Physics, Vol. 145, No. 1,
1998, pp. 141–165.

[11] Cete, A., Yukselen, M., and Kaynak, U., “A Unifying Grid Approach for Solv-
ing Potential Flows Applicable to Structured and Unstructured Grid Configu-
rations,” Computers and Fluids, Vol. 37, 2008, pp. 35–50.

[12] Meakin, R. L., Wissink, A. M., Chan, W. M., Pandya, S. A., and Sitaraman,
J., “On Strand Grids for Complex Flows,” 18th AIAA Computational Fluid
Dynamics Conference, AIAA Paper 2007-3834, Miami, FL, June 2007.

[13] Lakshminarayan, V., Sitaraman, J., Roget, B., and Wissink, A., “Development
and Validation of A Multi-Strand Solver for Complex Aerodynamic Flows,”
Computers and Fluids, Vol. 147, 2017, pp. 41–62.

[14] Sitaraman, J., and Roget, B., “Solution Algorithm for Unstructured Grids Us-
ing Quadrilateral Subdivision and Hamiltonian Paths,” 52nd AIAA Aerospace
Sciences Meeting, AIAA Paper 2014-0079, National Harbor, MD, January 2014.

[15] Muller, J., Roe, P., and Deconinck, H. “A Frontal Approach for Internal Node
Generation for Delaunay Triangulations,” International Journal of Numerical
Methods in Fluids, Vol. 17, 1993, pp. 241–256.

[16] Govindarajan, B., Jung, Y., Baeder, J., and Sitaraman, J., “Efficient Three-
Dimensional Solution for Unstructured Grids Using Hamiltonian Paths and
Strand Grids,” American Helicopter Society 71th Annual Forum, Virginia
Beach, VA, May 2015.

[17] Bommes, D., Bruno, L., Pietroni, N., Puppo, E, Silva, C., Tarini, M., and Zorin,
D., “Quad-Mesh Generation and Processing: A Survey,” Computer Graphics
Forum, Vol. 32, No. 6, 2013, pp. 51–76.

[18] Zihao, Z., “HAMSTRAN, an Indirect Method to Create All-quadrilateral Grids
for the HAMSTR Flow Solver,” University of Maryland Master thesis, 2017.

223

[19] Jung, Y., Govindarajan, B., and Baeder, J., “Turbulent and Unsteady Flows on
Unstructured Line-Based Hamiltonian Paths and Strand Grids,” AIAA Jour-
nal, Vol. 55, No. 6, 2017, pp. 1986–2001.

[20] Karypis, G., and Kumar, V., “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs,” SIAM Journal on Scientific Computing, Vol.
20, No. 1, 1999, pp. 359–392.

[21] Aftosmis, M., Gaitonde, D., and Tavares, T., “Behavior of Linear Reconstruc-
tion Techniques on Unstructured Meshes,” AIAA Journal, Vol. 33, No. 11,
1995, pp. 2038–2049.

[22] Haselbacher, A. and Blazek J., “Accurate and Efficient Discretization of Navier–
Stokes Equations on Mixed Grids,” AIAA Journal, Vol. 38, 2000, pp. 2094–
2102.

[23] Lee, E., Ahn, H., and Luo, H., “Cell-centered high-order hyperbolic finite vol-
ume method for diffusion equation on unstructured grids,” Journal of Compu-
tational Physics, Vol. 355, 2018, pp. 464–491.

[24] Rieper, F., “A Low-Mach Number Fix for Roe’s Approximate Riemann Solver,”
Journal of Computational Physics, Vol. 230, No. 13, 2011, pp. 5263–5287.

[25] Harten, A., Engquist, B., Osher, S., and Chakravarthy, S., “Uniformly High
Order Accurate Essentially Non-oscillatory Schemes, III,” Journal of Compu-
tational Physics, Vol. 131, No. 1, 1997, pp. 3–47.

[26] Buelow, P. E. O., Venkateswaran, S., and Merkle, C. L., “Stability and Conver-
gence Analysis of Implicit Upwind Schemes,” Computers and Fluids, Vol. 30,
No. 78, 2001, pp. 961–988.

[27] Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific
and Statiscal Computing, Vol. 7, No. 3, 1986, pp. 856–869.

[28] Behr, M. and Tezduyar, T.E., “Finite Element Solution Strategies for Large-
Scale Flow Simulations,” Computer Methods in Applied Mechanics and Engi-
neering, Vol. 112, 1994, pp. 3–24.

[29] Anderson, W. k., Rausch, R. D., and Bonhaus, D. L., “Implicit/Multigrid Al-
gorithms for Incompressible Turbulent Flows on Unstructured Grids,” Journal
of Computational Physics, Vol. 128, No. 219, 1996, pp. 391–408.

224

[30] Blanco, M and Zingg, D. W., “Fast Newton-Krylov Method for Unstructured
Grids,” AIAA Journal, Vol. 36, No. 4, 1998, pp. 607–612.

[31] Spalart, P. and Allmaras, S., “A One-Equation Turbulence Model for Aerody-
namic Flows,” 30th AIAA Aerospace Sciences Meeting, AIAA Paper 1992-493,
Reno, NV, January 1992.

[32] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engi-
neering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605.

[33] Spalart, P., Deck, S., Shur, M., and Squires, K., “A New Version of Detached-
eddy Simulation, Resistant to Ambiguous Grid Densities,” Theoretical and
Computational Fluid Dynamics, Vol. 20, 2006, pp. 181–195.

[34] Scotti, A., Meneveau, C., and Fatica, M., “Dynamic Smagorinsky model on
anisotropic grids,” Physics of Fluids, Vol. 9, 1997, pp. 1856–1858.

[35] Langtry, R. and Menter, F., “Correlation-Based Transition Modeling for Un-
structured Parallelized Computational Fluid Dynamics Codes,” AIAA Journal,
Vol. 47, 2009, No. 12, pp. 2894–2906.

[36] Jung, Y. and Baeder, J., “γ−Reθt−SA with Crossflow Transition Model using
Hamiltonian-Strand Approach,” 56th AIAA Aerospace Sciences Meeting, AIAA
Paper 2018-1040, Kissimmee, FL, January 2018.

[37] Jung, Y. and Baeder, J., “γ−Reθt−Spalart–Allmaras with Crossflow Transition
Model using Hamiltonian-Strand Approach,” Journal of Aircraft, Published
Online, 2019.

[38] Medida, S., “Correlation-based Transition Modeling for External Aerodynamic
Flows,” University of Maryland PhD Dissertation, 2014.

[39] Brazell, M., Sitaraman, J., and Mavriplis, D., “An Overset Mesh Approach
for 3D Mixed Element High-order Dicretizations,” Journal of Computational
Physics, Vol. 322, 2016, pp. 33–51.

[40] Jude, D., Lee, B., Jung, Y., Petermann, J., Govindarajan, B., and Baeder, J.,
“Application of a Heterogeneous CFD Framework Towards Simulating Com-
plete Rotorcraft Configurations,” American Helicopter Society 74th Annual
Forum, Phoenix, AZ, May 2018.

[41] Jung, Y., Jude, D., Govindarajan, B., and Baeder, J., “Wind Turbine Sim-
ulations Using CPU/GPU Heterogeneous Computing,” North America Wind
Energy Academy Symposium, 2017.

225

[42] Salari, K. and Knupp, P., “Code Verification by the Method of Manufactured
Solutions,” Sandia Report, Sandia National Laboratories, 2000.

[43] Ghosh, D. and Baeder, J., “Compact Reconstruction Schemes with Weighted
ENO Limiting for Hyperbolic Conservation Laws,” SIAM Journal on Scientific
Computing, Vol. 34, No. 3, 2012, pp. A1678–A1706.

[44] “Turbulence Modeling Resource,” NASA TR 2017,
http://turbmodels.larc.nasa.gov.

[45] Schaeffler, N. W., Allan, B. G., Lienard, C., and Le Pape, A., “Progress To-
wards Fuselage Drag Reduction via Active Flow Control: A Combined CFD
and Experimental Effort,” 36th European Rotorcraft Forum Paper 064, Paris,
France, September 2010.

[46] Srinivasan, G. and Baeder, J., “TURNS: A Free-Wake Euler/Navier–Stokes
Numerical Method for Helicopter Rotors,” AIAA Journal, Vol. 31, 1993, pp.
959–962.

[47] Johnson, T. and Patel, V., “Flow Past a Sphere up to a Reynolds Number of
300,” Journal of Fluid Mechanics, Vol. 378, 1999, pp. 19–70.

[48] Ladson, C., “Effect of Independent Variation of Mach and Reynolds Numbers
on the Low-Speed Aerodynamic Characteristics of the NACA 0012 Airfoil Sec-
tion,” NASA TM 4074, 1988.

[49] McAlister, K., and Takahashi, R., “NACA 0015 Wing Pressure and Trailing
Vortex Measurements,” Technical Report A-91056, NASA Langley Research
Center, 1991.

[50] Kim, I., Elghobashi, S., and Sirignano, W., “Three-Dimensional Flow over Two
Spheres Placed Side by Side,” Journal of Fluid Mechanics, Vol. 246, 1993, pp.
465–488.

[51] Rogers, S. E., “Comparison of Implicit Schemes for the Incompressible Navier–
Stokes Equations,” AIAA Journal, Vol. 33, No. 11, 1995, pp. 2066–2072.

[52] Bas, O., Cete, A., Mengi, S., Tuncer, I., and Kaynak, U., “A Novel Alternat-
ing Cell Directions Implicit Method for the Solution of Incompressible Navier
Stokes Equations on Unstructured Grids,” Journal of Applied Fluid Mechanics,
Vol. 10, No. 6, 2017, pp. 1561–1570.

226

[53] Caradonna, F. X., and Tung, C., “Experimental and Analytical Studies of
a Model Helicopter in Hover,” Technical Report TM 81232, NASA Langley
Research Center, September, 1981.

[54] Jude, D. and Baeder, J., “Extending a Three-Dimensional GPU RANS Solver
for Unsteady Grid Motion and Free-Wake Coupling,” 54th AIAA Aerospace
Sciences Meeting, AIAA Paper 2016-1811, San Diego, CA, January 2016.

[55] Jung, Y. Govindarajan, B. and Baeder, J., “On the Accuracy and Conver-
gence of a Hamiltonian-Strand Approach for Aerodynamic Flows,” 55th AIAA
Aerospace Sciences Meeting, AIAA Paper 2017-1194, Grapevine, TX, January
2017.

[56] Chin, V., Peters, D., Spaid, F., and McGhee, R., “Flowfield Measurements
About a Multi-Element Airfoil at High Reynolds Numbers,” AIAA 24th Fluid
Dynamics Conference, AIAA Paper 1993-3137, Orlando, FL, July 1993.

[57] Kim, S., Alonso, J., and Jameson, A., “Multi-Element High-Lift Configuration
Design Optimization Using Viscous Continuous Adjoint Method,” Journal of
Aircraft, Vol. 41, No. 5, 2004, pp. 1082–1097.

[58] Cai, J., Tsai, H., and Liu, F., “An Overset Grid Solver for Viscous Compu-
tations with Multigrid and Parallel Computing,” 16th AIAA Computational
Fluid Dynamic Conference, AIAA Paper 2003-4232, Orlando, FL, June 2003.

[59] Costenoble, A., Jung, Y., Govindarajan, B., and Baeder, J., “Automated Mesh
Generation and Solution Analysis of Arbitrary Airfoil Geometries,” AHS Tech-
nical Conference on Aeromechanics Design for Transformative Vertical Flight,
San Francisco, CA, January 2018.

[60] Rogers, S., Menter, F., Durbin, P., and Mansour, N., “A Comparison of
Turbulence Models In Computing Multi-Element Airfoil Flows,” 32nd AIAA
Aerospace Sciences Meeting, AIAA Paper 1994-291, Reno, NV, January 1994.

[61] Overmeyer, A. and Martin, P., “Measured Boundary Layer Transition and Ro-
tor Hover Performance at Model Scale,” 55th AIAA Aerospace Sciences Meet-
ing, AIAA Paper 2017-1872, Grapevine, TX, January 2017.

[62] Lee, B., Jung, Y., Jude, D., and Baeder, J., “Turbulent Transition Prediction
of PSP Hovering Rotor using γ −Reθt−SA with Crossflow Transition Model,”
57th AIAA Aerospace Sciences Meeting, AIAA Paper 2019-0286, San Diego,
CA, January 2019.

227

[63] Jain, R., “CFD Performance and Turbulence Transition Predictions on an In-
stalled Model-scale Rotor in Hover,” 55th AIAA Aeroepace Sciences Meeting,
AIAA Paper 2017-1871, Grapevine, TX, January 2017.

[64] Parwani, A. and Coder, J., “CFD predictions of Rotor-Fuselage Interactins
Using Laminar-Turbulent Transition Modeling,” American Helicopter Society
74th Annual Forum, Phoenix, AZ, May 2018.

[65] Sezer-Uzol, N. and Uzol, O., “Effect of Steady and Transient Wind Shear on the
Wake Structure and Performance of a Horizontal Axis Wind Turbine Rotor,”
Wind Energy, Vol. 16, 2013, pp. 1–17.

[66] Sorensen, N., Michelsen, J., and Schreck, S., “Navier–Stokes Predictions of the
NREL Phase VI Rotor in the NASA Ames 80ft x 120ft Wind Tunnel,” Wind
Energy, Vol. 5, No. 2-3, 2002, pp. 151–169.

[67] Sorensen, N., “CFD Modeling of Laminar-turbulent Transition for Airfoils and

Rotors Using the γ − R̃eθ Model,” Wind Energy, Vol. 12, No. 8, 2002, pp.
715–733.

[68] Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., and
Larwood, S., “Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel
Test Configurations and Available Data Campaigns,” NREL/TP-500-29955,
2001.

[69] Zahle, F., Sorensen, N., and Johansen, J., “Wind Turbine Rotor-Tower Inter-
action Using an Incompressible Overset Grid Method,” Wind Energy, Vol. 12,
No. 6, 2009, pp. 594–619.

[70] Wind turbines, part 1:Design Requirements, International Standard IEC 61400-
1, 2005.

[71] McGowan and Rogers, Wind Energy Explained: Theory, Design and Applica-
tion 2nd edition. Wiley, 2010.

[72] Potsdam, M., Cross, P., and Hill, M., “Assessment of CREATE-AV Helios
for Complex Rotating Hub Wakes,” American Helicopter Society 73rd Annual
Forum, Fort Worth, TX, May 2017.

[73] Schmitz, S., Reich, D., Smith, M., and Centolanze, L., “First Rotor Hub Flow
Prediction Workshop Experimental Data Campaigns and Computational Anal-
yses,” American Helicopter Society 73rd Annual Forum, Fort Worth, TX, May
2017.

228

[74] Schmitz, S., Tierney, C., Metkowski, L., Reich, D., Jaffa, N., Centolanze, L.,
and Thomas, M., “2nd Rotor Hub Flow Prediction Workshop Experimental
Data Campaigns and Computational Analyses,” Vertical Flight Society 75th
Annual Forum, Philadelphia, PA, May 2019.

[75] Metkowski, L., Reich, D., Sinding, K., Jaffa, N., and Schmitz, S., “Full-Scale
Reynolds Number Experiment on Interactional Aerodynamics Between Two
Model Rotor Hubs and a Horizontal Stabilizer,” American Helicopter Society
74th Annual Forum, Phoenix, AZ, May 2018.

[76] Lee, B., Jung, Y., Jude, D., and Baeder, J., “Prediction of Rotor Hub Flow Us-
ing Mercury Framework,” Vertical Flight Society 75th Annual Forum, Philadel-
phia, PA, May 2019.

[77] Potsdam, M. and Sitaraman, J., “Assessment of HPCMP CREATE-AV He-
lios for Interactional Aerodynamics of Hub Wakes Impinging on a Horizontal
Stabilizer,” Vertical Flight Society 75th Annual Forum, Philadelphia, PA, May
2019.

[78] Wang, X., Jung, Y., Baeder, J., and Chopra, I., “CFD Pressure/Airload Corre-
lation with Experimental Data on a Slowed Mach-Scaled Rotor at High Advance
Ratios,” American Helicopter Society 74th Annual Forum, Phoenix, AZ, May
2018.

[79] Datta, A., Sitaraman, J., Chopra, I., and Baeder, J., “CFD/CSD Prediction of
Rotor Vibratory Loads in High-Speed Flight,” Journal of Aircraft, Vol. 43, No.
6, 2006, pp. 1698–1709.

[80] Sridharam, A., Rubenstein, G., Moy, D., and Chopra, I., “A Python-Based
Framework for Computationally Efficient Trim and Real-Time Simulation Us-
ing Comprehensive Analysis,” Journal of Aircraft, Vol. 63, No. 1, 2018, pp.
1–15.

[81] Muller, C. and Herbst, F., “Modelling of Crossflow-induced Transition based on
Local Variables,” 11th World Congress Computational Mechanics and 5th Eu-
ropean Conference on Computational Mechanics and 6th European Conference
on Computational Fluid Dynamics, Barcelona, Spain, July, 2014.

[82] Radeztsky, R., Reibert, M., and Saric, W., “Effect of Micron-Sized Roughness
on Transition in Swept-Wing Flows,” 31st AIAA Aerospace Sciences Meeting
and Exhibit, AIAA Paper 1993-0076, Reno, NV, January 1993.

[83] Dassler, P., Kozulovic, D., and Fiala, A., “An Approach for Modelling the
Roughness-Induced Boundary Layer Transition Using Transport Equations,”

229

European Conference on Computational Methods in Applied Sciences and En-
gineering, Vienna, Austria, September 2012.

[84] Langel, C., Chow, R., Dam, C., Maniaci, D., Ehrmann, R., and White, E., “A
Computational Approach to Simulating the Effects of Realistic Surface Rough-
ness on Boundary Layer Transition,” 52nd AIAA Aerospace Sciences Meeting,
AIAA Paper 2014-0234, National Harbor, MD, January 2014.

[85] Jung, Y. and Baeder, J., “Uncertainty Quantification for Laminar-Turbulent
Transition on Airfoil and Fuselage,” Vertical Flight Society 75th Annual Forum,
Philadelphia, PA, May 2019.

[86] Acikgoz, N. and Bottasso, C., “A unified approach to the deformation of sim-
plicial and non-simplicial meshes in two and three dimensions with guaranteed
validity,” Computers and Structures, Vol. 85, 2007, pp. 944–954.

[87] Jung, Y., Jude, D., Govindarajan, B., and Baeder, J., “Line-Based Unstruc-
tured/Structured Heterogenous CPU/GPU Framework for Complex Aerody-
namic Flows,” American Helicopter Society 73rd Annual Forum, Fort Worth,
TX, May 2017.

[88] Kholodar, D., Morton, S., and Cummings, R., “Deformation of Unstructured
Viscous Grids,” 43rd AIAA Aerospace Sciences Meeting, AIAA Paper 2005-926,
Reno, NV, January 2005.

[89] Bergmann, M. and Iollo, A., “Modeling and simulation of fish-like swimming,”
Journal of Computational Physics, Vol. 230, 2011, pp. 329–348.

230

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Concept of Structured and Unstructured Grid for Flow Simulation
	Implicit Time Integration
	Spatial Discretization
	Multi-Mesh/Multi-Solver Paradigm

	Related Previous Works
	Objectives
	Scope and Organization of Thesis

	Computational Methodology of Mesh Generation
	Robust Line Identification
	Quadrilateral Subdivision and Hamiltonian Path
	Hamiltonian Path on Structured Grids
	Mesh Smoothing
	All Quadrilateral Meshing

	Extension to Three-Dimensions
	Strand Grids
	Unstructured Volume Grid

	Domain Decomposition
	Data Structure
	Summary

	Computational Methodology of Flow Solver
	Governing Equations
	Non-Dimensional Form of Equations
	Reynolds-Averaged Navier–Stokes Equations

	Evaluation of fluxes
	Finite Volume Method
	Inviscid Fluxes
	Viscous Fluxes
	Initial Conditions
	Boundary Conditions

	Time Integration
	Implicit Operator
	Approximate Factorization
	Generalized Minimum Residual Method
	Dual Time Stepping

	Turbulence and Transition Modeling
	Turbulence Modeling
	Laminar-Turbulent Transition Model Formulation

	Overset Technique
	Solver Architecture
	Python Integration Framework
	Summary

	Validation
	Solution Accuracy Analysis
	Method of Manufactured Solution
	Isentropic Vortex
	Two-Dimensional Bump in Channel
	Three-Dimensional Robin-Mod7 Fuselage

	Performance Analysis
	Transonic Flow Past NACA0012 Airfoil
	Laminar Flow Past a Sphere
	Fully Turbulent Flow Past NACA0012 Airfoil
	Fully Turbulent Flow Past NACA0015 Wing

	Validation of Overset Method
	Summary

	Solution Convergence
	Loop Crossing
	Solution Convergence of Preconditioned GMRES Method
	Overset Lifting Rotor
	Unsteady Laminar Flow over a Sphere
	MD 30P-30N Airfoil

	Scalability
	Summary

	Applications
	Pressure Sensitive Paint (PSP) Hovering Rotor Simulation
	NREL Phase VI Wind Turbine Simulation
	Isolated Rotor Computation
	Full Configuration Computation

	Rotor Hub Simulation
	Slowed Mach-Scaled Rotor at High Advance Ratio
	Summary

	Conclusions
	Summary
	Contributions
	Recommendations for Future Work

	Extension of Laminar-Turbulent Transition Model
	Crossflow-Induced Transition
	Surface Roughness-Induced Transition
	Mesh Deformation Technique
	Spring Analogy
	Algebraic Method
	Validation
	Bibliography

