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The study of the physical layer has offered a new perspective to the problem of

communication security. This led to the development of a vast set of ideas and tech-

niques rooted in information theory which can be employed in practice to provide

unbreakable security. The information-theoretic approach relies mainly on the physi-

cal nature of the communication medium. In a wireless medium, the unique features

of the wireless communication channel, such as its fading and broadcast nature, can

be exploited to achieve higher secure information rates. In this dissertation, we study

the secure transmission problem in wireless channels from an information-theoretic

perspective.

We first consider the fading multiple access wiretap channel. We give two new

achievable schemes that use the time-varying (fading) nature of the channel to align

the interference from different users at the eavesdropper perfectly in a one-dimensional

space while creating a higher-dimensional space for the interfering signals at the

legitimate receiver hence allowing for better chance of recovery. While we achieve



this alignment through signal scaling at the transmitters in our first scheme (scaling

based alignment), we let nature provide this alignment through the ergodicity of the

channel coefficients in the second scheme (ergodic secret alignment). For each scheme,

we show that the achievable secrecy rates scale logarithmically with the signal-to-noise

ratio (SNR).

Next, we study the security gains that can be achieved in a wireless network

by employing cooperation among the nodes which is possible due to the broadcast

nature of the wireless channel. We investigate the role of passive (also known as

deaf) cooperation in improving the achievable secrecy rates in a Gaussian multiple

relay network with an external eavesdropper. We distinguish between two modes of

deaf cooperation, namely, cooperative jamming (CJ) and noise forwarding (NF). We

derive the conditions in which each mode of deaf cooperation achieves secrecy rates

that are higher than the secrecy capacity of the original Gaussian wiretap channel.

As a result, we show that a deaf helper cannot be a useful cooperative jammer and

noise forwarder at the same time. We derive the optimal power control policy for

each mode. We consider the deaf helper selection problem where a fixed-size set of

deaf helpers (possibly operating in different modes) are to be selected from the set

of available relays so that the achievable secrecy rate is maximized. We propose a

simple and efficient suboptimal strategy for selection which is shown to be optimal

when only one helper is selected.

Furthermore, we study the role of a multi-antenna deaf helper. Unlike the single

antenna case, we show that, in general, it is useful to split the helper’s power between

cooperative jamming and noise forwarding. Hence, we propose a deaf cooperation



strategy for this model and derive its optimal power control policy. We also show,

for specific class of relay-eavesdropper channels, that a simple cooperative jamming

strategy yields a secrecy rate that approaches the secrecy capacity as the helper’s

power is increased.

Finally, we consider the role of active cooperation for secrecy in the multiple relay

networks. We propose several relaying strategies for secure communication and derive

the achievable secrecy rate for each strategy. In our strategies the relays decode the

source signal and then forward it to the destination either in a single-hop or a multi-

hop fashion. Each relay scales its transmitted signal in a way that ensures that signal

components from different relays are canceled out at the eavesdropper.
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Chapter 1

Introduction

Secure transmission of information over communication channels has become an im-

portant design criterion in almost every communication system nowadays. Modern

communication systems are designed and implemented with both reliability and secu-

rity of communication in mind. Consequently, the aspect of secure communications

has been subjected to careful theoretical study and investigation over the last few

decades. As cryptography provides us with efficient and practical solutions for the

security problem that are acceptable under reasonable conjectures within the frame-

work of the theory of computational complexity, the underlying physical model of

the communication process is not exploited in the cryptographic approach. On the

other hand, the study of the physical layer offers a new interesting set of ideas and

methods that takes into account the aspects of how communication takes place and

exploits them to achieve unconditional security. The theoretical framework of this

study is rooted in information theory and is referred to as information-theoretic se-

curity. Information-theoretic security not only provides us with fundamental limits

on secure information rates but it can also provide us with methods and techniques

to achieve or approach these limits.
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The first rigorous information-theoretic treatment of the security aspect of com-

munication was presented by Shannon [17] in 1949. In his model, a private, au-

thenticated, and error-free link is assumed to be available between the legitimate

communicating pair. This link is used by the communicating pair to agree on a key

which is later used by one of them to encrypt its confidential message to the other

on a public error-free channel where any transmission could be perfectly intercepted

by an eavesdropper with unbounded computational power. Shannon showed that, to

achieve perfect security in this model, the length of the key must be at least as long

as the length of the confidential message. Later, in 1975, Wyner was the first to in-

troduce the notion of information-theoretic security to channels with imperfections in

his seminal work [21]. In his model, which is known as the wiretap channel, the sender

and the receiver of the confidential message are connected by only one imperfect com-

munication channel which is wiretapped by a passive but informed eavesdropper with

unbounded computational power. Wyner showed that one can indeed exploit the

channel randomness to pay for the extra randomness required to encrypt the message

and achieve secure communication without the help of a private channel between the

legitimate pair. In particular, Wyner introduced a measure for security called the

equivocation which is defined as the conditional entropy of the message given the

eavesdropper’s observation normalized by the length of the transmission duration.

Accordingly, for an information rate to be secure, the normalized mutual information

between the message and the eavesdropper’s observation must go to zero as the length

of the transmission duration goes to infinity. Wyner obtained an expression for the

supremum of the set of achievable secure information rates, i.e., the secrecy capacity
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of the wiretap channel. However, in Wyner’s model it was assumed that the received

signal by the eavesdropper is a degraded version of the signal received by the legiti-

mate receiver. This constraint was later removed by Csiszar and Korner in [4] where

they obtained the secrecy capacity in the general case. For a model well-suited to the

wireless channels, Leung-Yan-Cheong and Hellman obtained the secrecy capacity of

the Gaussian wiretap channel in [13].

Starting from Wyner’s work, the basic underlying idea of these works is that it is

possible to exploit the characteristics of the communication channel which are dictated

by the channel’s conditional probability distribution to achieve information-theoretic

security. When communication takes place in a wireless medium, the properties of the

wireless channel, such as its fading and broadcast nature, can be effectively utilized to

attain high secure rates. For example, fading can help improve the achievable secrecy

rates if the sender knows the channel state information (CSI), by utilizing the varying

nature of the fading wireless channel and by adjusting its transmit power so that more

information is communicated when the channel condition of the legitimate receiver

is better than that of the eavesdropper. In a multi-user fading wireless channel, one

can take advantage of the fading phenomenon to align the interference from different

users favorably at the legitimate receiver and unfavorably at the eavesdropper and

hence increase the achievable secrecy rates. On the other hand, the broadcast nature

of the wireless channel gives rise to two relevant concepts, namely, interference and

cooperation. These two concepts are shown to be useful in the context of secure com-

munication. In particular, in a cooperative wireless channel, a trusted node can help

increase the secure communication rate of the legitimate pair either by introducing a
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useful interference to confuse the eavesdropper and hence limit its ability to obtain

any information about the transmitted message, i.e., by passive (deaf) cooperation,

or by listening to the sender’s transmission and accordingly helping communicate the

sender’s message to the receiver, i.e., by active cooperation.

In this dissertation, we study the ideas of alignment and cooperation in wireless

multi-user channels through the study of two different channel models, namely, the

fading multiple access wiretap (MAC-WT) channel and the relay-eavesdropper chan-

nel. We introduce new schemes to achieve high secure rates in these channel models.

Our work reveals several interesting aspects about the incorporation of these no-

tions into the multi-user channels and proposes efficient techniques that utilize these

aspects to boost communication security in terms of the achievable secure rates. In-

terestingly, the work in this dissertation shows that schemes that were not useful

when the secrecy constraint is not imposed may be very useful in the secrecy context.

Our motivation is to show the role of the physical layer in providing and im-

proving security of communication in these aforementioned channel models from an

information-theoretic perspective through the efficient use of the notions of alignment

and cooperation. Although the results we obtain are theoretical in nature, several

practical considerations of the proposed schemes are studied to provide useful insights

on the security gains attainable by these schemes when used in practice. In the models

studied in this dissertation, we assume that the eavesdropper’s perfect channel state

information is available at all the nodes in a causal fashion which, despite of being a

standard assumption in many related works in this area, is not a practical assumption.

However, the problem of providing information-theoretic security in wireless channel
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models where nothing is known about the eavesdropper’s channel state information

is a challenging task and is still being investigated in current research in this area.

The MAC-WT channel was introduced in [19]. References [19] and [20] focus on

the Gaussian MAC-WT, and provide achievable schemes based on i.i.d. Gaussian

signaling. Reference [20] goes further than plain Gaussian signaling and introduces a

technique that uses the power of a non-transmitting node in jamming the eavesdrop-

per with i.i.d. Gaussian noise. This technique is referred to as Gaussian signaling

based cooperative jamming (from this point on, we will refer to this technique as

simply cooperative jamming, or CJ). A notable shortcoming of these i.i.d. Gaussian

signaling based achievable schemes is that rates obtained using them do not scale with

the signal-to-noise ratio (SNR). Hence, the number of Degrees of Freedom (DoF) for

the MAC-WT achieved using these schemes is zero. On the other hand, the results

on the secure DoF of Gaussian interference networks in [12], [7], [9], [8], and [2], sug-

gested that these schemes may be suboptimal. Fading Gaussian MAC-WT was first

considered in [18] where, as in the non-fading case, the achievable ergodic secrecy

rates obtained through i.i.d. Gaussian signaling do not scale with SNR.

In Chapter 2, we use the idea of interference alignment to introduce two new

achievable schemes for secrecy in the fading MAC-WT. We derive the ergodic secrecy

rates achievable by these schemes and show that, in the K-user fading MAC-WT

channel, the users’ sum rate achieved by each of the two schemes scales with SNR

as K−1
K

log (SNR). Our first achievable scheme, the scaling based alignment (SBA)

scheme, is based on code repetition with proper scaling of the transmitted signals.

Transmitters scale their transmit signals such that over K consecutive time instants

5



the equivalent channel matrix at the legitimate receiver is of full-rank whereas the

equivalent channel matrix at the eavesdropper is of unit-rank. In our second achiev-

able scheme, the ergodic secret alignment (ESA) scheme, we extend the idea of ergodic

interference alignment in [14] to the secrecy context. In the ESA scheme, we care-

fully choose the time instants over which codeword symbols are repeated such that

the received signals are aligned favorably at the legitimate receiver while they are

aligned unfavorably at the eavesdropper. We also introduce an improved version of

our second scheme in which we use cooperative jamming on top of the ESA scheme

to obtain larger secrecy rates. Moreover, we obtain a power allocation policy that

satisfies the necessary KKT conditions of optimality.

Next, we focus on the security problem in cooperative wireless channels. In Chap-

ters 3 and 4, we study the concept of deaf cooperation to reinforce security of trans-

mission over the Gaussian relay-eavesdropper channels. We distinguish between two

main schemes of deaf cooperation based on Gaussian signaling, namely, the coopera-

tive jamming (CJ) scheme and the noise forwarding (NF) scheme. In the CJ scheme,

a helping interferer transmits white Gaussian noise when it can hurt the eavesdropper

more than it can hurt the legitimate receiver and hence improve the achievable se-

crecy rate. The idea of introducing artificial noise in a GWT channel by a helper node

was introduced in [31], [34], [19], [20]. In relay networks with secrecy constraints, the

role of CJ was further investigated, e.g., in [27], [22], and [36]. References [23], [26],

and [25] proposed CJ strategies for multiple-antenna relay networks. On the other

hand, in the NF scheme which was introduced in [29], the relay node sends a dummy

(context-free) codeword drawn at random from a codebook that is known to both the

6



legitimate receiver and the eavesdropper to introduce helpful interference that would

hurt the eavesdropper more than the legitimate receiver.

In Chapter 3, we investigate the role of a deaf helper in improving the achievable

secrecy rates of a Gaussian wiretap channel (GWT) by using either the CJ mode

or the NF mode of deaf cooperation. We derive the conditions under which each

mode of deaf cooperation improves over the secrecy capacity of the original wiretap

channel and show that a helping node can be either a useful cooperative jammer or a

useful noise forwarder but not both at the same time. We derive the optimal power

allocation for both the source and the helping node to be used in each of the two

modes of deaf helping. Then, we consider the deaf helper selection problem where

there are N relays present in the system and it is required to select the best K deaf

helpers, K ≥ 1, that yield the maximum possible achievable secrecy rate with deaf

cooperation using K relays. We give an optimal strategy for the case of K = 1, i.e.,

for the selection of a single deaf helper. The computational complexity of the optimal

selection for the general case when K > 1 is prohibitive. We propose a suboptimal

strategy for the selection problem in the general case. We discuss the complexity of

the proposed single and multiple relay selection strategies and show that both of them

are efficient, and verify the performance of the proposed strategies through numerical

examples.

In Chapter 4, we study the CJ and the NF modes of deaf cooperation when the

helper node is equipped with multiple antennas. We decompose the channel from

the helper to the eavesdropper into two orthogonal components: one is aligned in

the direction of the channel between the helper and the legitimate receiver (direct
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component) and the other is in the orthogonal direction to the channel between the

helper and the legitimate receiver (orthogonal component). We then propose a strat-

egy in which the helper uses the orthogonal component to transmit pure Gaussian

noise as in the CJ strategy while it uses the direct component for either CJ or NF

depending on the given channel conditions. We explicitly derive the optimal power

control policy for this strategy and give the achievable secrecy rates when the direct

component is used to perform CJ or NF. We hence derive the channel conditions

where CJ is better than NF over the direct component and vice versa. Next, we con-

sider the reversely degraded multiple-antenna relay-eavesdropper channel. We show

that a simple strategy in which the relay jams with full power along the orthogonal

component and transmits nothing in the direct component achieves a secrecy rate

that approaches the secrecy capacity of this channel as the relay’s average power goes

to infinity. Moreover, we show that this result is valid with probability 1 even if the

relay-eavesdropper’s channel state information is unavailable.

Finally, we turn our attention to the role of active cooperation for secrecy in wire-

less relay networks. In active cooperation, the relay listens to the source transmissions

and uses its observation to improve the achievable secrecy rate. This mode is based

on the well-known strategies, e.g., decode-and-forward (DF), compress-and-forward

(CF), and amplify-and-forward (AF) strategies, devised originally for the coopera-

tive models with no secrecy constraint. These strategies were first introduced in [38]

for the single relay channel with no secrecy constraints. In the context of multi-

ple relay networks with no secrecy constraints, [41] and [40] proposed multi-hop DF

strategies and obtained the achievable rates by these strategies. In [29], the single
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relay-eavesdropper channel was introduced and achievable secrecy rates were obtained

based on extended versions of these strategies. We focus in this dissertation on the

DF-based strategies. In [39] and [43], two-stage (half-duplex) cooperative secrecy

protocols were proposed in which a set of multiple relays decode the source’s message

in the first stage, then the relays forward the source’s message to the destination

using beamforming. Both references investigated the role of the beamforming relays

in improving secrecy.

In Chapter 5, we investigate full-duplex relaying strategies for secrecy in coop-

erative relay networks. We first study the DF strategy for secrecy in a single relay

channel with an eavesdropper. We propose a suboptimal decode-and-forward with

zero-forcing (DF/ZF) strategy for which we obtain the optimal power control policy.

Next, we consider the multiple relays problem. We propose three strategies based on

the DF/ZF technique. In the first strategy, all the relays decode the source message

at the same time, and then perform beamforming. We give the achievable rate by this

strategy and derive the optimal power control policy. We show that in this strategy

the relays which are far from the source create a bottleneck and limit the achievable

rate. In the second strategy, the relays are ordered with respect to their distance

from the source and they perform decode-and-forward in a multi-hop fashion. We

derive the achievable rate by this strategy and show that it overcomes the drawback

of the first strategy. We discuss the zero-forcing technique in the second strategy and

show that only half of the relays’ signals can be eliminated from the eavesdropper’s

observation. Hence, we propose a third strategy which is also a multi-hop decode-

and-forward strategy, however the number of hops is half of that required by the

9



second strategy. We show that in the third strategy, it is possible to fully eliminate

all the relays’s signals from the eavesdropper’s observation. Finally, we give numerical

results to illustrate the performance of each of the proposed strategies in terms of the

achievable rates.
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Chapter 2

Ergodic Secret Alignment

2.1 Introduction

The multiple access wiretap channel (MAC-WT) was introduced in [19]. In MAC-

WT, multiple users wish to have secure communication with a single receiver, in the

presence of a passive eavesdropper. The Gaussian MAC-WT was studied in [19] and

[20]. In both references, achievable schemes based on Gaussian signaling (i.e., using

i.i.d. Gaussian codebooks) were provided. In addition to achievable schemes based

on plain Gaussian signaling, [20] introduces a scheme that can be used in conjunction

with Gaussian signaling to improve the achievable secrecy rates. In this scheme, a

node that does not transmit information uses its power to jam the eavesdropper.

This technique is called cooperative jamming (CJ). Cooperative jamming is indeed a

channel prefixing technique where specific choices are made for the auxiliary random

variables [5]. In addition, cooperative jamming is the first significant application

of channel prefixing in a multi-user Gaussian wiretap channel that improves over

plain Gaussian signaling. More recently, reference [6] showed that for a certain class

of Gaussian MAC-WT, one can achieve through Gaussian signaling a secrecy rate
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region that is within 0.5 bits of the secrecy capacity region. Consequently, there has

been some expectation that secrecy capacity may be obtained for Gaussian MAC-WT

through i.i.d. Gaussian signaling, potentially with Gaussian channel prefixing.

However, a notable shortcoming of these Gaussian signaling based achievable

schemes is that rates obtained using them do not scale with the signal-to-noise ratio

(SNR). In other words, the schemes achieve zero Degrees of Freedom (DoF) in the

MAC-WT. This observation led to the belief that these schemes, and hence Gaus-

sian signaling (with or without channel prefixing), may be suboptimal. This belief is

made certain as a direct consequence of the results on the secure DoF of Gaussian

interference networks that were obtained in several papers, e.g., in [12], [7], [9], [8],

and [2]. The schemes in each of [12] and [7] mainly relied on the interference align-

ment technique proposed by Cadambe and Jafar for the K-user interference channel

in their pioneering work [3]. In the original interference alignment technique, the

input data stream from each user is mapped using a precoding matrix to a longer

sequence (almost twice the original length in the asymptotic sense) and then sent

over the channel. Hence, the observed signal space at each receiver is of almost twice

the size (i.e., dimensionality) of the space of the original data. By carefully designing

the precoding matrices at the transmitters, the observed signal space at each receiver

could be partitioned into two almost equal subspaces, one of which is meant for the

desired signal and the other acts as a waste basket for the interfering signals from

other users. Consequently, it was shown that one can achieve 1
2
DoF per user in the

K-user interference channel using this technique. Inspired by this technique in the

secrecy context, it was shown in [12] and [7] that positive secure DoF is achievable
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for a class of vector Gaussian interference channels. In fact, this result is also valid

for time-varying channels with only causal knowledge of channel state information

which in turn implies that positive secure DoF is achievable for the vector Gaussian

MAC-WT in general. In [9] and [8], it was shown that through structured coding

(e.g., lattice coding), it is possible to achieve positive DoF for a class of scalar (i.e.,

non-time-varying) Gaussian channels with interference that contains the Gaussian

MAC-WT. More recently, in [2], both the Gaussian multiple input multiple output

(MIMO) MAC-WT and the Gaussian scalar MAC-WT were considered. For the K-

user Gaussian MIMO MAC-WT model, [2] provides an algorithm which is inspired by

the original interference alignment technique [3] to separate the received signals at the

legitimate receiver and at the same time align them in a low-dimensional subspace

in the signal space observed by the eavesdropper. For the K-user Gaussian scalar

MAC-WT, [2] proposes an achievable secure coding scheme to achieve positive secure

DoF. Namely, the proposed scheme achieves total secure DoF of K−1
K

for almost all

channel gains. This is done by incorporating the new alignment technique known as

real interference alignment that was first proposed in [1] that performs on a single real

line and exploits the properties of real numbers to align interference in time-invariant

channels.

Fading Gaussian MAC-WT was first considered in [18] where the Gaussian signal-

ing and cooperative jamming schemes which were originally proposed in [19] and [20]

are extended to the fading MAC-WT. Using these schemes, [18] gave achievable er-

godic sum secrecy rates for the fading MAC-WT. Similar to the non-fading setting,

these achievable ergodic secrecy rates do not scale with the average SNRs. In this
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chapter, we propose two new achievable schemes for the fading Gaussian MAC-WT.

Our first achievable scheme, the scaling based alignment (SBA) scheme, is based on

code repetition with proper scaling of transmitted signals. We first consider the two-

user fading MAC-WT. The generalization of this scheme to the case of more than

two users is presented subsequently. In particular, for the two-user fading MAC-WT,

transmitters repeat their symbols in two consecutive symbol instants. Transmitters

further scale their transmit signals with the goal of creating a full-rank channel matrix

at the main receiver and a unit-rank channel matrix at the eavesdropper, in every two

consecutive time instants. These coordinated actions create a two-dimensional space

for the signal received by the legitimate receiver, while sustaining the interference in

a single-dimensional space at the eavesdropper. In other words, code repetition with

proper scaling of the transmit signals at each transmitter aligns the received signals

at the eavesdropper perfectly making it difficult for the eavesdropper to decode both

messages. Consequently, we obtain a new achievable secrecy rate region for the two-

user fading MAC-WT. In fact, it might be useful here to compare our SBA scheme

with the technique used in [2] for the Gaussian MIMO MAC-WT. In the model con-

sidered here, we could create parallel MAC channels to each of the legitimate receiver

and the eavesdropper by symbol repetition and exploiting the time-varying nature

of fading channels and hence by proper scaling (precoding), one can almost surely

create a full-dimensional space for the received signal at the legitimate receiver and

one-dimensional space for the received signal at the eavesdropper. On the other hand,

in [2], the existence of multiple spatial dimensions is already imposed by the model

itself (Gaussian MIMO MAC-WT) and hence the precoding technique used in [2] for
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this model achieves secure DoF that eventually depends on the channel gain matrices

from the transmitters to the legitimate receiver and the eavesdropper.

In another recent work [14], it was shown that in a fading interference channel,

by code repetition over properly chosen time instants, one can perfectly cancel in-

terference at each receiver so that the resulting individual rates scale as 1
2
log(SNR).

Thus, the rate reduction by a factor of 1
2
comes with the benefit of perfect inter-

ference cancellation. In this chapter, we extend the ergodic interference alignment

concept to a secrecy context and we propose another achievable scheme which we call

ergodic secret alignment (ESA). We first consider the two-user fading MAC-WT, and

generalize this scheme to the case of more than two users subsequently. In the SBA

scheme, code repetition is done over two consecutive time instants, while in the ESA

scheme, we carefully choose the time instants over which we do code repetition such

that the received signals are aligned favorably at the legitimate receiver while they are

aligned unfavorably at the eavesdropper. In particular, given some time instant with

the vector of the main receiver channel coefficients and the vector of the eavesdropper

channel coefficients given by h = [h1 h2]
T and g = [g1 g2]

T , respectively, if X1 and

X2 are the symbols transmitted in this time instant by users 1 and 2, respectively,

our objective, roughly speaking, is to determine the channel gains we should wait

for to transmit X1 and X2 again. In this chapter, we show that, in order to maxi-

mize achievable secrecy rates, we should wait for a time instant in which the main

receiver channel coefficients are [h1 − h2]
T and the eavesdropper channel coefficients

are [g1 g2]
T . Consequently, we obtain another achievable secrecy rate region for the

two-user fading MAC-WT.
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For both proposed schemes, we show that the resulting secrecy rates scale with

SNR. Specifically, the achievable secrecy sum rate scales as 1
2
log(SNR). Moreover,

we show that the secrecy rates achieved through i.i.d. Gaussian signaling with coop-

erative jamming in fading MAC-WT do not scale with SNR. The significance of these

results is that, they show that indeed neither plain i.i.d. Gaussian signaling nor i.i.d.

Gaussian signaling with cooperative jamming is optimal for the fading MAC-WT,

and that, for high SNRs, one can achieve higher secrecy rates by aligning interference

perfectly in the eavesdropper MAC while reducing, or cancelling, interference at the

main receiver MAC using some coordinated actions at both transmitters that involve

code repetition, i.e., a form of time-correlated (non i.i.d.) signaling.

In fact, the achievable rate region using the second scheme, the ESA scheme,

involves two significant improvements over the one achieved by the SBA scheme when

the channel coefficients are circularly symmetric complex Gaussian random variables.

First, the expressions for achievable rates by the SBA scheme involve products of

the squared magnitudes of the channel coefficients. The squared magnitudes of the

channel coefficients are exponential random variables and hence multiplying them

together gives a random variable that takes small values with higher probability than

the original exponential random variables would take these values. This in effect

reduces the achievable rates by the SBA scheme. On the other hand, the achievable

secrecy rates by the ESA scheme do not have this drawback. In other words, by code

repetition, the SBA scheme creates two (not perfectly) correlated MAC channels to

the main receiver and two perfectly correlated MAC channels to the eavesdropper,

while the ESA scheme creates an orthogonal MAC channel to the main receiver
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and two perfectly correlated MAC channels to the eavesdropper. This fact leads to

higher achievable secrecy rates by the ESA scheme. The second improvement of the

ESA scheme with respect to the SBA scheme is that the average power constraints

associated with the ESA scheme do not involve any channel coefficients whereas those

associated with the SBA scheme involve the gains of the eavesdropper channel which

in turn result in inefficient use of transmit powers. However, it is noteworthy that

SBA scheme holds one practical advantage over the ESA scheme that actually does

not appear in the achievable rates by the two schemes. Namely, in the SBA scheme,

we do not wait for favorable channel conditions for alignment since repetition is done

over consecutive time slots. On the other hand, in the ESA scheme, one should wait

for the proper channel conditions before repetition takes place. The waiting time

required to match up the channel states is an important performance factor for the

ESA scheme in practice.

In addition, we introduce an improved version of our second scheme in which we

use cooperative jamming on top of the ESA scheme to achieve higher secrecy rates.

Moreover, since the rate expressions achieved by the ESA scheme (with and with-

out cooperative jamming) and their associated average power constraints are simpler

than their counterparts in the SBA scheme, we derive the necessary conditions on the

optimal power allocations that maximize the sum secrecy rate achieved by the ESA

scheme when used alone and when used together with cooperative jamming. Since

the achievable secrecy sum rate, in general, is not a concave function in the power al-

location policy, the solution of such optimization problem may not be unique. Hence,

we obtain a power allocation policy that satisfies the necessary (but not necessarily
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sufficient) KKT conditions of optimality.

We provide numerical examples that illustrate the scaling of the sum rates achieved

by the proposed schemes with SNR and the saturation of the secrecy sum rate achieved

by the i.i.d. Gaussian signaling scheme with cooperative jamming. We also give

numerical examples for the secrecy sum rates achieved by the ESA scheme with and

without cooperative jamming when power control is used.

Finally, we discuss the extension of the SBA and the ESA schemes to the case of

K-user fading MAC-WT channel for K ≥ 2. We show that each of the two schemes

achieves a total of K−1
K

secure DoF which is the same total secure DoF shown in [2] to

be achievable for the K-user Gaussian scalar MAC-WT for almost all channel gains

using the real interference alignment technique.

2.2 System Model

We consider the two-user fading multiple access channel with an external eavesdrop-

per. Transmitter k chooses a message Wk from a set of equally likely messages

Wk = {1, ..., 22nRk}, k = 1, 2. Every transmitter encodes its message into a code-

word of length 2n symbols. The channel output at the intended receiver and the

eavesdropper at the symbol interval t are given by

Yt =h1tX1t + h2tX2t +Nt (2.1)

Zt =g1tX1t + g2tX2t +N ′
t (2.2)
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where, for k = 1, 2, Xkt is the input signal at transmitter k at channel use t, hkt, gkt

are the channel coefficients at channel use t between transmitter k and the intended

receiver and the eavesdropper, respectively. We assume a fast fading scenario where

the channel coefficients randomly vary from one symbol to another in i.i.d. fashion.

Also, we assume the independence of all channel coefficients hkt and gkt for all k, t.

Each of the channel coefficients is a circularly symmetric complex Gaussian random

variable with zero-mean. The variances of hkt and gkt are σ
2
hk

and σ2
gk
, respectively

for all t. Hence, |hkt|2 and |gkt|2 are exponentially distributed random variables with

mean σ2
hk

and σ2
gk
, respectively. Moreover, we assume that all the channel coefficients

are known to all the nodes in a causal fashion. In (2.1)-(2.2), Nt and N
′
t are the inde-

pendent Gaussian noises at the intended receiver and the eavesdropper, respectively,

and are i.i.d. (in time) circularly symmetric complex Gaussian random variables with

zero-mean and unit-variance. For the rest of the chapter, we will drop the time index

t for notational convenience unless it is clearly stated otherwise. We have the usual

average power constraints

E[|Xk|2] ≤ P̄k, k = 1, 2. (2.3)

A (22nR1 , 22nR2 , 2n) code for this channel consists of two stochastic encoders ϕk, k =

1, 2 at the transmitters where ϕk maps a message Wk ∈ Wk to a sequence of complex

numbers X2n
k , and a decoder ψ at the main receiver which maps the received sequence

at the main receiver Y 2n and the channel state sequences h2n1 , h
2n
2 , g

2n
1 , g

2n
2 to an
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estimate of the message pair (Ŵ1, Ŵ2) ∈ W1 ×W2. The probability of error is

P 2n
e = Pr

(

(Ŵ1, Ŵ2) 6= (W1,W2)
)

(2.4)

A rate pair (R1, R2) is said to be achievable with perfect secrecy if there is a

(22nR1 , 22nR2 , 2n) code satisfying

lim
n→∞

P 2n
e = 0, and lim

n→∞

1

2n
I
(

W1,W2;Z
2n|h2n1 , h2n2 , g2n1 , g2n2

)

= 0 (2.5)

2.3 Previously Known Results

Here we summarize previously known results that are relevant to our development.

For the general discrete-time memoryless MAC-WT, the best known achievable se-

crecy rate region [19], [20], [5] is given by the convex hull of all rate pairs (R1, R2)

satisfying

R1 ≤ I(V1;Y |V2)− I(V1;Z) (2.6)

R2 ≤ I(V2;Y |V1)− I(V2;Z) (2.7)

R1 +R2 ≤ I(V1, V2;Y )− I(V1, V2;Z) (2.8)

where the distribution p(x1, x2, v1, v2, y, z) factors as p(v1)p(x1|v1)p(v2)p(x2|v2)

p(y, z|x1, x2).

Known secrecy rate regions for the Gaussian MAC-WT can be obtained from

these expressions by appropriate selections for the involved random variables. For
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instance, the Gaussian signaling based achievable rates proposed in [19] are obtained

by choosing X1 = V1 and X2 = V2, i.e., no channel prefixing, and by choosing X1

and X2 to be Gaussian with full power. On the other hand, cooperative jamming

based achievable rates proposed in [20] are obtained by choosing X1 = V1 + T1 and

X2 = V2+T2, and then by choosing V1, V2, T1, T2 to be independent Gaussian random

variables [5]. Namely, for k = 1, 2, Vk and Tk are Gaussian random variables with

zero mean and variances Pk and Qk, respectively. Here, V1 and V2 carry messages,

while T1 and T2 are jamming signals. The powers of (V1, T1) and (V2, T2) should be

chosen to satisfy the power constraints of users 1 and 2, respectively. These selections

yield the following achievable rate region for the Gaussian MAC-WT [20]

R1 ≤ log

(

1 +
|h1|2P1

1 + |h1|2Q1 + |h2|2Q2

)

− log

(

1 +
|g1|2P1

1 + |g1|2Q1 + |g2|2(P2 +Q2)

)

(2.9)

R2 ≤ log

(

1 +
|h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log

(

1 +
|g2|2P2

1 + |g1|2(P1 +Q1) + |g2|2Q2

)

(2.10)

R1 +R2 ≤ log

(

1 +
|h1|2P1 + |h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log

(

1 +
|g1|2P1 + |g2|2P2

1 + |g1|2Q1 + |g2|2Q2

)

(2.11)

where the powers of the signals must satisfy

Pk +Qk ≤ P̄k, k = 1, 2 (2.12)

where Pk and Qk are the transmission and jamming powers, respectively, of user k.
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The ergodic secrecy rate region achieved by Gaussian signaling and cooperative

jamming for the fading MAC-WT can be expressed similarly by simply including

expectations over fading channel states [18]

R1 ≤ Eh,g

{

log

(

1 +
|h1|2P1

1 + |h1|2Q1 + |h2|2Q2

)

− log

(

1 +
|g1|2P1

1 + |g1|2Q1 + |g2|2(P2 +Q2)

)}

(2.13)

R2 ≤ Eh,g

{

log

(

1 +
|h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log

(

1 +
|g2|2P2

1 + |g1|2(P1 +Q1) + |g2|2Q2

)}

(2.14)

R1 +R2 ≤ Eh,g

{

log

(

1 +
|h1|2P1 + |h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log

(

1 +
|g1|2P1 + |g2|2P2

1 + |g1|2Q1 + |g2|2Q2

)}

(2.15)

where h = [h1 h2]
T , g = [g1 g2]

T , and the instantaneous powers Pk and Qk, which are

both functions of h and g, satisfy

E [Pk +Qk] ≤ P̄k, k = 1, 2 (2.16)

2.4 Scaling Based Alignment (SBA)

In this section, we introduce a new achievable scheme for the fading MAC-WT. Our

achievable scheme is based on code repetition with proper scaling of the signals trans-

mitted by each transmitter. This is done as follows. For the channel described in

(2.1)-(2.2), we use a repetition code such that each transmitter repeats its channel

input symbol twice over two consecutive time instants. Due to code repetition, we
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may regard each of the MACs to the main receiver and to the eavesdropper as a

vector MAC composed of two parallel scalar MACs, one for the odd time instants

and the other for the even time instants. Consequently, we may describe the main

receiver MAC channel by the following pair of equations

Yo = h1oX1 + h2oX2 +No (2.17)

Ye = h1eX1 + h2eX2 +Ne (2.18)

where, for k = 1, 2, hko, hke are the coefficients of the kth main receiver channel in

odd and even time instants, Yo, Ye and No, Ne are the received signal and the noise at

the main receiver in odd and even time instants. In the same way, we may describe

the eavesdropper MAC channel by the following pair of equations

Zo = g1oX1 + g2oX2 +N ′
o (2.19)

Ze = g1eX1 + g2eX2 +N ′
e (2.20)

where, for k = 1, 2, gko, gke are the coefficients of the kth eavesdropper channel in odd

and even time instants, Zo, Ze and No, Ne are the received signal and the noise at the

eavesdropper in odd and even time instants.

Since all the channel gains are known to all nodes in a causal fashion, the two

transmitters use this knowledge as follows. In every symbol instant, each transmitter

scales its transmit signal with the gain of the other transmitter’s channel to the

eavesdropper. That is, in every symbol duration, the first user multiplies its channel
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input with g2, the channel gain of the second user to the eavesdropper, and the

second user multiplies its channel input with g1, the channel gain of the first user to

the eavesdropper. Hence the main receiver MAC can be described as

Yo = h1og2oX1 + h2og1oX2 +No (2.21)

Ye = h1eg2eX1 + h2eg1eX2 +Ne (2.22)

and the eavesdropper MAC can be described as

Zo = g1og2oX1 + g1og2oX2 +N ′
o (2.23)

Ze = g1eg2eX1 + g1eg2eX2 +N ′
e (2.24)

It is clear from (2.21)-(2.22) that the space of the received signal (without noise,

i.e., high SNR) of the main receiver over the two consecutive time instants is two-

dimensional almost surely. In other words, the channel matrix of the main receiver

vector MAC is full-rank almost surely. This is due to the fact that the channel

coefficients are drawn from continuous bounded distributions. On the other hand, it

is clear from (2.23)-(2.24) that the channel matrix of the eavesdropper vector MAC is

unit-rank. That is, the two ingredients of our scheme, i.e., code repetition and signal

scaling, let the interfering signals at the main receiver live in a two-dimensional space,

while they align the interfering signals at the eavesdropper in a one-dimensional space.

As we will show in the Section 2.6, these properties play a central role in achieving

secrecy rates that scale with SNR.

24



Let ho = (h1o, h2o) and he = (h1e, h2e). We define go and ge in the same way.

For k = 1, 2, we define the power allocation policy of transmitter k as a mapping

Pk : C4 → R+ which maps (ho,go) to a non-negative real number Pk (ho,go) which

is the power of transmitter k in the odd time slot for which the values of channel

gains are (ho,go). Note that due to symbol repetition, Pk is a function of (ho,go)

only and does not depend on (he,ge). To simplify notation, we will use Pk to denote

Pk (ho,go) since this dependency on channel gains is implicitly understood. We note

that, due to signal scaling at the transmitters, the average power constraints become

E
[(

|g2o|2 + |g2e|2
)

P1

]

≤ P̄1 (2.25)

E
[(

|g1o|2 + |g1e|2
)

P2

]

≤ P̄2 (2.26)

Now, we evaluate the secrecy rate region achievable by our scaling based align-

ment (SBA) scheme. Given the vector channels (2.21)-(2.22) and (2.23)-(2.24), the

following secrecy rates are achievable [19], [20], [5],

R1 ≤
1

2
[I(X1;Yo, Ye|X2,h,g)− I(X1;Zo, Ze|h,g)] (2.27)

R2 ≤
1

2
[I(X2;Yo, Ye|X1,h,g)− I(X2;Zo, Ze|h,g)] (2.28)

R1 +R2 ≤
1

2
[I(X1, X2;Yo, Ye|h,g)− I(X1, X2;Zo, Ze|h,g)] (2.29)

where h = (ho,he) and g = (go,ge). These expressions for achievable rates follow

from (2.6)-(2.8) by treating channel states as outputs at the receivers, and noting the

independence of channel inputs and channel states. We note that the factor of 1
2
on
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the right hand sides of (2.27)-(2.29) is due to repetition coding. Now, by computing

(2.27)-(2.29) with Gaussian signals, we obtain the secrecy rate region given in the

following theorem.

Theorem 2.1 For the two-user fading MAC-WT, the rate region given by all rate

pairs (R1, R2) satisfying the following constraints is achievable with perfect secrecy

R1 ≤
1

2
Eh,g

{

log
(

1 + (|h1og2o|2 + |h1eg2e|2)P1

)

− log

(

1 +
(|g1og2o|2 + |g1eg2e|2)P1

1 + (|g1og2o|2 + |g1eg2e|2)P2

)}

(2.30)

R2 ≤
1

2
Eh,g

{

log
(

1 + (|h2og1o|2 + |h2eg1e|2)P2

)

− log

(

1 +
(|g1og2o|2 + |g1eg2e|2)P2

1 + (|g1og2o|2 + |g1eg2e|2)P1

)}

(2.31)

R1 +R2 ≤
1

2
Eh,g

{

log

(

1 +
(

|h1og2o|2 + |h1eg2e|2
)

P1 +
(

|h2og1o|2 + |h2eg1e|2
)

P2

+ |h1eh2og1og2e − h1oh2eg1eg2o|2P1P2

)

− log

(

1 +
(

|g1og2o|2 + |g1eg2e|2
)

(P1 + P2)

)

}

(2.32)

where P1, P2 are the power allocation policies (as defined above) of users 1 and 2,

respectively, that satisfy

E
[(

|g2o|2 + |g2e|2
)

P1

]

≤ P̄1 (2.33)

E
[(

|g1o|2 + |g1e|2
)

P2

]

≤ P̄2 (2.34)

where P̄1 and P̄2 are the average power constraints.
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2.5 Ergodic Secret Alignment (ESA)

After we have devised the scaling based alignment scheme, the ergodic interference

alignment scheme of Nazer et. al. [14] inspired us to propose an improved achievable

scheme. In this section, we discuss this scheme which we call ergodic secret alignment

(ESA). The new ingredient in this scheme is to perform repetition coding at two

carefully chosen time instances as opposed to two consecutive time instances as we

have done in Section 2.4.

For the MAC-WT described by (2.1)-(2.2), we use a repetition code in a way

similar to the one in [14]. The simple idea of the scheme is that we repeat each code

symbol in the time instant that holds certain channel conditions relative to the those

conditions in the time instant where this code symbol is first transmitted. Namely,

given a time instant with the main receiver channel state vector h = [h1 h2]
T and

the eavesdropper channel state vector g = [g1 g2]
T , where the symbols X1 and X2

are first transmitted by the two transmitters, we will solve for the channel states

h̃ = [h̃1 h̃2]
T and g̃ = [g̃1 g̃2]

T , where these symbols should be repeated again, such

that the resulting secrecy rates achieved by Gaussian signaling are maximized.

The above description is an intuitive description that gives the idea of the scheme

which is based on the concept of ergodic interference alignment introduced in [14]. A

rigorous description and proof follow the arguments in [14]. In particular, the idea of

the proof [14] is first to quantize the channel coefficients and deal with the quantized

coefficients rather than dealing with the original coefficients defined over the whole

complex plane. Then, one can show that those quantized channel coefficients of
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the same type (distribution) could be paired with another set of quantized channel

coefficients of a symmetric type. Consequently, one can derive the achievable rate

when such pairing between symmetric types is employed. Finally, using the continuity

of the achievable rate as a function in channel coefficients, one can argue that by

decreasing the quantization bin size, one can approach the desired rate for the original

channel (with complex coefficients) in the limit. The detailed proof is found in [14].

Due to code repetition, we may regard each of the MACs to the main receiver and

to the eavesdropper as a vector MAC composed of two parallel scalar MACs, one for

each one of the two time instants over which the same code symbols X1 and X2 are

transmitted. Consequently, we may describe the main receiver MAC channel by the

following pair of equations

Y1 = h1X1 + h2X2 +N1 (2.35)

Y2 = h̃1X1 + h̃2X2 +N2 (2.36)

where Y1, Y2 and N1, N2 are the received symbols and the noise at the main receiver

in the two time instants of code repetition. In the same way, we may describe the

eavesdropper MAC channel by the following pair of equations

Z1 = g1X1 + g2X2 +N ′
1 (2.37)

Z2 = g̃1X1 + g̃2X2 +N ′
2 (2.38)

where Z1, Z2 and N
′
1, N

′
2 are the received symbols and the noise at the eavesdropper in
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the two time instants of code repetition. For k = 1, 2, we define the power allocation

policy Pk of transmitter k in a way similar to the way it was defined in the SBA

scheme. Namely, it is defined as a mapping Pk : C4 → R+ which maps the values of

the channel gains (h,g) to a non-negative real number Pk (h,g) which is the power

of transmitter k when the channel gains take the values (h,g). Again, to simplify

notation, we will use Pk to denote Pk (h,g) since this dependency on channel gains

is implicitly understood.

In the next theorem, we give another achievable secrecy rate region for the two-user

fading MAC-WT. The achievable region is obtained using (2.27)-(2.29) and replacing

(Yo, Ye) and (Zo, Ze) with (Y1, Y2) and (Z1, Z2), respectively, and evaluating these

expressions with Gaussian signals, and by choosing optimal h̃ = (h̃1, h̃2) and g̃ =

(g̃1, g̃2) to maximize the achievable rates. As we will show shortly as a result of

Theorem 2.2, the optimal selection of h̃ and g̃ will yield an orthogonal MAC to the

main receiver and a scalar MAC to the eavesdropper. In writing the achievable rate

expressions, we will again account for code repetition by multiplying achievable rates

by a factor of 1
2
.

Theorem 2.2 For the two-user fading MAC-WT, the rate region given by all rate
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pairs (R1, R2) satisfying the following constraints is achievable with perfect secrecy

R1 ≤
1

2
Eh,g

{

log
(

1 + 2|h1|2P1

)

− log

(

1 +
2|g1|2P1

1 + 2|g2|2P2

)}

(2.39)

R2 ≤
1

2
Eh,g

{

log
(

1 + 2|h2|2P2

)

− log

(

1 +
2|g2|2P2

1 + 2|g1|2P1

)}

(2.40)

R1 +R2 ≤
1

2
Eh,g

{

log
(

1 + 2|h1|2P1

)

+ log
(

1 + 2|h2|2P2

)

− log
(

1 + 2(|g1|2P1 + |g2|2P2)
)

}

(2.41)

where P1 and P2 are the power allocation policies of users 1 and 2, respectively, and

are both functions of h and g in general (as defined above). In addition, they satisfy

the average power constraints

E[P1] ≤ P̄1 (2.42)

E[P2] ≤ P̄2 (2.43)

Proof: First, consider the two vector MACs given by (2.35)-(2.38). Observe that as

in [14], h̃ must be chosen such that it has the same distribution as h and g̃ must

be chosen such that it has the same distribution as g. The reason for this can be

understood from the idea of the proof in [14] discussed earlier in this section. Indeed,

in the quantized channel, in order for the pairing between channel coefficients at two

different instants to be possible, the values of the channel coefficients at the two time

instants must occur with the same probability. That is why we require that h̃ and g̃

to have the same distributions as h and g, respectively. Now, since h ∼ CN (0,Bh)
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and g ∼ CN (0,Bg) where Bh = diag(σ2
h1
, σ2

h2
) and Bg = diag(σ2

g1
, σ2

g2
), then in

order to achieve the requirement above, it follows from the symmetry property of the

complex Gaussian distribution that the channel realizations h and g must be paired

with the channel realizations h̃ and g̃, respectively, that are related as h̃ = Uh

and g̃ = Vg for some unitary matrices U and V (rotations in C
2). Furthermore,

for such rotations to preserve the variances of the individual components of h (i.e.,

σ2
h1
, σ2

h2
) and of g (i.e., σ2

g1
, σ2

g2
), we must have U = diag(exp(jθ1), exp(jθ2)) and

V = diag(exp(jω1), exp(jω2)) for some θ1, θ2, ω1, ω2 ∈ [0, 2π). Then, it follows that

(2.35)-(2.38) can be written as

Y1 = h1X1 + h2X2 +N1 (2.44)

Y2 = h1e
jθ1X1 + h2e

jθ2X2 +N2 (2.45)

Z1 = g1X1 + g2X2 +N ′
1 (2.46)

Z2 = g1e
jω1X1 + g2e

jω2X2 +N ′
2 (2.47)

Using (2.27)-(2.29) and replacing (Yo, Ye) and (Zo, Ze) with (Y1, Y2) and (Z1, Z2),
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respectively, and computing these achievable rates with Gaussian signals, we get

R1 ≤
1

2
Eh,g

{

log
(

1 + 2|h1|2P1

)

− log

(

1 +
2|g1|2P1 + 2(1− cos(ω))|g1|2|g2|2P1P2

1 + 2|g2|2P2

)}

(2.48)

R2 ≤
1

2
Eh,g

{

log
(

1 + 2|h2|2P2

)

− log

(

1 +
2|g2|2P2 + 2(1− cos(ω))|g1|2|g2|2P1P2

1 + 2|g1|2P1

)}

(2.49)

R1 +R2 ≤
1

2
Eh,g

{

log(1 + 2|h1|2P1 + 2|h2|2P2 + 2(1− cos(θ))|h1|2|h2|2P1P2)

− log(1 + 2|g1|2P1 + 2|g2|2P2 + 2(1− cos(ω))|g1|2|g2|2P1P2)
}

(2.50)

where θ = θ2 − θ1 and ω = ω2 − ω1.

Hence, the largest achievable secrecy rate region (2.48)-(2.50) is attained by choos-

ing θ = π and ω = 0. This can be achieved by choosing θ1 = 0 and θ2 = π and by

choosing ω1 = ω2 = 0. Consequently, we have h̃ = [h1 − h2]
T and g̃ = [g1 g2]

T . By

substituting these values of θ and ω in (2.48)-(2.50), we obtain the region given by

(2.39)-(2.41). 2

Therefore, when using the ergodic secret alignment technique, the best choice

for h̃1 and h̃2 is such that h̃ is orthogonal to h and that ‖h̃‖ = ‖h‖, and the best

choice for g̃1 and g̃2 is such that g̃ and g are linearly dependent and that ‖g̃‖ = ‖g‖,

i.e., g̃ = g. This choice makes the vector MAC between the two transmitters and

the main receiver equivalent to an orthogonal MAC, i.e., two independent single-user

fading channels, one from each transmitter to the main receiver. This equivalent main
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receiver MAC channel can be expressed as

Ȳ1 = 2h1X1 + N̄1 (2.51)

Ȳ2 = 2h2X2 + N̄2 (2.52)

where Ȳ1 = Y1+Y2, Ȳ2 = Y1−Y2, N̄1 = N1+N2, and N̄2 = N1−N2. Note that N̄1 and

N̄2 are independent. On the other hand, this choice makes the vector MAC between

the two transmitters and the eavesdropper equivalent to a single scalar MAC. This

equivalent eavesdropper MAC channel can be expressed as

Z̄1 = 2g1X1 + 2g2X2 + N̄ ′
1 (2.53)

Z̄2 = N̄ ′
2 (2.54)

where Z̄1 = Z1 + Z2, Z̄2 = Z1 − Z2, N̄
′
1 = N ′

1 + N ′
2, and N̄ ′

2 = N ′
1 − N ′

2. Note

again that N̄1 and N̄2 are independent. Note that, here, the second component of the

eavesdropper’s vector MAC is useless for her (i.e., leaks no further information than

the first component) as it contains only noise. This selection of the repetition channel

state yields a most favorable setting for the main receiver and a least favorable setting

for the eavesdropper.

2.6 Degrees of Freedom

In this section, we show that the secrecy sum rates achieved by our schemes scale

with SNR as 1
2
log(SNR) and that the secrecy sum rate achieved by the cooperative
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jamming scheme given in [18] does not scale with SNR. What we give here are rigorous

proofs for intuitive results. Since by looking at (2.32) and (2.41), one can note that,

if we assume that P̄1 = P̄2 = P , then if we take P1 = P2 = P , as P becomes large,

roughly speaking, in (2.32) the first term inside the expectation grows as log(P 2) while

the second term grows as log(P ) and hence the overall expression grows as 1
2
log(P );

and similarly, in (2.41), all three terms inside the expectation grow as log(P ) and

hence the overall expression grows as 1
2
log(P ). In the same way, by considering the

secrecy sum rate achieved by the cooperative jamming scheme given in (2.15), then

by referring to the power allocation policies given in [18], one can also roughly say

that for all channel states, as the available average power goes to infinity, the overall

expression converges to a constant.

For simplicity, we assume symmetric average power constraints for all schemes,

i.e., we set P̄1 = P̄2 = P in (2.33)-(2.34), (2.42)-(2.43), and (2.16). We also assume

that all channel gains are drawn from continuous bounded distributions and that all

channel gains have finite variances. Let Rs be the achievable secrecy sum rate, then

the total number of achievable secure DoF, η, is defined as

η , lim
P→∞

Rs

log(P )
(2.55)

We start by the DoF analysis of our proposed schemes, i.e., the SBA scheme and the

ESA scheme, where we show that the sum secrecy rates obtained by these schemes

achieve 1
2
secure DoF, then we provide a rigorous proof for the fact that the scheme

of [18] which is based on i.i.d. Gaussian signaling with cooperative jamming achieves
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a secrecy sum rate that does not scale with SNR, i.e., achieves zero secure DoF.

2.6.1 Secure DoF with the SBA Scheme

We make the following choices for the power allocation policies P1 and P2 of the SBA

scheme. We set P1 =
1

2σ2
g2

P , P2 =
1

2σ2
g1

P . It can be verified that these choices satisfy

the power constraints (2.33)-(2.34). Denoting the expression inside the expectation

in (2.32) by fP (h,g), the secrecy sum rate achieved using the SBA scheme can be

written as

Rs =
1

2
Eh,g {fP (h,g)} (2.56)

Hence, the total achievable secure DoF is given by

η =
1

2
lim
P→∞

Eh,g

[

fP (h,g)

log(P )

]

(2.57)

Now, we show that, for the two-user fading MAC-WT, a total number of secure

DoF η = 1
2
is achievable with the SBA scheme. Towards this end, it suffices to show

that the order of the limit and the expectation in (2.57) can be reversed. To do this,

we make use of Lebesgue dominated convergence theorem. Now, we note that for
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large enough P , fP (h,g)
log(P )

is upper bounded by ψ(h,g) where

ψ(h,g) =4 + 2

(

log

(

1 +
1

σ2
g1

)

+ log

(

1 +
1

σ2
g2

))

+ log

(

1 +
σ2
g1
+ σ2

g2

σ2
g1
σ2
g2

)

+ 3

(

2
∑

k=1

log(1 + |hko|2) +
2

∑

k=1

log(1 + |hke|2)
)

+ 4

(

2
∑

k=1

log(1 + |gko|2) +
2

∑

k=1

log(1 + |gke|2)
)

(2.58)

Hence, using the fact that all channel gains have finite variances together with Jensen’s

inequality, we have

Eh,g [ψ(h,g)] <∞ (2.59)

Thus, by the dominated convergence theorem, we have

lim
P→∞

Eh,g

[

fP (h,g)

log(P )

]

= Eh,g

[

lim
P→∞

fP (h,g)

log(P )

]

= 1 (2.60)

Hence, from (2.57), we have η = 1
2
.

2.6.2 Secure DoF with the ESA Scheme

We show that the ESA scheme achieves η = 1
2
secure DoF in the two-user fading

MAC-WT. Here, we also use a constant power allocation policy for the ESA scheme

where we set P1 = P2 = P for all channel states. Clearly, this constant policy

satisfies the average power constraints (2.42)-(2.43). Denoting the expression inside
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the expectation in (2.41) by f̃P (h,g), the achievable secrecy sum rate, Rs is given by

Rs =
1

2
Eh,g

{

f̃P (h,g)
}

(2.61)

Hence, the total achievable secure DoF is given by

η =
1

2
lim
P→∞

Eh,g

[

f̃P (h,g)

log(P )

]

(2.62)

We note that for large enough P , f̃P (h,g)
log(P )

≤ ψ̃(h,g) where

ψ̃(h,g) = 6 + log
(

1 + 2|h1|2
)

+ log
(

1 + 2|h2|2
)

+ log
(

1 + 2
(

|g1|2 + |g2|2
))

(2.63)

Again, using the fact that all channel gains have finite variances together with Jensen’s

inequality, we have

Eh,g

[

ψ̃(h,g)
]

<∞ (2.64)

Then, by the dominated convergence theorem, we have

lim
P→∞

Eh,g

[

f̃P (h,g)

log(P )

]

= Eh,g

[

lim
P→∞

f̃P (h,g)

log(P )

]

= 1 (2.65)

Hence, from (2.62), we have η = 1
2
.

37



2.6.3 Secure DoF with i.i.d. Gaussian Signaling with CJ

We consider the secrecy sum rate achieved by Gaussian signaling with cooperative

jamming (CJ) [18] in the fading MAC-WT and show that this achievable rate does

not scale with SNR. We start with the secrecy sum rate given by the right hand

side of (2.15). According to the optimal power allocation policy described in [18],

for k = 1, 2, we cannot have Pk > 0 and Qk > 0 simultaneously. Moreover, no

transmission occurs when |h1| ≤ |g1| and |h2| ≤ |g2|. Consequently, according to

the relative values of the channel gains (|h1|, |h2|, |g1|, |g2|), there are three different

cases left for the instantaneous secrecy sum rate achieved using the optimum power

allocation where we omitted the case where |h1| ≤ |g1| and |h2| ≤ |g2| since no

transmission is allowed.

Case 1: (h,g) ∈ D1 where D1 =
{

(h,g) : |h1| > |g1|, |h2| > |g2|
}

. Consequently,

Q1 = Q2 = 0. Thus, the instantaneous secrecy sum rate, Rs(h,g), can be written as

Rs(h,g) = log

(

1 + |h1|2P1 + |h2|2P2

1 + |g1|2P1 + |g2|2P2

)

(2.66)

We can upper bound Rs(h,g) as

Rs(h,g) ≤ log

(

1 +
|h1|2
|g1|2

+
|h2|2
|g2|2

)

≤ log

(

1 +
|h1|2
|g1|2

)

+ log

(

1 +
|h2|2
|g2|2

)

(2.67)

Case 2: (h,g) ∈ D2 where D2 =
{

(h,g) : |h1| > |g1|, |h2| < |g2|
}

. Consequently,
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Q1 = P2 = 0. Thus, the instantaneous secrecy sum rate, Rs(h,g), can be written as

Rs(h,g) = log

(

1 + |h1|2P1 + |h2|2Q2

1 + |g1|2P1 + |g2|2Q2

)

+ log

(

1 + |g2|2Q2

1 + |h2|2Q2

)

(2.68)

We can upper bound Rs(h,g) as

Rs(h,g) ≤ 1 + log

(

1 +
|h1|2
|g1|2

)

+ log

(

1 +
|g2|2
|h2|2

)

(2.69)

Case 3: (h,g) ∈ D3 where D3 =
{

(h,g) : |h1| < |g1|, |h2| > |g2|
}

. Consequently,

P1 = Q2 = 0. Thus, the instantaneous secrecy sum rate, Rs(h,g), can be written as

Rs(h,g) = log

(

1 + |h1|2Q1 + |h2|2P2

1 + |g1|2Q1 + |g2|2P2

)

+ log

(

1 + |g1|2Q1

1 + |h1|2Q1

)

(2.70)

We can upper bound Rs(h,g) as

Rs(h,g) ≤ 1 + log

(

1 +
|h2|2
|g2|2

)

+ log

(

1 +
|g1|2
|h1|2

)

(2.71)

Now, since the instantaneous sum rate is zero outside D1 ∪ D2 ∪ D3, then from

(2.67), (2.69), and (2.71), the ergodic secrecy sum rate, Rs, can be upper bounded as
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follows

Rs ≤
∫

D1

(

log

(

1 +
|h1|2
|g1|2

)

+ log

(

1 +
|h2|2
|g2|2

))

dF

+

∫

D2

(

1 + log

(

1 +
|h1|2
|g1|2

)

+ log

(

1 +
|g2|2
|h2|2

))

dF

+

∫

D3

(

1 + log

(

1 +
|h2|2
|g2|2

)

+ log

(

1 +
|g1|2
|h1|2

))

dF (2.72)

where

dF =
2

∏

k=1

f(|hk|2)f(|gk|2)d|hk|2d|gk|2 (2.73)

where, for k = 1, 2, f(|hk|2) and f(|gk|2) are the density functions of |hk|2 and |gk|2,

respectively. Now, since E[|hk|2] < ∞, E[|gk|2] < ∞ for k = 1, 2, |
∫ 1

0
log(x)dx| =

log(e) <∞, |
∫ 1

0
log(1+x)dx| = 2− log(e) <∞, and f(|hk|2), f(|gk|2) are continuous

and bounded for k = 1, 2, it follows that each of the three integrals in the above

expression is finite. Hence, we have Rs <∞, and that Rs is bounded from above by

a constant. Thus, from definition (2.55) of the achievable secure DoF, η, we have

η = lim
P→∞

Rs

log(P )
= 0 (2.74)

2.7 ESA Scheme with Cooperative Jamming

The result given in Theorem 2.2 can be strengthened by adding the technique of

cooperative jamming to the ESA scheme of Section 2.5. We refer to the resulting

40



scheme as ESA/CJ. This is done through Gaussian channel prefixing as discussed

in Section 2.3. In particular, we choose the channel inputs in (2.35)-(2.38) to be

X1 = V1 + T1 and X2 = V2 + T2, and then choose V1, V2, T1, T2 to be independent

Gaussian random variables. Namely, for k = 1, 2, Vk and Tk are Gaussian random

variables with zero mean and variances Pk and Qk, respectively. Here, V1 and V2

carry messages, while T1 and T2 are jamming signals. The powers of (V1, T1) and

(V2, T2) should be chosen to satisfy the average power constraints of users 1 and 2,

respectively. After these selections are made, the transmitters repeat their channel

inputs X1 and X2 over two time instants in the same way described in the ESA

scheme of Section 2.5. In particular, when transmitters 1 and 2 repeat X1 and X2,

they repeat their selections of (V1, T1) and (V2, T2), respectively. Accordingly, the

ESA scheme yield the following achievable rate region which, through an appropriate

power control strategy (see Section 2.9), can be made strictly larger than the region

given in Theorem 2.2,

R1 ≤
1

2
Eh,g

{

log

(

1 +
2|h1|2P1

1 + 2|h1|2Q1

)

− log

(

1 +
2|g1|2P1

1 + 2|g1|2Q1 + 2|g2|2(P2 +Q2)

)

}

(2.75)

R2 ≤
1

2
Eh,g

{

log

(

1 +
2|h2|2P2

1 + 2|h2|2Q2

)

− log

(

1 +
2|g2|2P2

1 + 2|g1|2(P1 +Q1) + 2|g2|2Q2

)

}

(2.76)

R1 +R2 ≤
1

2
Eh,g

{

log

(

1 +
2|h1|2P1

1 + 2|h1|2Q1

)

+ log

(

1 +
2|h2|2P2

1 + 2|h2|2Q2

)

− log

(

1 +
2(|g1|2P1 + |g2|2P2)

1 + 2(|g1|2Q1 + |g2|2Q2)

)

}

(2.77)
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where, for k = 1, 2, Pk and Qk are the transmission and jamming power allocation

policies, respectively, of user k, and are both functions of h and g in general. In

addition, they satisfy the average power constraints

E[Pk +Qk] ≤ P̄k, k = 1, 2 (2.78)

2.8 Maximizing Secrecy Sum Rate of the ESA Scheme

In this section, we consider the problem of maximizing the secrecy sum rate achieved

by the ESA scheme as a function of the power allocations P1 and P2 of users 1 and 2,

respectively. We define αk , 2|hk|2 and βk , 2|gk|2. Then, we define α , [α1 α2]
T

and β , [β1 β2]
T . The achievable secrecy sum rate is given by

Rs =
1

2
Eα,β{log (1 + α1P1) + log (1 + α2P2)− log (1 + β1P1 + β2P2)} (2.79)

We can write the optimization problem as

max
1

2
Eα,β{log (1 + α1P1) + log (1 + α2P2)− log (1 + β1P1 + β2P2)} (2.80)

s.t. Eα,β [Pk(α,β)] ≤ P̄k, k = 1, 2 (2.81)

Pk(α,β) ≥ 0, k = 1, 2, ∀α,β (2.82)
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The necessary KKT optimality conditions are

α1

1 + α1P1

− β1

1 + β1P1 + β2P2

− (λ1 − µ1) = 0 (2.83)

α2

1 + α2P2

− β2

1 + β1P1 + β2P2

− (λ2 − µ2) = 0 (2.84)

for some λk, µk ≥ 0, k = 1, 2. It should be noted here that (2.83)-(2.84) are only

necessary conditions for the optimal power allocations P1 and P2 since the objective

function, i.e., the achievable secrecy sum rate, is not concave in (P1, P2) in general.

For each channel state, we distinguish between three non-zero forms that the

solution (P1, P2) of (2.83)-(2.84) may take. First, if P1 > 0 and P2 > 0, then µ1 =

µ2 = 0. Hence (P1, P2) is the positive common root of the following two quadratic

equations

α1 (1 + β2P2)− β1 = λ1 (1 + α1P1) (1 + β1P1 + β2P2) (2.85)

α2 (1 + β1P1)− β2 = λ2 (1 + α2P2) (1 + β1P1 + β2P2) (2.86)

Since it is hard to find a simple closed-form solution for the above system of equa-

tions, we solve this system numerically and obtain the positive common root (P1, P2).

Secondly, if P1 > 0 and P2 = 0, then µ1 = 0. Hence, from (2.83), P1 is given by

P1 =
1

2





√

(

1

β1
− 1

α1

)2

+
4

λ1

(

1

β1
− 1

α1

)

−
(

1

β1
+

1

α1

)



 (2.87)
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Thirdly, if P1 = 0 and P2 > 0, then µ2 = 0. Hence, from (2.84), P2 is given by

P2 =
1

2





√

(

1

β2
− 1

α2

)2

+
4

λ2

(

1

β2
− 1

α2

)

−
(

1

β2
+

1

α2

)



 (2.88)

From conditions (2.83)-(2.84), we can derive the following necessary and sufficient

conditions for the positivity of the optimal power allocation policies:

P1 > 0, if and only if α1 −
β1

(1 + β2P2)
> λ1 (2.89)

P2 > 0, if and only if α2 −
β2

(1 + β1P1)
> λ2 (2.90)

Consequently, according to conditions (2.89)-(2.90), we can divide the set of all pos-

sible channel states into 7 partitions such that in each partition the solution (P1, P2)

will either have one of the three forms stated above or will be zero. Hence, the power

allocation policy (P1, P2) that satisfies (2.83)-(2.84) and (2.81)-(2.82) can be fully

described in 7 different cases of the channel gains. The details of such cases are given

in the Appendix.

2.9 Maximizing Secrecy Sum Rate of the ESA/CJ Scheme

In this section, we consider the problem of maximizing the achievable secrecy sum rate

as a function in the power allocation policies P1 and P2 when cooperative jamming

technique is used on top of the ESA scheme. Again, we define αk , 2|hk|2 and

βk , 2|gk|2. Then, we define α , [α1 α2]
T and β , [β1 β2]

T . In this case, the
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optimization problem is described as

max
1

2
Eα,β

{

log (1 + α1(P1 +Q1)) + log (1 + α2(P2 +Q2))

− log (1 + β1(P1 +Q1) + β2(P2 +Q2)) + log (1 + β1Q1 + β2Q2)

− log (1 + α1Q1)− log (1 + α2Q2)
}

(2.91)

s.t. Eα,β [Pk(α,β) +Qk(α,β)] ≤ P̄k, k = 1, 2 (2.92)

Pk(α,β), Qk(α,β) ≥ 0, k = 1, 2, ∀α,β (2.93)

We first show that, at any fading state, splitting a user’s power into transmission

and jamming is suboptimal, i.e., an optimum power allocation policy must not have

Pk > 0 and Qk > 0 simultaneously. We note that whether we split powers or not does

not affect the first three terms of the objective function since we can always convert

jamming power of user k into transmission power of the same user and vice versa

while keeping the sum Pk +Qk fixed. Hence, we consider the last three terms of the

sum rate. For convenience, we define

S = log (1 + β1Q1 + β2Q2)− log (1 + α1Q1)− log (1 + α2Q2) (2.94)

Consider, without loss of generality, the power allocation for user 1. We assume that

P ∗
1 , Q

∗
1 is the optimum power allocation for user 1. We observe that the sign of

∂S

∂Q1

=
β1

1 + β1Q1 + β2Q2

− α1

1 + α1Q1

(2.95)
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does not depend on Q1. Consider a power allocation P1 = P ∗
1 − ε,Q1 = Q∗

1 + ε.

Hence, we have P1 + Q1 = P ∗
1 + Q∗

1 and the first three terms in the expression of

the achievable sum rate do not change. On the other hand, if (2.95) is positive, any

positive ε results in an increase in the achievable sum rate and jamming with the

same sum power is better. While, if (2.95) is negative, then any negative ε results in

an increase in the achievable sum rate and transmitting with the same sum power is

better. If (2.95) is zero, then the sum rate does not depend on Q1 and we can set

it to zero, i.e., use the sum power in transmitting. Therefore, the optimum power

allocation will have either Pk > 0 or Qk > 0, but not both.

Suppose that P1, P2, Q1, and Q2 are the optimal power allocations. Then, the

necessary KKT conditions satisfy

α1

1 + α1(P1 +Q1)
− β1

1 + β1(P1 +Q1) + β2(P2 +Q2)
− (λ1 − µ1) = 0 (2.96)

α2

1 + α2(P2 +Q2)
− β2

1 + β1(P1 +Q1) + β2(P2 +Q2)
− (λ2 − µ2) = 0 (2.97)

α1

1 + α1(P1 +Q1)
− β1

1 + β1(P1 +Q1) + β2(P2 +Q2)
+

β1

1 + β1Q1 + β2Q2

− α1

1 + α1Q1

− (λ1 − ν1) = 0 (2.98)

α2

1 + α2(P2 +Q2)
− β2

1 + β1(P1 +Q1) + β2(P2 +Q2)
+

β2

1 + β1Q1 + β2Q2

− α2

1 + α2Q2

− (λ2 − ν2) = 0 (2.99)

for some λk, µk, νk ≥ 0, k = 1, 2. As in Section 2.8, we note that (2.96)-(2.99)

are only necessary conditions for the optimal power allocations P1, P2, Q1, and Q2

since the objective function, i.e., the achievable secrecy sum rate, is not concave
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in (P1, P2, Q1, Q2) in general. Therefore, we give power control policies P1, P2, Q1,

and Q2 that satisfy these necessary conditions. That is, we obtain one fixed point

(P1, P2, Q1, Q2) of the Lagrangian such that (P1, P2, Q1, Q2) satisfies the constraints

(2.92)-(2.93). The power allocation policy (P1, P2, Q1, Q2) that satisfies (2.96)-(2.99)

and (2.92)-(2.93) is described in detail in Appendix.

2.10 Numerical Results

In this section, we present some simple simulation results. We also plot the sum

secrecy rate achieved using our SBA and ESA schemes, as well as the i.i.d. Gaussian

signaling with cooperative jamming (GS/CJ) scheme in [18]. First, the secrecy sum

rates achieved by the SBA and the ESA schemes scale with SNR. Hence, these rates

exceed the one achieved by the GS/CJ scheme for high SNR. Second, the secrecy sum

rate achieved by the ESA scheme is larger than the one achieved by the SBA scheme

for all SNR.

In our first set of simulations, we use a rudimentary power allocation policy for

our SBA and ESA schemes. For the SBA scheme, we first note, from (2.32), that the

secrecy sum rate achieved can be expressed as a nested expectation as

Rs =
1

2
Eho,go

{

Ehe,ge

[

log

(

1 +
(

|h1og2o|2 + |h1eg2e|2
)

P1 +
(

|h2og1o|2 + |h2eg1e|2
)

P2

+ |h1eh2og1og2e − h1oh2eg1eg2o|2P1P2

)

− log

(

1 +
(

|g1og2o|2 + |g1eg2e|2
)

(P1 + P2)

)

]}

(2.100)
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where ho = [h1o h2o]
T , he = [h1e h2e]

T , go = [g1o g2o]
T , and ge = [g1e g2e]

T . For those

channel gains ho,go for which the inner expectation with respect to he,ge is negative,

we set P1 = P2 = 0. Otherwise, we set P1 =
1

2σ2
g
P̄1 and P2 =

1
2σ2

g
P̄2. Note that turning

off the powers for some values of the channel gains ho,go is possible since P1 and P2

are functions of ho and go. Secondly, note that, if a power allocation satisfies the

average power constraints, then the modified power allocation where the powers are

turned off at some channel states, also satisfies the power constraints. For the ESA

scheme, we first note, from (2.41), that the achievable secrecy sum rate is

Rs =
1

2
Eh,g

{

log
(

1 + 2|h1|2P1

)

+ log
(

1 + 2|h2|2P2

)

− log
(

1 + 2(|g1|2P1 + |g2|2P2)
)}

(2.101)

In this case, we set P1 = P2 = 0 for those values of channel gains for which the

difference inside the expectation is negative. Otherwise, we set P1 = P̄1 and P2 = P̄2.

Again, turning the powers off does not violate power constraints for a power allocation

scheme which already satisfies the power constraints. For the GS/CJ scheme, we use

the power allocation scheme described in [18].

In Figure 2.1, the secrecy sum rate achieved by each of the three schemes is

plotted versus the average SNR that we define as 1
2
(P̄1 + P̄2). In all simulations, we

set σ2
h1

= σ2
h2

= 1.0, we also take σ2
g1

= σ2
g2

= 0.75. Clearly, the secrecy sum rate

achieved by the GS/CJ scheme saturates as we increase the SNR while the secrecy

sum rate achieved by the SBA and the ESA schemes grows unboundedly with the

SNR. One can also notice, as discussed earlier, that the secrecy sum rate achieved by
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Figure 2.1: Achievable secrecy sum-rates of the SBA, the ESA, and GS/CJ schemes
as function of the SNR for two different values of σ2

g .

the ESA scheme is larger than the one achieved by the SBA scheme which is due to

the fact that the ESA scheme creates two totally uncorrelated parallel MAC channels

(i.e., orthogonal MAC) between the transmitters and the main receiver.

Next, in Figure 2.2, we plot secrecy sum rates achievable with constant power

allocation together with secrecy sum rates achievable with power control for the ESA

scheme with and without cooperative jamming. It is clear here that the secrecy sum

rate achieved by the ESA/CJ scheme (with power control) is larger than the rate

achieved when the ESA scheme is used solely without cooperative jamming (with or

without power control). One may also note that, for low SNR, the GS/CJ scheme still

gives better rates than those achieved by all the proposed schemes which is due to

the factor of 1
2
in the rates achieved by the proposed schemes due to code repetition.
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Figure 2.2: Achievable secrecy sum rates for the ESA scheme with and without power
control, the ESA/CJ scheme with power control, and the GS/CJ scheme as functions
of the SNR for two different values of σ2

g .

2.11 The SBA and ESA schemes for the K-user Fading MAC-WT

Channel

Let K , {1, ..., K}. We consider the K-user MAC-WT for which the channel outputs

at the intended receiver and the eavesdropper are given by

Y =
∑

k∈K

hkXk +N (2.102)

Z =
∑

k∈K

gkXk +N ′ (2.103)
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where, for k ∈ K, hk, gk, Xk, N, N
′ are as defined in Section 2.2. The average power

constraints are given by

E[|Xk|2] ≤ P̄k, k ∈ K (2.104)

2.11.1 The SBA scheme

Here, we use a repetition code in which each transmitter repeats its channel input

symbol over K consecutive time instants. Moreover, in every time instant, ∀k ∈ K,

transmitter k multiplies its channel input by
∏

i∈K\{k} gi. Thus, over K consecutive

time instants, the channel outputs at the main receiver and the eavesdropper are

given by

Yj =
∑

k∈K

hkj
∏

i∈K\{k}

gijXk +Nj , 1 ≤ j ≤ K (2.105)

Zj =
∏

i∈K

gij
∑

k∈K

Xk +N ′
j , 1 ≤ j ≤ K (2.106)

where Yj and Zj denote the observations at the jth time instant at each of the main

receiver and the eavesdropper, respectively, hij and gij denote the channel coefficients

at the jth time instant from the ith transmitter to the main receiver and the eaves-

dropper, respectively. Note that due to such scaling at the transmitters, the average

power constraints become

E





K
∑

j=1

∏

i∈K\{k}

|gij|2Pk



 ≤ P̄k, k ∈ K (2.107)

51



It is clear from (2.105)-(2.106) that the observed signal space (without noise, i.e., at

high SNR) of the main receiver over the K consecutive time instants is K-dimensional

almost surely whereas that of the eavesdropper is one-dimensional. Indeed, one can

express (2.105)-(2.106) as

Y = HX+N (2.108)

Z = GX+N′ (2.109)

where X = [X1, ..., XK ]
T ,Y = [Y1, ..., YK ]

T , Z = [Z1, ..., ZK ]
T , H is K ×K full-rank

matrix of effective channel gains from the transmitters to the main receiver, and G

is K × K unit-rank matrix of effective channel gains from the transmitters to the

eavesdropper, where the elements at the jth row and the kth column of H and G are

given, respectively, by

Hjk = hkj
∏

i∈K\{k}

gij (2.110)

Gjk =
∏

i∈K

gij (2.111)

Hence, the achievable secrecy sum rate is given by

Rs =
1

K
EH,G {log (det (I+HSH∗))− log (det (I+GSG∗))} (2.112)

where S , Cov(X) = diag (P1, ..., PK) and A∗ denotes the conjugate transpose of the

matrix A.
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In fact, the system given in (2.108) is equivalent to K ×K MIMO channel with

independent signaling across the antennas. Since H is full-rank, such MIMO channel

possesses exactly K DoF. On the other hand, the system given in (2.109) is equivalent

to K×K MIMO channel with independent signaling across the antennas and since G

is unit-rank, such MIMO channel possesses exactly 1 DoF. Therefore, while deriving

the total secure DoF achieved by the SBA scheme, conditioned on H and G, the first

term inside the expectation above yields K DoF whereas the second term inside the

expectation yields 1 DoF. Thus, the total achievable secure DoF is η = K−1
K

.

2.11.2 The ESA scheme

In order to extend the ESA scheme to the case of more than two users, i.e., K-

user fading MAC-WT channel with K ≥ 2, we use a repetition code, where each

code symbol is repeated K times over K channel uses. However, unlike the SBA

scheme, repetition is done over channel uses that hold certain conditions relative to

those conditions in the channel use where this code symbol is first transmitted. For

1 ≤ ` ≤ K, let

h` , [h1`, ..., hK`]
T (2.113)

g` , [g1`, ..., gK`]
T (2.114)

where hk` and gk` denote the channel coefficients at the `th channel use from the

kth transmitter to the main receiver and the eavesdropper, respectively. Following

the same steps given in Section 2.5, one can easily verify that the optimal repetition
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channel use `, 2 ≤ ` ≤ K (relative to the channel use where the first copy of the

symbol is transmitted) must be chosen such that

h` = U`h1 (2.115)

g` = g1 (2.116)

where

U` , diag
(

1, ej
2π
K

(`−1), ..., ej
2π
K

(`−1)(K−1)
)

(2.117)

where j =
√
−1. Note that, as explained in Section 2.5, the above argument is

based on the proof of the ergodic interference alignment technique given in [14].

The main idea is to quantize the channel coefficients and then group the sets of

coefficients of symmetric types together. That is indeed tantamount to grouping

{h`, g` : 1 ≤ ` ≤ K} together. Note that indeed this is possible due to the circular

symmetry of the distribution of the channel coefficients. Then, using the continuity of

the achievable rate as a function in channel coefficients, by decreasing the quantization

bin size, one can approach the desired rate in the limit.

According to the selection given by (2.115)-(2.116), one can describe the main

receiver and the eavesdropper MAC channels over such K channel uses by

Y` = hT
1U`X+N` (2.118)

Z` = gT
1X+N ′

` (2.119)
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for ` = 1, ..., K, where Y` and Z` are the observations at channel use ` at the main

receiver and the eavesdropper, respectively, N` and N
′
` are the noise values at channel

use ` at the main receiver and the eavesdropper, respectively, and X = [X1, ..., XK ]

where Xk, k ∈ K is the channel input of transmitter k.

Using similar argument to the one in Section 2.5, it is easy to see that the system in

(2.118) is equivalent to an orthogonal K-user MAC channel where each component of

such orthogonal MAC channel has unit-variance noise and channel gain
√
Khk1, k ∈

K, whereas the system in (2.119) is equivalent to one-dimensional MAC channel with

unit-variance noise and channel gains
√
Kgk1, k ∈ K. Hence, the achievable secrecy

sum rate is given by

Rs =
1

K
Eh1,g1

{

∑

k∈K

log
(

1 +K|hk1|2Pk

)

− log

(

1 +K
∑

k∈K

|gk1|2Pk

)}

(2.120)

Therefore, by using the same approach of Section 2.6.2, one can easily verify that

the total secure DoF achievable by the ESA scheme in the K-user fading MAC-WT

channel is indeed η = K−1
K

.

2.12 Conclusions

In this chapter, we proposed two new achievable schemes for the fading multiple access

wiretap channel. Our first scheme, the scaling based alignment (SBA) scheme, lets the

interfering signals at the main receiver live in a two-dimensional space, while it aligns

the interfering signals at the eavesdropper in a one-dimensional space. We obtained

the secrecy rate region achieved by this scheme. We showed that the secrecy rates
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achieved by this scheme scale with SNR as 1
2
log(SNR), i.e., a total of 1

2
secure DoF

is achievable in the two-user fading MAC-WT. We also showed that the secrecy sum

rate achieved by the i.i.d. Gaussian signaling with cooperative jamming scheme does

not scale with SNR, i.e., the achievable secure DoF is zero. As a direct consequence,

we showed the suboptimality of the i.i.d. Gaussian signaling based schemes with or

without cooperative jamming in the fading MAC-WT.

Our second scheme, the ergodic secret alignment (ESA) scheme, is inspired by

the ergodic interference alignment technique. In this scheme each transmitter repeats

its symbols over carefully chosen time instants such that the interfering signals from

the transmitters are aligned favorably at the main receiver while they are aligned

unfavorably at the eavesdropper. We obtained the secrecy rate region achieved by this

scheme and showed that, as in the scaling based alignment scheme, the secrecy sum

rate achieved by the ergodic secret alignment scheme scales with SNR as 1
2
log(SNR).

In addition, we introduced an improved version of our ESA scheme where cooperative

jamming is used as an additional ingredient to achieve higher secrecy rates. Moreover,

since the rate expressions achieved with the SBA scheme seem complicated, while the

rate expressions achieved with the two versions of the ESA scheme (with and without

cooperative jamming) are more amenable for optimization of power allocations, we

derived the necessary conditions for the optimal power allocation that maximizes

the secrecy sum rate achieved by the ESA scheme when used solely and when used

with cooperative jamming. Finally, we discussed the extension of our schemes to the

case of more than two users and showed that, for the K-user fading MAC-WT, our

schemes achieve secrecy rates that scale with SNR as K−1
K

log (SNR).
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2.13 Appendix

2.13.1 Power Control for the ESA Scheme

Here, we discuss the cases of the power allocation policy of Section 2.8.

1. α1 ≤ λ1, α2 − β2 ≤ λ2 or α1 − β1 ≤ λ1, α2 ≤ λ2. In this case, P1 = P2 = 0.

To prove this, suppose without loss of generality that α1 ≤ λ1, α2−β2 ≤ λ2. We

note that α1 ≤ λ1 implies that α1 − β1

(1+β2P2)
≤ λ1 which, using (2.89), implies

that P1 = 0. Hence, from (2.90), we must also have P2 = 0. In the same way,

we can show that when α1 − β1 ≤ λ1, α2 ≤ λ2, we also must have P1 = P2 = 0.

2. α1 ≤ λ1, α2 − β2 > λ2. In this case, P1 = 0 and P2 > 0 where P2 is

given by (2.88). As in the previous case, α1 ≤ λ1, using (2.89), implies that

P1 = 0. Hence, from (2.90), we must have P2 > 0.

3. α1 − β1 > λ1, α2 ≤ λ2. In this case, P1 > 0 and P2 = 0 where P1 is

given by (2.87). This case is the same as the previous one with roles of users 1

and 2 interchanged.

4. λ1 < α1 ≤ λ1 + β1, λ2 < α2 ≤ λ2 + β2. In this case, the solution (P1, P2)

may not be unique. Namely, we either have P1 > 0 and P2 > 0, or we have

P1 = P2 = 0. This is due to the following facts. It is easy to see that P1 = P2 = 0

satisfies α1 − β1

(1+β2P2)
≤ λ1 and α2 − β2

(1+β1P1)
≤ λ2, i.e., satisfies conditions

(2.89) and (2.90). It is also easy to see that we can find positive P1 and P2

such that α1 − β1

(1+β2P2)
> λ1 and α2 − β2

(1+β1P1)
> λ2, i.e., there exist positive

57



P1 and P2 that satisfy (2.89) and (2.90). Hence the solution (P1, P2) may

not be unique. It remains to show that we cannot have P1 > 0, P2 = 0 or

P1 = 0, P2 > 0. Suppose without loss of generality that P1 > 0, P2 = 0. Hence,

we have α1 − β1

(1+β2P2)
= α1 − β1 ≤ λ1 which implies that P1 = 0 which is a

contradiction. Thus, we cannot have P1 > 0, P2 = 0. In the same way, it can

be shown that we cannot have P1 = 0, P2 > 0. Hence, we obtain our power

allocation policy for this case as follows. We examine the solution of equations

(2.85)-(2.86), if it yields a real and non-negative solution (P1, P2)
1, then we take

it as our solution (P1, P2) for this case. Otherwise, we set P1 = P2 = 0.

5. λ1 < α1 ≤ λ1+β1, α2−β2 > λ2. In this case, we must have P2 > 0. However, we

either have P1 > 0 or P1 = 0. This can be shown as follows. We note that

α2 − β2 > λ2 implies that α2 − β2

(1+β1P1)
> λ2 for any P1 ≥ 0. Hence, by (2.90),

we must have P2 > 0. However, we either have P1 > 0 or P1 = 0 depending on

whether the value of P2 satisfies α1− β1

(1+β2P2)
> λ1 or not. We obtain our power

allocation policies as follows. We first solve (2.85)-(2.86), if this yields a real

and non-negative solution (P1, P2), then we take it to be the power allocation

values for this case. Otherwise, we set P1 = 0 and P2 is obtained from (2.88).

6. α1 − β1 > λ1, λ2 < α2 ≤ λ2 + β2. By the symmetry between this case and the

previous case, we must have P1 > 0 while we either have P2 > 0 or P2 = 0.

We obtain our power allocation policies in a fashion similar to that of case 4

and case 5. In particular, we first solve (2.85)-(2.86), if this yields a real and

1Note that there is at most one such common root for these two quadratic equations.
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non-negative solution (P1, P2), then we take it to be the power allocation values

for this case. Otherwise, we set P2 = 0 and P1 is obtained from (2.87).

7. α1−β1 > λ1, α2−β2 > λ2. Here, we must have P1 > 0 and P2 > 0. This is due to

the fact that α1−β1 > λ1 and α2−β2 > λ2 imply that α1− β1

(1+β2P2)
> λ1 and α2−

β2

(1+β1P1)
> λ2, respectively. Hence, from (2.89)-(2.90), we must have P1 > 0 and P2 > 0.

The values of P1 and P2 are given by the positive common root (P1, P2) of (2.85)-

(2.86) which, in this case, have only one positive common root.

2.13.2 Power Control for the ESA/CJ Scheme

Here, we discuss the power allocation policy of Section 2.9.

For each channel state, since splitting power between transmission and jamming

is sub-optimal, we can distinguish between five non-zero forms that the solution

(P1, P2, Q1, Q2) of (2.96)-(2.99) may take. First, if P1 > 0, P2 > 0 and Q1 = Q2 = 0,

then µ1 = µ2 = 0. Hence, from (2.96)-(2.97), we conclude that (P1, P2) is the posi-

tive common root of equations (2.85)-(2.86) which are found in Section 2.8 and are

rewritten here:

α1 (1 + β2P2)− β1 = λ1 (1 + α1P1) (1 + β1P1 + β2P2) (2.121)

α2 (1 + β1P1)− β2 = λ2 (1 + α2P2) (1 + β1P1 + β2P2) (2.122)

This root can be obtained through numerical solution. Secondly, if P1 > 0, Q2 > 0

and P2 = Q1 = 0, then µ1 = ν2 = 0. Hence, from (2.96) and (2.98), we conclude that
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(P1, Q2) is the positive common root of

α1 (1 + β2Q2)− β1 = λ1 (1 + α1P1) (1 + β1P1 + β2Q2) (2.123)

β2β1P1 = λ2 (1 + β2Q2) (1 + β1P1 + β2Q2) (2.124)

which can also be obtained through numerical solution. Thirdly, if P2 > 0, Q1 > 0

and P1 = Q2 = 0, then µ2 = ν1 = 0. Hence, from (2.97) and (2.99), we conclude that

(P2, Q1) is the positive common root of

α2 (1 + β1Q1)− β2 = λ2 (1 + α2P2) (1 + β1Q1 + β2P2) (2.125)

β1β2P2 = λ1 (1 + β1Q1) (1 + β1Q1 + β2P2) (2.126)

which again can be obtained through numerical solution. The fourth non-zero form

of (P1, P2, Q1, Q2) is when P1 > 0 and P2 = Q1 = Q2 = 0, then µ1 = 0. Hence, from

(2.96), P1 is given by (2.87) which is found in Section 2.8 and will be repeated here

for convenience:

P1 =
1

2





√

(

1

β1
− 1

α1

)2

+
4

λ1

(

1

β1
− 1

α1

)

−
(

1

β1
+

1

α1

)



 (2.127)

The last non-zero form of (P1, P2, Q1, Q2) is when P2 > 0 and P1 = Q1 = Q2 = 0,

then µ2 = 0. Hence, from (2.97), P2 is given by (2.88) in Section 2.8 and is given here
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again.

P2 =
1

2





√

(

1

β2
− 1

α2

)2

+
4

λ2

(

1

β2
− 1

α2

)

−
(

1

β2
+

1

α2

)



 (2.128)

We obtain the following sufficient conditions on zero jamming powers Q1 and Q2.

By subtracting (2.98) from (2.96) and subtracting (2.99) from (2.97), we get

α1

1 + α1Q1

− β1

1 + β1Q1 + β2Q2

+ µ1 − ν1 = 0 (2.129)

α2

1 + α2Q2

− β2

1 + β1Q1 + β2Q2

+ µ2 − ν2 = 0 (2.130)

which, by using the fact that the two users cannot be jamming together, give the

following conditions

Q1 = 0, if α1 > β1 (2.131)

Q2 = 0, if α2 > β2 (2.132)

Moreover, we obtain necessary and sufficient conditions for the positivity of power

allocations in the possible transmission/jamming scenarios in each channel state.

First, when no user jams, i.e., Q1 = Q2 = 0, then from (2.96)-(2.97), we obtain the

necessary and sufficient conditions (2.89)-(2.89) of Section 2.8 which we repeat here
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for convenience.

P1 > 0, if and only if α1 −
β1

(1 + β2P2)
> λ1 (2.133)

P2 > 0, if and only if α2 −
β2

(1 + β1P1)
> λ2 (2.134)

Secondly, when user 1 does not jam and user 2 does not transmit, i.e., Q1 = P2 = 0,

then from (2.96) and (2.98), we can easily derive the following necessary and sufficient

conditions for the positivity of the transmission power P1 of user 1 and the jamming

power Q2 of user 2.

P1 > 0, if and only if α1 −
β1

(1 + β2Q2)
> λ1 (2.135)

Q2 > 0, if and only if β2 −
β2

(1 + β1P1)
> λ2 (2.136)

Thirdly, when user 1 does not transmit and user 2 does not jam, i.e., P1 = Q2 = 0,

then from (2.97) and (2.99), we can similarly derive the following necessary and

sufficient conditions for the positivity of the transmission power P2 of user 2 and the

jamming power Q1 of user 1.

P2 > 0, if and only if α2 −
β2

(1 + β1Q1)
> λ2 (2.137)

Q1 > 0, if and only if β1 −
β1

(1 + β2P2)
> λ1 (2.138)

Using conditions (2.131)-(2.138) given above, the power allocation policy (P1, P2, Q1, Q2)

that satisfies (2.96)-(2.99) and (2.92)-(2.93) can be fully described through the fol-
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lowing cases of the channel gains.

1. α1 > β1, α2 > β2. In this case, we must have Q1 = Q2 = 0. This follows

directly from (2.131)-(2.132). Hence, this case reduces to one of the 7 cases

given in Section 2.8 depending on the relative values of the channel gains and

the values of λ1 and λ2. We can obtain the power allocations P1 and P2 in the

same way described in Section 2.8.

2. α1 > β1, α2 < β2. In this case, we must have P2 = Q1 = 0. This can be shown

as follows. From (2.131), we must have Q1 = 0. Suppose P2 > 0. Hence,

µ2 = 0. Since dividing power among transmission and jamming is suboptimal,

then we must have Q2 = 0. Since Q1 = 0, then (2.130) implies h̄2 − ḡ2 ≥ 0

which is a contradiction. Therefore, P2 = 0. The power allocations P1 and Q2

are obtained from one of the following sub-cases:

(a) α1 ≤ λ1 or α1 − β1 ≤ λ1, β2 ≤ λ2. We have P1 = Q2 = 0. To see this,

note that α1 ≤ λ1 implies that α1− β1

(1+β2Q2)
≤ λ1. Hence, using (2.135), we

must have P1 = 0 and thus Q2 = 0 since we cannot have a jamming user

when the other user is not transmitting. On the other hand, if β2 ≤ λ2,

then it follows from (2.136) that Q2 = 0. Hence, the fact that α1−β1 ≤ λ1

together with (2.135) implies that P1 = 0.

(b) α1 − β1 > λ1, β2 ≤ λ2. We have Q2 = 0 and P1 > 0 where P1 is

given by (2.127). This can be shown to be true as follows. Since β2 ≤ λ2,

then, using (2.136), we must have Q2 = 0. Hence, from (2.135) and the

fact that α1 − β1 > λ1 in this case, we must have P1 > 0.
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(c) λ1 < α1 ≤ λ1 + β1, β2 > λ2. In this case, the solution (P1, Q2) may

not be unique. Namely, we either have P1 > 0 and Q2 > 0, or we have

P1 = Q2 = 0. This is due to the following facts. It is easy to see that

P1 = Q2 = 0 satisfies α1 − β1

(1+β2Q2)
≤ λ1 and β2 − β2

(1+β1P1)
≤ λ2, i.e.

conditions (2.135) and (2.136). It is also easy to see that we can find

positive P1 and Q2 that satisfy α1 − β1

(1+β2Q2)
> λ1 and β2 − β2

(1+β1P1)
> λ2,

i.e. conditions (2.135) and (2.136). Hence the solution (P1, Q2) may not be

unique. It remains to show that we cannot have P1 > 0, Q2 = 0. Suppose

that P1 > 0 and Q2 = 0. Hence, we have α1 − β1

(1+β2Q2)
= α1 − β1 ≤ λ1

which, by (2.135), implies that P1 = 0 which is a contradiction. Thus, we

cannot have P1 > 0 and Q2 = 0. We obtain our power allocation policies

for this case as follows. We examine the solution of equations (2.123) and

(2.124), if it yields a real and non-negative solution (P1, Q2), then we take

it as our solution (P1, Q2) for this case. Otherwise, we set P1 = Q2 = 0.

(d) α1 − β1 > λ1, β2 > λ2. Here, we must have P1 > 0. However, we either

have Q2 > 0 or Q2 = 0, i.e., the solution may not be unique. To see this,

we note that α1 − β1 > λ1 implies that α1 − β1

(1+β2Q2)
> λ2 for any Q2 ≥ 0.

Hence, by (2.135), we must have P1 > 0. However, we either have Q2 > 0

or Q2 = 0 depending on whether the value of P1 satisfies β2− β2

(1+β1P1)
> λ1

or not. We obtain our power allocation policy as follows. We first solve

(2.123) and (2.124), if this yields a real and non-negative solution (P1, Q2),

then we take it to be the power allocation values for this case. Otherwise,
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we set Q2 = 0 and P1 is obtained from (2.127).

3. α1 < β1, α2 > β2. From the symmetry between this case and the previous case,

the power allocation roles can be obtained in this case by interchanging the

power allocation roles of users 1 and 2 in the previous case. In particular, we

must have P1 = Q2 = 0. The power allocations P2 and Q1 are given by one of

the following sub-cases:

(a) α2 ≤ λ2 or β1 ≤ λ1, α2 − β2 ≤ λ2. We have P2 = Q1 = 0.

(b) β1 ≤ λ1, α2 − β2 > λ2. We have Q1 = 0 and P2 > 0 where P2 is

given by (2.128).

(c) β1 > λ1, λ2 < α2 ≤ λ2 + β2. In this case, the solution (P2, Q1) may not be

unique as we either have P2 > 0 and Q1 > 0, or have P1 = Q2 = 0. There-

fore, we obtain our power allocation policy for this case by numerically

solving equations (2.125) and (2.126), if we have a real and non-negative

solution (P2, Q1), then we take it as to be the power allocation values for

this case. Otherwise, we set P2 = Q1 = 0.

(d) β1 > λ1, α2 − β2 > λ2. Here, we must have P2 > 0. However, we either

have Q1 > 0 or Q1 = 0, i.e., the solution may not be unique. We obtain

our power allocation policy as follows. We first solve (2.125)-(2.126), if

this yields a real and non-negative solution (P2, Q1), then we take it to be

the power allocation values for this case. Otherwise, we set Q1 = 0 and P2

is obtained from (2.128).
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4. α1 < β1, α2 < β2. In this case, we have P2 = Q1 = 0 or P1 = Q2 = 0. In

order to see this, suppose P1 > 0 and P2 > 0. Hence, µ1 = µ2 = 0. Since

splitting a user’s power into transmit and jamming powers is suboptimal, then

we must have Q1 = Q2 = 0. Thus, from (2.129) and (2.130), we have h̄1 ≥ ḡ1

and h̄2 ≥ ḡ2 which is a contradiction. Therefore, we must have either P1 = 0

or P2 = 0. The power allocation policy (P1, P2, Q1, Q2) is given in the following

four sub-cases of channel states:

(a) (α1 ≤ λ1 or β2 ≤ λ2) and (α2 ≤ λ2 or β1 ≤ λ1). In this case, we have

P1 = P2 = Q1 = Q2 = 0. To see this, first, suppose that P2 = Q1 = 0. We

note that if α1 ≤ λ1 then α1− β1

(1+β2Q2)
≤ λ1. Hence, using (2.135), we must

have P1 = 0 and thus Q2 = 0 since we cannot have a jamming user when

the other user is not transmitting. On the other hand, if β2 ≤ λ2, then it

follows from (2.136) that Q2 = 0. Hence, the fact that α1 < β1 together

with (2.135) implies that P1 = 0. Next, suppose that P1 = Q2 = 0. Using

the fact that α2 ≤ λ2 or β1 ≤ λ1 together with condition (2.137)-(2.138),

we can show that P2 = Q1 = 0. Therefore, in this case, we must have

P1 = P2 = Q1 = Q2 = 0.

(b) (α2 ≤ λ2 or β1 ≤ λ1) and (α1 > λ1, β2 > λ2). We have P2 = Q1 = 0.

The solution (P1, Q2) may not be unique. In particular, we may have

P1 > 0, Q2 > 0 or have P1 = Q2 = 0. To see this, consider the following

argument. Using the fact that α2 ≤ λ2 or β1 ≤ λ1, then, as shown in

case 4(a), we conclude that we must have P2 = Q1 = 0. Now, we consider
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the power allocation policy (P1, Q2). We note that P1 = Q2 = 0 satisfies

conditions (2.135) and (2.136). On the other hand, we can find positive

P1 and Q2 that satisfy (2.135) and (2.135). Hence, the solution (P1, Q2)

may not be unique as we may have P1 = Q2 = 0 or P1 > 0, Q2 > 0. It

remains to show that we cannot have P1 > 0, Q2 = 0. Suppose that P1 > 0

and Q2 = 0. Hence, we have α1 − β1

(1+β2Q2)
= α1 − β1 < 0 < λ1 which,

by (2.135), implies that P1 = 0 which is a contradiction. Thus, we cannot

have P1 > 0 and Q2 = 0. Our power allocations P1 and Q2 are obtained

for this case as follows. We solve (2.123) and (2.124). If the solution gives

a real and non-negative common root (P1, Q2), we take it as our power

allocation values for P1 and Q2. Otherwise, we set P1 = Q2 = 0.

(c) (α1 ≤ λ1 or β2 ≤ λ2) and (α2 > λ2, β1 > λ1). By the symmetry

between this case and case 4(b), we have P1 = Q2 = 0. Again in this

case, the solution (P2, Q1) may not be unique. In particular, we may have

P2 > 0, Q1 > 0 or have P2 = Q1 = 0. In fact, the power allocation policy

in this case, can be obtained from case 4(b) by interchanging the roles of

users 1 and 2. Our power allocations P2 and Q1 are obtained as follows in

this case. We solve (2.125)-(2.126). If the solution gives a real and non-

negative common root (P2, Q1), we take it as our power allocation values

for P2 and Q1. Otherwise, we set P2 = Q1 = 0.

(d) (α1 > λ1, β2 > λ2) and (α2 > λ2, β1 > λ1). Here, again the solution

(P1, P2, Q1, Q2) is not unique as we may either have P1 > 0, Q2 > 0, P2 =
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Q1 = 0, or P2 > 0, Q1 > 0, P1 = Q2 = 0, or P1 = P2 = Q1 = Q2 = 0. To

see this, first, suppose that P2 = Q1 = 0 and consider the power allocation

policy (P1, Q2). As in case 4(b), we can show that the solution (P1, Q2) may

not be unique as we may have P1 = Q2 = 0 or P1 > 0, Q2 > 0. However,

as shown in case 4(b), we cannot have P1 > 0, Q2 = 0. Next, suppose

that P1 = Q2 = 0 and consider the power allocation policy (P2, Q1). As

in case 4(c), we can show that the solution (P2, Q1) may not be unique as

we may have P2 = Q1 = 0 or P2 > 0, Q1 > 0. However, we cannot have

P2 > 0, Q1 = 0. We obtain our allocation policy (P1, P2, Q1, Q2) as follows.

Let us denote the solution of (2.123) and (2.124) together by solution A

and denote the solution of (2.125) and (2.126) together by solution B.

i. If solution A yields a real non-negative (P1, Q2) while solution B does

not yield real non-negative (P2, Q1), then we take (P1, Q2) to be the

power allocation values for users 1 and 2, respectively, and set P2 =

Q1 = 0.

ii. If solution B yields a real non-negative (P2, Q1) while solution A does

not yield real non-negative (P1, Q2), then we take (P2, Q1) to be the

power allocation values for users 2 and 1, respectively, and set P1 =

Q2 = 0.

iii. If neither solution A nor solution B gives real non-negative common

root, then we set P1 = P2 = Q1 = Q2 = 0.

iv. If both solutions A and B yield a real non-negative common root, then
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we either choose the root given by solution A, i.e., (P1, Q2), and set

P2 = Q1 = 0, or choose the root given by solution B, i.e., (P2, Q1), and

set P1 = Q2 = 0. We make the choice that maximizes the achievable

instantaneous secrecy sum rate.
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Chapter 3

Deaf Cooperation and Relay Selection Strategies for Secure

Communication in Multiple Relay Networks

3.1 Introduction

The notion of introducing artificial noise in a Gaussian wiretap (GWT) channel by a

helpful interferer to confuse the eavesdropper and improve over the secrecy capacity

of the original wiretap channel was introduced in [31], [34], [19], [20]. In [34], [19], [20],

this notion was called cooperative jamming (CJ). The term refers to the cooperation

strategy in which a helping interferer transmits white Gaussian noise when it can hurt

the eavesdropper more than it can hurt the legitimate receiver and hence improve the

achievable secrecy rate. In [33], the idea of helping interferer was applied to the

GWT channel in a scheme tantamount to the CJ scheme for the two-user multiple

access wiretap channel where one of the users performs cooperative jamming. In

[30], the destination carried out jamming over the feedback channel to confuse the

eavesdropper.

In the context of relay networks with secrecy constraints, the role of cooperative

jamming was further investigated in several works. For example, the discrete mem-
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oryless relay network was investigated in [32] where achievable secrecy rates were

developed when relays help increase secrecy rate by inserting noise into the network.

On the other hand, the relay selection problem in the secrecy context was investi-

gated, e.g., in [27] and [22]. In particular, reference [27] proposed a scheme that

enables an opportunistic selection of two relays to increase security where one relay

uses the decode-and-forward (DF) strategy while the other uses the CJ strategy to in-

troduce useful interference and thus help increase the achievable secrecy rate. In [22],

one relay node is selected to assist two source nodes to exchange messages with each

other using the amplify-and-forward (AF) strategy while one or two additional relay

nodes are selected to transmit jamming signals to confuse the eavesdropper. The

role of cooperative jamming in the presence of multiple eavesdroppers was studied

in [35] where noise generators (cooperative jammers) were employed in a multiple-

relay multiple-eavesdropper network to improve security. The impact of cooperative

jamming on the secrecy outage probability of a slow fading wiretap channel was stud-

ied in [36] where related security metrics, such as, jamming coverage and jamming

efficiency, were introduced and different jamming strategies were proposed depending

on the various levels of available channel state information. In a stochastic network

model, it was shown in [37] that packet collisions caused by jamming nodes can be

used to increase the level of secrecy.

Power allocation for the the source and relay nodes in cooperative jamming relay

networks was studied, e.g., in [24], [23], and [25]. In [24], the communication between

the source and destination occurs in two hops. Both the source and the relay are

allowed to split their available power into a useful information part and a jamming
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part. Reference [24] solves for the power allocation under the assumption that both

the relay and the destination have the knowledge of the jamming signals. In the

multiple antenna case, the power allocation and the antenna weights design problems

were investigated for cooperative jamming strategies under the constraint that the

jamming signals must lie in the subspace orthogonal to the channels to the legitimate

receiver.

In all the references above, the role of a helping node was restricted to coop-

erative jamming, decode-and-forward, and amplify-and-forward. However, a help-

ing node can also play other roles to improve secrecy. In general, in the relay-

eavesdropper channel, the relay, which is assumed to be a trusted entity, can help

improve secrecy either by listening to the source or by acting as a deaf helper.

The role of a relay node to provide and improve secrecy in a wiretap channel was

first studied in [29]. In particular, reference [29] introduced another passive (deaf)

mode of cooperation, called noise forwarding (NF), in which the relay node sends a

dummy (context-free) codeword drawn at random from a codebook that is known to

both the legitimate receiver and the eavesdropper to introduce helpful interference

that would hurt the eavesdropper more than the legitimate receiver. This deaf co-

operation strategy was applied without power control to the Gaussian single-relay

single-eavesdropper channel in [28]. The idea of such strategy is to create a vir-

tual multiple access wiretap channel where only one user (the source) is active, i.e.,

sending relevant information, while the other user (the relay) is acting as an inter-

ferer that sends a signal drawn from a given codebook. In this way, the destination

can perform successive decoding and cancel out the relay signal and achieve higher
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secrecy rate for the intended message.

At this point, it is useful to compare the two aforementioned alternatives of deaf

cooperation for secrecy introduced in the literature. Generally speaking, it is not

useful to perform CJ when the helper is closer to the destination than to the eaves-

dropper, on the other hand, one can still introduce helpful interference in this case

by transmitting a dummy codeword from a codebook that is known to the destina-

tion and the eavesdropper. The transmission of dummy codewords refers to Wyner’s

idea of stochastic encoding for secrecy [21] where multiple codewords are associated

with a single message. Since the cost of these dummy codewords is a decrease in

the transmitter’s rate, if the helper takes the responsibility of sending these dummy

codewords, then the secrecy rate of the transmitter may improve [5].

In this chapter, we investigate in detail the conditions under which a deaf helper

performing either CJ or NF strategy would give rise to a larger achievable secrecy

rate than the secrecy capacity of the original GWT channel. In particular, we give

the necessary and sufficient conditions, in terms of power values and relative channel

gains, for each of the two strategies to yield higher secrecy rate than the secrecy

capacity of the original GWT channel. We also obtain, in terms of the channel gains

solely, the necessary conditions for each of the CJ and the NF strategies to yield a

secrecy rate higher than the secrecy capacity of the GWT channel. In particular, we

reach the following useful conclusion. Depending on the relative location of a helping

node with respect to the destination and the eavesdropper, a helping node may either

be a useful jammer or a useful noise forwarder but not both at the same time, or it

may not be useful at all as a deaf helper. Moreover, we derive the optimal power
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allocation policy for each of the two strategies where we assume that the source, the

deaf helper, the legitimate receiver, and the eavesdropper have perfect knowledge of

all the relevant channel gains.

On the other hand, we consider applying both CJ and NF strategies in multiple

relay networks to improve secrecy rates achievable when only CJ strategy is used.

In particular, we consider a multiple relay network of N relays in addition to a

source, a legitimate receiver, and an eavesdropper. The objective is to select a set of

K, K ≤ N, relays that act as the best deaf helpers, i.e., that maximize the secrecy

rate achievable by deaf cooperation using K relays. We first consider the special case

of K = 1. We propose an optimal Single Deaf Helper Selection (SDHS) strategy that

identifies the optimal deaf helper node and its mode of cooperation (CJ or NF). Our

strategy is simple and requires O(N) computations. Second, we consider the general

selection problem, i.e., the case where K > 1. Both the selection and the optimal

power allocation problems are hard in this case. In fact, the number of computations

required by the optimal selection strategy is exponential in N . Therefore, we propose

a suboptimal Multiple Deaf Helper Selection (MDHS) strategy that selectsK (or less)

relays over K (or less) selection stages in which the source and the relays negotiate

to identify the deaf helpers to be selected one by one in a greedy fashion. In terms

of the computational complexity, we show that our strategy is efficient and requires

O(N) computations as opposed to the optimal strategy which requires a number of

computations that is exponential in N . Finally, we give some numerical examples

to compare our strategies, in terms of the achievable secrecy rate, with those based

on only one mode of deaf cooperation. We also quantify through some numerical
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examples the improvement in the achievable secrecy rate when the MDHS strategy

is used instead of the SDHS strategy.

3.2 System Model

We first discuss briefly the basic discrete memoryless relay-eavesdropper channel

model, then we describe our system model. The discrete memoryless relay-eavesdropper

channel is a four-terminal channel consisting of alphabets Xs,Xr,Y ,Yr,Z, and a tran-

sition probability distribution p(y, yr, z|xs, xr) where Xs,Xr are the sets of the symbols

of the channel inputs at the source and the relay, respectively, while Y ,Yr,Z are the

sets of the symbols of the channel outputs at the destination, the relay, and the eaves-

dropper, respectively. The channel is memoryless, i.e., the channel outputs (yi, yr,i, zi)

at time i only depend on the channel inputs (xs,i, xr,i) at time i. The source wishes

to send a message Ws ∈ Ws = {1, . . . , 2nRs} to the destination using a (2nRs , n) code

consisting of a stochastic encoder ϕs at the source that maps the messageWs ∈ Ws to

a codeword Xn
s ∈ X n

s , a relay encoder that maps the received signals (Yr,1, . . . , Yr,i−1)

received at the relay before time i to the channel input Xr,i using the mapping ϕr,i,

and a decoder ψ at the destination that maps the received sequence Y n to an estimate

of the message Ŵs ∈ Ws. The probability of error is

P n
e = Pr

(

Ŵs 6= Ws

)

(3.1)
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A rate Rs is said to be achievable with perfect secrecy if there is a (2nRs , n) code

satisfying

lim
n→∞

P n
e = 0, and lim

n→∞

1

n
I (Ws;Z

n) = 0 (3.2)

In this chapter, we consider the following communication scenario. A source,

s, sends a confidential message to a destination, d, over an AWGN channel in the

presence of an informed eavesdropper, e. The communication occurs in the presence

of a set of N nodes (relays), N = {r1, ..., rN}, from which one is selected (called the

helper) to help improve the achievable perfect secrecy through deaf cooperation, i.e.,

CJ or NF (see Figure 3.1). In other words, it is assumed that either the helper ignores

what it receives from the source, i.e., Yr, or that Yr is too noisy to be of any use to

the helper. Hence, at any time instant, the helper’s channel input Xr is independent

of Yr and Xs. In this case, the helper is called deaf and is supposed to operate in one

of the two aforementioned modes of deaf cooperation.

Assuming that the relay node r ∈ N is selected to be the deaf helper, the outputs

of the GWT channel, with the deaf helper r, at the destination and the eavesdropper

are given by

Y =
√
γs,dX̃s +

√
γr,dX̃r +N (3.3)

Z =
√
γs,eX̃s +

√
γr,eX̃r +N ′ (3.4)

where γk,l, k ∈ {s, r}, l ∈ {d, e}, is the channel gain between nodes k and l, X̃k,
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Figure 3.1: A multiple relay network.

k ∈ {s, r} is the channel input at node k, and N, N ′ are real-valued zero mean, unit

variance AWGN at the destination and the eavesdropper, respectively. The channel

inputs satisfy the following average power constraints

E[X̃2
k ] ≤ ρ̄k, k ∈ {s, r} (3.5)

It is assumed that all channel gains in (3.3)-(3.4) are known to s, d, r, and e. For a

fixed deaf helper node, r, the above system given by (3.3)-(3.4) and power constraints

(3.5) is equivalent to

Y = Xs +Xr +N (3.6)

Z =
√

hsXs +
√

hrXr +N ′ (3.7)
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with

E[X2
k ] ≤ P̄k , ρ̄kγk,d, k ∈ {s, r} (3.8)

where Xk ,
√
γk,dX̃k and hk ,

γk,e
γk,d

, k ∈ {s, r}.

3.3 Improving Secrecy through Deaf Cooperation

In this section, we consider the CJ and the NF schemes. In both schemes, the channel

input at the source Xs in (4.1)-(4.2) is a symbol of the codeword that represents

the encoded confidential message. Such codeword is drawn from an i.i.d. Gaussian

codebook, i.e., Xs is Gaussian random variable with zero mean and variance Ps where

Ps ≤ P̄s. Also, in both schemes, the channel input at the deaf helper Xr in (4.1)-

(4.2) is also Gaussian with zero mean and variance Pr where Pr ≤ P̄r. However, the

difference between the two schemes comes from the origin of Xr. In the CJ scheme,

Xr is white Gaussian noise that plays the same role as the background noise at the

destination and the eavesdropper except for the fact that it is generated artificially.

On the other hand, in the NF scheme, Xr is a symbol of a dummy (context-free)

codeword drawn from a Gaussian codebook that is assumed to be available at both

the destination and the eavesdropper. Accordingly, for given power values Ps and Pr,

the secrecy rate achievable by the CJ scheme [20], RCJ , is given by

RCJ(Ps, Pr) =
1

2
log

(

(1 + Ps + Pr) (1 + hrPr)

(1 + hsPs + hrPr) (1 + Pr)

)

(3.9)
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Whereas the secrecy rate achievable by the NF scheme [29], RNF , is given by

RNF (Ps, Pr) = min

{

1

2
log

(

(1 + Ps) (1 + hrPr)

1 + hsPs + hrPr

)

,
1

2
log

(

1 + Ps + Pr

1 + hsPs + hrPr

)}

(3.10)

On the other hand, when no helper node is involved, the secrecy capacity of the

original GWT channel [13] for a given power value Ps is given by

CGWT (Ps) =

(

1

2
log

(

1 + Ps

1 + hsPs

))+

(3.11)

where (x)+ = max(0, x). In the following theorem, we give the necessary and sufficient

conditions for RCJ(Ps, Pr) ≥ CGWT (Ps) and R
NF (Ps, Pr) ≥ CGWT (Ps).

Theorem 3.1 RCJ(Ps, Pr) ≥ CGWT (Ps) if and only if one of conditions (3.12) or

(3.13) below is satisfied:

hs < 1 ≤ hr and (hshr − 1) + hs(hr − 1)Ps ≥ hr(1− hs)Pr (3.12)

1 ≤ hs < hr and Pr ≥
hs − 1

hr − hs
(3.13)

On the other hand, RNF (Ps, Pr) ≥ CGWT (Ps) if and only if one of conditions (3.14),
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(3.15), or (3.16) below is satisfied:

hr ≤ hs ≤ 1 (3.14)

hs < hr ≤ 1 and Ps ≤
1− hr

hr − hs
(3.15)

hr < 1 ≤ hs and Pr ≥ max

(

hs − 1

hr
,
hs − 1

1− hr
Ps

)

(3.16)

A proof of Theorem 3.1 is given in the Appendix.

One important observation one can make in regard with Theorem 3.1 is that the

CJ strategy cannot be beneficial, i.e., it cannot achieve higher secrecy rate than the

secrecy capacity of the original GWT channel, if the value of the relative channel

gain between the relay node and the eavesdropper hr is less than 1 or less than the

value of the relative channel gain between the source and the eavesdropper hs. On

the other hand, the NF strategy is not useful, if hr > 1. This observation is stated

formally in the following corollary.

Corollary 3.1 hr ≥ max(hs, 1) is a necessary condition for the CJ scheme to achieve

higher secrecy rate than the secrecy capacity of the original GWT channel. On the

other hand, hr ≤ 1 is a necessary condition for the NF scheme to achieve higher

secrecy rate than the secrecy capacity of the original GWT channel.
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3.4 Maximizing the Secrecy Rates Achievable by the CJ and NF

Schemes

For fixed relative channel gains hs and hr, we obtain the solutions of the following

optimization problems.

max
Ps,Pr

RCJ(Pr, Ps) s.t. 0 ≤ Ps ≤ P̄s, 0 ≤ Pr ≤ P̄r (3.17)

max
Ps,Pr

RNF (Pr, Ps) s.t. 0 ≤ Ps ≤ P̄s, 0 ≤ Pr ≤ P̄r (3.18)

Let (P̂CJ
s , P̂CJ

r ) be the maximizer of (3.17) and (P̂NF
s , P̂NF

r ) be the maximizer of

(3.18). We define R̄CJ , RCJ(P̂CJ
s , P̂CJ

r ) and R̄NF , RNF (P̂NF
s , P̂NF

r ).

Theorem 3.2 The solution of (3.17) and (3.18) above is given in the following cases:

1. hs < 1: In this case, we have the following three possibilities depending on the

value of hr:

(a) If hs < 1 ≤ hr, then

P̂CJ
s = P̄s, P̂

CJ
r =

(

min
(

P̄r, P
∗
r

))+
(3.19)

P̂NF
s = P̄s, P̂

NF
r = 0 (3.20)
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(b) If hs < hr < 1, then

P̂CJ
s = P̄s, P̂

CJ
r = 0 (3.21)

P̂NF
s = P̄s (3.22)

P̂NF
r = P̄r, if P̄s <

1− hr

hr − hs
(3.23)

P̂NF
r = 0, if P̄s ≥

1− hr

hr − hs
(3.24)

(c) If hr ≤ hs < 1, then

P̂CJ
s = P̄s, P̂

CJ
r = 0 (3.25)

P̂NF
s = P̄s, if P̄r <

1− hs

hs − hr
(3.26)

P̂NF
s = min

(

P̄s,
1− hr

hr

)

, if P̄r ≥
1− hs

hs − hr
(3.27)

P̂NF
r = P̄r (3.28)

2. hs ≥ 1: In this case, we have the following three possibilities depending on the

value of hr:

(a) If 1 ≤ hs < hr, then

P̂CJ
s = 0, P̂CJ

r = 0, if P̄r ≤
hs − 1

hr − hs
(3.29)

P̂CJ
s = P̄s, P̂

CJ
r = min

(

P̄r, P
∗
r

)

, if P̄r >
hs − 1

hr − hs
(3.30)

P̂NF
s = 0, P̂NF

r = 0 (3.31)
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(b) If hr < 1 ≤ hs, then

P̂CJ
s = 0, P̂CJ

r = 0 (3.32)

P̂NF
s = 0, P̂NF

r = 0, if P̄r ≤
hs − 1

hr
(3.33)

P̂NF
s = min

(

P̄s,
1− hr

hr

)

, P̂NF
r = P̄r, if P̄r >

hs − 1

hr
(3.34)

(c) If 1 ≤ hr ≤ hs, then

P̂CJ
s = 0, P̂CJ

r = 0 (3.35)

P̂NF
s = 0, P̂NF

r = 0 (3.36)

where

P ∗
r =

√

(hs(hr − hs)P̄s + hs(hr − 1))(hr − 1)hr − hr(1− hs)

hr(hr − hs)
(3.37)

A proof of Theorem 3.2 is given in the Appendix.

As a consequence of Theorem 3.2, one can identify, in terms of the relative channel

gains solely, the minimal set of necessary conditions for each of R̄CJ > CGWT and

R̄NF > CGWT to hold. These conditions are stated formally in the following corollary.

Corollary 3.2 If R̄CJ > CGWT , then hr > max (1, hs). On the other hand, if R̄NF >

CGWT then hr < min
(

1, 1+hsP̄s

1+P̄s

)

.
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3.5 Deaf Helper Selection Problem

3.5.1 Single Deaf Helper Selection

In this section, we are interested in selecting one relay from the set N of N relays

that would act as the best deaf helper that maximizes the achievable secrecy rate

which could be either R̄CJ if the best deaf helper is a cooperative jammer or R̄NF if

the best deaf helper is a noise forwarder. Here, we assume that the original power

constraints at the relays ρ̄r, r ∈ N given by (3.5) are equal. That is ρ̄r = ρ̄ ∀r ∈ N .

Consequently, the scaled power constraints at the relays P̄r, r ∈ N , given by (3.8),

have different values depending on the values of the corresponding channel gains

γr,d, r ∈ N . Thus, in order to clarify the presentation in this section, we choose

to consider the original system given by (3.3)-(3.4) together with the original power

constraints (3.5). Let ρs and ρr denote the variance of X̃s and X̃r, r ∈ N , respectively,

where ρs ≤ ρ̄s and ρr ≤ ρ̄r, r ∈ N .

The secrecy rates RCJ and RNF in (3.9) and (3.10), respectively, can be written

as functions of ρs and ρr as follows

RCJ(ρs, ρr) =
1

2
log

(

(1 + γs,dρs + γr,dρr) (1 + γr,eρr)

(1 + γs,eρs + γr,eρr) (1 + γr,dρr)

)

(3.38)

RNF (ρs, ρr) = min

{

1

2
log

(

(1 + γs,dρs) (1 + γr,eρr)

1 + γs,eρs + γr,eρr

)

,
1

2
log

(

1 + γs,dρs + γr,dρr

1 + γs,eρs + γr,eρr

)

}

(3.39)

We note that all the results of Theorems 3.1 and 3.2 as well as Corollary 3.1 are

valid here by replacing hk with
γk,e
γk,d

, hk with
γk,e
γk,d

, Pk with γk,dρk, P̄k with γk,dρ̄k, P̂
CJ
k
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and P̂NF
k with γk,dρ̂

CJ
k and γk,dρ̂

NF
k , respectively, for k ∈ {s, r} and r ∈ N where

(ρ̂CJ
s , ρ̂CJ

r ) and (ρ̂NF
s , ρ̂NF

r ) are the optimal power control policies that maximize

(3.38) and (3.39), respectively. Hence, using Corollary 3.2, one can find two disjoint

subsets of N which we denote by NCJ and NNF , where

NCJ ,

{

rj ∈ N :
γrj ,e

γrj ,d
> max

(

1,
γs,e

γs,d

)}

(3.40)

is the set of potential cooperative jammers, and

NNF ,

{

rj ∈ N :
γrj ,e

γrj ,d
< min

(

1,
1 + γs,eρ̄s

1 + γs,dρ̄s

)}

(3.41)

is the set of potential noise forwarders. In other words, the set NCJ is the set

that contains every relay node whose relative channel gain satisfies the condition

in Corollary 3.2 necessary for the CJ scheme to achieve a secrecy rate larger than

CGWT . On the other hand, the set NNF is the set that contains every relay node

whose relative channel gain satisfies the condition in Corollary 3.2 necessary for the

NF scheme to achieve a secrecy rate larger than CGWT . Since these two subsets are

disjoint, it follows that a node in N cannot be a useful cooperative jammer and a

useful noise forwarder at the same time. It is also noteworthy that there might be

some other nodes in N that do not fall in any of the two subsets NCJ and NNF .

One can always regard the optimal power allocation policies (ρ̂CJ
s , ρ̂CJ

r ) and

(ρ̂NF
s , ρ̂NF

r ) as functions of the channel gains (γr,d, γr,e) where r ∈ NCJ and r ∈ NNF ,

respectively. Hence, the optimal rates R̄CJ and R̄NF can be also regarded as func-
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tions of (γr,d, γr,e). Below, we describe a strategy for selecting the optimal relay node

r∗ ∈ N that maximizes the deaf cooperation secrecy rate.

3.5.2 Single Deaf Helper Selection (SDHS) Strategy

For each r ∈ N , using its knowledge of its own channel gains and using the conditions

in (3.40)-(3.41), r identifies which mode of cooperation (CJ or NF) it should target.

Accordingly, r computes one of the two rates R̄CJ (γr,d, γr,e) and R̄NF (γr,d, γr,e) de-

pending on the target mode of cooperation. We note that the rate is computed using

the values of the optimal power allocations that are given by Theorem 3.2. Then

r sends this information to s. Upon receiving such information from all r ∈ N , s

identifies the relay r∗ with the maximum rate R∗ and knows its mode of cooperation.

Consequently, s notifies r∗ that it has been selected as the optimal deaf helper which

in turn notifies d of the former’s selection. It is assumed that this information is also

intercepted by e. By executing the SDHS strategy described above, the optimal re-

lay r∗ that achieves maxr∈N max{R̄CJ(γr,d, γr,e), R̄
NF (γr,d, γr,e)} is identified together

with its mode of deaf cooperation.

Assuming that evaluating any of the rate or power functions given above requires

O(1) computations, since computation is done in a distributed fashion over N relays,

it follows that the complexity of the above strategy in terms of the number of compu-

tations required during its execution is O(N). This is due to the fact that finding the

maximum of all the rates received by s from all r ∈ N requires O(N) computations.

86



3.5.3 Multiple Deaf Helpers Selection

The system permits us to involve at most K relays, 1 ≤ K ≤ N , in deaf cooperation.

Each relay can be either a cooperative jammer or a noise forwarder. Let KCJ ⊆ NCJ

denote the set of the selected cooperative jammers and KNF ⊆ NNF denote the set of

the selected noise forwarders where |KCJ
⋃KNF | ≤ K. The achievable secrecy rate

in this case for fixed power values ρs, ρr, r ∈ KCJ
⋃KNF , is given as a function of

(KCJ ,KNF ) by

R(KCJ ,KNF ) = min
M⊆KNF

{

1

2
log

(

1 + γs,dρs +
∑

r∈M γr,dρr

1 +
∑

r∈KCJ γr,dρr

)

− 1

2
log

(

1 + γs,eρs +
∑

r∈M γr,eρr

1 +
∑

r∈KCJ γr,eρr +
∑

r∈KNF \M γr,eρr

)}

(3.42)

In fact, the problem of finding the optimal set of deaf helpers whose size is at most K

is hard for K > 1 in general. Not only the selection problem is hard in this case, but

also even if we fix K deaf helpers, K > 1, then the problem of finding the optimal

power allocations becomes analytically intractable in this case. Consequently, no

closed-form solutions could be found and we are left with search algorithms whose

running time could be unacceptably large and their convergence to the global optimum

is not even guaranteed. Hence, we propose below a suboptimal strategy that builds

upon the SDHS strategy presented earlier to select at most K out of the available N

relays that would possibly operate in different modes of cooperation to achieve larger

secrecy rate.
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3.5.4 Multiple Deaf Helpers Selection (MDHS) Strategy

The strategy is carried out over at mostK stages to select at mostK deaf helpers. We

define KCJ
i and KNF

i as the set of selected cooperative jammers and noise forwarders

by the end of stage i, respectively. Before the first selection stage, we have KCJ
0 =

KNF
0 = ∅. In the first stage, we run the SDHS strategy to obtain the best deaf helper

r∗1 ∈ N , identify its mode of cooperation (CJ or NF), and compute the corresponding

achievable secrecy rate R∗
1. These are all made known to s. Moreover, the identity

of r∗1 and its cooperation mode are known to d, e, and the rest of the relays by the

end of the first stage. Accordingly, we either have KCJ
1 = {r∗1} and KNF

1 = ∅ or vice

versa depending on the identified mode of cooperation of r∗1. For 2 ≤ i ≤ K, fix

the transmission powers as ρs = ρ̄s and ρr = ρ̄r, r ∈ N . For each r ∈ N \ {r∗j :

1 ≤ j ≤ i − 1}, r computes two secrecy rates, namely, R
(

KCJ
i−1 ∪ {r}, KNF

i−1

)

and

R
(

KCJ
i−1, KNF

i−1 ∪ {r}
)

using (3.42), i.e., the secrecy rates when r plays the role of a

cooperative jammer and when it plays the role of a noise forwarder. Hence, r finds

the maximum of the two rates and its corresponding mode of cooperation. Then

r sends this rate to s. Consequently, s finds the maximum R∗
i of all the rates it

receives from all the relays involved in stage i. If R∗
i ≤ R∗

i−1, then the strategy is

terminated and the last selection stage would be i − 1. Otherwise, s identifies the

relay r∗i corresponding to the rate R∗
i and its mode of cooperation. Upon termination

at stage t, 1 ≤ t ≤ K, the set of the selected deaf helpers {r∗i : 1 ≤ i ≤ t} and their

modes of cooperation are eventually known to s, d, and e and the achievable secrecy

rate in this case is R∗
t .
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To derive the complexity of the MDHS strategy above, first, we note that in the

ith selection stage, each relay r has to evaluate the rate in (3.42) for two choices of

(

KCJ ,KNF
)

, namely,
(

KCJ
i−1 ∪ {r}, KNF

i−1

)

and
(

KCJ
i−1, KNF

i−1 ∪ {r}
)

. For each choice,

each relay r ∈ N has to find the minimum of 2i terms. The evaluation of each of

these terms is assumed to involve i computations. Thus, each relay r ∈ N performs

(i + 1)2i computations to evaluate the rate in (3.42). Since each relay r does this

computation twice
(

one for each choice of
(

KCJ ,KNF
) )

, then the total number of

computation done by each relay is (i+1)2i+1. At the source s, finding the maximum

rate R∗
i requires about N computations and comparing R∗

i with R
∗
i−1 requires a single

computation. Thus, the ith stage of the MDHS strategy requires N + (i+ 1)2i+1 + 1

computations. Note that each relay r ∈ N computes the rate in (3.42) on its own,

i.e., the computation of all the rates is done in a distributed fashion over the N relays

in every stage of the strategy. That is why the term (i + 1)2i+1 is not scaled by N .

Since there are at most K selection stages in the MDHS strategy, in the worst case,

the total number of computations required in the execution of the MDHS strategy is

K(2K+3−2K+2+N+1)+2 which is indeed O(N) since K is assumed to be a constant

that does not depend on N . Thus, our strategy is efficient. On the other hand, an

optimal strategy that computes the achievable secrecy rate using every possible set

of relays M ⊆ N with |M| ≤ K, then finding the maximum rate together with the

optimal relay assignment is inefficient since it requires
∑K

i=1

(

N
i

)

2N−i ((i+ 1)2i + 1)

computations which is greater than 2N computations.
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3.6 Numerical Results

First, we consider the single deaf helper case. We compare the two modes of deaf

cooperation and verify the conditions of Corollary 3.2 by plotting the optimal secrecy

rate achievable by each of CJ and NF modes against the relative channel gain between

the deaf helper and the eavesdropper, hr.

In Figure 3.2, we set the scaled power constraints of the source and the deaf

helper defined in (3.8) as P̄s = P̄r = 5. We consider two cases. In the first case,

we choose hs < 1, namely, we set hs = 0.75. In the second case, we choose hs > 1,

namely, hs = 1.25. For each case, we plot R̄CJ and R̄NF versus the relative channel

gain hr. We observe that R̄CJ = CGWT when hr ≤ max (1, hs) and R̄CJ > CGWT

otherwise. One can also see that limhr→∞ R̄CJ(hr) = CG where CG is the capacity

of the Gaussian channel between the source and the destination when no secrecy

constraint is imposed, i.e., when the eavesdropper is not present. On the other hand,

we observe that R̄NF = CGWT when hr ≥ min
(

1, 1+hsP̄s

1+P̄s

)

whereas R̄NF > CGWT

otherwise.

Next, we consider the multiple deaf helper case. Consider a disk of radius 1 km

where the source is located at the center, both the destination and the eavesdropper

are located at some fixed points on the circumference. Consider N relays whose

locations are chosen randomly and uniformly in this disk. Each channel gain is

generated according to the formula: γ = SV
dα

where γ is the channel gain, S is a

lognormal random variable to account for shadowing, and V is a Rayleigh random

variable for fading, d is the distance, and α is the path loss [45]. We assume that
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Figure 3.2: The optimal achievable rates R̄CJ and R̄NF as functions of hr, for two
cases of the hs.

the underlying Gaussian random variables from which S and V are generated are

independent, zero mean, and unit variance Gaussian random variables. We also take

α = 3. We set ρ̄s = 10 and ρ̄r = 1 ∀r ∈ N .

In Figure 3.3, we plot the achievable secrecy rate against the maximum allowed

number of helpers, K, for N = 25 and 50, in three different cases. In the first case, the

secrecy rate is obtained using the MDHS strategy described in the previous section.

In the second case, we only consider CJ as the only deaf cooperation mode, i.e., ignore

all the relays that could be useful noise forwarders and use the MDHS strategy only

for useful cooperative jammers. In the third case, we consider only NF as the only

mode available for deaf cooperation. It is clear from Figure 3.3 that making use of the

two modes (CJ/NF) together in the system could significantly increase the achievable
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Figure 3.3: The achievable secrecy rate, R∗, versus the maximum allowed number of
deaf helpers, K, for three cases: CJ/NF, NF only, and CJ only

secrecy rates. Also, we notice that one could benefit from considering a larger set of

relays, i.e., larger N , as this may lead to a better selected set of helpers.

In Figure 3.4 the achievable secrecy rate, R∗, is plotted against the maximum

allowed number of helpers, K, for three different realizations of the relays where

N = 50. It can be seen that the selected helpers could be cooperative jammers (CJ)

or noise forwarders (NF), or both, and that one can improve the achievable rate by

selecting more than one helper. One can also see that the number of selected helpers

could be less than K. Specifically, for the realizations considered here, the numbers

of selected helpers are 2, 4, and 6.
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Figure 3.4: The achievable secrecy rate versus the maximum allowed number of
helpers, K, for three realizations of relays locations, with N = 50.

3.7 Conclusions

In this chapter, we considered two modes of deaf cooperation for secrecy, CJ and

NF. We gave the necessary conditions for each of the two modes to yield higher

secrecy rates than the secrecy capacity of the original GWT channel. We also showed

that a node cannot be both useful jammer and noise forwarder at the same time.

Moreover, we derived the optimal power control policy that maximizes the secrecy rate

achieved by each of the two modes. For the deaf helper selection problem, we proposed

an optimal strategy to select a single deaf helper that maximizes the secrecy rate

achievable by deaf cooperation with a single helper. We also proposed a suboptimal

strategy for the selection of multiple deaf helpers to increase the achievable secrecy

rates. We discussed the complexity of the two proposed strategies and showed that

both of them are efficient. We gave numerical results to verify the derived conditions
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for a useful deaf cooperation. We also presented examples to compare our strategies

with those only based on one mode of cooperation. Also, through numerical examples,

we showed the improvement in the secrecy rate achieved when using multiple deaf

helpers instead of just one.

3.8 Appendix

3.8.1 Proof of Theorem 3.1

First, we show that RCJ(Ps, Pr) ≥ CGWT (Ps) if and only if (3.12) or (3.13) holds. It

is easy to see that if any of (3.12) and (3.13) holds, then RCJ(Ps, Pr) ≥ CGWT (Ps).

Now, suppose that RCJ(Ps, Pr) ≥ CGWT (Ps), then from (3.9) and (5.8), we have

RCJ(Ps, Pr) ≥ 1
2
log

(

1+Ps

1+hsPs

)

and RCJ(Ps, Pr) ≥ 0 which imply

(hshr − 1) + hs(hr − 1)Ps ≥ hr(1− hs)Pr (3.43)

hs − 1 ≤ (hr − hs)Pr (3.44)

Condition (3.44) implies hs ≤ max(1, hr). On the other hand, we cannot have

max(hr, hs) < 1 since this contradicts (3.43). By considering the remaining possi-

bilities, we either have

1 ≤ hs < hr (3.45)
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which directly implies (3.43), or we have

hs < 1 ≤ hr (3.46)

which directly implies (3.44). Thus, if RCJ(Ps, Pr) ≥ CGWT (Ps), then we either have

(3.43) and (3.46) satisfied together which is indeed condition (3.12), or we have (3.44)

and (3.45) satisfied together which is condition (3.13).

Now, we prove the second part of Theorem 3.1. Again, it is easy to verify that if

any of conditions (3.14)-(3.16) holds, then RNF (Ps, Pr) ≥ CGWT (Ps). Now, suppose

that RNF (Ps, Pr) ≥ CGWT (Ps), then from (3.10) and (5.8), we have RNF (Ps, Pr) ≥

1
2
log

(

1+Ps

1+hsPs

)

and RNF (Ps, Pr) ≥ 0 which imply

(hr − hs)Ps ≤ (1− hr) (3.47)

hrPr ≥ hs − 1 (3.48)

(1− hr)Pr ≥ (hs − 1)Ps (3.49)

Condition (3.49) implies that min(hs, hr) ≤ 1. On the other hand, we cannot have

hs ≤ 1 < hr since this contradicts (3.47). Now, we consider the three remaining

possible cases of relative channel gains. We either have

hr ≤ hs ≤ 1 (3.50)
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which directly implies all the conditions (3.47)-(3.49) above, or we have

hs < hr ≤ 1 (3.51)

which directly implies both conditions (3.48) and (3.49), or we have

hr < 1 ≤ hs (3.52)

which directly implies condition (3.47). Thus, if RNF (Ps, Pr) ≥ CGWT (Ps), we either

have condition (3.50) satisfied which is indeed condition (3.14), or we have conditions

(3.47) and (3.51) both satisfied which is the same as (3.15), or we have conditions

(3.48), (3.49), and (3.52) satisfied together which is the same as (3.16).

3.8.2 Proof of Theorem 3.2

We define

fCJ(Ps, Pr) ,
(1 + Ps + Pr)(1 + hrPr)

(1 + hsPs + hrPr)(1 + Pr)
(3.53)

fNF
1 (Ps, Pr) ,

(1 + Ps)(1 + hrPr)

(1 + hsPs + hrPr)
(3.54)

fNF
2 (Ps, Pr) ,

(1 + Ps + Pr)

(1 + hsPs + hrPr)
(3.55)
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Hence,

RCJ(Ps, Pr) =
1

2
log

(

fCJ(Ps, Pr)
)

(3.56)

RNF (Ps, Pr) = min

(

1

2
log

(

fNF
1 (Ps, Pr)

)

,
1

2
log

(

fNF
2 (Ps, Pr)

)

)

(3.57)

We first consider the case where hr ≥ 1. Following Corollary 3.1, the NF strategy

is not useful in this case, hence, in this case if hs < 1 then P̂NF
s = P̄s, P̂

NF
r = 0,

otherwise P̂NF
s = P̄s, P̂

NF
r = 0. This proves (3.20) and (3.31). On the other hand,

if 1 ≤ hr ≤ hs, then again following Corollary 3.1, both strategies are useless and we

have P̂CJ
s = P̂CJ

r = 0 and P̂NF
s = P̂NF

r = 0. This proves (3.35)-(3.36). The remaining

possible cases where hr ≥ 1 are hs < 1 ≤ hr and 1 ≤ hs < hr, i.e., cases 1-(a) and

2-(a) in Theorem 3.2. Suppose that hs < 1 ≤ hr. The derivatives ∂fCJ (Ps,Pr)
∂Ps

and

∂fCJ (Ps,Pr)
∂Pr

are given by

∂fCJ(Ps, Pr)

∂Ps

=
(1− hs + (hr − hs)Pr)(1 + hrPr)

(1 + Pr)(1 + hsPs + hrPr)2
(3.58)

∂fCJ(Ps, Pr)

∂Pr

=
(hr(hs − hr)P

2
r + 2hr(hs − 1)Pr + hs (hr(1 + Ps)− Ps)− 1)Ps

(1 + Pr)2(1 + hsPs + hrPr)2

(3.59)

We note that ∂fCJ (Ps,Pr)
∂Ps

> 0, ∀Ps, Pr. Moreover, ∂fCJ (Ps,Pr)
∂Pr

has two zeros, one of them

is at Pr = P ∗
r where P ∗

r is given by (3.37) which turns out to be the unconstrained

global maximum of fCJ(P̄s, Pr). Thus, the optimal power values P̂CJ
s and P̂CJ

r are

given by (3.19). Suppose now that 1 ≤ hs < hr. If P̄r ≤ hs−1
hr−hs

, then from condition

(3.13) in Theorem 3.1, we must have P̂CJ
s = P̂CJ

r = 0 since hs ≥ 1. Otherwise,
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suppose that P̄r >
hs−1
hr−hs

. First, note that for all Ps,
∂fCJ (Ps,Pr)

∂Ps
> 0 if Pr >

hs−1
hr−hs

.

On the other hand, ∂fCJ (Ps,Pr)
∂Pr

has two zeros, one of them is the unconstrained global

maximizer of fCJ(Ps, Pr) with respect to Pr for any given Ps. Moreover, for all Ps,

this unconstrained global maximizer is greater than hs−1
hr−hs

. Noting that the value

of such unconstrained global maximizer at Ps = P̄s is P ∗
r , we conclude that P̂CJ

r =

min
(

P̄r, P
∗
r

)

and P̂CJ
s = P̄s which proves (3.30).

Next, we consider then case where hr < 1. By Corollary 3.1, the CJ strategy

is not useful in this case, hence, in this case if hs < 1 then P̂CJ
s = P̄s, P̂

CJ
r = 0,

otherwise, P̂CJ
s = P̂CJ

r = 0. This proves (3.21), (3.25), and (3.32). The remaining

possible cases where hr < 1 are hs < hr < 1, hr ≤ hs < 1, and hr < 1 ≤ hs, i.e., cases

1-(b), 1-(c), and 2-(b) in Theorem 3.2. First, one can easily verify that

fNF
1 (Ps, Pr) ≤ fNF

2 (Ps, Pr) if and only if Ps ≤
1− hr

hr
(3.60)

We also have

∂fNF
1 (Ps, Pr)

∂Ps

=
(1− hs + hrPr)

(1 + hsPs + hrPr)2
(3.61)

∂fNF
1 (Ps, Pr)

∂Pr

=
(hshrPs(1 + Ps))

(1 + hsPs + hrPr)2
(3.62)

∂fNF
2 (Ps, Pr)

∂Ps

=
(1− hs + (hr − hs)Pr)

(1 + hsPs + hrPr)2
(3.63)

∂fNF
2 (Ps, Pr)

∂Pr

=
(1− hr + (hs − hr)Ps)

(1 + hsPs + hrPr)2
(3.64)

Now, suppose first that hs < hr < 1. We note that
∂fNF

1 (Ps,Pr)

∂Ps
and

∂fNF
2 (Ps,Pr)

∂Ps

are positive for all Ps, Pr. Hence, we must have P̂NF
s = P̄s. On the other hand,
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∂fNF
1 (Ps,Pr)

∂Pr
> 0 is positive for all Ps, Pr while

∂fNF
2 (Ps,Pr)

∂Pr
> 0 if and only if P̄s <

1−hr

hr−hs
.

Hence, if P̄s <
1−hr

hr−hs
, then P̂NF

r = P̄r. If P̄s ≥ 1−hr

hr−hs
, then from (3.60), (3.10),

and by noting that 1−hr

hr
> 1−hr

hs−hr
, we must have P̂NF

r = 0. This proves (3.22)-

(3.24). Suppose now that hr ≤ hs < 1. In this case,
∂fNF

1 (Ps,Pr)

∂Pr
and

∂fNF
2 (Ps,Pr)

∂Pr
are

positive for all Ps, Pr. Thus, both fNF
1 (Ps, Pr) and fNF

2 (Ps, Pr) are increasing in

Pr for any given value of Ps, hence their minimum is also increasing in Pr. Thus,

P̂NF
r = P̄r which proves (3.28). Now, if P̄r <

1−hs

hs−hr
, then

∂fNF
1 (Ps,Pr)

∂Ps
and

∂fNF
2 (Ps,Pr)

∂Ps

are both positive. Hence, P̂NF
s = P̄s which proves (3.26). If P̄r ≥ 1−hs

hs−hr
, then one

can verify that fNF
1 (Ps, P̄r) is increasing in Ps while fNF

2 (Ps, Pr) is decreasing in

Ps. Thus, the unconstrained global maximizer of their minimum is the point where

they are equal, i.e., Ps = 1−hr

hr
. Hence, P̂NF

s = min
(

P̄s,
1−hr

hr

)

which proves (3.27).

Finally, suppose that hr < 1 ≤ hs. If P̄r ≤ hs−1
hr

, then from condition (3.16) in

Theorem 3.1, we must have P̂NF
s = P̂NF

r = 0 since hs ≥ 1, which proves (3.33). If

P̄r >
hs−1
hr

, then again in this case
∂fNF

1 (Ps,Pr)

∂Pr
and

∂fNF
2 (Ps,Pr)

∂Pr
are positive for all Ps

and Pr. Thus, arguing as above, we conclude that P̂NF
r = P̄r. On the other hand,

∂fNF
1 (Ps,P̄r)

∂Ps
> 0 while

∂fNF
2 (Ps,P̄r)

∂Ps
< 0. Thus, again by arguing as above, we must have

P̂NF
s = min

(

P̄s,
1−hr

hr

)

which proves (3.34).
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Chapter 4

Deaf Cooperation for Secrecy with a Multi-Antenna Helper

4.1 Introduction

In the previous chapter, we studied the notion of deaf cooperation and its applica-

tion in a single antenna relay-eavesdropper channel. In this chapter, we study the

application of this notion in a relay-eavesdropper channel with a multi-antenna relay.

Interestingly, this study reveals new ideas that were not valid in the single-antenna

relay case. This, in turn, leads to useful deaf cooperation strategies that exploit the

multiple spatial dimensions available in this channel to achieve higher secure rates.

Cooperative jamming strategies in multi-antenna relay networks were investigated

in [23], [26], and [25]. In [23], a cooperative jamming strategy is proposed when the

relay is equipped with multiple antennas. Under the constraint that the jamming

signals must lie in the subspace orthogonal to the channel vector between the relay

and the destination, [23] derives the antenna weights and transmit power of the source

and the relay that maximize the achievable secrecy rate subject to a total transmit

power constraint. In [26], two cooperative jamming strategies were proposed for a half-

duplex two-hop multi-antenna relay system where the eavesdropper’s channel state
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information was unknown. In the first strategy, jamming signals are only transmitted

by the nodes that are also transmitting data whereas in the second strategy, the

inactive nodes are used as cooperative jammers. In [25], a cooperative jamming

strategy is proposed for two-hop relay networks where the eavesdropper can wiretap

the transmission in both hops. In the model in [25], the source, the destination, and

the eavesdropper have multiple antennas, whereas the relay has a single antenna.

Under similar constraint to the one in [23], namely, that the jamming signals lie in

the subspace orthogonal to the channels to the legitimate nodes, closed-form solutions

were derived for jamming beamformers that maximize the achievable secrecy rate, and

the optimal power allocation was obtained using numerical methods.

In all the references above, the role of a helping node was restricted to one mode of

deaf cooperation, namely, cooperative jamming. However, as discussed in Chapter 3,

a helping node can also improve secrecy without listening to the source by using the

noise forwarding strategy which was introduced in [29] for the single antenna relay-

eavesdropper channel. In this chapter, we introduce new strategies based on both

CJ and NF modes of deaf cooperation. In particular, we show that having multiple

antennas allows us to decompose the relay-eavesdropper channel into two orthogonal

components, one in the direction of the relay-destination channel (direct component)

and the other in the orthogonal direction to the relay-destination channel (orthogonal

component). Accordingly, we obtain the optimal deaf cooperation strategy (CJ or

NF) along each channel component. It is intuitive that the orthogonal component

should be used for cooperative jamming. However, it is not clear what strategy should

be used along the direct component. It is not also clear how the relay should distribute
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its power over these two orthogonal directions.

In this chapter, we fully answer these two questions. We give, in terms of the model

fixed parameters, the necessary conditions for each of the CJ and the NF strategy

to be useful when employed along the direct component, i.e., to improve over the

optimal secrecy rate achievable when the transmission from the relay is constrained

only to the orthogonal component. In particular, our results show that along the

direct component of the channel either CJ is useful or NF is useful but not both.

Moreover, there are some cases (which are described in this chapter) in which neither

CJ nor NF is useful along the direct component. We fully characterize in the closed-

form the optimal power allocation policy at the source and the relay for each of the

two strategies and hence show how the relay should optimally distribute its power on

the two channel components.

Next, we turn our attention to a certain class of the multi-antenna relay-eavesdropper

channels, namely, the reversely degraded channel. We show that the strategy in which

the relay jams with full power along the orthogonal component of the channel and

transmits nothing in the direct component is optimal when the relay’s average power

goes to infinity. In fact, we even prove a stronger result. The secrecy rate achieved

by this strategy approaches the capacity of the reversely degraded multi-antenna re-

lay channel as the relay’s average power increases, and hence this strategy achieves

the optimal secure degrees of freedom (DoF) of the reversely degraded multi-antenna

relay-eavesdropper channel. Interestingly, this strategy is clearly suboptimal in gen-

eral for a bounded relay’s power. Moreover, we show that this result is valid with

probability 1 even when the relay-eavesdropper’s channel state information is unavail-
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able.

Finally, we present numerical examples to illustrate the gains in the achievable

secrecy rates by our CJ and NF strategies when the relay is equipped with multi-

ple antennas. Our simulation results clearly show that the rates achievable by our

strategies are, in general, significantly larger than those achieved when no splitting

of power between CJ and NF is allowed.

4.2 System Model

We consider the following communication scenario. A single-antenna source, s, sends

a confidential message to a single-antenna destination, d, over an AWGN channel in

the presence of an informed eavesdropper, e, that also has a single antenna. The

communication also occurs in the presence of a helper node, r, that is equipped with

K antennas, K ≥ 1. The helper node r is assumed to be a deaf relay, i.e., it can only

help improving the secrecy capacity of the GWT by transmitting interfering signals

that are independent of the source message. In the literature, there are two proposed

strategies for useful interference introduced by a helper node [34], [19], and [29]. In the

first strategy, known as cooperative jamming, one allows r to help by transmitting

pure Gaussian noise whereas in the second strategy, known as noise forwarding, r

sends a dummy codeword from a codebook known to both the legitimate receiver and

the eavesdropper. By proper scaling of the channel inputs and accordingly modifying

the power constraints at the source and the helper nodes, without loss of generality,

one can express the outputs of the GWT channel, with a multi-antenna deaf helper,
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at the destination and the eavesdropper as

Y = Xs + hT
r Xr +N (4.1)

Z =
√
gsXs + gT

r Xr +N ′ (4.2)

where hr ∈ R
K is the vector of the channel coefficients between the helper r and the

destination d, gs ∈ R, gr ∈ R
K are the channel coefficient scalar and the channel

coefficient vector from the source s and the helper r to the eavesdropper, respectively,

and, N and N ′ are standard Gaussian random variables that denote the noise at the

destination and the eavesdropper, respectively, Xs ∈ R, Xr ∈ R
K are the channel

input scalar and the channel input vector at the source s and the helper r, respectively.

The channel inputs are subjected to the following average power constraints:

E[|Xs|2] ≤ P̄s, and E[‖ Xr ‖2] ≤ P̄r (4.3)

By possibly writing gr as the direct sum gr =
√
αhr + ur where hT

r ur = 0,

one can write Xr in (4.1)-(4.2) as the sum of two orthogonal components. That is,

Xr = Xr0 +Xr1 where

Xr0 = Xr0hr =
hT
r X

T
r

γr0
hr (4.4)

Xr1 = Xr1ur =
uT
r Xr

γr1
ur (4.5)
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where γr0 =‖ hr ‖2 and γr1 =‖ ur ‖2. Thus, we can write (4.1)-(4.2) as

Y = Xs + hT
r Xr0 +N (4.6)

Z =
√
gsXs +

√
αhT

r Xr0 + uT
r Xr1 +N ′ (4.7)

Note that Xr0 and Xr1 in (4.4) and (4.5), respectively, can be arbitrarily correlated.

Note also that it is of no loss of generality writing gr =
√
αhr + ur rather than

gr = ±√
αhr + ur since the sign of

√
α is irrelevant when it comes to expressions of

the achievable secrecy rates. We call Xr0 the direct component of the helper’s signal

since it is in the same direction as the channel component hr from the helper to the

destination while we call Xr1 the orthogonal component of the helper’s signal since

it is orthogonal to the channel component hr. We define Q0 , E
[

Xr0Xr0
T
]

and

Q1 , E
[

Xr1Xr1
T
]

. We also define Qr0 , E [X2
r0] and Qr1 , E [X2

r1]. Hence, from

(4.4)-(4.5), we have tr(Q0) =
Qr0

γr0
and tr(Q1) =

Qr1

γr1
where tr(A) denotes the trace of

the square matrix A. Hence, it is easy to see that the second constraint in (4.3) is

equivalent to

Qr0

γr0
+
Qr1

γr1
≤ P̄r (4.8)

Now, we consider the possible signalling Xr0 and Xr1 across the two orthogonal

directions using either one of the two signalling strategies CJ or NF in every direction.

Clearly, it would not be beneficial if the NF strategy was used for the orthogonal

component Xr1 (i.e., in the direction ur orthogonal to the helper-destination channel
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hr) since the destination cannot decode Xr1 as it lies in the null space of its observed

signal space. On the other hand, if the CJ strategy is used for Xr1, the eavesdropper

is the only one who is possibly harmed by the resulting noise, not the destination.

Hence, we assume that the helper will use the orthogonal component Xr1 for CJ.

That is, Xr1 is given by (4.5) where Xr1 is a Gaussian random variable with zero

mean and variance Qr0. We consequently distinguish between two possible strategies

depending on whether the helper uses the direct component Xr0 for CJ or NF. In

both strategies, the channel input at the source Xs is a symbol of the codeword

that represents the encoded confidential message. Such codeword is drawn from an

i.i.d. Gaussian codebook, i.e., Xs is a Gaussian random variable with zero mean and

variance Ps where Ps ≤ P̄s. Also, in both strategies, the direct component of the

channel input at the helper Xr0 is given by (4.4) where Xr0 is a Gaussian random

variable with zero mean and variance Qr1. Moreover, Xr0 can be arbitrarily correlated

to Xr1 and hence Xr1 can be written as

Xr1 = X̃r1 + ρXr0 (4.9)

where X̃r1 is a Gaussian random variable with zero mean and variance Q̃r1 and is

independent of Xr0 and ρ is some real number. Hence, the constraint (4.8) becomes

(

1

γr0
+
ρ2

γr1

)

Qr0 +
1

γr1
Q̃r1 ≤ P̄r (4.10)

The difference between the two strategies comes from the origin of Xr0. In the
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CJ strategy, Xr0 is Gaussian random variable that plays the role of background noise

at both the destination and the eavesdropper except for the fact that it is generated

artificially. On the other hand, in the NF strategy, Xr0 is a symbol of a dummy

(context-free) codeword drawn from an i.i.d. Gaussian codebook that is assumed to

be available at both the destination and the eavesdropper. Hence, we note that in the

NF strategy, it is no loss of optimality to take the two orthogonal components Xr0

and Xr1 to be independent since the Gaussian noise Xr1 in the orthogonal component

must not reveal any information about the codeword symbol Xr0. Hence, in this case,

we set ρ in (4.9) and (4.10) to zero. In the CJ strategy, this is not generally the

case. However, finding the optimal power control policy, i.e., the optimal values of

Ps, Qr0, Qr1, and ρ that maximizes the achievable secrecy rate by the CJ strategy

subject to the first constraint in (4.3) and constraint (4.10) becomes analytically

intractable. Hence, to obtain closed-form expressions for the power control policy

of the CJ strategy, we will take both Xr0 and Xr1 to be independent, i.e., we set

ρ = 0. From this point on, we will assume that the two components Xr0 and Xr1 are

independent.

If Xr0 is used for CJ, the achievable secrecy rate, denoted as RCJ , is given by

RCJ(Ps, Qr0, Qr1) =
1

2
log

(

(1 + Ps +Qr0) (1 + αQr0 +Qr1)

(1 + gsPs + αQr0 +Qr1) (1 +Qr0)

)

(4.11)

On the other hand, if Xr0 is used for NF, the achievable secrecy rate, denoted as
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RNF , is given by

RNF (Ps, Qr0, Qr1) = min

{

1

2
log

(

(1 + Ps) (1 + αQr0 +Qr1)

1 + gsPs + αQr0 +Qr1

)

,

1

2
log

(

(1 + Ps +Qr0) (1 +Qr1)

1 + gsPs + αQr0 +Qr1

)

}

(4.12)

where, in (4.11)-(4.12), Ps, Qr0, and Qr1 satisfy the first constraint in (4.3) and con-

straint (4.8). For the sake of comparison, when there is no relay involved, the secrecy

capacity of the original GWT channel [13] is given by

CGWT =

(

1

2
log

(

1 + P̄s

1 + gsP̄s

))+

(4.13)

where (x)+ = max(0, x).

4.3 Maximizing the Secrecy Rates Achievable by Deaf Cooperation

4.3.1 The CJ strategy

We consider the following optimization problem:

max
Ps,Qr0,Qr1

RCJ(Ps, Qr0, Qr1) (4.14)

s.t. 0 ≤ Ps ≤ P̄s (4.15)

0 ≤ Qr0

γr0
+
Qr1

γr1
≤ P̄r (4.16)
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where RCJ(Ps, Qr0, Qr1) is given by (4.11). Note that

∂RCJ(Ps, Qr0, Qr1)

∂Qr1

=
gsPs

(1 + αQr0 +Qr1)(1 + gsPs + αQr0 +Qr1)
> 0 (4.17)

Thus, from (4.16), it is no loss of optimality to set

Qr1 = γr1P̄r −
γr1

γr0
Qr0 (4.18)

in (4.14). Hence, the optimization problem given by (4.14)-(4.16) reduces to

max
Ps,Qr0

RCJ(Ps, Qr0) ,
1

2
log

(

(1 + Ps +Qr0)(1 + α̃Qr0)

(1 + g̃sPs + α̃Qr0)(1 +Qr0)

)

(4.19)

s.t. 0 ≤ Ps ≤ P̄s (4.20)

0 ≤ Qr0 ≤ γr0P̄r (4.21)

where

α̃ ,
α− γr1

γr0

1 + γr1P̄r

(4.22)

g̃s ,
gs

1 + γr1P̄r

(4.23)

Again, for the sake of comparison, let Ro denote the optimal secrecy rate achievable

when no transmission is carried out along the direct component of the channel, i.e.,

when the transmission is constrained only to the orthogonal component of the channel.

109



Hence, Ro is given by

Ro =

(

1

2
log

(

1 + P̄s

1 + g̃sP̄s

))+

(4.24)

Note that the optimization problem (4.19)-(4.21) may look similar to the one

considered in Chapter 3 for the single-antenna case. However, a notable difference

is that α̃ could be positive or negative depending on the relative values of γr0 and

γr1. In particular, α̃ ≥ 0 if and only if γr0 ≥ γr1, i.e., the magnitude of the direct

component is greater than that of the orthogonal component.

Let (P̂CJ
s , Q̂CJ

r0 ) be the maximizer of (4.19) subject to (4.20)-(4.21). Note that,

once Q̂CJ
r0 is derived, the optimal value of Qr1, denoted as Q̂CJ

r1 , can be easily found

from (4.18) where Qr0 is set to Q̂CJ
r0 . The optimal covariance matrices Q̂CJ

r0 and Q̂CJ
r1

are given by Q̂CJ
r0

hrh
T
r

γr02
and Q̂CJ

r1
uru

T
r

γr12
. In the next theorem, we fully derive the optimal

power control policy (P̂CJ
s , Q̂CJ

r0 ) for maximizing RCJ .

Theorem 4.1 The optimal policy (P̂CJ
s , Q̂CJ

r0 ) is given as follows:

1. If α̃ ≤ 0: In this case, we have

P̂CJ
s = P̄s, if g̃s < 1 (4.25)

P̂CJ
s = 0, if g̃s ≥ 1 (4.26)

Q̂CJ
r0 = 0 (4.27)

2. If α̃ > 0: We have four possibilities depending on the relative values of α̃ and

g̃s:
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(a) If g̃s ≥ max (1, α̃), then

P̂CJ
s = 0 (4.28)

Q̂CJ
r0 = 0 (4.29)

(b) If g̃s < 1 ≤ α̃, then

P̂CJ
s = P̄s (4.30)

Q̂CJ
r0 =

(

min
(

P̄r, Q
(1)
r0

))+

(4.31)

(c) If 1 ≤ g̃s < α̃, then

P̂CJ
s = 0, Q̂CJ

r0 = 0, if P̄r ≤
g̃s − 1

α̃− g̃s
(4.32)

P̂CJ
s = P̄s, Q̂

CJ
r0 = min

(

P̄r, Q
(1)
r0

)

, if P̄r >
g̃s − 1

α̃− g̃s
(4.33)

(d) If max(g̃s, α̃) < 1, then

P̂CJ
s = P̄s (4.34)

Q̂CJ
r0 = 0 (4.35)

where

Q
(1)
r0 =

√

(

g̃s (α̃− g̃s) P̄s + g̃s (α̃− 1)
)

(α̃− 1) α̃− α̃(1− g̃s)

α̃ (α̃− g̃s)
(4.36)
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and, for x ∈ R, (x)+ is defined as max(0, x).

Proof: First, observe that ∂RCJ (Ps,Qr0)
∂Qr0

is given by

∂RCJ(Ps, Qr0)

∂Qr0

=
α̃(g̃s − α̃)Qr0

2 + 2Qr0(g̃s − 1)α̃ + g̃s(α̃− 1)Ps + g̃sα̃− 1

(1 +Qr0)(1 + g̃sPs + α̃Qr0)(1 + Ps +Qr0)(1 + α̃Qr0)
Ps (4.37)

It is easy to see that if α̃ ≤ 0, then ∂RCJ (Ps,Qr0)
∂Qr0

< 0 ∀Ps, Qr0. Hence, Q̂CJ
r0 = 0 and

case 1 follows. On the other hand, case 2 of this theorem is exactly the same as the

case of single antenna relay given by Theorem 3.2. 2

Theorem 4.1 tells us that CJ along the direct component can be useful only when

the magnitude of the direct component of gr is larger than that of the orthogonal

component, i.e., when α̃ > 0. Otherwise, the optimal power allocation strategy at the

multiple antenna deaf helper would be to jam only along the orthogonal component

and transmit nothing along the direct component.

4.3.2 The NF strategy

Here, we consider the following optimization problem

max
Ps,Qr0,Qr1

RNF (Ps, Qr0, Qr1) (4.38)

s.t. 0 ≤ Ps ≤ P̄s (4.39)

0 ≤ Qr0

γr0
+
Qr1

γr1
≤ P̄r (4.40)
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where RNF (Ps, Qr0, Qr1) is given by (4.12). We define

RNF
1 (Ps, Qr0, Qr1) =

1

2
log

(

(1 + Ps)(1 + αQr0 +Qr1)

1 + gsPs + αQr0 +Qr1

)

(4.41)

RNF
2 (Ps, Qr0, Qr1) =

1

2
log

(

(1 + Ps +Qr0)(1 +Qr1)

1 + gsPs + αQr0 +Qr1

)

(4.42)

Hence,

RNF (Ps, Qr0, Qr1) = min
(

RNF
1 (Ps, Qr0, Qr1), R

NF
2 (Ps, Qr0, Qr1)

)

(4.43)

Note that

∂RNF
1 (Ps, Qr0, Qr1)

∂Qr1

=
gsPs

(1 + αQr0 +Qr1)(1 + gsPs + αQr0 +Qr1)
> 0 (4.44)

∂RNF
2 (Ps, Qr0, Qr1)

∂Qr1

=
gsPs + αQr0

(1 +Qr1)(1 + gsPs + αQr0 +Qr1)
> 0 (4.45)

It follows that ∂RNF (Ps,Qr0,Qr1)
∂Qr1

> 0. Thus, from (4.40), again as in (4.18), it is no loss

of optimality to set Qr1 = γr1P̄r − γr1
γr0
Qr0 in (4.38). Hence, the optimization problem

given by (4.38)-(4.40) reduces to

max
Ps,Qr0

RNF (Ps, Qr0) , min
(

RNF
1 (Ps, Qr0), R

NF
2 (Ps, Qr0)

)

(4.46)

s.t. 0 ≤ Ps ≤ P̄s (4.47)

0 ≤ Qr0 ≤ γr0P̄r (4.48)
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where

RNF
1 (Ps, Qr0) =

1

2
log

(

(1 + Ps)(1 + α̃Qr0)

1 + g̃sPs + α̃Qr0

)

(4.49)

RNF
2 (Ps, Qr0) =

1

2
log

(

(1 + Ps +Qr0)(1− βQr0)

1 + g̃sPs + α̃Qr0

)

(4.50)

where α̃, g̃s are as defined in (4.22)-(4.23) above, and

β ,
γr1

γr0 + γr0γr1P̄r

(4.51)

As in the previous subsection, note that the optimal secrecy rate Ro achievable when

the transmission at the relay is constrained to the orthogonal channel component is

given by (4.24).

There are two main differences between the achievable secrecy rate given by (4.46)

and the achievable secrecy rate by the NF strategy when the helper has a single

antenna. The first difference is, as stated above, α̃ can take a positive or negative

value depending on the relative values of γr0 and γr1, i.e., the magnitudes of the

direct and orthogonal components of the helper-eavesdropper channel. The second

difference is the factor (1− βQr0) in R
NF
2 given by (4.50).

Let (P̂NF
s , Q̂NF

r0 ) be the maximizer of (4.46) subject to (4.47)-(4.48). As discussed

above, once Q̂NF
r0 is derived, the optimal value of Qr1, denoted as Q̂NF

r1 , can be easily

found from (4.18) where Qr0 is set to Q̂NF
r0 . The optimal covariance matrices Q̂NF

r0

and Q̂NF
r1 are given by Q̂NF

r0
hrh

T
r

γr02
and Q̂NF

r1
uru

T
r

γr12
. Before we give the optimal power

control policy (P̂NF
s , Q̂NF

r0 ), we first give the following useful lemmas.
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Lemma 4.1 A necessary condition for the NF strategy to be useful along the direct

component of the channel is to have α̃ ≥ 0 and α̃ + β < 1.

Proof: First, to show that α̃ ≥ 0 is necessary, suppose that α̃ < 0, one can easily

verify that
∂RNF

1 (Ps,Qr0)

∂Qr0
≤ 0 for all Qr0 ≥ 0 which implies that achievable rate is

upper bounded by
(

RNF
1 (P̄s, 0)

)+
= Ro which is indeed the secrecy rate achievable

when the transmission at the relay is constrained to the orthogonal component of the

channel. On the other hand, suppose that α̃+ β > 1. Now, if g̃s < 1, then we clearly

have RNF
2 (Ps, Qr0) ≤ 1

2
log

(

1+Ps

1+g̃sPs

)

≤ 1
2
log

(

1+P̄s

1+g̃sP̄s

)

for all Ps, Qr0 ≥ 0. If g̃s > 1,

then RNF
2 (Ps, Qr0) ≤ 0 for all Ps, Qr0 ≥ 0. Thus, we have RNF (Ps, Qr0) ≤ Ro for all

Ps, Qr0 ≥ 0. 2

Lemma 4.2 Let φ , g̃sβPs
2 +(α̃+ β− g̃s)Ps − (1− α̃− β) and ψ , (α̃ + β − g̃s)

2 −

4g̃sβ (α̃ + β − 1). If the conditions of Lemma 1 hold, i.e., if

α̃ ≥ 0, α̃ + β < 1 (4.52)

then, for any fixed Ps where

0 ≤ Ps ≤ P ∗
s ,

√
ψ − (α̃ + β − g̃s)

2g̃sβ
, (4.53)

we have
∂RNF

2 (Ps,Qr0)

∂Qr0
≥ 0 if and only if

0 ≤ Qr0 ≤ Q∗
r0(Ps) ,

√

β2(1 + g̃sPs)2 − α̃βφ− β(1 + g̃sPs)

α̃β
(4.54)
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Consequently, if conditions (4.52)-(4.53) hold, then

RNF
2 (Ps, Qr0) ≤ RNF

2 (Ps, Q
∗
r0(Ps)) (4.55)

Proof: Define fNF
2 (Ps, Qr0) as the numerator of

∂RNF
2 (Ps,Qr0)

∂Qr0
. Note that the sign of

∂RNF
2 (Ps,Qr0)

∂Qr0
is the same as the sign of fNF

2 (Ps, Qr0) for all Ps, Qr0 ≥ 0. It is easy to

verify that fNF
2 (Ps, Qr0) is given by

fNF
2 (Ps, Qr0) =− α̃βQr0

2 − 2β(1 + g̃sPs)Qr0 − φ (4.56)

Fix Ps and let q1(Ps), q2(Ps) denote the two roots of fNF
2 (Ps, Qr0). Since α̃ ≥ 0, then

∂RNF
2 (Ps,Qr0)

∂Qr0
≥ 0 if and only if Qr0 ∈ [q1(Ps), q2(Ps)]. However, it is not hard to see

that q1(Ps) < 0 for any Ps > 0. Thus, for any Ps, Qr0 ≥ 0, we have
∂RNF

2 (Ps,Qr0)

∂Qr0
≥ 0

if and only if Qr0 ∈ [0, q2(Ps)] where q2(Ps) = Q∗
r0(Ps) where Q

∗
r0 is given in (4.54).

Thus, it remains to show that Q∗
r0(Ps) ≥ 0 (and hence [0, Q∗

r0(Ps)] is not empty)

whenever 0 ≤ Ps ≤ P ∗
s where P ∗

s is given in (4.53). We note that Q∗
r0(Ps) ≥ 0 if and

only if φ ≤ 0. Since φ is quadratic in Ps, it is not hard to see that φ ≤ 0 whenever Ps

lies between the two roots of φ. However, one of the roots is negative and the other

is positive due to the fact that α̃ + β < 1. Indeed, the positive root is P ∗
s . Hence,

φ < 0 and consequently Q∗
r0(Ps) > 0 whenever 0 ≤ Ps ≤ P ∗

s . 2

In the next theorem, we fully derive the optimal power policy (P̂NF
s , Q̂NF

r0 ) for

maximizing RNF . A proof of this theorem is given in the Appendix.

Theorem 4.2 Let Q̃r0 be the value of Qr0 such that RNF
1 (P̄s, Qr0) = RNF

2 (P̄s, Qr0),
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i.e.,

Q̃r0 =

(

1− (α̃ + β)
(

1 + P̄s

)

β

)+

(4.57)

Let Q∗
r0 be as defined in (4.54). The optimal policy (P̂NF

s , Q̂NF
r0 ) is given as follows:

1. If α̃ ≤ 0: In this case, we have

P̂NF
s = P̄s, if g̃s < 1 (4.58)

P̂NF
s = 0, if g̃s ≥ 1 (4.59)

Q̂NF
r0 = 0 (4.60)

2. If α̃ > 0: We have the following four possibilities depending on the values of

α̃, g̃s, and β:

(a) If α̃ + β ≥ 1, then

P̂NF
s = P̄s, if g̃s < 1 (4.61)

P̂NF
s = 0, if g̃s ≥ 1 (4.62)

Q̂NF
r0 = 0 (4.63)

(b) If g̃s ≤ α̃ < 1− β, then

P̂NF
s = P̄s (4.64)
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Q̂NF
r0 =















min
(

γr0P̄r, max
(

Q̃r0, Q
∗
r0

(

P̄s

)

))

, if P̄s ≤ P ∗
s

0, if P̄s > P ∗
s

(4.65)

(c) If α̃ < min (1− β, g̃s) < 1, then

i. If γr0P̄r ≤ 1−g̃s
g̃s−α̃

, then

P̂NF
s = P̄s (4.66)

Q̂NF
r0 =















min
(

γr0P̄r, max
(

Q̃r0, Q
∗
r0

(

P̄s

)

))

, if P̄s ≤ P ∗
s

0, if P̄s > P ∗
s

(4.67)

ii. If γr0P̄r >
1−g̃s
g̃s−α̃

,
[

1−g̃s
g̃s−α̃

, γr0P̄r

]

∩
[

1−(α̃+β)(1+P̄s)
β

,
1−(α̃+β)

β

]

6= ∅, then

(P̂NF
s , Q̂NF

r0 ) =















































(Ps
(a), Qr0

(a)),

if RNF
(

Ps
(a), Qr0

(a)
)

≥ RNF
(

Ps
(b), Qr0

(b)
)

(Ps
(b), Qr0

(b)),

if RNF
(

Ps
(a), Qr0

(a)
)

< RNF
(

Ps
(b), Qr0

(b)
)

(4.68)

where Ps
(a), Qr0

(a) are the optimal values P̂NF
s , Q̂NF

r0 , respectively, of
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case 2(c-ii) above, i.e.,

Ps
(a) = P̄s (4.69)

Qr0
(a) =















min
(

1−g̃s
g̃s−α̃

, max
(

Q̃r0, Q
∗
r0

(

P̄s

)

))

, if P̄s ≤ P ∗
s

0, if P̄s > P ∗
s

(4.70)

and

Ps
(b) =

1− βQr0
(b)

α̃ + β
− 1 (4.71)

Qr0
(b) = min

(

Q
(2)
r0 , γr0P̄r,

1− (α̃ + β)

β

)

(4.72)

where

Q
(2)
r0 =

g̃s

(

1− (α̃ + β) +
√
α̃β −

√

(α̃ + β) ((α̃ + β)− g̃sβ) g̃s (1− α̃)
)

√
α̃β (g̃sβ − α̃ (α̃ + β))

(4.73)

iii. If γr0P̄r >
1−g̃s
g̃s−α̃

>
1−(α̃+β)

β
, then

P̂NF
s = P̄s (4.74)

Q̂NF
r0 =















min
(

1−g̃s
g̃s−α̃

, max
(

Q̃r0, Q
∗
r0

(

P̄s

)

))

, if P̄s ≤ P ∗
s

0, if P̄s > P ∗
s

(4.75)
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iv. If 1−(α̃+β)(1+P̄s)
β

> γr0P̄r >
1−g̃s
g̃s−α̃

, then

P̂NF
s = P̄s (4.76)

Q̂NF
r0 = γr0P̄r (4.77)

(d) If α̃ < 1− β ≤ 1 ≤ g̃s, then

i. If γr0P̄r ≤ g̃s−1
α̃

, then

P̂NF
s = Q̂NF

r0 = 0 (4.78)

ii. If γr0P̄r >
g̃s−1
α̃

,
[

g̃s−1
α̃
, γr0P̄r

]

∩
[

1−(α̃+β)(1+P̄s)
β

,
1−(α̃+β)

β

]

6= ∅, then

P̂NF
s =

1− βQ̂NF
r0

α̃ + β
− 1 (4.79)

Q̂NF
r0 = min

(

Q
(2)
r0 , γr0P̄r,

1− (α̃ + β)

β

)

(4.80)

where Q
(2)
r0 is given by (4.73).

iii. If γr0P̄r >
g̃s−1
α̃

>
1−(α̃+β)

β
, then

P̂NF
s = Q̂NF

r0 = 0 (4.81)
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iv. If 1−(α̃+β)(1+P̄s)
β

> γr0P̄r >
g̃s−1
α̃

, then

P̂NF
s = P̄s (4.82)

Q̂NF
r0 = γr0P̄r (4.83)

4.3.3 CJ versus NF

In the next corollary, we use the results of the above two theorems to compare the two

strategies. In particular, we show in terms of the parameters of the deaf cooperation

model when it is better to use CJ than NF for transmission along the direct component

Xr0 and vice versa. We also give the conditions for which both CJ and NF along the

direct component are useless.

Corollary 4.1 Let α̃, g̃s, and β be as defined in (4.22), (4.23), and (4.51), respec-

tively. For the CJ along the direct channel component to be useful, it is necessary to

have α̃ > max(1, g̃s). Whereas, for the NF along the direct channel component to be

useful, it is necessary to have 0 < α̃ < 1− β. In other words,

If RCJ
(

P̂CJ
s , Q̂CJ

r0

)

> Ro then α̃ > max(1, g̃s) (4.84)

If RNF
(

P̂NF
s , Q̂NF

r0

)

> Ro then 0 < α̃ < 1− β (4.85)

Hence, if

α̃ ∈ [1− β,max(1, g̃s)] ∪ (−∞, 0] , (4.86)
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neither CJ nor NF along the direct component is useful, i.e., Q̂CJ
r0 = Q̂NF

r0 = 0.

Moreover, if, in addition to (4.86), g̃s < 1, then P̂CJ
s = P̂NF

s = P̄s and Q̂r1 = γr1P̄r,

i.e., the optimal power strategy at the relay in this case is to jam with full power along

the orthogonal component and transmit nothing along the direct component. Whereas,

if, in addition to (4.86), g̃s ≥ 1, then P̂CJ
s = P̂NF

s = Q̂r1 = 0, i.e., no transmission

occurs at all and hence the achievable secrecy rate is zero in this case.

4.4 The Reversely Degraded Relay-Eavesdropper Channel with a Multi-

Antenna Relay

In this section, we consider a similar model to the one described in Section 4.2 except

for two differences. First, we assume that the relay receives a vector Yr which is a

noisy version of the source transmission and hence the relay can use this observation

in one way or another to help increase the achievable secrecy rate. Second, we as-

sume that, given the relay’s channel input Xr, the relay’s observation is a degraded

version of the destination’s observation. In particular, we consider the system where

the destination’s and the eavesdropper’s observations are given by (4.6) and (4.7),

respectively. The relay’s observation, Yr ∈ R
K , is given by

Yr = ηY +ΘXr +Nr (4.87)

where η ∈ R
K is the vector of equivalent channel coefficients from the destination’s

observation Y to the relay’s observation Yr, Θ ∈ R
K×K is the matrix of channel
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coefficients from the relay’s input Xr to the relay’s output Yr, and Nr ∈ R
K is

AWGN vector of zero mean and identity covariance matrix and is independent of

(Xs, Xr, N, N
′). Accordingly, we have the following Markov chain Xs → (Y,Xr) →

Yr. We further assume that in (4.7) ur 6= 0, i.e., given the source’s input Xs, neither

the destination’s observation Y nor the eavesdropper’s observation Z is a degraded

version of one another.

In the following theorem, we show that for the channel described in this section,

using only the CJ strategy over the orthogonal component Xr1 (no signaling over the

direct component Xr0) yields a secrecy rate that approaches the secrecy capacity of

this channel as P̄r → ∞. In other words, we show that for high SNR over the relay-

destination and the relay-eavesdropper channel, the secrecy rate achieved by CJ over

the orthogonal component of the relay-eavesdropper channel (and no signaling over

the direct component) approaches the secrecy capacity of the channel described above,

i.e., this strategy achieves the optimal secure DoF of such channel.

Theorem 4.3 Let Cs(P̄r) be the secrecy capacity of the reversely degraded relay-

eavesdropper channel given by (4.6), (4.7), and (4.87) for a given value of the relay’s

average power constraint P̄r. Suppose that ur 6= 0. Let Ro(P̄r) be Ro of (4.24) written

as a function of P̄r, i.e., Ro(P̄r) denote the secrecy rate achievable by using the total

source’s power P̄s for information transmission and using the total relay’s power P̄r

for CJ along the orthogonal component of the relay-eavesdropper channel (i.e., set-

ting Ps = P̄s, Qr1 = γr1P̄r and Qr0 = 0 in any one of the two strategies described in
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Section 4.3). Then, for every ε > 0, there is a sufficiently large value P̄r such that

Ro(P̄r) > Cs(P̄r)− ε (4.88)

In particular,

lim
P̄r→∞

Ro(P̄r) = CG (4.89)

where CG = 1
2
log

(

1 + P̄s

)

is the capacity of the Gaussian channel between the source

and the destination when there is no eavesdropper in the system.

In Theorem 4.3, one should note that CG is indeed an upper bound on the secrecy

capacity of the reversely degraded relay-eavesdropper channel. This is due to the

fact that the relay in this case cannot increase the reliable information rate from the

source to the destination and hence the capacity of the relay channel with no secrecy

constraints is indeed CG. Therefore, CG is an upper bound on the secrecy capacity

of the reversely degraded relay-eavesdropper channel. It is easy to see that

Ro(P̄r) =
1

2
log

(

1 + P̄s

)

− 1

2
log

(

1 + γr1P̄r + gsP̄s

1 + γr1P̄r

)

(4.90)

Hence, (4.89) follows. This indeed proves (4.88).

We can even make a stronger statement than the one Theorem 4.3. In fact,

if the relay-eavesdropper channel gr is unknown at all the nodes (except possibly

the eavesdropper itself), we let the relay choose at random a signaling direction
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for jamming in the subspace orthogonal to hr, i.e., chooses a unit vector sr ∈ R
K

at random and chooses the covariance matrix Q of Xr as srs
T
r P̄r. In this case,

conditioned on some choice of sr, the achievable secrecy rate by this strategy, as

a function in P̄r, is given by

Ro(P̄r) =
1

2
log

(

1 + P̄s

)

− 1

2
log

(

1 + gT
r srP̄r + gsP̄s

1 + gT
r srP̄r

)

(4.91)

It is clear that gT
r sr 6= 0 with probability 1. Hence, Ro(P̄r) → CG almost surely as

P̄r → ∞. Thus, even if the relay-eavesdropper’s channel gr is unknown, the result

of Theorem 4.3 would still hold with probability 1. This stronger result is stated

formally in the following theorem.

Theorem 4.4 If the relay-eavesdropper’s channel information gr is unavailable (ex-

cept possibly at the eavesdropper), then using a simple randomized version of the

relay’s strategy given in Theorem 4.3, the achievable secrecy rate Ro(P̄r) converges to

CG as P̄r → ∞ with probability 1 where CG is the capacity of the Gaussian channel

between the source and the destination when there is no eavesdropper in the system.

Hence, with probability 1, Ro(P̄r) approaches the secrecy of the reversely degraded

relay-eavesdropper channel with multiple antennas at the relay as the total average

relay’s power P̄r becomes sufficiently large.
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4.5 Numerical Results

First, consider the system described in Section 4.2. We compare the optimal secrecy

rates RCJ and RNF achievable by our CJ and NF strategies proposed in Section 4.3

with the optimal secrecy rate Ro achievable by the strategy that uses only the orthog-

onal component of the channel for CJ. We also compare these rates to the secrecy

capacity CGWT of the original Gaussian wiretap channel with no relay. In Figure 4.1,

we set P̄s = 5, P̄r = 2, gs = 0.85, γr0 = 2, and γr1 = 1. We plot RCJ , RNF , Ro,

and CGWT versus
√
α, 0 ≤ √

α ≤ 4, where, as in Section 4.2,
√
α is defined as gT

r hr

γr0
.

It is clear from Figure 4.1 that the necessary conditions given in Corollary 4.1 for

RCJ > Ro and RNF > Ro are satisfied here. Note that the necessary condition in

Corollary 4.1 for RCJ > Ro is equivalent to α >
γr1
γr0

+max(gs, 1+ γr1P̄r), i.e., α > 3.5

(or equivalently,
√
α > 1.871). Note also that the necessary condition in Corollary 4.1

for RNF > Ro is equivalent to
γr1
γr0

< α < 1 + γr1P̄r, i.e., 0.5 < α < 3 (or equivalently,

0.707 <
√
α < 1.732). It is clear that, in general, our CJ and NF strategy yield

greater secrecy rates than Ro and CGWT .

Next, we consider the case where the relay is constrained to using only one of the

two modes (CJ or NF) over all the channel components, i.e., the relay cannot split

its power between CJ and NF. We denote the secrecy rate achievable in this case by

either RSM−CJ or RSM−NF depending on the single mode of deaf cooperation that

the relay is using. It is clear that RSM−CJ = RCJ where RCJ is the optimal secrecy

rate achieved by our CJ strategy since in this strategy the relay jams over the two

orthogonal components of the channel and hence it is indeed a single-mode strategy.
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Figure 4.1: The optimal achievable secrecy rates RCJ and RNF , the achievable secrecy
rate Ro, and the secrecy capacity of the original Gaussian wiretap channel, CGWT , as
functions

√
α.

However, in our NF strategy the relay uses the orthogonal component for CJ whereas

it uses the direct component for NF. Therefore, intuitively, we must have RNF >

RSM−NF in general. To illustrate this, in Figure 4.2, we plotRNF , RSM−CJ , RNF−SM ,

and CGWT versus
√
α, 0 ≤ √

α ≤ 2. The values of P̄s, P̄r, gs, γr0, and γr1 are fixed

and chosen as in the previous example.

Finally, we consider a reversely degraded relay-eavesdropper channel with multiple

antennas at the relay as the one described in Section 4.4. In Figure 4.3, we illustrate

the result of Theorem 4.3. We fix P̄s = 5, γr1 = 1. We plot the achievable secrecy

rate Ro of Theorem 4.3 as a function of P̄r for three different values of the channel

gain gs, namely, gs = 0.25, 0.75, and 1.5. In this example, the capacity of the

Gaussian channel between the source and the destination without secrecy constraints

is CG = 1
2
log(1+P̄s) = 1.292 bits/channel use. It is clear from Figure 4.3 that Ro(P̄r)

converges to CG as P̄r increases and the rate of convergence increases as gs decreases.
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Figure 4.2: The optimal achievable secrecy rates RNF , RSM−CJ , RSM−NF , and the
secrecy capacity of the original Gaussian wiretap channel, CGWT , as functions of

√
α.
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Figure 4.3: Ro as a function of P̄r, C

G, and CGWT .

4.6 Conclusions

In this chapter, we extended the idea of deaf cooperation to the multi-antenna deaf

helper model. We showed that the multiple spatial dimensions available in this model

can be exploited in the deaf cooperation paradigm by possibly decomposing the relay-
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eavesdropper channel into two components, a direct component in the direction of

the relay-destination channel and an orthogonal component that is orthogonal to the

relay-destination channel. We proposed two strategies for deaf cooperation in this

model. In one strategy, the direct component is used by the relay to perform noise

forwarding whereas in the other strategy, it is used for cooperative jamming. In both

strategies, the orthogonal component is used for cooperative jamming. Under the

assumption of independent signaling along each component, we derived the optimal

power allocation for each strategy. We also found the necessary conditions for each

strategy to be useful, i.e., to achieve secrecy rate higher than the secrecy capacity

of the original Gaussian wiretap channel and showed that both strategies cannot be

useful at the same time. Finally, we considered the reversely degraded relay channel

and showed that by using a simple cooperative jamming strategy, we can approach

the secrecy capacity of this reversely degraded channel as the relay’s total power

increases.

4.7 Appendix

4.7.1 Proof of Theorem 4.2

For cases 1 and 2(a), the proof of these cases follows easily from Lemma 1. Before

we prove the rest of the cases, by simple computations, one can easily see that the
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conditions below hold for the rest of the cases, i.e., whenever α̃ > 0 and α̃ + β < 1.

∀ Ps ≥ 0,
∂RNF

1 (Ps, Qr0)

∂Ps

≥ 0 if and only if Qr0 ≥
g̃s − 1

α̃

(4.92)

∀ Ps ≥ 0,
∂RNF

1 (Ps, Qr0)

∂Qr0

≥ 0 ∀ Qr0 ≥ 0 (4.93)

If g̃s < α̃, then ∀ Ps ≥ 0,
∂RNF

2 (Ps, Qr0)

∂Ps

≥ 0 if and only if Qr0 ≥
g̃s − 1

α̃− g̃s

(4.94)

If g̃s > α̃, then ∀ Ps ≥ 0,
∂RNF

2 (Ps, Qr0)

∂Ps

≥ 0 if and only if Qr0 ≤
1− g̃s

g̃s − α̃

(4.95)

If g̃s = α̃, then ∀ Ps ≥ 0,
∂RNF

2 (Ps, Qr0)

∂Ps

≥ 0 ∀ Qr0 ≥ 0 (4.96)

Also, from Lemma 1, we have

∀ Ps ∈ [0, P ∗
s ],

∂RNF
2 (Ps, Qr0)

∂Qr0

≥ 0 if and only if Qr0 ∈ [0, Q∗
r0(Ps)] (4.97)

Now, we consider case 2(b). From (4.92) and (4.94), both RNF
1 and RNF

2 are in-

creasing in Ps. Hence, P̂
NF
s = P̄s. We have one of the following two cases depending

on whether P̄s ≤ P ∗
s . First, if P̄s ≤ P ∗

s , then it follows from (4.97) that, RNF
2 (P̄s, Qr0),

as a function of Qr0, attains its unconstrained maximum at Qr0 = Q∗
r0(P̄s). On the

other hand, from (4.92), RNF
1 (P̄s, Qr0), as a function of Qr0, is increasing in Qr0 for

all Qr0 ≥ 0 and hence the curves of RNF
1 (P̄s, Qr0) and RNF

2 (P̄s, Qr0) may intersect

at some positive Qr0 (note that they already intersect at Qr0 = 0). It is easy to
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see that such point is indeed Q̃r0 given by (4.57). Note also that RNF (P̄s, Qr0) =

RNF
1 (P̄s, Qr0) whenever Qr0 ≤ Q̃r0, i.e., RNF

1 (P̄s, Qr0) ≤ RNF
2 (P̄s, Qr0) whenever

Qr0 ≤ Q̃r0. Hence, the unconstrained maximizer of RNF (P̄s, Qr0) as a function of Qr0

is max
(

Q∗
r0(P̄s), Q̃r0

)

. Since both RNF
1 (P̄s, Qr0) and R

NF
2 (P̄s, Qr0) are increasing in

Qr0 for all 0 ≤ Qr0 ≤ max
(

Q∗
r0(P̄s), Q̃r0

)

, it follows that the constrained maximizer

Q̂NF
r0 is given by min

(

γr0P̄r,max
(

Q∗
r0(P̄s), Q̃r0

))

. If P̄s > P ∗
s , then from (4.97),

RNF
2 (P̄s, Qr0) (and consequently RNF (P̄s, Qr0)) is upper bounded by RNF

2 (P̄s, 0) = Ro

which is the optimal secrecy rate achieved when there is no transmission along the

direct channel component. Hence, Q̂NF
r0 = 0.

Next, we consider case 2(c). From (4.92), RNF
1 (Ps, Qr0) is increasing in Ps for all

Ps, Qr0 ≥ 0. In case 2(c-i), from (4.95), RNF
2 (Ps, Qr0) is also increasing in Ps for all

Ps ≥ 0 and for all 0 ≤ Qr0 ≤ γr0P̄r. Hence, in this case P̂NF
s = P̄s. The rest of

case 2(c-i) follows using the same argument of case 2(b).

We analyze the rest of the subcases of (c) as follows. Since in these subcases

γr0P̄r >
1−g̃s
g̃s−α̃

, we solve the optimization problem in two steps. First, we find the local

maximizer (Ps
(a), Qr0

(a)) of RNF (Ps, Qr0) for 0 ≤ Ps ≤ P̄s, 0 ≤ Qr0 ≤ 1−g̃s
g̃s−α̃

. Then,

we find the local maximizer (Ps
(b), Qr0

(b)) of RNF (Ps, Qr0) for 0 ≤ PsP̄s,
1−g̃s
g̃s−α̃

≤

Qr0 ≤ γr0P̄r. Finally, we set (P̂NF
s , Q̂NF

r0 ) = (Ps
(a), Qr0

(a)) if RNF (Ps
(a), Qr0

(a)) ≥

RNF (Ps
(b), Qr0

(b)) and set (P̂NF
s , Q̂NF

r0 ) = (Ps
(b), Qr0

(b)) otherwise.

Clearly, (Ps
(a), Qr0

(a)) can be easily obtained in the same way the maximizer in

case 2(c-i) was obtained. In particular, Ps
(a) = P̄s and Qr0

(a)

= min
(

1−g̃s
g̃s−α̃

,max
(

Q∗
r0(P̄s), Q̃r0

))

if P̄s ≤ P ∗
s whereas Qr0

(a) = 0 if P̄s > P ∗
s . We
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consider now the case where

1− g̃s

g̃s − α̃
≤ Qr0 ≤ γr0P̄r (4.98)

From (4.92) and (4.95), it follows that, for all Qr0 satisfying (4.98), RNF
1 (Ps, Qr0) is

increasing in Ps whereas RNF
2 (Ps, Qr0) is decreasing in Ps. Let P̃s(Qr0) be the value

of Ps such that RNF
1 (Ps, Qr0) = RNF

2 (Ps, Qr0). It is easy to see that P̃s(Qr0) is given

by

P̃s(Qr0) =
1− βQr0

α̃ + β
− 1 (4.99)

It follows from (4.99) that in order to have RNF
1 (Ps, Qr0) = RNF

2 (Ps, Qr0) for some

Ps ∈ [0, P̄s], we must have

1− (α̃ + β)(1 + P̄s)

β
≤Qr0 ≤

1− (α̃ + β)

β
(4.100)

Now, consider the maximizer of

RNF (P̃s(Qr0), Qr0) =
1

2
log

(

(1 + α̃Qr0)(1− βQr0)

(α̃ + β)(1 + α̃Qr0) + g̃s (1− (α̃ + β)− βQr0)

)

(4.101)
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subject to conditions (4.98) and (4.100), i.e., subject to

Qr0 ∈
[

1− g̃s

g̃s − α̃
, γr0P̄r

]

∩
[

1− (α̃ + β)(1 + P̄s)

β
,
1− (α̃ + β)

β

]

=

[

max

(

1− g̃s

g̃s − α̃
,
1− (α̃ + β)(1 + P̄s)

β

)

, min

(

γr0P̄r,
1− (α̃ + β)

β

)]

(4.102)

It is not hard to check that RNF (P̃s(Qr0), Qr0) has one unconstrained maximum

at Qr0 = Q
(2)
r0 where Q

(2)
r0 is given by (4.73). Hence, if the interval in (4.102) is

not empty, then the constrained maximizer of (4.101) subject to (4.102) is given by

min
(

Q
(2)
r0 , γr0P̄r,

1−(α̃+β)
β

)

. Hence, Qr0
(b) = min

(

Q
(2)
r0 , γr0P̄r,

1−(α̃+β)
β

)

. Consequently,

from (4.99), Ps
(b) = P̃s(Qr0

(b)) = 1−βQr0
(b)

α̃+β
− 1.

If the interval in (4.102) is empty, then we have either one of two cases. That is

1−(α̃+β)
β

< 1−g̃s
g̃s−α̃

or 1−(α̃+β)(1+P̄s)
β

> γr0P̄r. First, if
1−(α̃+β)

β
< 1−g̃s

g̃s−α̃
, thenRNF

2 (Ps, Qr0) ≤

0 for all Ps ≥ 0 and all Qr0 ∈
[

1−g̃s
g̃s−α̃

, γr0P̄r

]

. Hence, the choice of (Ps
(b), Qr0

(b)) is

irrelevant in this case and the maximizer of RNF is given by (Ps
a, Qr0

a). Second, if

1−(α̃+β)(1+P̄s)
β

> γr0P̄r, then R
NF
1 (Ps, Qr0) < RNF

2 (Ps, Qr0) for all Ps ∈ [0, P̄s] and all

Qr0 ∈
[

0, γr0P̄r

]

. Hence, RNF (Ps, Qr0) = RNF
1 (Ps, Qr0) for all Ps ∈ [0, P̄s] and all

Qr0 ∈
[

0, γr0P̄r

]

. Thus, it follows from (4.92) and (4.93) that the maximizer of RNF

is given by (P̄s, γr0P̄r).

Finally, we consider case 2(d). To prove the statement in case 2(d-i), we note that

∀ Ps ≥ 0, if RNF
1 (Ps, Qr0) > 0 then Qr0 >

g̃s − 1

α̃
(4.103)

Hence, if γr0P̄r ≤ g̃s−1
α̃

, then we necessarily have RNF (Ps, Qr0) = 0 for all Ps ≥ 0
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and all 0 ≤ Qr0 ≤ γr0P̄r. Thus, in this case, P̂NF
s = Q̂NF

r0 = 0. For the rest of the

subcases of 2(d), the proof follows the same steps of the proof of cases 2(c-ii), 2(c-iii),

and 2(c-iv) above.
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Chapter 5

Decode-and-Forward Based Strategies for Secrecy in

Multiple Relay Networks

5.1 Introduction

In Chapters 3 and 4, we studied the notion of deaf cooperation in wireless relay net-

works with secrecy constraints. In this chapter, we turn our attention to the second

type of cooperation, namely, to active cooperation. In general, one can distinguish

between two types of cooperation in the secrecy context. The first type of cooper-

ation for secrecy is passive (deaf) cooperation, in which the relay transmits a signal

that is independent of the source message in order to confuse the eavesdropper and

hence improve the achievable secrecy rate. Whereas the second type of cooperation

is active cooperation in which a relay listens to the source transmissions and uses its

observation to improve the achievable secrecy rate. This type is based on the well-

known strategies, e.g., decode-and-forward (DF), compress-and-forward (CF), and

amplify-and-forward (AF) strategies, devised originally for cooperative models with

no secrecy constraint. Reference [38] was the first to introduce the basic relay channel

without secrecy constraints where most of these strategies were first proposed (see
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also [44]). In [29], the basic relay-eavesdropper channel was introduced and achievable

secrecy rates were obtained based on extended versions of these strategies as well as

new strategies that fit the secrecy model.

The role of active cooperation of beamforming relays in improving secrecy was

investigated in [39] and [43]. In both [39] and [43], a two-stage cooperative secrecy

protocol is proposed in which a set of multiple relays decode the source’s message in

the first stage, then the relays forward the source’s message to the destination using

beamforming. Reference [39] proposes an iterative strategy, when the global channel

state information (CSI) is perfectly available, to design the beamforming coefficients

either to maximize the secrecy rate for a fixed transmit power or to minimize the

transmit power for a fixed secrecy rate. The same reference proposes a suboptimal

zero-forcing strategy in which an additional constraint of canceling out the signals

from the eavesdropper’s observation is enforced. In [43], the problem of maximizing

the secrecy rate achieved by the collaborative beamforming of the relays when the

global CSI is perfectly available is investigated under both total and individual relay

power constraints where a closed-form solution is obtained in the first case and a

numerical solution is devised for the second case. The work in [39] and [43] appears

to be closely related to the beamforming strategy presented in this chapter. However,

there is a major difference between their model and the model presented here. In

particular, both [39] and [43] assume that the communication occurs in two stages

where in the first stage (source to relays) both the destination and the eavesdropper

cannot hear the source at all and hence no secrecy requirement is involved in this

stage whereas in the second stage only the relays (but not the source) sends the
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source’s message by beamforming to the destination and hence their model becomes

similar to a MISO wiretap channel [16], [10], [15], [42]. This assumption is not made

in the work presented here. In particular, any node in the system can hear any other

transmitting node(s) at any time during the message is being communicated.

In this chapter, we study the DF scheme in the secrecy context and propose DF-

based strategies for secrecy in multiple relay networks. First, we consider the single

relay problem. The problem of maximizing the achievable secrecy rate under individ-

ual average power constraints at the source and the relay is, in general, analytically

intractable. Hence, we propose a suboptimal DF with zero-forcing (DF/ZF) strategy

for which we obtain the optimal power control policy. Next, we consider the multiple

relay problem. We propose three different strategies based on DF/ZF. In the first

strategy, all the relays decode the source message at the same time, then perform

beamforming by transmitting scaled versions of the same signal to the destination,

i.e., in this strategy each message block is transmitted to the destination in a single

hop1, i.e., all the relays decode the same message block at the same time and for-

ward it to the destination. We give the achievable rate using this strategy and derive

the optimal power control policy for both the source and the relays. Although this

strategy is simple, it has an obvious drawback. In particular, we show that in this

strategy the relays which are far from the source could possibly create a bottleneck

that limits the achievable rate.

To overcome this drawback, we propose another strategy that is based on the

1Here, we define the number of hops as the number of transmission blocks required for all the

relays to decode a single block of the source’s message.
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one proposed in [40] (see also [41]) for the case with no secrecy constraints. In this

strategy, the transmission of each message block occurs in a number of hops that is

equal to the number of relays. More precisely, the relays are ordered with respect

to their distance from the source and they perform DF in a multi-hop fashion, i.e.,

the closest relay decodes the source message first, forwards it (with the help of the

source) to the second closest relay and so forth till it reaches the destination. Since

the encoding of the source message is done using block-Markov encoding in which the

source message is divided into a sufficiently large number of blocks, the total overhead

required per block becomes negligible. We show that this strategy overcomes the

bottleneck drawback of the first strategy. In order to really see gains in the secrecy

rate achievable by this strategy, we need to allocate power appropriately at all the

relays. On the other hand, the optimal power allocation policy for the achievable

rate by this strategy is analytically intractable and using numerical methods is not

a practical option especially when the number of relays is large. Hence, a zero-

forcing technique becomes a viable practical alternative since it guarantees that no

information would leak from the relays to the eavesdropper no matter how the relays

allocate their power. We discuss the zero-forcing technique in the second strategy

and show that if all the relays transmit fresh information in every transmission block

then only half of the signal components from different relays can be forced to zero in

the eavesdropper’s observation. We give the achievable secrecy rate in this case.

Although the second strategy overcomes the bottleneck drawback of the first strat-

egy, as the optimal power allocation is not known, the inability to zero-force all the

relays’ signals at the eavesdropper may lead sometimes to a significant reduction in
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the achievable secrecy rate. We observe that to achieve full zero-forcing in the sec-

ond strategy, we need to set half of the relays’ signal components (that represent the

fresh information transmitted by these relays in a given transmission block) to zero.

However, this is not meaningful in a T -hop strategy. Based on this observation, we

propose a T
2
-hop strategy that, in the Gaussian case, represents a practical realization

of the second strategy with full zero-forcing and hence it combines the advantages

of the two aforementioned strategies in an efficient way. That is, the achievable rate

is not limited by the worst source-relay channel as in the first strategy, yet we can

eliminate all the relays’ signals from the eavesdropper’s observation. In this strategy,

the transmission of each message block takes place in a number of hops that is equal

to half the number of relays. The relays form clusters of two relays per cluster. The

source transmits the message to the relays in the first cluster which decode the mes-

sage and forward it (with the help of the source) to the relays in the second cluster

which decode it and forward it (with the help of the source and the relays in the

first cluster) to the relays in the third cluster and so on so forth till the message is

forwarded to the destination. The relays in each clusters are not assumed to have

any kind of direct communication among them. We show that by properly adjusting

the signal coefficients at the relays, we can zero-force all the relays’ signals at the

eavesdropper. Hence, in typical situations, the achievable secrecy rate is significantly

improved with respect to the secrecy rates achieved by the first two strategies.

Finally, we give numerical results to compare the performance of the proposed

strategies in terms of the achievable rates when a constant power allocation is used

at all the relays. Our results show that the second (multi-hop) strategy yields higher
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rates than the first (single-hop) strategy when the variation in the distance between

the source and the relays is large whereas the first strategy yields higher rates when

such variation is small, i.e., when the relays are at about the same distance from the

source. Our simulation results also show that in a typical situation where each relay

has a close neighbor relay, the third strategy outperforms the first two strategies.

5.2 Decode-and-Forward with a Single Relay

We consider the Gaussian relay-eavesdropper channel consisting of a source (node 0),

a relay (node 1), a destination (node 2), and an eavesdropper (node 3); see Figure 5.1.

Without loss of generality, one can normalize the channel gains from the source and

the relay to the destination by proper scaling of the power constraints at the source

and the relay. Hence, the outputs at the relay, the destination, and the eavesdropper

are, respectively, given by

Y1 = h01X0 +N1 (5.1)

Y2 = X0 +X1 +N2 (5.2)

Y3 = h03X0 + h13X1 +N3 (5.3)

where hk` denotes the complex channel gain from node k to node `, k ∈ {0, 1} and

` ∈ {1, 3}, Xk denotes the channel input at node k ∈ {0, 1}, and N` denotes the

Gaussian noise at node ` ∈ {1, 2, 3} which is circularly symmetric complex Gaussian

random variable with zero mean and unit variance. We assume that all nodes have
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Figure 5.1: A single relay network.

perfect knowledge of all the channel gains. The average power constraints at the

source and the relay are given by

E[|X0|2] , P0 ≤ P̄0, and E[|X1|2] , P1 ≤ P̄1 (5.4)

We confine our attention to the DF scheme which is given in its original setting

without secrecy constraints in [38] and [44] and extended in the secrecy context in [29].

The achievable secrecy rate using the DF scheme RDF for any discrete memoryless

relay-eavesdropper channel given by some conditional distribution p(y1, y2, y3|x0, x1)

and for some input distribution p(x0, x1) is given by (see [29])

RDF = min{I(X0;Y1|X1), I(X0, X1;Y2)} − I(X0, X1;Y3) (5.5)

For the Gaussian channel given by (5.1)-(5.3) above, as proposed in [38] as well as

in [29], we choose X0 and X1 to be circularly symmetric Gaussian random variables
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with zero mean and variances P0 and P1, respectively. Moreover, X0 and X1 are

related as X0 = X̃0+α0X1 where α0 is some complex number to be determined later,

X̃0 is circularly symmetric Gaussian random variable with zero mean and variance P̃0,

and X̃0 is independent of X1. Hence, X0 and X1 are arbitrarily correlated and their

covariance depends on the value of α0. Moreover, from the average power constraints

(5.4), we must have

P̃0 + |α0|2P1 ≤ P̄0, and P1 ≤ P̄1 (5.6)

It follows that the achievable secrecy rate by the DF strategy for such channel is given

by

RDF = min

{

log

(

1 + |h01|2P̃0

1 + |h03|2P̃0 + |α0h03 + h13|2P1

)

,

log

(

1 + P̃0 + |α0 + 1|2P1

1 + |h03|2P̃0 + |α0h03 + h13|2P1

)}

(5.7)

where α0, P̃0, and P1 must satisfy (5.6). On the other hand, the secrecy capacity of

the original Gaussian wiretap channel without a relay is given by

CGWT =

(

log

(

1 + P̄0

1 + |h03|2P̄0

))+

(5.8)

where for x ∈ R, (x)+ = max (0, x). For the DF strategy to achieve strictly larger

secrecy rate than the secrecy capacity of the original Gaussian wiretap channel CGWT ,

it is clear from (5.7) and (5.8) that we must have |h01| > max{1, |h03|}. In other words,
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a necessary condition for the DF strategy to be useful is to have |h01| > max{1, |h03|}.

The problem of finding the optimal power control policy (including finding the

optimal value of α0) is in general analytically intractable and closed form solution

could not be obtained. However, we present here a suboptimal strategy for which

we analytically derive the optimal power control policy. Here, we can only zero-force

the relay signal X1 but not the independent component of the source signal X̃0. In

particular, we set α0 = αZF , −h13

h03
. We denote the achievable rate in this case as

RDF/ZF which, as a function of (P̃0, P1), is given by

RDF/ZF = min

{

log

(

1 + |h01|2P̃0

1 + |h03|2P̃0

)

, log

(

1 + P̃0 + |αZF + 1|2P1

1 + |h03|2P̃0

)}

(5.9)

In the following theorem, we give the optimal power control policy (P̃ ?
0 , P

?
1 ) that

maximizes RDF/ZF . This theorem is proved in the Appendix.

Theorem 5.1 If |h01| ≤ max{1, |h03|}, then the optimal power control policy that

maximizes RDF/ZF is given by P̃ ?
0 = P ?

1 = 0 when |h01| ≤ |h03| whereas by P̃ ?
0 =

P̄0, P
?
1 = 0 when |h01| > |h03|. In this case, the DF/ZF strategy (and even the

general DF strategy) becomes useless since the optimal achievable rate is equal to the

secrecy capacity of the original Gaussian wiretap channel without a relay node. On

the other hand, if |h01| > max{1, |h03|}, then the optimal power control policy that

maximizes RDF/ZF is given by the following cases:

1. If P̄0 ≤
1−|1+ 1

αZF |2−|h03|2

|h03|2|1+
1

αZF |2
, P̄1 ≥ P̄0

|αZF |2
, then P̃ ?

0 = P̄0, P
?
1 = 0.

2. If P̄0 >
1−|1+ 1

αZF |2−|h03|2

|h03|2|1+
1

αZF |2
, P̄1 ≥ P̄0

|αZF |2
, then P̃ ?

0 =
|1+ 1

αZF |2

|h01|2−1+|1+ 1

αZF |2
P̄0,
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P ?
1 =

P̄0−P̃ ?
0

|αZF |2
.

3. If P̄0 ≤
1−|1+ 1

αZF |2−|h03|2

|h03|2|1+
1

αZF |2
, P̄1 <

P̄0

|αZF |2
, then P̃ ?

0 = P̄0, P
?
1 = 0.

4. If P̄0 >
1−|1+ 1

αZF |2−|h03|2

|h03|2|1+
1

αZF |2
, P̄1 <

P̄0

|αZF |2
, then we have the following subcases:

(a) If P̄1 ≤ min

{

1−|h03|2

|h03|2|1+αZF |2
,

|h01|2−1

|h01|2−1+|1+ 1

αZF |2
P̄0

|αZF |2

}

, then P̃ ?
0 = P̄0−|αZF |2P̄1,

P ?
1 = P̄1.

(b) If 1−|h03|2

|h03|2|1+αZF |2
< P̄1 ≤ |h01|2−1

|h01|2−1+|1+ 1

αZF |2
P̄0

|αZF |2
, then P̃ ?

0 = |1+αZF |2

|h01|2−1
P̄1,

P ?
1 = P̄1.

(c) Otherwise, P̃ ?
0 =

|1+ 1

αZF |2

|h01|2−1+|1+ 1

αZF |2
P̄0, P

?
1 =

P̄0−P̃ ?
0

|αZF |2
.

Moreover, in cases 1 and 3 above, the DF/ZF strategy is useless, i.e., it can only

achieve rates as high as the secrecy capacity of the original Gaussian wiretap channel

with no relay, whereas in cases 2 and 4, the DF/ZF strategy achieves a strictly larger

rate than the secrecy capacity of the original Gaussian wiretap channel.

The following corollary is a direct consequence of the above theorem.

Corollary 5.1 If at least one of the following two conditions is true, then the DF/ZF

strategy is useful, i.e., it achieves a higher secrecy rate than the secrecy capacity of

the original Gaussian wiretap channel without a relay:

1. |h01| > |h03| > 1.

2. |h01| > 1 > |h03| and P̄0 >
1−|1+ 1

αZF |2−|h03|2

|h03|2|1+
1

αZF |2
.
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5.3 Decode-and-Forward with Multiple Relays

Let T = {1, ..., T} denote the set of relays. Let the source be denoted as node 0, the

destination as node T + 1, and the eavesdropper as node T + 2. The outputs at the

relays, the destination, and the eavesdropper are given by

Yi = h0iX0 +
∑

j∈T \{i}

hjiXj +Ni, i ∈ T (5.10)

YT+1 = X0 +
∑

i∈T

Xi +NT+1 (5.11)

YT+2 = h0,T+2X0 +
∑

i∈T

hi,T+2Xi +NT+2 (5.12)

where, for i, j ∈ {0, 1, ..., T +2}, hij is the complex channel gain from node i to node

j, Xi is the channel input at node i, and Ni is the complex circularly symmetric zero

mean unit variance Gaussian noise at node i. We assume perfect knowledge of all

channel gains at all the nodes. The average power constraints are given by

E[|X0|2] , P0 ≤ P̄0, and E[|Xi|2] , Pi ≤ P̄r, i ∈ T (5.13)

where we assume that all the relays have equal power constraints for simplicity.

5.3.1 Multiple Relay Single Hop DF (MRSH-DF) Strategy

In this strategy, all the relays decode the source message at a given block at the same

time and forward it to the destination; see Figure 5.2. In the case of the general

discrete memoryless multiple relay channel given by some conditional distribution
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Figure 5.2: Multiple relay single hop strategy.

p(y1, ..., yT+1, yT+2|x0, ..., xT ), the DF scheme of [29] can be extended to obtain an

analogous scheme for the multiple relay case. It is not difficult to see that the achiev-

able secrecy rate RDF by such scheme is given by

RDF = min

{

min
i∈T

{I(X0;Yi|Xr)} , I(X0, Xr;YT+1)

}

− I(X0, Xr;YT+2) (5.14)

for some auxiliary random variable Xr where p(xr, x0, ..., xT ) factors as

p(x0|xr)p(xr)
∏T

j=1 p(xj|xr). For the Gaussian channel, our strategy requires that

all the relays perform signal beamforming as they forward the source message to the

destination. In particular, we choose X0 = X̃0 + α0Xr and Xi = αiXr, i ∈ T where

X̃0, Xr are independent circularly symmetric complex Gaussian random variables

with zero mean and variances P̃0 and Pr, respectively, and α0, αi, i ∈ T are some
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complex numbers. From (5.13), we must have

P̃0 + |α0|2Pr ≤ P̄0, and |αi|2Pr ≤ P̄r, i ∈ T (5.15)

Consequently, the achievable secrecy rate RDF is given by

RDF = min

{

min
i∈T

log

(

1 + |h0i|2P̃0

1 + |h0,T+2|2P̃0 + |α0h0,T+2 +
∑

j∈T αjhj,T+2|2Pr

)

,

log

(

1 + P̃0 + |α0 +
∑

j∈T αj|2Pr

1 + |h0,T+2|2P̃0 + |α0h0,T+2 +
∑

j∈T αjhj,T+2|2Pr

) }

(5.16)

It is clear that a necessary condition for this strategy to be useful is to have

mini∈T |h0,i| > max{1, |h0,T+2|}. Again, finding the optimal values for P̃0, Pr, and

αi, i ∈ T ∪ {0} is analytically intractable. As in the previous section, we propose

a suboptimal strategy in which α0 is chosen to force the term of the eavesdropper’s

observation that depends on Xr to zero. This goal can be attained for any values

of αj, j ∈ T , by choosing α0 = αZF , −
∑

j∈T
αjhj,T+2

h0,T+2
. Hence, the achievable rate

becomes

RDF/ZF = min

{

log

(

1 + |h0i? |2P̃0

1 + |h0,T+2|2P̃0

)

,

log







1 + P̃0 +
∣

∣

∣

∑

j∈T αj

(

1− hj,T+2

h0,T+2

)∣

∣

∣

2

Pr

1 + |h0,T+2|2P̃0







}

(5.17)

where i? = argmini∈T |h0i|. However, the problem of maximizing (5.17) under the

constraints P̃0 + |αZF |2Pr ≤ P̄0 and |αj|2Pr ≤ P̄r, j ∈ T is still intractable since αZF
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(and hence the first constraint) depends on αj, j ∈ T and is not merely a constant

as in the previous section. Thus, we resort to a suboptimal procedure to obtain a

tractable solution. Specifically, we first find a set of suboptimal beamforming coeffi-

cients αj, j ∈ {T}, then, for this choice of coefficients, we maximize the achievable

rate under the corresponding set of constraints. In particular, we ignore the con-

straint P̃0 + |αZF |2Pr ≤ P̄0, assume P̃0 to be fixed, and find αj, j ∈ T that maximize

(5.17) for every Pr that satisfies the constraints |αj|2Pr ≤ P̄r, j ∈ T . For this set

of coefficients, the problem of maximizing the achievable rate under the resulting set

of constraints is tractable and can be solved in a way similar to that of the previous

section.

Now, we claim that if P̃0 is fixed, then, for every Pr that satisfies |αj|2Pr ≤

P̄r, j ∈ T , the rate in (5.17) is maximized by choosing αj =

(

1−
hj,T+2
h0,T+2

)∗

|1−
hj,T+2
h0,T+2

|
, ∀j ∈ T ,

where a∗ denotes the complex conjugate of the complex number a. To see this,

we first note that, from the triangle inequality, we have
∣

∣

∣

∑

j∈T αj

(

1− hj,T+2

h0,T+2

)∣

∣

∣
≤

∑

j∈T |αj||1− hj,T+2

h0,T+2
|. This upper bound can be attained by selecting the phase of αj

to be the negative of the phase of
(

1− hj,T+2

h0,T+2

)

, j ∈ T . Hence, we can replace the

objective function of (5.17) with

RDF/ZF = min

{

log

(

1 + |h0i? |2P̃0

1 + |h0,T+2|2P̃0

)

,

log







1 + P̃0 +
(

∑

j∈T |αj|
∣

∣

∣
1− hj,T+2

h0,T+2

∣

∣

∣

)2

Pr

1 + |h0,T+2|2P̃0







}

(5.18)

Define β̂ , max{|αj|, j ∈ T }, βj , αj

β̂
, j ∈ T , and Qr , β̂2Pr. Hence, the objective
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function in (5.18) can be written as

RDF/ZF = min

{

log

(

1 + |h0i? |2P̃0

1 + |h0,T+2|2P̃0

)

,

log







1 + P̃0 +
(

∑

j∈T |βj|
∣

∣

∣
1− hj,T+2

h0,T+2

∣

∣

∣

)2

Qr

1 + |h0,T+2|2P̃0







}

(5.19)

where |βj| ≤ 1, j ∈ T , and Qr ≤ P̄r. Finally, we note that, for every Qr ≤ P̄r, (5.19)

is maximized by choosing |βj| = 1 ∀j ∈ T .

Thus, the achievable rate by this set of coefficients αj, j ∈ T is given by

RDF/ZF = min

{

log

(

1 + |h0i? |2P̃0

1 + |h0,T+2|2P̃0

)

,

log







1 + P̃0 +
(

∑

j∈T

∣

∣

∣
1− hj,T+2

h0,T+2

∣

∣

∣

)2

Pr

1 + |h0,T+2|2P̃0







}

(5.20)

where P̃0, Pr satisfy

P̃0 + |αZF |2Pr ≤ P̄0, and Pr ≤ P̄r (5.21)

and αZF = −∑

j∈T
hj,T+2

h0,T+2

(

1−
hj,T+2
h0,T+2

)∗

|1−
hj,T+2
h0,T+2

|
. Indeed from the similarity between (5.20) and

(5.9), we can easily modify Theorem 5.1 to obtain the optimal power control policy

(P̃ ?
0 , P

?
r ) that maximizes (5.20) under constraints (5.21). In particular, if |h0i? | ≤

max{1, |h0,T+2|}, then this strategy is useless, i.e., it can achieve at most the secrecy

capacity of the original wiretap channel with no relays. On the other hand, if |h0i? | >

max{1, |h0,T+2|}, then the optimal power control policy that maximizes (5.20) is given
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by the following cases:

1. If P̄0 ≤
|αZF |2−

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

−|αZF |2|h0,T+2|
2

|h0,T+2|2
(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 , P̄r ≥ P̄0

|αZF |2
, then P̃ ?

0 = P̄0,

P ?
r = 0.

2. If P̄0 >
|αZF |2−

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

−|αZF |2|h0,T+2|
2

|h0,T+2|2
(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 , P̄r ≥ P̄0

|αZF |2
, then

P̃ ?
0 =

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

|αZF |2|h0i? |2−|αZF |2+

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 P̄0, P
?
r =

P̄0−P̃ ?
0

|αZF |2
.

3. If P̄0 ≤
|αZF |2−

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

−|αZF |2|h0,T+2|
2

|h0,T+2|2
(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 , P̄r < P̄0

|αZF |2
, then P̃ ?

0 = P̄0,

P ?
r = 0.

4. If P̄0 >
|αZF |2−

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

−|αZF |2|h0,T+2|
2

|h0,T+2|2
(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 , P̄r <
P̄0

|αZF |2
, then we have the

following subcases:

(a) If P̄r ≤ min







1−|h0,T+2|
2

|h0,T+2|2
(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 ,
|h0i? |

2−1

|αZF |2|h0i? |2−|αZF |2+

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 P̄0







,

then P̃ ?
0 = P̄0 − |αZF |2P̄r, P ?

r = P̄r.

(b) If
1−|h0,T+2|

2

|h0,T+2|2
(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 < P̄r ≤ |h0i? |
2−1

|αZF |2|h0i? |2−|αZF |2+

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 P̄0,

then P̃ ?
0 =

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

|h0i? |2−1
P̄r, P ?

r = P̄r.

(c) Otherwise,

then P̃ ?
0 =

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2

|αZF |2|h0i? |2−|αZF |2+

(

∑

j∈T
|1−

hj,T+2
h0,T+2

|

)2 P̄0, P ?
r =

P̄0−P̃ ?
0

|αZF |2
.

As in Theorem 5.1, cases 1 and 3 above can only achieve rates as high as the secrecy

capacity of the original Gaussian wiretap channel with no relays, whereas in cases 2

and 4, the DF/ZF strategy achieves a strictly larger rate than the secrecy capacity

of the original Gaussian wiretap channel.
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5.3.2 Multiple Relay Multiple Hop DF (MRMH-DF) Strategy

One clear drawback of the above strategy is the requirement that all relays must

decode the source message in a single hop at the same time and thus the furthest

relay from the source creates a bottleneck in the achievable secrecy rate. To overcome

this drawback, we propose another strategy that is based on the multi-hop DF strat-

egy introduced in [40] for the multiple relay model without an eavesdropper. In this

strategy, the relays in T are given a certain order. In any given transmission block b

of the source message, the first relay decodes the current message block and forwards

it (with the help of the source) to the second relay in the transmission block b + 1

which decodes it and then forwards it (with the help of the source and the first relay)

to the third relay in the transmission block b+ 2 and so on so forth till the last relay

decodes the source message block and forwards it (with the help of the source and all

the other relays) to the destination in the transmission block b+T . Hence, the trans-

mission of each message block occurs over T hops before it reaches the destination;

see Figure 5.3. Since the multi-hop transmission is pipelined, we only have an initial

delay (overhead) of T blocks before the first message block reaches the destination,

however no further delay is involved between source message blocks. Under the usual

assumption that the source message is composed of sufficiently large number of blocks

B >> T , the achievable rate loss due to such overhead is negligible. Without loss of

generality, assume that the relays are ordered according to their label in T , i.e., each

relay i ∈ T is the ith relay in the multi-hop order. In the case of the general discrete

memoryless multiple relay channel with external eavesdropper given by some con-
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Figure 5.3: Multiple relay multiple hop strategy.

ditional distribution p(y1, ..., yT+1, yT+2|x0, ..., xT ), the multi-hop DF scheme of [40]

can be extended by applying stochastic encoding at the source and every relay in

the usual manner to obtain an analogous secure scheme for the multiple relay with

an external eavesdropper problem. By noting that the eavesdropper intercepts the

signal transmitted in each of the T hops, it is not difficult to see that the achievable

secrecy rate RDF by such scheme for some input distribution p(x0, ..., xT ) is given by

RDF = min

{

I(X0;Y1|X1, X2, ..., XT ), ..., I(X0, X1, ..., Xi;Yi+1|Xi+1, ..., XT ), ...,

I(X0, X1, ..., XT ;YT+1)

}

− I(X0, X1, ..., XT ;YT+2) (5.22)

For the Gaussian channel (5.10)-(5.12), we choose the channel inputs as follows.

Xi = X̃i + αiXi+1, i = 0, ..., T − 1 and XT = X̃T where all X̃i, i = 0, ..., T are

independent circularly symmetric complex Gaussian random variables with zero mean
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an variances P̃i, i = 0, ..., T , respectively, and αi, i = 0, ..., T − 1, are some complex

numbers. Equivalently, we have Xi = X̃i +
∑T

j=i+1

∏j−1
`=i α`Xj, i = 0, ..., T − 1 and

XT = X̃T . From (5.13), we must have

P̃i +
T

∑

j=i+1

j−1
∏

`=i

|α`|2P̃j ≤ P̄i, i ∈ T ∪ {0} (5.23)

where P̄i = P̄r ∀i ∈ T . Hence, the achievable rate RDF is given by

RDF =min

{

min
j∈T

log



1 + |h0j|2P̃0 +

j−1
∑

i=1

∣

∣

∣

∣

∣

hij +
i−1
∑

`=0

h`j

i−1
∏

k=`

αk

∣

∣

∣

∣

∣

2

P̃i



 ,

log



1 + P̃0 +
∑

i∈T

∣

∣

∣

∣

∣

1 +
i−1
∑

`=0

i−1
∏

k=`

αk

∣

∣

∣

∣

∣

2

P̃i





}

− log



1 + |h0,T+2|2P̃0 +
∑

i∈T

∣

∣

∣

∣

∣

hi,T+2 +
i−1
∑

`=0

h`,T+2

i−1
∏

k=`

αk

∣

∣

∣

∣

∣

2

P̃i



 (5.24)

For example, when T = 3, we have

RDF =min

{

log
(

1 + |h01|2P̃0

)

, log
(

1 + |h02|2P̃0 + |h12 + h02α0|2P̃1

)

,

log
(

1 + |h03|2P̃0 + |h13 + h03α0|2P̃1 + |h23 + h13α1 + h03α0α1|2P̃2

)

,

log
(

1 + P̃0 + |1 + α0|2P̃1 + |1 + α1 + α0α1|2P̃2

+ |1 + α2 + α1α2 + α0α1α2|2P̃3

)

}

− log
(

1 + |h0,5|2P̃0 + |h15 + h05α0|2P̃1 + |h25 + h15α1 + h05α0α1|2P̃2

+ |h35 + h25α2 + h15α1α2 + h05α0α1α2|2P̃3

)

(5.25)
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Recall that this rate corresponds to the aforementioned ordering of the relays. In

general, there are T ! of such orderings each of which gives a different rate. In this

strategy, we choose to order the relays according to their distances from the source,

i.e., the closer the relay to the source comes first in the multi-hop order. Hence,

without loss of generality, we assume that |h01| ≥ |h02| ≥ ... ≥ |h0T | and hence the

ordering of the relays gives the rate in (5.24). Clearly, a necessary condition for this

DF strategy to be useful (i.e., to give a rate higher than the secrecy capacity of the

original Gaussian wiretap channel) is to have maxi∈T |h0i| > max{1, |h0,T+2|} which

shows that the relays far from the source do not necessarily limit the achievable rate

as in the MRSH-DF strategy.

Clearly, in the Gaussian case, the MRSH-DF strategy is a special case of the

MRMH-DF strategy when all the relays’ independent signal components X̃i, i ∈ T

are set to zero. This makes the MRMH-DF strategy potentially better than the

MRSH-DF strategy in terms of the achievable secrecy rate if appropriate power allo-

cation is used for the source and the relays. On the other hand, finding the optimal

power allocation for the MRMH-DF strategy is analytically intractable and seeking

numerical solution for this problem is not a practical choice especially if the number

of relays is large. Hence, as a viable practical alternative, we may want to have some

guarantees on the information rate leaked to the eavesdropper by zero-forcing the

relays’ signals at the eavesdropper as we did in the MRSH-DF strategy. In this case,

even if the relays used a simple fixed power strategy, we would guarantee that none

of the relays’ signals would leak to the eavesdropper. However, unlike the MRSH-

DF/ZF strategy, here we cannot eliminate all the components of the relays signals
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from the eavesdropper’s observation unless we set some of the relays’ independent

signal components X̃i to zero. More precisely, if P̃i > 0, ∀ i ∈ T , then we can only

eliminate half of the relays’ signals from the eavesdropper’s observation. In contrast,

in the MRSH-DF strategy, we were able to achieve full zero-forcing because all the

relays’ independent signal components X̃i, i ∈ T were zero in that strategy. However

here if we insist that all the relays must transmit fresh information in each block, i.e.,

P̃i > 0, ∀ i ∈ T , then only the signal components from either the odd (or the even)

relays in the multi-hop ordering can be eliminated from the eavesdropper’s observa-

tion but not both. Hence, we obtain a MRMH-DF strategy with partial zero-forcing

(MRMH-PZF). The reason for this is that whenever we want to eliminate the signal

Xi from the eavesdropper’s observation, we adjust the correlation between Xi and

Xi−1 through choosing the proper value for αi−1. However, this will necessarily give

rise to a non-zero coefficient of Xi−1 in the eavesdropper’s observation. For example,

when T = 3, the eavesdropper’s observation Y5 is given by

Y5 =h05X̃0 + (h15 + h05α0)X̃1 + (h25 + (h15 + h05α0)α1) X̃2

+ (h35 + (h25 + (h15 + h05α0)α1)α2) X̃3 +N5 (5.26)

Here, we can either force the coefficients of X̃1 and X̃3 only to zero by setting α0 =

αZF
0 , −h15

h05
and α2 = αZF

2 , −h35

h25
, or we can force the coefficient of X̃2 only to zero

by setting α1 = αZF
1 , − h25

h15+h05α0
where α0 6= αZF

0 .

One can choose to force either the odd or the even terms of the relay signals in the

eavesdropper’s observation to zero. In general, one should make the choice such that
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the coefficients with higher channel gains are forced to zero. Without loss of generality,

we force the odd terms to zero by choosing α2i = αZF
2i , −h2i+1,T+2

h2i,T+2
, ∀i ∈ {0, ..., bT

2
c}.

The rest of the coefficients must be chosen such that the power constraints (5.23) are

satisfied. Hence, in this case, the achievable rate RDF/PZF is given by

RDF/PZF =min

{

min
j∈T

log

(

1 + |h0j|2P̃0 +

j−1
∑

i=1

∣

∣

∣

∣

∣

hi,j +
i−1
∑

`=0

h`j

i−1
∏

k=`

αk

∣

∣

∣

∣

∣

2

P̃i

)

,

log



1 + P̃0 +
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i∈T

∣
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∣

∣

∣

1 +
i−1
∑

`=0

i−1
∏

k=`

αk

∣

∣

∣

∣

∣

2

P̃i





}

− log

(

1 + |h0,T+2|2P̃0 +
∑

even i∈T

∣
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hi,T+2 +
i−1
∑

`=0

h`,T+2

i−1
∏

k=`

αk

∣

∣

∣

∣

∣

2

P̃i

)

(5.27)

Thus, we conclude that in order to achieve full zero-forcing in this strategy, we must

set half of the independent signal components of the relays to zero, e.g., X̃i = 0

(and hence P̃i = 0) for all odd i in T . However, it would be inefficient to use a DF

strategy with T hops where half of the relays transmit the same signals (except for a

scaling factor) that the other half of the relays transmit. Based on this observation,

we propose below a multi-hop DF strategy using T relays but with only T
2
hops

and show that full zero-forcing is possible in this case. Indeed, for the Gaussian

model, the strategy proposed below is a practical realization of the T -hop strategy

discussed here with full zero-forcing, i.e., when half of the relays independent signal

components are set to zero in the T -hop strategy. It is clear now that the first

MRSH-DF strategy represents one extreme case of the MRMH-DF strategy with T

hops where all the relays’ independent signals components X̃i, i ∈ T are set to zero.
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As discussed earlier, this leads to the drawback of having the achievable rate limited

by the furthest relay from the source. On the other hand, the other extreme is to

have a T -hop strategy where we insist that all the relays transmit fresh information

(represented by the independent signals X̃i) in every transmission block. In this

case, although the bottleneck problem is solved, only partial zero-forcing is possible

and without optimal power allocation (which is analytically intractable) there will

be no guarantees on the information rate leaked to the eavesdropper. Hence, we

propose next a multi-hop strategy that sits somewhere in the middle between these

two extremes and provides an efficient and practical compromise where the achievable

rate is not limited by the worst source-relay channel as in the MRSH-DF strategy

but rather limited by the second best source-relay channel and all the relays’ signals

can be fully eliminated from the eavesdropper’s observation.

5.3.3 Multiple Relay Multiple Hop DF with Full Zero-Forcing (MRMH-

DF/FZF) Strategy

First, we discuss the general strategy without imposing the zero-forcing constraint.

Then, in the Gaussian case, we show how to achieve full zero-forcing. In this strategy,

we assume for simplicity that the number of relays T is even. We also take the number

of the message blocks B to be even. The transmission of each message block takes

place in T
2
hops; see Figure 5.4. This is done as follows. In any given transmission

block b of the source message, the closest pair of relays to the source decodes the bth

message block transmitted by the source and forwards it (with the help of the source)
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Figure 5.4: Multiple relay multiple hop strategy.

to the second closest pair of relays in the transmission block b + 1 which decodes

it and then forwards it (with the help of the source and the first pair of relays) to

the third closest pair of relays2 in the transmission block b + 2 and so on so forth

till the furthest pair of relays from the source decodes the bth message block and

forwards it (with the help of the source and all the other relays) to the destination

in the transmission block b + T
2
. As in the previous subsection, since the multi-hop

transmission is pipelined, the overhead is T
2
blocks. Hence, the loss in the achievable

rate due to this overhead since B >> T . According to scenario described above,

let the relays in the ith pair be labeled as 2i − 1 and 2i, 1 ≤ i ≤ T
2
. In the case

of the general discrete memoryless multiple relay channel with external eavesdropper

given by some conditional distribution p(y1, ..., yT+1, yT+2|x0, ..., xT ), by combining the

results of the two previous subsections, it can be shown that the achievable secrecy

2Here, we mean closest to the source.
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rate RDF by such strategy for is given by

RDF = min

{

min
j∈{1,2}

I(X0;Yj|X1,2, ..., XT−1,T ), ...,

min
j∈{2i−1,2i}

I(X0, X1,2, ..., X2i−3,2i−2;Yj|X2i−1,2i, ..., XT−1,T ), ...,

I(X0, X1,2, ..., XT−1,T ;YT+1)

}

− I(X0, X1,2, ..., XT−1,T ;YT+2) (5.28)

for some auxiliary random variablesX1,2, ..., XT−1,T where p(x1,2, ..., xT−1,T , x0, x1, ..., xT )

factors as p(x0|x1,2, ..., xT−1,T )
∏

T
2
j=1 p(x2j−1|x2j−1,2j)p(x2j|x2j−1,2j). For the Gaussian

channel (5.10)-(5.12), we choose the channel inputs as follows. X0 = X̃0 + α0X1,2,

X1 = X1,2, X2 = β1,2X1,2, X1,2 = X̃1,2 + α1,2X3,4, X3 = X3,4, X4 = β3,4X3,4,

X3,4 = X̃3,4 + α3,4X5,6 and so on so forth, till XT−1 = XT−1,T , XT = βT−1,TXT−1,T ,

and XT−1,T = X̃T−1,T where X̃0 and all X̃2i−1,2i, i = 1, ..., T
2
are independent cir-

cularly symmetric complex Gaussian random variables with zero mean an variances

P̃0 and P̃2i−1,2i, i = 1, ..., T
2
, respectively, and α0, α2i−1,2i, i = 1, ..., T

2
− 1, and

β2i−1,2i, i = 1, ..., T
2
are some complex numbers. Equivalently, we have

X0 = X̃0 + α0

T
2
−1

∑

i=0

(

i
∏

j=1

α2j−1,2j

)

X̃2j+1,2j+2 (5.29)

and, for ` = 1, ..., T
2
, we have

X2`−1 =

T
2
−1

∑

i=`−1

(

i
∏

j=1

α2j−1,2j

)

X̃2i+1,2i+2 (5.30)

X2` = β2`−1,2`X2`−1 (5.31)
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where, whenever i < j, the product
∏i

t=j is set to 1 and the sum
∑i

t=j is set to 0.

From (5.13), we must have

P̃0 + |α0|2
T
2
−1

∑

i=0

i
∏

j=1

|α2j−1,2j|2P̃2i+1,2i+2 ≤ P̄0 (5.32)

and, for ` = 1, ..., T
2
,

T
2
−1

∑

i=`−1

i
∏

j=1

|α2j−1,2j|2P̃2i+1,2i+2 ≤ P̄2`−1 (5.33)

|β2`−1,2`|
T
2
−1

∑

i=`−1

i
∏

j=1

|α2j−1,2j|2P̃2i+1,2i+2 ≤ P̄2` (5.34)

It follows that the achievable rate RDF is given by

RDF = min

{

min
t∈{1,...,T

2
}

{

min
i∈{2t−1,2t}

log
(

1 + |h0i|2P̃0

+
t−1
∑

`=1

∣

∣

∣
α0h0i

`−1
∏

j=1

α2j−1,2j +
∑̀

k=1

(h2k−1,i + β2k−1,2kh2k,i)
`−1
∏

j=k

α2j−1,2j

∣

∣

∣

2

P̃2`−1,2`

)

}

,

log
(

1 + |h0,T+1|2P̃0

+

T
2

∑

`=1

∣

∣

∣
α0h0,T+1

`−1
∏

j=1

α2j−1,2j +
∑̀

k=1

(h2k−1,T+1 + β2k−1,2kh2k,T+1)
`−1
∏

j=k

α2j−1,2j

∣

∣

∣

2

P̃2`−1,2`

)

}

− log
(

1 + |h0,T+2|2P̃0

+

T
2

∑

`=1

∣

∣

∣
α0h0,T+2

`−1
∏

j=1

α2j−1,2j +
∑̀

k=1

(h2k−1,T+2 + β2k−1,2kh2k,T+2)
`−1
∏

j=k

α2j−1,2j

∣

∣

∣

2

P̃2`−1,2`

)

(5.35)

Now, we show that one can adjust the parameters in this strategy to fully eliminate
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all the relays’ signals from the eavesdropper observation and hence obtain a MRMH-

DF strategy with full zero-forcing (MRMH-DF/FZF). First, we observe that the

eavesdropper’s observation is given by

YT+2 = h0,T+2X̃0

+

T
2

∑

`=1

(

α0h0,T+2

`−1
∏

j=1

α2j−1,2j +
∑̀

k=1

(h2k−1,T+2 + β2k−1,2kh2k,T+2)
`−1
∏

j=k

α2j−1,2j

)

X̃2`−1,2`

+NT+2 (5.36)

Let ζ` denote the coefficient of X̃2`−1,2` in (5.36). One can verify that ζ` can be

obtained recursively from ζ`−1 as follows

ζ` = α2`−3,2`−1ζ`−1 + h2`−1,T+2 + β2`−1,2`h2`,T+2, ` = 2, ...,
T

2
(5.37)

Thus, by setting β2`−1,2` = −h2`−1,T+2

h2`,T+2
, one can eliminate all the relays’ signals from

the eavesdropper observation. The rest of the parameters, i.e., α0, α2`−1,2`, 1 ≤ ` ≤ T
2

and the power values P̃0, P̃2`−1,2`, 1 ≤ ` ≤ T
2
should then be chosen to maximize the
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achievable secrecy rate which is now given by

RDF/FZF = min

{

min
t∈{1,...,T

2
}

{

min
i∈{2t−1,2t}

log
(

1 + |h0i|2P̃0

+
t−1
∑

`=1

∣

∣

∣
α0h0i

`−1
∏

j=1

α2j−1,2j +
∑̀

k=1

(

h2k−1,i −
h2k−1,T+2

h2k,T+2

h2k,i

) `−1
∏

j=k

α2j−1,2j

∣

∣

∣

2

P̃2`−1,2`

)

}

,

log
(

1 + |h0,T+1|2P̃0

+

T
2

∑

`=1

∣

∣

∣
α0h0,T+1

`−1
∏

j=1

α2j−1,2j +
∑̀

k=1

(

h2k−1,T+1 −
h2k−1,T+2

h2k,T+2

h2k,T+1

) `−1
∏

j=k

α2j−1,2j

∣

∣

∣

2

P̃2`−1,2`

)

}

− log
(

1 + |h0,T+2|2P̃0

)

(5.38)

5.4 Numerical Results

First, we consider the single relay DF strategy. We set P̄1 = 10, h01 =
√
2, and

h13 = h12 = h02 = 1. In Figure 5.5, we plot both the achievable secrecy rate RDF/ZF

by the DF/ZF strategy and the secrecy capacity CGWT of the channel without a relay

as functions of the source total power P̄0. We do this for two cases of the channel gain

h03, namely, h03 =
√
1.2 and h03 =

√
0.8. It is clear that, as Corollary 5.1 suggests,

when h01 > h03 > 1, we have RDF/ZF > CGWT = 0 for all P̄0. On the other hand,

when h01 > 1 > h03, the DF/ZF strategy becomes useful when P̄0 is large enough.

Next, we consider the multiple relay model with T relays. We devise a simulation

for the following experiment. Consider a two-dimensional coordinate system where

the source (node 0) is located at the origin. The channel gain h`k between any two

nodes ` and k is given by h`k = d
−γ
`k e

jθ`k where d`k is the distance between ` and

k, γ > 1 is the path loss coefficient, and θ`k accounts for independent phase fading

162



m n k n m o k o m p k p m q k q m m kkk l k mk l nk l n mk l ok l o mk l pk l p mk l qk l q m

6 78 9: ;< =>?@ ;A;9B;9CB>D ;E?< D AF 9: >GG;@ HA;I
J K L M N O P 7 Q O R S n l oT U V W X V N O P 7 Q O R S n l oJ K L M N O P 7 Q O R S k l sT U V W X V N O P 7 Q O R S k l s

Figure 5.5: The achievable secrecy rate, RDF/ZF , and the secrecy capacity of the
original wiretap channel, CGWT , versus the source’s total power, P̄0, for two cases of
h03.

and is uniformly and independently distributed over [0, 2π) for all `, k. We choose

d0,T+1 = d0,T+2 = 1 km and take γ = 3. We use a constant power allocation policy

at all the relays where the transmit powers of all the relays are set to P̄r = 10 and

accordingly power is allocated at the source to maximize the achievable rate where

the total average power at the source is set to P̄0 = 50. We consider two scenarios.

In the first scenario, all the T relays are uniformly spread over a disc of radius 0.75

km centered at the source. In the second scenario, all the T relays are at the same

distance of 0.5 km from the source.

In Figure 5.6, we plot the achievable secrecy rate by each of the proposed multiple-

relay strategies, the MRSH-DF/ZF, the MRMH-DF/PZF, and the MRMH-DF/FZF

strategies, for T = 1, ..., 10. Figure 5.6 shows that the MRMH-DF/PZF strategy usu-

ally achieves higher rates than the MRSH-DF/ZF strategy when there is a noticeable
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Figure 5.6: The achievable secrecy rate by the MRSH-DF, the MRMH-DF/PZF, and
the MRMH-DF/FZF strategies versus the number of relays, T , for two cases.

variation in the magnitudes of the channel gains h0,k, k ∈ T between the source and

the relays which is the case captured by the first scenario. However, since in the

MRMH-DF/PZF strategy, we can eliminate only half of the signal terms from the

eavesdropper’s observation, as T increases, the MRMH-DF/PZF strategy becomes

less efficient due to the increase in the number of signal components observed at the

eavesdropper. One can also see that the MRSH-DF/ZF strategy is usually better

than the MRMH-DF/PZF strategy when the amount of variation in the magnitudes

of the channel gains between the source and the relays is small. This is clearly cap-

tured by the second scenario, where all such channel gains have the same magnitude.

On the other hand, one can see the superiority of the rate achieved by the MRMH-

DF/FZF strategy in both of the examples. This indeed is due to the fact that the

MRMH-DF/FZF strategy enjoys the advantages of the two previous strategies with

almost insignificant loss in the achievable rate in the typical situations.
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5.5 Conclusions

In this chapter, we considered the notion of active cooperation in relay networks with

secrecy constraint. We first studied the decode-and-forward strategy for secrecy in a

single relay network. We proposed a suboptimal decode-and-forward with zero-forcing

(DF/ZF) strategy for which we obtained the optimal power control policy. For the

multiple relay problem, we proposed three different strategies based on decode-and-

forward with zero-forcing. The first strategy is a single hop strategy. We gave the

achievable rate by this strategy. We showed that all the relays’ signals can be elim-

inated at the eavesdropper (full zero-forcing) and derived the optimal power control

policy in this case. We showed that the rate achieved by this strategy suffers from

a bottleneck created by the worst source-relay channel. The second strategy is a

multiple hop strategy that was shown to overcome the drawback of the first strategy,

however, with the disadvantage of enabling partial zero-forcing only assuming that

all the relays are required to transmit fresh information in every transmission block.

In the third strategy which is also a multiple hop strategy, it was shown that full

zero-forcing is possible and the rate achieved does not suffer from the drawback of

the first strategy. Finally, we gave numerical examples to illustrate the performance

of each of the proposed strategies in terms of the achievable rates.
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5.6 Appendix

5.6.1 Proof of Theorem 5.1

Define

R
DF/ZF
1 = log

(

1 + |h01|2P̃0

1 + |h03|2P̃0

)

(5.39)

R
DF/ZF
2 = log

(

1 + P̃0 + |αZF + 1|2P1

1 + |h03|2P̃0

)

(5.40)

Hence, from (5.9), we have

RDF/ZF = min
{

R
DF/ZF
1 , R

DF/ZF
2

}

(5.41)

Let R̄DF/ZF denote the maximum value of RDF/ZF over the constraint set given by

(5.6) where α0 = αZF = −h13

h03
. Recall that the secrecy capacity of the original

Gaussian wiretap channel without a relay CGWT is given by (5.8). First, we observe

that if |h01| ≤ |h03| then the maximum value of R
DF/ZF
1 is zero and is attained at

P̃0 = 0. Hence, R̄DF/ZF = 0 ≤ CGWT and in this case, we can set P1 = 0. On the

other hand, if |h03| < |h01| ≤ 1, then for all P̃0, P1, we have RDF/ZF = R
DF/ZF
1 ≤

CGWT = log
(

1+P̄0

1+|h03|2P̄0

)

with equality attained if and only if P̃0 = P̄0 and P1 = 0.

Next, we turn to the case where |h01 > max{1, |h03|}| which will be assumed in

the rest of the proof. One can easily note that R
DF/ZF
1 (which does not depend on

P1) is a strictly increasing function in P̃0 and that for every P̃0, R
DF/ZF
2 is strictly

increasing in P1. However, the behavior of R
DF/ZF
2 as a function of P̃0 for fixed P1
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depends on the power constraints P̄0, P̄1, and the channel gains |h01|, |h03|, |h13|.

Since both R
DF/ZF
1 and R

DF/ZF
2 are non-decreasing in P1, then so is RDF/ZF . Hence,

from (5.6), for every P̃0, one can express the optimal power P1 as a function of P̃0,

namely,

P ?
1

(

P̃0

)

= min

{

P̄1,
P̄0 − P̃0

|αZF |2

}

(5.42)

Hence, R
DF/ZF
2 could be written, without loss of optimality, as a function of P̃0 only

as follows

R
DF/ZF
2 = log

(

1 + P̃0 + |1 + αZF |2P̄1

1 + |h03|2P̃0

)

, if 0 ≤ P̃0 ≤
(

P̄0 − |αZF |2P̄1

)+
(5.43)

R
DF/ZF
2 = log

(

1 + |1 + 1
αZF |2P̄0 +

(

1− |1 + 1
αZF |2

)

P̃0

1 + |h03|2P̃0

)

,

if
(

P̄0 − |αZF |2P̄1

)+ ≤ P̃0 ≤ P̄0 (5.44)

where (x)+ denotes max{0, x} for any real number x. Consequently, the derivative
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of R
DF/ZF
2 with respect to P̃0 is given by

∂R
DF/ZF
2

∂P̃0

=
1− |h03|2 − |h03|2|1 + αZF |2P̄1

(

1 + P̃0 + |1 + αZF |2P̄1

)(

1 + |h03|2P̃0

) , 0 ≤ P̃0 ≤
(

P̄0 − |αZF |2P̄1

)+

(5.45)

∂R
DF/ZF
2

∂P̃0

=
1− |1 + 1

αZF |2 − |h03|2 − |h03|2|1 + 1
αZF |2P̄0

(

1 + |1 + 1
αZF |2P̄0 +

(

1− |1 + 1
αZF |2

)

P̃0

)(

1 + |h03|2P̃0

) ,

(

P̄0 − |αZF |2P̄1

)+ ≤ P̃0 ≤ P̄0

(5.46)

This leads to the four cases in Theorem 5.1 which we will prove below.

• Case (1): The second condition of this case implies that for all 0 ≤ P̃0 ≤ P̄0,

R
DF/ZF
2 and

∂R
DF/ZF
2

∂P̃0
are given by (5.44) and (5.46), respectively. The first

condition of this case implies that
∂R

DF/ZF
2

∂P̃0
≥ 0. Thus, both R

DF/ZF
1 and R

DF/ZF
2

are increasing in P̃0 and hence R̄DF/ZF is attained at P̃0 = P̃ ?
0 = P̄0 which, by

(5.42), implies that P ?
1 = 0. Moreover, in this case, it is clear that at the optimal

power values R̄DF/ZF = R
DF/ZF
2 = CGWT .

• Case (2): Similar to case (1), the second condition of this case implies that

for all 0 ≤ P̃0 ≤ P̄0, R
DF/ZF
2 and

∂R
DF/ZF
2

∂P̃0
are given by (5.44) and (5.46),

respectively. However, the first condition of this case implies that
∂R

DF/ZF
2

∂P̃0
< 0.

Thus, R
DF/ZF
1 is strictly increasing in P̃0 whereas R

DF/ZF
2 is strictly decreasing

in P̃0. Therefore, R̄DF/ZF is attained at when R
DF/ZF
1 = R

DF/ZF
2 which gives

the optimal power values P̃ ?
0 =

|1+ 1

αZF |2

|h01|2−1+|1+ 1

αZF |2
P̄0 and P ?

1 =
P̄0−P̃ ?

0

|αZF |2
. We also

note that at P̃0 = P̄0, we have R
DF/ZF
2 = CGWT . This together with the fact
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that R
DF/ZF
2 is strictly decreasing in P̃0 implies that R̄DF/ZF is strictly larger

than CGWT .

• Case (3): In this case, one can easily verify from (5.45) and (5.46) that
∂R

DF/ZF
2

∂P̃0
≥

0 for all 0 ≤ P̃0 ≤ P̄0. Hence, both R
DF/ZF
1 and R

DF/ZF
2 are increasing in P̃0.

Thus, P̃ ?
0 , P

?
1 , and R̄

DF/ZF are the same as in case (1).

• Case (4):

– Case (4-a): In this case, one can verify from (5.45) and (5.46) that
∂R

DF/ZF
2

∂P̃0
>

0 whenever 0 ≤ P̃0 ≤ P̄0 − |αZF |2P̄1 and
∂R

DF/ZF
2

∂P̃0
< 0 whenever P̄0 −

|αZF |2P̄1 < P̃0 ≤ P̄0. This implies that R
DF/ZF
2 attains its local maximum

at P̃0 = P̄0 − |αZF |2P̄1. Moreover, in this case, R
DF/ZF
2 < R

DF/ZF
1 at

P̃0 = P̄0 − |αZF |2P̄1. Hence, R̄DF/ZF is attained at P̃ ?
0 = P̄0 − |αZF |2P̄1

and at such point R
DF/ZF
2 = R̄DF/ZF . Since R

DF/ZF
2 is strictly decreasing

in P̃0 for P̄0 − |αZF |2P̄1 < P̃0 ≤ P̄0 and since R
DF/ZF
2 = CGWT at P̃0 = P̄0,

then we must have R̄DF/ZF > CGWT .

– Case (4-b): In this case, from (5.45) and (5.46), we have
∂R

DF/ZF
2

∂P̃0
< 0

for all 0 ≤ P̃0 ≤ P̄0. It follows that the optimal power value P̃ ?
0 is ob-

tained by solving R
DF/ZF
1 = R

DF/ZF
2 in P̃0. In this case, we note that

R
DF/ZF
1 = R

DF/ZF
2 happens when R

DF/ZF
2 is given by (5.43), and hence

P̃ ?
0 = |1+αZF |2

|h01|2−1
P̄1. It follows from (5.42) that P ?

1 = P̄1. At the optimal

power values, we have R
DF/ZF
2 = R̄DF/ZF . This together with the fact

that R
DF/ZF
2 is strictly decreasing in P̃0 for 0 ≤ P̃0 ≤ P̄0 and the fact that

at P̃0 = P̄0, we have R
DF/ZF
2 = CGWT , it follows that R̄DF/ZF > CGWT .
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– Case (4-c): In this case, one can easily verify that R
DF/ZF
2 is strictly de-

creasing in P̃0 for P̄0 − |αZF |2P̄1 < P̃0 ≤ P̄0 and that R
DF/ZF
1 = R

DF/ZF
2

happens when R
DF/ZF
2 is given by (5.44), i.e., the value of P̃0 at which

R
DF/ZF
1 = R

DF/ZF
2 is greater than or equal to P̄0 − |αZF |2P̄1. Hence, this

value of P̃0 must be the optimal power value P̃ ?
0 . As in case (2), this op-

timal value is given by P̃ ?
0 =

|1+ 1

αZF |2

|h01|2−1+|1+ 1

αZF |2
P̄0 which, by (5.42), implies

that P ?
1 =

P̄0−P̃ ?
0

|αZF |2
. Again, like in cases (2),(4-a), and (4-b), one can show

that R̄DF/ZF > CGWT .
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Chapter 6

Conclusions

In this dissertation, we studied two important notions related to physical-layer se-

curity in wireless multi-user channels, namely, alignment and cooperation. Studying

these two notions gives rise to a useful set of tools that exploits the physical properties

of the wireless channel, e.g., its fading and broadcast nature, to achieve and reinforce

information-theoretic security in wireless networks. Towards this end, we studied the

fading multiple access wiretap channel and the cooperative relay channel with secu-

rity constraints and proposed new schemes that efficiently exploit these notions and

apply them in the physical layer to achieve high secure rates over these channels.

For the fading multiple access wiretap channel, we proposed two schemes based on

signal alignment either by using code repetition and signal scaling at the transmitters

(the SBA scheme), or by code repetition over carefully chosen channel uses (the ESA

scheme). We showed that, unlike the schemes based only on i.i.d. Gaussian signaling,

our schemes yield secure rates that scale with the signal-to-noise ratio. In particular,

we showed that, in the K-user fading multiple access wiretap channel, we can achieve

a total of K−1
K

degrees of freedom. We gave an improved version of our second scheme

by incorporating the cooperative jamming technique. We also discussed the optimal
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power control policies for our schemes.

For the cooperative Gaussian relay channel, we investigated the concept of deaf

cooperation to improve the secrecy capacity of the main Gaussian wiretap channel.

We studied two different modes of deaf cooperation, namely, cooperative jamming and

noise forwarding. We obtained the necessary conditions for each of the two modes

to improve over the secrecy capacity of the main wiretap channel. Hence, we showed

that a node cannot be both a useful jammer and a useful noise forwarder at the same

time. We derived the optimal power control policy for each of the two modes. For the

deaf helper selection problem, we proposed a selection strategy in which multiple deaf

helpers operating in different modes are selected to increase the achievable secure rate

of the source. We showed that this selection strategy requires reasonable number of

computations.

We studied the two modes of deaf cooperation when the relay node is equipped

with multiple antennas. We gave two deaf cooperation strategies in which the relay

decomposes his channel to the eavesdropper into two components and it uses the

component orthogonal to the destination’s channel for cooperative jamming while it

uses the component in the direction of the destination’s channel for either cooperative

jamming or noise forwarding. We derived the necessary conditions under which coop-

erative jamming along the direct component is better in terms of the achievable rate

than noise forwarding along the direct component and vice versa. We derived the opti-

mal power control policy in each case. For the reversely degraded relay-eavesdropper

channel, we showed that, by using a simple strategy in which the relay jams with

full power along the orthogonal component, we approach the secrecy capacity of this
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channel as we increase the relay’s power.

Finally, we considered active cooperation in relay networks with security con-

straints. We focused on the decode-and-forward scheme for active cooperation. For

the single relay problem, we proposed a zero-forcing strategy in which the relay sig-

nal is eliminated from the eavesdropper’s observation. We derived the optimal power

allocation policy for this strategy. For the multiple relay problem, we proposed three

decode-and-forward based strategies. For the first strategy, which is a single hop

strategy, we showed that full zero-forcing is possible, however, the rate achievable by

this strategy suffers from a bottleneck caused by the worst source-relay channel. We

showed that the second strategy, which is a multiple hop strategy, overcomes this

drawback, however, only partial zero-forcing is possible. The third strategy, which is

also a multiple hop strategy, was shown to be a good compromise since the achievable

rate is not limited by the worst source-relay channel and full zero-forcing is possible.

Our results not only serve a theoretical purpose by showing that we can provide

and improve security from the physical layer using the techniques of alignment and

cooperation but also serve a practical purpose by studying the practical aspects of the

proposed schemes and the practical considerations that should be taken into account

when these schemes are implemented in a wireless communication system. However,

throughout this dissertation, we made a standard assumption that is usually made in

the related work in this area. Namely, we assumed that the global channel state infor-

mation including the eavesdropper’s channel state information is available at all the

nodes in a causal fashion. Providing security when nothing is known about the eaves-

dropper’s channel state information is a challenging task especially in scalar channels.
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