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Abstract ages in places with high human densities introduced several
challenging problems caused by severe occlusions, includ-
We describe a single-camera system capable of detectingng the difficulties faced in modeling the background and
abandoned packages under severe occlusions, which leadiglentifying static objects, and if only a single camera iso
to complications on several levels. The first arises whensidered, only limited glimpses of the abandoned package
frames containing only background pixels are unavailable are available over a short period of time. We consider only a
for initializing the background model - a problem for which ~ single camera in this paper, with the motivation that a robus
we apply a novel discriminative measure. The proposedsingle-camera algorithm operating under severe occlgsion
measure is essentially the probability of observing a par- when extended to multiple cameras, will be extremely use-
ticular pixel value, conditioned on the probability that no ful.
motion is detected, with the pdf on which the latter is based  Given a single camera, a typical approach to the prob-
being estimated as a zero-mean and unimodal Gaussian distem would be to perform change detection, followed by
tribution from observing the difference values between suc a threshold-based approach to detect static objects,eefor
cessive frames. We will show that such a measure is a pow-<classifying them as possible packages based on appearance.
erful discriminant even under severe occlusions, and canSeveral researchers have thus focused on first building a
deal robustly with the foreground aperture effect- a prable  background model, with the assumption that frames con-
inherently caused by differencing successive frames. Theaining only background pixels are available (e.§,,71])
detection of abandoned packages then follows at both thein the initial phase. In this aspect, our system eliminates
pixel and region level. At the pixel-level, an “abandoned such a requirement by building the background model in-
pixel” is detected as a foreground pixel, at which no mo- crementally based on a novel discriminative measure, and
tion is observed. At the region-level, abandoned pixels are estimating its density using kernel density estimatidi) ([
ascertained in a Markov Random Field (MRF), after which While background modeling typically utilizes the historfy o
they are clustered. These clusters are only finally classi-the pixel values, our proposed measure do so conditioned
fied as abandoned packages, if they display temporal per-on the fact that no motion should be observed at the given
sistency in their size, shape, position and color propsertie pixel. The intuition is simple; given frames containing mov
which is determined using conditional probabilities ofsee  ing foreground objects, the only pixels that we are inteest
attributes. The algorithm is also carefully designed toidvo  in during the background modeling phase are those that lie
any thresholding, which is the pitfall of many vision sys- in static region. While several researchers have looked int
tems, and which significantly improves the robustness of oursimilar problem, such ad p] where the dominant mode at a
system. Experimental results from real-life train statgm pixel is used as the background, 6} \vho suggested build-
guences demonstrate the robustness and applicabilityrof ou ing the background model by searching for input frame in
algorithm. an image sequence that has background visible at a partic-
ular pixel, they depend on the fact that the particular back-
ground pixel is seem more frequently than foreground pix-
els over a short period of time - an assumption that quickly
becomes invalid under severe occlusions.

The problem of detecting abandoned packages in In order to use our proposed measure, we need an ef-
crowded placess increasingly becoming an important sur- ficient and effective way to detect motion, for which sev-
veillance issue. One can easily realize that crowded placesral approaches exist. One such approach which has been
are desirable and vulnerable targets of terror attacks, duevorked on extensively in the past is optical flow (e.g.,
to their high human densities. Detecting abandoned pack{8, 22, 13]), albeit that not only is it hard to compute op-

1. Introduction



tical flow on the basis of image measurements only, it is whereby we commit the first threshold of our system. The
also relatively slow. We address these concerns by differ-avoidance of thresholding, that has been the pitfall of many
encing successive frames (e.g., 15, 18, 20, 19)) instead, vision systems, makes our system extremely robust, and is
which is extremely fast and its pdf can be easily derived as perhaps the most important contribution of this paper.

a zero-mean and unimodal Gaussian distribution by observ-

ing difference values between successive frames over time2 Motion Detection

Such an approach, however, suffers from missed detections

caused by homogeneous moving objects - a problem com- Given the speeds, andv, of a pixel with intensity/, in
monly known as the foreground aperture problem - unlessthe z andy directions respectively, the well-known optical
more elaborate image processing scheme such as the ond®w constraint equation is given as:

described in15, 20] are employed. Herein thus lies another

advantage of our proposed measure; it is able to deal effec- _or_or, n or )
tively with the problem, since each homogeneous moving ot  Ox oy

region occludes the true background pixel for a short period

of time, and different such regions are more than likely to constraint, whereby it is expected that adjacent pixelg hav

exhibit d:jfferent coIo:hpr?pertll)es.kln othedr Wor?.s’ usmﬁo largely similar motion except near the motion boundaries.
proposed measure, e lrue background pixetis much moreg,, practice, optical flow computation is often prone to er-

III_<eI)|/ to exhibit h#h_erftrequ_er&cyftthan thgse ?ﬁrr;?r?gn(feous rors, and performs slowly due to the optimization process
pixels-over a sutlicient period ot time, given that tNeIrre: ., . steps through different combinationsodndo.

quency increases whenever they become visible. On the other hand, a further look at Ednshows that if
~ Using such a robust approach for background model-we just want to detect motion (i.gu| > 0 and/or|v| > 0)
ing, coupled with the superior performance of using suc- and is uninterested in the valuewfnduv specifically, then
cessive frames differencing, allows the system to effitjent \we can just check thd%| > 0. This would advanta-
detect pixels belonging to potential abandoned packages ageously retain video rate performance, bearing in mind that
those foreground pixels detected by the background modeljoing so still suffers from the foreground aperture problem
but not the frame differencing phase. We again face prob-commonly associated with optical flow computation, when
lems caused by homogeneous moving regions when homog homogeneous moving region Caugész 0 and% ~ 0,

1 " 1 ” 1 - . . . . £ . y
geneous pixels occlude an “abandoned pixel”, since theyproducing little change in intensity over time.
are equally likely to be C|.aSSIerd (Wrongly) as apandoned, Checking thaﬂ%| > 0 is simple; we can just compute
being foreground and mistaken as static. We give a two-the differences in pixel values between the current frame
step approach to overcome this problem, which begins withand previous frames. For this purpose, the current frame

detected as a foreground pixel and that no motion has beefime + — 1, to t — 1, giving us the difference value of a pixel,

observed, with the values coming from homogeneous pix- p,  as:
els similarly filtered out as before. Such a pdf reflects the

The goal, then, is to solve farandv using the smoothness

presence of abandoned pixel or lack thereof, which can be t—1
determined by thresholding the corresponding variance - an D; = Z wr * |Cr — C, (2)
approach that we want to avoid. To do so, we give a Markov T=t—n

Random Field (MRF) formulation for ascertaining aban-
doned pixels that considers the influence of a pixel’s neigh-
borhood, with the optimal configuration derived as the one
with the Maximum A Posteriori (MAP) probability, thereby
avoiding any form of thresholding.

wherew, represents a normalized weighting scheme for

preceding frames, such that earlier frames are given smalle

weights, and” is the notation for the pixel value. The dis-

tribution of the difference values of a “static pixel” (i.e.

pixel where no motion is observed) over time is zero-mean
Abandoned pixels can then be clustered, and each clusand unimodal. To see this, consider that additive Gaussian

ter can be identified as abandoned packages after discardingoise,n,, is added to the true pixel valug, causing it to be

those that are improbable abandoned packages due to thetihserved a¢;, i.e.,:

sizes. Such an approach can potentially fail when confusion

arises in differentiating between real abandoned packages Cy = A+, 3)

and other static objects, such as a person standing still. Ou

system avoids doing so by evaluating conditional probabil- wheren; ~ N(u,,02) is a Gaussian distribution with

ities based on the color histogram, shape, size and positiormeany,, and variancer2. Differencing of C; and C;

of a given cluster, and identifying from the corresponding removes the\ term, leaving the difference of; andn;, 1,

pdfs true abandoned packages as those with small variancesf which the distribution is exactly that d; given as:



035 background pixel, make building the background extremely

03 challenging. In view of these problems, we propose a novel
g \ discriminative measure to identify background pixelst tha
f;im; \ is based on the conditional probability of observing a pixel
% oy \ value when no motion is detected. To build the background,

oo \* we first obtain the history of pixel values and difference val

-5

5 ues from timet — At tot — 1, given as{C;_a¢, ..., Ct—1}
Figure 1. The difference values of an unobstructed statiel jbie- and {Dt*_At’ " _thl} respectively, _and e\_/aluatg the fre-
tween successive frames over 550 frames is measured agrainst qUeNcy with which each of the possible unique pixel values

frequencies. It shows a zero-mean, unimodal Gaussiaribdistr (we use grayscale here, so the pixel values range from 0 to
tion. 255) are seen. Given an unique pixel valdg,we compute

its frequencyf;, in the histogram as:

0
Difference Values

t—1

= S P(IC; = Gi|) * P(D7)
e A )
P(D) = S~ " = P(AC|D),

27 (02 + 02) ’

2
Di

)
e 102

= \/ﬁ’ where P(AC;|D) is the conditional probability that; is
T observed based oR(C; — C;), when no motion has been
(4) detected|C, — C;| and D, are assumed to be independent

with mean zero and varian@?2. An example is shown of each other, so that their joint probability can be easily

in Fig. 1, where the difference values of a static pixel (a cOmputed from the respective pdf. Additionally(|C’; —

pixel on the ceiling was chosen so that it remains unob- Cil) behaves similarly a&(D-), so that both values can be
structed throughout) over 550 frames are measured againd{€rved using Eqe. This is illustrated in Fig2(c) and (d).

the frequencies with which they occu?(D;) measuresthe ~ One can easily realize thg is very effective in identi-
probability of not observing motion, and under severe oc- fYing background pixels, even under severe occlusions and
clusions, its pdf can be estimated from the history of the the presence of homogeneous moving regions. Intuitively,
difference values between successive frames, based on theuch a frequency measure for homogeneous pixels will be
understanding that it would be unimodal and zero-mean.low, since they are only detected as static for a short period
We do this by first finding the mode that has center clos- ©f time and different homogeneous moving regions are ex-
est to zero, followed by delimiting it by the immediate left Pected to exhibit vastly different color properties, wheere
and right neighboring mode. Let the frequency of the first the same frequency measure when used for a background

be fo, the left neighbor bef, and the right neighbor b.. pixel is expected to be high since its frequency increases
Then a histogram at the three values becomes respectivelyVhenever it becomes visible. This is illustrated in Fig.
f0+§2+f7~ , f0+§if+f? and f0+§;+f7‘ . The variance of the pdf ~ The frequency of a pixel on a specular surface, under severe
is then estimated L 1" We show such a plotand occlusions, was recorded over 109, 200 and 300 frames in
(T (@), (b) and (c) respectively. Each time the modes were cor-
the estimated pdf in Fig2(a) and (b) respectively, whereby rectly identified (manually verified). The choice of a spec-
multiple modes caused by motion can be clearly seen. ular pixel allows us to illustrate clearly the effectiveaed

Itis important to know that such a pdf does not differen- such a frequency measure, where the pixel values fluctuate
tiate between homogeneous pixels and static pixels. Whilegreatly between the two main peaks in the plots, as moving
we can increase the value ofin Eqn. 2 to alleviate the  objects cast reflections on the surface.
problem, too large a value afwill result in wrongly classi- Givenn unique pixel values, the density of the resulting
fying a static pixel as a non-static one. Empirically, wedav packground model is estimated with Gaussian kernel den-
found thatn should not exceed 5 under video rate process- sjty estimation, so that the probability of observing a new
Ing. pixel value,C%, is given as:

3. Background Modeling

1 n J _(Ct*Ci)2

The foreground aperture problem, together with severe P(C)) = = Z Z %e T, (6)
V aT

occlusions that allow only limited glimpses of the true >ie fi == ’
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Figure 2. (a) Under severe occlusions, we can see many med&ieb the one centered at zero, with the former indicatingemce of
motion and the latter indicating static or homogeneouslpixg) The system finds the mode with center closest to zelonding it by

the left and right neighboring mode, and computing the vemgaof the pdf over the same range of data. (c) In this plotdtfierence
values are computed as the difference between the curpezityailue and the true background pixel value, at the same [@gation as
(a). (d) The pdf associated with (c), estimated in the sameeraas (b), is very similar to (b). All the plots are measwreer 550 frames.
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Figure 3. We show here the modes of a background pixel, filsshtising the frequency measure in EGnover 100, 200 and 300 frames
in (a), (b) and (c) respectively. The modes are correctlptified each time. The background pixel belongs to a spedialar surface and

the two main peaks are caused by moving objects castingtiefison the surface from time to time.

200

whereo is the chosen bandwidth. Several methods cur- clear by now that under severe occlusions, simply doing so
rently exist for automatic selection of the bandwidth, no- will not be able to deal effectively with the foreground aper

tably plug-in and cross-validation methods (e.42,[17]),
but the simple method suggested &) jvorks reasonably
well and is used in our system. Here, a closer look at Egn.
will reveal that we have effectively “transformed” the ob-
served frequency to the frequency measure given by &qn.

in performing a non-parametric summation of the probabil-
ities with respect to each unique pixel value.

t

ture problem. Instead, we propose an approach as follow.
For each pixel, we consider the histogram for the set of
unigue pixel values;;, seen at the pixel during time inter-
val betweert — At andt, with the frequency of each unique
pixel value,f;, computed as:

. Z P(|C, — Ci|) * P(D,) x P(C;)
4. Abandoned Package Detection ' oA P(D7) * P(C;) ’
4.1. Pixel-level Detection = P(AG|D, F), o

In addition to being highly effective in identifying back-
ground pixels, the frequency measure proposed in Bgn. whereP(AC;|D, F') represents the conditional probability
also allows the background model to be initialized as soonthat C; is observed (measured witR(C, — C;)), given
as enough glimpses of the background pixel can be col-that it is static and foreground. The joint probability is
lected. Intuitively, once such initialization is realizéat a again computed on the assumption that the random vari-
pixel, foreground pixels belonging to abandoned packagesables are independent of each othé(C;) is the probabil-
that occlude the background pixel can be identified as pix- ity of seeingC; as a foreground pixel and is the complement
els that are static (Eqrt), but yet are classified as fore- of Egn.6. We show such a distribution in Fig, collected
ground by the background model. It should, however, be over 400 frames of a severely occluded scene. A package



025 Clifford theorem (f, 11]) that establishes the equivalence
02 between the properties of MRFs and Gibbs distribution, the
o1 probability of a configurationl”( f), can be written as:
8 o 1 .
m P(f) = e 770, ®)
0.05 Jh Z
G*!Q&,,,ﬂz, A i i

200 whereT is called the temperature and usually assumed to be
Figure 4. The plot of the distribution of a pixel over 400 fregris L, ar_1d given thaf" is the se_t_contalnlng all possible _conflg-
shown here. The frequency is measured according toEgmd a urations,Zz, callled the partition function, can be yvntten as
package was abandoned midway through the frames, causing thZ = >_ser e~ mY(7). For the purpose of performing MAP,
main peak seen here. Z is fortunately inconsequential, sind®(f) o e~ V().

We then computé/( /), consisting of only pair-site cliques,

to encourage smoothness in the clustering:

50 100 150
Pixel Values (Grayscale)

was abandoned midway, and the distribution at a pixel lo- U(f) = Z Z l(fi — )2, (9)
cation occupied by the package, is shown here before and T ieN; 2

after the package was left. It shows that the system was abl?NhereNi is the 8-neighborhood system ofTo obtain the

to pick up correctly the abandoned pixel corresponding to configurationf,,.. with the maximum a posteriori prob-

the highest peak in the plot, using the frequen_cy measure 'nability, the setd gives us the abandoned variance of each
Eqgn.7. As a result, the system can now obtain such a dis

A . . . " pixel, with a smaller variance implying a higher likelihood
terlsk:utg);k;oroi\t/;rr)]/ Eéxggrmzforrggzb?f mmag:‘r?iodj (:;gh— of being abandoned. A weighting scher&,, is used for
P ' piep @.(“) 9.4 11 modeling the variance that comprises two separate expo-
~ 0.21), and compute the corresponding sample variance

as0? — ! with the assumption that the underlying nential functions for label 0 and 1 respectively. Although

ST T 2mP(w)? , they are not probability density functions, we will see that
distribution is normal. Such a sample variance reflects thethey suffice for the purpose of maximizing the posterior
likelihood that the pixelis an abandoned pixel and is used in probability. They are given as:

the following section for ascertaining and clustering aban
doned pixels. For convenience, we will call these variance

values as “abandoned variances”. e~ £ =1,

Wo(oilfi) = o5 (10)
4.2. Region-level Detection e fi=0.
4.2.1 Clustering Abandoned Pixels The above exponential functions are designed to satisfy sev

L . eral conditions. Firstly, for label 1, the function should
After obtaining the abandoned variances, further process-,e monotonically decreasing as the variance increases, and
ing is performed at the region-level to group the abandonedy,q onnosite should be true for that of label 0. Secondly,

pixels into clusters. Two choices exist - we can either clas- o \vant to be able to perform MAP without needing to
sify a pixel as abandoned by thresholding its aba”donedcomputez, for obvious performance reason, and this is

variance and performing morphological operation on the 5 pieved by using exponential functions. Lastly, the proba
abandoned pixels, or we can utilize more elaborate Processpjity given by one function at a particular value of varianc

ing to avoid thresholding at this stage. For the latter, We 414 complement as much as possible that of the other
propose a formulation that utilizes a MAP-MRF (Maxi- - ¢,ction, i e., if is the probability of being label 0, then
mum A Posteriori-Markov Random Field) labeling tech- 6 hropapility of being label 1 should be as close as pos-
nique ([L, 9]), which has the additional advantage of consid- gipia to1 — p. We achieve this (approximately) by setting
ering the obvious importance of the relationship of a pisel t fo = 4 andf; = 12, noting that these values are set once

its neighbors in ascertaining that it is indeed an abandoned, 4 5 inconsequential to the robustness of the algorithm. A

pixel. plot of both functions with thesg-values is shown in Figp.

Consider a configuratior), = { /1, ..., i}, wherem is Based on Eqni0, the likelihood density can be written
the number of pixels in the image, and the set of abandoned, .

variancesd = {0?,...,02,}. Eachf; € f is assigned la-

bel 1 or 0, to indicate whether the corresponding pixel is an m

abandoned pixel or not respectively. Clearly, such a con- P|f) = [[Wo(oil f), (11)
figuration is Markovian, i.e., the label of a pixel interacts i=1

only with the neighboring labels. Due to the Hammersley- Since the posterior probability is:



4.2.2 Region-level Semantics
o The set of candidate abandoned packages that have been
§Z: identified allows further ascertainment at the regionleve
& o4 of which there are several advantages. In addition to re-
- ascertaining abandoned pixels, it can also help in sitoatio
M where the system needs to distinguish between true aban-
© " Sudev, Abandoned Phels doned packages and other static objects, such as a person
Figure 5.0, andé; are set to 4 and 12 respectively. The functions standing still, that greatly confuses the system. This is pa
complement each other approximately as shown. ticularly important in our application of interest - detect

ing abandoned packages in train stations - where severe
occlusions arise from high human traffic, and where peo-
ple very often stood in place. Although a coarse filtering
step, during which oversized or undersized clusters are dis

P(f|d) e—U(fld) (12) carded, proves to be very effective, noise in the foreground
’ detection phase can sometimes break the object into multi-
taking thelog of P(f|d) o< P(d|f)P(f) gives: ple smaller foreground regions or the object might only be
partially visible due to occlusions. To overcome this prob-
U(fld)=U(d|f)+U(f), (13) lem, we adopt an approach that is based on the observation

that true abandoned package remains absolutely stationary

wherel/(d| f) can be written as: (as compared to, say, a person standing in place). Then, it

m B _ can be expected that the shape and color of a true abandoned
ud|f) = Z(l — fi)0oe” %0 + fi%. (14) package, at the initially detected location, would remaln r
i=1 L atively constant over time.
The MAP estimate 0f ... then becomes: Given a candidate abandoned package initially detected
at timet, the system first notes its sizg ), shape ¢;), po-
Jmaz Zargfmi“ U(f|d). (15) sition (p;) and color histogram({;). Because we expect

the abandoned package to be stationary, we look forif at
Unfortunately, optimization of the above cost function is in subsequent frames; this simplifies the task, which would
an exponential problem, since there would2edifferent otherwise require tracking. Within the same image region,
combinations off. Our problem is however simpler, given given byg, at p;, in a subsequent frame, we then evaluate
that abandoned package is expected to be a rare event, sghether the package is still there, both in terms of shape
that it is very unlikely that there would be a lot of (if any) and color histogram. For the former, the Hausdorff distance
true abandoned pixels at any given time. Our proposal, isis used (14, 21]). Edges are first detected in the initial and
then, to minimize the number of different combinations of subsequent frame within the boundaries givenhyield-
/ to be considered in each of a number of iterations. Theing two setsA; andB; respectively, containing points lying
pixels are split into different sets, so that the size of each on detected edges. The Hausdorff distadéed;, B;), be-
set is sufficiently small to avoid any significant deteriora- tween them is then given as:
tion in performance. Optimization is then performed on
an initial set, after which optimization of subsequent sets
is conditioned on the state of the sets that have been opti- H(A¢, By) = max(h(As, Bt), h(By, At)), (16)
mized. Such an optimization procedure is in essence what
is known as the Iterated Conditional Modes (ICM) approach where
([2]). While the ICM approach might converge to some lo-

cal instead of global maxima of the a posteriori probabil- h(Ag, By) = max min P(Dy) + [a — b]. 17)
ity, it performs exceptionally well for our problem, withbu ’
causing significant slowdown. The Hausdorff distance{ (A;, B;), measures the distance

With the pixels properly labeled, we can then cluster of the point ofA, that is farthest from any point d8;, and
pixels that have been positively labeled. The clustering is particularly useful in our context for comparing shapes,
process is “loosely” performed, whereby any pixel within since we clearly do not have to worry about scaling and
a 8-neighborhood system of a pixel is cluster together, for transformations (the package is expected to be stationary)
the same reason that abandoned package is rare, and it By adding the termP (D), that represents the probability
very unlikely that multiple packages would be abandoned of observing no motion di, we also impose the requirement
at the same time. that the pixel used in the calculation should be static.
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Figure 6. (a) The color histogram differences over 550 fraare computed for an unobstructed region, and the dominade s pre-
dictably centered at zero. (b) Here, the color histograrfieifices are computed for a different region that expegigisevere occlusions.
(c)(d) The Hausdorff distances over the same frames are w®ahfior an unobstructed region and one that has severestmtdurespec-
tively. We look for modes with centers closest to zero forbitte color histogram difference and Hausdorff distance, @se them to
estimate the corresponding pdfs needed for computing titeapility in Eqn.19.

Following shape comparison using the Hausdorff dis- and zero-mean, we estimate their densities from the ob-
tance, differences in color properties are then evaluated.servations by again looking for the mode with center clos-
The main concerns here are the efficiency and effectivenes®st to zero, and delimiting it with the neighboring modes.
of any such comparison algorithms. We adopt a simple ap-We show in Fig.6(a) and (b), the color histogram differ-
proach as follow. We first convert the initial and subsequent ences measured over 550 frames, for an unobstructed region
frame to grayscale, and split the resulting histograis, = and one with severe occlusions respectively. Each of them
andY; respectively, into 16 bins each. The grayscale his- clearly shows mode centered at zero value, that is extracted
togram distance measuré,;s: (X, Y;), is then computed as the pdf for use in EqrL9. Fig. 6(c) and (d) show the
by the following quadratic form ([6]): corresponding plots for the Hausdorff distances measured

over the same frames. Finally, Figshows the plot for the
values computed by Eqi9 for a real abandoned package,

dnist(Xe,Ys) = (X = Y3) " Pp, WPp, (X, —Y3), (18)  the dominant mode of which exhibits a small variance.
whereW is al1l6 x 16 weight matrix, that gives the sim-
ilarity between different bins, and contain ones on the
diagonal, andPp, is the matrix containing the prob-
ability of observing motion for each pixel used in the
computation. Each element 6¥ is computed ad —
(l’owd‘“f’_’owe‘e’"‘), whererowg;q, and rowee, are re-
spectlvely the row index of the diagonal element and
the row index of the element in the same column. Us-
ing these measures, observations made from time

1 to t + At, {H(At, Bi+1)), ..., H(A:, Biyar)} and
{dnist(Xt,Yi41), s Apist(Xe, Yerar)}, allow the system

to finally classify a cluster as abandoned package when th
following probability exceed§™:

5. Experimental Results

We have applied our algorithm to several challenging
video sequences that have been collected from extremely
crowded train stations, two of which are shown here in
Fig. 8 and Fig.9. In Fig. 8(a), we show in the leftmost im-
age the result of performing successive frames differepcin
which expectedly revealed missed detections in homoge-
neous moving regions. In the following image to the right,
we show abandoned pixels in green, which were detected

s foreground in static regions, in a short amount of time af-
ter the package was left by the perpetrator. Then, clugterin
of the abandoned pixels is demonstrated in the third image
from the left, where a blue box was used to bound the de-
tected cluster as candidate abandoned package. Finally, we
show in the rightmost image the edge map of the scene,

(29) used in computing the Hausdorff distance. Evidently, as we
where P(Dhausdor ) @and P(D.o10r) are respectively the  proceed from (a) to (d), the edge maps within the static re-
probability of observing differences in the Hausdorff dis- gion of the candidate abandoned package gave Hausdorff
tance and color histogram. The rationale in such a mea-distances that were expectedly small. That, coupled with
sure is to condition the detection of abandoned packages orsimilar color properties, causes a discernable mode shown
the consistency in the color properties of candidate pack-in Fig. 7, so that the package was finally classified as aban-
ages, thereby achieving robustness even under severe occlaoned (bounded by a red box in the third image from the left

sions and the presence of foreground aperture effect. Sincén (d)), demonstrating the effectiveness of our algoritim i

we expectP(Dpqusdorfs) and PDeoor) to be unimodal picking up the presence of abandoned packages even under

P(Dhausdorff) * P(Dcolor)
P(Dcolor) ’

P(D}Lausdo7‘ff|D(:ol0'r) =
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Figure 7. Using the measure given by Efj..we are able to detect

a significant mode for a real abandoned package.

severe occlusions.

We then show in fig9 results that allow the readers to

abandoned packages using Hausdorff distance and a sim-
ple quadratic histogram similarity measure, coupled with
an MRF formulation for clustering abandoned pixels, allow
the system to robustly identify true abandoned packages.
By avoiding thresholding in our algorithm, it becomes ex-
tremely robust for use in real world surveillance applica-
tions. Further work that can be extended from here includes
the use of our algorithm to first detect abandoned packages,
after which the system can backtrack in time to determine
the perpetrator who is expected to be near the location of the
package at the instance it was first left behind. It would also
be a good idea to extend our algorithm to multiple cameras,
so that problems caused by severe occlusions can be more
effectively dealt with.
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