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Abstract

We describe a single-camera system capable of detecting
abandoned packages under severe occlusions, which leads
to complications on several levels. The first arises when
frames containing only background pixels are unavailable
for initializing the background model - a problem for which
we apply a novel discriminative measure. The proposed
measure is essentially the probability of observing a par-
ticular pixel value, conditioned on the probability that no
motion is detected, with the pdf on which the latter is based
being estimated as a zero-mean and unimodal Gaussian dis-
tribution from observing the difference values between suc-
cessive frames. We will show that such a measure is a pow-
erful discriminant even under severe occlusions, and can
deal robustly with the foreground aperture effect - a problem
inherently caused by differencing successive frames. The
detection of abandoned packages then follows at both the
pixel and region level. At the pixel-level, an “abandoned
pixel” is detected as a foreground pixel, at which no mo-
tion is observed. At the region-level, abandoned pixels are
ascertained in a Markov Random Field (MRF), after which
they are clustered. These clusters are only finally classi-
fied as abandoned packages, if they display temporal per-
sistency in their size, shape, position and color properties,
which is determined using conditional probabilities of these
attributes. The algorithm is also carefully designed to avoid
any thresholding, which is the pitfall of many vision sys-
tems, and which significantly improves the robustness of our
system. Experimental results from real-life train stationse-
quences demonstrate the robustness and applicability of our
algorithm.

1. Introduction

The problem of detecting abandoned packages in
crowded placesis increasingly becoming an important sur-
veillance issue. One can easily realize that crowded places
are desirable and vulnerable targets of terror attacks, due
to their high human densities. Detecting abandoned pack-

ages in places with high human densities introduced several
challenging problems caused by severe occlusions, includ-
ing the difficulties faced in modeling the background and
identifying static objects, and if only a single camera is con-
sidered, only limited glimpses of the abandoned package
are available over a short period of time. We consider only a
single camera in this paper, with the motivation that a robust
single-camera algorithm operating under severe occlusions,
when extended to multiple cameras, will be extremely use-
ful.

Given a single camera, a typical approach to the prob-
lem would be to perform change detection, followed by
a threshold-based approach to detect static objects, before
classifying them as possible packages based on appearance.
Several researchers have thus focused on first building a
background model, with the assumption that frames con-
taining only background pixels are available (e.g., [3, 21])
in the initial phase. In this aspect, our system eliminates
such a requirement by building the background model in-
crementally based on a novel discriminative measure, and
estimating its density using kernel density estimation ([6]).
While background modeling typically utilizes the history of
the pixel values, our proposed measure do so conditioned
on the fact that no motion should be observed at the given
pixel. The intuition is simple; given frames containing mov-
ing foreground objects, the only pixels that we are interested
in during the background modeling phase are those that lie
in static region. While several researchers have looked into
similar problem, such as [10] where the dominant mode at a
pixel is used as the background, or [5] who suggested build-
ing the background model by searching for input frame in
an image sequence that has background visible at a partic-
ular pixel, they depend on the fact that the particular back-
ground pixel is seem more frequently than foreground pix-
els over a short period of time - an assumption that quickly
becomes invalid under severe occlusions.

In order to use our proposed measure, we need an ef-
ficient and effective way to detect motion, for which sev-
eral approaches exist. One such approach which has been
worked on extensively in the past is optical flow (e.g.,
[8, 22, 13]), albeit that not only is it hard to compute op-
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tical flow on the basis of image measurements only, it is
also relatively slow. We address these concerns by differ-
encing successive frames (e.g., [7, 15, 18, 20, 19]) instead,
which is extremely fast and its pdf can be easily derived as
a zero-mean and unimodal Gaussian distribution by observ-
ing difference values between successive frames over time.
Such an approach, however, suffers from missed detections
caused by homogeneous moving objects - a problem com-
monly known as the foreground aperture problem - unless
more elaborate image processing scheme such as the ones
described in [15, 20] are employed. Herein thus lies another
advantage of our proposed measure; it is able to deal effec-
tively with the problem, since each homogeneous moving
region occludes the true background pixel for a short period
of time, and different such regions are more than likely to
exhibit different color properties. In other words, using our
proposed measure, the true background pixel is much more
likely to exhibit higher frequency than these “homogeneous
pixels” over a sufficient period of time, given that their fre-
quency increases whenever they become visible.

Using such a robust approach for background model-
ing, coupled with the superior performance of using suc-
cessive frames differencing, allows the system to efficiently
detect pixels belonging to potential abandoned packages as
those foreground pixels detected by the background model
but not the frame differencing phase. We again face prob-
lems caused by homogeneous moving regions when homo-
geneous pixels occlude an “abandoned pixel”, since they
are equally likely to be classified (wrongly) as abandoned,
being foreground and mistaken as static. We give a two-
step approach to overcome this problem, which begins with
deriving the pdf of observing a pixel value, given that it is
detected as a foreground pixel and that no motion has been
observed, with the values coming from homogeneous pix-
els similarly filtered out as before. Such a pdf reflects the
presence of abandoned pixel or lack thereof, which can be
determined by thresholding the corresponding variance - an
approach that we want to avoid. To do so, we give a Markov
Random Field (MRF) formulation for ascertaining aban-
doned pixels that considers the influence of a pixel’s neigh-
borhood, with the optimal configuration derived as the one
with the Maximum A Posteriori (MAP) probability, thereby
avoiding any form of thresholding.

Abandoned pixels can then be clustered, and each clus-
ter can be identified as abandoned packages after discarding
those that are improbable abandoned packages due to their
sizes. Such an approach can potentially fail when confusion
arises in differentiating between real abandoned packages
and other static objects, such as a person standing still. Our
system avoids doing so by evaluating conditional probabil-
ities based on the color histogram, shape, size and position
of a given cluster, and identifying from the corresponding
pdfs true abandoned packages as those with small variances,

whereby we commit the first threshold of our system. The
avoidance of thresholding, that has been the pitfall of many
vision systems, makes our system extremely robust, and is
perhaps the most important contribution of this paper.

2. Motion Detection

Given the speeds,u andv, of a pixel with intensityI, in
thex andy directions respectively, the well-known optical
flow constraint equation is given as:

− ∂I

∂t
=

∂I

∂x
u +

∂I

∂y
v. (1)

The goal, then, is to solve foru andv using the smoothness
constraint, whereby it is expected that adjacent pixels have
largely similar motion except near the motion boundaries.
In practice, optical flow computation is often prone to er-
rors, and performs slowly due to the optimization process
that steps through different combinations ofu andv.

On the other hand, a further look at Eqn.1 shows that if
we just want to detect motion (i.e.,|u| > 0 and/or|v| > 0)
and is uninterested in the value ofu andv specifically, then
we can just check that|∂I

∂t
| > 0. This would advanta-

geously retain video rate performance, bearing in mind that
doing so still suffers from the foreground aperture problem
commonly associated with optical flow computation, when
a homogeneous moving region causes∂I

∂x
≈ 0 and ∂I

∂y
≈ 0,

producing little change in intensity over time.
Checking that|∂I

∂t
| > 0 is simple; we can just compute

the differences in pixel values between the current frame
and previous frames. For this purpose, the current frame
at timet is differenced fromn preceding frames, between
time t−n to t− 1, giving us the difference value of a pixel,
Dt, as:

Dt =

t−1
∑

τ=t−n

wτ ∗ |Cτ − Ct|, (2)

wherewτ represents a normalized weighting scheme for
preceding frames, such that earlier frames are given smaller
weights, andC is the notation for the pixel value. The dis-
tribution of the difference values of a “static pixel” (i.e.,
pixel where no motion is observed) over time is zero-mean
and unimodal. To see this, consider that additive Gaussian
noise,nt, is added to the true pixel value,λ, causing it to be
observed asCt, i.e.,:

Ct = λ + nt, (3)

where nt ∼ N(µn, σ2
n) is a Gaussian distribution with

meanµn and varianceσ2
n. Differencing ofCt andCt+1

removes theλ term, leaving the difference ofnt andnt+1,
of which the distribution is exactly that ofDt given as:
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Figure 1. The difference values of an unobstructed static pixel be-
tween successive frames over 550 frames is measured againstthe
frequencies. It shows a zero-mean, unimodal Gaussian distribu-
tion.

P (Dt) =
e
−

[−Dt−(µn−µn)]2

2(σ2
n+σ2

n)

√

2π(σ2
n + σ2

n)
,

=
e−

D2
t

4σ2

√

4πσ2
n

,

(4)

with mean zero and variance2σ2
n. An example is shown

in Fig. 1, where the difference values of a static pixel (a
pixel on the ceiling was chosen so that it remains unob-
structed throughout) over 550 frames are measured against
the frequencies with which they occur.P (Dt) measures the
probability of not observing motion, and under severe oc-
clusions, its pdf can be estimated from the history of the
difference values between successive frames, based on the
understanding that it would be unimodal and zero-mean.
We do this by first finding the mode that has center clos-
est to zero, followed by delimiting it by the immediate left
and right neighboring mode. Let the frequency of the first
bef0, the left neighbor befℓ and the right neighbor befr.
Then a histogram at the three values becomes respectively,

f0

f0+fℓ+fr
, fℓ

f0+fℓ+fr
and fr

f0+fℓ+fr
. The variance of the pdf

is then estimated as 1

2π(
f0

f0+fℓ+fr
)2

. We show such a plot and

the estimated pdf in Fig.2(a) and (b) respectively, whereby
multiple modes caused by motion can be clearly seen.

It is important to know that such a pdf does not differen-
tiate between homogeneous pixels and static pixels. While
we can increase the value ofn in Eqn. 2 to alleviate the
problem, too large a value ofn will result in wrongly classi-
fying a static pixel as a non-static one. Empirically, we have
found thatn should not exceed 5 under video rate process-
ing.

3. Background Modeling

The foreground aperture problem, together with severe
occlusions that allow only limited glimpses of the true

background pixel, make building the background extremely
challenging. In view of these problems, we propose a novel
discriminative measure to identify background pixels, that
is based on the conditional probability of observing a pixel
value when no motion is detected. To build the background,
we first obtain the history of pixel values and difference val-
ues from timet − ∆t to t − 1, given as{Ct−∆t, ..., Ct−1}
and{Dt−∆t, ..., Dt−1} respectively, and evaluate the fre-
quency with which each of the possible unique pixel values
(we use grayscale here, so the pixel values range from 0 to
255) are seen. Given an unique pixel value,Ci, we compute
its frequency,fi, in the histogram as:

fi =

t−1
∑

τ=t−∆t

P (|Cτ − Ci|) ∗ P (Dτ )

P (Dτ )
,

= P (∆Ci|D),

(5)

whereP (∆Ci|D) is the conditional probability thatCi is
observed based onP (Cτ − Ci), when no motion has been
detected.|Cτ − Ci| andDτ are assumed to be independent
of each other, so that their joint probability can be easily
computed from the respective pdf. Additionally,P (|Cτ −
Ci|) behaves similarly asP (Dτ ), so that both values can be
derived using Eqn4. This is illustrated in Fig.2(c) and (d).

One can easily realize thatfi is very effective in identi-
fying background pixels, even under severe occlusions and
the presence of homogeneous moving regions. Intuitively,
such a frequency measure for homogeneous pixels will be
low, since they are only detected as static for a short period
of time and different homogeneous moving regions are ex-
pected to exhibit vastly different color properties, whereas
the same frequency measure when used for a background
pixel is expected to be high since its frequency increases
whenever it becomes visible. This is illustrated in Fig.3.
The frequency of a pixel on a specular surface, under severe
occlusions, was recorded over 100, 200 and 300 frames in
(a), (b) and (c) respectively. Each time the modes were cor-
rectly identified (manually verified). The choice of a spec-
ular pixel allows us to illustrate clearly the effectiveness of
such a frequency measure, where the pixel values fluctuate
greatly between the two main peaks in the plots, as moving
objects cast reflections on the surface.

Givenn unique pixel values, the density of the resulting
background model is estimated with Gaussian kernel den-
sity estimation, so that the probability of observing a new
pixel value,Ct, is given as:

P (Ct) =
1

∑n
i=1 fi

n
∑

i=1

fi
∑

j=1

1

σ
√

2π
e−

(Ct−Ci)
2

2σ2 , (6)
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(a) (b) (c) (d)
Figure 2. (a) Under severe occlusions, we can see many modes besides the one centered at zero, with the former indicating presence of
motion and the latter indicating static or homogeneous pixels. (b) The system finds the mode with center closest to zero, delimiting it by
the left and right neighboring mode, and computing the variance of the pdf over the same range of data. (c) In this plot, thedifference
values are computed as the difference between the current pixel value and the true background pixel value, at the same pixel location as
(a). (d) The pdf associated with (c), estimated in the same manner as (b), is very similar to (b). All the plots are measuredover 550 frames.
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(a) (b) (c)
Figure 3. We show here the modes of a background pixel, identified using the frequency measure in Eqn.5, over 100, 200 and 300 frames
in (a), (b) and (c) respectively. The modes are correctly identified each time. The background pixel belongs to a specularfloor surface and
the two main peaks are caused by moving objects casting reflections on the surface from time to time.

whereσ is the chosen bandwidth. Several methods cur-
rently exist for automatic selection of the bandwidth, no-
tably plug-in and cross-validation methods (e.g., [12, 17]),
but the simple method suggested in [6] works reasonably
well and is used in our system. Here, a closer look at Eqn.6
will reveal that we have effectively “transformed” the ob-
served frequency to the frequency measure given by Eqn.5
in performing a non-parametric summation of the probabil-
ities with respect to each unique pixel value.

4. Abandoned Package Detection

4.1. Pixel-level Detection

In addition to being highly effective in identifying back-
ground pixels, the frequency measure proposed in Eqn.5
also allows the background model to be initialized as soon
as enough glimpses of the background pixel can be col-
lected. Intuitively, once such initialization is realizedfor a
pixel, foreground pixels belonging to abandoned packages
that occlude the background pixel can be identified as pix-
els that are static (Eqn.4), but yet are classified as fore-
ground by the background model. It should, however, be

clear by now that under severe occlusions, simply doing so
will not be able to deal effectively with the foreground aper-
ture problem. Instead, we propose an approach as follow.

For each pixel, we consider the histogram for the set of
unique pixel values,Ci, seen at the pixel during time inter-
val betweent−∆t andt, with the frequency of each unique
pixel value,fi, computed as:

fi =

t
∑

τ=t−∆t

P (|Cτ − Ci|) ∗ P (Dτ ) ∗ P (C̄i)

P (Dτ ) ∗ P (C̄i)
,

= P (∆Ci|D, F ),

(7)

whereP (∆Ci|D, F ) represents the conditional probability
that Ci is observed (measured withP (Cτ − Ci)), given
that it is static and foreground. The joint probability is
again computed on the assumption that the random vari-
ables are independent of each other.P (C̄i) is the probabil-
ity of seeingCi as a foreground pixel and is the complement
of Eqn.6. We show such a distribution in Fig.4, collected
over 400 frames of a severely occluded scene. A package
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Figure 4. The plot of the distribution of a pixel over 400 frames is
shown here. The frequency is measured according to Eqn.7, and a
package was abandoned midway through the frames, causing the
main peak seen here.

was abandoned midway, and the distribution at a pixel lo-
cation occupied by the package, is shown here before and
after the package was left. It shows that the system was able
to pick up correctly the abandoned pixel corresponding to
the highest peak in the plot, using the frequency measure in
Eqn.7. As a result, the system can now obtain such a dis-
tribution for every pixel, look for the dominant mode (high-
est peak), obtain its sample probability,P (µ) (in fig. 4, its
≈ 0.21), and compute the corresponding sample variance
asσ2 = 1

2πP (µ)2 , with the assumption that the underlying
distribution is normal. Such a sample variance reflects the
likelihood that the pixel is an abandoned pixel and is used in
the following section for ascertaining and clustering aban-
doned pixels. For convenience, we will call these variance
values as “abandoned variances”.

4.2. Region-level Detection

4.2.1 Clustering Abandoned Pixels

After obtaining the abandoned variances, further process-
ing is performed at the region-level to group the abandoned
pixels into clusters. Two choices exist - we can either clas-
sify a pixel as abandoned by thresholding its abandoned
variance and performing morphological operation on the
abandoned pixels, or we can utilize more elaborate process-
ing to avoid thresholding at this stage. For the latter, we
propose a formulation that utilizes a MAP-MRF (Maxi-
mum A Posteriori-Markov Random Field) labeling tech-
nique ([1, 9]), which has the additional advantage of consid-
ering the obvious importance of the relationship of a pixel to
its neighbors in ascertaining that it is indeed an abandoned
pixel.

Consider a configuration,f = {f1, ..., fm}, wherem is
the number of pixels in the image, and the set of abandoned
variances,d = {σ2

1 , ..., σ
2
m}. Eachfi ∈ f is assigned la-

bel 1 or 0, to indicate whether the corresponding pixel is an
abandoned pixel or not respectively. Clearly, such a con-
figuration is Markovian, i.e., the label of a pixel interacts
only with the neighboring labels. Due to the Hammersley-

Clifford theorem ([4, 11]) that establishes the equivalence
between the properties of MRFs and Gibbs distribution, the
probability of a configuration,P (f), can be written as:

P (f) =
1

Z
e−

1
T

U(f), (8)

whereT is called the temperature and usually assumed to be
1, and given thatF is the set containing all possible config-
urations,Z, called the partition function, can be written as
Z =

∑

f∈F e−
1
T

U(f). For the purpose of performing MAP,

Z is fortunately inconsequential, sinceP (f) ∝ e−
1
T

U(f).
We then computeU(f), consisting of only pair-site cliques,
to encourage smoothness in the clustering:

U(f) =

m
∑

i

∑

i′∈Ni

1

2
(fi − fi′)

2, (9)

whereNi is the 8-neighborhood system ofi. To obtain the
configurationfmax with the maximum a posteriori prob-
ability, the setd gives us the abandoned variance of each
pixel, with a smaller variance implying a higher likelihood
of being abandoned. A weighting scheme,Wσ, is used for
modeling the variance that comprises two separate expo-
nential functions for label 0 and 1 respectively. Although
they are not probability density functions, we will see that
they suffice for the purpose of maximizing the posterior
probability. They are given as:

Wσ(σi|fi) =

{

e
−

σi
θ1 fi = 1,

e−θ0e
−

σi
θ0 fi = 0.

(10)

The above exponential functions are designed to satisfy sev-
eral conditions. Firstly, for label 1, the function should
be monotonically decreasing as the variance increases, and
the opposite should be true for that of label 0. Secondly,
we want to be able to perform MAP without needing to
computeZ, for obvious performance reason, and this is
achieved by using exponential functions. Lastly, the proba-
bility given by one function at a particular value of variance
should complement as much as possible that of the other
function, i.e., ifρ is the probability of being label 0, then
the probability of being label 1 should be as close as pos-
sible to1 − ρ. We achieve this (approximately) by setting
θ0 = 4 andθ1 = 12, noting that these values are set once
and is inconsequential to the robustness of the algorithm. A
plot of both functions with theseθ-values is shown in Fig.5.

Based on Eqn.10, the likelihood density can be written
as:

P (d|f) =

m
∏

i=1

Wσ(σi|fi), (11)

Since the posterior probability is:
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Figure 5.θ0 andθ1 are set to 4 and 12 respectively. The functions
complement each other approximately as shown.

P (f |d) ∝ e−U(f |d), (12)

taking thelog of P (f |d) ∝ P (d|f)P (f) gives:

U(f |d) = U(d|f) + U(f), (13)

whereU(d|f) can be written as:

U(d|f) =

m
∑

i=1

(1 − fi)θ0e
−

σi
θ0 + fi

σi

θ1
. (14)

The MAP estimate offmax then becomes:

fmax =arg min
f

U(f |d). (15)

Unfortunately, optimization of the above cost function is
an exponential problem, since there would be2m different
combinations off . Our problem is however simpler, given
that abandoned package is expected to be a rare event, so
that it is very unlikely that there would be a lot of (if any)
true abandoned pixels at any given time. Our proposal, is
then, to minimize the number of different combinations of
f to be considered in each of a number of iterations. The
pixels are split into different sets, so that the size of each
set is sufficiently small to avoid any significant deteriora-
tion in performance. Optimization is then performed on
an initial set, after which optimization of subsequent sets
is conditioned on the state of the sets that have been opti-
mized. Such an optimization procedure is in essence what
is known as the Iterated Conditional Modes (ICM) approach
([2]). While the ICM approach might converge to some lo-
cal instead of global maxima of the a posteriori probabil-
ity, it performs exceptionally well for our problem, without
causing significant slowdown.

With the pixels properly labeled, we can then cluster
pixels that have been positively labeled. The clustering
process is “loosely” performed, whereby any pixel within
a 8-neighborhood system of a pixel is cluster together, for
the same reason that abandoned package is rare, and it is
very unlikely that multiple packages would be abandoned
at the same time.

4.2.2 Region-level Semantics

The set of candidate abandoned packages that have been
identified allows further ascertainment at the region-level,
of which there are several advantages. In addition to re-
ascertaining abandoned pixels, it can also help in situations
where the system needs to distinguish between true aban-
doned packages and other static objects, such as a person
standing still, that greatly confuses the system. This is par-
ticularly important in our application of interest - detect-
ing abandoned packages in train stations - where severe
occlusions arise from high human traffic, and where peo-
ple very often stood in place. Although a coarse filtering
step, during which oversized or undersized clusters are dis-
carded, proves to be very effective, noise in the foreground
detection phase can sometimes break the object into multi-
ple smaller foreground regions or the object might only be
partially visible due to occlusions. To overcome this prob-
lem, we adopt an approach that is based on the observation
that true abandoned package remains absolutely stationary
(as compared to, say, a person standing in place). Then, it
can be expected that the shape and color of a true abandoned
package, at the initially detected location, would remain rel-
atively constant over time.

Given a candidate abandoned package initially detected
at timet, the system first notes its size (ςt), shape (δt), po-
sition (ρt) and color histogram (Ct). Because we expect
the abandoned package to be stationary, we look for it atρt

in subsequent frames; this simplifies the task, which would
otherwise require tracking. Within the same image region,
given byςt at ρt, in a subsequent frame, we then evaluate
whether the package is still there, both in terms of shape
and color histogram. For the former, the Hausdorff distance
is used ([14, 21]). Edges are first detected in the initial and
subsequent frame within the boundaries given byςt, yield-
ing two sets,At andBt respectively, containing points lying
on detected edges. The Hausdorff distance,H(At, Bt), be-
tween them is then given as:

H(At, Bt) = max(h(At, Bt), h(Bt, At)), (16)

where

h(At, Bt) = max
a∈At

min
b∈Bt

P (Db) ∗ |a − b|. (17)

The Hausdorff distance,H(At, Bt), measures the distance
of the point ofAt that is farthest from any point ofBt, and
is particularly useful in our context for comparing shapes,
since we clearly do not have to worry about scaling and
transformations (the package is expected to be stationary).
By adding the term,P (Db), that represents the probability
of observing no motion atb, we also impose the requirement
that the pixel used in the calculation should be static.
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Figure 6. (a) The color histogram differences over 550 frames are computed for an unobstructed region, and the dominant mode is pre-
dictably centered at zero. (b) Here, the color histogram differences are computed for a different region that experienced severe occlusions.
(c)(d) The Hausdorff distances over the same frames are computed for an unobstructed region and one that has severe occlusions respec-
tively. We look for modes with centers closest to zero for both the color histogram difference and Hausdorff distance, and use them to
estimate the corresponding pdfs needed for computing the probability in Eqn.19.

Following shape comparison using the Hausdorff dis-
tance, differences in color properties are then evaluated.
The main concerns here are the efficiency and effectiveness
of any such comparison algorithms. We adopt a simple ap-
proach as follow. We first convert the initial and subsequent
frame to grayscale, and split the resulting histograms,Xt

andYt respectively, into 16 bins each. The grayscale his-
togram distance measure,dhist(Xt, Yt), is then computed
by the following quadratic form ([16]):

dhist(Xt, Yt) = (Xt − Yt)
T PDY

WPDY
(Xt − Yt), (18)

whereW is a 16 × 16 weight matrix, that gives the sim-
ilarity between different bins, and contain ones on the
diagonal, andPDY

is the matrix containing the prob-
ability of observing motion for each pixel used in the
computation. Each element ofW is computed as1 −
(|rowdiag−rowelem|)

16 , whererowdiag and rowelem are re-
spectively the row index of the diagonal element and
the row index of the element in the same column. Us-
ing these measures, observations made from timet +
1 to t + ∆t, {H(At, Bt+1)), ..., H(At, Bt+∆t)} and
{dhist(Xt, Yt+1), ..., dhist(Xt, Yt+∆t)}, allow the system
to finally classify a cluster as abandoned package when the
following probability exceedsT :

P (Dhausdorff |Dcolor) =
P (Dhausdorff ) ∗ P (Dcolor)

P (Dcolor)
,

(19)
whereP (Dhausdorff ) andP (Dcolor) are respectively the
probability of observing differences in the Hausdorff dis-
tance and color histogram. The rationale in such a mea-
sure is to condition the detection of abandoned packages on
the consistency in the color properties of candidate pack-
ages, thereby achieving robustness even under severe occlu-
sions and the presence of foreground aperture effect. Since
we expectP (Dhausdorff) andP(Dcolor) to be unimodal

and zero-mean, we estimate their densities from the ob-
servations by again looking for the mode with center clos-
est to zero, and delimiting it with the neighboring modes.
We show in Fig.6(a) and (b), the color histogram differ-
ences measured over 550 frames, for an unobstructed region
and one with severe occlusions respectively. Each of them
clearly shows mode centered at zero value, that is extracted
as the pdf for use in Eqn.19. Fig. 6(c) and (d) show the
corresponding plots for the Hausdorff distances measured
over the same frames. Finally, Fig.7 shows the plot for the
values computed by Eqn.19 for a real abandoned package,
the dominant mode of which exhibits a small variance.

5. Experimental Results

We have applied our algorithm to several challenging
video sequences that have been collected from extremely
crowded train stations, two of which are shown here in
Fig. 8 and Fig.9. In Fig. 8(a), we show in the leftmost im-
age the result of performing successive frames differencing,
which expectedly revealed missed detections in homoge-
neous moving regions. In the following image to the right,
we show abandoned pixels in green, which were detected
as foreground in static regions, in a short amount of time af-
ter the package was left by the perpetrator. Then, clustering
of the abandoned pixels is demonstrated in the third image
from the left, where a blue box was used to bound the de-
tected cluster as candidate abandoned package. Finally, we
show in the rightmost image the edge map of the scene,
used in computing the Hausdorff distance. Evidently, as we
proceed from (a) to (d), the edge maps within the static re-
gion of the candidate abandoned package gave Hausdorff
distances that were expectedly small. That, coupled with
similar color properties, causes a discernable mode shown
in Fig. 7, so that the package was finally classified as aban-
doned (bounded by a red box in the third image from the left
in (d)), demonstrating the effectiveness of our algorithm in
picking up the presence of abandoned packages even under
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Figure 7. Using the measure given by Eqn.19, we are able to detect
a significant mode for a real abandoned package.

severe occlusions.
We then show in fig.9 results that allow the readers to

appreciate the merits of region-level detection, using Haus-
dorff distance and color histogram similarity. In (a), in the
third image from the left, the lady circled by a red ellipse
was standing in place and causing abandoned pixels to be
wrongly detected (green pixels in the second image from
left). However, as we have pointed out, such objects in the
scene can be distinguished from real abandoned packages
because they are seldom absolutely stationary. So, in (b),
we see that the edge map in the corresponding region was
very different from that in (a), thus avoiding false detection
of the lady as an abandoned package. The idea is further
illustrated in (c) and (d), where a falsely detected candi-
date package was bounded in blue box in the third image
from the left in (c). This was correctly removed in (d) when
the same region exhibited different shape and color. The
real abandoned package in this sequence was eventually de-
tected in (e) and (f). Note that due to the large amount of
specularities and lighting changes in this sequence, there
were constant detections on the ceilings and signboards. A
closer look, however, allows one to realize that they did not
cause any significant problem since both the background
model and motion detection phase have positively detected
them.

Results shown here, together with additional results, are
also provided in the accompanying video sequences.

6. Conclusions

We have described a system capable of detecting aban-
doned packages under severe occlusions. The most im-
portant contribution of this paper is the statistical frame-
work used to propagate probability associated with the de-
cision made in each step to the next, requiring the system
to threshold only at the last stage. Several novelties can be
claimed by the statistical framework. These include, firstly,
the proposal of a strong discriminative measure to identify
background pixels, even under severe occlusions and the
presence of homogeneous moving regions. Moreover, the
statistical evaluation of the shape and color properties of

abandoned packages using Hausdorff distance and a sim-
ple quadratic histogram similarity measure, coupled with
an MRF formulation for clustering abandoned pixels, allow
the system to robustly identify true abandoned packages.
By avoiding thresholding in our algorithm, it becomes ex-
tremely robust for use in real world surveillance applica-
tions. Further work that can be extended from here includes
the use of our algorithm to first detect abandoned packages,
after which the system can backtrack in time to determine
the perpetrator who is expected to be near the location of the
package at the instance it was first left behind. It would also
be a good idea to extend our algorithm to multiple cameras,
so that problems caused by severe occlusions can be more
effectively dealt with.
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