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Abstract

The development of a fast multipole method accelerated iterative solution of the boundary element equa-

tions for large problems involving hundreds of thousands elements for the Helmholtz equations in 3D is

described. The BEM requires several approximate computations (numerical quadrature, approximations of

the boundary shapes using elements) and the convergence criterion for iterative computation. When ac-

celerated using the FMM, these different errors must all be chosen in a way that on the one hand excess

work is not done and on the other that the error achieved by the overall computation is acceptable. De-

tails of translation operators used, choices of representations, and boundary element integration consistent

with these approximations are described. A novel preconditioner for accelerating convergence, using a low

accuracy FMM accelerated solver as a right preconditioner is also desceibed. Results of the developed and

tested solvers for boundary value problems for the Helmholtz equations using the solver are presented for

the number of unknowns N � 106 and product of wavenumber k times domain size D, kD � 200 and show

good performance close to theoretical expectations.

PACS numbers: 43.20.Rz, 43.55.Ka

Keywords: Fast Multipole Method, Boundary Element Method, Preconditioning, Low Frequency, High Frequency,

Scattering

1



I. INTRODUCTION

Boundary element methods (BEM) have long been considered as a very promising technique

for the solution of many problems in computational acoustics governed by the Helmholtz equation.

They can handle complex shapes, lead to problems in boundary variables alone, and lead to simpler

meshes where the boundary alone must be discretized rather than the entire domain. Despite these

advantages, one issue that has impeded their widespread adoption is that the integral equation

techniques lead to linear systems with dense and possibly non-symmetric matrices. For a problem

with N unknowns, direct solution requires O(N3) solution cost, and storage of O
(
N2
)
elements

of these matrices. The computation of the individual matrix elements is also expensive requiring

quadrature of nonsingular, weakly singular, or hypersingular functions. To reduce the singularity

order and achieve symmetric matrices, many investigators employ Galerkin techniques, which lead

to further O
(
N2
)
integral computations. Direct solution of the linear systems has an O(N3) cost.

Use of iterative methods does not reduce the memory or integral computation costs, but can reduce

the cost to O(NiterN
2) operations, where Niter is the number of iterations required, and the O(N

2)

per iteration cost arises from the dense matrix-vector product. In practice this is still quite large.

An iteration strategy that minimizes Niter is also needed. Because of these reasons the BEM was

not used for very large problems.

The development of the fast multipole method (FMM) [15] and use of preconditioned Krylov

iterative methods presents a promising approach to improving the scalability of integral equation

methods. The FMM for potential problems allows the matrix vector product to be performed to a

given precision ε in O(N) operations, and further does not require the computation or storage of

all N2 elements of the matrices, reducing the storage costs to O(N) as well. Incorporating this fast

matrix vector product in a quickly convergent iterative scheme allows the system of equations to be

rapidly solved with O(NiterN) cost. The FMM was initially developed for gravity or electrostatic

potential problems. Later this method was intensively studied and extended to solution of many

other problems, including those arising from the Helmholtz, Maxwell, biharmonic and elasticity

equations. While the literature and previous work on the FMM is extensive, reasons of space

do not permit us to provide a complete discussion of the literature. We refer the reader to the

comprehensive review [21].

Numerical solution of the Helmholtz equation is somewhat complicated since the equation con-
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tains a length scale parameter (the wavenumber) at which order the solution must be resolved. The

FMM for the Helmholtz equations also exploits factorized representations of the Green’s function.

However, for the Helmholtz equation the size of the representations, and the cost of translations

are all related to the wavenumber, and this makes the assessment of costs more complicated, and

the development of FMM accelerated BEM more involved. We discuss these issues further below.

Despite several publications related to the FMM accelerated BEM for scattering [13, 14, 26—30]

there are several issues which must be resolved. These include

• Choice of translation scheme which is stable and efficient over a range of wavenumbers

• Choice of appropriate preconditioned Krylov iteration method, and associated preconditioner

• Ability to resolve problems caused at wavenumbers at which the corresponding interior prob-

lem has resonances via the Burton-Miller technique

• Efficient implementations that achieve predicted scalings in CPU time and memory

We discuss these issues further in the context of the contributions of this paper, and distinguish

it from previous published work.

A. Error and fast multipole accelerated boundary elements

Since the FMM achieves an approximate matrix vector product, we should emphasize that in

practice this accuracy can be made close to machine precision. In any case an accuracy criterion

is employed to stop the iterative process, and the accuracy of the FMM should be considered

together with accuracy of the BEM technique. The latter is quite approximate in practice, since

significant errors are introduced via surface approximation via discretization and less significant

ones via approximate computation of the boundary integrals. In practice (see e.g., [3, 14, 26])

error tolerances are quite high (from a high of a few percent to at most 10−4). Since these errors

all influence the final solution error, it does not make sense to perform any particular part of the

calculation, with an exceedingly high precision. In fact all errors must be balanced so that the

specified error is achieved.
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B. Resolving calculations at all wavenumbers

To be accurate, any calculation must resolve the smallest wavelengths of interest, and to satisfy

the Nyquist criterion, the discretization must involve at least two points per wavelength. The

restriction imposed by this requirement manifests itself at large enough frequencies, since at lower

frequencies the accuracy of shape representation is more restrictive. So two basic regimes are

usually recognized: the low-frequency regime and the high-frequency regime. These regimes can be

characterized by some threshold value (kD)∗ of parameter kD, where k is the wavenumber and D

is the computational domain size. For each of these regimes the complexity of the FMM is different

[18]. The goal of the FMM is to reduce this per iteration cost, while preconditioning attempts to

reduce the number of iterations.

1. Low frequency regime

In this regime kD < (kD)∗ and the per iteration step cost of the FMM can be expressed as

Cost per step = O (N) × CT,

where CT is the cost of translations, where CT and N do not depend on kD and can be determined

based on the required accuracy of computations. The choice of the translation scheme affects CT,

and so the asymptotic constant, as the overall complexity will be in any case O(NiterN). For the

low frequency regime the most efficient translation schemes are based on the RCR (rotation-coaxial

translation-back rotation) decompositions [17, 18], which have O(p3) complexity, where p2 is the

number of terms in the multipole expansion (p in this regime can be constant), and based on the

low-frequency exponential forms [10, 16], which have the same complexity, but with a different

asymptotic constant. The method based on sampling of the far field signature function [23] are not

stable in this region due to exponential growth of terms in the multipole-to-local translation kernel.

2. High frequency regime

In this regime kD > (kD)∗ and kD heavily affects the complexity of the FMM. In practice 5 to 10

points per wavelength are required. Since the wavenumber k is inversely proportional to wavelength,

if a numerical method is a surface based method (such as the boundary element method), then
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problem size N scales as O
(
(kD)2

)
, while for complex, space-filling surfaces (e.g. problem with

many scatterers distributed in a volume) N scales as O
(
(kD)3

)
. Direct solution procedures require

O((kD)4)memory and O((kD)6) operations for simple shapes and O((kD)6)memory and O((kD)9)

operations for space-filling surfaces, while iterative solution can be achieved for O
(
(kD)4

)
memory

and O
(
(kD)4

)
computation per iteration cost for simple shapes and O

(
(kD)6

)
complexities for

space-filling surfaces.

The high-frequency FMM is designed in this case to increase the size of wavefunction represen-

tation, O(p2), as levels go up in the hierarchical space subdivision, with p proportional to the size

of the boxes at given level [18]. Because of this the complexity of the FMM is heavily affected by

the complexity of a single translation. It is shown that O(p3) schemes in this case provide the over-

all complexity of the FMM O
(
(kD)3

)
for simple shapes and O

(
(kD)3 log(kD)

)
for space-filling

surfaces. The use of translation schemes of O(p4) and O(p5) complexities in this case provides the

overall complexity of the FMM O
(
(kD)4

)
and O

(
(kD)5

)
for simple shapes and, in fact the use

of such schemes has no complexity advantage compared to the direct matrix-vector multiplication.

Despite this some authors used such high complexity translation schemes for the BEM (e.g. [28]),

which therefore limits practical use of their software to the low-frequency regime.

In a sense of reaching the best scaling algorithm in this regime translation methods based

on sampling of the far-field signature function [23] are appropriate. Translation cost in this case

scales as O(p2), while at least O(p2 log p) additional operations are needed for the spherical filtering

necessary for numerical stabilization of the procedure. In this case the overall FMM complexity will

be O
(
(kD)2 logα (kD)

)
(α � 1) for simple shapes and O

(
(kD)3

)
for space-filling shapes. However,

it is noteworthy, that function representations via samples of the far-field signature function are at

least twice as large as those for the multipole expansions. Also the multipole-to-local translation

kernel should be sampled with double frequency compared to the translated function size, which

increases the size of the transforms and complexity of filtering. These costs means that the value

of p at which the asymptotically efficient algorithm performs better than the O(p3) algorithm can

be high.
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3. Switch in function representations

The use of the FMM for the BEM even at high kD requires use of different translation schemes

for fine and coarse levels of space subdivision. Indeed at the fine levels parameter ka, where a is

a representative box size is small enough and translations efficient for low-frequency regime should

be used, while for coarse levels this parameter is large and the high-frequency regime should be

treated efficiently. So a combined scheme in which the spherical wave function representation can be

converted to signature function sample representation can be applied. Such a switch was suggested

and tested recently in [5]. In the present paper we also use a switch, while our scheme is different

and does not require interpolation/anterpolation. We use O
(
p3
)
spherical transform, while this can

be replaced by methods of lower asymptotic complexity (such as based on FFT or 1D-FMM, [5, 18])

for larger problems, though in our experience the costs for the range of kD considered in this paper,

are comparable. The spherical wavefunction based representation is convenient for differentiation,

and this allows easier implementation of the Burton-Miller method, as the differential operators

there can be easily expressed in terms of the expansion coefficients, as is shown further below.

C. Iterative methods and preconditioning

The second issue with fast multipole acceleration is the choice of preconditioning strategy. Pre-

conditioning for boundary element matrices is in general a lesser studied issue than for finite element

and finite difference based discretization. From that theory, it is known that for high wave numbers

preconditioning is difficult, and an area of active research. Many conventional pre-conditioning

strategies rely on sparsity in the matrix, and applying them to these dense matrices requires com-

putations that have a formal time or memory complexity of O(N2), which negates the advantage

of the FMM.

One strategy that has been applied with the FMBEM is the construction of approximate inverses

for each row based on a local neighborhood of the row . If K neighboring elements are considered,

then constructing this matrix has a cost of O(NK3) and there is a similar cost to applying the

preconditioner at each step [13, 14]. However such local preconditioning strategies work well only

well for low wavenumbers. Instead we consider the use of a low accuracy FMM itself as a precondi-

tioner by using a flexible GMRES procedure [24]. This novel preconditioner appears to work well

at all wavenumbers considered, and stays within the required cost.
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II. FORMULATION AND PRELIMINARIES

A. Boundary value problem

We consider numerical solution of the Helmholtz equation for the possibly complex valued

potential φ

∇2φ+ k2φ = 0, (1)

with real wavenumber k inside or outside finite three dimensional domain V bounded by closed

surface S, subject to mixed boundary conditions

α (x)φ (x) + β (x) q (x) = γ (x) , q (x) =
∂φ

∂n
(x) , |α| + |β| �= 0, x ∈S. (2)

Here and below all normal derivatives are taken assuming that the normal to the surface is directed

outward to V . For external problems we also assume that the field satisfies the Sommerfeld radiation

condition

lim
r→∞

[
r

(
∂φ

∂r
− ikφ

)]
= 0, r = |x| . (3)

This means that for scattering problems φ is treated as the scattered potential.

Note then that there should be some constraints on surface functions α (x) , β (x), and γ (x), for

existence and uniqueness of the solution (e.g. α (x) and β (x) cannot be simultaneously zero), and

we rely on the typical physically meaningful conditions, which make the problem of determination

of φ (x) well-posed. Particularly, if α and β are constant we have the Robin problem, which

degenerates to the Dirichlet or Neumann problem, if β = 0 (sound-soft boundary) and α = 0

(sound-hard boundary), respectively. Variation of α and β along the surface happens e.g., when

we consider problems with variable impedance. Also this covers the case when on some part of the

boundary φ (x) is known, while on another part of the boundary its normal derivative is provided.

In this case α (x) , β (x), and γ (x) are piecewise smooth.

B. Boundary integral equations

The boundary element method uses a formulation in terms of boundary integral equations whose

solution with the boundary conditions provides the values of φ (x) and q (x) on the boundary.
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Knowledge of these quantities enables determination of φ (y) for any domain point y. This can be

done, e.g. using Greens identity

±φ (y) = L [q]−M [φ] , y /∈S. (4)

Here the upper sign in the left hand side should be taken for the internal domain while the lower

the lower sign is for the external domain (this convention is used everywhere below), and L and M

denote the following boundary operators:

L [q] =

∫

S
q (x)G (x,y) dS(x), M [φ] =

∫

S
φ (x)

∂G (x,y)

∂n (x)
dS(x), (5)

where G is the free-space Green’s function for the Helmholtz equation

G (x,y) =
eikr

4πr
, r = |x− y| . (6)

In principle, Green’s identity can be also used to provide necessary equations for determination

of the boundary values of φ (x) and q (x), as in this case we have for smooth S

±
1

2
φ (y) = L [q]−M [φ] , y ∈S. (7)

The well-known deficiency of this formulation is related to possible degeneration of operators L

and
(
M − 1

2

)
at certain frequencies depending on S, which correspond to resonances of the internal

problem for sound-soft and sound-hard boundaries [2, 4]. Even though the solution of the external

problem is unique for these frequencies, Eq. (7) is deficient in these cases, since it provides a non-

unique solution. Moreover, despite the spurious values of resonance frequencies, for frequencies in

the vicinity of the resonances the system becomes poorly conditioned numerically. On the other

hand, when solving internal problems (e.g. in room acoustics), the non-uniqueness of the solution

for the internal problem, seems to have physical meaning, as there, in fact, can be resonances.

In any case, boundary integral equation (7) can be modified to avoid the artifact of degeneracy

of boundary operators when solving the correctly posed problem (1)-(3). This can be done using

different techniques, including direct and indirect formulations, introduction of some additional

field points, etc. We use direct formulation based on the integral equation combining Green’s and

Maue’s identities, which is the same trick as proposed by Burton and Miller (1971) for sound-hard

boundaries. The latter identity is

±
1

2
q (y) = L′ [q]−M ′ [φ] , y ∈S, (8)
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where

L′ [q] =

∫

S
q (x)

∂G (x,y)

∂n (y)
dS(x), M ′ [φ] =

∂

∂n (y)

∫

S
φ (x)

∂G (x,y)

∂n (x)
dS(x). (9)

Multiplying Eq. (8) by some complex constant λ and summing with Eq. (7), we obtain

±
1

2
[φ (y) + λq(y)] =

(
L+ λL′

)
[q]−

(
M + λM ′

)
[φ] . (10)

Burton & Miller [2] proved that it is sufficient to have Im (λ) �= 0 to guarantee uniqueness of the

solution for the external problem.

C. Combined equation

The system of equations (2) and (10) can be reduced to a single linear system for some vector

of unknowns [ψ]

A [ψ] = c, (11)

which is convenient for computations. Boundary operator A, and functions ψ and c can be con-

structed as follows (this is equivalent to elimination of one of the unknowns ψ or q on the part of

the boundary, based on the magnitude of coefficients α (x) and β (x)).

Let σ (x) be a logical function so that

σ (x) =





1, |α (x)| � |β (x)|

0, |α (x)| > |β (x)|
, (12)

Then we define

ψ = σφ+ (1− σ) q. (13)

Furthermore, we introduce new variables

u =

[
σ − (1− σ)

β

α

]
ψ, u′ =

[
−σ

α

β
+ (1− σ)

]
ψ, (14)

b = − (1− σ)
γ

α
, b′ = −σ

γ

β
,

with the remark that in case α = 0 we have logical σ = 1 and (1− σ) /α should be set to zero. The

same relates to β = 0 where we have σ/β = 0. Also u and u′ are proportional to a single unknown
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ψ and can be found easily if ψ is specified. From these definitions and boundary conditions (2) we

have

φ = σφ+ (1− σ)φ = σφ+ (1− σ)
γ − βq

α
= u− b, (15)

q = σq + (1− σ) q = σ
γ − αφ

β
+ (1− σ) q = u′ − b′.

Substituting these expressions into Eq. (10) we obtain Eq. (11), where

A [ψ] =
(
L+λL′

) [
u′
]
−
(
M+λM ′

)
[u]∓

1

2

(
u+ λu′

)
(16)

c =
(
L+λL′

) [
b′
]
−
(
M+λM ′

)
[b]∓

1

2

(
b+ λb′

)
.

As soon as equation (11) is solved and ψ is found, we can determine u and u′ from Eq. (14) and φ

and q from Eq. (15).

D. Discretization

Boundary discretization leads to approximation of boundary functions via finite vectors of their

surface samples and integral operators via matrices acting on that vectors. For example, if the

surface is discretized by a mesh with M panels (elements), Sl′ , and N vertices, xj , and integrals

over the boundary elements can be computed, we obtain

L [q]
(
x
(c)
l

)
=

M∑

l′=1

∫

Sl′

q (x)G
(
x,x

(c)
l

)
dS(x) ≈

M∑

l′=1

Lll′ql′ , l = 1, ...,M, (17)

ql′ = q
(
x
(c)
l′

)
, Lll′ =

∫

Sl′

G
(
x,x

(c)
l

)
dS(x),

where x
(c)
l′ is the center of the l′th element, and for computations of matrix entries Lll′ one can use

well-known quadratures, including those for singular integrals [4, 20]. Similar formulae can be used

for other operators. Note that to accurately capture the solution variation at the relevant length

scales, the discretization should satisfy

krmax � 1, (18)

where rmax is the maximum size of the element. In practice, discretizations which provide several

elements per wavelength are usually provide an accuracy consistent with the other errors of the

BEM.
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We have implemented and tested the above method of discretization with collocation at the

panel centers. We also used another method while provides collocation at the vertices, which are

located on the surface S, and sometimes more convenient as it leads to smaller systems. It can

be shown that formally both have the same accuracy, despite the fact that vertex collocation has

linear element functions. Formally, this is based on the following geometrical consideration.

We note that in the case when a triangular surface mesh is available, each triangle of area Sl

with vertices xl1 ,xl2 , and xl3 is subdivided into six triangles S′l′′ of equal areas by its medians

(the fact which is easy to prove using elementary geometry), which intersect at the triangle center

x
(c)
l = (xl1 + xl2 + xl3) /3. After that the smaller triangles having common vertex xj can be united

into a non-flat patch with center xj which area sj is 1/3 of the sum of the areas of original triangles

which include vertex xj. This is schematically shown in Fig. 1.

If not given, the normal to the surface at xj for smooth enough surfaces can be approximated

by a sum of normals to those elements weighted by areas. So we have

sj =
∑

Sl′′�xj

Sl′′ =
1

3

∑

Sl�xj

Sl, nj =
1

3sj

∑

Sl�xj

nlSl. (19)

Discretization of surface operator with collocation at the vertices can be then written as

L [q] (xj) =
M∑

l=1

∫

Sl

q (x)G (x,xj) dS(x) =
6M∑

l′′=1

∫

S′
l′′

q (x)G (x,xj) dS(x) (20)

=
N∑

j′=1

∫

sj′

q (x)G (x,xj) dS(x) ≈
N∑

j=1

Ljj′qj′

Ljj′ =

∫

sj′

q (x)G (x,xj) dS(x) =
∑

Sl′′�xj

∫

Sl′′

G (x,xj) dS(x), qj = q (xj) , j = 1, ..., N.

In any case there exists a large literature and available subroutines for computation of the

integrals over flat triangular elements including nearly singular, singular, weakly singular, and

hypersingular cases [4]. Below we also propose a novel method for treatment of singular integrals.

Discretization of the boundary operators reduces problem (11) to a system of linear equations which

for small sized systems can be solved directly, while for larger problems iterative methods can be

used to speed up computations.
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E. Iterative Methods

Different iterative methods can be tried to solve equation (11) with a non-symmetric dense ma-

trix A. Any iterative method requires matrix-vector multiplication or computation of A [x], where

[x] is some input vector. For large systems we use the FMM (Fast Multipole Method) to achieve

reduction in the memory and operational complexity in the way described below. The method of

our choice is fGMRES (Flexible Generalized Minimal Residual Method) [24], which has an advan-

tage of use of approximate right preconditioner, which in its turn can be computed by executing

of the internal iteration loop using unpreconditioned GMRES [25]. Different preconditioners can

be tried as soon as they provide grouping of matrix eigenvalues about 1 or approximate the matrix

inverse. Choice of the preconditioning method must be achieved for a cost that is O(N) or smaller.

Also in some cases we employed the FMM for system preconditioning.

III. USE OF THE FAST MULTIPOLE METHOD

The basic idea of the use of the FMM for solution of the discretized boundary integral equation

is based on decomposition of operator A:

A = Asparse +Adense, (21)

where the sparse part of the matrix has only nonzero entries Alj corresponding to the vertices xl and

xj , such that |xl − xj | < rc, where rc is some distance usually of the order of the distance between

the vertices, which selection can be based on some estimates or error bounds, while the dense part

has nonzero entries Alj for which |xl − xj | � rc. Storage and multiplication of the sparse matrix

has memory and computational complexity O(N) as soon as N × N matrices are considered, while

the corresponding complexities for the dense part are both O(N2), if direct methods are considered.

The use of the FMM reduces the memory complexity to O(N) and the computational complexity to

o(N2), which can be O(N), O(N logβ N), β � 1, or O(Nα), α < 2, depending on the wavenumber,

domain size, effective dimensionality of the boundary, and translation methods used [18]. The

decomposition (21) is at the heart of the FMM, with summation of the near-field interactions

performed directly, while for the far-field interactions multipole and local expansions are used. The

acceleration achieved is via memory and time efficient computation of the matrix-vector products

involving Adense.
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A. FMM strategy

The use of the FMM for solution of boundary integral equations brings a substantial shift in the

computational strategy. In the traditional BEM, since the full system matrix should be computed

to solve the resulting linear system either directly or iteratively. The memory needed to store

this matrix is fixed and is not affected by the accuracy imposed on computation of the surface

integrals. Even if one uses quadratures with relatively high number of abscissas and weights to

compute integrals over the flat panels in a constant panel approximation the memory cost is the

same, and the relative increase in the total cost is small, as that cost is dominated by the linear

system solution.

If one chooses, it is also possible to compute non-singular integrals very accurately in the FMM

using expansions of Green’s function, such as

G
(
x,x

(c)
l

)
= ik

∞∑

n=0

n∑

m=−n

R−mn

(
x− x

(c)
l′

)
Smn

(
x
(c)
l −x

(c)
l′

)
, (22)

where Rmn and Smn are the spherical basis functions for the Helmholtz equation, we obtain from Eq.

(17)

Lll′ =
∞∑

n=0

n∑

m=−n

Cmn S
m
n

(
x
(c)
l −x

(c)
l′

)
, Cmn = ik

∫

Sl′

R−mn

(
x− x

(c)
l′

)
dS(x). (23)

As the sum is truncated for maximum n = p−1 then we have p2 complex expansion coefficients for

each element. If this p is the same as the truncation number for the FMM, this requires substantial

memory to store Mp2 complex values.

All methods, based on high order quadratures, computations of the expansion coefficients or use

of some analytical formulae with compositionally complex functions impose substantial limits on

the use of the advantages of the FMM, which otherwise is capable to handle million size problems on

usual desktop PCs. To reduce the memory consumption one should use schemes where the integrals

are computed at the time of the matrix-vector product and only at the necessary accuracy. In the

case of the use of higher order quadratures we face then with a well-known dilemma to compute

integrals in the flat panel approximation with high number of nodes, or just increase the total

number of nodes (discretization density) and use low order quadrature. In the case of use of the

FMM with “on fly” integral computations the computational complexity will be almost the same

for both of these ways, while the latter way seems preferable, as it allows the function vary from
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point to point and employs better approximation for the boundary (as the vertices are located on

the actual surface and variations of the normal are accounted better). Of course these variations

in any case should be small enough, for the method to converge. We also note that based on our

experience for the same problem (geometry and wavelength) the number of iterations to achieve

convergence, after some N (once the system is resolved ) almost does not depend on N .

Therefore, in the case of the use of the FMM we can try to use the following approximation, at

least in the far-field, for the non-singular integrals (in case of vertex collocation):

Llj = sjG (xj,xl) , Mlj = sj
∂G

∂nj
(xj,xl) , (24)

L′lj = sj
∂G

∂nl
(xj ,xl) , M ′

lj = sj
∂2G

∂nl∂nj
(xj,xl) , l, j = 1, ...,N, xl �= xj.

Collocation at the panel center uses the same formulae with respective values of areas, nodes and

normals. For the treatment of the singular integrals (xl = xj) we use a method described later. As

we mentioned above we use these approximations for computations of the product involving the

dense part of the matrix, or the far field. For near field computations these formulae could be used

with a fine enough discretization for the non singular integrals, though one may prefer to use higher

order quadrature. We performed several tests using for near field integral representation Gauss

quadratures of varying order (in range 1-625 nodes per element) and found that approximation

(24) used for near field provides fairly good results for good meshes (the element size and aspect

ratios stay within some bounds), though some poor meshes provide not so good results, and we

provide this choice as a switch in the code.

B. FMM algorithm

The Helmholtz FMM algorithm which we employed for matrix vector products is described in

[18, 19], with modifications that allows use of different translation schemes for low and high frequen-

cies. Particulars of our algorithm are that we use level-dependent truncation number pl and rectan-

gularly truncated translation operators for multipole-to-multipole and local-to-local translations,

which are performed using rotation-coaxial translation-rotation (RCR) decomposition and result in

O(p3) single translation complexity. The RCR-decomposition is also used for the multipole-to-local

translations for levels with kal < ka∗, where al is the radius of the smallest sphere surrounding a

box on level l, and ka∗ is some critical value of the size parameter. For levels corresponding to
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kal � ka∗ we convert the multipole expansions to samples of the signature function at a cost of

O(p3), then employ diagonal forms of the translation operator O(p2), and in the downward pass

at some appropriate level use conversion of the signature function to the local expansion of the re-

quired length at a cost of O(p3). This procedure automatically provides filtering. We also note that

conversions from multipole and to local expansions are required only once per box, since consoli-

dation of the translated functions is performed in terms of signature functions. This amortizes the

O(p3) conversion cost and makes the scheme faster than the one based on the RCR-decomposition

for the same accuracy. So our algorithm, in this part, is close to that described in [5]. The dif-

ference is that we do not need any interpolation/anterpolation procedures. Also for low-frequency

translation we used RCR-decomposition for the multipole-to-local translation, which we found as

efficient as the method based on conversion into exponential forms for moderate p. Particulars of

our implementation include precomputation of all translation operators, particularly translation

kernels, so during the run time of the procedure, which is performed many times for the iterative

process only simple arithmetic operations (additions and multiplications) are executed. Below we

briefly describe some details of the algorithm.

1. Data structure

The present version of the FMM employs a traditional octree-based data structure, when the

computational domain is enclosed into a cube of size D × D × D which is assigned to level 0 and

further the space is subdivided by the octree to the level lmax. The algorithm works with cubes

from level 2 to lmax. For generation of the data structure we use hierarchical box ordering based on

the bit interleaving and precompute lists of neighbors and children, which are stored and used as

needed. So the adaptivity of the FMM used is in skipping of “empty” boxes at all levels (such boxes

simply do not enter the data structure). It is perhaps because of our use of these data structures

that even on a modest PC the times we report for the FMM matrix vector product are superior to

those of several authors.

2. Level dependent truncation number

Each level is characterized by the size of the expansion domain, which is a sphere of radius al

concentric with the box. Selection of the truncation number in the algorithm is automated based
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on equation pl = p(kal, ε, δ), where ε is the prescribed accuracy of the FMM, and δ is the separation

parameter (we used δ = 2 (see the justification in [18])). Detailed discussion and theoretical error

bounds for such dependences can be found elsewhere (e.g. [9, 18]). Particularly, the following

approximation combining low and high-frequency asymptotics for monopole expansions can be

utilized [18]:

plow =
1

ln δ
ln

1

ε
(
1− δ−1

)3/2 + 1, phigh = ka+
1

2

(
3 ln

1

ε

)2/3
(ka)1/3, (25)

p =
(
p4low + p4high

)1/4
.

It is also shown in [18] that for the use of the rectangularly truncated translation operators the

principal term of the error can be evaluated based on this dependence. The numerical experiments

show that the theoretical bound frequently overestimates the actual errors, so some corrections can

be also applied. In our automatic settings we computed plow and phigh and if it happened that

p− phigh > p∗ (ε), where p∗ is some number dictated by the overall accuracy requirements (for the

errors acceptable for this paper constant p∗ = 5 was good enough for most cases tested; in fact, this

function should be proportional to ln(1/ε)) we used p = p0 + phigh, otherwise Eq. (25) was used.

As mentioned above, in the algorithm we implemented an automatic switch from the RCR-

decomposition to the diagonal forms of the translation operators based on criterion kal � ka∗.

Parameter ka∗ was based on the error bounds (25) and was selected for the level at which p−phigh �

p∗∗ (we used p∗∗ = 2). This is dictated by the estimation of the threshold at which the magnitude

of the smallest truncated term in the translation kernel (33) starts to grow exponentially (see [18]).

Fig. 2 shows the dependences provided by Eq. (25). We note that FMM with very small

accuracy like ε = 10−2 can be used for efficient preconditioning. We also can remark that function

representation via the multipole expansions and use of the matrix-based translations (such as

RCR-decomposition) is not the only choice, and in [5, 10] a method based on diagonalization

of the translation operators, different from [23] were developed. This method, however requires

some complication in data structure (decomposition to the x, y, z-directional lists) and efficient

for moderate to large truncation numbers. As we mentioned, the truncation numbers in the low-

frequency region can be reduced (plus the BEM itself has a limited accuracy due to flat panel

discretization). In this case efficiency of the matrix-based methods, such as the RCR-decomposition

is comparable, or even better. Indeed, function representations via the samples of the far field

signature functions are at least two times larger, which results in larger memory consumption and
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reduction of efficiency on operations on larger representing vectors.

3. Multipole expansions

Expansions over the singular (radiating) spherical basis functions Smn (r) in the form (22)-(23)

can be applied to represent the monopole source or respective integrals. In these formulae the

singular and regular solutions of the Helmholtz equation are defined as

Smn (r) = hn(kr)Y
m
n (θ, ϕ), Rmn (r) = jn(kr)Y

m
n (θ, ϕ), n = 0, 1, 2, ...; m = −n, ..., n, (26)

where in spherical coordinates r =r (sin θ cosϕ, sin θ sinϕ, cos θ) symbols hn(kr) and jn(kr) denote

spherical Hankel (first kind) and Bessel functions, and Y mn (θ, ϕ) the spherical harmonics

Y mn (θ, ϕ) = (−1)m

√
2n+ 1

4π

(n− |m|)!

(n+ |m|)!
P |m|n (cos θ)eimϕ, (27)

n = 0, 1, 2, ..., m = −n, ..., n,

and P
|m|
n (µ) are the associated Legendre functions consistent with that in [1], or Rodrigues’ for-

mulae

Pmn (µ) = (−1)m
(
1− µ2

)m/2 dm

dµm
Pn (µ) , n � 0, m � 0, (28)

Pn (µ) =
1

2nn!

dn

dµn
(
µ2 − 1

)n
, n � 0,

where Pn (µ) are the Legendre polynomials.

In the boundary integral formulation also normal derivatives of Green’s function should be

expanded (or integrals of these functions over the boundary elements). These expansions can be

obtained from expansions of type (22)-(23) for the monopoles by applying appropriately truncated

differential operators in the space of the expansion coefficients [18] , which are sparse matrices

and so the cost of differentiation is O(p2). Indeed if {Cmn } are the expansion coefficients of some

function F (r) over basis Smn (r), while
{
Ĉmn

}
are the expansion coefficients over the same basis of

function n · ∇F (r) for unit normal n = (nx, ny, nz), then

Ĉmn =
1

2t

[
(nx + iny)

(
bmn C

m+1
n−1 − b

−m−1
n+1 Cm+1n+1

)
+ (nx − iny)

(
b−mn Cm−1n−1 − b

m−1
n+1 C

m−1
n+1

)]
(29)

+nz
(
amn C

m
n+1 − a

m
n−1C

m
n−1

)
, m = 0,±1,±2, ..., n = |m| , |m| + 1, ...
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where amn and bmn are the differentiation coefficients

amn = a−mn =

√
(n+ 1+m)(n+ 1−m)

(2n+ 1) (2n+ 3)
, for n � |m| , (30)

amn = bmn = 0, for n < |m| ,

bmn =

√
(n−m− 1)(n−m)

(2n− 1) (2n+ 1)
for 0�m�n,

bmn = −

√
(n−m− 1)(n−m)

(2n− 1) (2n+ 1)
for − n� m <0.

4. Translations

Translations of the expansions can be also thought as application of matrices to the vectors

of coefficients. If translation occurs from level l to l′ (l′ = l − 1 for the multipole-to-multipole,

or S|S-translation, l′ = l for the multipole-to-local, or S|R-translation, and l′ = l + 1 for the

local-to-local, or R|R-translation) then p2l′ translated coefficients relate to p2l original coefficient

via p2l′ × p2l matrix. Even for precomputed and stored matrices this requires O(p4) operations,

which is unallowable cost for the translation if using with boundary element methods [18]. Several

methods to reduce this cost are well-known. Particularly we use the RCR-decomposition of the

(S|S) (t) = (R|R) (t) matrices

(R|R) (t) = Rot−1(t/t)(R|R) (t)Rot(t/t), (31)

where t is the translation vector, t = |t|, and Rot(t/t) is the rotation matrix, which expresses

coefficients in the rotated reference frame, which z-axis is collinear with t, while (R|R) (t) is the

coaxial translation operator (along axis z). In the RCR-decomposition all operators cost O(p3) due

to they act on different subspaces. As the geometry of the problem is specified all these matrices

can be precomputed for the cost of O(p3) operations using recursions [17, 18] and stored. We note

also that due to rectangular truncation operators Rot(t/t) and Rot−1(t/t) act on the vectors of

length p2l and p
2
l′ , respectively, produces the same size vectors, while (R|R) (t) acts on vector of size

p2l and produces the vector of size p2l′ . Therefore there is no need in any interpolation or filtering

procedures, as this is embedded into the decomposition. We apply similar decomposition to the

(S|R) (t) matrix for low frequencies, which provides numerically stable low-frequency procedure

(for levels corresponding to kal < ka∗).
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For higher frequencies (for levels kal � ka∗) we use the following decomposition of the translation

matrix (S|R) (t):

(S|R) (t) = Sp−1Λs (t)Sp, (32)

where Sp can be thought as a matrix of size Nl × p2l , which performs transform of the expansion

coefficients toNl samples of the far field signature function (spherical transform),Λs (t) is a diagonal

translation matrix of size Nl × Nl and Sp
−1 is the matrix of size p2l × Nl, which provides transform

back to the space of the coefficients. The number of samples depends on the truncation number

and it is sufficient to use Nl = (2pl − 1) (4pl − 3) , where the grid is a Cartesian product of 2pl − 1

Gauss abscissas with respect to −1 � µ = cos θ � 1 and 4pl − 3 equispaced abscissas with respect

to the angle 0 � ϕ < 2π. This grid also can be interpreted as a set of points on the unit sphere

{sj}. The entries of the diagonal matrix Λs (t) can be computed as

Λjj (t) =

2pl−2∑

n=0

in (2n+ 1)hn (kt)Pn

(
sj · t

t

)
, j = 1, ...,Nl, (33)

which is a diagonal form of the translation operator [23]. The bandwidth of this function, 2pl − 2,

provides that decomposition (32) of the p2l × p
2
l translation matrix (S|R) (t) is exact [18]. Note that

for a given grid (which is the same for all translations at level l) the cost of computation of Λs (t)

for each translation vector t is O
(
p3l
)
. In our implementation we precompute and store all these

entries, so no computations of Λs (t) is needed during the run part of the algorithm. We also speed

up the precomputation part by employing some data structure, which eliminates computations of

Λjj (t) for repeated entries
sj ·t
t and kt for all translations, and, in fact allows substantially reduce

the preset part of the algorithm.

Operator Sp can be decomposed into the Legendre transform with respect to µ = cos θ followed

by the Fourier transform with respect to ϕ (e.g. see [5, 11, 18]). If performed straightforward each

of them requires O
(
p3
)
operations. Despite there exist algorithms for fast Legendre transform and

the FFT can be employed, which reduces the cost of application of operator Sp to O
(
p2 log p

)
or so,

for moderate p straightforward methods still can be efficient. Note that the major cost (about 90%)

comes from the Fourier transform, so if the FFT is applied efficiently this speeds up the procedure.

Furthermore, operator Sp−1 can be decomposed into the inverse Fourier transform, diagonal matrix

of the Legendre weights and, inverse Legendre transform. The cost of this procedure is the same

as for computation of the forward transform.
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As mentioned earlier, since the same transforms Sp and Sp−1should be applied to all expansions

at given level, the amortization of computations should be used to make (32) more efficient then

the RCR-decomposition. In this case we apply first transform Sp to all box expansions at given

level, then perform all diagonal translations and consolidations, and, finally, apply transform Sp−1

to all boxes.

5. Comparison of algorithms

Fig. 3 illustrates the present algorithm (on the right) and also compares it with the FMM for the

Helmholtz equation proposed in [5]. These algorithms have in common separation of the high and

low frequency regions where different translation methods used. It is seen that the present algorithm

at high frequencies implements the idea used in algorithm [5] for lower frequencies, while instead

of conversion to the exponential form the spherical transform is used to convert the S-expansion to

the signature function representation and back. The signature function representation is omnidi-

rectional, and in contrast to the exponential forms does not require additional data structures and

multiple representations (for translation in each coordinate direction). Also this trick is efficient

for large enough p, which is necessary for the high frequency region. However, despite the use of

these efficient techniques, our algorithm has a formal translational scaling O(p3), since in the high

frequency region for the multipole to multipole S|S and local-to-local R|R operators are used.

According to [18] both algorithms have the same complexity at low frequencies (with differ-

ent asymptotic constants), while the asymptotic complexity of the algorithm [5] at large kD is

O((kD)2 logα (kD)) for simple shapes (with relatively high asymptotic constant) and O((kD)3) for

space-filling surfaces. The complexities of the present algorithm are O((kD)3) for simple shapes

(with relatively low asymptotic constant) and O((kD)3 logα (kD)), respectively. The concept of

“space-filling” surfaces (related to how many boxes at certain level are occupied by the surface)

should be considered together with the value of kD. Indeed, the switch to the high-frequency regime

occurs not at the finest level, but rather at some level, at which a substantial number of boxes in

the computational domain may have expansions at their centers, i.e. are “occupied”. Thus, as far

as the algorithm performance is concerned, the effective dimension of the manifold representing the

surface of the object at this level will not appear as 2, but somewhere between 2 and 3 (see [18]).

In this case the complexity of algorithm [5] will be between O((kD)2 logα (kD)) and O((kD)3).
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Because of this, the practical efficiency of the two algorithms may be similar for many problems.

In any case this issue is complicated and additional analysis is required to compare them (also one

should take into account hardware limits and the efficiency of implementation). Our results below

indicate that the present algorithm can be successfully used for efficient solution of many problems.

6. Evaluation of expansions

Finally we mention that for computation of operators L′ and M ′ the normal derivative of

computed sums at the evaluation point should be taken. As the expansions are available for the

sources outside the neighborhood of the evaluation points this can be performed by application of

the differentiation operator in the coefficient space (see Eq. (29)).

7. Simultaneous matrix-vector products

As described above the FMM allows in one run to compute not one, but a sum of four matrix-

vector products

Σ+ λΣ′ =
(
Ldense + λL′dense

)
[q]−

(
Mdense + λM ′

dense

)
[φ] , (34)

for input vectors q and φ, which is required for iterative solution of Eq. (10). Also if needed,

results for the parts Σ and Σ′ can be separated (e.g. for application of Green’s identity alone

for computation of the potential in the internal domain points). The dense parts of the matrices

correspond to decomposition (21), and in the case of use of a simple scheme (24) are the matrices

with eliminated diagonals.

IV. COMPUTATION OF SINGULAR ELEMENTS

Despite there exist techniques for computation of the integrals over the singular or nearly singular

elements (e.g. with increasing number of nodes and element partitioning or using analytical or

semi-analytical formulae), these methods can be costly, and below we propose a technique for

approximation of such integrals, which is consistent with the use of the FMM. This technique is

similar to the “simple solution” technique used by some authors to compute the diagonal elements

for the BEM for potential problems and for elasticity [22], except that it is updated with the use

of the FMM, and to the case of the Helmholtz equation.
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Let {xj} be a set of points sampling the surface, and U
ε
j be a sphere of radius ε centered at xj

and Sεj = S ∩ U εj . The surface operators can be decomposed as

L [σ] =

∫

Sεj

σ (x)G (x,y) dS (x) +

∫

S\Sεj (y,ε)
σ (x)G (x,y) dS (x) = Lεj [σ] + L̃j [σ] (35)

M [σ] =

∫

Sεj

σ (x)
∂G (x,y)

∂n (x)
dS (x) +

∫

S\Sεj (y,ε)
σ (x)

∂G (x,y)

∂n (x)
dS (x) =M ε

j [σ] + M̃j [σ] .

Note that for small enough ε we have the following approximations of the integrals:

Lεj [σ] ≈ σjl
ε
j (y) , M ε

j [σ] ≈ σjm
ε
j (y) , (36)

where functions lεj (y) and m
ε
j (y) are regular inside the domain. Thus, they can be approximated

by a set of some basis functions, which satisfy the same Helmholtz equation. To construct such

a set and approximation consider Green’s identity for a function which is regular inside the finite

domain (internal problem):

γψ = L

[
∂ψ

∂n

]
−M [ψ] , (37)

where γ = 1 for points inside the domain, γ = 1/2 for points on the boundary and γ = 0 for the

points located outside the domain. Consider then the following test functions

ψ (x) = eiks·x, q (x) =
∂ψ

∂n
(x) = n (x) · ∇eiks·x = ikn (x) · seiks·x, |s| = 1, (38)

which represent plane waves propagating in direction s. For these functions we have from Eqs.

(35)-(37)

mεj (y)− ik (nj · s) l
ε
j (y) = e−iks·xj

{
ikL̃

[
(n · s) eiks·x

]
− M̃

[
eiks·x

]
− γ (y) eiks·y

}
. (39)

Let s1, ..., s4 be four different unit vectors providing that functions e
iksα·x are linearly indepen-

dent. Then denoting

ωjα (y) = e−iks·xj
{
ikL̃

[
(n · sα) e

iksα·x
]
− M̃

[
eiksα·x

]
− γ (y) eiksα·y

}
, njα = nj · sα, (40)

we obtain

mεj (y)− iknjαl
ε
j (y) = ωjα (y) , α = 1, ..., 4. (41)
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Note then that 4 vectors in the three dimensional space are linearly dependent, i.e. there exist 4

scalars λα, such that

4∑

α=1

λαsα = 0,
4∑

α=1

λαnjα = nj ·

(
4∑

α=1

λαsα

)
= 0. (42)

Hence, multiplying Eq. (41) by λα and summing up them for all α we obtain

mεj (y) =
1

λ

4∑

α=1

λαωjα (y) , λ =
4∑

α=1

λα. (43)

This determines function mεj (y). Let us select, for example, s1, ..., s3 as coordinate unit vectors,

and s4 as their normalized sum:

s1 = ix, s2 = iy, s3 = iz, s4 =
ix + iy + iz

31/2
, (44)

in this case we have

mεj (y) =
1

3− 31/2

[
3∑

α=1

ωjα (y)− 31/2ωj4 (y)

]
. (45)

Furthermore, if we multiply Eq. (41) by njα and sum up all equations for α = 1, ..., 3, then,

in the selected basis we obtain taking into account that n is a unit vector, n2j1 + n2j2 + n2j3 = 1:

lεj (y) =
i

k

3∑

α=1

njα
[
ωjα (y)−m

ε
j (y)

]
. (46)

Obviously, similar consideration can be given to decompose surface operators L′ [σ] and M ′ [σ]:

L′ [σ] = L′εj [σ] + L̃′j [σ] , M ′ [σ] =M ′ε
j [σ] + M̃j

′
[σ] , (47)

L′εj [σ] ≈ σj l
′ε
j (y) , M ′ε

j [σ] ≈ σjm
′ε
j (y) .

We note that these operators are employed only for points on the boundary, so we will use Maue’s

identity (8) for the internal problem. In this case using test functions (38) we modify Eqs. (39)-(41)

as follows

m′ε
j (y)− iknjαl

′ε
j (y) = ω′jα (y) , α = 1, ..., 4, (48)

ω′jα (y) = e−iks·xj
{
ikL̃′

[
(n · sα) e

iksα·x
]
− M̃ ′

[
eiksα·x

]
− γα (y) e

iksα·y
}
,

γα (y) =
1

2
ik (n (y) · sα) , y ∈ S.

Then for set of directions (44) solution will be provided by Eqs. (45) and (46), where one should

replace mεj (y) , l
ε
j (y), and ωjα (y), with m′ε

j (y) , l
′ε
j (y), and ω′jα (y), respectively. As we noted

above the FMM provides 4 simultaneous matrix-vector multiplications, and so 4 runs of the FMM

(α = 1, ..., 4) is sufficient to get all diagonals.
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8. Discretization

The above formulae obviously provide expressions for the diagonal elements of matrices

Ljj = lεj (xj) , Mjj = mεj (xj) , L′jj = l′εj (xj) , M ′
jj = m′ε

j (xj) , j = 1, ..., N. (49)

In fact, for solution of the BIE only quantities Ljj + λL′jj and Mjj + λM ′
jj are needed. So for

given λ the storage can be reduced twice. Also combinations Ljj + λL′jj and Mjj + λM ′
jj can be

computed instead of each diagonal entries using the same method as described above.

V. NUMERICAL EXPERIMENTS

The BEM/FMM was implemented in Fortran 95 and computations were performed for different

geometries and wavenumbers with an appropriate discretization of the surface by triangular mesh.

Some results of computations are reported below.

A. Scattering from a single sphere

Example of scattering of an incident plane wave from a single sphere is valuable for tests of

the performance of the method, since analytical solution is available in this case. For the incident

field φin(r) = eiks·r, where s is the unit vector collinear with the wave vector, solution for the total

(incident plus scattered field) for impedance boundary conditions can be found elsewhere [18]:

φ|S
(
s′
)
=

i

(ka)2

∞∑

n=0

(2n+ 1)inPn (s · s
′)

h′n (ka) + (iσ/k)hn(ka)
, (50)

∂φ

∂n
+ iσφ

∣∣∣∣
S

= 0,

where a is the sphere radius, s′ is a unit vector pointing to the location of the evaluation surface

point, and σ is the boundary admittance, which is zero for sound-hard surfaces and infinity for

sound-soft surfaces. Depending on this we may have for the scattered field Neumann, Dirichlet, or

Robin problem.

In the numerical solution for a unit sphere we varied k, discretization, parameter λ in Eq.

(10), the boundary admittance, tolerance, and parameters controlling the FMM accuracy and

performance. As iterative solver we tried unpreconditioned GMRES and fGMRES with different

right preconditioners. A typical configuration and computational result is shown in Fig. 4.
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1. Preconditioning

The best preconditioners we found were the preconditioners which compute solution of the

system Aψj = cj on the jth step using unpreconditioned GMRES (inner loop), low accuracy

FMM, and lower bounds for convergence of iterations. For example, if in the outer loop of the

fGMRES the prescribed accuracy for the FMM solution was 10−5, and the iterative process was

terminated as the residual reaches 10−4, for the inner preconditioning loop we used FMM with

prescribed accuracy 0.05 and the iterative process was terminated at residual value 0.5. The process

of approximate solution with such parameters is much faster then that for parameters of the outer

loop, as it requires lesser iterations and the matrix-vector product is computed several times faster

(lower truncation numbers). On the other hand the use of the preconditioner reduces by the order

of magnitude the number of iterations in the outer loop. This is important from the point of view

of memory management for large problems. Indeed, the GMRES or fGMRES requires storage of K

vectors of length N , where K is the dimensionality of the Krylov subspace. The iterative process

becomes much longer if restarts of GMRES are used, so it is preferable to achieve convergence in

Niter � K. In the case of use of GMRES-based preconditioner the storage memory will be of order

(K +K ′)N , where K′ is the dimensionality of the Krylov subspace for preconditioning. Since both

numbers K and K ′ are much smaller than K required for unpreconditioned GMRES the required

memory for solution reduces substantially.

Fig. 5 shows convergence of the unpreconditioned GMRES and preconditioned fGMRES with

the FMM-based preconditioner as described above. The computations were made for a sound-

hard sphere of radius a, which surface was discretized by 101,402 vertices and 202,808 triangular

elements for the relative wavenumber ka = 50. As it is seen the number of iterations reduces

dramatically with the use of the preconditioner, while due to execution of the inner loop for the

preconditioned method, the relative cost of each outer iteration in the fGMRES becomes larger.

Nevertheless fast convergence provides finally 2.5 times faster time (computational cost) to solve

the same problem. We note also that in the case illustrated the matrix-vector product used low

accuracy FMM in preconditioning was computed approximately 6 times faster than the matrix-

vector product computed with higher accuracy.
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2. Spurious modes

The test case for the sphere is also good to illustrate advantage of the Burton-Miller formulation

compared to the boundary integral equation based on Green’s identity. According to the theory

[2, 7], the Green’s identity formulation may result in convergence to a solution, which for sound-

hard sphere is true solution plus a non-zero solution of the internal problem corresponding to zero

boundary conditions at given wavenumber for the potential. Such solutions are not physical, since

the solution of the external scattering problem is unique, and, therefore, they manifest deficiency

of the numerical method based on the Green’s identity.

For a sphere any internal solution can be written in the form

φint (r) =
∞∑

n=0

jn(kr)
n∑

m=−n

Bmn Y
m
n (θ, ϕ) , (51)

where (r, θ, ϕ) are the spherical coordinates of r, and Bmn are arbitrary constants. The set of zeros

of functions jn(ka) provides a discrete set of values of ka for which φint
∣∣
S
= 0, while φint is not

identically zero inside the sphere. The minimum resonant value of ka is the first zero of function

j0(ka), which is ka = π. So we conducted some numerical tests with Burton-Miller and Green’s

formulations for a range of ka (0.01 � ka � 50) to check what happens when ka takes a resonant

value.

Fig. 6 provides an illustration for case ka = 3π ≈ 9.424778, which is the third zero of function

j0(ka). In case of using of Burton-Miller formulation with some λ, Im (λ) �= 0 solution converges

to the solution, which is consistent with the analytical solution (50). However if the same case

is computed using the Green’s formula solution converges to a function, which is different. We

checked that in this case the converged solution can be well approximated (σ = 0) by

φ|S
(
s′
)
= B +

i

(ka)2

∞∑

n=1

(2n+ 1)inPn (s · s
′)

h′n (ka)
, (52)

where B is some complex constant depending on the initial guess in the iterative process. This

shows that, in fact the zero-order harmonic of the solution, corresponding to the resonating eigen

function failed to be determined correctly, which is an expected result. We also note that such

type of solution appears if using iterative methods like GMRES, where degeneration of the matrix

operator for some subspace does not affect convergence in other subspaces. In case if the problem

is solved directly (say the linear system is solved using the LU-decomposition) the system matrix

becomes degenerate (or very poorly conditioned), which should result in completely wrong solution.
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We also note that in the non-resonant cases (ka differs from the resonant values more than

some small ε (ka)) the Green’s formulation provided a good solution, while normally the number

of iterations increased as ka became closer to resonance. For large ka (40 or more) computations

using Green’s identity become unstable, which is explainable by dense location of zeros of functions

jn(ka). For the Burton-Miller formulation we found experimentally that parameter λ selected as

λ =
iη

k
, (53)

where η = 0.01 − 0.1 (for the case illustrated above we used η = 0.03) provides good results for

the range of parameters studied, while for ka < 1 the number of iterations increases compared to

the Green’s identity. So for such low ka, when there are certainly no resonances, Green’s identity

can be recommended. Increase of this parameter usually decreases the accuracy of computations,

since more weight is put on the hypersingular part of the integral equation, while decrease of the

parameter for large ka leads to the increase in the number of iterations, and for η � 0.01 the

Burton-Miller integral equation shows the problems of spurious modes.

3. Performance

By performance we mean how the above algorithm scales with respect to the number of elements

in the mesh and the relative size of the computational domain. For the FMM, which uses cubic

boxing, the characteristic scale is usually based on the diagonal (maximum size) of the compu-

tational domain, D. So kD is an important dimensionless parameter. Further, we can compute

the maximum size of the boundary element, which for triangular mesh is the maximum side of

the triangle, d, which produces another dimensionless parameter, kd. For a fixed body of surface

area S ∼ D2, the number of elements in the mesh is of the order N ∼ S/d2 ∼ D2/d2. Formal

constraint for discretizations used for accurate solution of the Helmholtz equation is d/λa � 1,

where λa = 2π/k is the acoustic wavelength. In practice we replace this condition with kd < χ,

where χ is some constant of order 1, so we have not less than 2π/χ mesh elements per wavelength.

This number usually varies in range 5-10. This shows that the total number of elements should be

N ∼ D2/d2 � (kD)2 /χ2 = O
(
(kD)2

)
(note that we dropped here factors like 4π which add an

extra order of magnitude, also the estimates do not take into account the non-uniformity of real

meshes).

Fig.7 shows results of numerical experiments for scattering from a sound-hard sphere, where
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we fixed parameter χ ≈ 0.94 for kD > 30 which provided at least 6 elements per wavelength and

increased the number of elements proportionally to (kD)2 (the maximum case plotted corresponds

to kD = 173 where the mesh contains 135,002 vertices and 270,000 elements). The total CPU time

required for solution of the problem is scaled approximately as O((kD)3) which is consistent with

the theory if the number of iterations is constant. In fact, for the cases computed the number of

iterations both in the inner and outer loops of the preconditioned fGMRES was growing with kD,

however this growth was not very substantial (e.g. for the outer loop 8 iterations for kD = 10 ,

while 14 iterations for kD = 173 to converge to the value of the residual 10−4). The total number

of iterations in the inner loop grow also, but substantially because of the growth of the number of

iterations in the outer loop, while the average number of inner iterations per one outer iteration

was varying in range (1-8) (in any case the inner loop was limited by maximum 10 iterations). The

overall accuracy was controlled by comparison with the analytical solution (50) and in most cases

the maximum absolute error (L∞-norm) was in the range 1-2 % at kD > 3. In range 3 < kD < 30

the error increases a couple of times if we keep constant χ ≈ 0.94. We decreased this parameter to

maintain the same error. For kD < 3, which we characterize as very low frequency regime, we used

constant mesh with 866 vertices and 1728 elements. This mesh provided errors in range 10−4−10−2

for all cases. Also for this range we used used λ = 0. This provided faster convergence, despite

selection based on Eq. (53) with η = 0.03 also provided accurate results. In fact, at low frequencies

the discretization can be reduced further to have consistent 1% accuracy, but since we tried to test

the FMM, which works efficiently only for problem sizes N � 103 we fixed the discretization in

this range. Another acceleration (several times) comes from precomputation and storage of the

near-field integrals in the BEM (matrix Asparse, Eq. (21)). However, based on the RAM (we used

3.5 GB) this works only for N below 105. So to show scaling we did not use such storage and

recomputed the sparse matrix entries each time as the respective matrix-product was needed.

B. More complex shapes

Many problems in acoustics require computations for substantially complex shapes, which in-

cludes bioacoustics, human hearing, sound propagation in dispersed media, engine acoustics, room

acoustics, etc. We tested our algorithm by solving several problems like that and Fig. 8 provides

an idea on the sizes and geometries we were working on. We note that modeling of complex shapes
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requires surface discretizations which is determined not only by the wavelength based conditions

χ� 2π, but also by the requirements that the topology and some shape features should be prop-

erly represented. Indeed even for solution of the Laplace equation (k = 0) the boundary element

methods can use thousands and millions of elements just properly represent the geometry. Usually

the same mesh is used for multifrequency analysis, in which case the number of elements is fixed

and selected to satisfy criteria for the largest k required. In this case the number of elements per

wavelength for small k can be large. Also, of course, discretization plays an important role in the

accuracy of computations. So if some problem with complex geometry should be solved with high

accuracy then the number of elements per wavelength can be again large enough.

For the last geometry illustrated in Fig. 8 we conducted some study on the method performance

and accuracy for the range of kD from 0.35 to 175 (ka = 0.01 − 5, where a is the largest axis

of an ellipsoid). First, we should note that the surface of each ellipsoid was discretized with

more than 1000 vertices and 2000 elements to provide an acceptable accuracy of the method even

for low frequencies. Indeed, we checked that the convergence for the Neumann, Dirichlet, and

Robin problems was very fast (just a few iterations) for small ka, where, as we discussed above

the use of low-frequency FMM is important. For this problem both formulations, based on the

Green’s identity and Burton-Miller equation are acceptable, while instead of scaled value (53) of the

regularization parameter in the latter formulation, some small constant value is more appropriate

at small ka (in fact at ka� 1 there is no any internal resonance modes, so Green’s identity works

well). The convergence was not affected by the increase of the number of nodes, and, in principle,

discretization with the number of elements of order 100 was in this sense acceptable. Nonetheless

we should increase discretizations, since the accuracy of computations suffered from poor shape

representation (as a test solution we used an analytical solution, when a source was placed inside

one of the ellipsoids and surface values and normal derivatives were computed at each vertex

location analytically). The quality of the mesh is also important (our mesh was obtained by simple

mapping of a regular mesh on a cube surface to the ellipsoid surface). For larger discretizations as

we used we were able achieve ~1% relative errors in strong norm (L∞) for the range of parameters

we used.

Fig. 9 shows an absolute relative error at each vertex

εi =

∣∣∣φ(BEM)i − φ
(an)
i

∣∣∣
∣∣∣φ(an)i

∣∣∣
, i = 1, ...,Nvert, (54)
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where φ
(an)
i and φ

(BEM)
i are the analytical and BEM solutions, and the modulus of the

solution
∣∣∣φ(an)i

∣∣∣. The maximum error here was max (εi) = 1.58%, which is usually acceptable for

physics based problems and engineering computations.

VI. CONCLUSION

We presented here a version of the FMM accelerated BEM, where a scalable FMM is used both

for dense matrix-vector multiplication and preconditioning. The equations solved are based on the

Burton-Miller formulation. The numerical results show scaling consistent with the theory, which far

outperforms conventional BEM in terms of memory and computational speed. Realization of the

FMM for efficient BEM requires different schemes for treatment of low and high frequency regions,

and switching from multipole to signature function representation of solution of the Helmholtz

equation is important for broadband BEM. The tests of the methods for simple and complex

shapes show that it can be used for efficient solution of scattering and other acoustical problems

encountered in practice for a wide range of frequencies.
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List of Figure Captions

Figure 1. Two schemes of collocation based on a triangular mesh: collocation nodes at the panel

centers and at the vertices.

Figure 2. Dependences of the truncation number p on the dimensionless domain size ka for dif-

ferent prescribed accuracies of the FMM ε according to Eq. (25) (δ = 2) (solid lines). The

dashed lines show the high-frequency asymptotics phigh(ka). The circles mark the points of

switch from function representation via multipole expansions to samples of the far field signa-

ture function, and, respectively the translation method used. The dash-dotted line separates

the (ka, p) region into the domains where different function representations are used.

Figure 3. Illustration comparing the wideband FMMs of Cheng et al (2006) and that presented

in this paper for a problem in which the FMM octree has 4 levels, and in which the high-

low frequency switch threshold occurs between levels 2 and 3. The left hand side for each

algorithm shows the FMM upward pass, while the right hand side shows the FMM downward

pass. The function in each box represented via multipole expansion (S), local expansion (R),

far field signature function samples (F), or exponential form for each coordinate direction (E).

The “glued” boxes mean that for a given box the two types of expansions are constructed. S|S,

R|R, S|R, E|E, and F|F denote translation operators acting on the respective representations.

Sp and Sp−1 denote forward and inverse spherical transform, S|E and E|R are respective

conversion operators. F|F+i and F|F+f mean that the translation should be accompanied

by use of an interpolation or filtering procedure.

Figure 4. Typical BEM computations of the scattering problem. The graph shows comparison

between the analytical solution (50) and BEM solution for the vicinity of the rear point of

the sphere for ka = 30.

Figure 5. Left: The absolute error in the residual in the unpreconditioned GMRES (triangles)

and in the preconditioned fGMRES (circles) as a function of the number of iterations (outer

loop for the fGMRES). Right: the relative computational cost to achieve the same error

in the residual for these metehods (1 cost unit = 1 iteration using the unpreconditioned

method). Computations for sphere, ka = 50 for mesh with 101,402 vertices and 202,808

elements, λ = 6 · 10−4i.
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Figure 6. Solutions of the plane wave scattering problem obtained using BEM with the Burton-

Miller and Green’s identity formulations and fGMRES iterator for a sphere at resonance

ka = 9.424778 (triangular mesh 15,002 vertices and 30,000 elements). Analytical solution is

shown by the circles.

Figure 7. The CPU time (Xeon 3.2 GHz) for the complete run of the BEM program (cicles),

the number of iterations in the outer (triangles), and total number of iterations in the inner

(squares) loops of the preconditioned fGMRES vs parameter kD. All cases for kD > 30 were

computed with the same χ = kd ≈ 0.94, while for cases kD < 3 the mesh was fixed. The

solid line shows dependence y = ax3 in log-log coordinates.

Figure 8. Examples of test problems solved with the present version of the BEM: human head-

torso, and bunny models (7.85 kHz and 25 kHz acoustic sources located inside the objects,

kD = 110 and 96, respectively), and plane wave scattering by 512 randomly oriented ellipsoids

(kD = 29).

Figure 9. Error in the boundary condition at each vertex for the case of the ellipsoids in Fig. 8.
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FIG. 1: Two schemes of collocation based on a triangular mesh: collocation nodes at the panel centers and

at the vertices.
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FIG. 2: Dependences of the truncation number p on the dimensionless domain size ka for different prescribed

accuracies of the FMM ε according to Eq. (25) (δ = 2) (solid lines). The dashed lines show the high-frequency

asymptotics phigh(ka). The circles mark the points of switch from function representation via multipole

expansions to samples of the far field signature function, and, respectively the translation method used. The

dash-dotted line separates the (ka, p) region into the domains where different function representations are

used.
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FIG. 3: Illustration comparing the wideband FMMs of Cheng et al (2006) and that presented in this paper for

a problem in which the FMM octree has 4 levels, and in which the high-low frequency switch threshold occurs

between levels 2 and 3. The left hand side for each algorithm shows the FMM upward pass, while the right

hand side shows the FMM downward pass. The function in each box represented via multipole expansion

(S), local expansion (R), far field signature function samples (F), or exponential form for each coordinate

direction (E). The “glued” boxes mean that for a given box the two types of expansions are constructed. S|S,

R|R, S|R, E|E, and F|F denote translation operators acting on the respective representations. Sp and Sp−1

denote forward and inverse spherical transform, S|E and E|R are respective conversion operators. F|F+i and

F|F+f mean that the translation should be accompanied by use of an interpolation or filtering procedure.
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Incident wave ka=30

FIG. 4: Typical BEM computations of the scattering problem. The graph shows comparison between the

analytical solution (50) and BEM solution for the vicinity of the rear point of the sphere for ka = 30.
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FIG. 5: Left: The absolute error in the residual in the unpreconditioned GMRES (triangles) and in the

preconditioned fGMRES (circles) as a function of the number of iterations (outer loop for the fGMRES).

Right: the relative computational cost to achieve the same error in the residual for these metehods (1 cost

unit = 1 iteration using the unpreconditioned method). Computations for sphere, ka = 50 for mesh with

101,402 vertices and 202,808 elements, λ = 6 · 10−4i.
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FIG. 6: Solutions of the plane wave scattering problem obtained using BEM with the Burton-Miller and

Green’s identity formulations and fGMRES iterator for a sphere at resonance ka = 9.424778 (triangular

mesh 15,002 vertices and 30,000 elements). Analytical solution is shown by the circles.
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FIG. 7: The CPU time (Xeon 3.2 GHz) for the complete run of the BEM program (cicles), the number

of iterations in the outer (triangles), and total number of iterations in the inner (squares) loops of the

preconditioned fGMRES vs parameter kD. All cases for kD > 30 were computed with the same χ = kd ≈

0.94, while for cases kD < 3 the mesh was fixed. The solid line shows dependence y = ax3 in log-log

coordinates.
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FIG. 8: Examples of test problems solved with the present version of the BEM: human head-torso, and bunny

models (7.85 kHz and 25 kHz acoustic sources located inside the objects, kD = 110 and 96, respectively),

and plane wave scattering by 512 randomly oriented ellipsoids (kD = 29).
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FIG. 9: Error in the boundary condition at each vertex for the case of the ellipsoids in Fig. 8.
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