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The structure of wildfire flames in the presence of crossflow was analyzed by

utilizing suitable non-reacting numerical experiments with low speed flow over a hot

isothermal horizontal semi-infinite surface. FireFOAM, a Large Eddy Simulation

(LES) based solver developed by FM Global for fire protection engineering applica-

tions, was employed for all the calculations.

Early-time dynamics of Rayleigh-Taylor Instability (RTI) was first simulated

using Direct Numerical Simulations (DNS) so that the solver could be verified

against Linear Stability Theory (LST). Then attention was given to late-time dy-

namics in order understand the different stages (e.g., appearance of secondary in-

stability, generation of larger scales due to interaction between structures) involved

in the development of the instability.

The onset of thermal vortex instability, in a configuration with low speed

flow over a hot isothermal semi-infinite horizontal plate, predicted using DNS was

compared with the literature. Spatial evolution of various terms in the streamwise



vorticity equation was used to identify the dominant mechanisms responsible for

the generation/evolution of vorticity. Streamwise evolution of the instabilities was

studied and the effects of the changes in temperature and orientation of the plate

on the thermal instabilities were also investigated.

Finally, a configuration with low speed flow over a hot isothermal semi-infinite

horizontal strip was used to understand the effects of upstream Boundary Layer

(BL) height and the length of the strip on both the thin horizontal and larger

structures (analogous to Flame Towers (FT) observed in real wildfires and laboratory

experiments).
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1: Introduction

1.1 Background and motivation

Wildland fire spread is often described as a function of three fire behaviour

components; fuel, weather, and topography [1]. Since fire spread is essentially a se-

ries of ignitions, effects of fuels on spread are determined based on their propensity

to ignite including loading, shape and size, compactness, continuity, and chemical

content. The component that varies the most is the weather, changing both spatially

and temporally, including atmospheric conditions such as temperature, relative hu-

midity, stability, precipitation and wind speed. Whereas topography only changes

in space, such as elevation, aspect, land features, and steepness of slope.

Finney et al. [2] recently called for the development of a fundamental theory

for wildfire spread. Current operational models used for predictions of fire spread

are either “empirically based” or “physically based”. The latter class of models

attempt to represent the physical processes, but lack a physical (or experimental)

basis for the assumptions used to describe fuel particle ignition and fire spread.

Although computational power has increased, numerical tools for both operational

firefighting and long-term predictions continue to rely on semi-empirical fire spread

models primarily developed in the early 1970’s e.g., by Rothermel [3]. The lack of

advancement in the fundamental understanding of fire spread renders the current
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To record temperature signals 
inferred from observed flame 
fluctuations within the fuelbed, a
series of 64 thermocouples 
(0.012mm, type K, bead welded)
were arranged in a single line in
the direction of fire spread. The
thermocouple junction was located 
at the same the height as the upper
surface of the fuel bed. The first 
32 thermocouples were spaced 
1.5cm and the second 32
thermocouples spaced 3.0 cm
apart. Data logging occurred at 
500Hz using a National 
Instruments Inc. data acquisition
system. The range of burning
conditions reported here includes 
wind speeds from 0.22 to 1.5 m/s 
with relative humidity about 25%.
Temperature time-series recorded 
by the 64 thermocouples were
analyzed for frequency and
correlation of the temperature
signals among thermocouples.  
Each time series was divided into
three periods, pre-ignition, 
burning, and glowing (Figure 5).  
Pre-ignition was defined from the 
first crossing of the 350°C 

Figure 4. Flame zone structure viewed looking downwind (fire
spreading away from camera) shows patches of instabilities (a) soon
after the fire starts when the Görtler vortices have shorter wavelength
and (b) after larger flames the steady fire front develops. Note the
unstable portions expand in horizontal dimension as they advect 
downwind through the flame troughs.

(a)

(b)

Figure 3. Flame structure normal to spread direction showing rotation of flame eddies.

Figure 1.1: Flame zone structure viewed looking downwind (fire spreading away

from camera) shows patches of instabilities soon after the fire starts when the lon-

gitudinal vortices have shorter wavelength. Taken from [4].

models unreliable. Without a fundamental theory for fire spread, combustion, fluid

dynamics, and heat transfer processes cannot be reliably applied to develop a model

that is truly “physically based” and consequently has a higher fidelity.

Haines ( [5] and [6]) was the first to suggest (based on several observations)

that horizontal vortices play a crucial role in wildfire spread. And recent studies of

spreading wind-driven fires in a 3× 3 [m] wind tunnel at the USDA Forest Service,

Missoula Fire Science Laboratory showed coherent structures that formed in the

streamwise direction of the flow (also referred to as longitudinal vortices [7]) as well

as spanwise fluctuations that propagated to the downstream edge of the flame zone

contributing to intermittent fuel heating [8], see Figure 1.1. The highly spatially-

uniform fuel beds used in those experiments [4] allowed for a more repeatable ob-

servation of the structures than previous efforts. The results suggested that

flame spread in fine fuel beds is driven by non-steady convective heating
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Figure 4.7: The incoming boundary layer has an obvious effects on the
formation of streamwise streaks and properties of the flame. These two
pictures are from experiments using 30 × 12 cm wick, soaked with 120
mL of heptane fuel, in 1.3 m/s forced-flow. In the picture on the left the
leading edge of the burner is parallel with the blower outlet, and on the
right there is a 28 cm inert surface upstream of the wick.

71

Figure 1.2: Flame structure, viewed looking downwind, seen with stationary burn-

ers in [1].

and intermittent flame contact on fuel particles. These heating character-

istics were measured using micro thermocouple arrays and high speed video. The

displacement of the flaming region and the large experiment size, however, made it

difficult to carefully study these properties.

In order to avoid these difficulties Gorham et al. [1,9] chose a stationary, non-

spreading experimental fire configuration, as it allowed for a thorough statistical

analysis of the flame structure. The investigations prior to Gorham were focused on

time-averaged properties of the flame and not on the transient/intermittent effects,

important in spread through fine fuels [8]. The instabilities in these experiments

resembled those seen in spatially-uniform fuel beds (Figure 1.2). And the intermit-

tent heating observed in the fuel bed experiments were observed with stationary

burners as well. Overall, the flame geometry/structure was shown to be an

important factor for understanding fire spread.
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1.2 Approach

Non reacting cases were utilized in this study (to avoid complexities related to

combustion, radiation etc.) for analyzing the instabilities seen in [1,4]. Beyond that

high fidelity numerical approaches like DNS and LES were chosen, with the objective

to develop a computational companion to the stationary burner experiments [1]

and also with the hope that such a tightly coupled experimental/computational

investigation will enhance our understanding of the flame structure in wildfires.

Overall, this effort represents the starting point in a systematic investigation of the

fluid/flame dynamics involved in wildfires.

The configurations chosen in this study are described below:

1.2.1 Configuration 1

RTI, which represents a buoyancy-driven unstable thermal mixing configura-

tion without horizontal cross-flow, see Figure 1.3 (top). Essentially, in this configura-

tion, a heavy (cold) fluid was placed on top of a light (hot) fluid and the interface was

perturbed, and subsequently the growth of the perturbation was monitored. The

purpose of these simulations was to assess the capability of the numerical solver,

FireFOAM, by comparisons with LST in the early stages and to understand the

physics involved in the growth of the instabilities in the later stages.

1.2.2 Configuration 2

Flow over a hot isothermal semi-infinite horizontal plate, outlined in Figure 1.3

(middle). This configuration is similar to the RTI configuration but there are two ad-
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T∞

Cold Fluid1.

2.

3.

Hot Fluid

Turbulent Free 
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Figure 1.3: Non-reacting configurations utilized in the present study: RTI setup

(1), flow over a hot isothermal semi-infinite horizontal plate (2), adapted from [7],

and flow over a hot isothermal semi-infinite horizontal strip, representing a line

source (3).
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ditional elements; the cross-flow and heat transfer from the plate. DNS was carried

out to see how well thermal instability onset location can be predicted numerically,

since prior numerical studies in the literature had some issues e.g., assumption of two

dimensionality, inadequate grid resolution. Streamwise evolution of various terms

in the streamwise vorticity equation and also the evolution of the structures was

analyzed. Effects of changes in the temperature of the hot surface and the plate

orientation, on the thermal instability, were then studied in this setup.

1.2.3 Configuration 3

Same as above but with a strip of finite length in the streamwise direction,

instead of a plate, presented in Figure 1.3 (bottom). This configuration was chosen

to study the effects of the incoming BL height and the length of the heated region

on the thermal instability.

1.3 Prior and related studies

1.3.1 Rayleigh-Taylor Instability (Configuration 1)

The literature for RTI, although vast, is not being discussed here, as no at-

tempt was made in this study to answer any of the open questions related to RTI.

It was just used as a tool to first verify the solver and then to enhance our under-

standing of the problem at hand.

But some of the necessary literature is presented in Chapter 3.
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1.3.2 Low speed flow over a hot isothermal semi-infinite

horizontal plate (Configuration 2)

Buoyancy effects in laminar forced convective flow over a heated horizontal

semi-infinite flat plate were first studied by Mori [10]. However, only weak buoy-

ancy forces were considered and hence no instabilities were involved. Sparrow and

Minkowycz [11] studied independently the same problem but with a broader scope,

by analyzing the buoyancy effects at various Pr, particularly because it was ex-

pected that these effects would be larger for low Pr fluids. They also corrected an

error in the sign of the buoyancy term in Mori’s analysis. Again, however, the study

did not involve instabilities.

Hauptmann [12] obtained the same results by means of an approximate integral

technique, whereas Mori [10] and Sparrow and Minkowycz [11] derived similarity

equations which were integrated numerically. Some comments were made on BL

stability as well but no conclusions were drawn due to the level of approximations

involved in the procedure.

Redekopp and Charwat [13] evaluated the validity of the Boussinesq approx-

imation, which neglects the effect of density variations on the inertial terms but

retains the buoyant body force, invoked in [10–12]. No comments were made on the

stability of the BL.

Wu and Cheng [14] were the first to theoretically come up with the conditions

for the onset of thermal instability. However, the validity of their results was ques-

tioned in subsequent studies by Chen and Mucoglu [15] and Moutsogluo et al. [16].
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At the same time, Moutsogluo et al.’s [16] predictions related to thermal instabil-

ity onset were about two orders of magnitude lower than those in experiments by

Gilpin et al. [17]. Yoo et al. [18] were able to use a more refined analytical technique

to improve Moutsogluo et al.’s [16] results, however, the issue was apparently not

settled [19]. Similar theoretical investigations still continue to appear in the litera-

ture [20,21], but they are also plagued e.g., by the assumption of two dimensionality

and are limited to just the prediction of onset of instability. It is worth noting that

even though these investigations are categorized as theoretical/analytical, they also

require elaborate numerical procedures, see e.g., [21].

The studies by Imura et al. [7] and Gilpin et al. [17] were the first experimental

investigations of this configuration. The parameter Grx/Re3/2x (also suggested by

Wu and Cheng [14], whereas Mori [10] and Sparrow et al. [11] used Grx/Re5/2x )

was found to be of interest, with Rex and Grx representing the local Reynolds and

Grashof number, respectively, and defined as:

Rex =
U∞x

ν
(1.1)

and

Grx =
gβ(Tw − T∞)x3

ν2
(1.2)

where, x is the distance from the leading edge of the plate, U∞ the freestream

velocity, ν the kinematic viscosity, g acceleration due to gravity, β the volumetric

thermal expansion coefficient and Tw (T∞) the wall (freestream) temperature.

They were able to observe a first region of laminar forced convection near the

leading edge (Grx/Re3/2x <100), followed by a second region featuring longitudinal
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vortices and their growth to finite amplitude (100<Grx/Re3/2x <300) and finally a

transition to a turbulent flow region (Grx/Re3/2x >300).

A heated flat plate was tested, by Wang [22], in a wind tunnel to study mixed

convection in both upward and downward positions. The points of onset of insta-

bility caused by the buoyancy effect were examined and correlated in terms of the

dimensionless groups.

Experimental results covering the transition vortex flow regime of mixed con-

vection over a heated, horizontal flat plate were presented by Moherreri et al. [23].

That same year convective instability and buoyancy effects on forced convection

heat transfer in horizontal boundary layers heated from below by a constant tem-

perature plate were studied experimentally, by Cheng et al. [24], for flow regimes

with Rex = 2.5 × 104 to 2.2 × 106 and Grx = 2 × 108 to 1.5 × 1012. Cheng et al.

followed this study by another one [25] where they performed flow visualization ex-

periments in a low-speed wind tunnel to study vortex instability of laminar natural

convection flow along inclined isothermally heated plates having inclination angles

from the horizontal of θ = 0, 5, 10, 15 and 20 degrees.

Numerically, this configuration was investigated with Reynolds Averaged Navier

Stokes (RANS) simulations by Ramachandran et al. [26]. The flowfield was resolved

by solving two dimensional RANS equations and it was observed that such an ap-

proach was inherently inadequate. The inadequacies of assuming a two dimensional

flowfield was attributed to its inability to reasonably capture the transition region

which comprises the onset of longitudinal vortices and their eventual breakup into

full turbulence [27].

9



As far as the use of a high fidelity tool like LES is concerned, the study by

Ojofeitimi [27] seems to be the only one. Ojofeitimi showed a very good agree-

ment with Gilpin et al’s [17] experimental data in all three regimes (laminar forced

convection, transition and turbulent free convection). However, an inadequate grid

resolution close to the thermal instability location seems to have been used in that

study, see Chapter 4 for a detailed discussion.

Overall, following comments can be made regarding the available literature on

this flow configuration -

1. There seems to be sufficient experimental data for a quality validation of the

flow solver in this configuration.

2. The use of a high fidelity tool like DNS or LES is limited to only one study

[27], wherein, the grid resolution seems to be inadequate close to the thermal

instability location.

3. It appears that pairing of the longitudinal vortices to give bigger structures

has not been studied yet (theoretically/analytically or experimentally or nu-

merically).

1.3.3 Low speed flow over a hot isothermal semi-infinite

horizontal strip (Configuration 3)

Haines et al. [28] were the first to report visualizations of a horizontal Counter-

rotating Vortex Pair (CVP) with axes in the downstream direction. A hot wire was

used in one of their experiments. Similarly, Smith et al. [29] studied the effects of

10



a heated line source (a nichrome wire was used) on a Blasius BL. They did see a

CVP however other than the smoke photographs, there was no documentation of

the formation process of the longitudinal vortex pair from the transverse vorticity

of the boundary layer. Effects of incoming BL were also not studied. Beyond that

since they used a wire and not a strip (which is a more realistic representation of

real fires) they could not investigate the effects of the streamwise length of the line

source.

Heilman [30] and Heilman et al. [31] used a two dimensional model to simulate

lines of extreme surface heating. Several qualitative conclusions were drawn but

eventually the need for quality three dimensional simulations was stressed. It should

be noted that the vortices involved in this study were not aligned with the freestream

velocity, in other words, they were not longitudinal like those seen in [1, 4].

1.4 Research objectives

This study was aimed at:

1. Assessing/Verifying/Validating FireFOAM (OpenFOAM) and establishing the

ability of LES to capture the instabilities (vortical structures) and flame wrin-

kling properties observed in experimental configurations.

2. Analyzing the structure of wildfire flames in the presence of crossflow by uti-

lizing well designed non-reacting numerical experiments with flow over a hot

isothermal semi-infinite horizontal surface.
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3. Identifying the dominant mechanisms that lead to the generation/evolution of

vorticity in wildfires (again using simple non-reacting cases).

4. Systematically investigating the effects of changing the temperature of the hot

surface, the surface orientation, the upstream BL height and the streamwise

length of the hot surface on the observed instabilities.

1.5 Contributions

• FireFOAM has been thoroughly verified/validated against LST for RTI, both

in terms of the exponential perturbation growth and the Most Dangerous

Mode (MDM).

• Different stages of RTI, have been simulated. It temporally takes the same

course as the streaks take spatially in e.g., the stationary burners [1].

• First DNS for predicting the onset of thermal instability in Configuration 2

has been carried out.

• Spatial evolution of various terms in the streamwise vorticity equation has been

analyzed to identify the dominant contributors towards the generation/evolution

of streamwise vorticity in Configuration 2.

• Streamwise evolution of the instability in Configuration 2 has been qualita-

tively shown. Simulations suggest that flow fluctuations follow a natural evo-

lution from high- to low-frequency/wavenumber (corresponding length scales

grow in size) as one moves to downstream locations. There is no natural limit

12



to that evolution in Configuration 2.

• Effects of changes in the temperature and orientations of the plate on the

instabilities have been qualitatively shown.

• In Configuration 3; the effects of changes in the upstream BL height and

the streamwise length of the hot strip have been shown, again qualitatively.

Simulations suggest that flow fluctuations follow again a natural evolution

from high- to low-frequency/wavenumber (corresponding length scales grow

in size) as one moves to downstream locations. There is now a natural limit

to that evolution associated with the size of the strip.

1.6 Thesis outline

Details regarding the numerical tool i.e., FireFOAM (OpenFOAM) are dis-

cussed in Chapter 2, wherein a brief description of the governing equations is followed

by some comments on LES. Then the filtered governing equations are discussed,

after which the Sub-Grid Scale (SGS) turbulence modelling strategy is presented.

A discussion of RTI is presented in Chapter 3. First, equations for LST,

Linear Stability Theory with Viscosity (LSTV), Linear Stability Theory with Vis-

cosity and Mass Diffusion (LSTVMD) and Linear Stability Theory with Viscosity

and Thermal Diffusion (LSTVTD), are provided. Then FireFOAM is thoroughly

verified/validated in terms of, the perturbation growth with time (against LST)

and the MDM (against LSTV and LSTVTD). This chapter ends with a discussion

on the late-time dynamics and variation of horizontal length scales, with time, in
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such configurations, which is pertinent to the generation of large vortical structures

(towers) from thin horizontal (finger-like) structures.

Results from simulations of Configuration 2 are presented in Chapter 4. First,

DNS is carried out to predict the onset of thermal instability. Then spatial vari-

ation of various terms in the vorticity equation is used to identify the dominant

mechanisms that lead to the generation/evolution of vorticity in this configuration.

The streamwise evolution of the instability is then discussed, after which the effects

of variation in the plate temperature and orientation on the thermal instability are

elucidated.

Results from simulations related to Configuration 3 are provided in Chapter 5.

First, the thermal instability onset criteria issue is briefly discussed. As already

mentioned this set-up was amenable for investigating the effects, of the upstream

BL height and streamwise length of the hot region, on the dominant length scales.

In Chapter 6 the study is summarized, conclusions are drawn and future work

is discussed.
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2: FireFOAM (OpenFOAM)

FireFOAM [32, 33] is based on the OpenFOAM CFD library [34], which has

attracted a lot of attention in recent past (both from the academia and the industry)

due, primarily, to the following main features:

• Open access to its source code.

• Ease of its extensibility due to object oriented C++ [35], which is of paramount

importance, especially, in a research environment as new models/solvers/boundary-

conditions can be incorporated fairly easily.

• Availability of a number of advanced models for describing multi-physics flow

problems (e.g., turbulence, combustion, multiple phases).

• Ability to handle polyhedral meshes, hence making the transition from canon-

ical academic problems to practical devices fairly straighforward.

• Good scalability upto 1000s of processors.

• Absence of licensing cost (a major factor for the industry).

• Wide range of ready-made pre- and post-processing utilities.

FireFOAM is a LES (see Section 2.2 for a brief description of LES) based fire

dynamics solver that uses Favre-filtered compressible Navier-Stokes equations [36]

(see Section 2.3) and provides additional models for the treatment of turbulent
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reactive flows [33], solid fuel pyrolysis [37], soot radiation [38] and transport of

liquid water sprays and surface wetting [39].

Next, the governing equations are presented, followed by a brief discussion of

the LES technique. Then, the filtered equations, relevant to FireFOAM (and LES),

are discussed. Finally, turbulence modelling is addressed.

2.1 Governing equations

The instantaneous continuity, momentum and energy equations for a com-

pressible fluid can be written, in indicial notation, as:

∂ρ

∂t
+
∂ (ρuj)

∂xj
= 0 (2.1)

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
= −∂ (p)

∂xj
+
∂τij
∂xj

+ ρgi (2.2)

∂ (ρe0)

∂t
+
∂ (ρuje0)

∂xj
= −∂ (ujp)

∂xj
− ∂qj
∂xj

+
∂ (uiτij)

∂xj
(2.3)

where, ρ is the mass density, ui is the ith component of velocity, p is the pressure,

gi is the ith component of the gravity vector, τij is the viscous stress tensor which

for a Newtonian fluid, assuming Stokes Law for mono-atomic gases, is given by:

τij = 2µ

(
Sij −

1

3
Skkδij

)
(2.4)

where, µ is the dynamic viscosity and the rate of strain tensor Sij is defined by:

Sij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.5)
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e0 is the total energy and is defined by:

e0 ≡ e+
ukuk

2
(2.6)

here, e is the specific internal energy. The heat-flux, qj, is given by Fourier’s law:

qj = −λ ∂T
∂xj

(2.7)

here, T is the temperature and λ is the thermal conductivity.

2.2 Large Eddy Simulation (LES)

There are three major techniques for numerically analyzing fluid dynamics:

DNS [40], LES [41] and RANS [42] Simulations.

Overall, DNS (RANS) is the most (least) accurate but is also the most (least)

expensive. In DNS, the governing equations (Section 2.1) are solved without any

change and all the scales of a turbulent flow (from integral to Kolmogorov) are

resolved on the grid whereas in RANS time averaged equations are employed and

none of the scales are represented on the grid. The time averaging operation leads to

extra terms in the equations, that represent the effects of turbulence on the averaged

flow. Models (called turbulence models) are required to represent the extra terms

and over the past decades a wide range of them have been developed [42] but to

date no universal model has appeared; some work for one type of flow and some for

a different type. The reason for such a problem stems from the fact that turbulent

scales (especially the larger scales that have the most turbulent kinetic energy)

depend heavily on the system/device under investigation. Due to this turbulence

modelling problem, RANS technique has been very unreliable and has lead to the
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development of LES, which lies in between DNS and RANS both in terms of fidelity

and computational expense.

In LES, not all the scales of a turbulent flow are resolved (like DNS), only

the large energy-containing scales are resolved on the grid (which as already men-

tioned depend heavily on the system/device being investigated) and the effects of

the smaller scales (called sub-grid scales) on the resolved scales are represented by

a SGS turbulence model. Unlike the larger scales the smaller scales are expected to

be more universal, and hence make LES a superior numerical tool when compared

to RANS.

In the present study, DNS was used in a preliminary series of highly-resolved

simulations of RTI (see Chapter 3) and for predicting thermal instability onset in

a reduced version of Configuration 2 without the transition and turbulent regimes.

LES was then used in subsequent simulations of Configuration 2 and Configuration

3 (see Chapters 4 and 5).

2.3 Filtered governing equations

Favre-filtered mass, momentum and energy equations [36], solved by Fire-

FOAM (for the non-reacting cases used in this study), are written below.

Mass:

∂ρ

∂t
+
∂(ρũj)

∂xj
= 0 (2.8)

Momentum:

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
ρ(ν + νSGS)

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

))
+ ρgi

(2.9)
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Sensible Enthalpy:

∂
(
ρh̃s

)

∂t
+
∂(ρũjh̃s)

∂xj
=

Dp

Dt
+

∂

∂xj

(
ρ

(
α +

νSGS

PrSGS

)
∂h̃s
∂xj

)
−
∂qj
∂xj

(2.10)

State Relation:

P = ρRT̃ (2.11)

where ˜ is the Favre filter operator, ν is the kinematic molecular viscosity, νSGS is

the SGS viscosity, PrSGS is the SGS Prandtl number, hs is the sensible enthalpy

and α the thermal diffusivity.

A combination of the PISO and SIMPLE (referred to as PIMPLE) solution al-

gorithms were used for handling pressure velocity coupling. Additional information

about the iteration procedure and discretization schemes can be found in [43].

2.4 Sub-Grid Scale (SGS) turbulence modelling

No explicit SGS model (e.g., Smagorinsky, Deardorff, WALE) was employed in

this study, which essentially means that νSGS was set to zero. So, this technique can

be described as Implicit Large Eddy Simulation (ILES) [44], wherein the dissipation

at the higher wavenumbers was provided by the numerical scheme (or following Shur

et al. [45] it can be called a coarse-grid DNS).

For a justification of SGS turbulence modelling strategy used here and a dis-

cussion on inverse energy cascade, two-way energy transfer, dynamic SGS models

and the recent Non-linear Large Eddy Simulation (nLES) method, see Section 3.2

where the flow dynamics seen in RTI is used as a reference to highlight a major

issue in designing appropriate SGS models for buoyancy dominated flows .
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3: Rayleigh-Taylor Instability (Configu-

ration 1)

Rayleigh-Taylor instability (RTI) is an interfacial instability that occurs when

a high-density fluid is accelerated or supported against gravity by a low-density

fluid [46, 47]. It is the latter situation, involving gravitational acceleration, that is

germane to the present study.

Theoretically, it is possible to support a heavier fluid over a lighter fluid in

the presence of gravity by maintaining a perfectly flat interface between the two

fluids. However, in practice it is very difficult, if not impossible, to avoid small

perturbations, which lead to an eventual displacement of the lighter fluid by the one

that is heavier.

This instability is of fundamental importance in a wide range of applications,

from fluidized beds, oceans, and atmosphere, to magnetic or inertial confinement

fusion [48–50], and to astrophysics [51] e.g., Type Ia Supernovae [52]. Consequently,

it has been subjected to intense research over the past several decades [53–55].

Unfortunately, several questions, even the most basic ones, regarding this in-

stability are far from settled [51, 56]. So, before moving any further it should be

noted, that the aim here is not to address, or even discuss, any of the RTI related

questions; but to use it as a tool to first thoroughly verify the solver and then
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to learn about the various stages involved in the growth of RTI. It will also help

in guiding e.g., the grid design for eventual relatively larger calculations. So, this

chapter starts off with discussions related to early-time dynamics, which includes a

brief presentation of LST [57] and results from two dimensional single mode DNS

of RTI, wherein the major objective was code verification. Subsequently, late-time

dynamics is discussed.

3.1 Early-time dynamics

3.1.1 Linear Stability Theory (LST)

If the initial interfacial perturbations are small, so that the higher order terms

(HOT) can be neglected in a Taylor series expansion, then the early flow stages can

be described by the linearized form of the governing equations [57]. The result is

that the perturbations grow exponentially with time as follows [56]:

H(t) = a0cosh(nt)− u0
n

sinh(nt) (3.1)

where, a0 is the initial amplitude of the perturbation, u0 is the initial velocity at

the interface and t is the time.

The exponential growth factor for two incompressible, immiscible, inviscid

fluids without any surface tension, with an inifinite density gradient at the interface;

can be written as [57] (it will be called LST from here on):

n =
√

Agk (3.2)

where, k is the wavenumber of the initial perturbation, g is gravitational acceleration

and A is the Atwood number, defined as (ρ1−ρ2)/(ρ1+ρ2); ρ1 and ρ2 are the densities
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of the heavier and lighter fluids, respectively. Which implies that as the wavenumber

increases the growth factor also increases. But if the fluids are viscous then the

smaller scales (or higher wavenumbers) are not allowed to grow as fast and that leads

to the concept of a most-dangerous-mode, which basically is a mode/wavenumber

that corresponds to maximum amplification. The growth factor in that case is given

as [58] (and will be called LSTV):

n =
√
Agk + ν2k4 − νk2 (3.3)

The most-dangerous-mode, kmd, can then be extracted as follows [58]:

kmd =
1

2

(
Ag

ν2

) 1
3

(3.4)

If mass diffusion is incorporated then the expression for growth factor becomes [58]

(will be called LSTVMD):

n =

√
Agk

ψ
+ ν2k4 − (ν +D)k2 (3.5)

where, D is the molecular mass diffusivity and ψ is a function of A and b is equal

to 1/kε, with ε = 2(Dt)1/2. Variation of ψ as a function of b−1 for various values

of A is presented in Figure 3.1, see [58] for details. Clearly with mass diffusion the

growth factor changes with time.

Just like viscosity, inclusion of mass diffusion paves way for another special

wavenumber called the cut-off wavenumber, kco, above which a perturbation is not

allowed to grow. In the present study D = 0, however, thermal diffusivity (α) is not

and α is expected to have the same effect as D [59]. So, Equation (3.5) can be re-

written for the purpose of this investigation as (this model will be called LSTVTD):
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Figure 3.1: Variation of ψ as a function of b−1 for different values of A.

n =

√
Agk

ψ
+ ν2k4 − (ν + α)k2 (3.6)

Equations (3.2), (3.3) and (3.5) are plotted in Figure 3.2 for a system with air at

temperatures of 300 and 400 [K]. Note that ψ was set equal to 1, which relates to

very early stages when the interface thickness, due to thermal diffusion, is small. It

is clear that inclusion of α plays a major role and brings down the most-dangerous-

mode, roughly, by a factor of two. Note that with time thermal diffusion shows its

effects even more [58] since n is connected to t through ψ, b and ε.

3.1.2 Two dimensional single mode Direct Numerical Sim-

ulations (DNS)

Even though FireFOAM has already been verified and validated for a range

of buoyancy dominated problems [33, 37–39], it has not been specifically used to
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Figure 3.2: Growth factor as a function of wavenumber (k); predicted by LST,

LSTV and LSTVTD.

investigate instabilities in any of the prior studies. Hence it was thoroughly verified

against LST, both in terms of getting the exponential perturbation growth as well

as identifying the most dangerous mode.

Furthermore, during the course of these simulations the minimum grid resolu-

tion required to capture these instabilities, which will play an important part in the

relatively more expensive three dimensional calculations presented in Chapters 4

and 5, will also become clear.

3.1.2.1 Numerical setup

The width of the domain used was 2λ and the height was 4λ. Which means that

when the wavelength or wavenumber was changed/scaled, e.g., in order to identify

the most dangerous mode, the domain also scaled up or down with it, which was

necessary to keep the computational expense manageable, especially for simulations
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involving relatively higher wavenumbers.

Similarly, the initial perturbation height was taken to be 0.04λ (following

[60]), in other words it was four percent of lambda. Note that the definition of

perturbation height is the sum of bubble height (HB) and spike height (HS), where

HB (HS) is defined as the height of perturbation above (below) the initial mean

interface location, see Figure 3.3 for visualization. Physically, HB (HS) is connected

to penetration of the lighter (heavier) fluid into the heavier (lighter) fluid.

The initial interface thickness was two percent of λ. For the variation of quan-

tities (temperature in this study) across the interface thickness, an error function

profile was used in e.g., [51,56,60,61], an exponential variation was utilized in [62,63]

and a cosine function was employed in [64]. In this study a hyperbolic tangent func-

tion was used and was found to be sufficient for initializing the diffusion layer:

T = T2 − (T2 − T1)(1 + tanh(
2π

δ
(y + a0cos

(
2πx

λ

)
)))/2 (3.7)

Where, T2 (T1) is the temperature of the lighter (heavier) fluid. δ is the initial

interface thickness, a0 is the initial amplitude of the perturbation and λ is the

wavelength of the initial perturbation.

Following [56,61], periodic boundary conditions were employed in the horizon-

tal i.e., y direction; and slip walls were used for the top and bottom boundaries in

the z (vertical) direction, .

Cell size used in the horizontal direction (∆y) was 0.004λ and in the vertical

direction (∆z) was 0.002λ i.e., ∆z = 0.5∆y, resulting in 250 grid points across

one perturbation wavelength and 20 (10) grid points across the initial perturbation
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Figure 3.3: Definition of bubble height (HB) and spike height (HS), where heavy

fluid is in black and lighter fluid is in grey.

amplitude (interface thickness). The initial interface thickness was resolved by five

to eight grid points in prior studies [51,56,60,61].

Keeping in mind, that LST is only applicable in the initial stages of flow

development i.e., as long as the perturbation amplitude is roughly within 15 percent

of λ; having a uniform grid density in the vertical direction, which spans 4λ, was

considered unnecessary. So, in the vertical direction the cell size was kept constant

and equal to 0.002λ for 0.4λ on both sides of the initial mean interface location (see

Figure 3.3). Beyond that region the grid was stretched upto the walls, leading to a

∆z of 0.04λ at the top and bottom walls.

In the coming sections it will be shown that the results using this grid were

practically similar to those given by a grid having uniform cell size in the vertical

direction.
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3.1.2.2 Perturbation growth

As already described, in the initial stages of RTI the growth of a perturbation is

exponential and can be described by LST. In order to verify FireFOAM a simulation

was ran for λ = 80 [m] or k = 0.0785 and the peak to valley height (i.e., HB +HS)

of the (T1 + T2)/2 or (ρ1 + ρ2)/2 isoline was monitored during the course of the

simulation. In order do that all the cells having a temperature greater than and less

than (T1 + T2)/2 were marked after every time step; and HB (HS) was set to be

equal to the maximum (minimum) z value in the former (later) collection of cells.

Despite the fact that the perturbation growth (or the peak to valley height of the

(T1 +T2)/2 isoline) provided by this algorithm varied on a cell by cell basis and was

not continuous, the results compared very well with LST (discussed below).

A comparison of the perturbation growth from the DNS using FireFOAM

(at every twentieth time step) with that given by LST can be seen in Figure 3.4.

The initial agreement is very good and then there is a discrepancy which is simply

because when the perturbation amplitude becomes comparable to the wavelength

(e.g when (HB +HS)/λ > 0.1), non-linear effects become important (similar results

are reported in [56, 60, 62]). Temperature contours at t = 0 and t = 5 [s] (at t = 5

[s] the numerical solution starts to show sufficient deviation from the growth given

by LST) are shown in Figure 3.5.

Note that the reason for choosing a low wavenumber was that at such low

values viscous and thermal diffusion effects become negligible (see Figure 3.2) and

n can simply be represented as in Equation (3.2), which can in turn be plugged into
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Figure 3.4: Comparison of the growth/amplification of a perturbation, with time,

given by DNS; with that given by LST.

Figure 3.5: Temperature contours, at t = 0 [s] (left) and at t = 5 [s] (right), for

the RTI simulation with λ = 80 [m] (or k = 0.0785 [m−1]). Heavy (light) fluid is in

black (gray). Black (gray) corresponds to T = 300 (400) [K].

Equation (3.1) to get the analytical growth of a perturbation. Similar strategy to

avoid any kind of diffusion effects was used in [56], where the chosen wavenumber

was 7.67e−04.

The sensitivity of the solution presented in Figure 3.4, to grid size as well as
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Figure 3.6: Growth/amplification of a perturbation, with time, given by LST and

by DNS with four different grid resolutions.

cell size distribution was investigated. The perturbation growth for four different

grid sizes can be seen in Figure 3.6. A reduction of ∆y below 0.004λ did not have

any tangible effect on the results.

Similarly, comparison between the solution produced using a uniform grid

with that given by a grid that was stretched in the vertical direction is presented in

Figure 3.7. The grid with ∆y = 0.008λ was employed for this exercise, which is the

reason for some discrepancy with LST in Figure 3.7. No differences can be observed

indicating that grid stretching did not have any effect on the results. Note that the

ratio of the stretched grid cell count to the uniform grid cell count was roughly 0.3,

which lead to considerable savings in computational cost.

Apart from the sensitivity of the solution to the grid, effects of domain size

were also investigated in order to make sure that the boundaries were not affecting
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Figure 3.7: Growth/amplification of a perturbation, with time, given by LST and

by DNS with a uniform grid and a grid that was stretched in the vertical direction.

the overall solution. Again the grid with ∆y = 0.008λ was used to keep the compu-

tational cost down. Results are presented in Figure 3.8. The domain size 2λ × 4λ

was found to be sufficient to avoid any interaction with the boundaries.

3.1.2.3 Most Dangerous Mode

Another way of testing a solver is by constructing the growth factor curve either

only with viscosity or with both viscosity and thermal diffusion. Growth factors

extracted from ten different initial perturbations without any thermal diffusion are

plotted in Figure 3.9 along with the classic LST and LSTV. FireFOAM was able to

reproduce the growth rate curve with a reasonable accuracy.

Similarly, the growth rate curve, when thermal diffusion effects were consid-

ered along with viscosity, extracted from FireFOAM is compared with LSTVTD in

Figure 3.10. As already described, when mass/thermal diffusion effects are incorpo-
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Figure 3.8: Growth/amplification of a perturbation, with time, given by LST and

by DNS with two different domain sizes.

rated into LST ( [58]), n for every wavenumber starts to vary/decrease with time

through ψ. In addition, LST is only valid for relatively small perturbation heights.

Furthermore, LSTVTD is only ten percent accurate. All these issues make it tricky

to compare the numerical data points with Duff et al.’s expression i.e., LSTVTD.

Note, however, that comparisons with LSTVTD have been made in the literature,

see e.g., [56]. But keeping in mind that the solver has already been able to reproduce

the exponential perturbation growth with time (Figure 3.4) and the growth factor

curve not including the effects of thermal diffusion (Figure 3.9), it was decided (due

to time constraints) to compare the the numerical data points with LSTVTD keep-

ing ψ = 1. Clearly, there is a discrepancy in Figure 3.10 but the most dangerous

mode still compares well.

Overall, the solver has compared very well with LST and LSTV quantita-
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Figure 3.9: Comparison of the growth factor, as a function of wavenumber, given by

DNS having zero thermal diffusion; with that given by LST, LSTV and LSTVTD.

tively and with LSTVTD qualitatively, and seems suitable for handling flow prob-

lems/physics of this kind.

3.2 Late-time dynamics

The tests so far were limited to the short-time behaviour of RTI. We now turn

to a study of the long-time behaviour, as it resembles the kind of dynamics seen in

the recent experiments e.g., with the stationary burners [1]. Briefly or crudely, in

Figure 1.2 smaller streaks in the BL combine/couple to produce bigger and bigger

structures.

Similarly, in RTI: at early times, the perturbations grow in a fairly inde-

pendent fashion (which we have already seen in e.g., Figure 3.5). Then secondary

Kelvin-Helmholtz Instability (KHI) appears in the shear layers between individual

structures and the local quiescent fluid. After that the structures start interacting

32



0 150 300 450 600

k
[
m−1

]0

5

10

15

20

25

n
[ s−

1
]

LST
LSTV
LSTVTD
DNS (FireFOAM)
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and LSTVTD.

with each other. At which point, the range of scales in the mixing layer increases

rapidly, generating more mixed fluid within the layer, which is generally referred to

as mixing transition, see Cook & Dimotakis [60]. Post transition, the large scales

in the flow (bubble/spike diameters) continue to increase until the mixing region

becomes fully turbulent [61].

A two-dimensional case was setup in FireFOAM to simulate some of these

stages. Clearly, by definition turbulence is three dimensional and would not have

been able to evolve correctly in a two dimensional configuration, but it should be

noted first that this simulation is qualitative and second, a similar setup was used

in [56].

The domain used was 8λ × 16λ, initial perturbation height (a0) used was 16
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percent of λ and the initial interface thickness (δ) was 8 percent of λ. Regarding

the grid, the interface was resolved with twenty grid points, initial perturbation was

resolved with fourty grid points, the horizontal wavelength with 125 points. Again,

∆y (horizontal direction) was set to be equal to 2∆z (vertical direction). Overall,

the grid had four million cells.

Most of the stages described above were recovered in this simulation and are

presented in Figure 3.11 in the form of temperature contours. In Figure 3.11a we

have the initialization, Figure 3.11b shows simulation time upto which the structures

grow independently, KHI appears in Figure 3.11c (note that interaction between

the structures is still not strong enough), interaction between the structures can be

observed in the two subsequent contours (Figures 3.11d and 3.11e) and the final

two contours (Figures 3.11f and 3.11g) seem to show a post transition state. Note

the presence of roughly four structures in the gray fluid in the bottom contour,

whereas the simulation started with eight of them. This appearance of bigger scales

is consistent with the description above and is also similar to the flame dynamics

seen e.g., with stationary burners, in Figure 1.2. Qualitatively, FireFOAM has been

able to reproduce various stages in RTI.

Before moving on to Configuration 2 an important point regarding turbulence

modelling can be made. RTI is a major challenge when it comes to designing SGS

models. As already illustrated, in RTI flows, motion occurs first at the smallest

dynamically significant scales, where perturbations at the density interface cause a

misalignment of the pressure and density gradients, giving rise to baroclinic torque

σ = −(∇ρ × ∇p)/ρ2 that sets the system in motion. This movement creates sec-
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Figure 3.11: Various stages in the evolution of RTI. See text for details.
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ondary KHI in the shear layers. Both the RTI and KHI transfer kinetic and scalar

energy from the small scales to successively larger scales in the system, through an

inverse cascade process, i.e., in a direction opposed to the usual forward cascade

of Kolmogorov’s turbulence theory. As the bubbles and spikes grow, they begin

to combine in a nonlinear fashion due to the coupling between the buoyancy and

inertial forces. At a later time, mixing transition is followed by a fully turbulent

flow. Consequently, mixing layer dynamics become dominated by vortex stretching

and a forward cascade of kinetic and scalar energies, which drives the creation of

smaller scales [65,66]. Overall, we have a two-way exchange of energy.

And just like RTI, buoyancy dominated flows (subject of this study) also

involve a two-way energy exchange, which is not correctly captured by most of the

LES models, see Blanquart and Pitsch [67] and Burton [65, 66] for a discussion.

Apparently, Burton’s nLES is the only method (which has appeared fairly recently)

that is expected to handle problems of this kind accurately.

So, we plan to incorporate Burton’s nLES in the future. But for the purpose

of this study, as already mentioned in Section 2.4, νSGS was set equal to zero. We

were relying on the numerical schemes to act as SGS models. This choice certainly

needs to be re-visited but ideas of this nature have already been used to produce

some quality results, see e.g., [61, 68,69].
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4: Low speed flow over a hot isothermal

semi-infinite horizontal plate (Config-

uration 2)

In this chapter Configuration 2 is carefully analyzed in order to understand the

flame structure/dynamics in wildfires and the relative weight of momentum-driven

and buoyancy-driven motions.

A number of similarities were observed by Gilpin et al. [17] between this prob-

lem and that of the Gortler instability on a concave wall even though the source

of the instability in the case of the latter is centrifugal force and in the case of the

former (thermal instability) is the buoyancy force.

First, the general physical and numerical case setup for these horizontal plate

simulations is presented and then the results from DNS, done for capturing the onset

of the thermal instability are elucidated. After that various terms in the streamwise

vorticity equation are analyzed in order to identify the important contributors to

the generation/evolution of streamwise vorticity at the onset. The evolution of the

structures from their onset to the turbulent free convection regime (through the

transition regime) is then discussed, based on the results generated using LES. Fi-

nally, results from some more simulations are detailed to provide additional insight.
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4.1 Physical and numerical setup: General fea-

tures

The free-stream air flow for most cases had a temperature of 300 [K]. Plate

temperature was varied for different cases but was mostly chosen such that there

was a thermal instability inside the domain.

The computational domain, along with the boundary conditions, is shown in

Figure 4.1. As can be seen, 0.1 [m] long empty free-stream region was used before

the hot plate to avoid any interaction between the developing laminar BL and the

inflow boundary. Periodic boundaries were used in the span-wise (y) direction,

which essentially made the plate semi-infinite. The domain dimensions (Lx, Ly, Lz)

will be specified, later, for each case separately, but Lx was always chosen such that

ReLx was below the critical laminar-to-turbulent-flow-transition value of 5× 105 so

that there were no hydrodynamic instabilities inside the system.

4.2 Thermal instability onset

As already mentioned, predicting the onset of thermal instability in a Blasius

BL has been a major problem both theoretically/analytically (starting with the

work of Wu and Cheng [14]) and numerically, even with a tool like LES (used by

Ojofeitimi [27]).

Some theoretical studies, e.g., the one by Moutsogluo et al. [16], provided

results that were two to three orders of magnitude different from the experiments

done by Gilpin et al. [17].
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Ojofeitimi [27] showed very good results, but there seems to be a discrepancy

in that study. For the conditions used in [27] i.e., U∞ = 0.84 [m/s], T∞ = 298 [K] and

Tplate = 394.4 [K] - the parameter Grx/Re1.5x (identified e.g. in [17]) reaches a value

of 100 (which is the critical value, for the onset of longitudinal vortices, identified

by Gilpin et al. [17]) at x = 0.25 [m], but numerically the vortices appeared at

x = 0.5 [m]. One simple reason for such a difference could have been the coarse

grid that was employed by Ojofeitimi. The spacing in the x and y directions used in

that study was 5 [mm]. And LSTVTD (i.e., Equation (3.6)) predicts, with ψ = 1,

the most dangerous mode (wavelength) to be equal to 400 [m−1] (15 [mm]) and the

cut-off wavenumber (wavelength) to be 1000 [m−1] (6 [mm]). So, there were only

three grid points inside the most dangerous wavelength, which may not have been

sufficient.

Considering all this a DNS was undertaken, in which Lx, Ly and Lz were set

to values of 0.8, 0.1 and 0.1 [m], respectively. Regarding grid spacing: ∆x and ∆y

were uniform and set to 2 and 1 [mm] respectively. In the wall normal direction (i.e.,

z) the grid was stretched from the wall with a ∆z of 0.25 [mm] using a geometric

ratio of 1.05. The resulting mesh had only 1.25 million cells.

Apparently, no thermal instability was seen at or close to x = 0.25, which was

not consistent with the conditions formulated by Gilpin et al. [17] as they predicted

the onset for the present conditions to be at x = 0.25 [m]. Specifically, the instability

onset in this case was seen at x = 0.75 [m]. It is worth noting that the disagreement

is worse than that obtained in Ojofeitimi’s LES calculations.

In order to shed some light on this issue one more DNS was carried with plate
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temperature of 550 [K] for which the Grx/Re1.5x reached a value of 100 at x = 0.15

[m]. Numerically, the onset was seen at x = 0.38 [m]. The discrepancy was less

severe but still very significant.

The reason for these discrepancies in the onset location was not clear. Artificial

noise might be required to induce early transition consistent with the experimental

data.

Nevertheless, it was decided to move on (this issue will be a part of future

investigations), but before that the longitudinal structures visualized using an iso-

surface of temperature with a value of 320 [K] are shown in Figure 4.2, for a visual

evidence of the onset locations provided above. Note that the onset locations were

also quantified by using the streamwise vorticity equation (see Section 4.3 for de-

tails).

It is worth mentioning that the wavelength (or wavenumber) of the instabil-

ities seen in these simulations compared very well with the MDM predicted using

LSTVTD for RTI. Such a comparison was not made by Ojofeitimi [27], probably

due to an insufficient grid resolution.

4.3 The vorticity equation

The vorticity equation in Gibbs’ notation can be written as:

Dω

Dt
= (ω · ∇) v− ω (∇ · v) +

1

ρ2
∇ρ×∇p+∇×

(
∇ · τ
ρ

)
+

1

ρ
∇ρ× g (4.1)

where D/Dt is the total time derivative operator, v is the velocity field, ρ is the local

fluid density, p is the local pressure, τ is the viscous stress tensor and g represents

the gravitational force.
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Figure 4.2: Structures observed (top view) in the two DNS calculations. Tplate =

394.4 [K] (top) and Tplate = 550 [K] (bottom). T = 320 [K] isosurfaces.

The physical meaning of the various terms in Equation 4.1 is as follows:

1. The first term (ω · ∇) v on the right-hand side describes the stretching or

tilting of vorticity due to the velocity gradients.

2. The second term ω (∇ · v) describes stretching of vorticity due to flow com-

pressibility (or expansion in this case)

3. The term ∇ρ × ∇p/ρ2 is the baroclinic term. It accounts for the changes in

the vorticity due to the interactions of density and pressure variations.

4. ∇× (∇ · τ/ρ), accounts for the diffusion of vorticity due to viscous effects.

5. The term (1/ρ)∇ρ× g describes the effects of buoyancy.

Note that these tilting and stretching terms can only enhance the vorticity

already present in the flow; they cannot generate new vorticity [70].

Since only the evolution of the streamwise vorticity is currently of interest,
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Figure 4.3: Flow over a hot isothermal plate at T = 550 [K]: Variation of different

terms, in the streamwise vorticity equation, along the length of the plate.

attention was given only to the equation for ωx, which is written below:

Dωx

Dt
= (ω · ∇) vx − ωx (∇ · v) +

1

ρ2

(
∂ρ

∂y

∂p

∂z
− ∂p

∂y

∂ρ

∂z

)

+

((
1

∂y

1

ρ

τzx
∂x

+
1

∂y

1

ρ

τzy
∂y

+
1

∂y

1

ρ

τzz
∂z

)
−
(

1

∂z

1

ρ

τyx
∂x

+
1

∂z

1

ρ

τyy
∂y

+
1

∂z

1

ρ

τyz
∂z

))

+

(
1

ρ

(
∂ρ

∂y
gz −

∂ρ

∂z
gy

))
(4.2)

In order to investigate which of these terms dominate in the generation/evolution

of streamwise vorticity, all of them were plotted (see Figure 4.3) along the length of

the plate with T = 550 [K] (Figure 4.2). Even though the expansion term reduces

vorticity it was plotted with an opposite sign here. Note that the three dimensional

data was collapsed on a one dimensional line, simply by summing up the absolute

values of each term in the y − z planes along the length of the plate. Taking the

absolute (or magnitude) of the values was necessary in order to avoid cancelling out

vorticity due to the presence of CVP that are observed at early stages.

Clearly, Figure 4.3 shows that it is buoyancy that kick starts the generation
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of thin horizontal structures close to x = 0.4 [m] and then all the other mechanisms

follow e.g., once the vorticity enters the system due to buoyancy, it starts to diffuse

due to viscosity and the reason why the diffusion term is larger than the others is

because the flow is low speed and laminar like (we do have vortices but it is still

almost laminar).

Due to heat transfer from the wall the flow continuously expands in this con-

figuration i.e., ∇·u is always positive and hence the expansion term in the vorticity

equation becomes finite as soon as vorticity enters the system (note that the expan-

sion term as a whole will be negative but has been plotted with an opposite sign

in the figure). Similarly, the interaction of multiple vortices leads to vortex stretch-

ing, here one can refer to the famous Taylor-Green vortex problem [71] to infer the

dynamics. And finally the Baroclinic term is also expected to become finite soon,

once the peaks of the vortices lift up enough.

4.4 Streamwise evolution of the structures

Doing a DNS covering all three regimes (laminar forced convection, transition

and turbulent free convection) in this problem was not feasible so an LES was carried

out.

In this case, free stream air flow had a velocity of 0.5 [m/s] and temperature

of 300 [k]. The plate temperature used was 400 [K]. For these conditions the onset

of thermal instability was expected to happen at x = 0.15 [m], according to Gilpin

et al. [17].

Lx, Ly and Lz were set to values of 2, 0.3 and 0.6 [m], respectively. Grid
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spacing used in the x and y directions was uniform and had a value of 5 [mm]. In

the wall normal direction the grid was stretched from a value of 0.4 [mm] at the

wall with a geometric progression having a ratio of 1.025. The mesh resolution was

similar to that used by Ojofeitimi [27] and was not enough to resolve the MDM (and

especially the cut-off wavenumber) sufficiently. At the same time, a DNS type high

resolution mesh would have proved to be very expensive for this calculation as it

includes all the regimes (laminar forced convection, transition regime and turbulent

free convection).

The flow structures (visualized using an iso-surface of temperature with a value

of 320 [K]) can be seen in Figure 4.4, and will be discussed in more detail later. The

appearance of small structures and their subsequent combination/interaction/coupling

leading to larger and larger structures can be clearly seen. The dynamics seems

analogous to that seen in Figures 1.2 and 3.11.

For quantifying the dominant length scales in this setup a simple two dimen-

sional fourier transform procedure was designed: basically separate one dimensional

fourier transforms were generated for each horizontal cell layer in a y − z plane.

Before processing the data, the average temperature in each layer was subtracted

from the corresponding temperature profiles, in order to get the fluctuation profiles;

which were subsequently transformed to fourier space. The results from the applica-

tion of such a procedure on three different y−z planes located at x = 1, x = 1.5 and

x = 1.75 [m]; can be seen in Figure 4.5. There is certainly no loss of information,

at least spatially.

From Figure 4.5 it is clear that as we move along the length of the plate
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Figure 4.4: Flow over a hot flat isothermal plate: isosurface of T (320 [K]); per-

spective (top) and front view blow up of the instabilities (bottom).
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the dominant mode/wavenumber decreases, indicating an inverse energy cascade

(like the one seen in simulations related to RTI). Another observation, is that on

plane 1, which is placed close to the appearance of the thin horizontal structures,

the dominant mode/wavenumber is roughly 200 [m−1]. For similar conditions (i.e.,

temperatures of 300 and 400 [K]) with viscosity and thermal diffusion LSTVTD

roughly predicts the MDM to be 350 (see Figure 3.10). Overall, despite a coarse

setup the agreement with LST is quite reasonable.

Evolution of different terms in the streamwise vorticity equation can be seen

in Figure 4.6. Again it is clear that the instability results from the buoyancy term

which sets everything else in motion.

We now turn to large scale features: large scales are expected to grow with

the streamwise distance along the plate in this system and eventually reach a size

comparable to the chosen span-wise domain size. See e.g., Cook, Cabot and Miller

[61] and Cabot and Cook [51] for a discussion.

So, in order to investigate the larger scales (referred to as Flame Towers)

observed in e.g experiments with stationary burners Figure 1.2, a more realistic

configuration, with a hot strip instead of a plate, was utilized (discussed in the next

Chapter).

4.5 Additional simulations

Some additional cases were simulated to provide more insight into this funda-

mental heat transfer problem. Results from a calculation with a plate temperature

of 1500 [K] are shown in Figures 4.7 to 4.9. Horizontal (but not longitudinal) counter
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Figure 4.5: Flow over a hot isothermal plate at T = 400 [K]: Contours of temper-

ature; at plane y = 0 [m] (top), at planes x = 1, x = 1.5 and x = 1.75 [m] (middle,

from left to right) and two dimensional fourier transform of temperature at planes

x = 1, x = 1.5 and x = 1.75 [m] (bottom). See text for details on the 2D FFT

procedure. For the contours white (black) corresponds to T > 320 (T = 300) [K].
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Figure 4.6: Flow over a hot isothermal plate at T = 400 [K]: Variation of different

terms, in the streamwise vorticity equation, along the length of the plate.

clockwise structures can be seen due to the strength of the buoyancy force. Again

the wavenumber (length scale) of the dominant structures keeps decreasing (in-

creasing) with streamwise distance from the leading edge of the plate, but decreases

(increases) relatively quickly (see Figure 4.7).

Plane 1 in Figures 4.5 and 4.8 has almost the same number of structures

(roughly nine in the former and eight in the later) despite a five fold increase in

the plate temperature. Which seems analogous to the insensitivity of the MDM to

various parameters (due to the cube root), Equation 3.4, given by LSTV for RTI.

Another case was simulated wherein the gravity vector was rotated to be in

the streamwise direction (but opposite to the flow direction) i.e g = (−9.8, 0, 0) was

used instead of g = (0, 0,−9.8). It is clear from Equation (4.2) (and physically

as well) that the buoyancy term plays no role in this case, since gz and gy both

are zero here. And due to the absence of buoyancy, no structures were seen (see

Figures 4.10 and 4.11) confirming buoyancy to be the single most important term in
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Figure 4.7: T = 320 [K] iso-surfaces: plate T = 400 [K] (top) and T = 1500 [K]

(bottom).

the streamwise vorticity equation. Plots of various terms in the streamwise vorticity

equation can be seen in Figure 4.12. As expected none of the mechanisms are active.
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Figure 4.8: Flow over a hot isothermal plate at T = 1500 [K]: Contours of tem-

perature; at plane y = 0 [m] (top), at planes x = 0.5, x = 1.0 and x = 1.5 [m]

(middle, from left to right) and two dimensional fourier transform of temperature

at planes x = 0.5, x = 1.0 and x = 1.5 [m] (bottom). For the contours white (black)

corresponds to T > 500 (T = 300) [K].
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Figure 4.9: Flow over a hot isothermal plate at T = 1500 [K]: Variation of different

terms, in the streamwise vorticity equation, along the length of the plate.

Figure 4.10: T = 320 [K] iso-surface: plate T = 400 [K] and g = (−9.8, 0, 0) [m2/s].
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Figure 4.11: Flow over a hot isothermal plate at T = 400 [K] with gravity opposite

to the freestream velocity: Contours of temperature; at plane y = 0 [m] (top),

at planes x = 1, x = 1.5 and x = 1.75 [m] (middle, from left to right) and two

dimensional fourier transform of T at planes x = 1, x = 1.5 and x = 1.75 [m]

(bottom). For the contours white (black) corresponds to T > 320 (T = 300) [K].
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Figure 4.12: Flow over a hot isothermal plate at T = 400 [K] with gravity opposite

to the freestream velocity: Variation of different terms, in the streamwise vorticity

equation, along the length of the plate.
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5: Low speed flow over a hot isothermal

semi-infinite horizontal strip (Config-

uration 3)

To the best of our knowledge this configuration has never been studied either

theoretically/analytically or using a quality numerical tool like LES. As already

pointed out, there are a few related experimental studies, but there the heat source

was a wire [28,29]. Two dimensional numerical simulations have been carried out in

two studies [30,31] but e.g., the longitudinal structures were not allowed to develop

by the two-dimensional model.

The physical and numerical setup is presented first, which is then followed by

a brief discussion on a suitable thermal instability criteria. After that results from

simulations carried out to understand the effects of incoming BL height and the

streamwise length of the strip, are detailed.

5.1 Physical and Numerical setup

The free-stream air flow for all these cases had a velocity and temperature of

0.5 [m/s] and 300 [K], respectively. Strip temperature was kept constant and was

equal to 1500 [K]

Outline of the computational domain, along with the boundary conditions,
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is shown in Figure 5.1. Again, 0.1 [m] long empty free-stream region was used

upstream of the solid plate to avoid any interaction between the developing laminar

BL and the inflow boundary. Periodic boundaries were used in the span-wise (y)

direction, which essentially made the strip semi-infinite, just like the plate. The

domain dimensions Lupstream + Lstrip + Ldown (total streamwise length), Ly and Lz

used were 2, 0.6 and 0.3 [m], respectively. Lupstream and Lstrip were varied between

cases and will be specified separately for each case.

∆x and ∆y were kept uniform and had a value of 5 [mm]. In the wall normal

direction the grid was stretched from a value of 0.4 [mm] at the wall with a geometric

progression having a ratio of 1.025. Again the mesh resolution was similar to that

used by Ojofeitimi [27].

5.2 Thermal instability onset criterion

Since, not much work has been done on this configuration there is no informa-

tion on the onset criterion or even the critical parameter, analogous to Grx/Re1.5x

for the plate case.

Adaptation of the criterion for the case of a plate to the case of a strip gives

Grx2/Re1.5x1
(see Figure 5.2 for information on x1 and x2) which seems to be ineffec-

tive. For instance, if Lupstream was set to zero then the flat plate case is recovered

with the plate length being equal to Lstrip. Now, if Lupstream was finite then before

the strip starts Rex1 would already have a finite value and it would take more effort

from Grx2 to bring the stability parameter to the critical value (unknown for this

configuration) for the onset of thermal instability. This is exactly opposite to what
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one would expect in a real situation since with a bigger incoming BL one expects to

get the transition more easily and not the other way around, see Gorham [1].

So, in order to come up with a criterion, first a critical parameter would have

to be determined for which one might resort to LST, just like Wu and Cheng [14]

did for the flat plate case. Certainly, one necessary condition that such a parameter

would have to satisfy is to reduce to the plate parameter if Lupstream = 0.

Once the parameter is determined, then a range of high quality simulations

would have to be carried out to determine the critical value e.g., Gilpin et al. [17]

went through this exercise experimentally for the plate case.

Since, the onset of instability was not predicted well in the case of the flat

plate even with a DNS, this exercise could not be attempted properly.

Overall, determination of a thermal instability parameter and criteria for this

configuration would be a valuable contribution. It will be a part of future investi-

gation.
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Figure 5.3: T = 320 [K] iso-surfaces: Lupstream equal to 0.05 [m] (top) and equal to

1 [m] (bottom). Upstream BL development length is shown in light gray.

5.3 Effect of incoming BL height

Two simulations were carried out with Lupstream set to values of 0.05 and 1

[m] in order to understand the effects of incoming BL height. Lstrip used in these

simulations was the same and had a value of 0.05 [m].

Temperature iso-surfaces, contours, plots from 2D FFT at different planes

and streamwise evolution of different terms in the vorticity equation are presented

in Figures 5.3 to 5.7. In Figures 5.4 and 5.6 the planes have been chosen such that

they have the same location relative to the strip. For instance, in the first (second)

case the strip starts at x = 0.05 (x = 1) [m], has a length of 0.05 (0.05) [m] and

the location chosen for the first plane is x = 0.7 (x = 1.65) [m] which is 0.6 [m]

downstream of the strip edge in both the cases. The intent was to quantify the

differences due to the incoming BL height.

Before discussing the effects of the upstream BL development length on flow

structures, it is of interest to compare Figure 4.7 (bottom) with Figure 5.3 (top),
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where the former is a hot plate at T = 1500 [K] and the latter is a hot strip at the

same temperature with a fairly small upstream BL development length. Clearly,

the length scale keeps on increasing in the former setup whereas the largest scale

in the latter case seems to be limited by the length of the strip (since that is the

major difference between the two configurations). So, one should expect the flame

towers observed e.g., by Gorham [1] to be connected to the streamwise length of the

burner.

In the experiments with stationary burners by Gorham [1] it was shown that a

longer Lupstream leads to more thin horizontal structures, which is exactly what can

be observed in Figure 5.3 as well, thus giving confidence in the chosen non-reacting

configuration, which does not involve any combustion/radiation modelling related

issues.

Some comments can be made based on Figures 5.4 and 5.6 e.g., in the latter

case the the dominant modes are relatively smaller (larger) in the wavenumber

(physical) space, which is what was expected as in the latter case buoyancy gets more

important since the free stream flow has bigger BL and hence has less momentum.

Due to a relatively more dominant buoyancy force the structures in Figure 5.6 have

also reached a higher altitude.

Also streamwise evolution of various terms in the streamwise vorticity equation

happens relatively quickly (after the edge of the strip) in the latter case.

But it is clear that unless the metric contains information accumulated over a

certain duration (currently only one snapshot is being analyzed) nothing concrete

can be said (because every snapshot will have structures slightly different from the
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Figure 5.4: Flow over a hot isothermal strip (at T = 1500 [K]) of length 5 [cm]

with upstream BL development length of 5 [cm]: Contours of temperature; at plane

y = 0 [m] (top), at planes x = 0.7, x = 0.85 and x = 1.0 [m] (middle, from left

to right) and two dimensional fourier transform of T at planes x = 0.7, x = 0.85

and x = 1.0 [m] (bottom). For the contours white (black) corresponds to T > 320

(T = 300) [K].
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Figure 5.5: Flow over a hot isothermal hot strip of length 0.05 [m], at 1500 [K],

with an upstream BL development of 0.05 [m]: Variation of different terms, in the

streamwise vorticity equation, along the length of the plate.

other snapshot) e.g., about how the incoming BL height affects the size of the larger

structures. This comment also applies to the flat plate simulations.

In this direction, a literature survey was conducted and two techniques were

identified Proper Orthogonal Decomposition (POD) [72] and Dynamic Mode Decomposition

(DMD) [73]. The former method determines the most energetic structures by diag-

onalizing the spatial correlation matrix computed from the snapshots. But one of

the drawbacks of this method is that the energy may not in all circumstances be

the correct measure to rank the flow structures (which is where the latter method

will be useful). Note that it is capable of extracting information from snapshots of

the flow field and is thus also applicable to experimental data.

The latter method (which has attracted a lot of attention recently) analyzes

empirical data, typically generated by nonlinear dynamics, and computes eigenvalues

and eigenmodes of an approximate linear model. Without explicit knowledge of the
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Figure 5.6: Flow over a hot isothermal strip (at T = 1500 [K]) of length 5 [cm] with

upstream BL development length of 100 [cm]: Contours of temperature; at plane

y = 0 [m] (top), at planes x = 1.65, x = 1.8 and x = 1.95 [m] (middle, from left

to right) and two dimensional fourier transform of T at planes x = 1.65, x = 1.8

and x = 1.95 [m] (bottom). For the contours white (black) corresponds to T > 320

(T = 300) [K].
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Figure 5.7: Flow over a hot isothermal hot strip of length 0.05 [m], at 1500 [K],

with an upstream BL development of 1.0 [m]: Variation of different terms, in the

streamwise vorticity equation, along the length of the plate.

dynamical operator, it extracts frequencies, growth rates, and spatial structures for

each mode. Consequently, it is expected to provide quality insight into the flow

structures seen in the present configuraton and also in the hot plate configuration

(Chapter 4). This method can also handle experimental databases.

Both these techniques will be explored, to quantify the effects of the incoming

BL height on the larger structures, in the future.

5.4 Effect of streamwise length of the strip

Another simulation was undertaken where the strip length used was 0.5 [m].

Lupstream was kept equal to 0.05 [m] in order to have enough downstream domain

length for the development of the flow. The results can be seen in Figures 5.8

to 5.10. Again the planes have been placed such that they are at the same down-

stream location relative to the strip, similar to what was done for the previous two
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Figure 5.8: T = 320 [K] iso-surfaces: Lupstream (Lstrip) equal to 0.05 (0.05) [m] (top),

1 (0.05) [m] (middle) and 0.05 (0.5) [m] (bottom). Upstream BL development length

is shown in light gray.

simulations.

From Figures 4.7 and 5.8 it is clear that the length scale of (or spacing be-

tween) the thin horizontal structures is fairly insensitive to changes in e.g., the plate

temperature, the upstream BL development length and the length of the hot strip.

Which, as already mentioned, seems analogous to the insensitivity of the MDM to

various parameters (due to the cube root), Equation 3.4, given by LSTV for RTI.

However, the number of these structures is certainly very sensitive e.g., to the

upstream BL development length (due to a relatively lower momentum in the cross

flow); also shown by Gorham [1] in his stationary burner experiments.

As expected (since we have a stronger presence of buoyancy in this case due to

an increased length of the strip) the modes identified in this case are smaller (larger)
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in the wavenumber (physical) space than those seen in the case with Lstrip = 0.05

[m]. From the peaks given by 2D FFT of plane 1 (black symbols) in Figures 5.4

and 5.9 one can say that the length scale in the case with a longer (0.5 [m] in length)

strip (2π/40 = 0.16 [m]) is twice that (2π/80 = 0.08 [m]) seen with the shorter strip

(0.05 [m] in length).

But the comparisons change from plane to plane at this point since the diag-

nosis is based on a single snapshot of the flow field, which is where techniques like

POD and DMD will help.

It was also interesting to compare the results from this case with the plate case

in which temperature of the plate was 1500 [K]. In order to make a clear comparison

the contour range is adjusted, i.e., T > 500 (T = 300) [K] is colored white (black),

see Figure 5.11 for an updated presentation. The plane locations are also changed

to match those used in Figure 4.8. It can be observed that at plane three this

case does not provide us any structures (contrary to the plate case with the same

temperature) since the effects of buoyancy are almost lost by that point in space.

As already mentioned, this is precisely the reason why flame towers observed e.g.

in [1] are expected to depend upon the streamwise length of strip.
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Figure 5.9: Flow over a hot isothermal strip (at T = 1500 [K]) of length 50 [cm]

with upstream BL development length of 5 [cm]: Contours of temperature; at plane

y = 0 [m] (top), at planes x = 1.15, x = 1.3 and x = 1.45 [m] (middle, from left

to right) and two dimensional fourier transform of T at planes x = 1.15, x = 1.3

and x = 1.45 [m] (bottom). For the contours white (black) corresponds to T > 320

(T = 300) [K].
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Figure 5.10: Flow over a hot isothermal hot strip of length 0.5 [m], at 1500 [K],

with an upstream BL development of 0.05 [m]: Variation of different terms, in the

streamwise vorticity equation, along the length of the plate.
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Figure 5.11: Flow over a hot isothermal strip (at T = 1500 [K]) of length 50 [cm]

with upstream BL development length of 5 [cm]: Contours of temperature; at plane

y = 0 [m] (top), at planes x = 0.5, x = 1.0 and x = 1.5 [m] (middle, from left

to right) and two dimensional fourier transform of T at planes x = 0.5, x = 1.0

and x = 1.5 [m] (bottom). For the contours white (black) corresponds to T > 500

(T = 300) [K].
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6: Summary, conclusions and future work

6.1 Summary

• FireFOAM has been thoroughly verified/validated against Linear Stability

Theory for Rayleigh-Taylor Instability, both in terms of the exponential per-

turbation growth and the Most Dangerous Mode.

• Different stages of Rayleigh-Taylor Instability, have been simulated. It tempo-

rally takes the same course as the streaks take spatially in e.g. the stationary

burners [1].

• First Direct Numerical Simulation for predicting the onset of thermal insta-

bility in Configuration 2 has been carried out.

• Spatial evolution of various terms in the streamwise vorticity equation has been

analyzed to identify the dominant contributors towards the generation/evolution

of streamwise vorticity in Configuration 2.

• Streamwise evolution of the thermal instability in Configuration 2 has been

qualitatively shown. Simulations suggest that flow fluctuations follow a natu-

ral evolution from high- to low-frequency/wavenumber (corresponding length

scales grow in size) as one moves to downstream locations. There is no natural

limit to that evolution in Configuration 2.
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• Effects of changes in the temperature and orientation of the plate on the

instabilities have been qualitatively shown.

• In Configuration 3; the effects of changes in the upstream Boundary Layer

height and the streamwise length of the hot strip have been shown, again

qualitatively. Simulations suggest that flow fluctuations follow again a natu-

ral evolution from high- to low-frequency/wavenumber (corresponding length

scales grow in size) as one moves to downstream locations. There is now a

natural limit to that evolution associated with the size of the strip.

6.2 Conclusions

As already pointed out, lack of a quality diagnostic tool (like Proper Orthog-

onal Decomposition and Dynamic Mode Decomposition) did not allow us to draw

too many quantitative conclusions. But the following can be said -

• FireFOAM has been shown to be a powerful tool for analyzing thermal insta-

bilities.

• In Configuration 2, buoyancy has been shown to be the single most important

term in the streamwise vorticity equation.

• In Configuration 2 length scales keep on increasing as one moves to downstream

locations.

• A larger incoming Boundary Layer height (or a longer streamwise length of

the strip) in Configuration 3 leads to larger structures due a relatively larger

strength of buoyancy.
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• The Flame Tower like structures, not surprisingly are connected to the stream-

wise length of the strip in Configuration 3.

6.3 Future work

• Sub-Grid Scale turbulence modelling strategy will be re-visited. In particular

Burton’s Non-linear Large Eddy Simulation (nLES) looks very promising and

will be implemented and tested.

• The discrepancy between Direct Numerical Simulations (DNS) and Gilpin et

al.’s [17] criterion for thermal instability onset Configuration 2 will be inves-

tigated.

• Dynamic Mode Decomposition (DMD) [73] will be implemented inside the

OpenFOAM framework. Proper Orthogonal Decomposition (POD) [72] is

already available but will be thoroughly tested.

• Utilizing Proper Orthogonal and Dynamic Mode Decomposition, evolution of

the structures/instabilities in Configuration 2 will be studied.

• Critical parameter for thermal instability in Configuration 3 will be deter-

mined.

• The critical thermal instability onset value of the critical parameter for Config-

uration 3 will be determined using Direct Numerical Simulations. Essentially

this exercise (and the one above) will include the effects of incoming Boundary

Layer height which were recently investigated, experimentally, by Gorham [1]
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for stationary burners.

• Correlation between the streamwise length of the strip and the largest observed

structures (or Flame Tower like structures) will be established in Configuration

3.

• Finally, stationary burner experiments [1] will be simulated and the results

(e.g., the spacing between the longitudinal vortices and the Flame Towers)

will be compared with the experimental data.
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