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ABSTRACT

Explicit upper bounds are obtained for the singular perturbation parameters of a general
uniformly asymptotically stable multiparameter singularly perturbed system. The study focuses
on the linear time-varying case studied by H.K. Khalil and P.V. Kokotovic (SIAM I. Control
Opt., 17, 56-65, 1979) in which the small parameters are constrained to have bounded mutual
ratios. An upper bound is obtained on a weighted norm of the vector of singular perturbation
parameters such that uniform asymptotic stability is ensured if this bound is met. The derivation
makes liberal use of Liapunov function arguments. In a companion paper [2], it is shown that for
linear time-invariant systems the ‘bounded mutual ratios’ assumption can be lifted, and typically
less conservative parameter estimates are obtained.
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I. INTRODUCTION

Singular perturbation problems involving several small parameters have in the past
attracted considerable attention, both from the engineering and the applied mathematics com-
munities. This is due in part to the difficulty of these problems and in part to their wide applica-
bility in power system dynamics, control of large scale systems, multi-modelling, differential
games, and similar settings. The purpose of this paper is to derive explicit upper bounds on the
singular perturbation parameters ensuring the uniform asymptotic stability of a general time-
varying multiparameter singularly perturbed system. Parameter bounds for stable singularly per-
turbed systems have been obtained previously by Zien [36], Javid {18], Balas [5] and Abed [1] for
problems with a single small parameter, and by Khalil [24] for problems containing several small
parameters. The upper bound of [24] is derived for time-invariant multiparameter problems. In a
companion paper [2] the present author also gives parameter bounds for stable time-invariant
multiparameter singular perturbation problems which do not suffer from a certain conservative-
ness problem which is present in [24], and which occurs also in the results of the present paper.

The results of this paper are obtained for linear time-varying systems of the form

2 = A(t)r + B(t)y (12)
&y = Ci(t)s + Di(t)y, i=L1...M, (1b)
where z€R", y = (¥ 1,....y) ER™, y;ER ™e = (€, . .., €y) with each ¢; a small real

parameter, A ,B,C;,D; are real matrices of appropriate dimension, and the dot signifies
differentiation with respect to time ¢{. Since the concern here is with the uniform asymptotic sta-
bility of the null solution of (1), the results will clearly apply as well to the nonlinear time-varying
generalization of (1), if the nonlinear terms are decrescent [35].

The asymptotic analysis of (1) in the limit ¢; -0, ¢ = 1,...,M is an example of a singular
perturbation problem. This means that the order of the system (1) differs for ¢; = 0 and ¢; 7é 0.
For a discussion of results in singular perturbation theory, see the excellent review articles
[27, 32, 26).

Most previous studies of singularly perturbed systems containing several small parameters
begin by hypothesizing some type of relationship among the small parameters ¢;. The simplest of
these reduces the problem to a standard single parameter singular perturbation problem. This is
achieved by assuming that the parameters ¢; are known multiples of a single, auxiliary small
parameter §, so that ¢, = a; 6, {=1,...,M . Khalil and Kokotovic have pointed out in [21] that
this assumption is not justifiable in many cases of practical interest, if only because of the lack of
knowledge of the coefficients ;. As a more realistic assumption, [21] allows the parameters ¢; to
be arbitrary subject to the requirement that the mutual ratios ¢; /¢;, 1,5 =1,...,M are bounded
from above and below by known positive constants. This is equivalent to constraining € to lie in
a (linear) cone in the positive orthant R If . The authors of [21] refer to this as the “multiparame-
ter assumption.” This assumption is also invoked in [20, 22, 23, 24, 29] and in the present paper.
A perhaps more common hypothesis is that of multiple time scales [17, 30, 11, 34, 29]. This
requires that the small parameters €; are of different orders of magnitude, say ¢;,,/€¢; >0 as
¢; —0. The multiparameter setting of [21] clearly differs drastically from this case; indeed only
two time scales are present in the setting of [21], just as for single parameter singular perturbation
problems.

Although the present paper employs Khalil and Kokotovic’s assumption that the mutual
ratios ¢; /€; are bounded, in the companion paper (2] similar results are obtained without any
such restriction. The results in the companion paper [2] are derived for the time-invariant case,
and yield each of the foregoing multiparameter singular perturbation set-ups as special cases.
Similar results have previously been obtained by the author in [3], which contains some stability
results for the time-invariant version of (1) without limiting e prior: the way in which ¢ — 0.
These include iterative expansions in the ¢; which show the dependence of the eigenvalues of (1)
on €. The present author is of the opinion that use of the term multiparameter singular perturba-
tion should be expanded to include all possible assumptions on the way in which the small



parameters €; are constrained, including even the multiple time scale setting discussed above.

The development of the paper is as follows. Section II introduces the problem and provides
relevant background material. Several hypotheses used throughout the paper are also given in
Section II. Section III is devoted to a constructive proof of the existence of a decoupling transfor-
mation which separates the fast and slow dynamics of (1). Two upper bounds on |E (e)l are
obtained in that section. These ensure the existence of a bounded decoupling transformation as
well as the uniform asymptotic stability of the fast subsystem. In Section IV a further upper
bound is obtained ensuring the uniform asymptotic stability of the slow subsystem. These three
upper bounds are collected to yield an upper bound E, on IE’ (e)I ensuring uniform asymptotic sta-
bility of the original multiparameter singularly perturbed system (1) (cf. Eq. (69)). This, the main
result of the paper, appears as Theorem 1 of Section IV. Conclusions and some open questions
are given in Section V.,

Notation. Throughout the paper the Euclidean norm is used for vectors and the Frobenius norm

for matrices. This is only for simplicity of the development, and does not represent a limitation

of the method. The Euclidean and Frobenius norms are compatible. Recall that the Frobenius

norm of a real matrix A is the square root of the sum of the squares of all the elements of A. Tt

will be denoted by JA|. If A depends continuously on time ¢ and is bounded, its norm is A

= sup |A (¢)l. With the hope that there will be no confusion, this is denoted simply by [A]. The
o]

transpose of A is indicated by A’ . If A is a square matrix, o(A ) denotes the spectrum or set of
eigenvalues of A .

II. PRELIMINARY CONSIDERATIONS

It is useful to express Eq. (1) in the more compact form

g =A(t)r + B(t)y (2a)

E(e)y = C(t)x + D(t)y. (2b)

Here C(t) := block col (C(t),....Cy (1)), D(t) := block col (D(t),...Dy (1)), and E (¢) :=

block diag (&S, - .., €1y, ), where I denotes the k Xk identity matrix. With (2) one associ-
ates the reduced system

g =A(t)r + B(t)y (3a)

o= C(t)x + D(t)y (3b)

obtained by formally substituting ¢ = 0 in (2).

The following assumptions are now made about the matrices A ,B,C ,D .

(1) The matrices A (t),B(t),C(t),D (t) are bounded and depend
continuously on ¢ for t > 0.

(H2) There is a d > 0 such that the eigenvalues of D (¢) all have
magnitude > d for all t > 0.

Hypothesis (H2) implies (3) is equivalent to the system
z =[A(t) - B()D(t)C(t)] 7 =: At)z. (4)

It also implies that D~!(¢) (and hence also A,(t) ) is bounded on 0 < ¢t < co. To see this, note
that (H2) implies |[det D (¢)] > d™, so that Lemma 1 of Coppel { [13], p. 47) implies

D=4 < (@™ -1)d™ D (e (5)

and the conclusion follows from (H1).



The following definitions are not used directly in the paper, but their relevance to the situa-
tion dictates that they be included for completeness. Recall ( [33], p. 276) that a matrix F' is said
to be D -stable if the eigenvalues of DF have strictly negative real parts for any diagonal matrix
D with strictly positive diagonal elements. The following generalization is due essentially to
Khalil and Kokotovic [21].

Definition 1. The matrix D (t) is said to be block D -stable relative to the multi-index
(my, - ,my)if for all §; > 0, i=1,....M,

Reo(©(0)D(t)) <o (6)
for all t > 0, where 8(6) := block diag (4,1, g M ImM).

If D (t) is not block D-stable, it may still be possible to find a set H C Rﬁl satisfying the
next definition. Satisfaction of this definition was a main hypothesis in [21].

Definition 2. The matrix D (t) possesses Property D relative to the set H C RY if there is a
o, > 0 such that

Reo(|e| ENe)D(t)) < -0, (7
forallt > 0,¢€ H.

Remark 1. Note that if D (t) possesses Property D relative to R‘If then D (t) is block D-stable
according to Definition 1, and vice versa.

The results of this paper will apply as ¢e—0 in any subset H of R"f for which all the mutual
ratios e,-/ej are bounded. These sets are cones of the form specified by Eq. (12) of hypothesis
(H4) below. This generality is achieved based on hypothesis (H3) below, which was discussed but
not enforced in {21].

(H3) There exists a continuously differentiable block diagonal positive
definite matrix P (¢) with P (¢) bounded,

P(t)= block diag [P,(t),....Pp(t)] (8)
satisfying
clyP <y P(t)y < eolyl’, foraly € R™, t >0, (9)
such that @ (¢) given by
P(t)D(t) + D' ()P (t) = - Q(¢) (10)

is positive definite, and moreover satisfies

y' Q(t)y > cglyl, forally €R™, t > 0. (11)

In (8), P;(t) € R™,i =1,..,.M. Note that Eq. (9) implies P (¢) is bounded.

This hypothesis implies that D () is a block D-stable matrix (cf. Johnson [19], Khalil and
Kokotovic [21] ). It has been noted to yield the most interesting class of D-stable matrices {19]. It
has also been employed by Khalil {24] to derive upper bounds on the small parameters for asymp-
totic stability of a class of nonlinear autonomous multiparameter singularly perturbed systems.
Hypothesis (H3) is useful since it implies that v (t,y) = y P (t)E (¢€)y is a Liapunov function for
the boundary layer system (13) (see [21] ). The next hypothesis has been introduced in [21].

(H4) The parameters €; have bounded mutual ratios. That is,
there exist positive numbers k;;, K7, ¢,9 = 1,..M
such that € € H where the cone H C R™ is given by



€4
le{feRﬁl:k;}'S?—SK,‘j}. (12)

J

It will become apparent in the sequel that a natural boundary layer system associated with
(1) is

L~ B OD (1), (13)
t

Note that, contrary to the situation in single parameter singular perturbations, the boundary
layer system depends on €. This is the essence of the difficulties encountered in multiparameter
perturbations. One can also define the boundary layer system in a suitable sped-up time scale,
such as 7:= ¢t /] €.

Motivated by the single parameter theory, one attempts to find conditions under which the
uniform asymptotic stability of (1) is ensured for sufficiently small |e | ¢ € H, by that of the
reduced system (4) and the boundary layer system (13). This is the spirit of the results in Khalil
and Kokotovic [21] and of this work. The proof of this paper results in a computable upper
bound E, on |[E(e) = (m,6,2 + - + myep?)? ensuring uniform asymptotic stability of
(1). This is of course equivalent to obtaining an upper bound on a weighted norm of €. An (in
general more conservative) upper bound on Ie[ is easily obtained from these results (for any
norm). An examination of the proof of {21] shows that it does not yield such an upper bound.
This is mainly because [21] employs certain results of Coppel [12] which are based on compactness
arguments. Note, however, that the result of [21] applies in case hypothesis (H3) above is not in
force, if D (t) possesses Property D (cf. Definition 2 above) relative to a conic set H of the form
specified by Eq. (12). Hypothesis (H3) implies Property D, but the reverse implication does not
hold [21].

III. DECOUPLING OF FAST AND SLOW DYNAMICS

It is well known (25, 10, 27, 32, 26| that for (nondegenerate) single parameter singularly per-
turbed systems it is possible to exhibit a nonsingular similarity transformation which exactly
separates fast and slow dynamics. This transformation was presented by Chang [10] in the con-
text of a general linear singularly perturbed boundary value problem. Chang’s transformation is
best understood as the composition of two simpler transformations. The first, derived by Chang
in [9], results in block-triangularization of the system dynamics. The second transformation
applied to the block-triangular system produces the desired block-diagonal (i.e., separated) form.
A direct generalization of Chang’s transformation to the multiparameter setting was applied to
the stability analysis of multiparameter singularly perturbed systems by Khalil and Kokotovic
[21]. A related transformation was used by the present author to study multiparameter singularly
perturbed Hopf bifurcation in {4] as well as to obtain general results on stability of time-invariant
multiparameter singularly perturbed systems in [3]. In {4] and [3] it was necessary to employ only
the first step of Chang’s transformation, yielding a block-triangular system. Also, the results of
[4] and [3] apply regardless of the relative magnitudes of the small parameters. In [21] the full
transformation was employed to completely separate the fast and slow dynamics of a linear time-
varying multiparameter singularly perturbed system of the form (1). This is necessary because of
the time-varying nature of (1). Thus a complete separation of fast and slow dynamics will also be
used in this work. For an example illustrating the possible adverse effect of a (small) off-diagonal
term on the stability of an otherwise stable linear time-varying system, see ( {16], pp. 151-153).

The results of Chang [10] (see also [, 21] ) imply that the transformation

(1) — (F - Fer -ME@) ) (11



applied to (1) will result in the (decoupled) system

n=[A(t) - B(t)L(t,))] n (15a)
E@©E=[D(t) + E(eL(t,0)B(t) ¢ (15b)
provided L (¢t ,¢) and M (¢ ,e) are solutions of the respective matrix differential equations
E@€L =DIL - C - E(e)LA + E(e)LBL, (16)
ME(e)= (A - BL)ME(e) - M(D + E(c)LB) + B (17)

defined for 0 < t < oo.

The transformation (14) is easily verified to be a nonsingular similarity transformation for
any value of €, for any matrices . and M. See Eq. (57) of Section IV for the inverse transforma-
tion. Conditions will now be given for the equations (16) and (17) to have uniformly bounded
solutions for all ¢ € H with | € | sufficiently small.

The next two Lemmas show that under (H1)-(H4), uniformly bounded solutions of (16) and
(17) exist on 0 € ¢t < oo for all ¢ € H with | ¢ | sufficiently small. This fact follows from Lem-
mas 1 and 2 of [21]. Invoking hypothesis (H3), however, facilitates the constructive proofs of the
Lemmas presented below which in addition yield explicit upper bounds on |E (e)l ensuring the
existence of these bounded solutions.

Lemma 1. Under hypotheses (H1)-(H4), there is a scalar E, > 0 such that Eq. (16) has a solution
L (t, €) which is uniformly bounded for |E(¢)] < E,, e € H, t > 0. Moreover, the solution with
initial condition L (0, €) = —D'(0)C (0) is uniformly bounded for |E ()} < E,, e € H.

Lemma 2. Let hypotheses (H1)-(H4) hold, and suppose |E (¢] < E,, where E, is as in Lemma 1.
Then there exists a scalar £, > 0 such that Eq. (17) has a solution M (¢, €} which is uniformly
bounded for |E(¢)l < E,, ¢ € H, t > 0. Moreover, E, may be chosen so that |E (¢)] < E, also
implies the uniform asymptotic stability of the null solution of the fast subsystem (15b).

The proof of Lemma 1 will make use of the following elementary stability result, which is
Lemma 1 in LaSalle and Lefschetz ( [28], pp. 116-117). First some notation. Given a closed set
M C R" and a positive scalar r, let M, denote the set of all points whose distance from M is
less than r . Also, let M ¢, respectively M: denote the set of points outside M (i.e., the comple-
ment of M), respectively M, .

Proposition 1. Consider a system z = ft,z),t 20, 2 € R", t > 0. Let v(t,z) be a scalar
function ¢ontinuously differentiable in ¢ and z for ¢ >0,z € R", and let M be a closed set in
R™. If v(t z) < oforall x € M° and jf v(t,,2,) < v(tyz,) forall t, > ¢, >0, all 2, EM
and all z, € M{, then each solution of a: = f (t,z) which at some time t, is in M can never
thereafter leave M, .

Remark 2 From the proof of Proposition 1 in [28] it is clear that the conclusion of Proposition 1
holds if v (t,z) < 0is assumed to hold on M, — M rather than on all of M°.

Proof of Lemma 1: It is straightforward to verify that the matrix differential equation (16) is
equivalent to the vector differential equation

E@X\t)=D(t)\t) - T(t) - E(L(A(t) + E@©L()B(t)N), (18)
where the vector X € R™ is obtained from the m Xn matrix L,= (LY, ...,L") by con-
catenating the columns L', 7 =1,.,n of L : X := (LY ....(L™) ). Denote the columns of

A (t), respectively C'(t), by Alt),..,A™(t), respectively Ct),..,C"(t). The matrices

A ,B,C,D,E L appearing in Eq. (18) are defined as follows (here, block diag (X ,...,X ) implies n
occurrences of X in the parentheses, for any matrix X):



A(t) := block col (AXt),..,A"(t)) € R™®, (192)
B(t) := block diag (B(t),...B(t)) € R*>™, (19b)
C(t) := block col (CY(t),..,C"(t)) € R™, (19¢)
D(t) := block diag (D(t),....D(t)) € Rmnxmn, (19d)
E (¢) := block diag (E(e),....E (¢)) € R™rXmn (19e)
L(t) = block diag (L(t),...L(t)) € R™x»", (19f)

Note that Ij(t) in (18) depends linearly on X(¢), by (19f) and the definition of \.
Define the Liapunov function candidate v ({,\) by

v(t N =X P(t)E () (20)

where P (t) := block diag (P (t),...,P(t)). By (H3) P(t) is block diagonal with the same struc-
ture as E(e¢). Therefore P (¢) and E'(¢) commute, implying that P(t) and E(e) also commute.
Using this fact, v (t,\) may be computed along trajectories of (18) as

v(tN) =N {D ()P(t) + P()YD(t) I» + N { Ttﬁ(t)ﬁ(e) I
+ NA{B ()L ()P()E(e) + P(t)E(L(t)B(t) }x
- {T P + NP@)T(t)}

- {A )L OPW)E@EN + N P()E@©L (A (1) }. (21)

Now using Egs. (10), (11) and the fact that |L| = nV2|\ = |L" | (since |L| is the Frobenius norm
of L), (21) implies

SN < —es P+ IB@ISPING + 202 B (o B PI NS

+ 2|P|ICIIN + 2n'2|E (e IATIP]IN? . (22)
Define g :==|E (€)| and the parametrized cubic polynomial p (@) by

N d = —
p ule) = { 2un"ABl|P| } o® + {ulzPl + 2un'qAL|P| - ¢5} o®

+ {21P|IC}} e. (23)

Note that for pg =0, p,(a) reduces to a quadratic which takes negative values for all
a > (2IP| ]C’l/c3) For small u > O the cubic term dominates for large o and p ,(a) is positive
for all sufficiently large «.

Recalling  that _ﬁ(t) and _E(c) commute, it follows from  (20) that
v(t\) =X EVX P ()EV¥ N = { EY¥e)\ Y P(){ EV* e\ }. Eaq. (9) of hypothesis (H3)
now implies that

c AEYHON? < vt N) < eo [EVEONE. (24)

Schwarz’s inequality implies that IEI/Q(E))J < !E_I/Q(e)l M and that



N = 1E7 2B (N < [ETHNEV*eN . (25)
Therefore
BN > = (26)
|E~1/2(e)
Hence v (t ,\) satisfies
¢, -
——— NP < wt N < cJEVHeN N2 27
T S e < AE (el (27)
A further inequality which will be employed below is
[E (e |EVeN < n°K, (28)
where K is given by
_ M
K = Em? + mmy (K o+ Kj) (29)
t =1 1<y

and the K;; have been defined in Eq. (12) of (H4). The inequality (28) may be easily obtained
from (11) if one recalls that |E':t1/2l = nl/? IEil/zl since the matrix norm is the Frobenius norm.

One now applies Proposition 1. Define the set M (8) by
M@ :={XeR™ :N < [B + max (ID©OHC(0) 2dP[ICl/es)] = (B}  (30)
where 3 > 0 is arbitrary. Let the set M, (3) be defined as

M,(8) = { A€ R™ :|\| < nK'2 (%)1/2 0(f) =: ax(B) ). (31)

Using inequalities (27), (28) above it is not difficult to show that X\, € M () and X\, € M; ()
implies that v (£,,N\)) < v(ta\g) forall t, > ¢, > 0, for anye € H.

Next an upper bound p,(f) on u will be obtained such that p,(a) <O for all
o € [a,(B), ay(f8)] whenever 0 << u < u,(B). The existence of such an upper bound, along with
the preceding conclusions, implies that Proposition 1 applies so that any solution of Eq. (18) with
initial condition in M () will remain in M, (8) for all ¢ > 0 if |[E (e)] < p,(B). This in will in turn
imply the existence of solutions L (¢ ,€) to Eq. (16) bounded by ay(f) (since [L| = |\|).

Proceeding, it is easy to see that (23) implies that for any o > 2|P—| |5|/c 3 Pula) < O for
all u € [0, u* (a)) where

csa — 2|P|C|

p'(a) = (32)

902 |B||Pla? + {I—;?P‘I + a2 |T|1B|} &

From (30) and (31) it is clear that for any 4 > 0 and any a € [a,(8), @o(8)], one has u*(a) > 0.
Define

= min (o
£1(B) al(mgag%(ﬂ)ﬂ (o) (33)

which is clearly positive for any 8 > 0.

An application of Proposition 1 and Remark 2 now implies that for any A > 0, all solutions
of Eq. (18) with initial condision in M (#) will remain in M, (f) for all t > 0, if |E(f_)l < p,(P).
Noting that M, (f) is bounded and contains (by construction) the point X\ = —~ D™ 0)C (0)
(corresponding in Eq. (16) to L = -D~'(0)C (0) ) completes the proof of Lemma 1.
Q.ED.

The preceding proof is constructive in that it also provides an explicit upper bound on |E (e)l
(actually on the related quantity |E ()] ) ensuring the existence of bounded solutions to (16).
Even more, it provides a family of upper bounds, one for each f > 0. The next corollary



summarizes these observations to give an ‘optimal’ upper bound on lE (e)|.

Corollary 1. The upper bound E, on |E (¢)] in Lemma 1 may be taken as
Ey =72 sup { p(B) } (34)
g>o0

where p,(f) is given by Eq. (33).

Next a proof will be given for Lemma 2. This proof relies on first ensuring the uniform
asymptotic stability of the fast subsystem (15b) and then using an explicit representation for M
to prove uniform boundedness.

Proof of Lemma 2: Let Y (¢,s ,¢), respectively Z (¢,s ,6), denote the state transition matrices of
systems (15a) and (15b). Consider the variation of the Liapunov function candidate w (¢,£)
defined by

w(t,€) i=¢& P()E(e)E (35)

along trajectories of Eq. (15b), the fast subsystem. Since |F (¢)] < E,, the foregoing proof of
Lemma 1 implies |L| < ay(8°), where 8° achieves the supremum indicated in Eq. (34) (8° = oo
is a possibility). One has

w(t,§ =€ {D' ()P(t) + P(t)D(t)}€
+ & { B (t)L' (t,e)P(t)E(e) + P(1)E(eL(t,0)B(t) + P(t)E(e) }¢
< {-cs + E@l(2IBIILIIP| + IP]) } el
< {-co + v (208 IBIIP| + |P]) }IEP
=: - T ¢ (36)
where the additional constraint

Cs

< — —:
Bl <vs o B 8

(37)

has been imposed on |E (¢)}, and v is an auxiliary parameter. Eq. (37) ensures that &(v) of (36)
above will be positive implying the null solution of Eq. (15b) is uniformly asymptotically stable.

Note that, by Eq. (9),
w(t,€) = (EV%(e)&) P (t(E*e)€)

< ¢y |E1/2(€)€ I2

< e, [EVAEeN lEP. (38)
Therefore, along trajectories of (15b),
t,§)
e > it 39
2 BT @9
Eq. (36) now implies the differential inequality
. ca()w(t &)
w(t,f < - — (40)

e BV

so that w (¢ ,€) satisfies



F3(")

ST )
w(t,Et) <e “FEF L6 e6)) (41)

for any ¢ > s > 0. Recalling the definition (35) of w, this implies (by the Schwarz inequality)

_ T (t-2)
e JEVER (42)
w(t,& SIE@NP () lgs e 27
forany t > s > O.
Eq. (9) of (H3) is now applied once more (the dependence of £ on € is now suppressed):
w(t,§) = (B2 P (t)(E*¢)
Z ¢, IE 1/25 |2
c, .
> W|§| . (43)
Inequalities (42) and (43) together imply
T4
TRt {49)

& < cFIP (s HIEGs WP IEHET/2F e
forallt > s > 0.

Next consider the implication of (44) for the state transition matrix Z(t,s ,¢) of Eq. (15b).
Since (44) is satisfied for each of the columns Z* of Z and since |Z|* = ZIZ‘ [> (Frobenius norm),
and noting that Z (s ,s ,¢) = I, one obtains the inequality

ZCE
E1/2)2 45
1Z(ts OF < 7P (BN P o E! e
However, note that by the Schwarz inequality and (28)
|E| |E—1/2 |2 _— ‘El/Q E1/2 | IE—1/2 |2
< 'E 1/2 '2 |E~1/2 |2
< K*? (46)
where K was defined in (29). Egs. (45) and (46) now imply
c4v)
- i (t —8)
|Z(t,8 ,Gﬂ S K—CEI/Q lP(s )|1/2 ¢ 204E1/2|2 (47)
forallt > s > 0.
Note that the state transition matrix Y (¢,s ,€) of Eq. (15a) satisfies
Y (t,s,e) < Y(e)ef’dt—sl (48)

for some Y, 0, > 0, since the coeflicient matrix is bounded. Indeed, a specific o, is given as
Op == lal + |BI ax(8*) : (49)

where the function «@,(f) is defined in Eq. (31) and 8° has been defined above as that 8 which
yields F, in Eq. (34).

It can be verified by differentiation that

M(t,e)= — [Y(t,s,6)B(s)Z(s,t,e)ds E7\(e) (50)
¢
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is a solution of Eq. (17) (cf. Chang [10] ). Using Egs. (47) and (48), one now has

E-3(”)

o - (s-t)
—— - 1/2 2
M (0l < e PPRTBIPI2 B0l [e e *F70 s
t
—— e - o(v,e)t
< Czl/QKY(f)IB”PP/Q IE—I(E)I lim {ea(u,c)T _ 6a(u,c)t } (51)
- o(v,e) T-oo
where o(v,€) is defined as
cs(v
o(v,e) = o0, — ——3(2———— (52)

2co |EV (el
Therefore M (t,€) is bounded for all € for which o(v,¢) << 0, which is equivalent to the inequality
cy(v)

|[EYV2(ef < 5 . (53)

o€ 2

Eq. (53) can be used to yield an upper bound on |E (¢)l as follows. Suppose ¢ were con-
strained so that |E (e)]? = m,e,°+...+myrep® < k where kM> 0is arbir,rary.M This would clearly
imply ¢; < (k/m;)"% 4 = 1,..,M, so that [EY(e)f* = (3Im;e;)* < k(X m /22 Equating

i=1 1 =1
the right side of this last inequality with the right side of (53) and solving for k¥ shows that (53) is
implied by the following upper bound on |E (¢)*:

M
> m A (54)

f==1

|E (e)? <

t3(v)
204C 5 (

Note that the auxiliary parameter v is still arbitrary subject to 0 < v < v’ (Eq. (37)). To
optimize the upper bound, one maximizes the lesser of the two upper bounds imposed by Eqs. (37)
and (54). Thus it is required that

Bl < E, (55)
where the upper bound E2 is given by
ca(v) M
E,:= max min {v, (12 (SIm; 37} (56)
o<v<v® 204¢ 4 P =1

Finally, the uniform boundedness of M (¢ ,e) can be shown by applying the inequality (28) to
obtain an upper bound on (51). Such an upper bound will not be derived here. This is because
the uniform boundedness of M (t ,€) is not needed for the stability considerations of this paper,
and since ensuring uniform boundedness of M (¢ ,e) would require a further constraint on |E ().

Q.E.D.

IV. UNIFORM ASYMPTOTIC STABILITY

The decoupling transformation (14) is invertible for any €. Indeed, it is easy to check that
the inverse transformation is given by

(Z] = [_IL I _MEME] (Z] (57)

From (14) and (57) it is clear that for bounded L (¢ ), M (t ,¢), the uniform asymptotic stability
of (1) is equivalent to the uniform asymptotic stability of (15a) and (15b).

An upper bound on | el ensuring uniform asymptotic stability of the fast subsystem (15b)
has been derived in the foregoing analysis. It remains to find an upper bound ensuring the uni-
form asymptotic stability of the slow subsystem (15a).
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It is useful to state the following basic Proposition, whose proof (essentially) may be found
in Brockett { [6], p. 205).

Proposttion 2. Let the equation :;(t) = A (t)z(t) be uniformly asymptotically stable, and let

v(z):= 2z R(t)z be a Liapunov function with S (t) := —(A" ()R (t) + R(t)A(t)) positive
definite. Then the null solution of the equation z = [A (¢) + B(t))z is also uniformly asymp-
totically stable for any B (t) with |B| < 6 where § is given by
S|
6= ——, 58

a necessarily positive quantity.

To apply this Proposition to Eq. (15a), it is necessary to find an estimate for the difference
between the coefficient matrix in (15a) and the reduced system matrix A 4(¢ ) of Eq. (4). This esti-
mate should depend on ¢, and moreover vanish in the limit ¢ — 0, ¢ € H. The following mild
hypothesis will be used in the derivation.

(H5) The matrix D7'(¢)C(¢) is continuously differentiable on [0,00).

Defining the vector | € R™ as
I ==X - DY YO(1). (59)

Eq. (18) can be rewritten as

B@lt) = -E@-{ D)} + D) i) - BQLWAW)

+ E(L (t)B (£)\(¢). (60)
As in the proof of Lemma 1, the Liapunov function candidate

v(t,l)y=1 Pt)E () (61)

is introduced. Evaluating v (t,!) along trajectories of (60) and proceeding as in the proof of
Lemma 1, one obtains

v(t0) < —eq P + I PUEINE + AATIPLILTIET ]

i d e = i =
+ AP (DT OYIEII + 2APIBILINIETII. (62)

Recalling from the proof of Lemma 1 that |E (e) < E,, and that this implies \| = |L| < ax(8"),
so that L] < n'2a,(8"), inequality (62) may be strengthened to
v(td) < )P + AlllE] (63)

for |E (¢)) < k, where 0 < k < k", £* is such that ¥(k*) = 0, and where (k) and p are defined
as

YKr) :=cg ~ nnl/zl—;—tpl, (64)

pim 2 BTN () + dPI(D7TN + 2 PlIBKas" ), (o)

and k is an auxiliary parameter.

Application of Proposition 1 in a fashion similar to that in the proof of Lemma 1 now yields
the following result, which is stated for Eq. (16) for convenience.
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Lemma 8. Let (H1)-(H5) above hold, and moreover suppose |E (¢)] < E, (Eq. (34)). Then for any
5 > 0 there exists a bounded solution L (t.,€) to Eq. (16) with | L(t,€) — D*¢t)C(t)| < 6,
t > 0 whenever |E (¢)] < g (k)6 where g () is given by

-3/2f7-1/2 (%) (1)1/2
P Ca

g(K) ==mn (66)

forany 0 < k < k*

Proof: The Lemma follows by applymg Proposition 1 to Eq. (60) using the Liapunov function v
of (61) and the estimate (63) on v. Define M, of Proposition 1 as { [ € R"'" |1| < §}. Ine-
qualities _ (27), (28) imply that the set M  defined by ={l eRrRm™
1l < n'K7Y2(c,/c )% L and M, fit the set-up of Proposition 1. Eq. (63) is now used to show
that if [E(e) (= n"V2|E(e) ) < g¢(x), then v(t,]) <0 on M — M, . Proposition 1 and
Remark 2 now assert the existence of a solution ! (¢,e) of (60) with |/| < 6. Recalling the one-to-
one correspondence of solutions { of (60) and solutions L of (16) (see Eq. (59) and the definition
of X following (18)) completes the proof.

The reduced system (4) is now assumed uniformly asymptotically stable.

(H6) The null solution of the reduced system (4) is uniformly asymptotically
stable.

To apply Proposition 2, noce that (H4) 1mp11es the reduced system (4) has a quadratic
Liapunov function v(z)= g Ry(t)r with v(z)= -z So(t)r < 0 along trajectories of
T = Ay(t) (Eq. (4)). For a proof of this standard result and an explicit formula for R ((t) given
any positive definite S(t), see for instance Brockett ( [6], Theorem 6, p. 203). Choosing a
bounded S(¢), Proposition 2 and Lemma 3 now imply that the slow subsystem (15a) will be uni-
formly asymptotically stable if

IE () < min (x, 2 1S ). (67)
2[R, |
Define F, as
g (k) ISOI
F, = i , .
o = e, min 5 TR ) (68)

The main result of the paper may now be stated.

Theorem 1. Let hypotheses (H1)-(H6) hold. Then the null solution of the multiparameter singu-
larly perturbed system (1) is uniformly asymptotically stable for all e € H with |E (¢)l < E,
where E0 is the positive scalar given by

E,:= min (F,,F,E,) (69)

and F;, ¢ = 1,2,3 are given in Eqs. (34), (56) and (68), respectively.

V. CONCLUSIONS

The paper has presented a derivation of an explicit upper bound on a weighted norm of the
vector of singular perturbation parameters such that the multiparameter singularly perturbed sys-
tem (1) is uniformly asymptotically stable if this upper bound is met, under certain technical
assumptions. It is interesting to note that the assumption (H4) of bounded mutual ratios for the
small parameters was crucial in the derivation, as was hypothesis (H3) on the matrix D(t).
Indeed, it is easily verified that the upper bound obtained here vanishes in the limit that the con-
straint (12) on the mutual ratios disappears. This can be checked by taking the limit as §{ — oo
in (31), (33) to get £, — 0, implying ', — 0 by Eq. (69). The upper bound obtained by Khalil
(24} in the (nonlinear) time-invariant case suffers from this same type of conservativeness.
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Although hypothesis (H4) is valid for a large class of physical systems [21], it remains an
interesting and open question as to the extent to which it can be relaxed in the time-varying case.
In the companion paper [2], results similar to those given here are obtained for the time-invariant
case. This is achieved with no @ préor¢ restriction on the small parameters ¢;, so that the results
of [2] apply even under the multiple time scales hypothesis. Thus the conservativeness issue dis-
cussed above does not arise in the results presented in [2].
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