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ABSTRACT

Titleof Thesis: CLUSTERING ALGORITHMS FOR MICROARRAY DATA
MINING

Degree Candidate: Phanikumar R. V. Bhamidipati

Degree and year: Master of Science, 2002

Thesisdirected by: Professor John S. Baras
Department of Electrical and Computer Engineering/Institute for
Systems Research

Thisthesis presents a systems engineering model of modern drug discovery processes and
related systems integration requirements. Some challenging problems include the
integration of public information content with proprietary corporate content, supporting
different types of scientific analyses, and automated analysis tools motivated by diverse

forms of biological data.

To capture the requirements of the discovery system, we identify the processes, users, and
scenarios to form a UML use case model. We then define the object-oriented system
structure and attach behaviora elements. We aso look at how object-relationa database

extensions can be applied for such anaysis.



The next portion of the thesis studies the performance of clustering algorithms based on
LVQ, SVMs, and other machine learning algorithms, to two types of analyses — functional
and phenotypic classification. We found that LV Q initialized with the LBG codebook
yields comparabl e performance to the optimal separating surfaces generated by related

SVM kerndls.

We a so describe anovel similarity measure, called the unnormalized symmetric Kullback-
Liebler measure, based on unnormalized expression values. Since the Mercer criterion
cannot be applied to this measure, we compared the performance of this similarity measure

with the log-Euclidean distance in the LV Q algorithm.

The two distance measures perform similarly on cDNA arrays, while the unnormalized
symmetric Kullback-Liebler measure outperforms the log-Euclidean distance on certain

phenotypic classification problems.

Pre-filtering algorithms to find discriminating instances based on PCA, the Find Similar
function, and IB3 were also investigated. The Find Similar method gives the best

performance in terms of multiple criteria.
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CHAPTER 1: INTRODUCTION

1.1 Outline of the Thesis

Thethesisis organized asfollows.

Chapter 2 gives an overview of genetics and gene expression. It discusses DNA structure
and itsrole in protein synthesis processes. It also covers representative mechanisms of the

control of gene expression for the interpretation of genetic expression data.

Chapter 3 details large-scale expression analysis using DNA microarrays. Two popular
technol ogies — oligonucleotide and cDNA arrays, are explained. Based on the overview in
Chapter 2, the nature and analysis of microarray datafor gene functiona classification are

discussed.

In Chapter 4, we attempt to model the integration of the high-throughput microarray
technology and genetics databases in drug discovery and development processes. We give
abrief overview of traditional and modern drug discovery. UML use cases are developed to
model the requirements of a pharmaceutical discovery/analysis system. The overal system
architecture is described using package and class diagrams, including the behavioral

eements.

Chapter 5 gives an overview of supervised and unsupervised clustering algorithms for
expression anaysis. We outline two similarity measures — the log-Euclidean distance and
the unnormalized symmetric Kullback-Liebler measure - and their application in the
(supervised) learning vector quantization (LV Q) algorithm. We also give a brief

1



description of other learning techniques like support vector machines (SVM) and instance-

based |earning.

In Chapter 6, we compare different algorithmic implementations of important use casesin
microarray analysis from Chapter 4. Two types of analyses are considered — functional and
phenotypic classification. We give a description of the data sets, the methods and

performance measures used, and a summary of the resullts.



CHAPTER 2: GENETICSAND GENE EXPRESSION

The biological information in an organism is contained in the DNA molecule, which is
present in all cells. Cellular processes such as growth, replication, differentiation, and
response to environmental conditions, are controlled by the DNA sequence data and the

interaction of DNA with cellular compounds.

2.1 DNA Sructure and Function

In this section, we elaborate on how the structure of the DNA molecule plays avital rolein

regulating biochemical activities, and discuss mechanisms by which thisis carried out.

The DNA molecule consists of two strands of nucleotide sequences forming a double-
helica structure. Individua strands are composed of repeating blocks of deoxyribose sugar
and phosphate subunits forming the exterior backbone of the molecule, and a nucleotide
base on the interior. The two strands are held by hydrogen bonding between the nucleotide

bases, asshown in Fig. 2.1.



—Phosphats

Fig. 2.1 Schematic Diagram of DNA Structure[10]

Due to the pairing properties of deoxyribose to the phosphate subunit, the ends of each
strand have different chemical properties. The two strands run anti-parallel to each other,

thusimposing directionality to the DNA molecule.

The nucleotide subunitsin DNA are derived from afour-letter alphabet, viz., adenine (A),
guanine (G), cytosine (C), and thymine (T). An additional constraint on DNA structureis

illustrated by the complementary base-pairing rule; the nucleotide bases line up in such a



way that adenine on one strand corresponds to thymine on the other, and guanine

corresponds to cytosine.

2.2 Protein Synthesis

The nucleotide sequencesin aDNA molecule act as atemplate for synthesizing proteins,
enzyme mol ecul es catalyze these reactions. Most of the enzymes are proteins themselves,
with structural properties that render them suitable for specific cellular processes. The order
of reaction eventsin acell is determined by a combination of sequence information and the

presence of enzymes.

Sections of the DNA molecule called genes contain the information for synthesizing

specific proteins, which are essentially amino-acid sequences. The information for protein
synthesisis organized in nucleotide triplets called codons, defined by the four-letter DNA
alphabet. Codons act as the template for 20 different amino acids, aswell as start and stop

markersfor protein synthesis.

Gene expression is the physiological manifestation of the genetic makeup of an organism.
At afiner level, it isthe process by which information on ageneis used for protein
synthesis. It takes place in two steps. During transcription (Fig. 2.2), asingle-stranded
ribonucleic acid (RNA) molecule is synthesized based on the complementary genetic
sequence, in the presence of the RNA polymerase enzyme. The RNA moleculeis
structurally similar to the DNA molecule and is composed of the four-letter alphabet

AUGC, with uracil (U) in place of the thymine (T) base.



RNA polymerase

DNA

mRNA

Fig. 2.2 Synthesis of mMRNA during Transcription [10]

The RNA molecule from transcription, also called mRNA (messenger RNA), attachesto
ribosomes in the cytoplasm of the cell. In the second step called trandation (Fig. 2.3), a
molecule called transfer RNA (tRNA) with a nuclectide triplet complementary to any of
the mRNA codons forms a complex with specific amino acidsin the presence of the
aminoacyl-tRNA synthetase enzyme. By sequentia alignment of codon-specific tRNA
molecules, polypeptide chains of amino acids are constructed to form proteins from the

start to the stop codons on the mRNA molecule.



DNA

NA
polymerase

Ribosome

Fig. 2.3 Amino Acid Synthesisduring Trandlation [10]

The entire DNA sequence information in DNA is not useful for protein synthesis. A
significant portion is composed of non-coding regions, such as those that form regulatory
elements or garbage sequences between coding regions. Bacterial genomes, for example
have a very high codon density. However, an increase in genome size does not necessarily
indicate an increasein efficiency or quality.

2.3 Regulation of Gene Expression

Protein synthesis as described above, is afundamental and relatively uncomplicated
process. However, in order for the cell to respond to the environment and initiate higher-

level processes like growth and differentiation, complex regulatory schemes exist. Control



can occur at various stages of the protein synthesis process. In this section, we illustrate a
few well-known mechanisms of gene expression regulation and relate them to gene

function.

2. 3.1 Chromatin Structure

The chromatin is the fibrous complex of DNA and proteins within the nucleus. The
physica structure of the DNA in the chromatin can vary in differentiated cellsin an
organism, and result in enhancing or repressing the expression of specific genes. For
instance, the presence of compounds like histones, might affect the ability of RNA

polymerase and transcriptional regulatory proteins to access specific genes on the DNA.

2.3.2 Transcriptional Control

Repressionisatranscriptiona control mechanism to turn specific genes on or off and is
explained by the operon model of regulation in prokaryotic cells (cells having no nuclear
membrane). The model states that groups of genes coding for related proteins exist close to
each other on the DNA and are controlled by a single promoter region, where the
transcriptional enzyme RNA polymerase attaches itself. The operator region separates the
upstream promoter site from the genes. In the case of the lac operon, the constituent genes
code for enzymes to break down lactose. In the absence of lactose, aregulatory gene
upstream of the promoter codes for a repressor protein that binds to the operator region and
inhibits transcription initiation. When lactose is present, it forms a complex with the

repressor protein and detaches it from the operator site.



Attenuation is the mechanism by which the abundance of a protein inhibitsits own
transcription. This occurs in genesthat code for energy-consuming processes like amino-

acid production.

In activation, the binding of enhancer proteins near promoter and upstream regions of the

DNA enable the RNA polymerase enzyme action, thereby initiating transcription.

2. 3.3 Processing-level Control

Thisrefersto the relation between the coding scheme of genes and proteins. Proteins are
often encoded by members of a multigene family. A multigene family of genes arises by
undergoing modifications during evolution from a single ancestor. Such a set can code for

homol ogous proteins with similar functions.

2.3.4 Trandational Control

Trandation of MRNA can be enhanced or suppressed by the amount of the specific protein
inthe cell. For instance, iron is stored in the protein ferritin. When iron levels are low in the
cell, arepressor molecule binds to the mRNA for ferritin inhibiting synthesis. When iron
levelsin the cell rise, iron binds to the mRNA-repressor complex and detaches the

repressor protein, thereby enhancing the synthesis of ferritin for storage.

2.3.5 Post-trandational Factors
Protein expression varies even after trandation. The presence of an inhibitor in the
environment can repress protein function. Most proteins exist in an inactive state after

trandation and need to undergo polypeptide cleavage to become active. Some proteins may



also require activation through a combination with another molecule. The operation of

enzymesin the presence of a cofactor isan example.

Many other mechanisms of gene regulation at various levels of biochemistry exist, and
these may be specific to organisms. However, it isimportant to note that not all changes are
observable in gene expression experiments. Hence, knowledge of the metabolism,
phylogeny, and careful experimentation is required to draw meaningful results about gene

functional characteristics.
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CHAPTER 3: GENE EXPRESSION ANALYSIS

Based on the background on gene expression, we give abrief overview of the state-of-the-
art in microarray technology, and two different types of microarrays. We then discuss the
nature and applications of various gene microarray data. In the section on expression
analysis, we explain how microarrays can be related to molecular biology and gene

function.

3.1 Microarray Technology

Genetic analyses have traditionally been based on single-gene experimentsin order to
estimate the preferential expression of the gene in multiple experiments. With the
availability of the complete genome sequence information for some organisms, it is now
possible to simulate and study cellular control at the level of genetic interactions. The
DNA microarray is an experimental tool that combines genome information with chip
technology, and alows us to monitor specifically, the gene expression of thousands of
genes at the same time, in different environmental conditions designed by the

investigating biologist.

DNA microarrays give a quantitative measure of gene expression from all genesin atissue
sample, under avariety of conditions. To explore various genetic properties, experimental

methods need to be designed to map them to expression values.

Microarrays measure the ability of DNA or RNA sequences from a sample to bind (or

hybridize) to their complementary DNA sequences (cDNAS) laid out on a chip. Because of

11



complementary base pairing, measurement of the degree of hybridization between nucleic
acids provides good sensitivity and specificity in detection. This basic idearemaining the
same, two popular techniques exist to measure gene expression on microarrays. They differ
in the manner in which the sequences are prepared initially and are described in the

sections below.

3.1.1 Oligonucleotide Arrays

Oligonucleotides are nucleotide sequences that are 5-25 bases long. The oligonucleotide
array was the first microarray product devel oped by Affymmetrix. In a procedure similar to
semiconductor manufacturing, it uses photolithography techniques to synthesize nucleotide

sequences.

The entire chip isinitially covered with the photolithographic mask. The laser exposes
precise locations on the chip. The particular amino acid solution is passed over the chip and

binds nucleotides at these locations.

The masking agent is applied again and the processis repeated until sequences up to 25
base pairs are generated. Finally, when the fluorescently tagged DNA sequences are treated
with the oligonucleotides, the degree of hybridization is measured by the amount of

fluorescent emission following laser excitation.

A unique feature of oligonucleotide arrays compared to other microarray techniquesistheir
high degree of accuracy. They hybridize multiple independent oligonucleotides with
different segments of the same RNA. Two sets of (usually) ten probes, called the perfect
match (PM) and mismatch (MM) probe sets, are used with each pair differing in asingle

12



base ([7][5]). The MM probes, which act as the control, are supposed to display amuch
lower signal compared to the PM probes. Thiskind of redundancy leads to more accurate
results as averaging and outlier detection can be performed prior to quantitative eval uation.

Since the hybridization processis simple, these arrays have high reproducibility.

To generate oligonucleotide arrays, clearly, we need to know the entire sequence
information of genes and non-coding regions involved in the experiment. However, once
the sequenceis known, it can be used in genotypic analysis ([20]). For example,
resequencing known DNA by inserting minor modifications in the complementary
oligonucleotides can detect single nucleotide polymorphisms (SNPs), which are point
mutationsin DNA found in a part of the population. Similarly, such mutations can help in
identifying multiple forms of existence of longer sequences by partia matching. Another
advantage of the technique isthat since the sequence lengths are small, it is possible to

construct high-density chips monitoring relatively larger number of genes.

However, array synthesisis dow and expensive as it uses alarge amount of
photolithographic mask reagent during synthesis. These problems are overcomein cDNA

microarrays discussed below.

3.1.2 cDNA Microarrays

cDNA microarrays were first prepared by the Brown Lab of Stanford University. They
improve upon the oligonucleotide arrays by changing the layout strategy in a fundamental
way. Using purified mRNA transcripts from tissues, the reverse-transcription polymerase

chain reaction (RTPCR) is performed to obtain alarge number of gene-specific

13



polynucleotide clones. Thus, after purification of RNA samples and PCR amplification, the
clones are spotted on the array using a non-contact method similar to ink jet printing as

showninFig. 3.1.
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Fig. 3.1 cDNA Microarray Manufacturing [6]

RNA samples obtained from two samples - atest case and areference/control case, are
converted to cDNA sequences by reverse transcription. These sequences are then labeled
with two cyanine dyes Cy5 (test) and Cy3 (control). At this point, the array is
simultaneously hybridized with the fluorescently labeled cDNA from both samples. The
expression values are given by the relative degree of hybridization, which is calculated by

image processing software. For example, the two-color hybridization would yield red (ratio

14



Cy5/Cy3>1) when the geneisinduced, or green when it is repressed, or yellow when there

are no changes.

The cDNA method of fabrication is quick and less expensive compared to oligonucleotide
arrays, and allows the production of oligonucleotides longer than 500 base pairs. The
precise arrangement of spots leads to accurate signal measurement. The individual
expression values are normalized with respect to extracted subsets of closely related

samples.

One chief disadvantage of cDNA microarraysisthat it monitors the expression of relatively
fewer genes. Since hybridization ratios are not reliable when gene expression is compared

across chips, this poses an obstacle for large genomes.

Another problem with cDNA microarraysis that they are limited by the availability of
clonesfor the solid phase and the purity of RNA samples derived from tissues. Further,
cDNA microarrays require alarge quantity of RNA (usually 50-200 micrograms) per

hybridization [6].

3.2 Nature of Microarray Data

Since microarray expression data are going to be the basis for gene function prediction in
many applications, we list some of the limitations of microarrays and their rolein

experimental design.
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1. Thequality of microarray data depends on its mMRNA source. Tissue samples used
inin vivo experiments might be composed of inseparable cell types, and might

show large variability during replication of experiments.

2. With regard to time-series data, it isimportant to note that individual cycle times of
individual processes have order-of-magnitude differences. Expression analysis can
be used to reveal interactions at the gene-to-gene level but not at the level of
cellular processes/mechanisms. Based on the knowledge of biochemistry of the
experiment, sampling should be carefully designed to enunciate valid and
significant interactions.

a.  Unwinding of the helix ~ microseconds
b. Transcription ~ seconds

c. Trandation ~ minutes

d. Lifeof aprotein ~hours

3. A microarray dataset represents a snapshot of particular cell lines. Thiscell ‘ state’
varies significantly based on the environmental conditions, the stage of the cell
cycle, etc. Hence, it is essential to collect multiple data points for each gene and

base inferences on average values.

4. Measurement of MRNA transcript levels after hybridization might not be atrue
indicator of protein levels due to post-transcriptional factors (See Sec. 2.3.5). If the
proteins are synthesized, they sometimes might not have any physiological

conseguence in the experiment. In such cases, a combination of the knowledge of
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protein interactions and gene expression values might be a good indicator of gene

function.
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CHAPTER 4: USE-CASE MODELING OF MICROARRAY

ANALYSIS

4.1 Introduction

In this chapter, firstly, abrief description of processes in pharmaceutical drug development
isgiven. Theimpact of the high-throughput microarray technology on processesin
pharmaceutical research and development is explained. A UML systems engineering model
of an analysis system for modern drug development is devel oped, that captures the high-
level requirements. In the UML use cases, the main actors and their interaction with the
system are studied to build a structural model. From the UML model, we construct a
database schemafor microarray datamining. Finally, we look at alternate system and data

architectures for pharmaceutical analysisin an enterprise.

4.2 Overview of Drug Discovery and Development

The discovery and development of drugsinvolves severa stages, and careful planning and
allocation of large investments and time. A drug research plan might attempt to target an
untreated disease, or improve upon an existing drug using a novel approach. The decision
to pursue any project is based on criteria such as the immediate medical requirements, the

effectiveness of current products, etc.

According to the 2000-2001 statistics from Pharmaceutical Research and Manufacturers of
America (PhRMA), for every 5000 medicines tested, 5 of them pass on to undergo clinical

trias, of which only oneis accepted ([32]). Considering that the average development cost
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for asingle drug costs $500 million and 12-15 years and the fact that only 30% of marketed
drugs generate revenues in excess of development costs, it isimperative for pharmaceutical
companies to investigate the integration of new genomic technology in dealing with their

lifecycle cost breakdown.

4.2.1 Traditional Drug Discovery
Fig. 4.1 shows an approximate distribution of the timesinvolved in the stages of traditional

drug development [34].

Pre-clinical NDA

Clincal Trials Post-marketing

Eesearch Review

4 L Ea—
Ay 2-3 Awve Avg 10 years Ayg 15
vts 1yr meonths

Fig 4.1 Traditional Drug Discovery Life Cycle

Drug discovery is acomplex process with repetition and is characterized by many trials.
The processisinitiated by investigating the biochemistry of the disease. Drugs based on
biochemistry produce their desired effects by acting on small protein molecules called

receptors located in the cell membrane. Receptors monitor extra-cellular activity and are

normally activated by hormones, whereby they undergo shape modifications and trigger
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cellular responses. Since receptors are connected with signaling pathways, they are ableto

swiftly affect cellular mechanisms by reacting with drug molecules.

The molecular biologist uses biochemical pathways participating in the disease
pathophysiology to form a hypothesis about the chemical reactions involved. Common
drug targets chosen are those that code for enzymes, transporters, and hormone receptors,

since they can be easily controlled by small external molecules.

Feasible lead compounds are selected based on the knowledge of their structure and action.
A majority of these lead compounds arise from natural extracts, which have been
discovered and proven effective previoudy. The targets are purified and screened against a
variety of lead compounds. The lead compounds are filtered based on their effectiveness on
the drug target. They are then optimized by combinatorial chemistry techniques to form
new compounds with greater specificity. Pre-clinical testing involvesin vitro testing on
tissue samples and in vivo testing on anima models (when available) for compound
toxicity. This set of compounds is filtered further to evaluate their side effects, dosage, etc.

on alarger population during the long and expensive clinica trias process.

There are many drawbacks and implicit limitations in the above procedure, in the current
context. The selection of targetsis limited by the knowledge of their molecular function.
The proteins that some gene targets encode, like transcription factors, are not easy to
modulate. In the case when the molecular nature of the target is not known, random screens
are performed against thousands of |ead compounds, which consume resources, time and

expenses. By having alarge number of compounds after screening, the cost of testing is

20



carried over to the expensive development and clinical trials phases. In cases where pre-
clinical testing can be carried out in anima models alone, the same lead compounds might
not be effective in human tissues, as some receptors are very species-specific; thisrisk is

carried on to the expensive clinical trials process.

Research and pre-clinical testing are the steps where automation and new technology can
play an important role in reducing process times and carry-over costs. The sequencing of
the human genome, miniaturization and automation of key biological processes, high-
throughput techniques like microarrays and the increasing integration of public information

can dramatically reduce the time, risk, and expenses involved in the drug devel opment life

cycle.

Using microarrays, it is possible to screen lead compounds against al known genes and
filter out fewer compounds with greater accuracy and possibility of success. Thisis
illustrated below in Fig. 4.2 by the percentage expenditure in terms of compound and

development costs involved in these steps.
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In comparison with Fig. 4.1, the following is an estimate of how micro-array data
processing affects process costs and times for each stage of the life cycle, by bringing down

the number of pre-selected compounds ([33, 39]).

* Research & Pre-clinicd Testing: Average 18 months
e Clinica Trias (on human subjects): Average 5 years.

Some examples of the use of new technologies in drug discovery are listed below.

1. Sequenceinformation opens up alarge number of new feasible drug targets. It is
possible to conduct genome-wide experiments with microarrays, which have much
lower turnaround times compared to traditional polymerase chain reaction (PCR)
techniques. Gene sequencing from the human genome project is expected to

increase the number of gene targets for drug innovation from 500 to 3000-10000

8.

2. Diseaseslike lymphomaand viral infections require drugs that can target the
transcriptional mechanism. Genes related to such cases can be targeted using gene

expression profiling.

3. A single-nucleotide polymorphism (SNP) is a point mutation that represents a
subset of alarge population. SNPs are strong markers that can be used in
association studies to identify correlations between the presence of achromosomal
region and any trait such as a disease phenotype. Microarrays can be used to study

drug response in diverse genotypesin clinica trials.
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4. Pre-clinical trials can make use of microarrays to conduct toxicology experiments

and to study in vitro testing.

5. Since gene expressionisa clear indicator of function, functional prediction of target

genes can lead to rational drug design during the lead identification phase.

6. Geneexpressionin different experiments and acrosstime pointsisafair indication
of gene function. However, in some cases, MRNA levels might not give an

indication of protein levels, due to post-trandational factors (Sec. 2.3.5).

4.2.2 Modern Drug Discovery
Using scenarios of the use of microarraysin modern drug development, a detailed
description of the processes involved in drug discovery is given below. Based on this, the
flow of eventsisillustrated in the activity diagram of Fig. 4.3.

1. Target Identification and Validation
Target identification is an exploratory phase that involves hypothesizing disease-causing
genes with evidence that can arise from multiple sources. The molecular biologist usesthe
knowledge of biochemistry of the disease and associates known targets with new genes of
unknown function through information about DNA sequence, single nucleotide
polymorphisms (SNPs), and population genetics. In cases where little prior knowledge is
available, studies can be based on parallel results from model organisms, or differential
expression profiling of normal and diseased tissues. Information on pathways involving
these targets and sequence homology is aso used to suggest alternate genes that can be

attacked.
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In the target validation step, microarray-based experiments are conducted on the individual
genesto determine their molecular function and interaction with others under different
cellular conditions. They are then filtered by their cellular response and marked as potential

drug targets.

2. Lead Identification and Validation
Biochemical assays of target gene products are developed in a closely similar environment
for in vitro testing. Since the target function may be determined or unknown, they are
screened ‘rationally’ or through random screens against compound library. The compound

library is composed of thousands of synthetic chemicals and natural products.

Cell-based assays, on the other hand, represent animal and cellular models of the disease.
They are used for in vivo testing, and provide more accurate information on drug action
inside the body. While biochemical assays identify lead compounds for athreshold level of
drug action in relevant pathways, cell-based assays aso test their potency in being able to

act on cdllular models.

These lead compounds are filtered further by studying their specificity, cellular response,
toxicity, and other pharmacologica and chemical properties. These validated leads are
characterized by structural properties, which can be found from databases like MDL/ISIS.
Using combinatorial chemistry techniques, they are further optimized by synthesizing lead

compounds with these properties and improved activity on the drug targets.

3. Preclinical Testing
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Pre-clinical testing determines the toxic effects of a particular drug on secondary drug
targets, similar to the lead validation phase. Proteome analysis can be used to determine if
the cedll isin anatural state, or showing a specific response mechanism, or an unspecified
response. The subset of proteins showing the response can be analyzed further. These

results can support future characterization of lead compounds during the previous phase.

4. Clinical Trials
In this phase, the drug discovery processis reviewed and clinical trial experiments are

designed to be implemented in the following order.

a Phasel: Determine potentia side effects and dosage of the drug by
administering on 20-80 healthy volunteers.

b. Phasell: Determine effectiveness on a small number of volunteerswith the
disease.

c. Phaselll: Determine large-sca e effectiveness on 1000-3000 patients with
the disease.

d. Regulatory Review and Approval by the FDA.

e. Post-marketing surveillance: Medical practitioners continue to monitor the

drug’ s safety and efficacy over amuch larger population with the disease.
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4.3 System Description and System Requirements

A pharmaceutical corporation typically consists of hundreds of users of different
backgrounds such as biologists, chemists, bioinformaticians, clinical scientists, program
managers, and administrators. Users conduct analyses on project-related (transactional)
data such as from experiments, previous analyses, processes, etc. and aggregations of
project data (analytical) at the corporate-level. The applications implementing business
logic are handled by computing on distributed hardware. The broad requirements of an
analysis system within such an enterprise for the modern drug development process can be

listed as follows;

1. Datamining across distributed public and corporate databases.

2. Storage and retrieval of user-specific analyses.

3. Accessto archived and current project data such as process status, materials,
analyses, etc. for tracking and prediction in research.

4. (Restricted) Corporate-wide access ability for departmental data stored in apre-
defined schemal/format.

5. Controlled access to different users and customized interfaces for
visualization/data mining.

6. Ability to integrate modules of new functionality with minimal configurational
changesto the system.

7. Database-independent data and results transfer.
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4.4 UML Requirements Modeling

In this section, we model the high-level requirements of the pharmaceutical analysis system
with UML use cases. These use cases represent unit-transaction scenarios where the users
(actors) interact with system components during different phases of the drug development
life cycle. Knowing the nature of these interactions allows us to create the system structure
in terms of the datamodel for database system design. This processis an iterative one,
where the structureis related back to theinitia requirements model and modified if any

conditions are ambiguous or not met.

The following use cases attempt to model the requirements of a pharmaceutical corporation
in terms of microarray data processing as rigorously as possible. However, when we derive
the class structure from the UML model, some schema el ements such as lead compound
properties, storage of results from different public databases, and so on are deliberately |eft
‘masked’ or undetermined to keep the implementation from becoming too specific while

keeping the model as accurate as possible.

The main actors of the model include the product devel opment manager, computational

bi ol ogi st/chemists, molecular biologists, pharmacol ogists, chemists, clinical scientists,
technical managers, system developers, and lab managers. They relate to the drug
development processes that are shown in Fig. 4.3. The use cases are grouped by the users
involved in these major processes. Entities like the corporate knowledge base, public
databases, and transactional databases in the use cases denote subsystems, and are denoted
as actors and abstract entities themselves. They have adetailed structure for different

phases of the process, which will be derived in Section 4.5 on system structure.
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4.4.1 Use Cases Associated with a Biologist
4.4.1.1 FORMULATE TARGET HYPOTHESIS: This use case dealswith the
biologist’s research on feasible targets and results reported to the transactiona database.
The biologist queries public databases and the corporate knowledge base about the
biochemistry of the disease. The system collates information and returns the pathways
involved, disease categories, and related targets (genes, receptors, enzymes, and other
proteins). It aso retrieves experimental datafrom normal and diseased cells, and
treatments with several compounds, references, and so on. The biologist storesthe
results of the search, including the target, its type, associated diseases, and pathways

involved, in the transactional database.

4.4.1.2 IDENTIFY AND VALIDATE TARGET GENES: The use case provides
shared behavior for the specific use cases such as Find Similar, Find Discriminating,
Pre-filter and Cluster, and Search. It reports the results of experimental findings on
genes from (4.4.1.1) to the transactional database.

With the leads from (4.4.1.1), namely genesinvolved and corresponding experimental
data, the biologist performs different kinds of analyses. The biologist also specifies
experimental protocolsto obtain differential expression data on the activity of the
feasible targetsin normal and disease cells. The system retrieves anaysis results based
on the criteria and receives analysis reports about the resultant set of genes,
experiments analyzed, smilarity measure used, feature analyzed, threshold similarity
(if applicable), and data values used (raw values, normalized logarithmic vaues, and so
on)
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4.4.1.2.1 FIND DISCRIMINATING: The biologist triesto find (gene or chip)
expression profiles are able to discriminate two classes of profiles the most. The
system retrieves these classifier-boundary instances to examine their properties further
in context.
4.4.1.2.2 FIND SIMILAR: Thisisahigh-level casethat can be further specialized by
specifying qualifiers such as similarity in compound structure, gene sequence, target
structure, or microarray expression profile. The system uses appropriate or specified
anaysis agorithmsfor retrieval.
4.4.1.2.2.1 FIND SIMILAR PROFILE: The biologist triesto find similar
expression profiles over an experiment’ s chip set. He can also pick an interesting
profile, such as those obtained from (1.2.1) and find profiles, which are closest to it.
4.4.1.2.2.2 FIND SIMILAR TARGET: The computational biologist queries
structure databases like MDL/ISIS to find targets with ssimilar structural and
functional featuresto aknown one.
4.4.1.2.2.3 FIND SIMILAR SEQUENCE: The biologist queriesfor genes with
similar sequence to a given sequence. The system can return, for example, E-vaues
from BLAST searches for genetic sequences.
4.4.1.2.3 PRE-FILTER AND CLUSTER: This case builds on the previous two use
Cases.
The biologist queries genes with a chosen threshold activity or other criteria. Thisis
doneto eliminate redundant or irrelevant features and to increase the efficiency of
clustering. He then partitions (the algorithm, similarity measure, and number of
clusters can be specified) co-expressed profiles. He further analyzes the results by
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clustering over genes or chip profiles. The system executes server-side algorithms,
retrieves the results, and displays them in a visualization tool.
4.4.1.2.4 SEARCH: Like (4.4.1.2.2), thisis also a generic use case, which can be
specialized for searches on various criteria.
The biologist queries severa public databases and the corporate knowledge base and
executes toolsto find genes with high similarity in terms of sequence, structure, or
genetic linkage, to the available genes. For instance, the results of aBLAST query on
sequence similarity can be stored in the form of analysistype, gene sequence, BLAST
E-value, result set, and other parameters. The system collates information from
disparate databases and returns the results. The analysis reports stored by the system
will also have similarity measures based on multiple criteriaaong with those
described in (4.4.1.2).
4.4.1.3 BUILD DISEASE MODELS: The biologist accesses corporate/in-house and
public references, and builds disease models to simulate or predict the target’ s response
to different compounds, if the function of every genein al pathways where the target
geneisinvolved, is known. He stores his model in the transactional database. The
results from the target validation phase are submitted for the approval of the product

development manager.

4.4.2 Use Cases Associated with a Chemist
4.4.2.1 IDENTIFY LEAD COMPOUNDS: The chemist obtains the list of probable
drug targets from (4.4.1.3). He queries the in-house and public compound libraries and
references for target structure and previous results of effective structura (this
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methodology is called rational drug design) and other properties of compounds for
targets with known molecular function. For example, these include queries on structural
databases like MDL / ISIS. The system retrieves results and stores the hypothesis on
feasible lead compounds, listing the compound, its structure, the target and its structure,
target type, references, related diseases, and other compound properties.
4.4.2.1.1 PREDICT TARGET STRUCTURE: If the target site function is not known
in (4.4.2.1), the chemist and the computational chemist query the compound library
for functiona groups with awide range of structural properties and activities, and
perform experiments on the target by repeated addition of these groups (function site
mapping). The system executes algorithms to predict function and returnsthe
compound set. The results are stored in the form of the target, its predicted structure,
and its geometric and chemical properties. Then, suitable compounds are found as
described in (4.4.2.1).
4.4.2.2 PREPARE AND TEST WITH BIOCHEMICAL ASSAY S: The chemist
prepares the protocol for biochemical (in vitro) and cell-based (in vivo) assaysin
normal and diseased cells, specifying genes, compounds to be tested, organism,
experimental conditions, cell stage, etc. A request is submitted to the laboratory
subsystem. The system retrieves and stores the experiment information, the assay
protocol, and the datain the transactional database. The chemist filters compoundsin
biochemical assays based on aminimum level of drug activity over at least achosen
proportion of target genes. Further, he filters the compoundsin in vivo testing, based on
cross-validation with action on regulatory pathways and toxicity measurements. The
system retrieves information on pathways of the tested targets and other genesin the
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assay. The analysis results stored include the resultant compound set, experiments

analyzed, activity level, and threshold activity.

4.4.2.3 OPTIMIZE LEAD COMPOUNDS: The chemist studies the structural
properties of the lead compounds and synthesizes new compounds using computer
models of the reaction mechanisms and combinatorial chemistry tools. He documents
the rationale, synthesis procedure and uses the same assay protocol for testing. The

screen results are submitted for validation.

4.4.24 FORMULATE DRUG SYNTHESIS AND DOSAGE: The chemist implements
and records the procedure to make any novel candidate lead compound and tests the
purity of the product.

4.4.3 Use Cases Associated with a Phar macol ogist/T oxicol ogist
4.4.3.1 VALIDATE COMPOUNDS: This use case provides shared behavior for toxic
testing in the lead validation and pre-clinical testing phases.
The toxicologist filters compoundsin biochemical assays based on a minimum level of
drug activity over at least a chosen proportion of target genes. Further, hefilters the
compounds in in vivo testing, based on cross-validation with action on regulatory
pathways and toxicity. The system retrieves information on pathways of the tested
targets and other genesin the assay. The analysis results stored include the resultant
compound set, experiments analyzed, activity level, cellular response, pharmacol ogical

and chemical properties, and threshold activity.



4.4.3.2 DETERMINE TOXIC EFFECTS: The pharmacologist and toxicologist
perform toxic studies on primary and secondary drug targets as described in (4.4.2.3)
on animal cells. They query proteome information to determine the nature of cell state.
They document characteristics such as cellular response and drug selectivity, potency,
and toxicity.

4.4.4 Use Cases Associated with a Clinical Scientist
4.4.4.1 DETERMINE STUDY PARAMETERS: In the clinical trias phase, the clinica
scientist determines parameters for drug experimentation such as normal dose ranges,
expected values, measurement techniques, and equipment required.
4.4.4.2 DEVISE EXPERIMENTAL PROTOCOL.: The scientist prepares a case report
form to study the drug effects on patients, prepares schedules, dosage, etc.

4.4.5 Use Cases Associated with a Lab Manager
4451 IMPLEMENT EXPERIMENT PROTOCOLS: The lab technician obtainsthe
experimental protocol for microarray and assay development from the drug discovery
team. He co-ordinates and documents procedures for sample preparation, hybridization,
normalization, quality check, etc. using aLIMS (Laboratory Information Management
System) tool. The system stores the raw experimental data in the transactional database.

4.4.6 Use Cases Associated with a Product Development M anager

The Product Development Manager oversees the progress of different project groups

working in the firm.
4.4.6.1 CONDUCT FEASIBILITY ANALY SIS: The manager picks a preliminary
research area based on the current demand, knowledge of competing brands, etc. He
gueries the corporate knowledge base for availability and potential of compoundsin the
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company’s compound libraries for new products, and the performance and viability of
similar projects. He then initiates a research project. The system collates information
across projects, analysisresults, financial and other corporate data for business
decisions.
4.4.6.2 ALLOCATE RESOURCES FOR PROJECTS: With simultaneous drug
development projects in progress, the manager allocates personnel to specific project
phases. He makes decisions on manufacturing or purchasing resources such as
chemical compounds, assays, etc.
4.4.6.3 MONITOR THE PERFORMANCE OF PROJECT GROUPS:; On the basis of
the performance of ongoing and past projects, the manager can alow or revoke the
continuation of a particular project phase. For instance, this might be in the form of the
following queries. *Which projects have been more productive in terms of the number
of leads?
4.4.6.4 CONDUCT PEER REVIEW: The peer review team, involving the product
manager, reviews the analyses results at different checkpoints during the drug
discovery life cycle. They approve the transfer of new results at the end of individual
sub phasesinto the corporate database, and alow other research teams to make use of
these resullts.
4.4.7 Use Cases Associated with a Computational Biologist/Chemist

4471 HND SIMILAR:

4.4.7.1.1FIND SIMILAR TARGET: (Asin4.4.1.2.2.2)

4.4.7.1.2 FIND SIMILAR COMPOUND: The computational chemist triesto find

compounds with similar activity and physical propertiesto acompound known to
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produce desired therapeutic response on a given target. He performs alarge number of
experiments with awide variety of compound chemistries. The system runs
correlation methods like QSAR (Quantitative Structure Activity Relationship) and
stores the resultsin the form of the target, the compound, its QSAR activity score, and
its structure.
4.4.7.2 PREDICT TARGET STRUCTURE: (Asdescribed in (4.4.2.1.1))
4.4.7.3 DESIGN LIBRARIES: The computational chemist uses combinatorial
chemistry techniques to determine compounds with high activity scores on a chosen
target. The results obtained are smilar to (4.4.7.1.2)
4.4.7.4 PREDICT COMPOUND PROPERTIES: (Similar to 4.4.7.1.2) The system runs
correlation methods like QSPR (Quantitative Structure Property Relationship) to
predict the chemical properties given the compound structure.
4.4.8 Use Cases Associated with a Technology M anager
4.4.8.1 ORGANIZE REQUIREMENTS: The technology manager represents the
domain experts from different areas of research and testing in the corporation. He
studies new technology and current shortcomingsin the system, and prioritizes new
requirements from different users. He communicates with the system developer to
assess and improve the structure and functionality of the system.
4.4.9 Use Cases Associated with the System Developer
4.4.9.1 OBTAIN REQUIREMENTS: The developer obtains requirements from the
technology manager, and interacts with him to understand how the system will be used.

Changesto the system are to be made incrementally, after new requirements comein.
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4.4.9.2 DESIGN KNOWLEDGE BASE: The developer designs the database to
organize current as well as archived data and results. He creates a client-server model

of microarray analysis, and designs the interfaces for different users.
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4.5 System Sructure

The UML use case model described in the previous section used very abstract definitions
of the system components that the actors interact with, like the TransactionDB and the
CorporateKB. This section goes into more details by first grouping use cases based on their
interaction with the analysis system and deriving a package diagram for system

architecture. Theindividual classes are then defined to create the system structure.

4.5.1 Package Ar chitecture
The following lists the mapping between related use cases and the packages. Some of the
packages can directly trand ate to database schema, if al the congtituent objects are

persistent.
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1. Use cases such as Formulate Target Hypothesis (4.4.1.1), Find Similar Target
(4.4.1.2.2.2), and Predict Target Structure (4.4.2.1.1), chiefly involve querying the
in-house knowledge base on target properties such as the geometrical structure and
relevant pathways. Thisis characterized by the Target subsystem. The attributes
and operations of the Target class can be further specialized for individual target

types such as receptors, enzymes, and other proteins.

2. Inasimilar manner, Identify Lead Compounds (4.4.2.1), Optimize Lead
Compounds (4.4.2.3), and Find Similar Compound (4.4.7.1.2) use cases make
extensive use of a compound’s structural and chemical properties. The Chemical

Compound subsystem handles these features.

3. A large number of use cases such as those involved with target or compound
identification and validation retrieve and query archived experimental data. These
characterize the Experiment subsystem, consisting of diverse datalike raw data,
normalized expression values, etc. for many protocols, and array and experiment

types.

4. Many of the hypothesis-related use cases also use public genomic and structural
databases. The PublicData subsystem can consist of collated information from these
databases like pathways, structure, sequence, and homology information, which can
also be retrieved on-demand. It can also provide access to Internet-based tools like

BLAST for sequence comparison.
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5. Frequent upgrades of the public databases, archiving validated information or
completed projects, as well as access control privileges and maintenance is handled

by the DB Administration subsystem.

6. TheLIMS subsystem deals with |aboratory techniques and protocols in the

acquisition and preparation of diverse samples, assays, and microarrays.

7. Finaly, the documentation of analysis steps and results from use cases in the target
and lead compound identification and validation phases, are stored in the Analysis
subsystem. This might also consist of archived results from use cases like Predict
Target Structure (4.4.7.2), Design Libraries (4.4.7.3), Predict Compound Properties
(4.4.7.4), Conduct Feasibility Analysis (4.4.6.1), and so on. The storage of datain
this subsystem can be similar to a data warehouse and is used by al the mgjor users
of the system, making it the most important component of the system. It may be

further specialized for target and compound analyses.

Fig. 4.8 shows the high-level package diagram for the analysis system. The arrows indicate
the dependency of packages on each other. The following section discusses the individual

classes in each subsystem.



4.5.2 Class Diagrams
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Fig. 4.8 Package Diagram

<<Top-level Subsystem>>
PHARMA. ANALYSIS SYSTEM

Figures 4.9-4.11 show the class models for the subsystems outlined in Sec. 4.5.1. Inthis

section, we will be concerned about the data model alone. The operations defining the

behavior of classes are discussed in Sec. 4.6.

A representative structure of classes in the Public Data subsystem is shown in Fig. 4.9. This

might involve collated information from knowledge bases like the characteristics of a
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disease in Disease Phenotype and the MY GD (MIPS Y east Genome Database). Or, it
might include data from primary databases like KEGG pathways, and related genomic

information shown in Pathway, Pathway Map, and related classes.

Fig. 4.10 showsthe Target, Compound and Analysis subsystems. The classes Target and
Compound allow indexing across different chemical and physical properties. They can aso
be linked to an external structural database in the Public Data subsystem. The Analysis
class shown here stores areport of ascientist’s study. Thisleads to its documentation in
Anaysis Steps, of the experiments, methods used, and their parameters. As a specific
example in the case of target and compound validation, the TC_Analysis class extends the
Anaysis Steps classto include specific functions like finding significant genes’compounds
and search. The TC_Anaysis aso permits the execution of ad hoc queries through the
Random_Query interface. This extends the functionality to use cases like Conduct

Feasibility Analysis (4.4.6.1) for other users.

Finaly, Fig. 4.11 shows the Administration and Experiment subsystems. The former
merely shows the relation between large projects with many project groups and users.
Details regarding user restrictions and other maintenance criteria are not discussed further
here. The Experiment subsystem links the User class with experiments conducted by an
individual. Each Experiment class object corresponds to many individual chips

(environmental conditions) and each chip is defined by a protocol and parameter set.
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4.6 System Behavior

Modeling system behavior allows us to capture what the system does, without specifying
the actual implementation used. It thus allows us to simulate time-dependent execution of

different scenarios and study them for correctness and efficiency.

In Sec. 4.3, we defined the system requirements that specify behavior at the highest level.
In this context, we now define the low-level functions, their inputs and outputs, and their
ordering through functional flow block diagrams, as applied to common microarray data

processing.

Fig. 4.12 showsthe functional flow block diagram (FFBD) for microarray data anaysis, as
a state-chart diagram. Each block indicates a state, and defines its main action. The arrows
indicate transitions between states, which might be based on selection criteria, be
concurrent (AND condition), or be optional (OR condition). The corresponding input-
output diagram for each functionis shown in Fig. 4.13. The order of operationsis

explained below.

The scientist imports generated microarray data and other experimental datafrom the
archivesin Function 1. The input to the function can be a gene or compound involved in
the Experiment database, or any other description. Expanding this function in Fig. 4.14, the

system should combine diverse experimental datainto asingle, standard format.

In the next step, the scientist tries to build a data model by applying transformationsto the

data, and fitting various modelsto it. This might involve the use of information from
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externa sources like sequence and structure databases, and the use of visualization tools as

detailed in Fig. 4.15.

He/she then picks clustering methods and applies the data transform appropriate to the data
model (Functions 6,7). A variety of filtering steps can be applied at this point to the data, to
eliminate redundant or noisy features and reduce the dimension of the dataset (Function 8).
Fig. 4.16 expands this function including filtering based on fold-variation, significant
features, and function. The output of this step isasignificant subset of features, whichis

used in clustering or classification in the next steps (Functions 9, 11).

The scientist analyzes the clusters obtained by unsupervised clustering using contextual
information from queries to external information sources (Fig. 4.17), while he usesthe
results of supervised classification directly for performance evaluation. For each type of
dataset, he/she tries different algorithms and varies their parameters. He/she then generates
areport of the findings and conclusions of the analysis, which can be made available to

other groups within the organization.
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We now map the overall system behavior as the operations associated with the classesin

Figs. 4.9-4.11. We illustrate the mapping between the behavior and the structure with
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examples from the class diagrams. By indexing over target structure, it is possible to obtain
targets with high structural similarity to aknown one. Thisis defined in the
FindSimilarStructure() operation of the Target_Structure class. Other related functions are
FindSimilarCompound() in the Compound_Structure class, and FindSimilarProfile() in the

Experiment class.

The operations on the Compound class like PredictADMEProperties() are derived from the
use case scenarios for the computational biologist/chemist. Such queries might also involve

other subsystems and require indexing across heterogeneous databases.

It isalso important to note that the class diagrams above show only persistent object
structure, and their constraints and rel ationships. By associating persistent object behavior
with the database, the processing of array data can be handled by the DBMS itself. The
advantage of this technique isthat processing can be carried out using the DBMS

optimizationsin parallel with the application.

ORDBMS products like Oracle 8 emul ate database server behavior by alowing the
operations to be coded in a database programming language like PL/SQL. The
implementation can a so be performed in modul es containing the class methods, such as
Oracle NCS Cartridges and Informix Data Blades. The features of the object-relational
model and database extensions are discussed in Sec. 4.8. Here, we list some of the common
data mining queries and the corresponding system responses derived from the UML

models;
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() What are the characteristics of a disease? (pathways, active compounds, known
targets, disease phenotype, references)

(i) What are the properties of known targets? (target type, structures, function,
chemical and geometric properties)

(@iif)  Which experimentsin MicroarrayDB involve the known targets and
corresponding active compounds? (ExperimentID, data format, expression data)

(iv)  Which genes have shown activity similar to known targets?

(V) Which genes are good discriminating instances across all experimentsin a
dataset?

(vi)  Which genes arelikely to be drug targets from a set of experiments, given their
sequence and structure?

(vii)  Which compounds are likely to show good activity, specificity and
pharmacological properties (for ADME tests) on these targets? (QSPR)

(viii)  What compounds in the libraries are likely to give a comparable performance to
an existing product?

(ix)  How will the activity of acompound be on a particular target given their
structure? (QSAR)

(x) Which drug research categories have high lead times?

4.7 System Architecture Summary

In this section, avariety of system architectures are studied, to determine how they meet

the high-level requirements outlined in Sec. 4.3.

56



A simple two-tier client-server architecture (Fig. 4.18) distributes the functions of user
interface (session tracking, console, display, etc.) and database management (application
execution). Both tiers share the process management functions such as process

devel opment, monitoring, and resources. Business logic is usually implemented as stored
procedures and triggers in the database management server. This architectureis
advantageous in offloading computational load on the client's side and reducing the amount
of datatransfer over the network. However, there are several shortcomings with this
approach. When the application resides on the client machine, it isdifficult to maintain
application versions and integrate new applications. Further, the implementation of
business logic, which is data-intensive, through stored procedures on the database server is
limited by the server's processing power as the complexity of computation or the number of
applications or users increases. WWhen processing occurs on the server, itslink with the
client iskept alive through 'hello’ messages, increasing network load. Typically, the

performance of atwo-tier architecture deteriorates beyond one hundred users ([36]).

Two Tiers

Lser System Interface
+ Som¢ Procesaing
Mana gement

D ahase Managem ent
+ Som e Processing
hhanagem an

Fig. 4.18 Two-tier Client/Server Architecture[36]

The three-tier client-server architecture (Fig. 4.19) overcomes some of these limitations by
incorporating an additional application services layer asthe middletier. It handles
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application execution and queuing, allowing the client to detach itself from the database
server during processing. Now, each client application is linked with multiple applications

and upgrades can be performed with minimal configuration changes.

The three-tier architecture can be extended for example, by considering further abstractions
of application management at the level of project phases or scientific analyses, leading to a
n-tier architecture. Though such architectures have desirable propertiesin terms of
scalability, reusability, and abstraction, the structure causes the application code design to
become very complex. Thisis especidly true in handling data transfer operations while
collating heterogeneous databases and communication between applications in different

programming environments.

Fig. 4.19 Three-tier Client/Server Architecture[37]

The distributed-object computing model incorporates an object-oriented approach in
handling such problems. It partitions applications into components interacting with

particular elements of the architecture. For instance, an algorithm mining microarray
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expression data can be divided into database-intensive and algorithmic components, and

these can be executed on specialized hardware.

Distributed computing architectures like CORBA (Common Object Request Broker
Architecture) provide the abstract IDL (interface definition language) utility, which
allows communi cation between heterogeneous objects such as applications written in
different programming languages, different database management systems, and
platforms. The CORBA architecture (Fig. 4.20) also provides services like object

lifecycle management, naming, and persistence.
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Fig. 4.20 CORBA Architecture [38]

4.8 Data Architecture and Database Extensions

Bioinformatics applications involve heterogeneous data, such as pathway diagrams,
nucleotide sequences, molecular structures, and diverse microarray data formats. A large

number of queries derived from the use cases collate information across different data
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types and finding patterns in uncommon data types like molecular structures, gene

expression, and so on.

The traditional relational data model is restrictive in modeling the structure of data and
such queries based on particular properties would need to be implemented as part of the

application behavior, thereby increasing complexity and execution time.

The object-relational data model provides several extensions to the relational and object-

oriented models:

The ability to implement restrictions on data types as subtypes.

Encapsulated data types, which can be extending from the base types, and can be

implemented by separate indexing and access methods.

Complex objects and collections like nested tables, typed columns, references, and

function indices.

More complex rule mechanisms compared to relational triggers.

The following examples show how object-relational database extensions can be designed

to handle bioinformatics queries:

Operator and function notation in place of indices. E.g. NearestNeighbor()

User-Defined Aggregates: E.g. Centroid (smilarity)

User-defined Comparison Operators. E.g. MoreSpecificThan()
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CHAPTER 5: LEARNING ALGORITHMS

5.1 Introduction

In this chapter, we discuss afew algorithms that implement by the system behavior
described in the previous chapter. We begin with a description and properties of a new
similarity measure for gene expression data based on raw, un-normalized values, called the
Symmetric Kullback-Liebler smilarity measure. In the later sections, we describe the

analysis methods.

5.2 Similarity Measures

The database behavior described in Chapter 4 required severa agorithmsinvolving search,
indexing, and clustering procedures. With a variety of microarray manufacturing
techniques, this requires the devel opment of appropriate measures of similarity of gene

expression.

5.2.1 Microarray Expression Data

In particular, we look at two types of microarrays - cDNA and oligonuclectide arrays. An
expression value from a cDNA array represent the lognormal ratio of the amount of RNA
present in an experiment sample to that measured in a control sample. Oligonucleotide
array expression values indicate the average difference between (approximately 10)
replicate probe pairs containing the perfect match (PM) and mismatch (MM) vaues[7].
Because of manufacturing technique and standardization procedures, oligonucleotide arrays

have a very high reproducibility compared to cDNA arrays as explained in Sec. 3.1.1.
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5.2.2 Probabilistic Models of Microarray Data

With common microarray technologies, it has been noted that the log-values of expression
datafor afunctiona class or a phenotype, roughly follow the Gaussian distribution ([9]). In
our analysis, we aso implicitly assume conditional independence. Thisis areasonable
assumption since we focus on classification based on co-expression and are not trying to
infer higher-level genetic interactions. Thusthe likelihood of a set of mgenes{g} with
expression values D = {x;j} over n experiments, where] indicates the experiment index,

belonging to aclassk isgiven by -

P(D |,Uk’0k2) = Ij P(y, kaakz),

Yi :{)ﬁj}y j=1..,n

It has been shown in numerous experiments ([1], [2], [8], and [23] for example) that the
log-Euclidean distance over expression values has been successful in classification

problems.

5.2.3 Unnormalized Symmetric Kullback-Liebler Measure
In this section, we discuss the formulation and properties of anovel similarity measure for
microarray data, which was developed by A. S. Barasand J. S. Barasin [24,25] and

utilized in [23,25,26,27].

This measure is based on the relative entropy or the Kullback-Liebler (KL-) distance from

information theory, which measures the error (in terms of the excess number of bits
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needed) to represent arandom variable with adistribution g, given that its true distribution

isp. For arandom variable x, the KL-distance is given by

pP(x) _ P(X)
D | =E_log, 2%
(plla) = % p(x)log, —— TR

The KL-distanceis also known as relative entropy([30]). The relative entropy is

asymmetric and measures the deviation between the two distributions.

The unnormalized symmetric Kullback-Liebler measure quantifies the dissmilarity
between two expression indexes (over genes or experiments), so that it is symmetric and
thereis no need for normalization of the expression data; its novelty isthe latter property. It
is based on the un-normalized expression indexes like the average difference valuesin
oligonucleotide arrays and the fluorescence ratio of Cy5 to Cy3in cDNA arrays. We follow

[24,25] in describing it here.

Definition ([24,25]): The unnormalized symmetric Kullback-Liebler measure between two

expression vectors x and y of length N is defined as

v 1), log(x) |, log(y)
Dixlly)= Zz{‘ oa(y) ' Tog(x,)

X,y >0,i=1...,N
Properties ([24,25]):

1. D(x||y)20,if x,y >0,i =1,..,N
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D(x|ly) =0, iff x =y
2. D(x]ly) isconvex inthepair (X, ).
D(Ax +(1=A)% |4y, +@-A)y,) SAD(x, [l y) +@ A)D(x, || ;) where 0= A <1

3. Thereexistsaunique centroid c of aset S={x,}, k=1,..K of vectorsof length N

based on the unnormalized symmetric Kullback-Liebler measure given by the

solution of the following equation ([24,25]).

:%é—Li:l"”N,mmae

In

x|

X = %z x* isthe arithmetic mean, and x = exp{%z In(xk)} isthe geometric
k k
mean. Further, the centroid is bounded by the two means:

X <C<x,i=1..,N

The unnormalized symmetric Kullback-Liebler measure describes quantitatively the
dissmilarities between two expression vectors x and y, assuming either isthe true
distribution. It combines the value difference and fold variation (log-values) between the
two vectors, and can lead to a more accurate prediction across classes where genes have
widely varying levels of expression. With reference to the planar separating surfaces
formed by the log-Euclidean distance during classification, we note that the unnormalized

symmetric Kullback-Liebler measure leads to non-linear hyper-surfaces.
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5.3 Learning Algorithms

In this section, we look at specific algorithms for different types of gene expression

analyses. The chief properties of such agorithms should include:

Minimum inductive bias.

Ability to handle noisy and irrelevant attributes, and outliers.

Ability to handle different similarity measures.

Good initia hypothesis.

Ability to generalize well with limited training data.

5.3.1LBG/LVQ Algorithm

The Linde-Buzo-Gray agorithm (LBG) or the Generalized Lloyd algorithm [19] isasignal
approximation algorithm, which generates a codebook of centroid vectors. We use LBG for
unsupervised clustering in atree-structured manner ([15]). The algorithm startswith a
representative pattern of gene expression for the entire dataset and partitions the pattern
space by applying small perturbations at each successive node. At the sametime, it
iteratively optimizes the codebook at each level until the centroids at the level are
stationary. The stopping rule for LBG is based on the percentage decrease in the overal

distortion. The algorithm steps are listed below.

1. Given theinput matrix X, , initial learning rate &£, fix the number of codevectors

K =1 and the tree depth L=1.
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¢, =centroid(X)

1 S .
Y nZ:l:”xn ¢, |, Euclidean distance
l N 1 N M
Err, =—— > dist(%,,¢) =4 > > [(Xm = Gn) 109(X,) ~l0G(C,,))],
NM = NM ==
unnormalized symmetric Kullback-Liebler
measure

2. Node splitting: Set K = 2K, L=1, and for k=1,2,...K, initialize the codevectors at

the next level by

¢ =(1-&)g,
C2+k = (1+‘9)Ck

3. Set theteration index i=0 and EMM” = B
(1) Find the closest centroid to each data vector x; and the associated class C(x) as
C'(x)= argkmin(dist(x| ,G)).
(i) Update the codevector for the K classes. For k=1,...,K,
¢t =centroid({x: xOX,C'(XF K}).
Seti =i+ 1 and evauate the new error Err/ .
(iii) If (Err/™=Err))/Err/™ > &, goto step (i). Otherwise, for k=1,...,K, set ¢ =c, .

4. Repeat steps 2 and 3 until the desired number of levelsis reached.

Learning vector quantization (LVQ) [18,28,29] isaneura network learning method, which
uses the nearest neighbor rule to train the codebook. Itsinductive bias smply states that the

code vectors of aclass are closer to its instances.
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Each cluster from the LBG agorithm islabeled with the class that has the maximum
percentage proportion of membersin it. This codebook forms the input to supervised LVQ
training. The code vector closest to the training instance is moved at arate proportional to
the gradient of the distance, as per the LV Q1 competitive learning rule ([21]). The learning

rate is decreased uniformly with time. The LV Q agorithm steps are listed below.

1. Set theiteration index iter =1 and the learning rate o :_;ﬁ , Where g, istheinitia
iter

learning rate.

2. Pick arandom instance x and determine its nearest code vector ¢°. Update the centroid by

o= c® +aldistance(x,c°), h(xF C(x)
c® —aldistance(x,c°), h(x} C(x)

} ,Where 0< a <1, h(x) isthe class of the
nearest centroid and C(x) isthetrue class of x.
3. Repeat 1 and 2 until the centroids converge.

Being a gradient-descent algorithm, LV Q can converge to local minima. The performance
of LVQ strongly depends on theinitial codebook vectors. Hence, we expect that systematic

initiaization by LBG should outperform arandom initialization of K centroids.

The class boundaries formed by LV Q are composed of finite hyperplanes with the
Euclidean distance and of finite hypercurves with unnormalized symmetric Kullback-

Liebler measure.

67



5.3.2 Support Vector Machines

Support vector machines (SVM)[12] are classifiers based on statistical learning theory,
which map the input space to a high-dimensiona space of non-linear features. This
mapping isimplicitly made viaakernd function and all the computation is performed with

the input space vectors.

The SVM training algorithm generates hyperplanes in the feature space, whose margin is
optimized to obtain good generalization. Consider a data set composed of N expression
vectors <x;, yi>, wherey; denotes the label for the data vector x;. Using the notation from
[11], the problem of finding the weight vector w can be formulated as minimizing the

function
L(w) = | wiF, subject 0.y [wig(x) +5] 2Li =1...,N.

Here, the function ¢(x) maps the input vector to the feature vector. The dual formulation is

given by maximizing

N 1 N N .
Q@)= a, =522 vyaa K(x,x) subjectto
i=1 i=L j=l

N
Y ya,=0and 0<a; <C,i=1..,N.

i=1
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The a,’sarethe Lagrange multipliers and C is the regul arization parameter. Non-negative
a;’ s correspond to support vectors. K(x,X;) =@(%).¢{x) denotesthe kernel function

satisfying Mercer’ s theorem, which states that

“For all vectors x, z[1D (here, D istheinput domain), there exists amapping ¢ to the

feature space F, iff thefunction K (X, z) is symmetric and positive semi-definite [12].”

Kernel functions used in Chapter 6 arelisted in Table 5.1 below.

TYPE OF KERNEL | KERNEL FUNCTION

Linear Kernel K(X,X;) =<X,X, >+C

Polynomial Kernel K(%,%)=(<x,% >+c)°

<x =X >
Gaussian Kernel K()Q,X.):exp - 0—21

Table5.1 SVM Kernd Functions

The generation of SVM surfaces assumes no prior probability distributions and the solution
obtained is the global optimum. Thus, the accuracy of SVMs provides an upper bound for

gradient-descent methods like LV Q when similar hypothesis spaces are considered. They
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also have good generalization properties because SVM training minimizes the empirical

risk for a chosen hypothesis space.

Choosing a particular kernel function imposes arestriction bias on the analysis. Another
limitation isillustrated by the fact that the unnormalized symmetric Kullback-Liebler
measure does not satisfy Mercer’ s conditions and cannot be represented as akernel

function.

5.3.21B3 Algorithm

The IB3 agorithm developed by Aha et al. ([13]) is an instance-based learning agorithm.
It classifies new instancesin alazy manner, using a set of representative stored instances
called the concept description. The nearest neighbor rule is used to associate the test datato

the class of the closest stored instance.

IB3 eliminates the high computational cost involved in the testing phase of instance-based
methods by storing instances with good predictive strengths. In the training phase, the
algorithm stores misclassified instances in the concept description and associates a
classification accuracy for dl instances. The agorithm performs a statistical test to accept
or regject new instances based on the classification accuracy and the prevalence of the
instance strue class, thus eliminating noisy data. The final concept description generated
after one epoch isthus likely to contain instances a little farther from the class boundary
than methods like IB2, which store all misclassified instances. The agorithm steps are

described below.

1. Initiate the concept description CD = ¢.
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2. Loop over thetraining instances x[1 D

(i) For each y[OCD , evauate its distance dist(x, y).
(i) If there exists an acceptableinstance in CD,

Yoa = argmin[dist(x, y)] , y O AcceptableSet(CD)
y

Else:

Pick arandom number i of instances from CD and set Yy to the i-th most similar

instance.
(i) If class(y,,,) # class(x), add x to CD.
(iv) Update classification records:

For al y whosedist(y) < dist(y,,,) , update the classification record.

If the upper bound of y's accuracy accuracy™(y, Q,4eq) < Prevalence(class(y)),

discardy.

Elseif the lower bound of y's accuracy accuracy®(y, Q) 2 Prevalence(class(y)),

accept y.
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In[13], Ahaet al. have shown that the concept description set stores instances with high
classification accuracy, robustness, noise insensitivity, and high utilization (in terms of

classifying other instances during training).

IB3 has arestriction bias towards convex concepts. It shows poor performance with sparse
data sets, and is very sensitive to irrelevant attributes. However, it has minimal inductive
bias asit can approximate class boundaries with piecewise linear surfaces (with the
Euclidean distance). This feature makesiit suitable, for example, to learn informative
instances in pre-filtering steps. Compared to IB3, decision trees have a stronger bias as

their separating surfaces are hyper-rectangles.
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CHAPTER 6: RESULTS

6.1 Objectives

The aims of the experiments described in this chapter are asfollows.

Evaluate the performance of supervised classification of the LV Q agorithm with

LBG codebook initidization and SVMs.

e Compare the unnormalized symmetric Kullback-Liebler measure against Euclidean
distancein similarity-based algorithms with oligonucleotide arrays (the Find

Similar function).

» Evauate the performance of the similarity measuresin retrieving informative

instances (the Find Discriminating function).

»  Conduct experiments on two applications of expression anaysis - gene functional

classification and phenotype classification.

6.2 Description of Microarray Data

The three datasets used in testing the algorithms denote distinct applications in microarray

expression analysis, namely, phenotype classification and functiona classification.

6.2.1 Lymphoma Dataset
The lymphoma cDNA array dataset comprises gene expression patterns of genesinvolved

in different classes of lymphoma and normal cell linesfrom Alizadeh et al [1].
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The mechanism of cancer is characterized by uncontrolled growth and proliferation brought
about by mutationsto vital genes. Cancer diagnosis has traditionally been carried out based
on clinical and molecular evidence such as cell and tissue type, and heredity. However,
such information is mostly incomplete for evaluation or prognosis. It also leads to re-
validation or re-classification in some cases of cancer. By studying the phenotype or the
genetic signature of the set of relevant genes for a particular condition, using microarray
gene expression data, it is possible to understand the mechanism at the genetic level. Such

anaysisisrelated to pharmacogenomic studies to design customized drugs.

In[1], Alizadeh et a collect the gene expression in three classes of lymphoid malignancies:
diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic
lymphocytic leukemia (CLL), and genes relevant to lymphocyte and/or cancer biology, as

shown in Table 6.1. The notation is given below.

CELL TYPE | DESCRIPTION

DLBCL Diffuse Large B-cell Lymphoma
GCB Germinal Center B

NLT Normal Lymph Node/Tonsl|
APB Activated Periphera B

RAT Resting/Activated T

TCL Transformed Cell Line

FL B-cell Follicular Lymphoma
RPB Resting Periphera B

CLL Chronic Lymphocytic Leukemia

Table 6.1 Lymphoma Tissue Types
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The microarray dataset consists of expression values from 4026 genesinvolved in 96
subpopulations. Each data point X;; represents the logarithm of the Cy5/Cy3 fluorescence
ratio for genej in tissue samplei. The distribution of tissue typesin the sample dataset from

[1] isshownin Table 6.2.

DLBCL | GCB | NLT | APB | RAT | TCL | FL | RPB | CLL

#Arrays 46 2 2 10 6 6 9 |4 11
Cancerous | Y N N N N Y Y |N Y
Tissue?

Table 6.2 Tissue Sample Distribution

In the case of adisease or malignancy, pharmacological studies have found that functional
genes are likely to have a binary mode of operation.” Thus, in the identification of drug
targets, the biologist is only concerned with genes that exhibit discrepanciesin the
signature. That is, their expression is either unaffected by the cellular condition, or they are

inhibited.

6.2.2 Yeast Data

The second dataset consists of the genome-wide expression in budding yeast in response to
different cell cycle-related processes like the diauxic shift, sporulation, pressure and
reducing shocks. Since the expression values are representative of well-known cellular
processes, co-expression analysisis expected to yield genes that are regulated by a
common upstream transcription factor, belonging to a common metabolic pathway, or

coding similar proteins.
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Thisis an example of acase where genome-wide expression datais necessary to make
sound predictions about gene function. The yeast data from cellular processes hides
complex underlying mechanisms, which can be understood only by looking at the global

genome expression.

The microarray measures the expression of 6221 genesin the yeast genome, collected at 79
time points during the diauxic shift (shift from anaerobic to aerobic respiration), division
cycle, sporulation, and temperature and reducing shocks. A data point X;; represents the

logarithm of the expression of genei at time point j, as compared to a control.

In[4], Eisen et al. used pairwise-linkage clustering to show that genes of five functional
classes cluster together well based on expression data aone. These classes correspond to
the MY GD (MIPS Y east Genome Database) functional classes of tricarboxylic acid,
respiration (TCA), cytoplasmic ribosomes, proteasomes, helix-turn-helix proteins (HTH),
and histones. The HTH protein group is not expected to cluster well in this experiment, and
isincluded as a control group. Brown et a. [2] showed superior resultsin accurately
classifying these functional classes using support vector machines. The distribution of

genes across these classesis shown in Table 6.3.

FUNCTIONAL CLASS | #SAMPLES
Histones

HTH Proteins 16
Proteasomes 35
Respiration 27

T Private discussions with Novartis Pharmaceuticals
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Ribosomes 120
TCA 14

Table 6.3 Distribution of Yeast Functional Classes

6.2.3 Leukemia Data

These experiments from Golub et al. ([5]) attempt to differentiate between two types of
acute leukemias — acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML).
Traditional identification techniques for leukemia have been based on factors like the
morphology and the course of clinica trials. Microarray experiments have been shown to

provide a systematic understanding and make accurate prediction feasible as described in

[5].

There are two data sets available for training (class prediction) and testing (class
discovery). The training data consists of 38 bone marrow samples of adult leukemia
patients, of which 27 are of the ALL type and 11 of the AML type. Thetest datasetis

chosen independently, and consists of 24 bone marrow and 10 periphera blood samples.

The supervised learning algorithms are trained on a portion of the training set during cross-
validation experiments and tested on the remainder (class prediction). The separating
surfaces generated during training are also used to identify the type of leukemiain the

independent testing data set (class discovery).
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6.3 Methods

6.3.1 Supervised Classification

Supervised classification with LBG/LVQ, SVM, IB3, and C4.5 agorithms, is performed
using 3-fold cross-validation (except where indicated). Multiple runs with the data sets
have been used to determine parameters like the LV Q learning rate, number of epochsin
training, and the tree height in LBG.

The SVMTorch support vector machine software [31] used here is Ronan Collobert’s
implementation for large data sets and uses sequential minimal optimization (SMO). For
multi-class problems, SVMTorch trains each class with a one-over-all mechanism.

The IB3 agorithm implementation uses 90% and 68% confidence intervals for accepting
and regjecting instances respectively, when compared to the corresponding class frequency.
The C4.5 decision tree algorithm performs classification by repetitively choosing
atribute/value pairs, which minimize the overall entropy after partitioning the data space.
Quinlan’sinformation gain (or gain ratio to compensate diverse popul ations among classes)
can be used to select attributes at each step. The decision treeis then post-pruned based on

a user-specified threshold similarity, to avoid over-fitting.

6.3.2 Similarity-based Clustering
The log-Euclidean and the unnormalized symmetric Kullback-Liebler measures are
compared using asimple nearest-neighbor algorithm. We do not expect to see significant

differencesin the performance with cDNA arrays, as against oligonucleotide arrays.
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6.3.3 Comparison of Algorithms
In all methods described, we generate the confusion matrices and measure the overall

accuracy and the accuracy of individua classes.

The performance of two learning algorithms is compared by at-test. The average error rate
of two learning algorithms L, and L, , trained and tested on the same data sets S, and Ty is
given by

S[err, (L(S) e (L(S)) .

=1
Kia

The N% confidence interval for J to be an estimate of the true error differenceis given by

O £ty 1S5

— 1 c _ 32
where s, _\/K(K _1)kZ:1:(O'k o)

and t ., isthet-test value for two-sided confidence intervals [14].

6.4 Experiments

6.4.1 Lymphoma Data

Two types of classification are studied with the lymphoma data:

* Binary classification between cancerous and non-cancerous samples.

» Tissuetype classification based on global gene expression.
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InCai et a.[3], differential analysis based on genes known to be involved in B-cell

lymphoma, has been shown to have no significant impact on the classifier’ s ability to

recognize cancerous tissues. Hence, in both cases, we do not distinguish between the

selected genes based on prior knowledge. The C4.5 algorithm is expected to classify

cancerous tissuesif the genetic signature of a subset of genesis asufficient indicator.

Using the performance measure defined above, the results from the LV Q algorithm are

compared with those from other supervised learning techniquesin [3], viz., SYM and C4.5

decision tree, using 10-fold cross-validation.

6.4.1.1 Binary Classification of Cancerous/Non-cancerous Tissues

For both cancer detection and tissue type identification (Section 6.4.1.2) experiments, the

initial codebook generated by the LBG a gorithm consists of 16 code vectors and the LVQ

algorithm istrained for over 2 epochs.

Table 6.4 shows the typical performance of LV Q with the log-Euclidean distance for

cancer detection. These results on error average and variance are compared with results

from Cai et al. ([3]) using alinear-kernel SVM and a C4.5 decision tree. In Table 6.5, the

results from the LBG/LVQ agorithm are based on 10 cross-validation experiments, and

compare closely to the globally optimal SVM method. The LBG/LVQ agorithm givesa

much better and more stable performance compared to the C4.5 decision tree algorithm.

LVQ
CLASSIFICATION

TRUE
POSITIVE

TRUE
NEGATIVE

FALSE
POSITIVE

FALSE
NEGATIVE

Cancerous Tissues 72 22 2 0
Non-cancerous
Tissues 22 72 0 2
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Table 6.4 Log-Euclidean LVQ Classification Error for Cancer Detection using 10-fold

Cross-validation

LVQ SVM C4.5
Average Error 2 08% 1.04% 18.55%
Rate

Error Rate Std. 0.01% 0.03% 13.83%
Devn.

Table 6.5 Classification Error Comparison for Cancer ous/Non-cancerous Cells using

10-fold Cross-validation

6.4.1.2 Tissue Type Classification of Cancerous Cells

Table 6.6 and Fig. 6.1 show the classification of tissue types of cancer cells by the three
algorithms with 10-fold cross-validation. Asin the binary classification case, we see that
the LVQ agorithm initialized with LBG closely follows the performance of the SVM, and
both outperform the decision tree algorithm by alarge margin.

The overal error rate of LVQ is more than two times that of the SVM, in tissue type

classification as shownin Table 6.7.

CANCER TISSUE ERROR
CLASSIFICATION TP TN FPIFN oA TE
LVQ |8 |82 3 3 [6.25%
CLL SYM 11 |83 2 [0 [2.08%
C4a5[4 [79 |6 [7 [1354%
LVQ |42 [48 2 |4 [6.25%
DLBCL SVM 43 49 [T B [4.17%
C45[38 |46 |4 |8 [1250%
LVQ o 87 0 [0 [0.00%
FL SYM 9 86 1 [0 [1.04%
C455 85 2 |4 [6.25%
LVQ |6 88 2 [0 [2.08%
TCL SYM 6 |88 2 [0 [2.08%
C4a5[4 88 2 P [417%

Table 6.6 Classification Error for Cancerous Tissues using 10-fold Cross-validation
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8.00%
6.00%
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Cancerous Tissue Classification Error Rate

——LVQ
—=— SVM
C45

CLL

DLBCL

FL

TCL

——LVQ
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c45

6.25%
2.08%
13.54%

6.25%
4.17%
12.50%

0.00%
1.04%
6.25%

2.08%
2.08%
4.17%

Fig. 6.1 Tissue Classification Error Comparison

TISSUE CLASSIFICATION

LVQ

SVM

C4.5

Average Error Rate

9.72%

4.17%

29.17/%

Table 6.7 Overall Error for Tissue Type Detection using 10-fold Cross-validation

6.4.2 Gene Functional Classification from yeast data

The following simulation runs involve genes in the six functional classes mentioned in the
data description. The objectiveisto test the ability of the decision surfaces generated by the
algorithms and similarity measures to separate these functional classes. In this step, we
compare the ability of the LVQ and SVM agorithms in supervised functional

classification. The LVQ agorithm isinitiated with a codebook of 16 vectors and converges

after training over one epoch. We test the SVM method for three types of kernels—linear,
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Gaussian, and second degree polynomial kernels. In al cases, 3-fold cross-validation is

used.

Table 6.8 gives a description of typical training and test data distributions in the six

functional classes.

CLASS ID /

SIZE DESCRIPTION | TRAINING | TESTING TOTAL
1| Diverse 1493 746 2239
2| TCA 7 7 14
3 | Respiration 17 10 27
4 | Ribosomes 80 40 120
5 | Proteasomes 25 10 35
6 | Histones 8 3 11
7| HTH 12 4 16

Table 6.8 Yeast Data Set Distributions

Fig. 6.2 shows the estimated overall error rate and the 95% confidence intervals with
different algorithms. We can clearly see that the LV Q agorithm performs aswell asthe

SV M, though there is no significant difference between the two similarity measures. Thisis
alsoillustrated by the similarity in representative confusion matrices for the two distances
in Tables 6.9 and 6.10. The SVM agorithm with the Gaussian kernel hasthe least average
error rate, and also outperforms the unnormalized symmetric Kullback-Liebler LVQ

algorithm with 95% confidence.
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Estimated Overall Error Rate (95% Confidence) Comparison

8.000%

7.000%

6.000%

5.000%

4.000%

Estimated Error Rate

3.000%

2.000%

1.000%

0.000%

LVQ (Eucl.) LVQ (SKL) SVM (Gaussian) [SVM (Poly. deg. 2)| SVM (Linear)

—e— Average Error Rate 4.390% 5.490% 2.683% 3.780% 3.171%
Learning Algorithm /Similarity Measure

Fig. 6.2 Overall Error Rate Comparison with 3-fold cross-validation




CONFUSION MATRIX (TESTING) WITH SKL LBG/LVQ ALGO

PREDICTED/ACTUAL Al A2 A3 | A4 | AS|A6|A7
P1 728 7 10 4 2]1]0] 4
P2 0 0 0 0 0O]JoOo]oO
P3 0 0 0 0 0O]O]O
P4 5 0 0 36 0O]JoOoJ]oO
P5 13 0 0 0 8]1]0]O0
P6 0 0 0 0 0O]3]O0
P7 0 0 0 0 0O]O]O

746 7 10 40 10| 3 | 4

PREDICTED/ACTUAL Al A2 A3 | A4 | A5 |[A6|A7
P1 0.9759 1 1 0.1 |02 0] 1
P2 0 0 0 0 0O]O]O
P3 0 0 0 0 0O]Jo|]oO
P4 0.0067 0 0 0.9 0O]J]Oo]O
P5 0.0174 0 0 0 08| 0] 0
P6 0 0 0 0 OJ1]o0
P7 0 0 0 0 0O]J]O]O

Table 6.9 Confusion Matrix for LVQ Testing with the log-Euclidean Distance

CONFUSION MATRIX (TESTING) WITH EUCL. LBG/LVQ ALGO
PREDICTED/ACTUAL Al A2 A3 A4 | A5 | AG| A7
P1 736 6 9 3 3]1]0] 4

P2 0 0 0 0 0O]J]oOo]oO

P3 0 1 1 0 0O]O]O

P4 6 0 0 37 0O]J]oOoJ]oO

P5 4 0 0 0 71010

P6 0 0 0 0 0O]3]O0

P7 0 0 0 0 0O]O]O

746 7 10 40 10| 3 | 4

PREDICTED/ACTUAL Al A2 A3 | A4 | A5 |[AG6|A7
P1 0.9866] 0.8571]0.9]0.075]0.3|] 0] 1

P2 0 0 0 0 0O]O0]O

P3 0 0.1429] 0.1 0 0O]JoOoJ]oO

P4 0.008 0 0 109251 0 O] O

PS5 0.0054 0 0 0 071 0] 0

P6 0 0 0 ] O]1]O0

P7 0 0 0 0 0O]J]OoJ]oO

Table 6.10 Confusion Matrix for LVQ Testing with the Unnormalized Symmetric

Kullback-Liebler Measure
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Error Rate Comparison for Individual Classes

2.50%

2.00% X\

1.50%

1.00%

o 7 — \\/‘

000% Others TCA Respiration Ribosome Proteasome Histone HTH
—=— SVM (Gaussian) 0.85% 0.85% 0.37% 0.24% 0.37% 0.00% 0.00%
SVM (Paly. 2) 1.59% 0.73% 0.4%% 0.12% 0.37% 0.00% 0.49%
SVM (Linear) 0.98% 0.73% 0.37% 0.24% 0.37% 0.00% 0.49%%
—*—LBG/ILVQ (SKL) 2.20% 0.85% 1.22% 0.49% 0.24% 0.00% 0.49%%
—— LBG/LVQ (Eucl.) 1.22% 0.85% 1.10% 0.37% 0.37% 0.00% 0.49%

Fig. 6.3 Comparison of Error Ratesfor Individual Classesusing 3-fold Cross-

validation

Fig. 6.3 shows the error rate components for individual functiona classes. The helix-turn-
helix proteins are the control group, while the other five named classes are known to
respond to the conditions. We see that taking the standard deviation into consideration, the
methods are indistinguishable in all classes. All classes are able to classify histones,

ribosomes and genesin the tricarboxylic acid (TCA) cycle consistently.

6.4.3 Cancer Classification and Discovery in Leukemia data
Two types of experiments are conducted with the leukemia data — leukemia class prediction
with the training dataset and class discovery with the independent testing dataset. The

oligonucleotide array data used here measures the average difference values for each gene
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in an experiment against acontrol. The pre-processing step involves setting negative

expression values to 20; we do not exclude genes marked absent in certain experiments.

We primarily study the Find Discriminating function (Use Case 1.2.1 in Sec. 4.4), which
triesto filter asmall subset of genes, which are sufficient to predict a disease phenotype,
and which can be used to classify new phenotypes. We compare four different methods

using the following performance measures:
0] Cross-validation error with the training set.
(i) Overdl error with the independent testing set.

(i) Number of genes required obtaining certain prediction accuracy with the

independent testing set.

6.4.3.1 Prefiltering with the IB3 Algorithm

Asin the method described in [5], we choose the ideal expression pattern as the one which
isuniformly high in the ALL experiments and low in the AML experiments, and vice-
versa. We then pick genes{ g}, which have a close resemblance to this pattern ¢’, based on

the following similarity measure:

' ,uALL _/jAML
P(g,c) :O-iu_—g

AML
+
g Jg

We picked an arbitrary absolute threshold value of 0.5 to prefilter leading to 1331 ‘active’

genes.
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The class prediction tests now involve severa steps:

» Cluster with the unsupervised LBG agorithm and label the genes based on the

initial codebook.

* Pick informative instances from the clusters using the IB3 a gorithm.

» Filter acceptable stored instances with high predictive accuracy exceeding its class

frequency by alarge margin.

* Usethisset of ‘informative’ genesin clustering across experiments using the LVQ

and SVM algorithms.

Here, we note that we use the nearest neighbor rule to predict the class and do not take a

weighted vote from all the informative genes, asin [5].

The LBG agorithm divides the 1,331 genesinto 4 clusters and the IB3 a gorithm picks 59
and 66 instances of high-accuracy, with the log-Euclidean and the unnormalized symmetric
Kullback-Liebler measures respectively. The training data composed of expression
measurements of these genes across 38 types of leukemia, are used to train LVQ with 4

code vectors.

In asimilar manner, the set of informative genes from the log-Euclidean distance based

filtering, is used to train SVMs.
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The error rates from 3-fold cross-validation experiments with these training methods are
shown in Fig. 6.4. The log-Euclidean LV Q agorithm shows the best average error rate of

all agorithms.

The performance of LV Q agorithms before pre-filtering shown in Fig. 6.5 shows that IB3

is able to capture certain discriminative instances.

Average Class Prediction Error - Training Set

18.00%
16.00%
14.00%
3 12.00%
[
|
'5 10.00%
is|
g
b= 8.00%
w
&
© 6.00%
4.00%
2.00%
0.00% - : : -
Log-Euclidean | SKL Log-Euclidean |Log-Euclidean |Log-Euclidean
LBG/LVQ | LBG/LVQ | SVM (Linear SVM SVM (Poly. 2
Kernel) (Gaussian Kernel)
Kernel)
—— Average Error Rate 5.13% 15.81% 7.69% 7.69% 7.69%

Learning Algo/Sim. Measure

Fig. 6.4 Average Class Prediction Error over the Training Set
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Class Prediction Error-Training Set
25
20 A
~
8
5 15 T Val
=
S
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=
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9] T
0
LBG/LVQ LBG/LVQ LBG/LVQ (w/ PF) LBG/LVQ (w/ PF)
Log-Euclidean SKL Log-Euclidean SKL
—— Mean 13.03 20.94 5.13 15.81
Learning Algo/Sim. Measure

Fig. 6.5 Decreasein Classification Error with 1B3 Discriminative I nstances

Fig. 6.6 shows the performance of the learning a gorithms on the independent testing data
set using the same set of discriminating genes as in the training set. We find that both LVQ
and SVM algorithmsfail badly on the testing data compared to results from [5], indicating
adefect in the pre-processing steps and the retrieval of stored instances from IB3. Further,
we aso note that the unnormalized symmetric Kullback-Liebler measure leads to a

significantly poorer performance compared to the log-Euclidean distance on this data set.
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Class Discovery Error - Independent Testing Set

60.00%

50.00%

40.00%

30.00%

Classification Error

20.00%

10.00%

0.00%

Log-Euclidean SKL Log-Euclidean Log-Euclidean SKL
LBG/LVQ LBG/LVQ SVM (Gaussian Kernel) LBG/LVQ (w/ pre- LBG/LVQ (w/ pre-
filtering) filtering)
Error 44.12% 43.14% 43.14% 45.10% 48.04%

Learning Algo./Sim. Measure

Fig. 6.6 Classification Error Variation on the Independent Testing Data Set

6.4.3.2 Prefiltering with the Relative Distance

In this method, we compare the relative distance between the expression profiles of agene
inthe 27 ALL and 11 AML data sets, to filter ‘interesting’ genes. The objectiveisto
identify genes that have uniformly high dissimilarity between the two classes. The steps are

listed as described below.

() Eliminate gene profiles that are constant or show low variation (Thisfilters 483

genes).

(i) Randomly select 100 combinations of 11 ALL experiments corresponding to

each gene and evaluate their distance with the corresponding AML profile.
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(iii)  Sort the genes by the coefficient of variation H of the distances. Pick N genes

g

with the least value.

(iv)  Apply the LBG/LVQ agorithm to determine cross-vaidation error on the
training dataset, and perform unsupervised clustering with the LBG agorithm

on the independent testing dataset.

Fig. 6.7 shows the results of the method with the log-Euclidean and SKL similarity
measures. We find that by filtering to a much smaller subset of genes (N = 30-70) givesan
improved performance over classification with the independent testing dataset. The SKL
similarity gives a better performance with 30 and 50 discriminating genes compared to the

log-Euclidean similarity over the testing dataset.

Relative Distance Method - Class Discovery

60.00%

50.00%

40.00%

30.00%

20.00%

Mean Classification Error

10.00%

0.00%

N =30 N =50 N =70 N=M
—e— Rel. Distance (Log-Euclidean) 26.47% 20.59% 14.71% 52.94%
—s— Rel. Distance (SKL) 17.65% 17.65% 17.65% 38.24%

#Discriminating Genes

Fig. 6.7 Class Discovery Error with the Relative Distance M ethod
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Table 6.11 shows the best performance of the algorithm using 30 and 50 discriminating

genes; we find that both similarity measures perform similarly with this training set.

Find_Discriminating Error Mean/N =50 | Std. Dev. | Mean/N =30 | Std. Dev.
Rel. Distance (Log-Euclidean) 23.29% 12.95% 31.41% | 20.02%
Rel. Distance (SKL) 24.15% | 17.01% 29.06% 5.34%

Table6.11 Average Class Prediction Error with the Relative Distance Method and N

=50

6.4.3.3 Pre-filtering with Principal Components Analysis

Principal components analysis (PCA) is a second-order statistical method that finds linear
components of genes, called eigen-genes, which explain the maximum amount of variance.
PCA isinherently applicable to Gaussian data, and hence we use log-AvgDiff values based

on the assumption stated in 5.2.2 and [9].

Using singular value decomposition (SVD), it ispossibleto obtain K (=min(M, N))
combinations of genesfrom a (N genes x M experiments) dataset, which contribute to the
total variance in decreasing order. We use the profiles of these eigen-genesto determine the

discriminating genes as follows:

0] Eliminate gene profiles that are constant or show low variation and center the

dataset consisting of the log-values of Average Difference measurements.

(i) Perform SVD on the centered dataset.
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(i)  Pick the principal component PC; that explains alarge proportion of the
variance and is closest to the ideal reference vector (uniformly high in one class

and low in the other).

(iv)  Sort the genesthat are closer to PC; than other principal components by their

correlation with PC;.

(V) Pick thetop N /2 geneswith high positive and negative correlations to obtain

the discriminating genes.

(V) Apply the LBG/LVQ agorithm to determine cross-vaidation error on the
training dataset, and perform unsupervised clustering with the LBG agorithm

on the independent testing dataset.

Theresults of PCA pre-filtering and classification with the two sSimilarity measures are
shown in Fig. 6.8. We find that by filtering to amuch smaller subset of genes (N = 30-70)
gives an improved performance in classification with the testing dataset. The SKL
similarity gives amarginaly better performance with 30 and 50 discriminating genes
compared to the log-Euclidean similarity over the testing dataset. However, the best
training cross-validation error obtained in Table 6.12 with 50 genes indicates that the
principal component obtained from the training set is able to discriminate the experimental
profilesin the training dataset. There is no significant differencein their performance of the
similarity measures as expected (Sec. 6.4.2), since the same set of genesis used to train the

LBG/LVQ agorithm.



PCA Method - Class Discovery
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Fig. 6.8 Average Class Prediction Error with the PCA Method

Find Discriminating Error | Mean Error Std. Dev.
PCA (Log-Euclidean) 5.13% 4.44%
PCA (SKL) 5.13% 8.88%

Table 6.12 Class Discovery Error with the Relative Distance M ethod

6.4.3.4 Pre-filtering with the Find Smilar Method
The Find Similar method simply takes the ideal reference vectors for both the ALL and
AML cases, about the centroid of the expression profiles. It then findsthetop N /2 genes

that are closest to theideal vector according to the similarity measure.

Fig. 6.9 shows the performance of the method with the two similarity measures. The SKL
similarity classifies al experimentsin the independent testing dataset, with fewer (30)

discriminating genes, compared to the best subset (of 50 genes) with the log-Euclidean
95



similarity. Fig. 6.10 shows the performance on the training data; we find that a subset of 30
genes gives the least cross-validation error with both similarity measures. This shows that
the SKL similarity is able to give the least errorsin class prediction and discovery, with a

fewer number of discriminating genes, than the log-Euclidean distance.

Find_Similar Method - Class Discovery
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—e— Find_Similar (Log-Euclidean) 8.82% 8.82% 0.00% 52.94%
—=— Find_ Similar (SKL) 6.06% 0.00% 5.88% 38.24%

#Discriminating Genes

Fig. 6.9 Average Class Discovery Error with the Find_Similar M ethod

Find_Similar Method - Training Dataset
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Fig. 6.10 Class Prediction Error with the Find_Similar Method
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6.4.3.5 Comparison of Find Discriminating Methods
Fig. 6.11 shows a chart comparing the class prediction and discovery error rates of different
Find Discriminating pre-filtering algorithms and the basic LBG and LV Q algorithms run

on the entire dataset.

All these methods show a much-improved performance in detecting new disease
phenotypes against the base case, with avery few number of genes. The Find Similar
method, which compares the profiles in the gene set with an ideal gene vector, showsthe
best performance in terms of class prediction, class discovery, and the number of
discriminating genes. Significantly, the SKL similarity measureis able to perfectly
discriminate the two classes in the independent testing dataset, with 30 genes. It

outperforms the log-Euclidean distance with the LBG agorithm.

The relative distance method captures genes with large and relatively constant separation
between the expression profilesin the two types of experiments. Due to the large range of

expression values in this dataset and noise, this might exclude significant genes.

The PCA method suffers from similar problems as the base case. Since the gene subset is
obtained by the correlation with elgen-genes of the training data, it shows poor

generalization with the testing dataset.
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Comparisonof Overall Error with Find_Discriminating Methods
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Fig. 6.11 Comparison of Class Prediction and Discovery Error Rateswith

Find_Discriminating M ethods
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6.5 Conclusions

In thisthesis, we investigated processes in drug discovery through formal modeling
techniques from systems engineering. We built aUML use case mode to capture the
requirements of a modern drug discovery analysis system and the related systems
integration issues. We developed system structure and behavior, and discussed adternate
methods of implementation. The discovery of efficient clustering algorithms for any
particular type of microarray datawill lead to efficient indexing mechanisms over very
large experimental data sets. We also looked at database extensions that can handle new

datatypes and how they can be applied to biologica data.

The next mgjor focus of the thesis was the application of algorithms from signal processing
and machine learning, to the analysis of gene expression data. We investigated two
different types of analyses— functional and phenotypic classification, and found that the
supervised LV Q agorithm, with the LBG codebook initialization, shows very good
performance and is comparable to support vector machines, which are globally optimal
classifiers. We aso applied an instance-based |earning algorithm 1B3, and found good

results with the identification of yeast functional classes.

We also described a novel similarity measure for clustering based on unnormalized
expression data, called the unnormalized symmetric Kullback-Liebler measure, based on
the concept of relative entropy, and originally developed in [24,25]. Though there was no
significant difference between the unnormalized SKL measure and |og-Euclidean distance
with cDNA arrays (as expected), we found that the unnormalized SKL measure is able to

provide better performance with aleukemia oligonucleotide array data set. Different pre-
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filtering methods for finding discriminating genes based on the Find Similar function,
PCA, relative distances, and the IB3 instance-based |earning a gorithm, were studied. All
methods except 1B3 showed alarge improvement in performance with pre-filtering. The
Find Similar pre-filtering method with the unnormalized SKL measure and the LBG/LVQ
algorithm together gave the best performance in class prediction and class discovery, with

the fewest number of discriminating genes.
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