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This thesis deals with quantifying the resilience of a network of pavements. Calculations 
were carried out by modeling network performance under a set of possible damage-
meteorological scenarios with known probability of occurrence. Resilience evaluation 
was performed a priori while accounting for optimal preparedness decisions and 
additional response actions that can be taken under each of the scenarios. Unlike the 
common assumption that the pre-event condition of all system components is uniform, 
fixed, and pristine, component condition evolution was incorporated herein. For this 
purpose, the health of the individual system components immediately prior to hazard 
event impact, under all considered scenarios, was associated with a serviceability rating. 
This rating was projected to reflect both natural deterioration and any intermittent 
improvements due to maintenance. The scheme was demonstrated for a hypothetical case 
study involving Laguardia Airport. Results show that resilience can be impacted by the 
condition of the infrastructure elements, their natural deterioration processes, and 
prevailing maintenance plans. The findings imply that, in general, upper bound values are 
reported in ordinary resilience work, and that including evolving component conditions is 
of value.   
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Chapter 1: Introduction 
Networked civil infrastructures, such as transportation, water, and energy systems, are 
essential to the functioning of any modern society, and therefore must be resilient. 
Numerous works have focused on the development and quantification of resilience 
metrics, and some have proposed normative models for such systems. Common to 
their definitions is a concept of system-level coping capacity under multi-component 
damage due to, for example: extreme meteorological conditions, geological hazards, 
and human-made events of an accidental or intentional nature. Damage to the system 
may also originate from less extraordinary events. In this context, resilience is 
generally conceived in terms of the system’s ability to absorb damage thus continuing 
to serve the intended purpose, and recover within an acceptable time and cost (e.g., 
Holling 1973; Haimes 2009; The White House 2015; National Infrastructure Advisory 
Council 2015). 

An underlying and typically unstated assumption in treating resilience is that the pre-
event condition of all system components is uniform, fixed, known, and pristine. This 
means that resilience evaluations are, in effect, specific to the pre-event condition 
assumed at the moment of analysis as if the damage events were imminent. In reality, 
at a given point in time, the level of ‘health’ across components is uneven, with some 
offering a reduced inherent ability to endure damage. That is, infrastructure 
component integrity evolves over time. Two main governing and competing factors 
determine infrastructure integrity: (i) Progressive condition deterioration under usual 
service as a result of the combined effects of physical and environmental loading (i.e. 
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“wear-and-tear” and aging), and (ii) Maintenance activities that aim for partial or 
complete condition renewal, or merely for slowing the natural deterioration rate (i.e., 
preventative). Based on a thorough review of the literature (Faturechi and Miller-
Hooks 2015) which scanned over 200 articles, it appears that other than two works by 
Dehghani et al. (2013, 2014), no prior work on resilience or related performance 
measure computation has explicitly accounted for non-pristine integrity, timewise 
evolution, and subsequent unevenness in system component conditions. Dehghani et 
al. (2014) assessed expected network performance in terms of vehicle miles traveled 
and other devised vulnerability metrics over multiple randomly generated generic 
disruption scenarios involving link failures. Both papers discuss the need for 
condition-based vulnerability assessment as advocated herein, or more specifically, the 
need to incorporate each element’s condition in replicating link failure probabilities. 
Their application in (Dehghani et al., 2014) on a hypothetical example demonstrates 
that a range over network performance results from assuming different link probability 
failure distributions (i.e. all link failures are either uniform, beta or normal). Herein, 
this general idea of a need for condition-based assessment is furthered.  

This work proposes and demonstrates a condition-based resilience quantification 
methodology that incorporates component-condition evolution in a systems-based 
analysis. Resilience calculations, which may include resilience enhancing 
preparedness and response actions, are carried out under a set of possible damage-
meteorological scenarios with known probability of occurrence. Each scenario 
consists of hazard type identification, meteorological state, number of affected 
segments (damage extent), and damage severity in terms of required repair duration 
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and resources. The evaluation is performed a priori while accounting for optimal 
response actions that can be taken under each of the scenarios; preparedness actions 
that improve resilience are also optimized. To account for condition evolution, the 
health or integrity level of the individual system components immediately prior to 
hazard event impact (under all considered scenarios) is associated with a serviceability 
rating. This rating is projected to reflect both usual deterioration and policy-guided 
improvements due to maintenance. Impacts from generated damage-meteorological 
events are made to depend on the pre-impact serviceability ratings, exemplifying the 
added vulnerability of deteriorated components. The quantification scheme also 
captures the increased damage extent, extra repair costs, and longer repair times due to 
pre-event non-pristine conditions.  

Hereafter, pavement condition and its expression through serviceability is first 
described. Then, an existing concept of resilience is restated and subsequently 
expanded to incorporate component serviceability rating. The formulation is applied 
next to an airport case study to demonstrate the value and effect of including natural 
deterioration and maintenance policies in resilience quantification. Lastly, gained 
insights and main conclusions of the study are listed and discussed. It is important to 
note that the applicability of the concepts and general methodology presented herein 
transcend this pavements application, generally applying to a system of components 
whose conditions differ, deteriorate over time and are influenced by maintenance 
and/or replacement actions. Specific models of deterioration/serviceability, 
maintenance or renewal planning, or system resilience as throughput or other will 
differ based on the use, but the framework is designed to be generally applicable. 
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Moreover, it accounts for the system impacts of multiple link-based maintenance and 
resilience enhancements. 
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Chapter 2: Pavement Condition Evolution 
2.1 The Serviceability Concept 
Without repair actions, pavements progressively deteriorate with time. The decline is 
directly associated with structural or physical damage involving distress modes, such 
as: rutting, cracking, longitudinal roughness, and raveling. It therefore represents a 
timewise diminishment in coping capacity against damage events of operational (e.g., 
overloading), natural (e.g. flooding), or other causes. The degradation pattern is case-
specific as it depends upon the pavement design, as-built mechanical properties of the 
different layers, traffic intensity, and prevailing climatic conditions. 

The concept of serviceability is often employed in the pavement arena for quantifying 
infrastructure condition. The idea was introduced and developed during the 1960’s in 
conjunction with the AASHO road experiment (Carey and Irick 1960). In this 
experiment, different full-scale road sections were intensively trafficked for a period 
of two years by trucks of known weight, axle configurations, and travel speed. At the 
same time, the evolution of surface distress was closely monitored and recorded. A 
serviceability rating in the range of 5 (=pristine) to 0 (=worst possible), was adopted to 
quantify the condition of each road section from a user and structural perspective. 
Initially, the rating was based upon a subjective visual score given by a group of 
experts examining the ride surface (Present Serviceability Rating, PSR); it was later 
correlated with objectively measurable damage such as density of cracked or patched 
zones, longitudinal roughness, etc (Present Serviceability Index, PSI). In the AASHO 
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road test, a power-law expression was found adequate for all pavement types to 
describe the evolution of serviceability as a function of traffic loadings: 


 


 WSSSS fii )( ,               (2.1) 

where S  denotes the current serviceability rating, iS  is the initial serviceability rating 
prevailing immediately after construction, fS  is the final or unacceptable 
serviceability rating, and W  is the cumulative number of equivalent vehicle passes 
applied to the section up to point for which S  is calculated. In effect, if the traffic 
intensity is timewise uniform, W  may be seen as equivalent to age. The parameters   
and   are regression constants that embody the experimental setup, such as pavement 
layering arrangement and mechanical properties, prevailing environmental conditions, 
and loading characteristics of passing vehicles. By substituting fSS   it may be 
noticed that   equals the value of W at failure. Graphically, the deterioration pattern 
(i.e., the shape of S  vs. W  curve) depends upon the value of  ; for 1  the curve is 
an oblique line, for 1  the curve is concave, while for 1  it is convex.  

The AASHO deterioration function is well recognized and still widely utilized in 
engineering practice. At the same time it is deemed restrictive, incapable of correctly 
matching observed long-term pavement behavior, mainly because its curvature never 
reverses as needed (Fwa 1990). This shortcoming was later rectified by considering a 
slightly different equation capable of producing an S-shaped curve (Garcia-Diaz and 
Riggins 1984):  
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 n
fi

i t
SSSS )/(exp 

 ,   (2.2) 

wherein t  is the time since construction or time elapsed since most recent repair (i.e. 
when serviceability is iS ),   and n  are parameters controlling the deterioration 
pattern, analogous to   and   in Equation 2.1. Note that fSS   is approached only 
at infinite time. By setting %100iS  (i.e., pristine) and 0fS  (i.e., worst possible) 
the resulting serviceability curve can be viewed as a so-called survivor curve (Lytton 
1987; Stampley et al. 1995).  

Plots of Equation 2.2 over a 25 year period are included in Figure 2.1. Three different 
n  values (0.5, 1.0, and 2.0) are considered in Figure 2.1(a) for 7  years. Three 
different   values (5, 7 and 9 years) are considered in Figure 2.1(b) for 1n . As can 
be seen, Equation 2.2 is able to describe a pavement that progressively deteriorates - 
while switching between three different degradation rates. Initially, for a certain time 
interval, the degradation rate is very small - allowing the pavement to practically 
remain in pristine conditions. Next, the deterioration rate increases, causing a 
relatively quick drop in serviceability. Finally, the deterioration rate is arrested, 
slowing the drop in serviceability. In both charts the solid line indicates an assumed 
benchmark case, associated with 1n  and 7  years. This benchmark case depicts a 
realistic situation for a pavement with an initial serviceability rating of 100% that 
deteriorates to 50% serviceability after 10 years and to a rating of about 25% after 25 
years. Two pavement damage pictures are superposed over the charts, each associated 
with a different serviceability level. The association is approximate, merely provided 
to exemplify the physical meaning of the curves. The purpose here is to intuitively 
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reinforce the link between lower serviceability and infrastructure vulnerability to a 
hazard event.  

Also included in Figure 2.1 are qualitative ratings of infrastructure condition, ranging 
from “Good” to “Failed”. The descriptive scale is identical to that employed in the 
Pavement Condition Index (PCI) method (ASTM D6433 or ASTM D5340), a scheme 
often used by pavement managers (Shahin 2005). For the purpose of the current work 
a PCI index may be used in place of a serviceability rating, i.e., they are 
interchangeable.  

2.2 Maintenance 
The curves in Figure 2.1 essentially represent pavement condition under a no-
maintenance situation. When maintenance is applied at some point in time, it changes 
the shape of the deterioration curve. First, rehabilitation activities appear as a sudden 
jump in the curve, i.e., an abrupt increase due to improved serviceability. Further, 
maintenance work alters the subsequent shape of the deterioration curve. Realistically, 
pavements cannot be preserved at their original as-built serviceability levels 
throughout the life of the system. Hence, some decline in performance is allowed in 
the different network components before taking repair actions. Policies for 
maintaining deteriorating systems have been studied extensively (not necessarily for 
the pavement discipline), with numerous proposed model types (Wang 2002), e.g., 
age-based, periodic/sequential, failure/performance/condition-based, cost limited, 
repair-duration limited, opportunistic, etc.  
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Figure 2.1. Serviceability curves (Eq. (2)) showing the influence of: (a) n  parameter, and 

(b)   parameter. Superposed damage pictures illustrate the physical meaning of 
condition rating; image source:  Federal Highway Administration Pavement 

Distress Identification Definition Manual (2015)  
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In practice, pavement repair actions are scheduled according to a condition-based 
policy (Hajek et al. 2011; Air Force Civil Engineer Center 2014). Typically, a set of 
intervention rules is pre-stated, triggering a specific maintenance effort on the basis of 
the component condition level. An intervention rule associated with a high 
serviceability rating usually requires more frequent repairs but involves only 
preventive or minor rehabilitation. Triggering intervention at low serviceability levels 
typically implies that major and costly rehabilitation efforts are necessary. Research 
on this connection, e.g. Camahan et al. (1987), Madanat and Ben-Akiva (1994), has 
generally focused on maximizing cost effectiveness by optimizing decisions, such as: 
(i) how frequently maintenance should be applied; (ii) to what condition a pavement 
should be allowed to deteriorate before action is taken; and (iii) what best maintenance 
alternative to take for a given situation. Contributions in this field have also attempted 
to integrate condition forecasting into the optimization. 

Figure 2.2 depicts condition evolution for a pavement under a simplistic threshold-
based maintenance policy. The abscissa represents time and the ordinate represents 
serviceability rating. Starting from an arbitrary “current” rating, the condition is seen 
to degrade with elapsed time until a predefined threshold level is reached ( %60S  
in the case shown). This threshold designates a minimal acceptable serviceability 
rating for the infrastructure being considered. Repair intervention is therefore 
triggered, raising the rating to %100S . Then after, the pavement condition 
continues its decline, triggering a new repair intervention once the threshold is 
encountered again. This situation is repetitive/cyclic. The depiction in Figure 2.2 is 
deemed simplistic, because it presumes that the deterioration curve has identical shape 
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before and after repair, and because the pavement receives treatment at the exact 
designated timing - assuming all necessary resources are available for the repair. 
Without loss of generality, these simplifications are adopted for the current work. 

  
Figure 2.2. Illustration of a threshold-based maintenance policy     
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Chapter 3: Resilience Definition 
The literature is replete with qualitative discussions and quantitative methods for 
measuring system resilience, as well as other related system performance metrics, 
including: risk, vulnerability, reliability, robustness, flexibility, survivability, etc. See 
Faturechi and Miller-Hooks (2015) for a synthesis of articles proposing such measures 
in the context of transportation systems alone. The concept of resilience as adopted 
and computed herein considers two main features: (i) the system’s innate ability, based 
on the physical properties and topology/connectivity of its components, to cope with a 
disruption event that causes physical damage and (ii) the system’s ability to adapt 
through quick, cost-effective actions that can preserve or restore post-event 
performance/functionality. Both features are depicted in Figure 3.1, which 
schematically illustrates system performance vs. time before and after a disruption 
event; notice the time axis changes scale between pre- and post-event, from months 
(pre-disruption) to hours (upon disruption). As can be seen, the system’s post-event 
performance level after a time period with length maxT  is composed of two parts: (i) 
coping capacity - defined as performance level prevailing immediately after 
disruption; and (ii) adaptive capacity - defined as the improvement in performance 
level restored during maxT  for a given set of repair resources. Ultimately, resilience is 
defined with respect to a baseline. It is taken as the ratio of post-response system 
performance level at event time t  to pre-event system performance level for link 
serviceability levels at base time zero.  
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Figure 3.1(a) illustrates the commonplace assumption of a system that is initially (and 
at all times) in pristine condition (e.g., Bruneau et al. 2003). On the other hand, Figure 
3.1(b) depicts a system with fluctuating performance. This latter case is the non-
traditional viewpoint offered herein; it originates from evolving component conditions 
and varying component age. Consideration and inclusion of component conditions 
prior to disaster event in the resilience study of a networked pavement is the main 
contribution of this work. As can be seen, pre-event performance level for the system 
is imperfect, leading to poorer coping and adaptive capacities than seen in Figure 
3.1(a). 
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Figure 3.1. Approaches to infrastructure resilience: (a) pre-event system performance is 

timewise constant with all components in pristine condition; and (b) pre-event system 
performance fluctuates due to non-uniform component conditions 

A mathematical modeling approach proposed in Miller-Hooks et al. (2012) is used in 
this work, wherein resilience is quantified through solution of a nonlinear, two-stage, 
stochastic program. The stochastic program seeks to maximize the expectation of an 
indicator representing the resilience of the network (throughput in this case) over 
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possible disruption scenarios. That is, resilience actions are incorporated in the 
resilience computation, thus accounting for not only the innate coping capacity of the 
system, but also post-event adaptability in the disruption event’s immediate aftermath. 
Optimal mitigation and preparedness actions are determined in the first-stage prior to 
event realization, and scenario-dependent, optimal, remedial actions are chosen in the 
second-stage in the form of recourse. Recourse decisions are taken with full 
knowledge of how the event is realized. Availability, cost and implementation time of 
recourse options may also depend on the choice of preparedness actions. An integer L-
shaped decomposition method is applied to provide exact solution for the problem. 
This method decouples first- and second-stage decisions, eliminating bilinear terms 
that are the root of the nonlinearity. 

The contribution of this work (i.e. incorporating component conditions in resilience 
study) starts with failure probabilities with serviceability, the latter being governed by: 
age, normal deterioration curves, and maintenance policies. Specifically, the 
probability an adverse event will lead to component failure depends on the 
component’s serviceability level at the event time, and the ability of the system to 
provide services depends on its functioning components. Moreover, the cost and time 
for implementing repair or other restorative options post-event are also functions of 
pre-event serviceability rating. If a component is deteriorated, the effort required to 
return it to pristine condition will be greater than if that component were not 
deteriorated. This is in part because the effectiveness of the restorative options will be 
diminished once the component has deteriorated to certain levels. This integration of 



 

 
 

16 
 

component condition in resilience computation is described and demonstrated through 
a case study given next. 
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Chapter 4: Demonstration on Case Study 
4.1 Introduction and Design 
A specific case study is employed hereafter to demonstrate and assess the effects and 
value of incorporating evolving component conditions in resilience quantification. Use 
is made of a pavement system representing Laguardia Airport’s (LGA’s) taxiway and 
runway network. This choice builds on previous work (Faturechi et al. 2014), which 
was motivated by the fact that air transportation is one of fastest growing 
transportation modes worldwide. It is also driven by the particular sensitivity of airport 
operations to pavement condition. LGA contains two intersecting runways and 
supporting taxiways - as depicted in Figure 4.1. These components and their 
interconnectivity are represented by a 68-node, 104-link network.  
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Figure 4.1. LGA runway and taxiway network layout 

Resilience of the LGA pavement network was computed in Faturechi et al. (2014) 
with an implicit assumption of pristine component condition (pre-event). Figure 4.2 
synopsizes the employed modeling approach, and the reader is encouraged to consult 
Faturechi et al. (2014) for full details. In general terms, the model involves 
identification of a set of potential directed paths through the airport network for 
maneuvers between the gates and takeoffs or landings. Despite that each runway can 
be used in two directions, within a given period of time, runway operations are 
unidirectional for safety reasons. Thus, the model forces a choice of direction, a so-
called runway configuration, within a given time period. If an arc is damaged, its 
capacity to support the movement of an aircraft is zero; hence, only paths whose 
constituent arcs are undamaged or repaired can support flow.  
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Figure 4.2. Overview of stochastic program for airport pavement network resilience 

computation employed in Faturechi et al. (2014) 
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Consequently, for a given budget B and response duration maxT , resilience is 
computed as the ratio max,TB  of the expected number of landings and takeoffs to a 

comparable pre-disruption flow rate given by demand swD ,  for each maneuver w  
and aircraft type s , over all disaster scenarios . As defined in Figure 4.2, )(,, swg

pf  is 
the flow rate of maneuver w  for aircraft type s  in path p  under runway 
configuration g  and scenario  .   

 
   swsw

swgpPpsgw
TB D

fE swg
,,

,,,,~
,

)(,,
max

  ,   (4.1) 

The expectation is taken over a set of predicted disaster-meteorological event 
scenarios that may arise due to any one of a number of hazard event types, whether 
natural, accidental or malicious, with anticipated occurrence probabilities. First-stage 
decisions mitigate disaster impact and can support post-event repair opportunities (e.g. 
availability of materials, repair equipment, trained crews, and contracts with external 
resources). These decisions are be taken a priori with the knowledge that second-stage 
recourse (repair) decisions will be taken optimally a posteriori given the available 
resources, and knowledge of how the disaster-meteorological event unfolds. 

An overview of the computational framework, specified for the case study, is given in 
Figure 4.3. Similar to Faturechi et al. (2014), the scheme consists of three main 
modules: (i) scenario generation, (ii) mathematical modeling; and (iii) model solution. 
As part of the scenario generation, runway and taxiway link failure probabilities were 
made functions of serviceability as described in Equation 2.2. To capture 
serviceability levels as a function of component’s age and maintenance plan, 
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serviceability ratings )(tSa  were explicitly defined as a function of time t  for each 
runway or taxiway link a : 













 n

am

afaiaia

tt

SSStS exp
)( ,   (4.2) 

where amt  is the time of last maintenance before time t  which has brought the 
serviceability of link a  back to aiS  at that time ( amtt   at all times). aiS  is the initial 
serviceability condition typically taken as pristine, and afS  is the final (worst possible 
or ultimate) serviceability rating approached if no repair is applied typically taken as 
zero.  

Each scenario is defined in terms of damage severity and type (climate/geological, 
operational, natural deterioration, and terrorism), along with current meteorological 
conditions in terms of temperature, precipitation and visibility conditions. 
Meteorological conditions are described in terms of temperature, visibility, wind 
velocity and precipitation, which might affect potential damage causes and types. The 
causes also affect damage location and distribution of damage in multiple locations 
over the pavement network. The likelihood of an event falling within any of these 
causal categories depends on the geographical characteristics of the airport. A host of 
damage-weather scenarios are possible. To capture correlations between damage 
characteristics and meteorological conditions, conditional probabilities are employed 
in generating scenarios. The probability of each scenario is assumed to be known a 
priori. Specifically, let )( 0ap , )|( 0 dp  , )|( mdp  and )(mp , be the probability of 
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scenario 0 , probability of scenario given disruption type d , probability of disaster 
type  given meteorological condition m, and probability of meteorological 
condition m  for the given geographical location, respectively. Then, 

0( ) ( | ) ( | ) ( )ap p s d p d m p m    ,   (4.3) 
The failure probability )( tap   of link a , given disruption-meteorological event t  

arising at time t , is related to )(tSa  as follows: 

   )()(11)( 0 aata ptScp  ,   (4.4) 
where )( 0ap  is the failure probability of link a  at 100% serviceability (i.e. under 
pristine conditions) for given event type. As can be seen, the sought failure probability 
is governed by a positive proportionality constant c . This is a newly introduced 
parameter that links serviceability ratings to the formulation. Higher values of c  infer 
greater influence of component condition on failure probabilities. Note that if c  is set 
large enough, it is possible that a probability greater than one would be generated; a 
ceiling of probability-one is therefore assumed. If %100)( tS a  at all times, then 
the influence of c  is annulled, yielding the familiar assumption in the resilience 
literature: )()( 0 ata pp  . Similarly, the damage severity of link a  is captured 
through repair action implementation cost and time, which are also formulated as a 
function of the link’s serviceability level: 

   )()(11)( 0 aata btScb  ,          (4.5a) 
   )()(11)( 0 aata qtScq  ,          (4.5b) 
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in which )( 0ab  and )( 0aq  are implementation cost and time of repair actions in link 
a  with a serviceability rating of 100%. Their values depend on the event type. While 
the c  parameter was taken as identical across Equations 4.4 and 4.5, in a more general 
formulation this presumption may be relaxed.   

Given possible weather conditions and probability of their occurrences specific to 
LGA, disruption-meteorological events, resulting damage types (e.g. cracking, 
disintegration, distortion, loss of skid resistance), potential damage extent in terms of 
maximum number of affected segments, and repair actions required in each case were 
generated. Each disruption meteorological event gives a set of link failure probabilities 
which are used to randomly generate operational (one) or failed (zero) link states to 
create each disruption-meteorological scenario. An overview of the scenario 
generation process is given in Figure 4.3. Conditional probabilities capture 
correlations between damage characteristics and meteorological conditions. Thus, the 
result of scenario generation is the set of disruption-meteorological events with 
one/zero values for link functionality and characteristics associated to that disruption 
event such as the required repairs, available repairs, etc. Ultimately, resilience was 
assessed at 6-month intervals over a 15-year time horizon during which network 
component conditions continually evolved. 
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Figure 4.3. Diagram of case study resilience quantification 
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4.2 Case Study Specifics  
Presented in what follows are modeling details involved in resilience quantification of 
the LGA case study. First, a budget B  for emergency preparedness and response of 
$25,000 was assumed. Also, maxT  was set to 8 hours, and c  in Equations 4.4 and 4.5 
was taken to equal 1.5 (in lieu of relevant information from other sources this choice 
was based on preliminary run results). Resilience is measure of a system’s innate 
coping capacity and ability to adapt when confronted with a challenge. Thus, 
resilience is conceptualized here to include adaptive actions that can be taken quickly 
and relatively cheaply. Higher monetary and time budgets can be used; however, a 
system that would require significant resources for continued operations might not be 
considered resilient. Benchmark deterioration curve parameter set was assumed to 
hold for both taxiways and runways; with reference to Equation 4.2 these are 1n  and 

7  years. Two separate threshold-based maintenance plans (MPs) were considered. 
In MP1 rehabilitation actions are taken whenever runway serviceability reaches 80% 
and taxiway serviceability reaches 60%. This is consistent with a repair interval of 
about 4.0 and 7.5 years, respectively. In MP2 the rehabilitation thresholds were 60% 
for runways and 40% for taxiways. Respectively, these imply repair intervals of about 
7.5 and 13.5 years.  

With both MPs, runways are maintained at higher average levels than are taxiways. 
MP1 imposes more stringent rehabilitation demands as compared to MP2, and 
represents an airport pavement network that is, on average, in better condition. 
Moreover, the age of each runway at the beginning of the resilience analysis period 
was randomly set given ~U[0,4.0] and ~U[0,7.5] years for MP1 and MP2, 
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respectively. Similarly, the starting age of the taxiways was randomly set given 
~U[0,7.5] and ~U[0,13.5] years for MP1 and MP2, respectively. This procedure 
generated a realistic situation where the serviceability across the network is non-
uniform. 

MP1 and MP2 parameters are summarized in Table 4.1 which lists the initial ages of 
the different network components, as well as their associated serviceability rating and 
maintenance threshold. As may be seen, taxiways were grouped based on their 
orientation relative to the runways: parallel and perpendicular. Such distinction has 
some operational implication that is captured (internally) by the model. Condition 
evolution of taxiways and runways according to MP1 is plotted in Figure 5.1(a). 
Similar information for MP2 is included in Figure 5.1(c). Each chart includes four 
lines, representing changes in infrastructure serviceability over a 15 year period. 
Starting levels are dissimilar per Table 4.1 values. As can be seen, full rehabilitation to 
pristine conditions is presumed after a threshold is encountered, generating a repetitive 
pattern. Because starting serviceability levels are different, and because the 
rehabilitation threshold for taxiways and runways are different, the condition of the 
system at any point in time is spatially nonuniform. 
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Table 4.1. Details of Maintenance Plans 

Infrastructure 
Component 

Maintenance Plan 1 (MP1) Maintenance Plan 2 (MP2) 
Starting 

age 
(years) 

Starting 
Serviceabil
ity rating 

)0(aS  

Predefined 
Repair 

Threshold 
Starting 

age 
(years) 

Starting 
Serviceability 
rating )0(aS  

Predefined 
Repair 

Threshold 
Runway 1 3.1 90% 80% 3.8 84% 60% Runway 2 1.7 98% 1.1 100% 
Taxiway-
perpendicular 4.5 79% 

60% 
10.5 49% 

40% Taxiway-
parallel 6.2 68% 3.2 89% 
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Chapter 5: Results and Analysis 
The resilience indicators for the case study, calculated through Equation 4.1, are 
presented in Figure 5.1. Charts 5.1(b) and 5.1(d) display resilience calculation 
outcomes associated with MP1 (Figure 5.1(a)) and MP2 (Figure 5.1(c)), respectively. 
Each chart contains 31 values covering an analysis period of 15 years at 6-month 
intervals. The resilience values fluctuate due to differences in component conditions 
between the different evaluation times, and also because of the statistical nature of 
generating scenarios. Specifically, each point in the figure is computed from an 
average performance value over 360 randomly generated disruption-meteorological 
scenarios. Model runs might be repeated over additional sets of randomly generated 
scenarios to produce a range of resilience estimates or a single expectation over a 
larger set of possibilities. 
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Figure 5.1. Case study results: (a) evolution of serviceability according to MP1, (b) 

consequent system resilience under MP1, (c) evolution of serviceability according to 
MP2, and (d) consequent system resilience under MP2 

Two horizontal lines are superposed on each resilience chart, forming bands that 
encapsulate all run results. These lines represent a single upper bound (UB) evaluation 
and a single lower bound (LB) evaluation of the system resilience plus (or minus) two 
standard deviations that were calculated based on the spread in each case. The UB 
case denotes system resilience level with all components in pristine condition (pre-
event). It is therefore unaffected by MP specifics. The LB case denotes a system 
resilience level with all components at their worst allowable condition simultaneously 
- according to the governing MP threshold. This LB value will differ between MPs 
and in the case shown is slightly higher for the more stringent MP1. Note that while 
pristine conditions are presumed in the computation of the resilience upper bound, and 
worst acceptable serviceability for the lower bound, the resilience bound values are 
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computed over 360 randomly generated disruption-meteorological scenarios. Thus, 
they may vary as a function of the scenario generation output. The difference between 
UB and LB is about 17% for MP1 and about 20% for MP2. This difference directly 
depends on the value chosen for c  in Equations 4.4 and 4.5 and the set of generated 
scenarios.  

Overall, Figure 5.1 reveals that the network resilience changes over time between the 
upper and lower bounds with values that depend, among other factors, on link 
conditions, link natural deterioration pattern, and prevailing MPs. 
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Chapter 6: Conclusions and Future Work 
This work is concerned with quantifying the resilience of an airport pavement network 
while allowing for evolving component conditions. Application to a case study 
demonstrated that resilience is impacted by the initial condition of the infrastructure 
links, by their natural deterioration trends, and by prevailing maintenance policies and 
actions. The impact found was significant, indicating the need and value for such an 
approach. The method employed is flexible and can be further refined or compounded 
by, for example: (i) assigning different maintenance thresholds to different 
components or incorporating other repair policies; (ii) optimizing maintenance actions 
rather than assuming a given schedule or protocol; or (iii) using any one of a number 
of serviceability models, including stochastic methods for predicting future condition.  

Note that for other pavement networks, such as a roadway network, the adopted 
resilience metric would be modified. In the case of the roadway network, a measure 
based on vehicular throughput or travel time/delay could be employed. In the latter 
case, a bi-level programming formulation might be adopted where the lower level 
would provide link travel time estimates given post-event roadway conditions and 
chosen resilience actions. Refer to Faturechi and Miller-Hooks (2015) for roadway 
resilience estimation in which pristine conditions are implicitly assumed; such 
estimates account for user response to system changes. 

Even though a specific case and type of application were considered, the findings here 
are of general nature; they imply that earlier resilience works report UB values (refer 
to Figure 5.1). In other words, best-case resilience estimates are typically provided. 
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For the current formulation this is equivalent to annulling c  in Equations 4.4 and 4.5. 
Moreover, in light of evolving component conditions, the definition of resilience may 
also require reexamination. Resilience is typically quantified relative to a pre-event 
baseline signifying pristine system performance. Because component conditions are 
allowed to evolve, pristine performance is not realistically achievable, while at the 
same time pre-event performance fluctuates (see Figure 3.1). 

Commonly, optimization of MPs is based on life cycle cost analyses. A continuation 
of this work may include MPs that are associated with resilience quantification, i.e., 
investigating MPs in terms of effects on resilience. One option in this connection is 
making the MP a decision variable, with its own budget, and integrating in the 
decision process for preparedness (current model did not include maintenance cost and 
resources). Timing and location of repair decisions was not considered in the 
employed MP, but the approach here allows testing such strategies (e.g., Medury and 
Madanat 2013). So doing can lead to new implications for maintenance budget 
allocation/prioritization. Also of interest is performing an in-depth 
parametric/sensitivity analysis of each resilience calculation. This means investigating 
the solution details for resilience by event categories, differences in division of budget 
between preparedness and response, or any other changes in decision variables. These 
aspects will serve as topics for future work. 
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Appendix I: Notation and Formulation 
The notation and formulation used in this paper are included here. They are extracted 
from the work of Faturechi et. al (2014). For description of constraints and equations 
refer to Faturechi et. al (2014). 
 
Notation: 
ܣ) set of links = ܣ ൌ ଵܣ ∪ ଶܣ ∪  ଶ is the set ofܣ ,ଵ is the set of taxiwaysܣ ଷሻ, whereܣ

runways, and ܣଷ is the set of added dummy links  ܩ = set of runway configurations ݃ 
ଵ,ܽ́௖ܣ ⊂ ́ܽ ଵ = subset of taxiways connected to a runwayܣ ∈   ଶ (entrance/exit taxiways)ܣ
ଶ௚ܣ ⊂  ݃ ଶ = subset of runways that are active under configurationܣ
́ܽ ௔́ = set of segments of runwayܫ ∈ ௔́௔ܫ  ଶܣ ⊂ ́ܽ ௔́ = subset of segments of runwayܫ ∈  ଶ following (leading to) entrance (exit)ܣ

taxiway ܽ ∈ ଵ,ܽ́௖ܣ   
ܱ, ݓ super source and sink nodes  W = set of maneuver types = ܦ ∈ ܹ ൌ ሼܽݎݎ,  ሽ for arrival and departure maneuvers݌݁݀

between nodes ܱ and ܦ, respectively  ܴ = set of repair actions ܧ  ݎ = set of equipment types ݁  
௘ܰ = maximum number of equipment type ݁ that could possibly be provided    ܯ = maximum number of teams that might be deployed    

ܵ = set of aircraft classes (sizes) ݕ  ݏ௘,௡ = required storage space for n pieces of equipment type ݁  
ܻ = total available storage space 
ܲ௚,௪,௦ = set of active paths ݌ for runway configuration ݃, maneuver type ݓ and aircraft 

class ܦ  ݏ௪,௦ = original demand for maneuver type ݓ and aircraft class ݏ (arrival and departure 
demands)  ܨ௔௧௫௖ = capacity envelop for taxiway ܽ ∈ ܽ ሻ = capacity of taxiwayߦଵ representing directional flow tradeoff ܿ௔ሺܣ ∈  and ܴ under meteorological ܮ ଵ for both directionsܣ
conditions of scenario ܨ ߦ௚௢௖ = overall capacity envelop for runway configuration ݃ representing total arrival and 
departure flow tradeoff  ܨ௔́௥௖ = capacity envelop of runway ܽ́ ∈  ଶ representing arrival and departure flowܣ
tradeoff of that individual runway  ܥ = large scalar 

 for runway configuration ݃ with ݌ ௔,௣௞,௚,௪,௦ = taxiway path-link incidence (=1 if pathߜ
maneuver type ݓ for aircraft class ݏ uses direction ݇ of taxiway ܽ ∈  ଵ, and =0ܣ
otherwise) 

 for runway configuration ݃ with ݌ ሖ௔́,௣௚,௪,௦  runway path-link incidence (=1 if pathߜ
maneuver type ݓ for aircraft class ݏ uses runway ܽ́ ∈  can be ݎ క,௥ = scenario-repair relationship parameter, which is set to 1 if repair actionߩ (ଶ, and =0 otherwiseܣ
taken under the meteorological conditions of scenario ߦ, and 0 otherwise. 

 ௘,௥ = equipment-repair relationship parameter, which is set to 1 if equipment ݁ isߩ́
needed for a team to take repair action ݎ, and 0 otherwise. ܾ௠௧௠ = cost of employing ݉ teams (݉ ൌ 0, 1, …  (ܯ

ܾ௘,௡௘௤  = cost of providing ݊ pieces of equipment type ݁  
ܾ௔,௥௘௫ ሺߦሻ, ௔,௥௘௫ݍ ሺߦሻ = implementation cost and time of repair action ݎ by external resources in taxiway ܽ ∈  respectively ,ߦ ଵ under the meteorological conditions of scenarioܣ
ܾ௔,௥௜௡ ሺߦሻ, ௔,௥௜௡ݍ ሺߦሻ = implementation cost and time of repair action ݎ by internal resources (employed 

teams and equipment) in taxiway ܽ ∈  ଵ under the meteorological conditions ofܣ
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scenario ߦ, respectively 
ܾ௔́೔,௥௘௫ ሺߦሻ, ௔́೔,௥௘௫ݍ ሺߦሻ = implementation cost and time of repair action ݎ by external resources in segment ݅ 

of runway ܽ́ ∈   respectively ,ߦ ଶ under the meteorological conditions of scenarioܣ
ܾ௔́೔,௥௜௡ ሺߦሻ, ௔́೔,௥௜௡ݍ ሺߦሻ = implementation cost and time of repair action ݎ by internal resources (employed 

teams and equipment) in segment ݅ of runway ܽ́ ∈  ଶ under the meteorologicalܣ
condition of scenario ߦ, respectively ܾ௔,௥௠௡, ܾ௔́೔,௥௠௡  = maintenance cost of taxiway ܽ ∈ ́ܽ ଵ and segment ݅ of runwayܣ ∈  ଶ if repairܣ
action ݎ is taken, respectively   ܶ௠௔௫ሺߦሻ = maximum allowed repair time under scenario ߦ 

 total budget = ܤ
߮௔ሺߦሻ, ܽ ሻ = pre- and post-repair damage state of taxiwayߦ௔ሺߔ ∈  if 1=) ߦ ଵ under scenarioܣ

functional, and =0 otherwise), respectively  ߮௔́೔ሺߦሻ, ́ܽ ሻ = pre- and post-repair damage state of segment ݅ of runwayߦ௔́೔ሺߔ ∈  ߦ ଶ under scenarioܣ
(=1 if functional, and =0 otherwise), respectively  ݈௔́೔

௨  = length of runway segments ݅ of runway ܽ́ ∈  ଶܣ
݈௪,௦௠௜௡ = MOS requirements (minimum required length of runways for maneuver type ݓ 

and aircraft class ݏ to use that runway) ݈௔,௔́௪ ሺߦሻ = length of consecutive of post-repair active segments of runway ܽ ∈  ଶ followingܣ
(leading to) entrance (exit) taxiway ܽ ∈ ଵ,ܽ́௖ܣ  under scenario ߦ 

ሻ = binary variable indicating whether or not ݈௔,௔́௪ߦ௔௪,௦ሺߪ ሺߦሻ is longer than ݈௪,௦௠௜௡ of maneuver 
type ݓ and aircraft type ݏ under scenario ߦ (= 1 if longer, and = 0 otherwise)  

Pre-event decision variables: 
߬௠ 
 

= binary variable indicating that ݉ teams are employed (= 1 if exactly ݉ teams are 
employed and = 0 otherwise) 

 ௘,௡ = binary variable indicating if ݊ units of equipment type ݁ are purchased (= 1 ifߛ
provided and = 0 otherwise) Post-event decision variables: 

 ሻ = binary variable indicating whether or not runway configuration ݃ is selected underߦ௚ሺߨ
scenario ߦ (= 1 if selected, and = 0 otherwise) 

௔,௥௘௫ߣ ሺߦሻ, ௔,௥௜௡ߣ ሺߦሻ = binary variable indicating whether or not repair action ݎ is taken by external and 
internal (airport repair team and equipment) resources, respectively, on taxiway ܽ ∈  respectively , (if taken and = 0 otherwise 1 =) ߦ ଵ under scenarioܣ

௔́೔,௥௘௫ߣ ሺߦሻ, ௔́೔,௥௜௡ߣ ሺߦሻ = binary variable indicating whether or not repair action ݎ is taken by external and 
internal resources, respectively, on segment ݅ of runway ܽ́ ∈  ߦ ଶ under scenarioܣ
(= 1 if taken and = 0 otherwise), respectively   

௣݂௚,௪,௦ሺߦሻ = post-repair flow rate along path ݌ for runway configuration ݃, maneuver type ݓ 
and aircraft type ݏ under scenario ߦ  

 
Formulation overview and details: 
క෨ܧ  ݔܽ݉   ሾܼሺߦሻሿ  s.t. {resource limitations: (4)-(8)}, (1) 
where  
ܼሺߦሻ ൌ ݔܽ݉  ∑ ∑ ௣݂௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௚,௦   
s.t. 

(2) 
 

{Taxiway capacity estimation: (9)-(16)    
 Runway capacity estimation: (17)-(20)   
Operational constraints: (21)-(24-1,2)    
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 Runway configuration selection: (25)-(27)    
 Taxiway/runway segment post-repair damage states: (28)-(32)  
 Repair period limit: (33)-(36)   
 Budget and post-repair flow restrictions: (37)-(39)}  
 
 
஻,்೘ೌೣ ൌ ா഍෩ሾ∑ ∑ ௙೛೒,ೢ,ೞሺకሻሿ೛∈ು೒,ೢ,ೞೢ,೒,ೞ

∑ ஽ೢ,ೞೢ,ೞ .   
     

(3) 

∑ ߬௠௠ ൑ 1   (4) 
∑ ௘,௡௡ߛ ൑ 1,           ∀݁ ∈  (5) ܧ
∑ ௘,௡௘,௡ߛ௘,௡ݕ ൑ ܻ   (6) 
߬௠ ∈ ሼ0,1ሽ,          ݉ ൌ 1, … ,  (7) ܯ
௘,௡ߛ ∈ ሼ0,1ሽ,          ∀݁ ∈ ,ܧ ݊ ൌ 1, … , ௘ܰ (8) 
ܿ௔ሺߦሻ ൌ ௩തೌሺకሻ

ௗത೘ೌ೔೙ሺకሻ,             ∀ܽ ∈  ଵ (9)ܣ
௔௞,௚ݔ ൌ ∑ ∑ ௔,௣௞,௚,௪,௦ߜ ௣݂௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௦ , ∀݃ ∈ ,ܩ ܽ ∈ ,ଵܣ ݇ ∈ ሼ݇ା, ݇ିሽ  (10) 
ሻߦ௔௞శ,௚ሺݔ  ൌ ௔,ଵଶߚ ൅ ௔,ଶଵߚ ൅ ሾܿ௔ሺߦሻ െ ଶ௟ೌ

ௗത೘ೌ೔೙ሺకሻ ሿሺߚ௔,ଶଶ ൅ ௔,ଷଵߚ ሻ ൅
ܿ௔ሺߦሻ ߚ௔,ଷଶ ,    

∀݃ ∈ ,ܩ ܽ ∈  ଵ (11)ܣ

ሻߦ௔௞ష,௚ሺݔ  ൑ ܿ௔ሺߦሻ ߚ௔,ଵଶ ൅ ሾܿ௔ሺߦሻ െ ଶ௟ೌ
ௗത೘ೌ೔೙ሺకሻሿሺߚ௔,ଵଶ ൅ ௔,ଶଵߚ ሻ ൅ ௔,ଶଶߚ ൅ ௔,ଷଵߚ   ∀݃ ∈ ,ܩ ܽ ∈  ଵ  (12)ܣ

௔,௩ଵߚ ൅ ௔,௩ଶߚ ൌ ߰௔,௩,  ∀ܽ ∈  ,ଵܣ
ݒ ∈ ሼ1,2,3ሽ  

(13) 

∑ ߰௔,௩ ൌ 1ଷ௩ୀଵ ,  ∀ܽ ∈  ଵ (14)ܣ
߰௔,௩ ∈ ሼ0,1ሽ,  ∀ܽ ∈  ,ଵܣ

ݒ ∈ ሼ1,2,3ሽ  
(15) 

௔௞,௚ݔ ൑ ܿ௔ሺߦሻߔ௔ሺߦሻ,  ∀݃ ∈ ,ܩ ܽ ∈ ,ଵܣ ݇ ∈ ሼ݇ା, ݇ିሽ  (16) 
ሻߦ௚,௪ሺݔ́  ൌ ∑ ∑ ∑ ሖ௔́,௣௚,௪,௦ߜ ௣݂௚,௪,௦ሺߦሻ௔́∈஺మ௣∈௉೒,ೢ,ೞ௦   ∀݃ ∈ ,ܩ ݓ ∈ ሼܽݎݎ,  ሽ (17)݌݁݀
ሻߦ௚,௔௥௥ሺݔ́  ൌ ݃∀          ,ሻ ሿߦ௚,ௗ௘௣ሺݔ௚௢௖ሾ́ܨ ∈  (18) ܩ
௔́௚,௪ݔ́ ൌ ∑ ∑ ሖ௔́,௣௚,௪,௦ߜ ௣݂௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௦   ∀݃ ∈ ,ܩ ܽ́ ∈ ,ଶܣ ݓ ∈ ሼܽݎݎ,  ሽ (19)݌݁݀
ሻߦ௔́௚,௔௥௥ሺݔ́ ൌ ݃∀                  ,ሻሿߦ௔́௚,ௗ௘௣ሺݔ௔́௥௖ሾ́ܨ ∈ ,ܩ ܽ́ ∈  ଶ (20)ܣ
∑ ௔,௣௞,௚,௪,௦ߜ ௣݂௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ ൑ ܽ∀  ,ሻߦ௔௪,௦ሺߪܥ ∈ ଵ,௔́௖ܣ , ܽ́ ∈ ,ଶܣ ݇ ∈ ሼ݇ା, ݇ିሽ, ݃ ∈

,ܩ ݓ ∈ ܹ, ݏ ∈ ܵ   
(21) 
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݈௪,௦௠௜௡ߪ௔௪,௦ሺߦሻ ൑ ݈௔,௔́ሺߦሻ  ∀ݓ ∈ ܹ, ݏ ∈ ܵ, ܽ ∈ ଵ,௔́௖ܣ , ܽ́ ∈  ଶ (22)ܣ
ሻߦ௔௪,௦ሺߪ ∈ ሼ0,1ሽ,      ∀ݓ ∈ ܹ, ݏ ∈ ܵ, ܽ ∈  ଵ (23)ܣ
݈௔,௔́ሺߦሻ ൌ ∑ ሾ∏ ∗ሻ௢௝ୀ௜ߦ௔́ೕሺߔ ሿ݈௔́೚

௨௢∈ூೌ́ೌ ݋∀   ∈ ,௔́௔ܫ ܽ ∈ ଵ,௔́௖ܣ , ܽ́ ∈  ଶ (24)ܣ
ሻߦ௔́೔∗,೔∗శభ,…,೚ሺߔ ൌ ∏ ∗ሻ௢௝ୀ௜ߦ௔́ೕሺߔ ݋∀    , ∈ ,௔́௔ܫ ܽ ∈ ଵ,௔́௖ܣ , ܽ́ ∈   ଶܣ
݈௔,௔́ሺߦሻ ൌ ∑ ݈௔́೚

௨ ሻ௢∈ூೌ́ೌߦ௔́೔∗,೔∗శభ,…,ೀሺߔ ݋∀  , ∈ ,௔́௔ܫ ܽ ∈ ଵ,௔́௖ܣ , ܽ́ ∈  ଶ (24-1)ܣ
௔́೔∗,೔∗శభ,…,೚ߔ ൑ ݆∀            ,ሻߦ௔ೕሺߔ ∈ ሼ݅∗, ݅∗ ൅ 1, … , ,ሽ݋ ݋ ∈ ,௔́௔ܫ ܽ ∈ ଵ,௔́௖ܣ , ܽ́ ∈  ଶ (24-2)ܣ
 
∑ ∑ ௣݂௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௦ ൑ ݃∀          ,ሻߦ௚ሺߨܥ ∈  (25) ܩ
∑ ሻ௚ߦ௚ሺߨ ൌ 1   (26) 
ሻߦ௚ሺߨ ∈ ሼ0,1ሽ,         ∀݃ ∈  (27) ܩ
ሻߦ௔ሺߔ ൌ ሾ1 െ ߮௔ሺߦሻሿ൛∑ క,௥ߩ ∙ ௔,௥௜௡ߣൣ ሺߦሻ ൅ ௔,௥௘௫ߣ ሺߦሻ൧௥ ൟ ൅ ߮௔ሺߦሻ,  ∀ܽ ∈  ଵ (28)ܣ
ሻߦ௔́೔ሺߔ ൌ ൣ1 െ ߮௔́೔ሺߦሻ൧൛∑ క,௥ߩ ∙ ௔́೔,௥௜௡ߣൣ ሺߦሻ ൅ ௔́೔,௥௘௫ߣ ሺߦሻ൧௥ ൟ ൅ ߮௔́೔ሺߦሻ  ∀ܽ́ ∈ ,ଶܣ ݅ ∈  ௔́ (29)ܫ
௔,௥௜௡ߣ ሺߦሻ, ௔,௥௜௡ߣ ሺߦሻ, ௔́೔,௥௘௫ߣ ሺߦሻߣ௔́೔,௥௘௫ ሺߦሻ ∈ ሼ0,1ሽ,            ∀ܽ ∈ ,ଵܣ ܽ́ ∈  ,ଶܣ

݅ ∈ ,௔́ܫ ݎ ∈ ܴ 
(30) 

∑ క,௥ߩ ∙ ሾߣ௔,௥௘௫ ሺߦሻ ൅ ௔,௥௜௡ߣ ሺߦሻሿ௥ ൑ 1,          ∀ܽ ∈  ଵ (31)ܣ
∑ క,௥ߩ ∙ ሾߣ௔́೔,௥௘௫ ሺߦሻ ൅ ௔́೔,௥௜௡ߣ ሺߦሻሿ௥ ൑ 1,          ∀ܽ́ ∈ ,ଶܣ ݅ ∈  ௔́ (32)ܫ
∑ ௔,௥௜௡ݍ௘,௥ߩక,௥́ߩ ሺߦሻߣ௔,௥௜௡ ሺߦሻ௔∈஺భ,௥ ൅ ∑ ௔́೔,௥௜௡ݍ௘,௥ߩక,௥́ߩ ሺߦሻߣ௔́೔,௥௜௡ ሺߦሻ௔́∈஺మ,௜,௥   
൑ ܶ௠௔௫ሺߦሻ ∙ ሾ∑ ௘,௡௡∈ே೐ߛ݊ ሿ,  

∀݁ ∈  (33) ܧ

∑ ௔,௥௜௡ݍక,௥ߩ ሺߦሻߣ௔,௥௜௡ ሺߦሻ௔∈஺భ,௥ ൅ ∑ ௔́೔,௥௜௡ݍక,௥ߩ ሺߦሻߣ௔́೔,௥௜௡ ሺߦሻ௔́∈஺మ,௜,௥ ൑
ܶ௠௔௫ሺߦሻ ∙ ሾ∑ ݉߬௠௠ ሿ,  

 (34) 

∑ ௔,௥௘௫ݍక,௥ߩ ሺߦሻߣ௔,௥௘௫ ሺߦሻ௥ ൑ ܶ௠௔௫ሺߦሻ,          ∀ܽ ∈  ଵ (35)ܣ
∑ ௔́೔,௥௘௫ݍక,௥ߩ ሺߦሻߣ௔́೔,௥௘௫ ሺߦሻ௥ ൑ ܶ௠௔௫ሺߦሻ,          ∀ܽ́ ∈ ,ଶܣ ݅ ∈  ௔́ (36)ܫ
∑ ܾ௛௧௠߬௛௛ ൅ ∑ ܾ௘,௡௘௤ ௘,௡௘,௡ߛ ൅ ∑ క,௥ߩ ∙ ൛ሾܾ௔,௥௘௫ ሺߦሻ ൅ ܾ௔,௥௠௡൧ߣ௔,௥௘௫ ሺߦሻ௔∈஺భ,௥ ൅ ሾܾ௔,௥௜௡ ሺߦሻ ൅
ܾ௔,௥௠௡ሿߣ௔,௥௜௡ ሺߦሻሽ ൅ ∑ క,௥ߩ ∙ ൛ሾܾ௔́೔,௥௘௫ ሺߦሻ ൅ ܾ௔́೔,௥௠௡൧ߣ௔́೔,௥௘௫ ሺߦሻ௔́∈஺మ,௜,௥ ሾܾ௔́೔,௥௜௡ ሺߦሻ ൅ ܾ௔́೔,௥௠௡ ሿߣ௔́೔,௥௜௡ ሺߦሻሽ ൑      ܤ

(37) 

∑ ௣݂௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ ൑ ݃∀  ,௪,௦ܦ ∈ ,ܩ ݓ ∈ ܹ, ݏ ∈ ܵ (38) 
௣݂௚,௪,௦ሺߦሻ ൒ 0,         ∀݃ ∈ ,ܩ ݓ ∈ ܹ, ݏ ∈ ܵ, ݌ ∈ ܲ௚,௪,௦     (39) 
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Appendix II: Model Inputs and Assumptions 
Table A.II. 1. Capacity envelopes for different runway configurations and visibility 

conditions (Faturechi et. al, 2014) 

Runway configuration Capacity envelopes (aircraft per hour) 
VFR IFR 

4|4 

  
13|13 

4|13 

  
22|13 

 
Table A.II. 2Disruption events, probabilities and resulting damage (Faturechi et. al, 2014) 

Disruption event 

Probability 

Alligator 
cracking 

Block 
cracking 

Transverse 
cracking 

Jet Blast 
Raveling 
Rutting 
Potholes 

Single 
crater 

Slippery 
surface 

Bleeding 

Extreme climatic 
or geologic event 

Flood 0.095 - - - - - - - -  
(20) - 

Snow/ice  0.050 -  
(15) 

 
(30) - - - - -  (5) - 

Very hot 0.045 - - - - -  
(2) - - -  

(4) 

Operational events 
Oil spill 0.280 - - - -  

(5) - - - - - 
Overloading 0.220 (10) - - - - - - - - - 

Jet Blast 0.190 - - -  
(3) - - - - - - 

Intentional 
malicious acts 

Guided 
attack 0.060 - - - - - -  

(2*) 
 

(3) - - 
Unguided 

attack 0.060 - - - - - -  
(10) - - - 

*Indicates that consecutive segments affected; otherwise, damage need not be 
adjoining. 
 
  

Departure 

Arrival 

45 

35 (40, 35) 

Departure 

Arrival 

42 

32 (38, 32) 

Departure 

Arrival 

52 

35 (48, 35) 

Departure 

Arrival 

50 

35 (45, 35) 
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Table A.II. 3. Repair equipment (Faturechi et. al, 2014) 
Identification 

# Equipment Cost 
($/year) 

Identification 
# Equipment Cost 

($/year) 
1 Small asphalt 

paver 
8100 11 Tack coat sprayer 1800 

2 Mechanical 
sweeper 

8500 12 Seal injector/melter 1500 
3 Small milling 

machine 
6500 13 Crack chasing saw 2700 

4 Small asphalt 
roller 

1400 14 Small mixer 1350 
5 Asphalt cutter 1700 15 Water pump 1350 
6 Salt Sprinkler 2550 16 Large milling 

machine 
9500 

7 Snow shovel 4800 17 Vibratory roller 2210 
8 Front loader 8160 18 Motor grader 25000 
9 Backhoe 13600 19 Large asphalt paver 32000 

10 Dump truck 11650    
 

Table A.II. 4. Repair actions, implementation costs and execution times (Faturechi et. al, 2014) 

Damage 
types to be 

repaired 
Repaired Internally Repaired 

externally 
Weather-dependent 
multiplier for repair 
duration and costs 

Equipment set 
requirement 

Duration 
(hr) 

Cost 
($) 

Duration 
(hr) 

Cost 
($) 1 2 3 4 5 6 

Alligator 
cracking 1,2,4,8,10,15,16 5 2510 9 4267 1 10 1 10 1.5 2 

Block 
cracking 2,11,12 2 736 6 1251.2 1 10 1 10 1 10 

Transverse 
cracking 2,11,12 2 736 6 1251.2 1 10 1 10 1 10 
Jet Blast 2,4,5,8,9,10,15 4 1912 8 3250.4 1 10 1 10 1.5 2 
Raveling 2,4,5,8,9,10,15 4 1912 8 3250.4 1 10 1 10 1.5 2 
Rutting 2,4,5,8,9,10,15 4 1912 8 3250.4 1 10 1 10 1.5 2 
Array of 

small 
potholes 

1,2,4,5,6,16 3 1407 7 2391.9 1 10 1 10 1.5 2 
A single 

crater 
1,2,3,4,5,6,7,15,16, 

17,19  6 4374 10 7435.8 1 10 1 10 1.5 2 
Slippery 
surface 2,4,14,15,18 1 461 5 783.7 1 1.5 1 1.5 2 10 

Bleeding 2,4,5,6,13,17 3 1665 7 2830.5 1 10 1 10 1.5 2 
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