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Due to the increasing congestion in most urban networks, providing reliable 

trip times to commuters has emerged as one of the most critical challenges for all 

existing Advanced Traffic Information Systems (ATIS). However, predicting travel 

time is a very complex and difficult task, as the resulting accuracy varies with many 

variables of time-varying nature, including the day-to-day traffic demands, responses 

of individual drivers to daily commuting congestion, conditions of the road facility, 

weather, incidents, and reliability of available detectors. 

This study aims to develop a travel time prediction system that needs only a 

small number of reliable traffic detectors to perform accurate real-time travel time 

predictions under recurrent traffic conditions. To ensure its effectiveness, the 

proposed system consists of three principle modules: travel time estimation module, 

travel time prediction module, and the missing data estimation module. 

The travel time estimation module with its specially designed hybrid structure 

is responsible for estimating travel times for traffic scenarios with or without 



  

sufficient field observations, and for supplying the estimated results to support the 

prediction module. 

The travel time prediction module is developed to take full advantage of 

various available information, including historical travel times, geometric features, 

and daily/weekly traffic patterns. It can effectively deal with various traffic patterns 

with its multiple embedded models, including the primary module of a multi-topology 

Neural Network model with a rule-based clustering function and the supplemental 

module of an enhanced k-Nearest Neighbor model.  

To contend with the missing data issue, which occurs frequently in any real-

world system, this study incorporates a missing data estimation module in the travel 

time prediction system, which is based on the multiple imputation technique to 

estimate both the short- and long-term missing traffic data so as to avoid interrupting 

the operations. 

The system developed in this study has been implemented with data from 10 

roadside detectors on a 25-mile stretch of I-70 eastbound, and its performance has 

been tested against actual travel time data collected by an independent evaluation 

team. Results of extensive evaluation have indicated that the developed system is 

capable of generating reliable prediction of travel times under various types of traffic 

conditions and outperforms both state-of-the-practice and state-of-the-art models in 

the literature. Its embedded missing data estimation models also top existing methods 

and are able to maintain the prediction system under a reliable state when one of its 

detectors at a key location experience the data missing rate from 20% to 100% during 

uncongested, congested and transition periods. 
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Chapter 1: Introduction 

 

1.1 Background 

Due to the increasing congestion in most urban networks, providing reliable 

trip times to commuters has emerged as one of the most critical challenges for all 

existing Advanced Traffic Information Systems (ATIS). However, predicting travel 

time is a very complex and difficult task, as the resulting accuracy varies with many 

variables of time-varying nature, including the day-to-day traffic demands, responses 

of individual drivers to daily commuting congestion, conditions of the road facility, 

weather, incidents, and reliability of available detectors. To contend with this issue, 

transportation professionals have proposed and implemented a variety of systems for 

providing travel times in the past two decades. However, most real world systems 

have provided only travel times of completed trips, or based only on the current 

traffic conditions, not the en-route trips or for pre-trip planning. 

Traditionally, travel time prediction models are based on the historical travel 

times concurrently collected by various measurement systems such as electronic toll 

systems or vehicles with GPS systems. However, due to the high costs associated 

with collecting a large sample with such systems, most models developed for travel 

time prediction have not been implemented and evaluated in practice. 

As an alternative, considerable efforts are found in the literature to estimate 

travel times from traffic detectors, which are relatively cost-effective for 
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implementation in practice, but demand some advanced theoretical models to produce 

the predicted travel time from limited point measurement information offered by 

detectors under the potential impacts of various critical factors. 

For example, to formulate a reliable travel time model for prediction, one 

needs to be able to reliably capture the traffic dynamics between detector stations. 

The complexity of such a task increases with the distance between detectors, and the 

percentage of missing or faulty data during the detection period. The prediction shall 

also take into account the future traffic demand generated to the downstream 

segments of an en-route trip, as the surge in volume in the projected time horizon may 

incur the traffic congestion that is difficult to be estimated with the data from the 

existing detectors. To reliably estimate the future time-varying traffic demand, 

however, is also quite a complex task; and it demands the proposed model not only to 

best use available historical data, but also to dynamically account for the day-to-day 

variation due to the experience of drivers or their responses to the perceived traffic 

conditions. 

In brief, the complex interrelations between detector hardware, historical data, 

and traffic flow dynamics have made the prediction of travel time as one of the most 

challenging tasks in ATIS. This is also one of the primary reasons that most ATIS for 

highway systems only provide estimated travel times based on the current traffic 

condition. 

1.2 Research Objectives 

Theoretically, a cost-efficient travel time prediction system ready for use in 

practice on freeways should have the following desirable features: 
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• The required input variables should be obtainable from traffic detectors, 

which may be sparsely distributed. 

• It may take advantage of some actual travel times from the field, but not 

rely on a large number of such data. 

• The system should be capable of operating under various recurrent 

congestion conditions and effectively dealing with related issues during 

real-time operations. 

Intending to embody all above desirable features in the proposed travel time 

prediction system, this study has the following principal objectives: 

• Develop a travel time estimation module to provide reliable estimates of 

completed trips under all types of recurrent traffic patterns with sparsely 

distributed traffic detectors. 

• Construct a travel time prediction module for freeway segments with a 

large detector spacing, and take full advantage of historical travel times 

and traffic patterns. 

• Integrate a missing data estimation module to deal with various missing 

data patterns that often incur in a real-world system. 

1.3 Organization of the Dissertation 

Based on the proposed research objectives, the final dissertation will be 

organized into 8 chapters. The interrelations among those tasks are illustrated in 

Figure 1.1. A brief introduction of each chapter is presented next. 

Chapter 2 presents a comprehensive review of literature related to the travel 

time prediction system, including travel time estimation models, travel time 
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prediction models, and simulated/real-world systems. Advantages and limitations of 

those models with respect to their potentials for use in a real-world system with 

sparsely distributed detectors are also discussed in this chapter. 

The primary task of Chapter 3 is to introduce the architecture of the proposed 

travel time prediction system with sparsely distributed detectors. The system’s 

flowchart and its operational logic will be presented in detail in this chapter. The 

proposed travel time prediction system consists of three principal modules: travel 

time estimation module, travel time prediction module, and missing data estimation 

module. 

Chapter 4 focuses on developing a hybrid travel time estimation model on a 

freeway with sparsely distributed detectors. The proposed hybrid travel time 

estimation model employs a clustered linear regression model as the main model and 

an enhanced trajectory-based model as its supplemental model to circumvent the 

limitations on long links identified in the literature review. To contend with the 

impacts due to various geometric features and traffic patterns, the hybrid model first 

categorizes the traffic conditions into pre-specified groups, and then applies the liner 

regression model to clusters with a sufficient size of sample travel times. The 

enhanced trajectory-based model takes strengths of both traffic propagation relations 

and piecewise linear speed-based model to provide the reliable estimation of travel 

times for the clusters without sufficient samples. The developed hybrid travel time 

estimation model has been calibrated and validated with actual detector data obtained 

from 10 detectors on a 25-mile stretch of I-70 eastbound. The model evaluations 

include results for individual links and sub-segments that consist of multiple links. 
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Figure 1-1 Interrelations between primary research tasks 

Chapter 5 proposes a hybrid travel time prediction model for freeway 

segments with a large detector spacing. The hybrid travel time prediction model takes 

Introduction 

Literature Review 

Travel Time Estimation Module 

• A clustered linear regression model as the main 

model 

• An enhanced trajectory-based model as the 

supplemental model 

Travel Time Prediction Module 

• A multi-topology Neural Network model with a 

rule-based clustering function as the main model 

• A k-Nearest Neighbor model as the supplemental 

model 

Missing Data Estimation Module 

• Multiple imputation framework 

• An integrated multiple imputation model for 

missing data estimation and travel time prediction 

• A secondary multiple imputation method for 

estimating missing detector data 

System Architecture 

• System flowchart at the model-training stage and 

real-time operation stage 

• Interrelations between four principal system 

modules 

Conclusion 
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full advantage of a multi-topology Neural Network model with a rule-based 

clustering function and a k-Nearest Neighbor model to provide reliable travel time 

predictions under recurrent congestion patterns. The multi-topology Neural Network 

model, which is the main model of the hybrid model, categorize the traffic conditions 

into pre-defined groups with its embedded clustering rules, and then apply different 

Multi-layer Perceptron (MLP) or Time Delayed Neural Network (TDNN) model to fit 

the properties of the recurrent congestion patterns in each cluster. The k-Nearest 

Neighbor model serves as the supplemental component to take advantage of the rich 

historical travel time information, when available, for a reliable travel time prediction. 

It has been modified and modeled to take into account traffic characteristics and both 

daily as well as weekly traffic patterns. The numerical example is based on historical 

travel times estimated from the same dataset used in Chapter 4. The predicted travel 

times have been compared with both estimated travel times and actual collected travel 

times. 

Chapter 6 develops a multiple imputation framework for travel time 

predictions under the impact of missing data, which includes one traditionally 

modeled multiple imputation method that imputes the missing detector data, and one 

integrated multiple imputation model that imputes the missing data and predicts the 

travel time at the same time. Both models overcome the issue of commonly-seen high 

variations of the detector data in a short period and offer an estimate on the reliability 

of the imputed or predicted data, which can serve as an important indicator for the 

developed travel time prediction system to temporarily suspend the outputs for the 

impacted segments to avoid potential large errors. The missing data patterns from 10 
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roadside detectors on a 25-mile stretch of freeway segment are summarized in this 

chapter, along with numerical examples with both missing data imputation models 

developed in this study and those commonly-used in the literature and real-world 

systems. 

Chapter 7 summarizes the research findings and potential applications for this 

research to be implemented in ATIS system or traffic control systems. The future 

research direction is also included in this chapter, which includes integrating a 

module for detecting non-recurrent congestions and how to model the response from 

drivers to the prediction results, for example, a variable-rate toll system. 
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Chapter 2: Literature Review 
 

 

2.1 Introduction 

Most existing studies associated with providing trip travel times on freeways 

can be classified into two categories: travel time estimation and travel time 

prediction. The former studies are used to estimate travel times from the traffic data 

collected during the time in which the trip has been completed. This type of study is 

essential for a travel time prediction system, which does not directly measure travel 

times. In contrast, travel time prediction models are for trips that have not departed 

and will be completed in the future. Thus, future traffic conditions have to be 

predicted, which makes predicting travel time a challenging task. Embedding a 

missing data estimation module in a travel time prediction system can significantly 

improve its reliability and functionality, the accuracy of which is frequently impaired 

by missing and/or delayed data. This section will first review travel time estimation 

models and travel time prediction models in the literature. Then it will summarize 

some systems implemented in simulated environments and in real-world applications. 

2.2 Travel Time Estimation Models 

As reported in the literature, most studies of travel time estimation fall into 

one of the following categories: flow-based models, vehicle identification 

approaches, and trajectory-based models. 



 

 9 

 

2.2.1 Flow-Based Models 

Flow-based models have been applied to freeway mainline segments without 

ramps and having uniform travel speeds across all lanes. This type of model estimates 

travel times by comparing upstream and downstream flow counts, based on the 

assumption of first depart, first arrive. For example, Dailey (1993) estimated travel 

times by using a cross-correlation technique to determine the maximum correlation 

between densities, which are computed from flow measurements.  

Nam and Drew (1996) developed a flow-based travel time estimation model 

by analyzing the number of vehicles that have entered and exited the link in the same 

time interval, )( ntm . The authors applied a stochastic process model to the upstream 

and downstream flow counts under generalized conditions of flow conservation and 

then estimated travel times for the traffic condition in which  )( ntm  is positive. A 

case study showed that the estimated average segment travel speed was consistent 

with detected upstream and downstream speeds. 

By extending Dailey’s work, Petty et al. (1998) estimated freeway travel times 

using flow and occupancy information, based on a simple stochastic model, by 

analyzing probability distributions of travel times. However, the model results have 

been verified using only the upstream detector speed, which is not sufficiently 

reliable to serve as the ground truth value of travel time. 

Liu et al. (2006) established a linear relation between travel time and the 

combination of the number of vehicles in the segment and the average downstream 

speed. To solve the model, the authors provided an iteration-based method in which 

some input variables are dependent on output variables. The estimated travel times 
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from two cases generated in a simulation environment were found to be reliable in 

two distinct types of traffic condition. 

In comparison, existing flow-based models require uniform travel speeds 

across all lanes and therefore cannot be reliably applied to segments with ramps or 

complex traffic patterns, i.e., spillback from a downstream off-ramp. Another issue 

that makes this type of model unsuitable for real-world applications is detector errors. 

In practice, even the most advanced, properly calibrated detectors still cannot be 

guaranteed to operate at a desirable level of high detection accuracy. Unpredictable 

traffic count measurement errors may dramatically reduce the model accuracy. Nam 

and Drew (1996) considered an hourly adjustment factor to overcome the drifted flow 

count. However, detector errors are most likely nonsystematic in nature, and the error 

patterns remain difficult to model well. 

2.2.2 Vehicle Identification Approaches 

Vehicle identification approaches estimate travel time by matching the 

sequence of vehicles in a single lane. The key concept of this type of method is to 

find vehicles’ signatures from the upstream and the downstream detectors in order to 

calculate their travel times. 

In the literature, significant efforts have been made to group vehicles into 

classes and then match their sequences to estimate travel times. These models 

(Pfannerstill, 1984; Kühne and Immes, 1993; and Kühne et al., 1997) often require 

new detection hardware that can provide additional signatures. MacCarley (1998) 

proposed a method using vehicles’ visual signatures from overhead cameras to obtain 

travel times. The evaluation results indicate that such systems can achieve a high 
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degree of accuracy in daylight, but have a low match rate and a high false-match rate 

at nighttime. 

Coifman et al. (Coifman, 1998; Coifman and Cassidy, 2002; Coifman, 2003; 

and Coifman and Ergueta, 2003) estimated travel times with a vehicle re-

identification (VRI) model, which matches the sequence of individual vehicles or a 

sub-sampling of vehicles (for example, trucks) with their occupied durations when 

they pass the upstream and the downstream loop detectors. The VRI model worked 

well under both free-flow conditions and congested conditions with a very low lane-

changing rate. It is reported that the model produces results having the same quality 

as other travel time estimation methods. However, due to its reduced detection 

resolution at high vehicle speeds, its match rate is generally quite low under free-flow 

conditions. 

In general, vehicle identification models performed well in one single lane 

with a low lane-changing rate. They cannot provide reliable travel time estimations 

for freeway segments near ramps. Using vehicles’ visual signatures may potentially 

improve the model’s ability to deal with ramp traffic. However, all VRI models 

require either improved detection technology or a high bandwidth to transfer the raw 

data needed to extract vehicle signatures, which will result in high system costs and 

long system processing times. 

2.2.3 Trajectory-Based Models 

The common features of trajectory-based models are estimating temporal and 

spatial traffic conditions within a link from upstream and downstream detector data 

and drawing a target vehicle’s trajectory so as to provide the estimated travel time. 
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One of the typical studies in this category is by Coifman (2002), who 

estimated the vehicle in-segment speed based on the speed data from a detector 

placed at one end of a 1/3-mile segment and the traffic propagation relations. With 

the assumption that the traffic state at one detector location changes discretely and 

equal to vehicles’ headways, the following relations exist for the j
th

 state with an 

assumed constant traffic propagation speed. 

cj

j

j
uv

h

/1+
=τ        (2.1) 

jjj vx τ⋅=*         (2.2) 

where jτ  = the travel time; 
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 jv  = the vehicle velocity; 
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where l is the length of the link; and 

 p is a weighting factor. 

 This model assumes a constant traffic propagation speed through the entire 

link and thus is not suitable for use in some conditions, where a dramatic change in 

traffic state occurs within a link (i.e., presence of a traffic queue or delays caused by 

traffic weavings near a ramp). 

Some researchers have made efforts to use both the upstream and downstream 

detector information for estimating travel times with piecewise constant-speed-based 

(PCSB) methods (van Grol et al., 1997; Lindveld et al. 2000; and Cortes, 2002), 

which assume a constant travel speed within the link. Van Lint and van der Zijpp 

(2003) estimated travel times with a piecewise linear-speed-based (PLSB) model, 

which is reported to outperform PCSB models in simulated cases. In the PLSB 

model, the vehicle’s in-segment speed is determined by the convex combination of 

the speeds obtained at the upstream and downstream detectors at the same time as 

shown below: 

)()(),( 1

1

tv
xx

xx
tvtxv d

dd

d

d +

+ −

−
+=      (2.6) 

where x is the location of the vehicle, 1+≤≤ dd xxx ; 

v(x,t) is the estimated speed of the vehicle at location x at time t; 

 d is the detector ID (numbered from upstream to downstream); 

 vd(t) is the speed detected at detector d at time t; and 

 xd is the location of detector d. 
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Note that existing piecewise models do not consider traffic propagation 

relations, which use the detected speeds at the upstream and downstream detectors at 

the same time to estimate travel times in short segments (i.e., 0.5 miles). 

In summary, many studies use the trajectory-based models to estimate 

vehicles’ in-segment speeds, and thereby compute their travel times. This type of 

method is relatively applicable to long links and can better tolerate detector errors 

than the flow-based models. With proper modifications, this type of model has the 

potential for use on segments with non-uniform travel speeds. 

2.3 Travel Time Prediction Models 

Predicting travel times usually requires a longer prediction horizon than 

predicting traffic variables (i.e., flow and speed), because the information of travel 

times will not be available until vehicles departing at the current time complete their 

trips. Researchers have attempted to implement both parametric models and 

nonparametric models to forecast travel times and other traffic variables. Among 

parametric models, time-series models and Kalman filter models have received more 

attention than other model structures. Some researchers have also devoted 

considerable attention to Neural Network models, one of the nonparametric 

prediction models, due to their well-known learning and pattern recognition abilities 

and their robust performance. The following section will review existing works on 

travel time prediction and other related forecasting models, including Neural Network 

models and other nonparametric models. This section will also discuss some attempts 

made by researchers to combine two or more models. 
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2.3.1 Parametric Models 

Among parametric models, time-series models are widely used in the 

transportation area for predicting traffic variables, due to the time-series nature of 

most transportation-related information. Linear regression models and time-varying 

coefficient models are reported to be efficient as well. Researchers have developed 

parametric models for travel time prediction, which are mostly for highway systems 

capable of directly measuring travel times. 

• Time-Series Models 

In the transportation literature associated with travel time studies, the earliest 

time-series models were developed by Ahmed and Cook (1979) and Levin and Tsao 

(1980), who predicted traffic volume and occupancy with autoregressive integrated 

moving-average (ARIMA) models (Box and Jenkins, 1970). Researchers showed that 

ARIMA models outperform simple smoothing methods and historical average values 

in forecasting single-detector data. They concluded that the optimal form of ARIMA 

model is site-specific. 

Given a time series of data Xt (where t is integer valued and Xt are real 

numbers), an ARIMA (p, d, q) model has the following standard form (Box and 

Jenkins, 1970): 
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 tε  is the error term, ),0(~ 2σε Nt ; and 
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p, d, q are the order of the autoregressive, integrated and moving average parts 

of the model, respectively. 

Due to its strength in capturing the time-series trend, the ARIMA model is 

widely used to predict traffic volume and occupancy for a single detector location in a 

highway segment (Oda, 1990; Davis et al., 1991; Hamed et al., 1995; Smith and 

Demestky, 1996; van der Voort et al., 1996; Ishak and Al-Deek, 2002; Stathopoulos 

and Karlaftis, 2003). 

As reported in the literature, ARIMA models predict mainly the mean values 

and often fail to deal with large variations due to some congested patterns or 

incidents. Hence, seasonal ARIMA models have also been developed in various 

studies (Smith and Demetsky, 1997; Williams et al., 1998; Smith et al., 2000; Chung 

and Rosalion, 2001; Smith et al., 2002) to take account of the temporal patterns of the 

traffic data, such as weekly patterns. 

Applications of the ARIMA model in predicting travel times (Anderson, 

1995; Yang, 2005) are limited to one-link-only cases, based on collected travel times 

or detector data at both ends. The seasonal ARIMA model has not been reported as 

being used in practice to predict travel times. 

Due to the complexity in dealing with multiple time-series datasets, time-

series models have not been successfully applied to predict travel times for trips that 

consist of several links. In contrast, nonparametric models are widely seen in this type 

of application. 
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• Linear Regression Models 

There are few attempts in the traffic literature to employ the linear regression 

model in forecasting travel times. Kwon et al. (2000) developed a linear regression 

model for travel time prediction in which the independent variables are available 

occupancy, flow, departure time and day of week. They reported that their proposed 

linear regression model performed better than both a regression-tree model and a 

Neural Network model. However, they did not discuss the most appropriate function 

forms of the departure time and the day of week. 

Due to the high uncertainty of traffic characteristics, it is difficult to fit the 

entire-day traffic pattern to a global linear regression model. Many studies have tried 

to divide the data into subsets and then employed different independent variables 

and/or varying coefficients with a linear regression structure. For example, Danech-

Pajouh and Aron (1991) developed a layered statistical approach by first clustering 

the data and then fitting each group of data to a linear regression model. 

Another category of linear models, time-varying coefficient models (TVC), 

assumes a global linear relation structure between the travel time T(t) and the status 

travel time )(* tT  with time-varying coefficients throughout the day (Zhang and Rice, 

2003). The status travel time is defined as the time needed for the current departures 

to complete their trips if traffic conditions remain unchanged and vehicles can 

maintain their speeds from one detector to its adjacent downstream detector. 
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where )(tα  and )(tβ  are time-varying coefficients; 

 D is the total number of detectors on the segment; and 

 ∆ is the delay caused by data transmission. 

It is reported that the time-varying coefficient model can provide reliable 

travel time predictions under certain traffic conditions with detectors placed 1/3 to 2/3 

miles apart (Zhang and Rice, 2003; and Kwon and Petty, 2005). 

Despite the reported performance quality, there are two critical issues 

associated with the time-varying coefficient model that need to be addressed. First, 

the TVC model ignores day-to-day traffic variations and the spatial distribution of the 

congestion within each highway segment; therefore, prediction reliability may 

significantly decrease when the target traffic conditions are significantly different 

from those in the historical data. Secondly, when detectors are far apart or some 

in/out flows (i.e., ramps located between two adjacent detectors) interfere with the 

traffic patterns, a linear relation may not exist between the actual travel time and the 

status travel time originally observed in the data collected from only one site (Zhang 

and Rice, 2003). 

• Kalman Filter Models 

With its learning ability to update parameters from real-time data, Kalman 

filter algorithm has been used by some researches in the literature to improve travel 

time and traffic pattern predictions (Okutani and Stephanedes, 1984; Whittaker et al., 

1997; Chien and Chen, 2001; Chien and Kuchipudi, 2003; Chu et al., 2005). 

One potential issue associated with the Kalman filter model arises when 

applying the model to a long segment that has large variations in its travel times. This 
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is due to the fact that actual travel times will be available only after vehicles finish 

their trips. Thus, the employed Kalman filter model may not have the actual value to 

update its parameters to contend with a dramatic change in the target time-varying 

travel time. As a result, the model’s prediction performance could be degraded 

drastically during transition periods. 

2.3.2 Neural Network Models 

The Neural Network model is one of the most popular nonparametric models 

reported in the literature on travel time predictions because of its well-known 

capability of pattern recognition and its robustness. It has been widely applied in 

many other transportation areas as well (Dougherty, 1995).  

A basic, fully connected backpropagation multilayer perceptron (MLP) 

consists of one input layer, one hidden layer and one output layer. This topology has 

been implemented to predict travel times or traffic variables in several studies (Clark 

et al., 1993; Kown and Stephanedes, 1994; Smith and Demetsky, 1994; Park and 

Rilett, 1999, Zhang, 2000; Huisken and van Berkum, 2003) and has been reported to 

achieve good performance. 

A variety of complex structures for Neural Network models has also been 

found in the literature, including MLP with a Kalman filter learning rule (Vythoulkas, 

1993), time-delay neural networks (TDNN) (Yun et al., 1997; Abdulhai et al., 1999; 

Lingras and Mountford, 2001), Jordan’s sequential networks (Yasdi, 1999), finite 

impulse response networks (Yun et al., 1997), radial basis function neural networks 

(Park et al., 1998), multirecurrent neural networks (Park et al., 1999), modular neural 
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networks (Park and Rilett, 1998), dynamic neural networks (Ishak and Alecsandru, 

2004), and partially connected MLP (van Lint, 2002), etc. 

Among these complex structures, the TDNN models have received the most 

discussion in the literature. The basic TDNN model incorporates one tapped delay 

line in the input layer to better fit the nature of the time-series data (Figure 2.1); 

therefore, input time-series data items will travel through the tapped delay line to 

provide the TDNN with a better short-term memory. One can use the 

backpropagation through time (BPTT) or real-time recurrent learning (RTRL) 

algorithms to train the TDNN either offline or online. Due to its strong short-term 

memory unit, TDNN lacks the ability to forget irregular input data. One irregular data 

point, which may be caused by either highly fluctuating traffic variables or a 

detection error, will stay and impact the prediction result in the tapped delay line until 

it reaches the end of the delay line. 

 

Figure 2-1 Example topology of a Time-Delay Neural Network 
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Except for the time-delay recurrent Neural Network models, Neural Network 

model structures have only been verified with data from one site. The comparison 

results of Neural Network models with other models are not consistent in the 

literature. In general, fine-tuning a Neural Network model is always time consuming 

and important to its performance; it may be the most significant factor that results in 

the poor performance of Neural Network models reported in some literature (Smith 

and Demetsky, 1996; Kirby et al., 1997). 

In the literature, researchers have made considerable attempts to combine 

Neural Network models with other models to improve prediction reliability; those 

works will be discussed later, in the section of hybrid models. 

2.3.3 Other Nonparametric Models 

In addition to Neural Network models, various nonparametric models have 

been applied to forecast travel times, traffic volumes, speeds etc., due to the fact that 

transportation-related data is often hard to fit in a pre-specified model structure. 

Commonly used nonparametric models in this area include k-Nearest Neighbor 

models, kernel models, and local regression models. 

Most nonparametric models for travel time prediction share a common feature 

— that is, to search a collection of historical observations for one or more records that 

are similar to the system’s current state and use such data to perform the prediction. 

Two classes of nonparametric models, kernel models (Nadaraya, 1964; Priestley and 

Chao, 1972; and Watson, 1964) and k-Nearest Neighbor models (Benedetti 1977; 

Stone, 1977; Tukey, 1977), are widely used (Altman, 1992), especially in the 

transportation literature (Davis and Nihan, 1991; Smith and Demetsky, 1996; Smith 
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and Demetsky, 1997; Smith et al., 2000; Oswald et al., 2001; Clark, 2003; and Rice 

and van Zwet, 2004). In the literature, some efforts have been made to use the local 

regression models (Cleveland, 1979; Cleveland and Devlin, 1988; Hastie and Loader, 

1993; and Fan and Gijbels, 1996) on forecasting as well (Sun et al., 2003; and Sun et 

al., 2004). 

A nonparametric model usually consists of three components, including a 

historical database, a search or classification procedure, and a forecast function 

(Oswald et al., 2001). With different forms of search/classification procedures and 

forecast functions, the following three types of nonparametric models are reported in 

the literature: k-Nearest Neighbor, kernel and local regression models. A brief 

description of each model is presented below. 

• k-Nearest Neighbor Models 

In a k-Nearest Neighbor model, a set of K variables is first determined in the 

search procedure to describe the system state. The similarity between two records, 

historical record p and the current case q, can be defined as their Euclidean distance, 

distEUC(p,q): 

∑
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where pi is the value of the i
th

 variable in the historical record; and 

 qi is the value of the i
th

 variable in the current state. 

 Nonuniform weighting factors, wi, can also be used to define the distance 

between two records such as in (2.8). 

 ∑
=

−=
K

i

iiiNUW qpwqpdist
1

2)(),(      (2.8) 



 

 23 

 

 Other forms of distance, for example Manhattan distance and max distance, 

have also been used in the literature (Oswald, 2001). 

 In the forecast function, the k-Nearest Neighbor model takes the average of 

the top k nearest neighbors as the prediction result V̂ : 

 ∑
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k

V
1

1ˆ         (2.9) 

where Vi is the future value in the i
th

 historical match. 

This type of forecast function is available in most transportation-related 

applications of nonparametric models. 

 As reported in the literature, k-Nearest Neighbor models are capable of 

providing reliable predictions in many transportation-related literatures (Davis and 

Nihan, 1991; Smith and Demetsky, 1996; Smith and Demetsky, 1997; Smith et al., 

2000; Oswald et al., 2001; Clark, 2003; and Rice and van Zwet, 2004). However, the 

results of performance comparisons between k-Nearest Neighbor models and other 

prediction models vary with differences in their applications. 

 Another form of forecast function includes weighting factors that are usually 

proportional to the distance between two sets of data. Smith et al. (2000) proposed 

various weighting schemes for traffic condition forecasting. 

• Nonparametric Kernel Regression Models 

With the classification function in a nonparametric model, one can apply a 

kernel function (i.e., linear, polynomial or radial basis function [RBF]) as the forecast 

function to a subset of data for predicting future values. 

Faouzi (1996) predicted traffic variables by kernel regression. As reported by 

Sun et al. (2003), one must make additional efforts to avoid frequent outputs of zero 
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when applying the kernel regression model to a small database or in an application 

with frequent irregular data points. With a support vector machine (SVM) serving as 

the classification procedure, Wu et al. (2004) applied various kernel functions and 

produced reliable predictions on travel times for three long segments of between 45 

km and 350 km in distance. 

• Local Regression Models 

The local regression model (Cleveland, 1979; Cleveland and Devlin, 1988; 

Hastie and Loader, 1993; and Fan and Gijbels, 1996) combines the simplicity of 

linear regression models and the flexibility of nonparametric models to fit a local 

segment of a dataset without a global function. As reported by Müller (1987), 

nonparametric local linear regression and nonparametric kernel regression are 

equivalent for regular distributed data. However, local regression models can better 

handle the irregular distributed data often seen in transportation applications; 

therefore, they are more reliable than kernel regression models in a single-model 

system. 

Similar in concept to the time-varying coefficient models, a local regression 

model determines its data subsets by the distance of the covariates’ spaces, usually 

with a Nearest Neighbor model, instead of the departure times used in TVC models. 

Sun et al. (2003) applied the local linear regression model to predict traffic speed at 

one detector location. It is reported to achieve some improvements by incorporating 

an empirical bootstrap method (Sun et al., 2004). The prediction results are reported 

to be reliable when the prediction horizon is short (i.e., 5 to 15 minutes).  
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Care must be exercised in determining two critical parameters for the 

nonparametric models: the number of input variables and the bandwidth of the 

search/classification procedure. Fan and Gijbels (1996) suggested using the basic 

cross-validation approach to determine these two parameters. However, such a 

method may not work efficiently for travel time prediction, which usually has a large 

amount of available data from multiple traffic detectors in a large time horizon. 

Analyzing other related information — for example, segment geometry and historical 

traffic patterns — may help to determine the optimal values of these critical 

parameters. 

 In the scenario where not enough good matches are found in the historical 

database, the nonparametric model may fail to output a reliable prediction. This type 

of case exists in almost every travel time prediction system. Therefore, at least one 

alternative method is required to ensure the reliability of a travel time prediction 

system that utilizes a nonparametric model in order to deal with such situations. 

2.3.4 Hybrid Models 

Another type of forecasting, usually referred as a hybrid method, involves 

using multiple models.  Similar to the nonparametric approaches, hybrid methods 

incorporate a clustering approach and then assign one model structure to each cluster 

with locally fitted parameters. Related studies for forecasting traffic volume, speed or 

occupancy are available in the literature by Danech-Pajouh and Aron (1991), van der 

Voort et al. (1996), Abdulhai et al. (1999), Chen et al. (2001), Lingras and Mountford 

(2001), Yin et al. (2002), Ishak and Alecsandru (2004), Zheng et al. (2006), etc. 

Among the aforementioned hybrid models, those combining the Neural Network 
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model with a clustering model or an improved learning model seem to show more 

potential than the others. 

In predicting travel time, some other hybrid models have also been reported in 

the literature. You and Kim (2000) proposed a combination of nonparametric model 

and machine learning to improve the accuracy of travel time predictions. Kuchipudi 

and Chien (2003) developed a travel time prediction system that switches between a 

path-based prediction model and the link-based prediction model using the Kalman 

filter algorithm. 

The most important technical issue associated with the use of hybrid models is 

the clustering criteria. Genetic algorithm (GA) and other data-driven methods have 

been reported in the literature. However, due to the impacts of site-specific factors 

such as geometry features, regional traffic patterns and driving behaviors, it is often 

difficult to have a generalized set of procedures for the calibration of such models to 

various locations. 

2.4 Simulated and Real-World Application Systems 

Many experimental systems have been implemented worldwide to provide 

travel time information for commuters. Efforts have also been made to develop 

simulated systems in laboratory environments with data from actual traffic detectors. 

A review of both types of system is reported in this section, with the focus on detector 

distribution, method to obtain travel times, and travel time prediction model. 
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2.4.1 Simulated Systems 

Kwon et al. (2000) developed and tested a travel time prediction system for 

peak hours with data (flow and occupancy) from 19 detectors in each direction of a 

10-km segment of freeway. Detector data was first redistributed to ten equidistance 

virtual detector stations with interpolation. Missing values were estimated by a simple 

interpolation method to construct the dataset for model training and evaluation. Four 

traffic scenarios were identified by traffic direction and morning/evening peak hours 

to cluster the dataset. Two candidate prediction models, a tree method and a linear 

regression model, were trained with about 200 data points in each subdataset. A 

cross-validation test showed that both prediction models provided reliable travel time 

predictions with prediction headways of less than 20 minutes in the morning, while 

the prediction results in two afternoon datasets were not as expected. 

The system by Rice and van Zwet (2004) was based on traffic data (flow 

occupancy) collected from 116 detectors over a freeway segment of 48 miles, where 

the missing data was estimated with interpolation. Traffic speeds were computed 

from flow and occupancy information using a method suggested by Jia et al. (2001) 

to estimate travel times and serve as model inputs. It is reported that the proposed 

time-varying coefficient model outperformed the historical average method and a k-

Nearest Neighbors (k=2) model. 

Chen et al. (2003) developed a travel time prediction system similar to that of 

Rice and van Zwet (2004) on two 20-mile two-way freeway segments, one having 

135 detectors and the other one with 120 detectors. A trajectory-based travel time 

estimation method was used to estimate historical travel times for model training. By 
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comparing with the data from probe vehicles, they found some large errors in 

evaluation because of missing data, a severe incident and other unknown reasons. 

Shien and Kuchipudi (2003) developed two Kalman filter models based on 

data collected from electronic toll devices on a 17-mile segment. The time periods 

with low detection rate were filled with historical average data. The performance of 

the link-based model and the path-based model was reported to vary under different 

scenarios. 

All of the aforementioned simulated systems were developed based on 

prefiltered datasets without missing or faulty data. 

2.4.2 Real-world Systems 

Over the past decades, several real-time travel time display systems have been 

implemented worldwide. Some systems display travel times to roadside or overhead 

variable message signs (VMS), and others have web-based output interfaces. 

TranStar in Houston, TX, USA, collects travel times from nearly two million 

EZ-Tags and posts the average travel times from these completed trips onto dynamic 

message signs (DMS) in real time (http://traffic.houstontranstar.org). 

The travel time system in Chicago, IL, USA (Illinois State Toll Highway 

Authority, 2005), is based on two sources of travel time estimations: travel times 

computed from electronic toll readers and those estimated from traffic detectors. 

When more than one source is available, one type of data will be chosen based on 

operational experience and judgment. 

Several states have used the Georgia Navigator software to display the travel 

times computed by the current average speeds collected from each link, including 
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Atlanta and Macon, GA, USA (http://www.georgia-navigator.com/trips), Portland, 

OR, USA (Oregon Department of Transportation, 2005), and Nashville, TN, USA 

(Tennessee Department of Transportation, 2005). Such systems generally will be shut 

down if no data is reported from one detector station for a period of time. 

Washington State Department of Transportation, USA, determines travel 

times with the current speeds computed by detected flow and occupancy information 

from detectors at an average spacing of 0.5 miles 

(http://www.wsdot.wa.gov/Traffic/seattle/questions/traveltimesdetail.htm). 

Similar systems have been implemented in the United Kingdom, the 

Netherlands, and Japan. However, most of these systems provide travel times with 

simple estimation or prediction algorithms. No report of incorporating advanced 

algorithms for filtering and estimating missing data has been found in these actual 

systems. 

2.5 Conclusion 

This chapter reviewed the existing approaches for travel time estimation and 

prediction, including some simulated and real-world travel time prediction systems. 

 Among the three types of travel time estimation models, the flow-based 

models, which need high accuracy of detector data and uniform geometric features, 

are the least applicable for use in a real-world system. Vehicle identification models 

need new detection hardware or take raw detector signals as input and therefore may 

incur high system costs and the need for a large data transmission bandwidth. 
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In contrast, the trajectory-based model for travel time estimation is relatively 

promising, since it has the potential to fit with long segments and more complex 

geometric features. 

Overall, nonparametric models are able to provide more reliable travel time 

predictions than parametric models in a single-model system structure. Hybrid 

models are reported to be able to further improve prediction reliability. 

In conclusion, to advance the existing models for real-world applications, one 

must overcome the following critical issues: 

• A travel time estimation model shall be able to deal with all types of 

geometric features and traffic patterns when the direct measurement of 

travel times is not available; 

• A travel time prediction model shall function reliably under both 

commonly seen traffic conditions and less frequently observed traffic 

patterns; 

• A real-time missing data estimation model is needed to improve the 

system’s reliability; and 

• The system needs to have a monitoring function that can identify 

situations where reliable predictions cannot be provided due to model 

limitations and/or missing data. 



 

 31 

 

Chapter 3: The Architecture of a Reliable Travel Time 

Prediction System with Sparsely Distributed Detectors 

 

3.1 Introduction 

As is well recognized, densely distributed traffic detectors can help travel time 

prediction systems achieve high reliability. The literature review has shown that there 

lacks the study on developing models for a freeway segment with sparsely distributed 

detectors, as most existing works are based on dense detector distribution. The costs 

of detector purchase, installation, communication and maintenance constitute the 

majority of the system costs. Therefore, the lower the number of detectors needed to 

reliably cover the targeted freeway segment for travel time prediction, the more likely 

the responsible agency will be able to afford to deploy such a system. 

Since travel time information is sensitive to the public, a system using fewer 

traffic detectors still needs to (1) build a reliable historical travel time database even 

without direct measurements of travel times; (2) take commonly available data from 

various types of traffic detectors for better system compatibility; and (3) estimate 

missing or delayed data to extend the system’s reliability. 

The flowchart for system operations, along with the introduction of each 

principal component and their interrelations, will be described in the rest of this 

chapter. 
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3.2 System Flowchart 

The proposed system architecture aims to provide reliable travel time 

prediction using sparsely distributed detectors. The system comprises three principle 

components: a travel time estimation module, a travel time prediction module, and a 

missing data estimation module. The proposed system has two operational stages: the 

model-training stage and the real-time operation stage. The operational flowcharts for 

these two stages are briefly presented below. 

3.2.1 Model-Training Stage 

Figure 3.1 shows the system’s operational flowchart for the model-training 

stage. Before the proposed travel time prediction system can start to operate, one 

must take the following five steps to calibrate all system parameters and construct the 

historical travel time database. 

Step 1: Calibrate all detectors to a reliable state 

This step is essential to all intelligent transportation systems that take data 

from traffic detectors. Without proper calibration, an unreliable detector can 

significantly degrade system reliability. 

Step 2: Long-term data collection of traffic data 

In the model-training stage, the system needs to collect long-term traffic data 

for training models and constructing the historical travel time database for its on-line 

operation. For better system performance in the real-time operation stage, the travel 

time prediction module considers weekly traffic patterns. Therefore, there needs to be 

a fairly long data collection period to make sure a sufficient number of samples are 
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available for each weekday. For example, a continuous three-month data collection 

period will yield about 12 to 14 samples for each weekday. 

 

Figure 3-1 System flowchart for the model-training stage 

Step 3: Collection of traffic patterns and actual travel times 

The proposed system needs information about recurrent traffic patterns to 

determine critical lanes before its model components are calibrated. The travel time 

estimation module also requires actual travel time information to calibrate its 

clustered linear regression model and calibrate its enhanced trajectory-based model. 

Actual travel times can also help evaluate the actual performance of the travel time 

prediction module, which is based on estimated travel times. 
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Step 4: Parameter calibration for the travel time estimation module 

The main model of the travel time estimation module, a clustered linear 

regression model, requires sufficient actual travel times in each cluster to determine 

its best fit coefficients. The supplemental model, an enhanced trajectory-based model 

for travel time estimation, does not require actual travel times for calibration, but 

requires actual speed information to construct the occupancy-speed relations. 

Step 5: Construction of the historical travel time database 

Once the travel time estimation module has been properly trained and 

calibrated, one can apply it to the long-term collected set of traffic data to construct 

the historical travel time database, which is used to support the travel time prediction 

module. 

Step 6: Parameter calibration for the travel time prediction module 

In the hybrid model structure of the travel time prediction module, the multi-

topology Neural Network model requires the analysis of the historical daily traffic 

patterns in critical lanes to determine its parameters. The k-Nearest Neighbor model 

needs further analysis on weekly traffic patterns. 

After the entire training process is completed, the proposed travel time 

prediction system is ready for real-time operation. 

3.2.2 Real-time Operation Stage 

Figure 3.2 shows the operational flowchart of the proposed travel time 

prediction system at the real-time operation stage. 

The entire real-time operation consists of the following steps. 

Step 1: Data acquisition 
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At time t, the system will receive the real-time data from all detectors and then 

store them in the traffic database. 

 

Figure 3-2 System operational flowchart for the real-time operation stage 
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Step 2: Missing data estimation 

The missing data estimation module will perform a test on those identified 

critical links and evaluate if any required input data is missing, and then execute the 

missing data estimation if needed. If the module detects that data missing on one or 

more links cannot be reliably estimated at the current time, it will then notify the 

system to stop the prediction of travel times on those segments. 

Step 3: Travel time prediction 

The travel time prediction module, which has a hybrid model structure, will 

provide travel time predictions for segments that do not experience unreliable missing 

data from traffic detectors. 

Step 4: Update of the database of historical travel times 

The travel time estimation module will take the most recent available detector 

data to estimate the travel times of completed trips. The information of the most 

recently completed trips will be available immediately for use by the travel time 

prediction module in the next time interval. 

The proposed travel time prediction system will then repeat the same process 

from Step 1 for the next time interval. 

3.3 Principal Functions of System Modules 

As discussed above, the proposed travel time prediction system consists of 

three principal modules: a travel time estimation module, a travel time prediction 

module, and a missing data estimation module. The following section will briefly 

describe the key function of each module. 
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3.3.1 Travel Time Estimation Module 

The travel time estimation module will estimate travel times from detector 

data and update the historical travel time database when there is no direct 

measurement of the travel time available in the system. To ensure the system’s high 

compatibility, this module shall be capable of receiving data from any commonly 

used traffic detector. In order to achieve high reliability with fewer detectors, the 

proposed system will best use the information of geometric features and common 

traffic patterns to perform travel time estimation. 

To contend with inevitable data deficiencies, the proposed travel time 

estimation module employs a hybrid model structure. The main model, a clustered 

linear regression model, is used to provide estimated travel times for traffic scenarios 

that have been frequently observed. In contrast, an enhanced trajectory-based model 

will serve as the supplemental model, designed to deal with scenarios that lack 

sufficient field data for model calibration. In real-time operations, the travel time 

estimation module will concurrently estimate travel times from all completed trips 

and store them in the database for use by the travel time prediction module. 

3.3.2 Travel Time Prediction Module 

Similar to the travel time estimation module, the main input variables of the 

travel time prediction module shall be readily available from most existing traffic 

detectors. The proposed module employs a hybrid model structure that combines one 

multi-topology Neural Network model with a rule-based clustering function and a k-

Nearest Neighbor model to improve prediction accuracy. 
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With the clustering rules determined based on the analysis of historical daily 

traffic patterns, the multi-topology Neural Network is able to group traffic scenarios 

with similar characteristics and apply a customized Neural Network model to one 

scenario. When the historical travel time database is rich enough to find k historical 

traffic scenarios similar to the current traffic condition, the developed travel time 

prediction system can take full advantage of historical travel times and on-line 

detected traffic conditions with the supplemental k Nearest Neighbor model. With an 

improved searching function, the k-Nearest Neighbors model can best match the 

detected traffic conditions with those in the historical data set, based on traffic 

patterns and geometric features of the target segment. 

3.3.3 Missing Data Estimation Module 

Missing data is a critical issue that often plagues any on-line system. Most 

models for on-line systems developed in the literature are based on an assumption of 

no missing data. Missing just one item in the critical data stream may prevent the 

system from functioning properly. The proposed travel time prediction system 

contains a missing data estimation module to deal with the missing and/or delayed 

data that frequently occurs due to detector malfunctions and/or communication 

problems. 

The missing data estimation approaches in this module are developed 

specifically to fit the hybrid model structure used in the travel time prediction module 

and can evaluate the reliability of the estimated missing data. If the estimated missing 

data may significantly degrade the prediction quality of the travel time prediction 
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module, the proposed travel time prediction system will stop the prediction on the 

affected segments until reliable data becomes available. 

3.4 Conclusion 

This chapter presented operational flowcharts of the travel time prediction 

system with sparsely distributed detectors in both the model-training stage and the 

real-time operation stage. To contend with the many technical and compatibility 

issues, the proposed system consists of three main modules: a travel time estimation 

module, a travel time prediction module, and a missing data estimation module. The 

travel time estimation module estimates travel times from detector data to construct 

the historical travel time database and then continuously update that database in real-

time during operations. The travel time prediction module takes real-time traffic data 

from the detectors and from the historical database to predict travel times for different 

destinations. The missing data estimation module is designed to estimate missing 

and/or delayed data in real time, to avoid system interruption. 
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Chapter 4:  A Hybrid Model for Reliable Travel Time 

Estimation on a Freeway with Sparsely Distributed Detectors 

 

4.1 Introduction 

As is well recognized, travel times are essential information for traffic 

controls, operations, transportation planning, and advanced traveler information 

systems (ATIS). Several measurement methods have been used in practice to estimate 

travel times, including probe vehicles, vehicle identification with in-vehicle devices 

(i.e., electronic toll tags), and vehicle identification without in-vehicle devices (i.e., 

video-based vehicle identification and license plate recognition). However, due to the 

limited sample sizes a probe vehicle method can provide and the high costs associated 

with both types of vehicle identification methods, it is not cost-effective for any 

responsible agency to sustain ATIS operations with those methods. 

With recent advances in vehicle detection technologies, more and more 

studies emerge to provide better estimates of travel times using new traffic detectors, 

which can provide reliable measurements of cumulative traffic flows and occupancy 

for any prespecified time interval. As reported in the literature, most existing models 

for travel time estimation are developed and tested for short links (i.e., detectors 

placed less than 0.5 miles apart). These models may not work properly on long links 

due to the fact that their embedded assumptions may not be valid when detector 

spacing is longer than 0.5 miles as in most existing highway systems. In this chapter, 
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all critical issues associated with travel time estimation on long links will be 

discussed in Section 4.2, followed by the introduction of input variables and other 

available information for the proposed hybrid travel time estimation module in 

Section 4.3. Sections 4.4 and 4.5 will present two proposed model structures: a 

clustered regression model and an enhanced trajectory-based model.  

4.2 Challenges in Estimating Travel Times on Long Links 

In review of the literature, it is clear that providing a reliable estimate of travel 

times remains a challenging task, especially for highway segments with long detector 

spacing (e.g., > 0.5 miles). Some critical issues associated with travel time estimation 

are discussed below. 

• Spatial distribution of the congestion patterns 

Despite the tremendous efforts made by traffic flow researchers over the past 

decades in modeling the evolution of congestion patterns, it remains quite difficult for 

any existing method to reliably estimate or predict the propagation of traffic patterns 

under both recurrent and nonrecurrent congestion patterns. A failure to capture the 

temporal and spatial distributions of traffic patterns will actively degrade the quality 

of any model for travel time estimation or prediction. 

• Impacts of geometric features 

Changes in geometric features often result in different roadway capacity and 

traffic patterns. Example congestion patterns incurred due to changes in freeway 

geometric features are summarized below: 
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- Lane drop 

Figure 4.1 shows example traffic conditions commonly seen near a lane drop 

point. During congested periods, traffic conditions in four subsegments, A to D, could 

evolve from a uniform condition to a chaotic state by frequent lane changes and 

accelerations/decelerations, and then move back to a steady state after the merges. 

- Lane addition 

By the same token, traffic conditions as shown in Figure 4.2 may go through a 

similar evolution process from A to C. 

- On-ramp/off-ramp 

Figure 4.3(a) and (b) show possible traffic conditions near an off-ramp and an 

on-ramp, respectively. Due to their local knowledge of possible delays and 

congestions caused by weaving traffic near a ramp, drivers may avoid using the 

through lane next to the ramp. Figure 4.4 illustrates an example of congestion caused 

by this phenomenon in two through lanes on I-70 near Exit 87A to US29 southbound 

(Figure 4.5). One needs to carefully analyze the discrepancy of traffic flow speeds 

between lanes to estimate the average speed within one segment. 

 

Figure 4-1 Congestion pattern near a lane drop point 

(A) (B) (C) (D) 
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Figure 4-2 Congestion pattern near a lane addition point 

 
(a) 

 
(b) 

Figure 4-3 (a) Congestion pattern near an off-ramp;  

(b) Congestion pattern near an on-ramp 

(A) (B) (C) 

(A) (B) (C) 

(A) (B) (C) 
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Figure 4-4 Average vehicle counts in 5-minute intervals on 

four Thursdays in July, 2006 at Exit 87A on I-70 

 

Figure 4-5 Geometry of I-70 at Exit 87A 

• Other Factors 

Aside from the aforementioned factors, the traffic flow patterns and the 

resulting travel times may also vary with the low visibility caused by weather or sun 

glare or with poor road surface conditions caused by rain, snow or debris. 

Quantifying the impacts of those factors, however, has not yet been reported in the 

literature and is beyond the scope of this study, too. 

Lane 3 

Lane 2 

Lane 1 
Detector 

I-70 

I-70 

To US29 South 



 

 45 

 

4.3 A Hybrid Travel Time Estimation Model 

This study develops a hybrid model for reliable travel time estimation for long 

freeway links with widely spaced detectors. This section will present a flowchart of 

the model and will describe the required input variables.  

Flowchart of the Hybrid Model 

Figure 4.6 shows the flowchart of the proposed hybrid model, which consists 

of two main components: a clustered linear regression model and an enhanced 

trajectory-based model. When applying the hybrid model, the system will first cluster 

traffic scenarios into predefined categories based on the traffic data. The system will 

employ the linear regression model if the detected traffic scenario belongs to a 

category in which a linear regression model has been trained with a sufficiently large 

sample of historical travel times. Otherwise, it will employ the enhanced trajectory-

based model, which does not require a pretraining with a large amount of historical 

data to produce the travel time estimation. 

Model input and available information 

As mentioned in Section 3.2.1, both components in the proposed hybrid model 

employ the cumulative traffic volume and average occupancy in each lane over fixed-

length time intervals as the main input variables. Other variables that are collectable 

with reliable quality are also included in the model development, including roadway 

geometric features, common daily and weekly traffic patterns, and free-flow travel 

times. The definitions of variables used to develop the model can be found in 

Appendix A. 
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Figure 4-6 Flowchart of the hybrid travel time estimation model 
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4.4 Clustered Linear Regression Models 

When a vehicle is traveling in a link, the range of possible travel times is 

usually constrained by the traffic pattern. For example, a vehicle can never reach free-

flow travel time when there is heavy congestion in the link. Hence, this study first 

develops a set of clustered linear regression models to categorize traffic conditions 

into predefined traffic scenarios and then estimates a travel time for each scenario. 

4.4.1 Model Formulations 

By dividing a link into two equal-length sublinks, one can express a vehicle’s 

travel time as follows: 

)()()( 21
ttt ddd τττ +=        (4.1) 

  where d is the detector ID (numbered from upstream to downstream); and 

   )(tj

dτ  is the travel time for the vehicle to traverse the j
th

 half of the 

link (d, d+1) with departure time t (j=1 or 2). 

Denoting )(tu
j

d  as the average travel speed in the j
th

 half, one can rewrite Eq. 

4.1 as: 

)(2)(2
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21
tu

L

tu

L
t

d

d

d

d

d +=τ       (4.2) 

  where dL  is the length of Link (d, d+1). 

Coifman (2002) estimated a vehicle’s in-segment speeds from the upstream 

detector data after the departure time, or from the downstream detector data before 

the vehicle’s arrival time, to obtain a travel time estimation. To improve the model’s 

robustness for long segments (e.g., > 0.5 miles), this study assumes a linear relation 
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between a vehicle’s average in-segment speed and the average speed of the upstream 

or downstream through traffic during the same time interval as follows: 
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          (4.3) 

where aij  are coefficients; and 

  ),(ˆ ttu
Thru

d ∆  is the average speed at Detect d during time (t, t+∆t). 

On the right side of Eq. 4.3, the first term is the travel time for a vehicle to 

traverse the first half of the link (d, d+1); the second term is for the second half of the 

link. Similar to the model developed by Liu et al. (2006), Eq. 4.3 has unknown 

variables on both sides. Liu et al. (2006) provided an iteration-based solution 

algorithm to solve their problem, which seems to work well in a simulated traffic 

environment. However, the performance of their solution algorithm is conditioned on 

the quality of detector data, which is often undesirably poor in real world systems. 

Hence, this study uses a preliminary estimate of the travel time to replace the actual 

travel time information in the independent variables to achieve better robustness. 

More specifically, assuming that traffic conditions in Link (d, d+1) can be divided 

into P scenarios with a relatively small range of travel times in each scenario, one can 

then replace the actual travel time information in independent variables in Eq. 4.3 

with a preliminary estimate of travel time for this scenario to obtain Eq. 4.4: 
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where p is the index of predefined traffic scenarios in Link (d, d+1); 

τ d

E (p)  is the preliminarily estimated travel time in Link (d, d+1) under 

the p
th

 predefined traffic scenario; 

γ p

d  is the estimated proportion of time taken for the vehicle to traverse 

the first half of the link (d, d+1) under the p
th

 scenario; and. 

aij

1  are coefficients. 

(4.4) can be reorganized as: 
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where k

ija  are coefficients. 

Note that one can obtain the preliminary estimate of the travel time in various 

ways. For example, using the average of collected travel times from a sufficient 

number of samples may be one of the simplest methods. However, for rarely 

observed traffic scenarios, it is difficult to produce a reliable estimation of the travel 

time at this preliminary stage. Therefore, the travel time estimation module requires at 

least one supplemental model to deal with scenarios lacking a reliable preliminary 

estimate. 

Because detector data is usually collected on a lane-by-lane basis, the average 

speed of through traffic is not directly available from the detector information. Most 

existing studies either take data from one lane (e.g., the far left lane) as the average 

condition of the through traffic, or simply compute the average over all through lanes. 

However, as analyzed in the previous section, traffic conditions in some lanes may 
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not affect the through-flow speed. Therefore, one needs to carefully select critical 

lanes to obtain the average speed of through traffic flow. This study assumes that the 

average speed of through traffic flow has a linear relation with those in all critical 

lanes, which may include both the through lanes (first item on the right side of Eq. 

4.6) and the ramp lanes (second item on the right side of Eq. 4.6):  
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where ),(ˆ ttu
Thru

d ∆  is the average speed of through traffic at Detector d during 

time (t, t+∆t). 

k

ija  are coefficients; 

  al  is lane ID (numbered from right to left); 

  )(1, p
d

dd +CLT  is the set of all critical through lanes at the upstream 

detector, which significantly contribute to computing the average 

through traffic condition in link (d, d+1) under traffic scenario p; 

)(1, p
d

dd +CLR  is the set of all critical ramp lanes at the upstream 

detector, which significantly contribute to computing the average 

through traffic condition in link (d, d+1) under traffic scenario p.}; and 

),(, ttu
ald ∆  is the average speed in Lane al  at Detector d during time (t, 

t+∆t). 

Note that reliable speed data may not be directly available from one detector 

and thus needs to be estimated from the available data. A commonly used method to 
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estimate speed is to rely on the relation between traffic flow, occupancy and the 

average vehicle length. 

ud ,la (t,∆t) = g
vd ,la (t,∆t)

od ,la (t,∆t)
      (4.7) 

where g is the average vehicle length; 

 ),(, ttv
ald ∆  is the average flow rate in Lane al  at Detector d during 

time (t, t+∆t); and 

 ),(, tto
ald ∆  is the average occupancy in Lane al  at Detector d during 

time (t, t+∆t). 

 As reported in the literature, Eq. 4.7 may not be valid when the time interval is 

short, because average vehicle lengths may vary significantly during short intervals. 

However, the impact of this error decreases with an increase in the length of the 

selected time interval and/or the traffic volumes. Assuming that, under scenario p, a 

factor gp  can satisfy Eq. 4.7, one can then obtain Eq. 4.8 from Eq. 4.5, Eq. 4.6 and 

Eq. 4.7 as follows:  
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where pT

ladb
,

,  is the coefficient of the la
th

 lane in ),(*

1, pddd +LT  at Detector d under the 

p
th

 traffic scenario for Link (d, d+1); 
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 pT

ladb
,

,1+  is the coefficient of the la
th

 lane in ),1(*

1, pddd ++LT  at Detector d+1 

under the p
th

 traffic scenario for Link (d, d+1); 

pR

ladb
,

,  is the coefficient of the la
th

 lane in ),(*

1, pddd +LR  at detector d under the 

p
th

 traffic scenario for Link (d, d+1); 

 pR

ladb
,

,1+  is the coefficient of the la
th

 lane in ),1(*

1, pddd ++LR  at detector d+1 

under the p
th

 traffic scenario for Link (d, d+1); 

 p

db
,0  is the intercept for the p

th
 scenario for Link (d, d+1); 

 ),(*

1, pddd +LT  is the set of all critical through lanes at Detector d, which 

significantly contribute to computing the average through traffic condition in 

Link (d, d+1) under Scenario p; and 

 ),(*

1, pddd +LR  is the set of all critical ramp lanes at Detector d, which 

significantly contribute to computing the average through traffic condition in 

Link (d, d+1) under Scenario p. 

In order to estimate travel times with Eq. 4.8, one needs to estimate d

pγ , which 

is the portion of time it takes one vehicle to traverse the first half of Link (d, d+1). 

4.4.2 Defining Traffic Scenarios 

Defining the clustering function for a clustered linear regression model for 

travel time estimation is a challenging task which shall have the following features: 

- Travel times in each clustered traffic scenario should always have a 

relatively small variation; 

- The variables used for clustering should be obtainable from detectors; 
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- The input variables from both the upstream and downstream detectors 

should be obtained only from critical lanes so as to reflect actual through 

traffic conditions. 

The following guidelines can help define the traffic scenarios under recurrent 

congestions: 

1. Predefine the preliminary types of patterns, based on the congestion level 

detected by the upstream and the downstream detectors as shown in Table 

4.1. 

Table 4-1 Four types of basic traffic scenarios in each link 

Traffic Condition at 

Upstream Detector 

Traffic Condition at 

Downstream Detector 
Congestion Level in the Link 

No congestion No congestion Free-flow condition 

Congested No congestion 
Moderate congestion or 

transition period 

No congestion Congested 
Moderate congestion or 

transition period 

Congested Congested Heavy congestion 

 

2. If the congestion at one end of the link is not always uniformly distributed 

across lanes, one shall further divide the set of scenarios based on the 

nature of the congestion — for example, queue spillback caused by an off-

ramp. 

3. For uniformly distributed traffic conditions, the average of detected data 

across the same type of lanes shall be used as the input variable for the 

proposed model. 

4. For scenarios with nonuniformly distributed traffic conditions, one shall 

take data from the lanes that are highly correlated with the observed traffic 

conditions as the input variables. 



 

 54 

 

4.5 An Enhanced Trajectory-based Model 

As it is often difficult to have sufficiently large samples for all possible traffic 

scenarios from field observations, this research has also developed an enhanced 

trajectory-based model to serve as a supplemental component for those scenarios with 

inadequate samples of historical data. 

4.5.1 Speed Estimation 

Using the trajectory-based model for travel time estimation, one needs to 

estimate the speed from known traffic data. Because speed data used in most 

trajectory-based models are for short intervals, Eq. 4.7 cannot provide reliable 

estimates. Instead, this study proposes the following equations for speed estimation: 
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(4.9) 

where  ),( txu is the speed to be computed at location x at time t; 

  ),( txo  is the occupancy in the small section near location x at time t; 

freeo  is the upper bound of occupancy under free-flow traffic 

conditions; 

congo  is the boundary of occupancy between moderately and heavily 

congested conditions; 

  maxo  is the maximum occupancy under recurrent congestion; 
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  freeu  is the free-flow speed; 

congu  is the boundary of the speed between moderately and heavily 

congested traffic conditions; 

  minu  is the minimum speed under heavily congested conditions; and 

  m and n are parameters to be calibrated with field data. 

 One can calibrate the boundaries of occupancy and speed data with collected 

travel times and detector data. The method reported by Zou and Wang (2006) is 

applicable for estimating m and n in Eq. 4.9 with collected field travel time 

information. 

4.5.2 Model Formulations 

To provide reliable estimation of travel times for a long link, a trajectory-

based travel time estimation model needs to reliably compute the in-segment speed 

for each target vehicle even if its position is far from either end of the target link. 

Unlike the models in the literature for short links (Coifman, 2002; van Lint 

and van der Zijpp, 2003), this study develops two types of in-segment speed 

estimation methods, depending on the vehicle’s current position in a link. When the 

vehicle is within a short distance of the upstream detector or the downstream detector, 

this study considers a possible range of traffic propagation speeds to estimate the in-

segment traffic situations from nearby traffic detectors. Otherwise, this study uses a 

model combining both traffic propagation relations with the piecewise linear speed-

based (PLSB) model to achieve better robustness. 
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As shown in Figure 4.7, the model will first estimate occupancy using the 

enhanced trajectory-based model at the vehicle’s position with Eq. 4.10 and will then 

apply Eq. 4.9 to compute the vehicle’s speed at location x at time t. The vehicle is 

assumed to travel at this speed over a short interval, stept , and then its new location at 

time (t+ stept ) will be updated. The procedure repeats the same steps until the vehicle 

arrives at the downstream detector. 
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Figure 4-7 Flowchart of the enhanced trajectory-based travel time estimation model 

Vehicle Departures from 

Detector d at Time t0 

0 , ttxx d ==  

Estimate ),( txo  

Compute ),( txu  

1),( +≥+ dxtxux  

Step

Step

ttt

ttxuxx

+=

⋅+= ),(
 

N 

1

1 ),(/)(

+

+

=

−+=

d

d

xx

txuxxtt
 

Y 

0)( tttd −=τ  



 

 58 

 

4.6 Numerical Examples 

In order to evaluate the effectiveness of the proposed hybrid travel time 

estimation model on long segments with various geometry features, this study 

includes a detailed performance analysis based on traffic datasets obtained from real-

world detectors. This section will first introduce geometry features, detector 

locations, traffic patterns and collected travel times of the test site, followed by both 

link-based and segment-based performance comparison with other models mentioned 

in the literature to demonstrate the advantage of the proposed model on segments 

with long detector spacing. 

4.6.1 Introduction of the Dataset 

The dataset for calibrating and evaluating the proposed hybrid travel time 

estimation system was acquired from ten roadside traffic detectors and some field 

surveys on a 25-mile stretch of I-70 eastbound between MD27 and I-695 between 

January 19
th

, 2006, and August 2
nd

, 2006. The locations of the ten detectors were 

determined based on the geometric features and general traffic patterns obtained from 

historical volume archives and preliminary site surveys. Figure 4.8 shows the 

locations of ten detectors along the target freeway segment, numbered from upstream 

to downstream, and Table 4.2 shows their geographic coordination. 
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Figure 4-8 Locations of 10 detectors on I-70 eastbound 

Table 4-2 Description and geographic locations of ten detectors 

Detector 

ID 
Location Longitude Latitude 

1 About 1000 feet past MD27 -77.163174 39.359605 

2 
About 500 feet past the on-ramp 

from MD32 to I-70EB 
-76.941133 39.307418 

3 
Right before the split of I-70 and 

US40 
-76.918053 39.304853 

4 

At the acceleration area of the on-

ramp from Marriottsville Rd. to I-

70EB 

-76.894104 39.304877 

5 Between mileage markers 84 and 85 -76.874133 39.302298 

6 At the mileage marker 86 -76.848583 39.295600 

7 
At the deceleration area of the off-

ramp to US29 southbound 
-76.830809 39.296183 

8 At “2-mi to I-695” sign -76.790894 39.306034 

9 At “1-mi to I-695” sign -76.771548 39.306553 

10 
At the split of I-70 to Park and Ride 

and to I-695 
-76.752429 39.306717 

 

Each traffic detector collects data of traffic count, occupancy and average 

speed in each lane (except the far left lane at Detector 10) at its location at 30-second 

intervals. However, this study did not include speed information in either the 

modeling or validation process because the reliability issues reported by Zou and 

Wang (2006). Figure 4.9 shows the exact location of each traffic detector. 
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Figure 4-9 (a) to (j) Exact location of each detector 

In order to calibrate and validate the developed models, travel time surveys 

were conducted in the segment either by matching vehicles in videos taken at both 

upstream and downstream detector locations or by using the GPS devices in the probe 

vehicles. Table 4.3 shows the schedule of all surveys that have been taken for 
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individual links between two neighboring detectors. Table 4.4 lists all surveys on 

some subsegments, which consists of more than one link. 

Table 4-3 Schedule of all field surveys for individual links 

Link 
Date and Time 

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

12/1/2005 AM Y         

1/19/2006 AM     Y     

1/20/2006 AM      Y    

1/20/2006 PM         Y 

2/1/2006 AM   Y       

2/2/2006 AM   Y       

2/7/2006 PM        Y  

2/28/2006 AM   Y Y Y Y    

3/1/2006 PM       Y Y Y 

3/7/2006 AM       Y Y Y 

3/9/2006 PM       Y Y Y 

4/6/2006 AM   Y       

4/20/2006 AM   Y       

6/13/2006 AM Y  Y   Y Y Y Y 

6/15/2006 PM Y  Y   Y Y Y Y 

Note: “Y” indicates that a survey has been conducted on the date and time listed in 

the first column. 

 

Table 4-4 Schedule of all surveys for subsegments 

Date and Time Covered Subsegments 

4/6/2006 AM (3, 7) and (3, 10) 

4/20/2006 AM (3, 7) and (3, 10) 

6/13/2006 AM Any subsegment between Detector 3 and Detector 10 

6/15/2006 PM Any subsegment between Detector 3 and Detector 10 

Note that (d1, d2) refers to the roadway segment between Detectors d1 and d2, where 

d1 < d2.  
 

As shown in Table 4.3, the survey plan was based on the observed daily traffic 

patterns in the target freeway segment. For example, Links 3-4, 4-5, 5-6, and 6-7 are 

often very congested in the morning, but are usually not congested in the evening; 

therefore, no evening surveys were conducted for these segments. In contrast, severe 

congestion is frequently observed in Links 7-8, 8-9 and 9-10 during both morning and 



 

 62 

 

evening peak hours. Therefore, data collection focused on both AM and PM periods 

for those segments. 

Please note that multiple surveys were conducted for certain links to 

compensate for encountering nonrecurrent congestion patterns, such as accidents. 

Hence, this study will generally first filter out the data points impacted by 

incidents/accidents and then calibrate the travel time estimation module using 

samples in each link that exhibited different recurrent congestion patterns. 

4.6.2 Preliminary Analysis of the Dataset 

Data availability 

Due to communication failures, power outages and/or detector malfunctions, 

some data was lost during the data collection period. Table 4.5 shows the daily data 

availability between 2/21/2006 and 3/23/2006 and highlights daily availability of less 

than 90%. The daily availability is computed as the ratio of number of available data 

records in a day over the expected number of data points, based on the duration of the 

data interval (for example, 2,880 data points are expected daily when the duration of 

the data interval is 30 seconds). Because the travel time estimation module is for off-

line use to construct the historical travel time database as mentioned in Chapter 3, this 

study did not make an additional effort to estimate the missing data for the travel time 

estimation. The data will be removed from the dataset if a detector experiences a 

missing rate of more than 5%. 

Data reliability 

The manufacturer of the traffic detector claims accuracy of more than 95% 

under light traffic and moderate congestion (occupancy less than 30%). The flow data 
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from the detectors have been validated with the volumes counted from field surveys 

and found to have less than 5% counting errors during most time intervals. However, 

the counting errors above 5% but less than 10% were found during some congested 

periods. Detector calibrations were completed by both the contractor and the 

manufacturer of the detector. 

Table 4-5 Daily availability of detector data between 2/21/2006 and 3/23/2006 

Detector 
% 

1 2 3 4 5 6 7 8 9 10 

3/23/2006 100 100 100 100 100 100 89 99.9 100 100 

3/22/2006 100 100 100 100 100 85.3 79.9 100 100 43.2 

3/21/2006 100 100 100 100 100 83.8 90.1 100 100 0 

3/20/2006 100 100 100 100 100 87.9 91.1 100 100 0 

3/19/2006 100 100 100 100 100 89 94 100 100 0 

3/18/2006 100 100 100 100 100 87.6 97.5 100 100 0 

3/17/2006 99.7 99.7 99.7 99.8 99.6 93.1 99.5 99.8 99.7 0 

3/16/2006 100 100 100 100 100 75.8 99.8 100 100 59.8 

3/15/2006 100 100 100 100 100 92.3 99.6 100 100 94.3 

3/14/2006 100 100 100 100 100 91.8 99.9 100 100 98 

3/13/2006 100 100 100 100 100 93.8 100 100 100 99.9 

3/12/2006 100 100 100 100 100 92.8 100 100 100 85.9 

3/11/2006 100 100 100 100 100 95.3 100 100 100 99.7 

3/10/2006 100 100 100 100 100 96.1 100 99.9 100 99.9 

3/9/2006 99.8 100 99.7 99.7 100 94.7 99.8 99.9 100 99.4 

3/8/2006 100 100 100 100 100 95.5 100 100 100 98.9 

3/7/2006 100 99.8 100 100 100 96.2 100 100 100 99.6 

3/6/2006 100 100 100 100 100 97.3 100 100 100 99.3 

3/5/2006 96.5 95.4 96.7 96.3 95.9 91.4 94.9 96 96 99.1 

3/4/2006 100 99.9 100 100 100 96.3 100 100 100 99.1 

3/3/2006 100 100 100 100 100 98.3 100 99.9 100 99.5 

3/2/2006 100 100 99.9 100 99.9 97.6 100 94.3 99.9 99.9 

3/1/2006 100 99.8 99.9 100 100 99.2 100 100 100 100 

2/28/2006 100 100 100 100 100 99.5 100 100 100 99.9 

2/27/2006 100 99.9 100 100 100 99.4 100 100 97.8 99.9 

2/26/2006 100 100 100 100 100 100 100 100 99.9 100 

2/25/2006 100 100 100 100 100 100 100 100 100 100 

2/24/2006 100 100 100 99.9 33.7 99.8 100 100 100 100 

2/23/2006 100 99.9 100 100 13.1 100 100 99.9 100 100 

2/22/2006 99.8 100 99.8 99.8 71.2 99.9 99.9 99.8 99.9 99.8 

2/21/2006 99.9 100 99.9 99.9 99.9 100 99.9 100 7.2 99.9 
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Volume Drifting 

As mentioned in Section 2.2.1, volume drifting is an important issue that 

prevents the flow-based travel time estimation models from being implemented in a 

real-world system. Daily volumes at detector pairs (4, 6) and (8, 9) from 6/27/2006 to 

7/2/2006 have been summarized in Table 4.6. Neither detector pair has a ramp in 

between (Figure 4.8); therefore they should report the same daily volumes if every 

vehicle that has passed the detector stations has been detected correctly. However, the 

daily volume differences and percentages reported by detectors showed 

nonsystematic patterns. 

Table 4-6 Comparisons of daily volume counts between two detector pairs 

 2006-06-27 2006-06-28 2006-06-29 2006-06-30 2006-07-01 2006-07-02 

Daily 
Volume at 
Detector 4 

37040 39121 41595 42707 35190 29891 

Daily 
Volume at 
Detector 6 

37903 39695 42373 43410 35117 29741 

Difference 863 574 778 703 -73 -150 

Relative 
Difference 

2.33% 1.47% 1.87% 1.65% -0.21% -0.50% 

Daily 
Volume at 
Detector 8 

45332 49022 50160 50670 39469 34806 

Daily 
Volume at 
Detector 9 

44979 48945 49796 50449 39314 34784 

Difference -353 -77 -364 -221 -155 -22 

Relative 
Difference 

-0.78% -0.16% -0.73% -0.44% -0.39% -0.06% 

 

4.6.3 Model Evaluation for Individual Links 

Due to the complex geometry features in the study area, a 25-mile freeway 

segment of I-70 between MD27 and I-695 (Figure 4.8 and Figure 4.9), none of the 

existing travel time estimation models that take data from traffic detectors can be 
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applied to estimate travel times for all links. However, some links have simpler 

geometry features and therefore can be used to compare the performance of the 

proposed hybrid travel time estimation model to the existing approaches. 

This study selects two links — between Detector 5 (Figure 4.9(e)) and 

Detector 6 (Figure 4.9(f)) and between Detector 6 and Detector 7 (Figure 4.9(g)) — 

to compare the performance of travel time estimation models on these links. 

Performance Comparison on Link (5, 6) 

No ramp or other geometry change (e.g., lane addition or lane drop) exits 

between Detectors 5 and 6. One on-ramp lane merges into the I-70 mainline segment 

of two lanes at Detector 4 (Figure 4.9[d]), about 1.12 miles upstream of Detector 5. 

The nearest geometry change downstream of Detector 6 is about 0.96 miles at 

Detector 7. Because neither detector in Link (5, 6) is very close to the location of the 

geometry change, the traffic can be treated as evenly distributed across two through 

lanes at both detector locations. A flow-based method (Nam and Drew, 1996) has 

been implemented on this segment and included in the comparison. As proposed by 

Nam and Drew (1996), an hourly volume-adjusting factor will be introduced to 

reduce the impact caused by the volume-drifting issues. The performance comparison 

also includes the original linear piecewise trajectory-based travel time estimation 

model (van Lint and van der Zijpp, 2003), which requires speed information as an 

input variable. In the comparison, the speed information will be computed with Eq. 

4.10, which estimates speed for the supplemental enhanced trajectory-based model 

developed in this study. 
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(a) 1/19/2006 
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(b) 2/28/2006 

Figure 4-10 Distribution of the difference in the detected volume data between 

Detector 5 and Detector 6 aggregated over each 20-minute interval, and cumulative 

vehicle counts from 4:00AM to the end of day on (a) 1/19/2006 and (b) 2/28/2006 

Figure 4.10 illustrates the distribution of the difference in the volume data 

between Detector 5 and Detector 6 over each interval of 20 minutes from 4:00AM to 

the end of day on 1/19/2006 and 2/28/2006, together with the cumulative vehicle 
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counts at both detectors. It shows that the differences vary significantly, especially 

during peak hours. 

The attempt to implement a flow-based model for the Link (5, 6) failed. As 

shown in Figure 4-11, the model even estimated travel times between 7:00AM and 

9:00AM as being less than zero. The estimations it provided for other time periods 

showed very high fluctuation. This is probably due to the unsystematic distribution of 

detection errors of the traffic flow. 
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Figure 4-11 Estimated travel times vs. actual travel times between Detectors 5 and 6 

on January 19
th

, 2006 

The clustered linear regression (CLR) model and the enhanced trajectory-

based (ETB) model, as well as the original piecewise linear speed-based (PLSB) 

model have been implemented successfully on the Link (5, 6). 

As shown in Table 4-7, the developed CLR model categorizes traffic 
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conditions on Link (5, 6) into four scenarios. Scenario 2 congestion is usually caused 

by high merging volume at Detector 4. An uncongested condition at Detector 7 helps 

the traffic disperse when vehicles traverse Link (5, 6). In Scenario 3, traffic 

congestions occurred at both the upstream and downstream of Link (5, 6). Note that, 

due to traffic merging into the right mainline lane at Detector 4, traffic at Detector 5 

is actually not uniformly distributed. Therefore, the criteria are different for lane 1 

and lane 2 at Detector 5. All other traffic scenarios that do not have enough 

observations are categorized into Scenario 4. 

Table 4-7 Traffic Scenarios for Link (5, 6) 

Detector 5 Detector 6 

ID Description of the Scenario Occ. in 

Ln. 1 

Occ. in 

Ln. 2 

Occ. in 

Ln. 1 

Occ. in 

Ln. 2 

1 No congestion on the link ≤12 ≤10 ≤10 ≤10 

2 
Congestion at Detector 5; no 

congestion at Detector 6 
>12 >10 ≤10 ≤10 

3 Congestion at both Detectors 5 and 6 >12 >10 >10 >10 

4 Other Other combinations 
Note that the occupancy refers to the average occupancy of a 4-minute period starting from 2 

minutes before the current time. The unit of occupancy is %. 

 

Table 4.8 shows all the parameters for Eq. 4.10 for Link (5, 6), which is 

required by both ETB and PLSB models. The parameters were determined through 

field observations, following Zou and Wang’s (2006) approach. 

This study first explores the performances of CLR, ETB and PLSB models in 

Traffic Scenarios 2 and 3 individually. Then an overall comparison between the 

proposed hybrid model (HM) and PLSB will be presented. 
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Table 4-8 Parameters for Equation 4.10 for Link (5, 6) 

Parameter Value 

freeu  67.23 mph 

congu  10 mph 

minu  1 mph 

freeo  10 

congo  30 

maxo  45 

M 2.3 

N 1.5 

 

Traffic Scenario 2 

There were a total of 446 samples of actual travel times under the Traffic 

Scenario 2 on Link (5, 6) collected on January 19
th

, 2006 (Thursday), and February 

28
th

, 2006 (Tuesday). About 92% of the samples (411 observations) were randomly 

selected to construct the dataset for calibrating the CLR model. The rest of the 

samples (35 observations) were used to evaluate the model’s performance. The model 

identifies the only critical lane: Lane 2 at Detector 5 in Scenario 2 on Link (5, 6). Eq. 

4.11 shows the CLR model for Scenario 2 on Link (5, 6). 

)270,(

)270,(
561.4171.68)(

2,5

2,5

5
tv

to
t +=τ      (4.11) 

when  10)240,120(1,5 >−to , 12)240,120(2,5 >−to , 10)240,120(1,6 ≤−to  

and 10)240,120(2,6 ≤−to . 

In Scenario 2, the observed travel times were distributed between 78 seconds 

and 124 seconds. Table 4-9 shows comparisons of all observations, samples with 

shorter travel times (≤ 95 seconds, 20 observations) and those with longer travel times 

(> 95 seconds, 15 observations) for all three models. Eq. 4-12 defines the comparison 
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indicators, the average absolute error (AAE) and the average absolute relative error 

(AARE). Overall, both CLR and ETB provided better performance than PLSB. 

Among these, ETB had a lower AAE, and CLR model performed better with the 

increase of travel time. 
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where N is the number of data samples available for comparison, 

 n is the index of the data sample, 

 nτ  is the n
th

 observed travel time, and 

 nτ̂  is the travel time from the model. 

Table 4-9 Overall performance comparison for Scenario 2 on Link (5, 6) with field 

data 

All Samples 

(35 Observations) 

Travel Times ≤ 95 sec. 

(20 Observations) 

Travel Times > 95 sec. 

(15 Observations) 

 

AAE 

(Sec.) 

AARE 

(%) 

AAE 

(Sec.) 

AARE 

(%) 

AAE 

(Sec.) 

AARE 

(%) 

CLR 5.63 6.57 6.16 8.31 4.46 4.26 

ETB 5.14 5.43 3.71 4.19 7.2 7.08 

PLSB 6.17 6.49 5.47 5.86 7.67 7.33 
AAE: Average absolute error. 

AARE: Average absolute relative error. 

 

Traffic Scenario 3 

The Traffic Scenario 3 covers situations in which congestion exists at both 

Detector 5 and Detector 6. A total of 340 observations fell into Scenario 3, 307 of 

which were randomly selected to calibrate CLR; the other 33 observations were used 

to evaluate all three models. In this Scenario, CLR identifies its two dependent 



 

 71 

 

variables as the average traffic conditions at Detector 5 and Detector 6. Eq. 4.14 

shows the CLR model for Scenario 3 on Link (5, 6). 
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when  10)240,120(1,5 >−to , 12)240,120(2,5 >−to , 10)240,120(1,6 >−to  

and 10)240,120(2,6 >−to . 

Table 4-10 summarizes the comparison results, which show that CLR 

provided significant improvement over ETB and PLSB in this scenario, with an AAE 

of 6.60 seconds, which is less than 25% of that from the PLSB model, and an AARE 

of 4.79%. ETB was able to provide an AAE of 19.48 seconds, which was about 7 

seconds less than that of PLSB model. 

Table 4-10 Overall performance comparison for Scenario 3 on Link (5, 6) 

All Samples (33 Observation)  

AAE (Sec.) AARE (%) 

CLR 6.60 4.79 

ETB 19.48 13.35 

PLSB 26.33 17.65 
AAE: Average absolute error. 

AARE: Absolute relative error. 
 

Traffic Scenarios 1 and 4 

60 observations of travel times were between 74 seconds and 91 seconds in 

Scenario 1. The 151 observations of travel times in Scenario 4 are from 75 seconds to 

169 seconds. As shown in Table 4-11, ETB outperformed PLSB in both scenarios.  
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Table 4-11 Overall performance comparison for Scenarios 1 and 4 on Link (5, 6) 

Scenario 1 

(60 Observations) 

Scenario 4 

(151 Observations) 

 

AAE (Sec.) AARE (%) AAE (Sec.) ARE<10% (%) 

ETB 2.67 3.33 7.22 6.54 

PLSB 2.92 3.67 8.69 7.66 

AAE: Average absolute error. 

AARE: Absolute relative error. 

 

Overall 

Overall, the developed hybrid model, which uses a CLR model as the main 

model and an ETB model as the supplemental model, reliably estimated travel times 

for Link (5, 6). The hybrid model had an overall average absolute error of 6.02 

seconds for all traffic scenarios and PLSB model had an average absolute error of 

9.22 seconds. The flow-based model failed to provide reliable estimates of travel 

times in Link (5, 6). 

Performance Comparison on Link (6, 7) 

There is no ramp or other type of geometry change between Detectors 6 and 7. 

However, flow-based models cannot be applied to this link due to the violation of the 

first-depart-first-arrive assumption caused by uneven congestion patterns between the 

ramp lane and through lanes at Detector 7 (Figure 4-9g) during peak hours. 

Therefore, only PLSB model was implemented in the comparison. 

As shown in Table 4-12, the developed CLR model categorizes traffic 

conditions on Link (6, 7) into 7 scenarios. Congestion in Scenario 2 is usually caused 

by the dispersion of heavy upstream congestion with no congestion at the downstream 

detector of the segment (Detector 7). Scenarios 3 to 8 are six types of traffic patterns 

that have congestion at Detector 7 as being caused by the through lane only, the ramp 
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lane only, or the combination of both types of lanes. As mentioned in previous 

sections, only lanes 1 and 3 at Detector 7 are included as critical lanes. 

Traffic Scenario 2 

On January 20
th

, 2006 and February 28
th

, 2006, there were a total of 31 

samples were observed in Scenario 2 on Link (6, 7). This study applies an evaluation 

method to first calibrate model parameters, using 28 randomly selected samples, and 

then tested the model with the remaining 3 samples. This evaluation process was 

repeated for 10 times to calculate the final average performance of CLR model. Eq. 

4.15 shows the parameters determined from one of the 10 evaluations. The ETB 

model and PLSB model have been evaluated with the same dataset. 

)270,(

)270,(
688.7241.22)(
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to
t +=τ      (4.14) 

when  8)240,120(1,6 >−to , 10)240,120(2,6 >−to , 8)240,120(1,7 ≤−to  and 

10)240,120(3,7 ≤−to . 
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Table 4-12 Traffic scenarios for Link (6, 7) 

Detector 6 Detector 7 

ID Description of the Scenario Occ. in 

Ln. 1 

Occ. in 

Ln. 2 

Occ. in 

Ln. 1 

Occ. In 

Ln. 3 

1 No congestion on the link ≤8 ≤10 ≤8 ≤10 

2 
Congestion at Detector 6; no 

congestion at Detector 7 
>8 >10 ≤8 ≤10 

3 

No congestion at Detectors 6 and 

congestion at Detector 7 caused by 

the off-ramp (Lane 1) 

≤8 ≤10 >8 ≤10 

4 

No congestion at Detectors 6 and 

congestion at Detector 7 caused by 

the through lane (Lane 3) 

≤8 ≤10 ≤8 >10 

5 

No congestion at Detectors 6 and 

congestion at Detector 7 caused by 

both the through lane and the off-

ramp 

≤8 ≤10 >8 >10 

6 

Congestion at Detectors 6 and 

congestion at Detector 7 caused by 

the off-ramp (Lane 1) 

>8 >10 >8 ≤10 

7 

Congestion at Detector 6 and 

congestion at Detector 7 caused by 

the through lane (Lane 3) 

≤8 >10 ≤8 >10 

8 

No congestion at Detectors 6 and 

congestion at Detector 7 caused by 

both the through lane and the off-

ramp 

≤8 ≤10 >8 >10 

9 Other Other combinations 
Note that the occupancy refers to the average occupancy of a 4-minute period starting from 2 

minutes before the current time. 

 

Table 4-13 Overall performance comparison of accuracy for  

Traffic Scenario 2 on Link (6, 7) 

 AAE (Sec.) AARE (%) 

CLR 3.36 2.84 

ETB 11.67 9.67 

PLSB 11.00 8.33 
AAE: Average absolute error. 

AARE: Absolute relative error. 

 

Table 4-13 summarizes the performance comparisons of all three models in 

Scenario 2 on Link (6, 7), in which the observed travel times were between 63 
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seconds and 94 seconds. The CLR model had the least AAE of 3.36 seconds, which is 

less than 1/3 of those from the ETB and PLSB models, which showed similar 

performance. 

Traffic Scenario 6 

On January 20
th

, 2006, and February 28
th

, 2006, there were a total of 22 

samples observed in Scenario 6 on Link (6, 7). Similar to Scenario 2, this study 

calibrated the linear regression model in this scenario with 19 randomly selected 

samples and then evaluated the model with the remaining 3 samples. Due to the 

limited samples for model validation, this study repeated the random selection 

process 10 times for accuracy validation. The CLR model has the least AAE of 6.00 

seconds. The ETB model and the PLSB model have AAEs of 14.50 and 16.00 

seconds, respectively. 

Other Traffic Scenarios 

All traffic scenarios other than Scenarios 2 and 6 had too few observed actual 

travel times to calibrate the CLR model. Therefore, only the ETB and PLSB models 

were implemented for comparison. As shown in Table 4-14, the ETB model 

developed in this study was able to provide an AAE of 5.36 seconds compared to 

10.22 seconds provided by the PLSB model. The ETB model provided the AARE of 

7.94%, which outperformed that of 15.03% from PLSB model. 

Table 4-14 Overall performance comparison for the  

traffic scenarios other than 2 and 6 on Link (6, 7) 

 AAE (Sec.) AARE (%) 

ETB 5.36 7.94 

PLSB 10.22 15.03 
AAE: Average absolute error. 

AARE: Average absolute relative error. 
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4.6.4 Model Evaluation on Multiple Links 

The model evaluation on multiple links covered the subsegment between 

Detector 3 (at the split of I-70 and US40) and Detector 10 (at the start of the ramp to 

I-695) on the I-70 freeway segment. This subsegment often experiences heavy 

congestion in the morning peak hours on Tuesdays and Thursdays. Therefore, this 

study conducted two travel time surveys in the morning peak hours on April 6
th

, 2006 

(Thursday) and April 20
th

, 2006 (Thursday), for the subsegment. The true travel times 

were obtained by matching vehicles from two videos taken at the beginning and end 

of the subsegment. There were a total of 71 data points collected on April 6
th

, 2006, 

and 114 data points collected on April 20
th

, 2006. The surveys covered both transition 

periods between congestion and free-flow state, as well as heavily congested periods. 

Figure 4-12 shows the distribution of collected data samples in the subsegment from 

Detectors 3 to Detector 10 during the survey periods. 

This 10-mile long subsegment consists of four interchanges and seven ramps 

(Figures 4-8 and 4-9). Complex geometric features and high variation in traffic 

volumes have made this subsegment difficult to develop a travel time estimation 

model. This research categorized the congestion patterns into different levels based 

on the range of travel times, so as to have a detailed evaluation of the performance of 

the developed hybrid travel time estimation model under various traffic conditions. 

As shown in Figure 4-12 and Table 4-15, congestion was much heavier on April 6
th

, 

2006, which had a maximum travel time of 1290 seconds (21.5 minutes) on the 

subsegment, which has a free-flow travel time of 520 seconds (8.7 minutes). Data 

collected on April 20
th

, 2006, showed that most travel times were between 800 and 
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1,000 seconds, which exhibited quite a fluctuating pattern between 7:15AM and 

8:00AM. 
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Figure 4-12 The distribution of collected travel times on  

April 6
th

, 2006 and April 20
th

, 2006 

Tables 4-15(a) and (b) summarize the performances of the developed 

estimation model and PLSB model on the subsegment from Detector 3 to Detector 10 

against the field data collected on two different days. Figures 4-13(a) and (b) show 

the distribution of estimated and actual travel times vs. departure time for two days, 

where the estimated travel times from the developed hybrid model showed a similar 

trend to the actual travel times and the PLSB model failed to do so. The results from 

the developed hybrid travel time estimation model showed satisfactory performance 

over all travel time categories during those two days with an average of less than 

8.8% relative absolute error. Even in the transition periods, the hybrid model was still 

able to estimate travel times with an error of less than 70 seconds. In heavily 
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congested cases, in which most travel times are greater than twice the free-flow travel 

time (520 seconds), the developed hybrid model still provided estimates with an AAE 

of less than 90 seconds. In contrast, the PLSB model had AAEs of more than 2 

minutes in all categories. The PLSB model produced a very high AARE of 44.3% 

under heavy congestion. 

Table 4-13(c) shows the overall evaluation results for the transition periods 

(travel times between 520 and 800 seconds), moderate congestion (travel times 

between 800 and 1000 seconds) and heavy congestion (travel times greater than 1,000 

seconds). For all 185 collected travel times, the hybrid travel time estimation model 

successfully yielded the estimated travel times with acceptable accuracy, i.e., within 

90 seconds. 
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Table 4-15 Performance evaluation of the travel time estimation module 

(a) Performance evaluation of travel time estimation module on the subsegment from 

Detector 3 to Detector 10 on April 6
th

, 2006 

Travel Time Range (sec) 
 

520 to 800 800 to 1000 >1,000 

Sample Size 10 12 49 

Maximum Travel Time (sec) 791 998 1,290 

Average Travel Time (sec) 710 928 1,109 

AAE (sec) 51.9 60.3 83.6 Hybrid 

Model AARE (%) 7.3% 6.6% 7.5% 

AAE (sec) 122.0 329.6 493.8 
PLSB 

AARE (%) 16.7% 35.5% 44.3% 

 

(b) Performance evaluation of travel time estimation module on the subsegment from 

Detector 3 to Detector 10 on April 20
th

, 2006 

Travel Time Range (sec) 
 

520 to 800 800 to 900 900 to 1000 

Sample Size 13 84 17 

Maximum Travel Time (sec) 796 898 985 

Average Travel Time (sec) 767 847 929 

AAE (sec) 65.2 49.4 73.0 Hybrid 

Model AARE (%) 8.7% 5.8% 7.8% 

AAE (sec) 153.5 243.7 335.2 
PLSB 

AARE (%) 19.7% 28.7% 36.0% 

 

(c) Overall performance evaluation of travel time estimation module on the 

subsegment from Detector 3 to Detector 10 on April 6
th

 and April 20
th

, 2006 

Travel Time Range (sec) 
 

520 to 800 800 to 1000 > 1000 

Sample Size 23 113 49 

Maximum Travel Time (sec) 796 998 1290 

Average Travel Time (sec) 742.3 847.2 1109.1 

AAE (sec) 59.4 54.1 83.6 Hybrid 

Model AARE (%) 8.1% 6.2% 7.5% 

AAE (sec) 139.8 266.6 493.8 
PLSB 

AARE (%) 18.4% 30.5% 44.3% 

AAE: Average absolute error. 

AARE: Average absolute relative error. 
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(a) Comparison between actual and estimated travel times in the subsegment from 

Detector 3 to Detector 10 on April 6
th

, 2006 
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(b) Comparison between the actual and estimated travel times in the subsegment from 

Detector 3 to Detector 10 on April 20
th

, 2006 

Figure 4-13 Comparisons between actual and estimated travel times in the 

subsegment from Detector 3 to Detector 10 on April 6
th

, 2006 and April 20
th

, 2006 
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4.7 Conclusion 

This chapter presented a hybrid travel time estimation model that uses a 

clustered linear regression model as the main model and an enhanced trajectory-based 

model as its supplemental component. The CLR model functions to categorize traffic 

conditions in a link into several scenarios, based on the exhibited congestion patterns. 

One can then construct the input dataset with selected critical lanes. The primary 

reason for using an ETB model as a supplemental component is to contend with the 

lack of sufficient samples for some relatively uncommon traffic scenarios. The 

proposed supplemental model can take advantage of the traditional trajectory-based 

methods grounded on traffic propagation relations and PLSB models to provide 

reliable travel time estimations on long links. 

An extensive comparison between the collected and estimated travel times 

clearly indicated that the developed hybrid model was able to provide reliable 

estimates under transition periods, moderate congestion, and heavy congestion with 

an average relative absolute error less than 8.8%. During transition periods in the 

subsegment from Detector 3 to Detector 10, the developed hybrid model may have 

yielded a relatively large error, but it remained within the range of one minute. The 

traditional PLSB model implemented for comparison failed to provide reliable 

estimations. Overall, the developed model is capable of providing reliable travel 

times estimates from on-line detector data and serving as a tool for constructing the 

historical travel time database. 
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Chapter 5: A Hybrid Model for Travel Time Prediction with 

Long Detector Spacing 
 

 

5.1 Introduction 

Due to the deteriorating traffic conditions in most urban networks, providing 

reliable trip times to commuters has emerged as one of the most critical challenges for 

all existing Advanced Traffic Information Systems (ATIS). However, designing and 

implementing such a system to achieve the desired level of performance is quite a 

difficult task, as its resulting accuracy varies with many variables, including day-to-

day traffic demands, responses of individual drivers and their commuting patterns, 

conditions of the road facility, weather, incidents, reliability of available traffic 

detectors etc. 

As discussed in Section 2.3, many studies have developed travel time 

prediction models for highway segments with simple geometric features and densely 

distributed traffic detectors (i.e., every half-mile). The large number of detectors 

required for those models have limited their potential applications, in view of 

diminishing resources for infrastructure development. This study intends to develop a 

travel time prediction model that can provide reliable travel time predictions under a 

sparsely distributed detector environment. The proposed model takes into account the 

geometric features of the target highway segment and the historical time-varying 

traffic patterns. 
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5.2 Model Structure 

To reliably capture the variability of day-to-day congestion, this study 

proposes a hybrid model structure that employs a multi-topology Neural Network 

model with a rule-based clustering function for the situation when the historical 

traffic and travel time databases are not rich enough, and a k-Nearest Neighbor model 

for traffic scenarios that have a sufficient number of similar historical travel times. 

Both models have been developed to take full advantage of geometric features and 

historical traffic patterns in order to provide reliable travel time predictions using 

widely spaced detectors. In the multi-topology Neural Network model, the rule-based 

clustering mechanism categorizes traffic conditions into three scenarios — congestion 

in morning peak hours, congestion in evening peak hours and congestion-free periods 

— and then the model will apply a Neural Network model with the topology of either 

Multilayer Perceptron (MLP) or Time Delayed Neural Network (TDNN) for that 

specific traffic scenario to predict the travel time. The k-Nearest Neighbor model can 

take full advantage of similar historical travel times. It uses the distances between the 

current traffic condition and historical cases to assess the quality of the model output 

and to determine the need to switch the prediction model. During operation, this 

system can continuously update the historical travel time database with estimated 

travel times of most-recently completed trips and some critical parameters in both 

models. Figure 5.1 shows the flowchart of the proposed model for travel time 

prediction. 
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Figure 5-1 Flowchart of the hybrid travel time prediction model 

The travel time prediction system will first construct the input dataset of the k-

Nearest Neighbor model from the current real-time traffic data. If at least k historical 

cases exist within the similarity threshold, TH, from the current condition, then the 

hybrid model’s output will be the prediction result of the k-Nearest Neighbor model, 
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which is the average of those k best historical matches. Otherwise, the prediction 

system will reorganize the input data for the multi-topology Neural Network model 

with a rule-based clustering function and then output its prediction result. The real-

time data will be concurrently processed to update the database of historical travel 

times. 

Sections 5.3 and 5.4 will present the core logic of the proposed Neural 

Network model with a rule-based clustering function and the k-Nearest Neighbor 

model respectively. 

5.3 A Multi-topology Neural Network Model with a Rule-based 

Clustering Function 

As reported in the literature, a single-topology Neural Network model is 

capable of providing reliable predictions in the transportation field under certain 

conditions (Dougherty, 1995). However, the prediction accuracy of Neural Network 

models for predicting traffic or travel times varies dramatically with the existence of 

nonrecurrent congestions and the congestion severity. Therefore, this study develops 

a multi-topology Neural Network model structure with a rule-based clustering 

function that can fully take advantage of the efficiency of different Neural Network 

topologies under various traffic patterns. The following section will describe the rule-

based clustering function, the selection of input variables, and the topology of the 

Neural Network model used under each type of traffic scenario. 

A rule-based clustering function 

As is well recognized in the literature and observed in the real world, traffic 

conditions in a long segment may vary significantly during the morning peak hours, 
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evening peak hours and off-peak hours due to the complex interactions of many 

factors with time-varying natures, such as demand patterns in each link, origin-

destination distribution at ramps, drivers’ responses to potential congestions etc. 

Some efforts reported in the literature have clustered the space of input variables and 

then trained the Neural Network model to obtain parameters in each cluster. A 

common approach to obtain the clustering criteria is to analyze the historical traffic 

patterns and determine the average time-of-day boundaries for morning and/or 

evening peak hours. However, such clustering functions do not really take into 

account the fact that congestion, rather than of time-of-day, is the most direct factor 

affecting the travel times. 

This study develops a rule-based clustering function that categorizes traffic 

conditions on a long freeway segment with three commonly seen scenarios: 

congestion in morning peak hours, congestion in evening peak hours and congestion-

free periods. The developed clustering function has the following features: 

- The rule-based clustering function considers both daily traffic patterns and 

weekly traffic patterns to determine a preliminary boundary of peak hours 

for each weekday. 

- The clustering function determines traffic scenarios based only on traffic 

conditions in critical lanes, which include both mainline lanes and ramp 

lanes, to reduce the disturbance from fluctuating traffic conditions in those 

lanes that do not directly contribute to any impact on travel times. 
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- In order to reduce the frequent scenario switching that occurs during 

transition periods, the clustering function requires traffic conditions to 

maintain stability for a period of time to confirm a scenario change. 

- During real-time operation, the model can concurrently update some 

threshold parameters of the clustering functions — for example, the 

preliminary weekly boundaries of peak hours. 

The logic of the developed rule-based clustering function for determining 

)(tpd , the current traffic scenario at the current time t on link (d, d+1), is as follows: 

IF wk

dTMLt ≥  and wk

dTMUt ≤  THEN 

IF ladlad
OMjtola ,,

)( , * >−∃  for all j, where 
*

1,

d

ddla +∈ CLM  and 

THNNj ≤≤0 , THEN 

  1)( =tpd  (morning congestion) 

 ELSE 

 IF ladlad
OMjto ,,

)(* ≤−  for all la and j, where 
*

1,

d

ddla +∈ CLM  

and THNNj ≤≤0 , THEN 

   0)( =tpd  (off-peak period) 

  ELSE 

   )1()( −= tptp dd  

  END IF 

 END IF 

ELSE 

 IF wk

dTELt ≥  and wk

dTEUt ≤  THEN 
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 IF ladlad
OEjtola ,,

)( , * >−∃  for all j, where 
*

1,

d

ddla +∈ CLE  and 

THNNj ≤≤0 , THEN 

   1)( −=tpd ( evening congestion) 

  ELSE 

 IF ladlad
OEjto ,,

)(* ≤−  for all la and j, where 

THNNj ≤≤0 , THEN 

    0)( =tpd  (off-peak period) 

 ELSE 

  )1()( −= tptp dd  

 END IF 

  END IF 

 ELSE 

  0)( =tpd  (off-peak period) 

  END IF 

 END IF 

 where, wk

dTML  and wk

dTMU  are the lower and upper time boundaries for 

morning peak hours in link (d, d+1) on weekday wk in the historical 

traffic patterns; 

  wk

dTEL  and wk

dTEU  are the lower and upper time boundaries for 

evening peak hours in link (d, d+1) on weekday wk in the historical 

traffic patterns; 

  00:2400:0 <<≤<≤ wk

d

wk

d

wk

d

wk

d TEUTELTMUTML ; 
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  1or  * += ddd ; 

  ladOM ,  is the occupancy threshold at lane la at detector d in the 

morning; 

  ladOE ,  is the occupancy threshold at lane la at detector d in the 

evening; 

  
*

1,

d

dd +CLM  and 
*

1,

d

dd +CLE  are sets of critical lanes at detector *
d  in 

link (d, d+1) in the morning and in the evening respectively; and 

  THNN is the required duration for the traffic condition to maintain 

congested or uncongested stably; 

In real-time operations, one can apply the above rules to each link in the target 

freeway segment to determine the associated traffic scenarios, )(tpd  (d=1 to D-1), 

for the current time t and then determine which Neural Network model to use with 

)(tP  defined in Eq. 5.1. 

 ∑
−

=

=
1

1

)()(
D

d

d tptP        (5.1) 

The model for congestion in morning peak hours will be used when 0)( >tP  

and 0)( ≥tpd  (d=1, 2, …, D-1); the model for congestion in evening peak hours will 

be used when 0)( <tP  and 0)( ≤tpd  (d=1, 2, …, D-1); otherwise, the model for 

congestion-free periods will be used. 

Note that the model assumes common traffic patterns with the existence of 

morning peak hours and evening peak hours in this study. However, it is possible for 

a segment to have more complicated congestion patterns that cannot be categorized as 
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morning congestion or evening congestion. In such a case, one may define one 

congestion scenario for all congestion patterns and one congestion-free scenario, or 

further cluster the traffic conditions with site-specific congestion characteristics. 

The selection of input variables 

Neural network models have been widely used in transportation studies 

because they are proficient at recognizing patterns while being easy to apply without 

modeling the physical relations between input and output variables. It is reported in 

the literature that topology modification according to real-world relations between 

input variables may improve the performance of a Neural Network model (van Lint et 

al., 2002). Previous efforts at travel-time related studies with Neural Network models 

are mostly based on densely distributed detectors (i.e., less than 0.5-mile apart). In 

order to provide satisfactory reliability with long detector spacing, this study includes 

careful analysis of all available information and its relations. 

In most intelligent transportation systems (ITS) for travel time prediction with 

traffic detectors, such as the framework presented in Chapter 3, the following 

information is commonly available: 

- Geometric features of the entire segment; 

- Current departure time; 

- Traffic information detected at the current time, including volume count, 

occupancy and speed; 

- Traffic information detected before the current time, including both short-

term historic data (i.e., less than one hour before the current time) and 

long-term historic data (i.e., data from previous day); and 
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- Historic travel times, which include all trips that have completed before 

the current time. 

Of the above information, geometric features are fixed, and therefore cannot 

be included as input variables to the Neural Network models directly. However, such 

information, along with historic traffic patterns, will be the basis for determining 

critical lanes, as discussed in Chapter 4. As mentioned previously, speed data does 

not serve as an input variable in any form due to the unreliability of speed 

measurements from most commonly-used roadside traffic detectors. This study 

develops the following general guidelines for determining the input variables to the 

Neural Network model in each cluster. 

1. Include the current time of day as an input variable for congested clusters 

to capture the recurrent congestion patterns which have a time-varying 

nature. 

2. In each cluster, identify all critical lanes in which traffic conditions are 

directly related to the congestion patterns. 

3. Combine the same type of data in all through lanes into one variable at a 

detector location, if traffic conditions are uniformly distributed across all 

through lanes in one traffic scenario. 

4. Include a number of consecutive intervals of traffic data in a period of 

time, TP, for each critical lane from the current time to the past as a set of 

time-series input variables that represent the “current conditions.” 

5. Contain both the historical average of travel times with departure times 

within a period of time, TP, before the same time of day and the historical 
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average of travel times that departed within a period of time, TP, after the 

current time of day as input variables. 

To improve the model’s ability to predict during transition periods, TP, an 

important parameter, must be no less than the average duration for traffic conditions 

to switch from a congestion-free to congested scenario or vice versa. The following 

shows how TP is determined in this study. 

First, denoting k as the index of each occurrence in the historical database of a 

traffic scenario switch between congested and uncongested conditions, , one can 

obtain a set of historical time spots, ) ... 2, ,1( },{ Kktk ==TK , in which each kt  

satisfies that, 

)1()( −≠ kdkd tptp
kk

 

0)1()( =−⋅ kdkd tptp
kk

      (5.2) 

where, kd  is the detector location at which the k
th

 switch of scenario occurred 

in the historical traffic database. 

 Then, define )(ttsd  to describe the stability of the traffic. 
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 For each k, denote kTP  as the time for the traffic condition to switch from a 

stably congested scenario to a stably uncongested scenario or to switch the other way. 

kTP  satisfies that for any ),1( −<′<−′
kkk ttTPtt  

 )()1()( kkdkdd TPtptptp
kkk

−=−=′   

 1)()( =×− kdkkd ttsTPtts
kk

 

 0)( =′tts
kd         (5.4) 

 Then, TP can be determined as follows. 

 }{ kTPAVGTP =        (5.5) 

 Topology of the Neural Networks used in this study 

 The Multilayer Perceptron (MLP) has demonstrated that it can perform well at 

predicting travel times in the transportation field with densely placed detectors. Its 

flexibility about required input variables and its easy training procedures made MLP 

one of the most popular Neural Network topologies in the transportation-related 

literature. However, there are very limited efforts in the literature to optimize MLPs 

to provide acceptable levels of accuracy for freeway segments with widely spaced 

detectors. With a rule-based clustering function based on the careful analysis of 

historical weekly traffic patterns, this study develops one MLP for each clustered 

traffic scenario with a different set of input variables from critical lanes only to best 

utilize the good prediction ability of MLP for a freeway segment with sparsely 

distributed detectors. 

Although a careful analysis can improve a MLP’s performance by keeping 

only the information that directly interacts with the travel times, the model’s inability 
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to model time-series data limits its potential for better accuracy. As mentioned in 

2.3.2, many researchers have applied a Time Delayed Neural Network (TDNN) for 

transportation prediction. The TDNN, which models time-series data with a tap-delay 

line, has a short-term memory unit attached to the input node to take advantage of the 

temporal relation in the input data stream. In the literature, most TDNN models for 

transportation forecast are for one stream of time-series data only — for example, 

volume in one lane at a detector location. In addition to MLP, this study develops an 

alternative Neural Network topology which accommodate both time-series and non-

time-series data. First, the volume and/or occupancy data in each critical lane has 

been modeled as one input node with its own tap-delay line. Then, traditional input 

nodes are added to the topology for non-time-series data to the topology to form the 

complete Neural Network model. Figure 5-2 illustrates the topology of the enhanced 

Neural Network developed in this study. Capable of catching the trend of time-series 

data with its short-term memory elements, the developed alternative Neural Network 

model has potential to provide more reliable predictions during transition periods.  
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Figure 5-2 Topology of the enhanced Neural Network that combines both time-series 

and non-time-series inputs 

5.4 k-Nearest Neighbor Model 

 To ensure the efficiency of the proposed k-Nearest Neighbor model, one needs 

to carefully analyze the following four key issues: the definition of the similarity, the 

selection of input variables, the searching window and time range, and the weighing 

factors. Each of these four key issues is discussed in sequence below: 

Definition of the similarity 

In a traditional k-Nearest Neighbor model, a distance is defined to reflect the 

similarity between two cases (Eq. 2.8). However, for travel time prediction, this 
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definition needs to be revised, due to the fact that two cases with substantially 

different detected traffic data may still have similar travel times. Based on Eq. 2.8, 

this study proposes the following sequence to compute the distance between the 

current and the historical case. 

The proposed model first categorizes traffic conditions with detected 

occupancy information. One can then use the following equation to define three types 

of traffic conditions, free-flowing, heavily congested, and moderately congested. 









≥∆+

≤∆+−

=∆+

otherwise,0

),(when ,1

),( when ,1

),( aa
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a l

d

l

d

l

d

l

d

l

d OCttto

OFttto

tttTC    (5.6) 

Where  ),( tttTC al

d ∆+  is the traffic type in lane la at detector d from time t to 

t+∆t, 

 ),( ttto al

d ∆+  is the average occupancy in lane la at detector d from 

time t to t+∆t, and, 

 al

dOF  and al

dOC  are the upper bound of free-flow occupancy and 

lower bound of heavy congestion occupancy, respectively, for lane la 

at detector d. 

The model then defines the modified distance mdis between the current case 

and one historical case as: 

∑
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 1t  and 2t  are the time of day of the current case and the historical 

case respectively. 

Selection of the input variables 

Most existing applications of k-Nearest Neighbor Models for travel time 

prediction simply take all available information to compute the distance between the 

current case and each candidate historical case. As discussed in Section 4.2.2, only 

information in critical lanes contributes to a reliable model output, especially when 

detectors are far apart. This study proposes the following procedures to best identify 

the most critical variables for computing the similarity distance mdis: 

1. Eliminate the data from those lanes that are well recognized by drivers in 

through traffic for their potential to be disturbed by on-ramp or off-ramp 

flows. For example, a through lane next to an off-ramp lane may be 

avoided by most through traffic due to drivers’ knowledge of the possible 

congestion caused by the queue spillback from the off-ramp lane. 

2. Eliminate lanes that have no direct impact on the path travel time, such as 

the right lane of a two-lane off-ramp. 

3. Compute the average value for all through lanes at one detector location 

with the same traffic conditions, and then use it as the model input. 

Note that those lanes with light historical traffic pattern are still needed in the 

input dataset for those scenarios having abnormal congestion patterns. 

Searching window and time range 
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Both the searching window and data intervals are important parameters for 

efficient operation of the k-Nearest Neighbor model. The searching window is the 

duration of time from the current time to the past in which a time series of the same 

variable is selected as the model input. 

As is well recognized in most prediction literature, to performing a reliable 

prediction with a longer horizon usually requires more historical and/or on-line data. 

To predict the travel time on one segment with multiple links, one needs to predict 

traffic conditions at a detector location which is closer to the departure point and with 

a shorter prediction horizon than those detectors that are farther away from the 

departure point. Therefore, the searching window of traffic information at each 

detector may increase with the increase in distance from the origin point. To ensure 

the computing efficiency, one must set an upper limit for the size of the searching 

window so as to reduce the total number of input variables for the model, based on 

the local traffic pattern. 

Note that various traffic patterns may exist in a segment during a day, and 

thus resulting in different travel times. For example, it is possible for two cases with 

similar detected traffic conditions to have different travel times. Very often, a 

morning case and an evening case may have similar detected traffic flows, but they 

go to different destinations. Therefore, for better prediction accuracy, the searching 

procedure should only look for historical cases within a reasonable range from the 

current time of day. Hence, one can add this constraint to Eq. 5.7 to obtain the 

following equation. 
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 M is a very large number; 

 ),( tdTth  is the time-varying range for searching at detector d; and 

 t  and ht  are the time of day of the current case and the historical 

case respectively. 

Note that one needs to determine ),( tdTth  based on the day-to-day time-of-

day traffic patterns at detector d. For example, ),( tdTth  may be different in morning 

peak hours, evening peak hours and off-peak hours. 

Besides the use of time-of-day information, this study further modifies Eq. 5.8 

to improve the models’ reliability by searching for cases that are in a weekday which 

usually has similar traffic patterns. Weekdays with similar traffic patterns are first 

grouped together into S sets. One can then modify Eq. 5.8 to obtain Eq. 5.9: 
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 M is a very large number; and 

 wkc and wkh are weekdays of the current case and the historical case 

respectively 
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Similarly, one needs to determine how to group weekdays based on traffic 

patterns reflected from the historical data. 

Weighting factors 

Weighting factors are used in the model to reflect the contribution of traffic 

conditions in each critical lane to the target prediction. This study implements the 

following procedures to determine the weighting factors and the searching window 

for the k-Nearest Neighbor model. 

Step 1: Divide one day into three traffic periods: morning peak hours, evening 

peak hours, and off-peak hours. 

Step 2: Determine the input variable set for each traffic period in each 

weekday group, based on the revealed traffic patterns. (i.e., through lanes with 

uniform traffic conditions at the same detector location can be combined into one 

variable). 

Step 3: Assign weighting factors for each variable during one traffic period in 

one weekday group, according to the frequency and severity of the congestion.  

Step 4: Determine the searching window of each variable and the time-

varying searching range for each weekly traffic scenario by analyzing the historical 

traffic patterns. 

5.5 Numerical Examples 

To demonstrate the potential of the developed hybrid travel time prediction 

model in a real-world application with large detector spacing, this study includes 

numerical examples using the same dataset from 10 roadside detectors on a 25-mile 
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stretch of I-70 introduced in Chapter 4 (See Figure 4-8). The target 10.06-mile 

subsegment selected for the numerical examples is located between an origin about 

1.04 miles west of Detector 3 and the destination, I-695 (Figure 4-9j). A consulting 

company collected travel time data with probe vehicle method in both morning peak 

and evening peak hours for the 4 days from May 16
th

 to May 19
th

, 2006. The headway 

of the data collection was between 4 to 6 minutes each day. These surveys recorded 

about 7 to 14 travel time samples each day and yielded a total of 98 actual travel 

times. Several accidents were observed by the data collector or recorded by the 

accident response team during these days, including during the evening peak hours on 

May 18
th

 and May 19
th

. There were also several time periods with missing data 

during this 4-day period. This study removed the travel times under the accident 

impacts or the missing data and obtained a final dataset of actual travel times with 70 

samples. 

This section will first analyze the performance of the developed hybrid model 

for travel time prediction along with comparisons to some commonly-implemented 

models based on the estimated travel times in the database, which were used to train 

all the models. This is followed by an analysis of overall system performance using 

the collected actual travel times under recurrent traffic conditions. 

Models for Comparison 

The numerical examples include two commonly implemented models: the 

simple current-constant-speed-based (CCSB) prediction model found in most real-

world systems as mentioned in Section 2.4.2, and the time-varying coefficient model 
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(TVC) (Zhang and Rice, 2003) implemented in two simulated systems (Chen et al., 

2003; Rice and van Zwet, 2004) with Eq. 2.10. 

The CCSB model assumes that the vehicle’s in-link speed between each 

adjacent detector pair will be same as the average of currently detected upstream and 

downstream speeds. The travel time of one vehicle departing the origin at time t can 

be obtained by Eq. 5.10. 

∑
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where 1d  is the origin detector ID; 

 2d  is the destination detector ID; 

 )(
21 , tddτ  is the travel time from Detector 1d  to Detector 2d  with the 

departure time t; and 

 dL  is the link distance between the detector pair (d, d+1), and 

 )(tud  is the speed detector at Detector d at time t 

In addition to the developed hybrid travel time prediction model, its main 

prediction model, which is a multi-topology Neural Network model with a clustering 

function, and the supplemental model, an enhanced k-Nearest Neighbor model, have 

been implemented separately to explore their individual performances with various 

sizes of the historical database. 
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Performance for the Entire Week 

Figures 5-3a and 5-3b show the distributions of recurrent travel times in 

morning peak hours and evening peak hours on the 4 different weekdays from May 

16
th

 to May 19
th

, 2006, excluding evening peak hours on May 18
th

 and May 19
th

 due 

to accidents and some periods due to missing data. The morning peak patterns have 

similar shapes on the sample days with, however, quite different starting and ending 

times. Generally, the congestion level is higher in the evening peak hours, with 

largest travel times more than double of those in the morning peak hours during the 

sample days. 

The CSSB model is the only one that does not rely on any historical data. 

Other models all require some data to calibrate their parameters. In order to explore 

the impact of the size of the historical database, this study first includes complete data 

for a period of 4 weeks between April 7
th

 and May 14
th

, 2006 to calibrate time-

varying coefficient model, the k-Nearest Neighbor model, the Neural Network model 

and the hybrid model, here called TVC4, kNN4, NN4, HM4, respectively. Another 

set of models TVC10, kNN10, NN10, and HM10, are calibrated with a dataset of 10 

weeks between February 9
th

 and May 14
th

, 2006 (Table 5.1). Note that missing date 

periods were filtered out first from both datasets. 
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(b) Evening peak hours 

Figure 5-3 Distributions of travel times in time periods with  

no impact of accidents or missing data 
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Table 5-1 List of all model IDs 

 
4 Weeks of Training 

Data 

10 Weeks of Training 

Data 

Hybrid model developed in 

this study 
HM4 HM10 

Neural Network model in the 

developed hybrid model 
NN4 NN10 

k-Nearest Neighbors model in 

the developed hybrid model 
kNN4 kNN10 

Constant current speed-based 

model 
CCSB 

Time-varying coefficient 

model 
TVC4 TVC10 

 

Among all the models calibrated with 4 weeks of data, HM4 and NN4 

performed the best over the included periods on all 4 sample days. As shown in Table 

5-2, NN4 has an average absolute error, as defined in Eq. 4.12, of 53.88 seconds, 

which is the best among all single models. HM4 provided better performance with the 

same 4-week historical database. TVC4 had an average absolute error of almost 3 

minutes and an average absolute relative error (Eq. 4.12) of 28.10%. 

Table 5-2 Performance of all models in all samples days 

Model 
Average Absolute 

Error (second) 

Average Absolute 

Relative Error (%) 

CCSB 77.92 10.89 

TVC4 173.99 28.10 

TVC10 65.64 9.44 

kNN4 64.38 9.04 

kNN10 60.86 8.56 

NN4 53.88 7.81 

NN10 48.68 7.07 

HM4 48.84 6.92 

HM10 45.69 6.53 

 

With a 10-week historical dataset, NN10 was able to provide better accuracy 

than NN4, trained with a 4-week dataset, and benefited HM10, which was the best 

model, with an average absolute error of less than 46 seconds. Note that the average 
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travel time for these samples days is 842.79 seconds (14.05 minutes) on this 

subsegment. 

Table 5-3 Performances of all models in each included peak-hour period 

Average 

Absolute 

Error 

(seconds) 

5/16 

AM 

5/16 

PM 

5/17 

AM 

5/17 

PM 

5/18 

AM 

5/19 

AM 

CCSB 56.37 73.93 106.62 106.84 63.95 71.97 

TVC4 186.04 127.27 232.82 128.47 166.45 168.96 

TVC10 39.64 105.05 83.84 121.86 41.38 36.99 

kNN4 34.42 84.09 81.48 126.45 34.10 58.85 

kNN10 31.71 71.08 79.46 127.66 33.68 54.25 

NN4 31.81 68.18 64.77 93.47 32.80 53.39 

NN10 30.70 65.38 55.64 75.96 36.83 43.92 

HM4 29.44 54.00 58.37 87.17 28.95 49.82 

HM10 29.09 52.10 53.75 75.96 35.26 36.69 

 

Table 5-3 details the comparison between all sample days in each included 

peak-hour period. The performances of the hybrid model are consistent across all 

periods. The TVC10 model was able to provide acceptable performance in one time 

period, however generated an average absolute error more than 80% larger than the 

hybrid model in several time periods. Note that the performance of the k-Nearest 

Neighbors model was not very stable due to its heavy reliance on similar historical 

scenarios. However, with its embedded ability to measure the potential errors, the 

hybrid model was still able to improve over the Neural Network model. 

Table 5-4 shows a detailed comparison during free-flow traffic conditions (the 

lowest observed free flow travel time was about 520 seconds), with travel times less 

than or equal to 580 seconds, moderate congestion, with the travel times between 580 

and 900 seconds (inclusive), and heavily congested traffic. In light traffic conditions, 

the k-Nearest Neighbor model had the best performance, mainly because of its 
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enhanced searching function that takes special treatment for the light traffic. Under 

moderate congestion, the Neural Network model contributed the most to the hybrid 

model structure. This implies that Neural Network model was able to recognize the 

changes in the congestion pattern, which therefore gave it the best performance 

among all single models. Under heavy congestion, the NN10, HM10 and TVC10 

were the best models, providing similar performances. 

Table 5-4 Performances of all model in three congestion scenarios 

 
Model 

Average Absolute Error 

(seconds) 

Average Absolute 

Relative Error (%) 

CCSB 13.45 2.52 

TVC4 161.56 30.70 

TVC10 12.65 2.37 

kNN4 7.48 1.39 

kNN10 7.40 1.38 

NN4 17.66 3.36 

NN10 16.14 3.06 

HM4 10.66 2.00 

T
T
≤

5
8

0
 s

ec
o

n
d

s 

HM10 10.05 1.89 

CCSB 111.53 15.92 

TVC4 186.50 26.92 

TVC10 108.42 15.56 

kNN4 98.98 14.29 

kNN10 93.42 13.49 

NN4 75.22 10.79 

NN10 67.31 9.68 

HM4 69.81 10.00 5
8

0
<

T
T
≤

9
0

0
 s

ec
o

n
d
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HM10 63.63 9.18 

CCSB 255.48 29.78 

TVC4 190.61 22.66 

TVC10 128.46 15.15 

kNN4 191.04 22.25 

kNN10 178.83 20.81 

NN4 141.44 16.43 

NN10 129.72 15.12 

HM4 138.73 16.10 

T
T

>
9

0
0

 s
ec

o
n

d
s 

HM10 129.51 15.09 
Note: TT = Travel Time 
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Overall, the developed hybrid model was able to provide acceptable 

performance with average absolute errors of about 10 seconds, 1 minute and 2 

minutes under free-flow conditions, moderate congestion, and heavy congestion, 

respectively. The developed hybrid model had similar performances with both 4-

week and 10-week historical travel times, which could help shorten the duration of 

the system training stage for system implementation. 

Performance Comparison with Actual Travel Times 

To demonstrate the potential of the developed travel time prediction system, 

this study compared all 70 collected actual travel times with the outputs from HM4 

and HM10. Table 5-5 shows the performance comparison on all 70 samples and in 

each defined category. The developed hybrid model can provide acceptable accuracy 

with a 10-week training dataset. With a shorter duration of training data of 4-week, 

the developed hybrid still provided an average absolute error of less than 2 minutes in 

all observed traffic scenarios. 

Table 5-5 Performance comparison of the travel time prediction system 

 

Average 

Travel Time 

(seconds) 

HM4 

AAE 

(seconds) 

HM10 

AAE 

(seconds) 

Number of 

Samples 

All samples 655.67 56.58 51.69 70 

TT≤580 532.58 15.74 15.11 24 

580<TT≤900 703.86 80.45 72.02 36 

TT>900 949.67 113.43 95.29 10 
Note:  TT = Travel Time 

 AAE = Average Absolute Error 

5.6 Conclusion 

This study developed a hybrid travel time prediction model for reliable real-

time travel time prediction. A multi-topology Neural Network model with a rule-
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based clustering function serves as the main model; this module fully takes into 

account the target roadway’s geometry features and daily congestion patterns. The 

clustering function categorizes the traffic conditions using information obtained from 

critical lanes that affect the travel time the most, and then apply an appropriate Neural 

Network model. Based on the available historical travel times obtained from the 

travel time estimation module, the prediction module was able to switch to a k-

Nearest Neighbor model for traffic scenarios that had a sufficient number of similar 

historical cases. The numerical examples showed that the hybrid model provided 

acceptable travel time results. The hybrid model can provide reasonably good 

performance with a 4-week historical dataset. With a 10-week dataset for calibration, 

the hybrid model managed to have an average absolute error of less than 130 seconds 

in the high congestion. The comparison against 70 actual travel time samples showed 

that the developed system can provide reliable travel time predictions on a road 

segment with complex geometric features and highly fluctuating traffic conditions. 
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Chapter 6: An Integrated Multiple Imputation Approach for 

Contending with Missing Data in the Travel Time Prediction 

 

6.1 Introduction 

As is well recognized, predicting travel times with sparsely distributed 

detectors is a very challenging task due to the complex interactions between many 

factors, such as large fluctuations of traffic conditions at detector locations and the 

large spacing between adjacent detectors. Chapters 4 and 5 presented several models 

to contend with these issues under normal operating conditions, where detectors can 

provide reliable traffic characteristic data. However, quite often in real-world 

deployment, detectors may not function as reliably as expected and may produce 

various types of missing data patterns, which may either degrade the accuracy of the 

predicted travel time or prevent the system from executing its functions due to an 

unacceptable level of reliability. Hence, it is essential for any real-time operational 

model to have an effective module for dealing with data missing scenarios. 

A reliable module for estimating missing data needs to be able to (1) fully take 

into account of the site specific geometric features and traffic patterns to maximize its 

performance; (2) ensure the proper functioning of the travel time prediction model 

under various missing data scenarios, and (3) provide a reliability indicator so that the 

primary model can determine if the prediction function should cease under the 

detected data-missing scenario. 

The next section will first introduce some missing data patterns revealed by 

the field demonstration study and their impacts on predicted travel times under 
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existing models discussed in the literature. This is followed, in Section 6.3, by a 

comprehensive review of available missing data imputation methods in the literature. 

Section 6.4 and Section 6.5 will present two multiple imputation approaches 

developed for the travel time prediction model in Chapter 5 and apply them to a 

dataset collected from a field demonstration project. Section 6.6 will summarize the 

chapter. 

6.2 Impact of Missing Data on Predicting Travel Times 

In a real-time travel time prediction system, missing data can be categorized 

as short-term or long term; it is usually caused by data delay and/or data loss. A 

communication error often contributes to short-term missing data, whereas failure of 

a device, such as the traffic detector or the data storage device, often contributes to a 

long-term missing data. This section will illustrate some data-missing patterns and 

their possible impacts on the existing real-time travel time prediction systems 

6.2.1 Common Missing Data Patterns 

The dataset from 10 detectors illustrated hereafter was taken from the field 

demonstration project between February 9
th

 and June 4
th

, 2006, which contain various 

commonly seen patterns of missing data. 

Long-term Missing Data 

On average, one detector has experienced a data-missing rate of more than 

10% on 6.4 days. In total, for 39 out of 116-day field demonstration period (33.6% of 

the period of operation), at least one detector suffered a daily missing data rate 

exceeding 10%. Table 6-1 shows a detailed summary of the average data availability 
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and the total missing data duration for each detector on days having a missing data 

rate of more than 10%. The low daily data availability implies that the long-term 

missing data pattern tends to be continuous throughout the entire day. Using a travel 

time prediction model that strictly requires the input dataset to contain no missing 

data during its real-time operations will result in a significant amount of time in 

which the system cannot function, when using most traffic detection systems. 

Table 6-1 Average data availability and total data missing duration for each detector 

during those days when the missing data rate exceeded 10% 

Detector 1 2 3 4 5 6 7 8 9 10 

Number of 
Days 

3 2 2 3 9 8 14 2 11 10 

Average 
Daily 

Availability 
(%) 

30.0 25.5 25.5 57.7 47.6 63.7 73.4 0.0 20.3 26.9 

Total Data 
Loss 

Duration 
(Days) 

2.1 1.5 1.5 1.3 4.7 2.9 3.7 2.0 8.8 7.3 

 

Short-term Missing Data 

During the period of operation, when traffic data was collected from 10 

detectors over a 25-mile stretch of I-70, the system recorded the timestamps when 

each detector collected each available piece of data and timestramps when the data 

arrived at the database for all 3,268,287 data records collected between February 9
th

 

and June 4
th

, 2006. Table 6-2 shows the distribution of data delays, defined as the 

difference in the timestamps between when the detectors collect a traffic data item 

and when that data item enters the database. The table shows that most data records 

experienced a delay of less than 2 minutes. About 3% of the data were delayed longer 

than 30 minutes. This occurred mainly because the communication device on one 
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detector failed, preventing the collected traffic data in the detector buffer memory 

from transmitting to the database until the failure was fixed. 

Table 6-2 Distribution of the communication delays of all available data 

Category 
(second) 

Count Percentage 

0-30 203 0.01% 

30-60 2867504 87.74% 

60-90 248928 7.62% 

90-120 16521 0.51% 

120-150 8290 0.25% 

150-180 7333 0.22% 

180-210 7064 0.22% 

210-240 3073 0.09% 

240-300 2624 0.08% 

300-360 1111 0.03% 

360-420 696 0.02% 

420-480 639 0.02% 

480-540 606 0.02% 

540-600 591 0.02% 

600-1200 3436 0.11% 

1200-1800 2490 0.08% 

>1800 97178 2.97% 

 

Figure 6-1 illustrates the distribution of timestamps of the traffic data versus 

the arrival timestamp in the database for data at Detector 5 collected between 14:21 

and 15:42 on June 2
nd

, 2006. It clearly shows that the order of data recovery was “first 

missing first recovered” for all 3 short periods of data loss. 
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Figure 6-1 Timestamp of the detected traffic data vs. timestamp of data arrival  

at the database 

6.2.2 Impacts of the Missing Data on Travel Time Predictions 

Table 6-3 shows the example impacts of the missing data on the travel time 

predictions when Detector 10 experienced missing data rates of 20% and 100%. The 

target segment was from Detector 2 to Detector 10 with a free flow travel time of 694 

seconds. The example shows the distribution of prediction errors for the travel time 

prediction model developed in Chapter 5 with the missing data being imputed using 

two methods: mean substitution (MS) and multiple imputation (MI). It is notable that 

for a 20% missing data rate, both imputation methods can estimate the missing 

values, allowing the travel time prediction model to maintain reasonable reliability. 

However, the average prediction error increased drastically when the missing data 

rate reached 100% on one detector. Although multiple imputation method can 

outperform the mean substitution method, the prediction system still experienced 
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errors of more than 50% in some intervals, compared with less than 12% when no 

data was missing. 

Missing Rate 20% 100% 

 MS MI MS MI 

16:50:00 5.37% 1.74% 22.06% 17.27% 

16:51:00 7.40% 3.77% 48.91% 12.19% 

16:52:00 7.06% 7.06% 63.83% 22.77% 

16:53:00 9.27% 9.27% 27.81% 16.85% 

16:54:00 11.59% 11.59% 26.12% 22.91% 

16:55:00 15.69% 15.69% 42.02% 21.15% 

16:56:00 15.85% 15.85% 19.78% 28.47% 

16:57:00 18.56% 18.56% 24.36% 35.55% 

16:58:00 19.60% 19.60% 79.97% 68.59% 

16:59:00 20.87% 22.75% 102.46% 73.19% 

17:00:00 22.93% 22.93% 135.27% 73.73% 

17:01:00 20.12% 20.12% 102.32% 64.69% 

17:02:00 16.98% 16.98% 25.39% 29.81% 

17:03:00 13.92% 13.92% 31.79% 25.32% 

17:04:00 9.10% 9.10% 21.47% 16.58% 

17:05:00 3.49% 3.49% 5.81% 6.33% 

17:06:00 1.77% 1.64% 3.91% 10.35% 

17:07:00 0.86% 0.86% 15.04% 2.47% 

17:08:00 11.33% 5.14% 19.51% 19.51% 

17:09:00 9.43% 8.61% 19.79% 19.79% 

17:10:00 9.62% 9.62% 20.16% 17.50% 

MS: mean substitution. 

MI: multiple imputation. 

Table 6-3 Absolute relative errors of travel time predictions at missing data rate of 

20% and 100% at Detector 10 between 16:50 and 17:10 on June 20
th

, 2006 
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6.3 Literature Review 

Over the past few decades, researchers in different technical fields — 

including econometrics, social sciences, biostatistics and transportation — have 

devoted significant effort to solving the missing data issue. Some early studies 

contending with the missing data simply employed primitive approaches, such as case 

deletion and mean substitution (Little and Rubin, 1987; Schafer and Grapham, 2002). 

Since the 1970s (Rubin, 1976; Dempster et al, 1977; Little and Rubin, 1987; Rubin, 

1987), more researchers have recognized the complexity of the missing data’s nature 

and its impacts on the resulting performance of any model employed. Effective 

methods for dealing with the missing data issue may also vary with its pattern and the 

target applications (Little and Rubin, 1987). 

This study has categorized existing methods for handling the missing data into 

three groups: data discard, single imputation, and multiple imputation models. Most 

recent studies in the literature indicated that multiple imputation approaches can 

outperform the single-imputation methods that are widely used due to their 

implementation convenience. A brief description of key studies in those three 

categories is presented in sequence below: 

Data Discard 

In practice, the method of case deletion, which discards the data unit with 

missing values, is the most popular data discard method and remains the default 

method for dealing with ignorable nonresponses in many statistical software packages 

(Shafer and Graham, 2002). Case deletion is generally valid only for the missingness 

mechanism of missing completely at random (MCAR) (Little and Rubin, 1987), in 



 

 117 

 

which the missing values are related neither to observed dependent values nor to 

independent variables. Graham and Donaldson (1993) found that case deletion may 

be valid and efficient in some scenarios of missing at random (MAR), in which the 

missing values are related only to the independent variables. 

With the weighting factors estimated from the computed probabilities of 

nonmissing data, the use of reweighting may improve the performance of the case 

deletion method by eliminating the potential bias due to the differential responses that 

arise when modeling the response probability. However, this method cannot correct 

the bias related to the unused or unmeasured variables (Little and Rubin, 1987). 

Single Imputation Methods 

Some researchers have made great efforts to develope techniques that can 

estimate missing data based on partially available information so that the traditional 

statistical approaches can still be applied. Their proposed single imputation (SI) 

methods mainly impute the missing data from the means and distributions of the 

observable dataset. 

As reported by many studies (Little and Rubin, 1987; Schafer and Graham, 

2002), an unconditional mean substitution (such as using the mean of all available 

values in place of the missing value) may be effective for the types of study focusing 

on the mean of the data (Little and Rubin, 1987). However, it may underestimate the 

variances and distort covariance and intercorelations between variables. Schafer and 

Schenker (2000) presented an improved method that imputes the data from predictive 

means. 

For studies that need both the means and the distributions of the data, some 
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researchers have developed a set of different methods (Madow et al, 1983). One of 

the most widely used methods is the hot-deck method, which replaces the missing 

value with a value of the same variable estimated from one or several matching 

complete data records using certain searching criteria (e.g., the similarity). 

Another commonly-used single imputation method that focuses on both the 

mean and the variance is the expectation-maximization (EM) algorithm (Dempster et 

al, 1977; Little and Rubin, 1987). EM is an iterative estimation method for missing 

data. It draws a random value from the probability distribution and iteratively add the 

new draw to the distribution until the probability distribution converges. 

In summary, the core logic of single imputation methods is to find a way to 

estimate the missing value from the available data. However, such methods do not 

measure the imputed data quality, which varies with the nature of the data and other 

factors associated with the original dataset. 

Multiple Imputation Methods 

In view of the deficiencies of the single imputation methods, some researchers 

have developed the Multiple Imputation (MI) techniques to improve the imputation 

quality by incorporating the uncertainty of the missing data (Rubin, 1987; Little and 

Rubin, 1987). The common logic of multiple imputation methods is to estimate the 

same missing value m times (m > 1) with a simulated process (e.g., a Markov chain 

Monte Carlo [MCMC] simulation) to generate m complete datasets, and then analyzes 

the mean and variance of the estimators in these datasets to produce the final model 

output. MI has been widely applied to the social sciences (Saunders et al, 2006), 

biostatistics (Souverien et al, 2005; Gan et al, 2006), and transportation. Reportedly, 
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the MI methods generally outperform the single imputation methods in most MAR 

cases. Another advantage of the MI methods is their ability to estimate the variance of 

the final model output for analysis. 

Applications of the Data Imputation Methods in the Transportation 

The use of missing data techniques has received an increasing amount of 

attention in the field of transportation since the turn of the century. However, several 

missing data treatment methods have already been used by practitioners and 

researchers in transportation applications. These methods include conditional mean 

substitution, regression models (such as interpolation), and time-series models 

(Nguyen, 2003). These transportation studies have focused mainly on replacing the 

missing values in the detected traffic variables (flow, occupancy and/or speed) with 

imputed values so as to construct a complete set of traffic data (Haj-Salem and 

Lebacque, 2002; Chen et al, 2003; Smith et al, 2003; Nguyen, 2003; Zhong et al, 

2004, Al-Deek and Chandra, 2004, Al-Deek et al, 2004; Kwon, 2004; and Ni et al, 

2005). Most studies applied single imputation techniques (such as EM); and only a 

few has employed the multiple imputation methods. (Ni et al, 2005). Some research 

also incorporated advanced prediction models, such as ARIMA, local weighted 

regression, and Neural Network models — for missing data estimation in order to 

capture the temporal and spatial distributions of the detector data. (Zhong et al, 2004; 

Al-Deek and Chandra, 2004). However, as reported in the literature on missing data 

theories (Little and Rubin, 1987; Schafer and Graham, 2002), the best imputation 

model may vary with the type of the model used for the application. 
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6.4 Model Structure 

Grounded on the existing theories for missing data estimation, this study 

proposes two imputation models, named M-1 and M-2, to supplement the travel time 

prediction model in a sparsely-distributed detection environment based on the logic of 

the multiple imputation methods. Model M-1 integrates the missing data estimation 

with the travel time prediction to achieve a better overall prediction performance 

when data is missing. Model M-2 focuses on restoring the missing data used by the 

prediction models developed in Chapter 5. To facilitate the selection of the most 

effective imputation method, this study first analyzes the patterns of missing data 

from the field demonstration project. 

6.4.1 Patterns of Missing Data 

In the operating travel time prediction system, it takes the following four steps 

for the detected data to reach the traffic database: 1) collection by the traffic detector; 

2) temporary storage in memory at the site; 3) transfer from the temporary storage to 

the data acquisition server; and 4) storing into the traffic database server. Of these 

four steps, most failures taken place at Steps 1, 2 and 4 are randomly distributed 

throughout the day of operations. The communication delays and failures of the 

communications may depend on available network bandwidth. 

Figure 6-2 shows the average daily distribution of data delays from the dataset 

collected on I-70 in February, March, April and May of 2006. A data delay is defined 

as an interval of more than 3 minutes from the time data is detected to the time it 

enters the traffic database. The figure clearly shows that the data delays occur much 

more frequently in the daytime than at night, except in April. The delay patterns 
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exhibited a high morning peak in March and May 2006 and a high evening peak in 

March 2006. Hence, one can categorize the data-missing pattern of these detectors as 

missing at random (MAR). 
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Figure 6-2 Distribution of data delay patterns over time in February, March, April 

and May 2006 
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6.4.2 Model Flowchart 

Although traffic data may exhibit a pattern of high fluctuation, researchers are 

more interested in its trend rather than its variance in most transportation studies. 

Figure 6-3 illustrates the framework of the proposed system, which combines two 

missing data imputation models: Model M-1 and Model M-2. When the system 

detects that data is missing from the input dataset of the travel time prediction module 

during real-time operations, it will first apply Model M-1, an integrated multiple 

imputation and travel time prediction model, to perform the prediction despite the 

missing data to obtain )(1 tTTM . If the variance of the imputed result from Model M-1 

is larger than the time-dependent threshold )(1 tTH M , the system will then switch to 

Model M-2 to impute the missing values (traffic flow and/or occupancy by lane) in 

the input dataset only. The system will apply the prediction models developed in 

Chapter 5 if the imputed values are reliable when compared with the time- and 

location-dependent flow threshold, ),,(2 tladTH v

M , and/or the occupancy threshold, 

),,(2 tladTH o

M . The travel time prediction system will not display its predicted results 

if the imputed missing data has been detected to exceed the acceptable range. 
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Figure 6-3 Flowchart of the missing data estimation Module 
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6.4.3 Model M-1: An Integrated Model for Travel Time Prediction under 

Missing Data 

As reported in the literature, the performance of multiple imputation methods 

largely depends on the target applications. Hence, this study has developed an 

integrated model for travel time prediction using the incomplete dataset by taking 

advantage of the historical travel time information, geometry information and traffic 

patterns. A step-by-step description of the procedures for implementing the proposed 

integrated Model M-1 is presented below: 

Step 1: Construct a dataset with the information from critical lanes that do 

not encounter missing data at current time t. The dataset shall also 

include data prior to the current time t from each critical lane. The 

guidelines for determining the time window can be found in Section 

5.4. 

Step 2: Search for h complete historical cases that have similar traffic 

conditions to conditions in the critical lanes at the current time. One 

can use the same search algorithm as the one used for the enhanced k 

-Nearest Neighbors model in Chapter 5. Note that the value of h 

needs to be sufficiently large to reliably estimate the distributions of 

the missing values. If historical cases are not adequate, the model 

will report that no reliable prediction can be made under the current 

missing patterns. 

Step 3: Set imputation index i=1. 
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Step 4: Construct a set COMVAR  with variables in critical lanes in all h 

complete historical data records. 

Step 5: Determine the probability distribution of missing variables, given the 

available complete data records )|( COMMIS VARVARp . 

Step 6: Impute all missing values and the travel time prediction based on 

)|( COMMIS VARVARp . 

Step 7: Integrate the newly obtained values from Step 6 with COMVAR  to 

form COMRVA ′ . 

Step 8: Test whether the i
th

 imputation converges based on the differences in 

both the mean and the variance between )|( COMMIS VARVARp  and 

)|( COMMIS RVAVARp ′ . If it converges, then go to Step 9. Otherwise, 

let COMCOM RVAVAR ′= , and then go to Step 6. 

Step 9: Record the imputation results, then let i=i+1. If i ≤ m, go to Step 5. 

Step 10: Determine the mean and variance of each variable in the m imputed 

data records. If all the variances are less than the assigned thresholds, 

then Model M-1 will output the average value of m imputed travel 

times as a reliable prediction despite the current missing data impact. 

Otherwise, the model will inform the system that no reliable result 

can be produced. 

Note that one can execute the above procedures m times to generate a set of m 

imputed values. Prior to implementing the model, it is essential to determine four 

important parameters: the number of imputations m, the number of similar historical 
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cases h, the criteria to determine the convergence of each imputation, and location- 

and time-dependent thresholds of the variances of missing values. 

As reported in the literature (Little and Rubin, 1987), the efficiency of 

multiple imputation techniques can be assessed using Eq. 6.1. Therefore, Rubin 

(1987) suggested that m can lie between 3 and 10. However, due to the highly 

fluctuating nature of traffic data, one may need to perform an extensive sensitivity 

analysis to determine the optimal value for m in transportation applications. 

1)1( −+=
m

EMI

γ
       (6.1) 

where MIE  is the efficiency of the multiple imputation method; 

γ  is the missing rate; and 

 m is the number of imputations. 

Although the use of only a small number of similar historical cases h may help 

the system shorten its data collection and training stage, it might result in an 

unreliable estimation of the distributions of the missing variables. Therefore, this 

study requires the system to have identified at least 20 similar historical cases if 

Model M-1 to be used to impute the missing data. The system may take about 4 

weeks to collect enough similar traffic conditions for recurrent congestion periods. 

The convergence criteria and thresholds are available from the literature 

(Little and Rubin, 1987; Rubin, 1987). The former are usually defined as penalty 

terms that equal the covariance of two imputed values given the nonmissing data and 

the estimated covariance matrix. 
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6.4.4 Model M-2: Multiple Imputation of the Missing Detector Data 

In addition to the integrated multiple imputation model, this study also 

develops a traditional multiple imputation model that imputes the missing values only 

for the scenarios in which Model M-1 cannot provide a reliable travel time prediction. 

Under a similar framework, this model groups related variables into one set of search 

indicators to generate imputations from similar cases. In the development of Model 

M-1 described in the previous section, variables in all critical lanes that may 

contribute to the predicted travel time are included in the set of search indicators. 

However, Model M-2 only takes into account traffic patterns in critical lanes in the 

same identified subsegment as the detector experiencing the missing data.  

Most existing models in the literature employed parametric models to estimate 

the missing values, including temporal relations of values at the missing location 

prior to the current time and those spatial relations with other lanes at the same 

detector station and at neighboring detectors. However, due to the variation of traffic 

conditions across lanes at the same detector, data available from the neighboring 

lanes at the same detector will only be used in the search for similar cases. 

To apply the proposed Model M-2, one needs to divide the target freeway 

segment into several subsegments. The dividing criteria presented below shall be 

time-dependent so as to fit the characteristics of daily traffic patterns (e.g., various 

dividing criteria for morning peak hours, evening peak hours and non-peak hours). 

Step 1: Identify traffic scenarios based on the recurrent congestion patterns, 

and then perform the following steps for each traffic scenario. 
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Step 2: Group adjacent detectors into one subsegment if there are no ramps 

between the detectors. 

Step 3: Combine adjacent subsegments if the detector at the interface point 

has a very low volume in the current traffic scenario and all ramps in 

the newly combined subsegment are covered by detector stations. 

Step 4: Repeat Step 3 until no further combination is possible. 

With the predefined subsegments for the current traffic scenario, one can 

further apply the following step-by-step procedures to estimate the missing values: 

Step 1: Divide missing values into groups based on their locations in the 

predefined subsegments for the current traffic scenario. 

Step 2: Search for h similar historical cases with complete data in the 

subsegment. If historical cases are not adequate, the model will 

report that no reliable prediction can be made for this group of 

missing data. 

Step 3: Set the imputation index i=1. 

Step 4: Construct COMVAR  with variables in the critical lanes within the 

subsegment from those h historical cases. 

Step 5: Go through the same Steps 5 to 10 as Model M-1 to generate the 

final imputation results for the current subsegment. 

Step 6: Repeat Steps 2 to Step 5 for all subsegments that experience missing 

data. 

The system will then place the imputation results into the missing detector 

data at the current time t to construct a complete input dataset for use by the travel 
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time prediction model. By taking into account the geometric features and traffic 

congestion patterns, Model M-2 can supplement Model M-1 when a direct estimate of 

travel time is not available. 

6.4.5 Properties and Advantages of the Developed MI Models 

The missing data issues in transportation-related applications require 

customized solutions due to the unique characteristics of the traffic data. In order to 

produce more accurate and robust estimation results, the two proposed multiple 

imputation models take into account both temporal and spatial relations of the traffic 

data and fit them into a multiple imputation framework, along with other factors, such 

as geometry impacts and congestion patterns. The essential logic of the multiple 

imputation technique is to treat the parameters as random variables rather than as 

fixed values (Rubin, 1987). The MI method first estimates the posterior distribution 

of the variables to be imputed. Denoting ),( YXQQ =  as the quality of the 

imputation, where X is the set of complete variables and Y contains the variables with 

missing data, the posterior distribution of misY  can be determined by Eq. 6.2 (Rubin, 

1987): 

),,|Pr( RYXQ obs        (6.2) 

where misY  is missing values; 

  R  is a N×p matrix with binary values indicating missing of Y; and 

  ),( misobs YYY =  

Rubin (1987) showed that Eq. 6.3 and Eq. 6.4 can properly estimate the mean, 

Q̂ , and the variance, U, of the posterior distribution of completed datay. Therefore, 
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the simulation procedure incorporated in the multiple imputation framework is valid 

to estimate the posterior mean and variance of the missing values. 

),,,|(ˆ RYYXQEQ misobs=       (6.3) 

),,,|( RYYXQVU misobs=       (6.4) 

An important issue for multiple imputation is the proper estimation of the 

posterior distribution of the missing variables from their observed values. The 

solution to this issue varies with the application, due to the varied nature of data and 

the interactions of different factors. To fit the characteristics of a travel time 

prediction model, this study proposed searching mechanisms that consider geometric 

features of the roadway segment, historical traffic patterns and the temporal trends of 

all variables, which can reliably estimate the posterior distribution under most 

recurrent congestion. 

The following section will discuss the properties and the reliability of the 

proposed multiple imputation models and compare them to commonly used single 

imputation approaches in three scenarios: low missing rate, high missing rate with 

stable traffic conditions and high missing rate with unstable traffic conditions in 

sequence. 

Scenario 1: A Low Missing Rate 

Several studies (Little and Rubin, 1987; Shafer and Schenker, 1999) have 

reported that many single imputation methods, for example mean substitution, can 

work well in some applications when the missing rate is low (i.e., less than 5%). 

Some single imputation approaches  do not require rich historical data and, hence, can 

be implemented very quickly. On the other hand, the proposed multiple imputation 
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models require a number of similar historical cases in the same cluster determined by 

the searching mechanism and therefore need a relatively rich historical database. Note 

that both two multiple imputation models developed in this study can share the 

historical traffic database with the travel time prediction module. As mentioned in 

Chapter 3, the developed travel time prediction system has a model training stage to 

collect traffic data and calibrate its model parameters. Therefore, one can rely on the 

data collected during this period being available for estimating the posterior 

distribution of the missing variable by the time the system is ready to operate. As 

reported in the literature and demonstrated in the numerical examples in this study, 

multiple imputation models have similar performance to single imputation methods 

under a low missing rate (e.g., less than 5%). 

Scenario 2: A High Missing Rate with Stable Traffic Conditions 

With a high missing rate, both proposed multiple imputation models can still 

estimate the distribution of the missing variable using information obtained from 

available temporal and historical data of the same variable and/or data from other 

critical lanes over the entire segment (Model M-1) or the determined subsegment 

(Model M-2). 

When the current traffic conditions are stable (e.g., free-flow traffic 

condition), with all similar historical cases showing no potential condition change at 

the missing variables (e.g., in late evening), the small variance of the posterior 

distribution of the missing values will not cause large errors under recurrent traffic 

patterns. Under a similar scenario, a common single imputation method, such as mean 

substitution or time series forecasting, can still provide acceptable results because the 
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variability of the variable is low. However, common single imputation models cannot 

account for a possible sudden change in the traffic conditions, which may occur 

during the data-missing period. Schafer and Gahram (2002) approximated the 

coverage probability after mean substitution with Eq. 6.5. With the missing rate 

raising from 30% to 70%, the coverage probability decreased from 89.5% to 18.9%, 

which caused a 2 to 18 times increase in the possible error rate over the case with no 

missing data. 

)]1(96.1[2 r−Φ        (6.5) 

Where Φ  is the standard normal cumulative distribution function, and 

 r is the missing rate. 

Figure 6-4 shows an example of traffic in Lane 1 on Detector 5 between 7:00 

and 7:20 AM, which is a potential transition period, in the first 2 weeks of May 2006. 

The figures show that traffic may stably maintain a light condition, incur a sudden 

change from uncongested to heavy congestion, or fluctuate between the two 

conditions. Without a carefully designed model to account for these possible 

situations, imputing each missing value with a commonly used single imputation 

method may significantly underestimate the data’s variability. 
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(b) 

Figure 6-4 Occupancy distributions in Lane 1 at Detector 5 between 

(a) May 1
st
 and May 7

th
, and (b) May 8

th
 and May 14

th
, 2006 
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Scenario 3: High Missing Rate with Unstable Traffic Conditions 

Estimating missing data under unstable traffic conditions is a hard task due to 

the complex interactions between many factors which cause travel times to fluctuate 

widely. The proposed multiple imputation models first categorize similar traffic 

conditions with a customized clustering function, designed for the travel time 

prediction application, that takes of geometry features, traffic patterns and other 

factors into consideration, and then imputes the missing values multiple times 

according to the distribution determined by similar historical cases. With its 

integration of the travel time prediction, the proposed Model M-1 has its unique 

ability to of estimate the reliability of the predicted travel time under the impact of 

missing data. This estimate of output reliability is an essential function for a real-time 

travel time prediction system, because it prevents the system from displaying 

unreliable travel times. None of the commonly used single imputation methods take 

this issue into account, as most of them focus only on restoring the dataset, without 

analyzing potential errors for a specific application. 

6.5 Numerical Examples 

This section presents some numerical results from using these two proposed 

missing data imputation models. The numerical examples were based on the same 

dataset this study has been using, collected from 10 roadside detectors on a 25-mile 

stretch of I-70 eastbound between MD27 and I-695. The illustrative example is for 

the subsegment between Detector 2 and Detector 10, which is about 13.81 miles in 

distance with a free flow travel time of 694 seconds. The evaluation periods were 

between 15:00 and 19:00 on 4 of 5 consecutive weekdays from June 20
th

, 2006 
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(Tuesday) to June 26
th

, 2006 (Monday), excluding June 23
rd

, 2006 (Friday). The 

numerical examples intend to highlight the following issues: 

- The missing rate; 

- The type of imputation model used; and 

- The number of multiple imputations executed. 

Figure 6-4 shows the distribution of the estimated travel times between 15:00 

to 19:00 on these four weekdays, which have different starting times for their peak 

hours but approximately the same ending times. The estimated travel times will serve 

as the true values for the performance evaluation of each missing data imputation 

model. 
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Figure 6-5 Distributions of Travel Times between 15:00PM and 19:00PM  

on 4 days in 2006 

The numerical examples compare the performances of five types of models 

for missing data estimation: mean substitution (MS), Bayesian forecast (BF), multiple 
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imputation of missing detector data (Model M-2), and the integrated multiple 

imputation approach (Model M-1). The numerical tests also include a sensitivity 

analysis of the number of imputations (m = 5, 10, 20 and 50) for all multiple 

imputation models. The experimental scenarios for evaluation include data missing 

rates of 20%, 40%, 60%, and 100% at Detector 10, which is a critical detector for use 

by both the estimation and the prediction modules of the system in all traffic 

scenarios. 

Overall Performance over All Four Days 

Figure 6-6 shows the distributions of average absolute relative errors (Eq. 

4.16) from each of those four methods on all four days. In what follows, M-2-m and 

M-1-m denote Model M-2 and Model M-1 with m imputations, respectively. The 

results showed that Model M-1-50 has the best performance compared to all other 

models when the data is missing at 20%, 40% and 60%, and its performance is very 

similar to Model M-2-50 when the data is missing at a rate of 100%. Model M-2-50 

provided a similar performance to MS and BF at the missing rate of 20%, but 

exhibited better accuracy than all three other methods at the missing dta rate of 100%. 
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Figure 6-6 Average Absolute Relative Errors of All 4 Days  

under Different Missing Rates 

Table 6-4 compares the performance of all methods in different travel time 

categories, which include congestion-free conditions (travel time less than or equal to 

700 seconds), moderate congestions (travel time between 700 and 900 seconds), and 

heavily congested conditions (travel time exceeds 900 seconds). Model M-1-50 was 

the best among all models at the missing data rates of 20%, 40% and 60%, while 

Model M-2-50 outperformed the other three methods when Detector 10 could not 

function. Model-M1-50 and Model-M2-50 exhibited the same level of performance at 

the missing data rate of 100% in all three categories. Note that all sample cases 

contain sufficient information for executing Model M-1-50. There were a total of 22 

cases on June 20
th

, 21
st
 and 22

nd
, 2006 that did not pass the variance test by Model M-

2-50. These cases have been removed from the evaluation. 
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Table 6-4 Performance of All Imputation Models in Different Traffic Conditions 

TT≤700 MS BF M-2-50 M-1-50 

20% 3.10% 2.78% 3.11% 2.54% 

40% 4.10% 3.63% 3.26% 2.80% 

60% 5.05% 4.47% 3.73% 3.07% 
M

is
si

n
g

 

R
at

e 
100% 8.53% 7.47% 5.42% 6.37% 

      

700<TT≤900 MS BF M-2-50 M-1-50 

20% 8.23% 7.35% 7.43% 6.65% 

40% 8.76% 8.56% 7.29% 6.43% 

60% 9.33% 8.64% 7.71% 6.95% 

M
is

si
n

g
 

R
at

e 

100% 10.48% 10.26% 8.58% 8.66% 

      

TT>900 MS BF M-2-50 M-1-50 

20% 13.46% 12.80% 12.36% 10.96% 

40% 13.82% 15.05% 12.57% 11.86% 

60% 14.29% 15.28% 12.99% 12.76% 

M
is

si
n

g
 

R
at

e 

100% 16.12% 15.86% 13.55% 14.07% 
TT: Travel time 

MS: Mean substitute 

BF: Bayesian forecast 

M-2-50: Model M-2 with the number of imputation m=50 

M-1-50: Model M-1 with the number of imputation m=50 

 

Performance Comparison with Individual Day Data 

This study further explores the performance of each of the four tested models 

on a single day to evaluate the potential errors due to various congestion patterns. 

Among the four analyzed weekdays, prediction results for June 2006 exhibited larger 

errors due to missing data. As shown in Figures 6-6a and 6-6b, both MS and BF 

models, which are widely used in existing traffic data warehouse systems, provided 

satisfactory results when the missing data rate was 40% in the evening peak hours, 

except during the transition periods between uncongested and congested conditions. 

However, when the missing rate was 100%, both models yielded unacceptable 

prediction results. 
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Figures 6-7a and 6-7b show the prediction results from Model M-1-50 and 

Model M-2-50 under the same missing rates of 40% and 100% on June 20
th

, 2006. It 

is clear that travel time predictions with both multiple imputation models are more 

reliable and robust, especially during the transition periods. Model M-1-50 is much 

more robust than MS, BF, and MI-2-50; its largest prediction error was less than 4 

minutes when detector 10 is not functioning at all. Model M-1-50 and Model M-2-50 

have similar average absolute relative errors of 12.15% and 12.06%, respectively, 

over the entire evening peak on June 20
th

, 2006, compared to the prediction errors of 

18.41% and 20.78%, respectively, for MS and BF. 
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a) Mean substitution (MS) 
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b) Bayesian forecast (BF) 

Figure 6-7 Performance comparisons of MS and BF at missing data rates of 40% and 

100% on June 20
th

, 2006 
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a) Multiple Imputation Model M-1 with m=50 (MI-1-50) 
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b) Multiple Imputation Model M-2 with m=50 (MI-2-50) 

Figure 6-8 Performance comparisons of MI-1-50 and MI-2-50 at missing data rates 

of 40% and 100% on June 20
th

, 2006 



 

 142 

 

Comparison of Multiple Imputation Models 

Since both Model M-1-50 and M-2-50 show better accuracy and reliability 

than other models on the data in these sample days, this section will further 

investigate their performance qualities under different numbers of imputations. 

Figures 6-8a to 6-8d illustrate the average absolute relative errors from Model 

M-1 and Model M-2 on all four sample days with different numbers of imputations m 

and different missing data rates. Generally, a larger m improved the predicted travel 

time with the integrated multiple imputation method, Model M-1. Its performance 

increased more than 10% when the number of imputation m arguments went from 5 

to 50. However, the increase of m has no impact on the performance of Model M-2. 

Its performance improvements are all less than 3% when m is increased from 5 to 50. 

The comparison results are consistent with Eq. 6.1 by Little and Rubin (1987), which 

suggested that m should between 3 and 10. 

Table 6-5 Average Relative Errors of Model M-2 

Missing Rate m =5 m=10 m=20 m=50 

20% 8.07% 8.06% 8.08% 8.09% 

40% 8.34% 8.35% 8.28% 8.23% 

60% 8.72% 8.76% 8.64% 8.66% 

100% 10.16% 10.13% 9.85% 9.88% 
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a) Missing rate: 20% 
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b) Missing rate: 40% 
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c) Missing rate: 60% 
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d) Missing rate: 100% 

Figure 6-9 Average relative errors of models M-1 and M-2 on all four days 

with different m and missing data rates 
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Because the unique structure of Model M-1 was developed specifically for the 

proposed travel time prediction model, Little and Rubin’s estimation of an efficient m 

does not fit this model. As shown in Figure 6-8 and Table 6-6, on average, the 

prediction error may increase about 5% when m decreases from 20 to 10 and increase 

about 3% when m decreases from 50 to 20. For a prediction error of 4 minutes, an 

increase of 3% is 7.2 seconds and an increase of 10% is 24 seconds. Hence, one can 

determine the number of m based on the required accuracy of the application. For 

example, an increased accuracy of 7 seconds may not be critical for a travel time 

prediction system that displays predicted travel times for commuters. 

Table 6-6 Performance Improvements of Model M-1 with the Increase of m 

Missing Rate 
Increase of m 

20% 40% 60% 100% 

From 5 to 10 5.38% 5.32% 5.32% 5.12% 

From 10 to 20 2.60% 2.82% 2.82% 2.82% 

From 20 to 50 3.31% 3.12% 3.12% 2.39% 

 

Overall, the developed missing data estimation module, which consists of an 

integrated multiple imputation model for predicting the travel time directly and a 

multiple imputation model for estimating the missing detector data, demonstrated its 

potential for practical use, based on the experimental results with the field data (June 

20
th

, 21
st
, 22

nd
 and 26

th
, 2006). Both models provided better travel time predictions 

than other widely-used methods. With the number of imputations set at 50, the 

integrated model provided acceptable accuracy and robustness over those sample 

days of the field study. 
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6.6 Conclusions 

This chapter has developed two multiple imputation models, one integrated 

imputation model for the travel time prediction (Model M-1) and one multiple 

imputation model for estimating the missing detector data (Model M-2). Both models 

take into account of geometric features and traffic patterns for better accuracy and 

robustness, and both models incorporate the ability to estimate the reliability of the 

output. In the evaluation based on data collected from 10 roadside detectors on I-70 

eastbound, both Models M-1 and M-2 outperformed commonly used methods (mean 

substitution and Bayesian forecast) when missing data rates of 20%, 40%, 60% and 

100% occurred at a critical detector. A sensitivity test showed that the performance of 

Model M-1 may increase more than 10% when the number of imputation (m) 

increases from 5 to 50. The sensitivity analysis results for Model M-2 are consistent 

with the number of imputations reported in the literature. 
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Chapter 7: Research Summary and On-going Tasks 

 

7.1 Research Summary and Contributions 

This research focuses on the development of a real-time travel time prediction 

system with sparsely distributed detectors. By taking into account real-world 

constraints, such as detector reliability, traffic variability, and operating cost, this 

study has developed a system that can provide reliable prediction of travel time under 

recurrent traffic patterns with much less number of traffic detectors than the state-of-

practice by the traffic community. With its embedded missing data estimation 

module, the prediction system is able to extend its operations under certain missing 

data scenarios, and turns off the function if the error caused by the missing data 

cannot be accommodated with existing theoretical methods. The key research issues 

associated with developing such a system are presented in Chapter 1. 

Chapter 2 has provided a comprehensive literature review that covered the 

following topics: travel time estimation, travel time prediction, existing simulated and 

real-world application systems. It has been found from the review that most existing 

studies for travel time estimation and travel time prediction are for short links with 

densely distributed detectors (e.g., one detector every 0.5 miles). Nonparametric 

models, such as k-Nearest Neighbor Model, are reported to outperform the parametric 

models. Previous studies also indicated that a proper combination of different models 

may improve the system reliability. In contrast to the use of sophisticated algorithms 

presented in most research studies, all existing real-world systems for traveler 
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information employ simple algorithms that perform the prediction of travel time 

based on that assumption that the traffic condition within the predicted time horizon 

will be identical to the current detected traffic states. 

In response to the identified needs and constraints, Chapter 3 proposed the 

framework of a travel time prediction system for use on most freeway segments with 

various geometric features and traffic patterns. The proposed system does not require 

concurrent measurements of travel times. With data from sparsely distributed 

detectors, the travel time estimation module continuously estimate travel times for 

those completed trips and store them in a database. The prediction module takes the 

real-time input from traffic detectors and then performs the prediction with its hybrid 

model structure. The missing data estimation module is responsible for imputing the 

missing variable during real-time operations, and then for estimating the potential 

impacts on the predicted travel time. The proposed operating architecture ensures that 

the travel times of newly completed trips can be added to the database in real time, 

and immediately available for the system to perform the prediction during the next 

time interval. 

Chapter 4 has developed a hybrid travel time estimation model by combining 

a clustered linear regression model and an enhanced trajectory-based model. A 

clustering function will first categorize traffic patterns in a link, based on its 

congestion levels in critical lanes. Then, the travel time estimation module will 

further calibrate a linear regression model in each cluster that has sufficient samples 

of field data. For clusters without adequate sample data, this study has developed an 

enhanced trajectory-based model as a supplemental component, which integrates the 
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traffic propagation relations with a piecewise-linear-speed-based model. With such a 

component, one can estimate the time-varying in-segment speed of a vehicle in a long 

link based on the distance from its location to detectors, and then approximate the 

link travel time. The results of extensive numerical experiments have showed that the 

developed hybrid model is able to provide acceptable accuracy with only 10 detectors 

on a 25-mile stretch of I-70 eastbound. This is far less than the number of detectors 

needed by state-of-art and state-of-practice studies. 

Chapter 5 has detailed a hybrid model structure for the travel time prediction 

on freeways with sparsely distributed detectors. A multi-topology Neural Network 

model serves as the main model that uses a customized rule-based clustering function 

to take into account the impacts of geometry features and daily congestion patterns. 

The proposed Neural Network model does not rely on a large historical traffic 

database, thus can start to operate after a short period of system training (e.g., four 

weeks). In the hybrid model structure, an enhanced k-Nearest Neighbor model serves 

as the supplemental model for taking advantage of historical traffic conditions and 

travel times. With a customized searching function and criteria for traffic 

characteristics, the supplemental model can efficiently improve the system’s 

reliability for less-frequently observed traffic scenarios with a rich historical database. 

The numerical examples have demonstrated that the proposed travel time prediction 

model provided satisfactory results and outperformed other models found in the 

literature under all types of traffic conditions in a detection environment with the 

detector spacing exceeding 1 mile. 
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To contend with commonly incurred missing data issue, Chapter 6 developed 

two missing data estimation models based on the multiple imputation technique. 

Model M-1 integrates the missing data estimation and the travel time prediction with 

a searching function similar to that developed for the travel time prediction module to 

ensure the reliability on travel time prediction under some missing data scenarios. 

Model M-1 is able to concurrently estimate the distributions of both missing data and 

the impacted travel times. If this model cannot produce an acceptable level of 

accuracy under the missing data scenario, the system will then switch to the 

secondary model, M-2, which will divide the target segment into subsegments based 

on the geometry features and the daily traffic patterns, and take available information 

from all critical lanes in the subsegment to estimate the missing data with the multiple 

imputation technique. The system will then execute the travel time prediction module 

with the completed dataset if the model can confirm the reliability of the imputed 

values. The developed missing data estimation module have proved its performance 

under various data-missing scenarios, and outperformed widely-used single 

imputation methods. 

In summary, this research has made the following key contributions: 

• Design a system framework of a travel time prediction system that takes 

traffic data from most common traffic detectors to provide reliable 

prediction of travel times on a freeway segment with large detector 

spacing under various geometry features and complex traffic congestion 

patterns. Such a system does not require concurrent measurement of travel 

times during its real-time operations. None of the systems found in the 
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literature or implemented in the real-word applications can function 

properly with the number of detectors far less than the standard of 

practices in the traffic community. 

• Develop a hybrid model, which combines a clustered linear regression 

model and an enhanced trajectory-based model, for estimating travel times 

on a freeway segment by categorizing traffic scenarios with identified 

critical information and applying the best model structure. The estimated 

travel times produced by such a module are sufficiently accurate for 

incorporating into the historical travel time database. 

• Construct a hybrid travel time prediction model with a multi-topology 

Neural Network model, which uses a rule-based clustering function as the 

main model and an enhanced k-Nearest Neighbor model as the 

supplemental model for predicting travel times under recurrent traffic 

congestions and sparsely distributed detectors. 

• Develop an integrated missing data estimation model with the multiple 

imputation technique contend with both short- and long-term data missing, 

which occurs frequently in a real-world system. The proposed models are 

capable of estimating the reliability of the imputed missing values and 

predicted travel times under the missing data impact so as to avoid the 

potentially large system errors. 
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7.2 Future Research 

Future studies related to a real-time travel time prediction system with large 

detector spacing are listed below: 

• Development of a Model to Determine Optimal Detector Locations 

Both travel time estimation and travel time prediction models developed in 

this study can function reliably on a freeway segment consists of long links. 

However, some segments with highly fluctuating traffic conditions may experience a 

prediction error if it is far away from a detector station. The locations of 10 traffic 

detectors used in this study were predetermined based on the knowledge of local 

traffic patterns and geometry features. A model for determining the optimal detector 

locations may help improve the performance of a travel time prediction system, and 

reduce the impact of the missing data at key locations.  

• Detection of Incidents and Other Special Events to Minimize the Potential 

Prediction Errors 

This study focuses on the travel time prediction under recurrent traffic 

patterns. However, the reliability of such a system may be reduced under the impacts 

of an on-going accident and/or a special event, due to the fact that the actual travel 

time during such scenarios will be dependent on the duration of the incident that 

varies with its nature, efficiency of the response team or local management strategies, 

and availability of equipment or other supports. An incident detection model, which 

has quick and accurate detection with sparsely distributed detectors, can certainly 

improve the reliability of a travel time prediction system by recognizing the abnormal 
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traffic conditions. The system can then inform the control center to switch the entire 

operations to the incident or special event management mode. 

• Monitoring the Change in Traffic Patterns and Estimating the Potential 

Impacts 

All models developed in this study take into account historical traffic 

congestion patterns to improve their reliability. Although recurrent traffic patterns 

may remain steady in a fairly long period in most freeway segments under normal 

operations, it is still likely that the traffic conditions may differ significantly from 

their typical patterns, such as having long-term work-zones on the target freeway 

segment or nearby area. Commuters may also change their driving patterns based on 

the knowledge of the information provided by responsible agencies. Therefore, a 

model is needed to monitor the change in traffic patterns and to alert the control 

center for recalibrating all key system parameters if a potential large impact is 

detected. 
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