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Exogenously generated electrophiles are capable of alkylating DNA.  If not 

repaired, the resulting DNA adducts can lead to mutations and either cancer or cell 

death.  Electrophilic ortho-quinone methides (o-QM) are reactive intermediates that 

alkylate DNA and are generated during xenobiotic metabolism of a variety of 

compounds including environmental toxins and therapeutic agents.  Identifying the 

full alkylation profile of o-QM towards DNA would allow for the genotoxicity of o-

QM precursors to be better understood.  

From model studies based on nucleosides, o-QMs react most readily, but 

reversibly with the strong nucleophiles 2′-deoxycytidine (dC) N3, 2′-deoxyguanosine 

(dG) N7, and 2′-deoxyadenosine (dA) N1 and less efficiently, but irreversibly with 

the weak nucleophiles dG N1, dG N2, and dA N6.  The reverse reactions complicate 

analysis of their products in DNA, which requires enzymatic digestion and 

chromatographic separation.  Selective oxidation by 



  

bis[(trifluoroacetoxy)iodo]benzene (BTI) can transform the reversible o-QM-DNA 

adducts into irreversible derivatives capable of surviving such analysis.  To facilitate 

this analysis, a series of oxidized o-QM-dN adducts were synthesized as analytical 

standards. 

 Initial oxidative trapping studies with an unsubstituted o-QM and dC 

demonstrated the necessity of an alkyl substituent para to the phenolic oxygen to 

block over-oxidation.  A novel o-QM included a methyl group para to the phenolic 

oxygen that successfully blocked the over-oxidation allowing for generation of a 

stable MeQM-dC N3 oxidized product.  Further oxidative trapping studies with 

MeQM and dG resulted in the formation of three stable MeQM-dG oxidized products 

(guanine N7, dG N1, and dG N2).   

Initial studies with duplex DNA optimized the enzymatic digestion and 

confirmed that the assay conditions were compatible with oxidative trapping.  The 

low yielding MeQM alkylation of duplex DNA needs to be scaled up prior to the 

oxidative trapping studies. 

  Alternative studies quantified the release of MeQM from DNA with the use 

of β-mercaptoethanol as a nucleophilic trap.  These studies revealed single stranded 

DNA as a superior carrier of MeQM than duplex DNA and, therefore, a better target 

DNA for the oxidative trapping studies due to increased yield of MeQM adducts.  

With the increased MeQM-DNA yield, the intrinsic selectivity and reactivity of 

MeQM towards DNA can be determined. 
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Lay Abstract 

 A number of drugs and environmental toxins are metabolized in our cells 

resulting in compounds that can react with and cause damage to many different 

cellular components, including DNA.  The type, amount, and location of the DNA 

damage, known as lesions, determines the biological response which may consist of 

repair or cell death.  If the biological response is insufficient to correct the DNA 

lesions, mutations may occur possibly leading to cancer or cell death.  Many anti-

cancer drugs also work by damaging DNA.  Understanding the biological response to 

a specific DNA damaging compound would allow for the assessment of that 

compounds toxicity.  To accomplish this goal, the DNA lesions formed by a specific 

compound must first be identified.  This would allow for the relationship between a 

lesion and a specific biological response to be established.  

 One type of DNA damaging compound is quinone methide (QM).  The QM 

functional group is found upon metabolism of a number of anti-cancer compounds, 

the most well known is mitomycin C.  QMs are also found in cells upon metabolism 

of certain environmental chemicals, such as the food preservative BHT.  QMs have 

the unusual ability to form both irreversible and reversible products with DNA.  The 

reversible products exist long enough to elicit a biological response, but not long 

enough for standard analysis.  To effectively assess the toxicity of QMs, the reactivity 

and selectivity of a simple QM towards DNA is a necessity and requires a method of 

trapping the reversible products.  In this way, the product profile can be “frozen” at 

any given time and will not change during the long process of breaking down DNA.  

The compound bis[(trifluoroacetoxy)iodo]benzene (BTI) can transform the reversible 



 

 iii 
 

products into irreversible products through an oxidation mechanism.  Most 

importantly, BTI performs this transformation quickly, completely, and in the near 

physiological conditions used for the QM reaction of DNA.  These points are 

important as they will allow for the analysis of the QM reaction of DNA at short (< 

24 hr), but biologically relevant times leading to a much better understanding of its 

reactivity and selectivity than previous studies have allowed. 

To help with the eventual analysis of the reaction between QM and DNA, a 

number of analytical standards were synthesized from nucleosides.  This was 

accomplished by first reacting individual nucleosides with QM to form the QM-

nucleoside product and second the product was oxidized with BTI to form the 

analytical standard.  Initially, the first nucleoside to be studied was 2′-deoxycytidine 

(dC) because it forms only one, slowly reversible, product with QM.  During these 

studies, the simplest QM was observed to form a complex, and unexpected, product 

after reaction with BTI.  A new QM, which featured the addition of a methyl group to 

limit the reactivity of QM with BTI, was developed to avoid the formation of the 

unexpected complex product.  The new QM (MeQM) successfully reacted with dC 

and formed the expected product upon reaction with BTI. 

After the MeQM-dC product was synthesized and its structure determined, the 

three products between MeQM and the nucleoside 2′-deoxyguanosine (dG) were 

synthesized.  Additionally, MeQM forms two products with the nucleoside 2′-

deoxyadenosine, and these products were studied by my undergraduate mentee Omer 

Ad.  Previous studies have shown that 2′-deoxythymidine (dT) does not react with 
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QM and it was not studied.  In total, six analytical standards were made for use with 

the analysis of the reaction between MeQM and DNA. 

With the help of the six analytical standards, the reaction between MeQM and 

DNA was investigated.  However, not enough MeQM reacted with the DNA and 

therefore future work will increase the amount of MeQM that reacts with DNA.  

Once the reaction between MeQM and DNA can be studied, information on the 

associated lesions (such as their type, amount, and location) can be used to determine 

why QMs elicit specific biological responses and how to assess the toxicity of QM 

based DNA damaging compounds. 
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Chapter 1: Introduction 

 

1.1.  DNA Alkylation. 

Nucleophilic sites on DNA have the potential to react with a variety of 

endogenously and exogenously generated electrophiles to form DNA adducts.1-3 

Endogenously generated DNA adducts, such as 5-methylcytosine (5MeC), are crucial 

to normal development in mammals by regulating a number of cellular processes.4-6 

However, there appears to be a low level of mutagenic DNA adducts formed 

nonenzymatically by S-adenosylmethionine (SAM), showing that not all endogenous 

DNA alkylation is beneficial.1 Exogenously generated DNA adducts, formed from 

environmental chemicals, mainly result in DNA damage.  Exogenous DNA alkylating 

agents that target rapidly replicating cells have found success as cancer 

chemotherapeutic drugs by damaging the DNA of cancer cells.7-9 Unfortunately, 

exogenous DNA alkylating agents that damage genomic DNA may result in 

mutations if not repaired.   

Regardless of how the DNA adduct is formed, each unique adduct invokes a 

specific cellular response.  O6-Methylguanine (O6MeG), for example, is a major DNA 

adduct formed by alkylating agents from both endogenous and exogenous 

sources.3,10,11 The repair protein O6-methylguanine-DNA methyltransferase (MGMT) 

directly reverses the methylation by transferring the O6-methyl group to a cysteine 

residue on itself.  If this repair mechanism is not successful, the adduct may cause a 

2′-deoxyguanosine (dG) to a 2′-deoxyadenosine (dA) transition, permanently altering 
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the DNA sequence.12,13 The O6MeG:T mismatch can be lethal also due to futile 

cycling by the post-replication mismatch repair (MMR) system.12  

Another common DNA adduct is N7-methylguanine (7MeG).  The N7 

position of 2′-deoxyguanosine (dG N7) is the most nucleophilic site within the DNA 

bases, making it highly reactive with electrophiles.14 For example, 82% of the 

methylation of duplex DNA by methyl methanesulfonate (MMS) occurs at dG N7.15 

While alkylation of dG N7 may be frequent, the 7MeG adduct appears to be neither 

mutagenic nor cytotoxic.3 A number of 7MeG degradation products exhibit 

mutagenicity and cytoxicity.  Alkylation at dG N7 places a positive charge on the N7 

nitrogen (1.2), destabilizing the N-glycosidic bond and leading to spontaneous 

depurination.  The resulting abasic site (1.3) may lead to a DNA strand break and is 

toxic (Scheme 1.1).16 

Scheme 1.1. Proposed mechanism for the depurination of N7-alkyl dG residues.  R+ 
is an electrophilic alkylating agent.  Adapted from Gates et al.16 
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Another toxic 7MeG degradation product is 2,6-diamino-4-hydroxy-5N-

methylformamidopyrimidine (FAPy-7MeG, 1.11).  FAPy-7MeG is formed from 

7MeG upon opening of the imidazolium ring by hydrolysis (Scheme 1.2).  Although 

only weakly mutagenic, FAPy-7MeG does block DNA chain elongation, therefore 

affecting DNA synthesis.17,18 Furthermore, the glycosidic bond in FAPy-7MeG is 

chemically stable under physiological conditions, unlike 7MeG.16 The removal of 

these adducts requires active repair, such as base excision repair (BER) which can 

lead to the formation of toxic abasic sites (1.3).3  

Scheme 1.2. Ring opening in 7-methylguanine (1.9) to yield the FAPy-7MeG (1.11) 
adduct.  Adapted from Gates et al.16 

 

 

1.2.  The Importance of Detecting Labile DNA Adducts. 

Much of the study on DNA alkylation is focused on the irreversible process 

rather than the reversible process.  Irreversible adducts lend themselves to simple 

manipulation as the adducts can survive lengthy (>22 hr) assays such as enzymatic 

digestion and work-up prior to tandem liquid chromatography-mass spectrometry 

(LC/MS).19,20 A much less studied area of DNA alkylation is the formation of 

reversible, or labile, DNA adducts.  As these reversible DNA adducts may have 

lifetimes shorter than the time required for the assay, their presence may be 
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diminished or go unnoticed altogether.  However, the lifetime of the reversible adduct 

may be sufficient to elicit a cellular response, provoking DNA damage repair 

pathways.  The reversible DNA adducts can then release from the excised DNA and 

reassociate with the original DNA.  This repeated regeneration of the active 

alkylating agent effectively extends the lifetime of these DNA alkylating agents in 

vivo. For this scenario, a lower amount of reversible alkylating agent would, 

therefore, be needed to achieve the same result as a higher amount of irreversible 

alkylating agent, which would be beneficial for therapeutic uses, but harmful with 

environmental toxins. 

Unfortunately, the reversible nature of these alkylating agents makes their 

detection and analysis difficult.  The ability to detect reversible DNA adducts would 

allow for an assessment of the genotoxicity of such an alkylating agent.  Access to the 

full profile of adducts formed by an alkylating agent would also be instrumental in a 

proposed mechanism of its toxicity.20,21 This additional information could influence 

the toxicology rating of chemicals or help to design more selective DNA targeting 

therapeutics.  It is, therefore, imperative that a method, or methods, to detect labile 

DNA adducts be developed. 

 

1.3.  Extensively Studied Labile DNA Alkylating Agents. 

A number of known DNA alkylating agents are confirmed to form labile DNA 

adducts.  One of these DNA alkylating agents, malondialdehyde (MDA, 1.12), is an 

endogenously formed product of lipid peroxidation that is present also in a variety of 
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foodstuffs.22,23 MDA can act as both a strong electrophile and as a strong nucleophile 

when it forms its enol tautomer, β-hydroxyacrolein (1.13) (Scheme 1.3).22  

Scheme 1.3.  Malondialdehyde (1.12) can tautomerize to β-hydroxyacrolein (1.13). 

 

MDA forms mutagenic DNA adducts with dA and 2′-deoxycytidine (dC), but 

mostly with dG.22 The major adduct formed with dG is 3-(2′-deoxy-β-D-erythro-

pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG, 1.14) (Scheme 1.4).24 At 

neutral pH, M1dG has been shown to be reactive towards nucleophiles,25 and basic 

conditions can cause hydrolytic ring-opening to form N2-oxopropenyl-

deoxyguanosine (N2OPdG, 1.15), which is reactive also with nucleophiles (Scheme 

1.4).26 Further studies determined that M1dG is converted to N2OPdG in duplex DNA 

when positioned complimentary to cytosine which suggests a cytosine catalyzed ring-

opening.27 Furthermore, the N2OPdG does not covalently react with the catalytic 

cytosine, as confirmed by NMR data.  This allows N2OPdG to react with another 

nucleophile, including reforming the original ring (Scheme 1.4).27 This result 

highlights the reversible linkage that allows MDA to exist effectively in two unique 

electrophilic forms that display different toxicity. 
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Scheme 1.4. M1dG (1.14) and N2OPdG (1.15) can interconvert under aqueous 
conditions. 

 

Acrolein (1.16) is another thoroughly studied DNA alkylating agent.  Acrolein 

is also a bis-electrophile that is formed endogenously from oxidation of 

polyunsaturated fatty acids and is present exogenously in cigarette smoke and 

automobile exhaust.28 In vitro studies reveal a number of adducts form between 

acrolein and each nucleoside.19,28-30 However, many of these adducts are 

monofunctional and irreversible.  Unlike the monofunctional adducts, the major 

crosslinking adduct, 8-hydroxy-1,N2-propano-2′-deoxyguanosine (8-HO-PdG, 1.18), 

exhibits lability to form the N2-(3-oxopropyl) adduct (1.17) (Scheme 1.5).28,31 This 

allows 8-HO-PdG to reversibly form interchain crosslinks if the complementary 

strand contains the sequence 5′-CpG opposite of the adduct (Scheme 1.5).31 This 

cross-link occurs at 1 – 2% of the levels of the monofunctional adduct (1.17), which 

approaches the limit of detection using current analytical methods such as LC-

MS/MS (~1 adduct per 108 DNA bases, when 50 µg of DNA is assayed).28 Even at 

this low level of formation, these crosslinks may be lethal to bacterial, yeast, and 

repair-deficient mammalian cells.32,33 The reversible nature of the acrolein dG N2 

crosslinks complicates their identification and analysis in vivo.  Therefore, most 

studies were carried out in vitro with a model DNA such as calf thymus DNA 

(ctDNA).28 
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Scheme 1.5. Initial alkylation of dG by acrolein (1.16) followed by the reversible 
interchain cross-link with an opposing dG (1.19 – 1.21).  Adapted from Kozekov et 
al.31 

 

While malondialdehyde and acrolein are endogenous alkylating agents, the 

natural product ecteinascidin 743 (Et 743, 1.22) represents an exogenous alkylating 

agent (Scheme 1.6).  Et 743 is registered under the trade name Yondelis and is 

currently undergoing clinical trials for treatment of a variety of tumors.34,35 Et 743 

selectively binds to the minor groove of duplex DNA and reversibly alkylates the 

same position on dG as acrolein (Scheme 1.7).36,37 Et 743 alkylates DNA with 

varying sequence selectivity due to recognition of three base pair sequences through 
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hydrogen-bonding patterns.36,37 Further studies have determined that the rate of 

reversal is dependant on the nucleotide on the 3′ side of the covalent attachment due 

to the formation of this hydrogen-bonding network between Et 743 and the 3′ 

nucleotide while the rate of alkylation is independent of the target sequence.37 Once 

free from the DNA, Et 743 is free to alkylate any target sequence.  The result is a 

gradual accumulation of the thermodynamically favorable adduct leading to the 

observed preference for a specific target sequence.    

Scheme 1.6. Structure of Et 743 (1.22) with the DNA alkylating section highlighted 
in red. 
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Scheme 1.7. Proposed mechanism of the reversible alkylation of dG by Et 743 (1.22).  
The scheme shows only the portion of Et 743 highlighted in red from Scheme 1.6.  
Adapted from Zewail-Foote et al.37 

 

 

1.4.  DNA Alkylation by Quinone Methides. 

Another family of reversible DNA alkylating agents is the quinone methides 

(QM).  QMs can exist as para (p-QM, 1.27) or ortho (o-QM, 1.28) isomers.  QMs are 

highly reactive, electrophilic species that serve as Michael acceptors with 

nucleophilic reaction at the exocyclic methylene group (Scheme 1.8).  Restoration of 

aromaticity occurs upon reaction and is the major driving force behind the reactivity 

of QMs.  The reactivity of QMs have been compared to highly stabilized 

carbocations, due to the similar reactivity of each towards nucleophiles (Scheme 

1.8).38,39  
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Scheme 1.8. Structures of p-QM (1.27) and o-QM (1.28).  The mechanism of 
nucleophilic addition to o-QM and the restoration of aromaticity is shown. 

 

 One exogenous source of QMs is the antitumor drug mitomycin C (Scheme 

1.9).40 Mitomycin C is enzymatically reduced in vivo to form the vinylogous QM 

1.31.  Initial alkylation results in a monoadduct at the dG N2 position in DNA (1.32).  

Upon loss of the carbamate, alkylation occurs at a second dG N2 position to form the 

cytotoxic crosslink 1.35 (Scheme 1.9).40,41  

Scheme 1.9. Proposed mechanism for the alkylation and cross-link formation of 
DNA by mitomycin C (1.30).  Adapted from Tomasz40 and Noll et al.41 

 

The reductive activation of mitomycin C is key to its antitumor properties.  

While normal tissues are oxygen rich and therefore inhibit the activation of 
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mitomycin C, many solid tumors are oxygen deprived and readily activate mitomycin 

C.  Under these reductive conditions, mitomycin C selectively alkylates dG in the 

minor groove.  Unlike the reversible alkylating agents discussed earlier, mitomycin C 

is an irreversible alkylating agent.  It has proven to be an effective anticancer drug 

and an excellent example of the alkylating power of QMs.  

A second exogenous source of QMs is the food preservative 2,6-di-tert-butyl-

4-methylphenol (BHT, 1.36).  BHT is oxidized in vivo by cytochrome P450 to initially 

form the p-QM 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM, 

1.37).  Alternatively, hydroxylation of a tert-butyl group followed by oxidation 

affords the p-QM 6-tert-butyl-2-(2′-hydroxy-1′,1′-dimethylethyl)-4-

methylenecyclohexa-2,5-dienone (BHTOH-QM, 1.39) (Scheme 1.10).42 These two p-

QMs (1.37 and 1.39) can alkylate every DNA base along with a number of other 

intercellular nucleophiles such as glutathione and amino acids in proteins.43,44 

Scheme 1.10. Formation of BHT-QM (1.37) and BHTOH-QM (1.39) by enzymatic 
oxidation. 
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While most of these adducts are irreversible, the dG N7 and dC N3 adducts 

prove to be labile.43 The dG N7 adduct decomposes through the common 

depurination mechanism of N7-alkylguanine residues to form the guanine N7 

adduct.16 Interestingly, the dC N3 adduct reforms the active QM along with 

unmodified dC through a reverse reaction.43 This property would allow BHT-QM to 

alkylate another nucleophile present in solution and contribute to the in vivo toxicity 

observed in rat and mouse models.42,43,45 

The reactivity of most QMs makes them too unstable to store, and QM study 

requires a stable precursor that can be activated when needed.  Mitomycin C and 

BHT are enzymatically activated in vivo to form the transient QM intermediates.  For 

in vitro studies on BHT, the QM was formed through chemical oxidation with 

Ag2O.43 QMs have been also formed from various precursors through oxidation with 

NaIO4,46 photochemistry47-50 and heat.51,52 Another chemical means of activation that 

was discovered by the Marino laboratory53 and further developed by the Rokita 

laboratory54 utilizes fluoride to cleave a silyl group protecting the phenolic oxygen, 

which subsequently expels a leaving group (either bromide or acetate) to form the 

desired o-QM (Scheme 1.11).  The silyl protected o-QM (BrQMP, 1.40) proved also 

to be stable upon storage at 0 °C either pure or dissolved in an aprotic solvent and 

thus can serve as an effective QM precursor (QMP). 
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Scheme 1.11. Proposed mechanism for the fluoride activation of BrQMP (1.40) to o-
QM (1.28). 

 

Initial studies with the simplest o-QM model, 1.28, determined that adducts 

were formed with dC,55 dG,56 and dA,57 but not with 2′-deoxythymidine (dT).  

Additional studies between 1.28 and deoxynucleosides revealed selectivity towards 

the stronger nitrogen nucleophiles dC N3, dG N7, and dA N1 (Scheme 1.12, labeled 

in blue).58 These adducts form reversibly through a kinetically controlled process.59 

This reversibility was shown to also lead to a time dependant shift from these 

kinetically controlled products to the irreversible, thermodynamically controlled, 

products at dG N1, dG N2, and dA N6 (Scheme 1.12, labeled in red).58  
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Scheme 1.12. Structures of the o-QM-dN adducts.  Reversible adducts are labeled in 
blue and irreversible adducts are labeled in red.  Adapted from Weinert.60 

 

The result of these competing processes is an initial high yield of adducts with 

the stronger nucleophiles that gradually shifts to a low yield of adducts with the 

weaker nucleophiles that persist indefinitely.  Additionaly, ubiquitous water acts as an 

irreversible trap of o-QM.58 The repeated capture and release of the o-QM by the 

stronger nucleophiles effectively extends the lifetime of this transient electrophile.61 

The reversibility of these QM-dN adducts potentially allows also for the escape of o-
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QM from cellular repair processes such as base excision repair (BER) and nucleotide 

excision repair (NER) leading to increased effectiveness as a therapeutic agent, as 

seen with the previously discussed Et 743.37  

 

1.5.  Requirements for a QM-DNA Trapping System. 

As discussed above, there are a number of positive effects stemming from the 

reversibility of the kinetic QM-dN adducts, most notably the extension of the 

effective lifetime of o-QM.  Unfortunately, the reversibility of these QM-dN adducts 

is detrimental also to their detection in duplex DNA.  Only the thermodynamic QM-

dN adducts persist through standard enzymatic digestion and chromatographic 

analysis of the alkylated DNA.43,62,63 The time dependent shift from kinetic to 

thermodynamic products effectively obscures the alkylation profile of o-QM towards 

DNA at short (<4 hr) times, giving an incomplete and inaccurate alkylation profile.  

For example, early studies of the model o-QM 1.28 revealed selectivity for the 

weakly nucleophilic positions dA N6 and dG N2 after a 24 hour reaction with duplex 

DNA.62 Later studies determined that the more nucleophilic position of dA at N1 was 

initially alkylated, but the labile adduct is no longer present after the lengthy reaction 

and work-up due to constant regeneration and gradual trapping to form the 

irreversible dA N6 adduct.57 Isotope labeling with 15N further confirmed a dissociative 

mechanism of reversible alkylation and contradicted the possibility of an 

intramolecular rearrangement (Dimroth rearrangement) leading to formation of the 

dA N6 adduct.57 
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 Development of a method to suppress o-QM release from its reversible 

adducts is necessary for satisfactory analysis of the intrinsic selectivity and efficiency 

of o-QM alkylation of DNA.  Classical approaches such as an acid or alkaline quench 

prior to enzymatic digestion57,64-66 fail with the o-QM adducts as they would 

destabilize the labile adducts.57 Mass spectrometry (MS) can be an effective way to 

analyze DNA alkylation, but frequently fails to observe labile adducts, especially at 

the dG N7 position.67 A further complication is that multiple o-QM adducts at a 

particular nucleoside have the same mass.  For example, the QM-dA N1 and QM-dA 

N6 adducts appear as two unique compounds by HPLC, but have identical masses by 

MS.  Therefore MS would be unable to provide important information about the 

position of the covalent linkage. 

A chemical trap that converts the reversible o-QM-dN adducts to irreversible 

derivatives would be very useful in their analysis as it would eliminate the previously 

mentioned issues with labile adducts.  Namely, the alkylation profile would not 

change from the beginning of the alkylation work-up through the ultimate HPLC 

analysis.  There are a number of requirements for a successful trapping method.  One 

requirement is that the trap must be effective under physiological conditions 

(aqueous, pH 7, 37 °C) to ensure that the target DNA is still properly annealed as B-

DNA, the dominant form found in cells.  The trap must not interfere with the ultimate 

chromatographic analysis of the digested DNA and it must also react quickly, 

quantitatively, and selectively with the o-QM phenol to accurately quench the labile 

QM-DNA adducts at the desired time point.  By not reacting with the DNA itself, the 

ensuing chromatographic analysis would be simplified by decreasing the amount of 



 

 17 
 

oxidation by-products formed.  An effective chemical trap should focus on the o-QM 

phenol to prevent donation of the oxygen lone pair back into the nucleoside, therefore 

preventing regeneration of the active o-QM (Scheme 1.13). 

Scheme 1.13. Proposed mechanism for the reverse reaction of an o-QM-dN adduct 
(1.42) (dN = dC, 1.43, in this example). 

 

 From the requirements outlined above, a number of chemical traps can be 

considered.  Although silylation and acetylation may occur quickly with the o-QM 

phenol, reaction may also occur at the phosphate oxygens leading to multiple side-

products and possibly incomplete trapping.  Alkylation of the o-QM phenol is also 

possible but suffers from the same shortcomings as silylation and acetylation while 

also possibly forming side-products with other nitrogen nucleophiles found in DNA 

further confusing the origin of each adduct.  Reduction of the o-QM phenol was also 

not pursued due to the reactive nature of common transition metal reducing agents 

towards DNA. 

 

1.6.  Oxidation of the QM Phenol as an Effective Trap. 

Oxidative de-aromatization of the o-QM phenol has the potential to satisfy 

each of the requirements for a chemical trap (Scheme 1.14).  However, not all 
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methods of oxidative de-aromatization would be applicable to the o-QM-DNA 

system.  Singlet oxygen is frequently used for oxidative de-aromatization in synthetic 

procedures but would fail in this system due to its oxidation of guanine residues.68,69 

Potassium nitrosodisulfonate (Fremy’s salt) is a reagent that could selectively 

oxidatively de-aromatize the o-QM phenol.60,70 Initial studies with a ten-fold excess 

of Fremy’s salt observed the oxidation of 2-hydroxymethylphenol (QM-H2O, 1.49) to 

2-hydroxymethylbenzoquinone (1.50) by HPLC analysis (Scheme 1.14).60 UV-Vis 

and high-resolution mass spectrometry confirmed the assignment of the new 

compound.  Unfortunately, oxidation with Fremy’s salt proved to be low yielding, 

even with a twenty-fold excess of oxidant.60 The inability to fully convert a 

substituted phenol to the corresponding benzoquinone would only complicate the 

analysis of o-QM-DNA adducts and studies with Fremy’s salt were abandoned. 

Scheme 1.14. Generic oxidative de-aromatization of 2-hydroxymethylphenol (1.49) 
to 2-hydroxymethylbenzoquinone (1.50). 

 

 Hypervalent iodine species, in particular bis[(trifluoroacetoxy)iodo]benzene 

(BTI, 1.52, also known less commonly in the literature as PIFA which stands for 

phenyliodosyl bis(trifluoroacetate)71) selectively and efficiently de-aromatizes 

phenols under aqueous conditions (Scheme 1.15).72-75 BTI satisfies the requirements 

for the chemical trap due to its mild reactivity, selectivity for phenol moieties, fast 

reaction, and compatibility with physiological conditions.  The proposed mechanism 
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begins with a nucleophilic addition of the phenolic oxygen to the BTI iodine, leading 

to the expulsion of one equivalent of trifluoroacetate (Scheme 1.15).  Next, 

nucleophilic addition of water to the activated phenol occurs expelling iodobenzene 

and another equivalent of trifluoroacetate and forming the intermediate ketone 1.54.  

A base then removes the acidic proton (para to the newly formed ketone) allowing 

rearomatization to occur.  A second equivalent of BTI can then repeat the reaction 

leading to the formation of 1,4-benzoquinone (1.57).72,73 

Scheme 1.15. Proposed mechanism for BTI (1.52) oxidation of phenol (1.51) to 1,4-
benzoquinone (1.57).  Adapted from Tamura et al.72 and Barret et al.73 

 

 The proof of concept experiment that involved the oxidation of 2-

hydroxymethylphenol (1.49) to 2-hydroxymethylbenzoquinone (1.50) by Fremy’s salt 

was repeated (Scheme 1.14).  The oxidation was successful using a four-fold excess 

of BTI.60 The product was formed in near quantitative yield, as determined by HPLC, 

after a 10 minute incubation at room temperature in aqueous CH3CN.   
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 Selective oxidative de-aromatization of the o-QM phenol by BTI appears to 

be a viable method for trapping the labile o-QM-DNA adducts.  This will allow, for 

the first time, the intrinsic selectivity of o-QM alkylation of DNA to be determined.  

The goal of this dissertation is to synthesize and characterize the oxidation products 

of each individual o-QM-dN adduct and then use these products as analytical 

standards to determine the o-QM alkylation profile of DNA at short time points.  

Using the information obtained from these studies regarding the type, location, and 

amount of o-QM adducts that are formed with DNA, a relationship between the 

biological response to o-QM and toxicity of o-QM can be determined. 
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Chapter 2: Formation and Oxidation of QM-dC and 
MeQM-dC Adducts 
 

 

2.1. Introduction. 

Oxidative de-aromatization of the phenolic products formed between an 

ortho-quinone methide (o-QM) and DNA has the potential to quench the reversible 

alkylation and allow the QM-DNA adducts to survive enzymatic digestion and 

subsequent HPLC analysis.  As discussed in Chapter 1, oxidative de-aromatization 

with bis[(trifluoroacetoxy)iodo]benzene (BTI) meets the criteria outlined for 

successful trapping of the adducts (Scheme 1.15).  Specifically, BTI reacts quickly, 

quantitatively, and selectively with the QM phenol under physiological conditions. 

 2′-Deoxycytidine (dC) was chosen to test whether oxidation of an o-QM-

deoxynucleoside (o-QM-dN) adduct forms a stable and identifiable compound with 

the ability to remain stable during DNA digestion conditions.  Alkylation of dC by 

QM was previously shown to form a single adduct, QM-dC N3 (1.42).55 Since dG56 

and dA57 form multiple adducts with QM and dT does not react with QM,58 dC would 

result in the least convoluted product profile and would be the simplest dN to test 

with oxidative trapping (Scheme 2.1).  
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Scheme 2.1. Formation of o-QM (1.28) and subsequent alkylation of dC (1.48) 
resulting in QM-dC N3 (1.42). 

 

The previously studied QM (1.28) was chosen as the first model o-QM since it 

is the simplest o-QM and its dC adduct shows only modest reversibility under 

aqueous conditions.58 The dC adduct is also one of the highest yielding o-QM-dN 

adducts formed by the reaction with QM 1.28.  

Initial studies were successful in isolating, but not characterizing, the product 

of oxidation of QM-dC N3.60 Synthesis of QM-dC N3 in a solution of 70:30 

DMF:H2O at pH 7 was successful.55 QM-dC N3 was then oxidized in situ by a four-

fold excess of BTI in CH3CN.  HPLC purification resulted in the isolation of a major 

product.  NMR spectra (1H and 13C) of the product were inconsistent with the 

expected compound 2.1 (Scheme 2.2).  While it was determined by 1H and 13C NMR 

that the dC ribose and pyrimidine fragments were intact, the presumed benzoquinone 

protons were shifted downfield (8 - 9.5 ppm) without the anticipated 1H-1H coupling.  

The benzylic carbon and protons were also absent from the 1H and 13C spectra.  The 

most significant evidence for formation of a compound other than 2.1 was the 

observation of only 14 of the expected 16 carbons in the 13C spectra.  While 

numerous 1D and 2D NMR experiments were run, the lack of a consistent mass 
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spectrum hindered the complete structural characterization of the unknown product.  

The goal of this chapter was to reproduce the synthesis of the unknown QM-dC N3 

oxidation product and elucidate the structure.  A second goal was the synthesis of a 

novel quinone methide precursor that would have the same alkylation selectivity as 

1.40 but would be oxidized by BTI to produce an expected product.  Most of the 

following research has been published as McCrane et al.76  

Scheme 2.2. Oxidation of QM-dC N3 (1.42) and the expected product 2.1. 

 

 

2.2. Results and Discussion. 

2.2.1. Oxidation of QM-dC N3. 

 The first step in preparing enough of the oxidized QM-dC N3 adduct for 

structure elucidation involved repeating the previously used method.60 The QM 

precursor, o-(tert-butyldimethylsilyl)-2-(bromomethyl)phenol (BrQMP, 1.40), used 

with this method was synthesized according to a literature procedure, and the QM-dC 

N3 adduct was then generated in situ following literature procedure.55,58 After the 20 

minute alkylation, the QM-dC N3 adduct was oxidized in situ by a four-fold excess of 

BTI in CH3CN.  After work-up to remove iodobenzene and other oxidation by-
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products the reaction was fractionated by reverse phase HPLC.  The major product 

matched the retention time and λmax (219 nm, 271 nm, 335 nm) of the previously 

unidentified compound.  The compound was collected and lyophilized to dryness to 

yield a white solid that rapidly turned brown.  The isolated compound remained stable 

(90%) over 6 days in aqueous acetonitrile.  Initial characterization by 1H and 13C 

NMR matched the previously unidentified compound, proving that the formation of 

this oxidized product of QM-dC N3 is reproducible.   

 Multiple HPLC runs were needed to obtain the mg quantities of oxidized QM-

dC N3 adduct necessary for further analysis by NMR.  Signals (1H and 13C) based on 

literature values77 for both the pyrimidine and ribose groups were observed, and their 

assignments were confirmed by 1H-13C HSQC and 1H-13C HMBC analysis 

(Appendix A.5 – A.8).  The unsaturated nature of the o-QM remnant was apparent 

from the remaining 13C signals that all ranged between 116.6 ppm and 187.6 ppm 

(Figure 2.1).  The large 2-bond coupling (2JCH = 43 Hz) observed for the cross peak 

between C11 (124.4 ppm) and H12 (9.44 ppm) in the 1H-13C HMBC spectrum is 

unique to aldehydes (Figure 2.1).78 
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Figure 2.1. 1H-13C HMBC of 2.2 in DMSO-d6 at 600 MHz. 

 
Connectivities between C7 through C12 were established by a combination of 

1H-13C HSQC, 1H-13C HMBC, and 1H-15N HMBC analysis (Appendix A.7 – A.9).  

Specifically, it was determined that C7, C10, and C12 were bonded to hydrogen from 

the 1H-13C HSQC.  The quaternary carbons C8 and C11 were placed in between the 

carbons C7, C10, and C12 based on 1H-13C HMBC correlations and to account for the 

lack of 1H-1H coupling.  The attachment of C10 to C8 and not C7 was accomplished 

with data from 1H-13C HSQC and 1H-15N HMBC experiments, which show that N9 

has a correlation to H10 and N3 does not.  The remaining order of carbon atoms was 

determined with 1H-13C HSQC and 1H-13C HMBC experiments.  The only 

unaccounted linkage was the atom attached to C11.  A proton or carbon was ruled out 

due to each atom in the 1H and 13C spectra having been assigned.  It was unlikely that 

the unknown functional group was -OH (from H2O), -NH2 (from dC), or -I (from 

BTI) due to the chemical shift of C11 (124.4 ppm).  Computational estimates 

(ChemDraw Ultra 7.0) for the chemical shift of C11 attached to these functional 
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groups would be 163 ppm, 157 ppm, and 96 ppm respectively.  A bromine (from 

BrQMP) attached to C11 corresponds well to the experimentally determined chemical 

shift of C11 (computational = 126 ppm vs. experimental = 124.4 ppm).   

 Initial analysis of the product by electrospray ionization mass spectrometry 

(ESI+-MS) at the University of Maryland Department of Chemistry and Biochemistry 

Mass Spectrometry Facility was unable to produce a consistent mass.  Through 

collaboration with the FDA, mass spectrometry on the product was finally 

accomplished with the help of their much more sensitive equipment.  This added 

sensitivity allowed for the NMR sample (in DMSO-d6) to be diluted by 1000-fold in a 

solution of 25% CH3CN and 75% H2O with 0.1% acetic acid prior to infusion.  The 

resolution of the FDA equipment was also improved as the parent mass signal had a 

mass accuracy of 13 ppm compared to >20 ppm at the department facility.  Loss of 

the two carbons was confirmed by ESI+-MS, and the parent ion (m/z 384 .0141 

(M+H)+) revealed the presence of one bromine by its distinct isotope ratio (Appendix 

A.10).  MS/MS experiments generated the characteristic deglycosylation (m/z 

267.9716 (M – drb + H)+) and debromination (m/z 304.9544 (M – Br)+) products to 

support the structural assignment based on extensive NMR data (Appendix A.11 – 

A.12). 

 The entire conjugated system of the QM-dC N3 oxidized adduct is illustrated 

in a favorable thermodynamic configuration for simplicity and has not been 

confirmed experimentally (Figure 2.1).  While over-oxidation is proposed to be a 

driving force in the formation of the unexpected product, a mechanism by which this 

product forms and incorporates the bromine released from the QM precursor 1.40 is 
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still under consideration.  Therefore, its use for quantifying QM alkylation adds an 

unneeded complication.  Without knowing the mechanism for the oxidation of the 

QM phenol, it would be impossible to know which variables in the QM alkylation of 

DNA would affect the product formation.  For example, if the bromine in the product 

comes from a reincorporation of the bromine from the precursor then product 

formation is most likely concentration dependant on the precursor and may not be 

successful at the lower concentrations used with DNA.  

 

2.2.2. Synthesis of a Novel o-Quinone Methide Precursor to Block Over-

Oxidation. 

The possible over-oxidation and rearrangement that plagued the QM precursor 

1.40 was addressed through the application of a novel QM precursor that generated 

products containing an alkyl group para to the phenolic oxygen.72-74 An alkyl group 

at the para position should block deprotonation that leads to re-aromatization of the 

QM phenol (Scheme 1.15).  The oxidation would terminate at a para-quinol instead 

of allowing a second equivalent of BTI to associate with the re-aromatized QM 

phenol and eventually lead to the formation of a 1,4-benzoquinone. 

The simplest alkyl containing precursor 2-bromomethyl-4-methyl-O-(tert-

butyldimethylsilyl)phenol (2.6) was prepared from 5-methylsalicylaldehyde in three 

steps (Scheme 2.3).  5-Methylsalicylaldehyde (2.3) was protected with 

tertbutyldimethylsilyl (TBDMS) to form 2-(tert-butyldimethylsilyl)oxy-5-

methylbenzaldehyde (2.4).  The aldehyde was subsequently reduced to a primary 

alcohol with borane-THF to form 2-hydroxymethyl-4-methyl-O-(tert-
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butyldimethylsilyl)phenol (2.5).  Finally, the primary alcohol was used directly and 

substituted with bromine using PBr3 to form the desired QM precursor 2-

bromomethyl-4-methyl-O-(tert-butyldimethylsilyl)phenol (4-MeBrQMP, 2.6).79 

Bromination with PBr3 was superior to the previous method of CBr4/PPh3 

bromination by providing a simpler work-up and purification by forming fewer by-

products such as bromoform.  Furthermore, the new method resulted in a ten-fold 

faster reaction (1.5 hr vs. 19 hr).  

Scheme 2.3. Synthesis of 4-MeBrQMP (2.6). 

 

 Deprotection of 2.6 with fluoride results in the formation of 4-methyl-6-

methylene-cyclohexa-2,4-dienone (MeQM, 2.7).  The presence of the methyl 

substituent was not expected to alter the alkylation preference of the QM.  A related 

set of substituents had not significantly altered the alkylation profile of QMs towards 

dNs.60,80 The electron-donating properties of the methyl group stabilize the electron 

deficient MeQM intermediate resulting in faster generation and increased lability of 

the resulting adducts formed by MeQM vs. those of QM.60,80 By blocking re-

aromatization during the oxidation of phenol by BTI, the methyl-substituted model 

was expected to block the over-oxidation observed with the unsubstituted QM (1.49 

to 1.50, Scheme 1.15).72-74 However, the new MeQM posed a greater challenge for 

the oxidative trapping due to the increased reversibility of its dC adduct.   
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2.2.3.  Alkylation of dC with MeQM. 

Prior to the start of the oxidation studies, the alkylation profile of the novel 

precursor (2.6) was determined to confirm that it is the same as the unsubstituted QM 

(1.28) and can therefore be used as a model o-QM.  Alkylation of dC by MeQM 

results in the formation of a single adduct, MeQM-dC N3 (2.8).  The MeQM-dC N3 

adduct was prepared in situ by deprotection of 4-MeBrQMP (2.6) with aqueous KF in 

the presence of dC, under similar conditions as previously discussed for the formation 

of QM-dC (1.42) (Scheme 2.4).  The major product was purified by reverse phase 

HPLC and its structure confirmed to be 2.8 by 1H NMR, 13C NMR, and UV-Vis data 

(Appendix A.13 – A.14).  MeQM attachment at dC N3 was also confirmed by 

comparison with literature values of 1.42.55 Evidence that MeQM alkylates dC at the 

N3 position comes from the similar chemical shifts of the benzylic protons, that vary 

by less than 0.1 ppm, (4.96 ppm for 1.42,55 4.89 ppm for 2.8).  Similarly the λmax 

values vary by only 1 nm (278 nm for 1.42,55 279 nm for 2.8).  The absorbance data is 

also consistent with N3-ethyl dC (λmax = 280 nm) and not N4-ethyl dC (λmax = 270 

nm).81 
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Scheme 2.4. Formation of MeQM (2.7) and subsequent alkylation of dC (1.48) 
resulting in MeQM-dC N3 (2.8). 

 

2.2.4.  Initial Attempts at MeQM-dC N3 Oxidation. 
 

Preliminary attempts to isolate and characterize the MeQM-dC N3 oxidized 

adduct were unsuccessful.  The initial oxidation of MeQM-dC N3 used the same 

reaction conditions as the formation of QM-dC N3 oxidized adduct (2.2) (Scheme 

2.5).  However, HPLC analysis failed to reveal a major product, but mostly 

unresolved, low intensity peaks.  The next attempt utilized a longer oxidation (1 hr vs. 

20 min) to confirm that the failed HPLC analysis wasn’t the result of incomplete 

oxidation.  An alternative work-up replaced the NaHCO3 addition with an equal 

volume of H2O to limit the number of reactive species present.  The HPLC method 

was also changed from using H2O to 10 mM triethylammonium acetate (TEAA) 

buffer at pH 4 as the aqueous phase.  An acidic aqueous phase has been shown to be 

effective in the fractionation of other substituted QM-dN adducts.80 These conditions 

resulted in the detection of a new product by HPLC (tr = 46 min) with a unique UV-

Vis absorbance (λmax = 238 nm, 289 nm, 348 nm) (Appendix A.2).  Upon 

lyophilization to a white solid, analysis by ESI+-MS failed to detect the expected 
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mass (m/z 364.15 (M + H)+) or any relevant fragment.  These results suggest that the 

isolated compound decomposes or transforms to a different compound after HPLC 

purification. 

Scheme 2.5. Oxidation of MeQM-dC N3 (2.8) with BTI and the expected product 
2.9. 

 

 The eluting buffer was altered in both the pH and concentration of the TEAA 

buffer to determine if it contributed to the decomposition of the isolated compound.  

The pH of the collected solution was also adjusted to values between 5.9 and 9.1 prior 

to lyophilization.  Decomposition was observed by HPLC and 1H NMR in the form of 

multiple compounds being eluted and a very congested NMR spectra (Table 2.1).  

While decomposition became less significant as the pH was adjusted from acidic 

towards neutral, it was never halted.  Analysis by 1H and 13C NMR revealed the 

consistent presence of TEAA, which may contribute to the decomposition of the 

isolated compound as both are concentrated as the solvent is removed during 

lyophilization. 
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Table 2.1. The effect of pH on the stability of the major product of MeQM-dC N3 
oxidation during purification. 

Step When pH is 
Altered How pH is Altered Post-Alteration 

pH 
Method to 

Remove Solvent Result1 

During HPLC 
Purification 10 mM TEAA, pH 4 4.0 

None (reinjected 
into HPLC after 

1.5 hr) 

No 
Decomposition 

During HPLC 
Purification 10 mM TEAA, pH 4 4.0 lyophilization Decomposition 

Prior to HPLC 
Purification 100 mM TEAA, pH 4 4.0 lyophilization Decomposition 

After HPLC 
Purification HPLC grade TEA 5.9 - 9.1 lyophilization Decomposition2 

During HPLC 
Purification 5 mM TEAA, pH 5 5.6 lyophilization Decomposition 

During and After 
HPLC Purification 

5 mM TEAA, pH 5 
then HPLC Grade 

TEA 
6.2 lyophilization Decomposition 

After HPLC 
Purification HPLC grade TEA 6.0 Multiple rounds 

of lyophilization Decomposition2 

1Decomposition checked by HPLC.  2Decomposition also analyzed by 1H and 13C 
NMR. 
 

 A small (360 mg silica) reverse phase column potentially allows for the HPLC 

solvent to be exchanged for a less reactive, TEAA-free solvent.  The column used 

was a Waters Sep-Pak® Plus C18 cartridge.  The Sep-Pak could be used to exchange 

the TEAA buffer for a less reactive, non-nucleophilic solvent by loading the isolated 

compound onto the column and eluting with the solvent of choice.  Four different 

procedures were attempted (Table 2.2).  MeQM (2.7) was reacted with dC and then 

subsequently oxidized with BTI to form the desired compound.  The crude reaction 

was then purified by reverse phase HPLC allowing for collection of the desired 

compound in 20 mL of a solution of 85% 10 mM TEAA (pH 4) and 15% CH3CN.  A 

65:35 mixture of 1 mM phosphate buffer (pH 7) to CH3CN as the eluting solvent of 
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the Sep-Pak showed the least decomposition when analyzed by HPLC.  To acquire 

enough compound for NMR analysis, this procedure was repeated four times and the 

isolated solid was combined in DMSO-d6.  Unfortunately, greater decomposition (in 

the form of a complex spectra) was observed by 1H NMR than the preliminary results 

suggested (Appendix A.4).  The Sep-Pak studies were thus abandoned for a new 

approach to successfully isolate the MeQM-dC N3 oxidation product. 

Table 2.2. Parameters for the Sep-Pak assisted solvent exchange of the major product 
of MeQM-dC N3 oxidation.   

Sample                
pre-treatment 

Column               
pre-treatment Column Wash Eluting 

Solvent 

Eluting 
Solvent 

Removal 
Result1 

Lyophilization         
(1 hr) 

nanopure H2O           
(5 mL) 

Nanopure H2O      
(3 × 1 mL) 

CH3CN 
(2 × 5 mL) 

Streaming N2 
(5.5 hr) Decomp. 

Dilution with    
10 mL H2O 

nanopure H2O         
(5 mL) 

Nanopure H2O       
(3 × 1 mL) 

CH3CN 
(2 × 5 mL) 

Streaming N2 
(5.5 hr) Decomp. 

Dilution with       
5 mL H2O 

0.1 % TEA in H2O 
(3 mL) 

0.1 % TEA in 
H2O (3 × 2 mL) 

CH3CN 
(3 mL) 

Streaming N2 
(overnight) Decomp. 

Dilution with       
5 mL H2O 

nanopure H2O          
(5 mL) 

Nanopure H2O        
(3 × 2 mL) 

65:35, 1 mM 
phosphate 

buffer pH 7: 
CH3CN 

(2 × 5 mL) 

Lyophilization 
(16 hr) 

Less 
Decomp.2 

1Decomposition checked by HPLC.  2Decomposition also analyzed by 1H NMR.  
Less decomposition refers to fewer non-product peaks observed by HPLC. 
 
 

As it became obvious that the major product of MeQM-dC N3 oxidation was 

too unstable to be isolated, a new direction was needed to characterize the MeQM 

alkylation and subsequent oxidative trapping of the cytosine base.  A simple approach 

would be to remove the ribose ring of deoxycytidine and replace it with a methyl 

group to form 1-methylcytosine (1-MeC, 2.12a) (Scheme 2.6).  This substitution 

would simplify the aliphatic region of the 1H NMR spectra and should increase the 

solubility of the subsequent MeQM adduct in organic solvents.  The increase in 

solubility would eliminate the need for aqueous purification of the oxidation reaction, 
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and possibly make purification and isolation of the MeQM-dC N3 oxidized adduct 

simpler by avoiding reverse phase HPLC. 

Scheme 2.6. Synthesis of 1-methylcytosine (2.12a) and 1-propylcytosine (2.12b).  
Adapted from Hosmane et al.82 and Helfer et al.83 Yields are for 1-methylcytosine.  

 

 

The synthesis of 1-MeC and 1-propylcytosine (1-PrC) were undertaken 

simultaneously, following literature procedures (Scheme 2.6).82,83 The synthesis of 1-

PrC was attempted to further increase the solubility of the MeQM adduct in organic 

solvents.  As the synthesis of 1-MeC was completed first, it became the focus of the 

dC substitution studies.   

Once the synthesis of 1-MeC was completed, alkylation with MeQM was 

confirmed (Scheme 2.7).  Phosphate buffer (pH 7), 4-MeBrQMP, 1-MeC, and KF 

were combined, at the same ratios as for the formation of MeQM-dC N3, and held at 

37 °C for 30 minutes.  The reaction mixture was filtered (0.2 µm) and fractionated 

using reverse phase HPLC with a semi-prep column (5 mL/min).  The major product 

(tr = 35 min) exhibited a λmax at 223 nm and 279 nm, equivalent to the MeQM-dC N3 

adduct.  This is consistent with formation of the MeQM-MeC N3 adduct as the 

chromophore is the same in both adducts.  The formation of MeQM-MeC N3 was 
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further confirmed by ESI+-MS (observed m/z 246.10 (M + H)+ vs. calculated m/z 

246.12 (M + H)+).  The only other significant product formed was identified (by tr 

and UV-Vis) as the MeQM-H2O adduct. 

Scheme 2.7. Formation of MeQM (2.7) and subsequent alkylation of 1-MeC (2.12a) 
resulting in MeQM-MeC N3 (2.13). 

 

Prior to attempting the oxidative trapping, the ability to extract MeQM-MeC 

N3 from the eluting solvent (85% 10 mM TEAA pH 4, 15% CH3CN) into an organic 

solvent was studied.  In small-scale (1 mL) experiments monitored with UV-Vis, 

extraction with Et2O was completely unsuccessful, while CH2Cl2 proved successful.  

MeQM-MeC N3 was again formed and purified by HPLC.  The collected sample was 

extracted with CH2Cl2 (3 × 20 mL), dried over MgSO4, and the solvent removed 

under reduced pressure.  The resulting material was dissolved in 200 µL CH3CN: 

H2O (1:1) prior to analysis by HPLC.  MeQM-MeC N3 was observed as the major 

peak (by tr and UV-Vis) and proved to be stable enough to undergo the extraction 

procedure, adding to the confidence that the oxidized adduct will also survive the 

extraction procedure. 

After the successful alkylation of 1-MeC by MeQM, the next step was to trap 

the MeQM-MeC N3 adduct by oxidation with BTI (Scheme 2.8).  Preliminary 
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experiments used the same procedure as that used for MeQM-dC N3 oxidized adduct.  

The starting adduct (MeQM-MeC N3) was fully consumed, but no major product was 

observed by HPLC, or any product matching the UV-Vis absorbance signature as the 

previously discussed unstable oxidation product of MeQM-dC N3.  

Scheme 2.8. Oxidation of MeQM-MeC N3 (2.13) with BTI and the expected product 
2.14. 

 

To test if the oxidized adduct was formed, but not observed due to inherent 

stability issues or compatibility issues with the HPLC eluting buffer or the silica 

itself, the above oxidation was repeated and analyzed by ESI+-MS prior to the work-

up.  The mass corresponding to the proposed MeQM-MeC N3 oxidized adduct (2.14) 

was detected (m/z 262.09 (M + H+)) in the crude reaction along with 1-MeC (m/z 

126.04 (M + H)+).  The remainder of the crude reaction was analyzed by HPLC, but 

no major product was observed with a UV-Vis absorbance at 348 nm corresponding 

to both the MeQM-MeC N3 oxidized adduct and the previously discussed MeQM-dC 

N3 oxidized adduct. 

The MeQM-MeC N3 adduct was purified by HPLC and extracted with 

CH2Cl2 in an effort to separate the alkylation and oxidation reactions.  This 

successfully removed the excess 1-MeC and KF, along with the by-products 

TBDMS-F and Br-, and eliminated these species as potential reactants within the 

oxidation reaction.  The MeQM-H2O was still detected based on its tr and UV-Vis 
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absorbance.  The presence of MeQM-H2O was due to the release of MeQM from the 

MeQM-MeC N3 adduct and not from the initial formation of MeQM-H2O.  Once the 

CH2Cl2 was removed, MeQM-MeC N3 was redissolved with a mixture of solvents 

ideal for BTI oxidation (300 µL CH3CN, 100 µL H2O).  An equal volume of BTI 

(200 mM in CH3CN) was added to the solution and kept at room temperature for 1 

hour.  The solution was filtered (0.2 µm) prior to HPLC analysis.  Once again, the 

starting material was completely consumed, but there was no compound matching the 

UV-Vis absorbance signature (λmax = 238 nm, 289 nm, 348 nm) of the previously 

discussed MeQM-dC N3 oxidized adduct.  Substituting phosphate buffer (pH 7) for 

the water in the oxidation did not change the HPLC profile of the reaction. 

While these results were discouraging, the procedures still relied on HPLC as 

the final purification step of the oxidized adduct.  If the MeQM-MeC N3 oxidized 

adduct did decompose on reverse phase silica, HPLC would need to be avoided as 

any purification after the introduction of BTI to the reaction.  Extraction of the 

MeQM-MeC N3 oxidized adduct with CH2Cl2 would leverage the increased 

solubility of the 1-MeC in organic solvents.  The MeQM-MeC N3 oxidized adduct 

was formed as described above, but after a 1 hr oxidation using the same conditions 

the reaction was washed with saturated diethyl ether.  This wash should remove 

oxidation by-products such as iodobenzene while hopefully leaving the MeQM-MeC 

N3 oxidized adduct in the aqueous phase, as MeQM-MeC N3 was previously shown 

to prefer aqueous conditions to diethyl ether.  The aqueous layer was extracted with 

CH2Cl2 (3 × 1 mL), dried over MgSO4, and the solvent removed under reduced 

pressure.  The expected mass (m/z 262.09 (M + H+)) was detected by ESI+-MS but 1H 
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NMR revealed a complex spectra that was either the result of a mixture of compounds 

or product decomposition.  Incidentally, a new mass (m/z 244.15 (M + H+)) was 

observed here, but not in the crude reaction.  At the time it was not identified, but 

later was proposed to be a spiro product analogous to the eventual MeQM-dC N3 

oxidized adduct (2.15).  While the MeQM-MeC N3 oxidized adduct seemed unstable 

to the HPLC conditions, it would not be pure enough to be characterized by NMR 

without a final purification procedure.  Additionaly, the lengthy oxidation (1 hr) may 

also have aided in driving the reaction from a stable MeQM adduct towards an 

unstable oxidized MeQM adduct. 

 

2.2.5.  Oxidation of MeQM-dC N3. 

 With the 1-MeC studies at an apparent standstill, focus shifted back to the dC 

studies.  As described above, purification conditions of the MeQM-dC N3 oxidation 

were thought to be possibly to blame for the failure to isolate the major product.  

Therefore, with the focus shifted back to oxidation of MeQM-dC N3, the HPLC 

elution buffer was changed to find a new buffer that the MeQM-dC N3 oxidized 

adduct was stable in.  Triethylamine based buffers were avoided due to their 

persistence during lyophilization and the possibility that triethylamine acetate may be 

involved in the decomposition of the MeQM-dC N3 oxidized adduct.  Ammonium 

formate, at pH 6.9, is a common volatile buffer for fractionating nucleoside adducts 

and is less nucleophilic than triethylamine acetate.  It was chosen as the first elution 

buffer to be tested, at 10 mM to match the previous concentration of TEAA.  

Concurrently, the oxidation reaction time was optimized in a model oxidation of 
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phenol in the presence of dC.  The model oxidation consisted of dC (25 mM), phenol 

(25 mM), and lastly BTI (100 mM) combined in a solution of 5:3 CH3CN:H2O.  

Upon addition of BTI, the clear solution instantly turned purple-brown and gradually 

changed to yellow-brown over 5 minutes.  After a 30 minute incubation at room 

temperature, the reaction was analyzed, without work-up, by HPLC using CH3CN as 

the organic phase and 10 mM ammonium formate pH 6.9 as the aqueous phase with a 

semi-prep column (5 mL/min).  The dC was unaffected by the oxidation while the 

phenol was completely consumed and the BTI oxidation by-product iodobenzene was 

present.  The oxidation of phenol in the presence of dC was repeated with the reaction 

time decreased from 30 minutes to 1 minute.  Even with an oxidation of 1 minute, the 

phenol was completely consumed. 

 The new reaction and purification conditions, consisting of ammonium 

formate (10 mM, pH 6.9) as the eluting buffer and a reduced BTI oxidation time of 20 

minutes from 1 hour, were successfully applied to the isolation of the MeQM-dC N3 

oxidized adduct.  Fractionation by reverse phase HPLC revealed the previously 

observed unstable compound at tr = 38 minutes (λmax = 239, 284, 348 nm) along with 

an increased yield for the compound (2.15) at tr = 27 minutes (λmax = 235, 283, 340 

nm).  Preliminary analysis with 1H NMR revealed that the compound eluting at 27 

minutes is stable upon isolation and is likely the elusive oxidized MeQM-dC N3 

adduct (Scheme 2.9).  Furthermore, the isolated compound is stable (>85%, 24 hrs) in 

an aqueous solution (9 mM ammonium formate pH 6.8, 12% CH3CN) at 

physiological pH as detected by HPLC. 



 

 40 
 

Scheme 2.9. Oxidative trapping of MeQM-dC N3 (2.8) with BTI.  Oxidation product 
2.15 was isolated and characterized while 2.9 was not observed. 

 

 Preliminary characterization by 1H NMR confirmed that over-oxidation, as 

seen in 2.2, was effectively blocked by the para methyl group.  Initial evidence 

consisted of coupling between adjacent vinyl protons of 2.15 and no observable 1H 

signals downfield of 8 ppm (Figure 2.2).  ESI+-MS further confirmed that oxidation 

of MeQM-dC N3 did not result in the loss of two carbon atoms or the incorporation 

of a bromine atom.  ESI+-MS also gave the first indication, from a (M + H)+ of m/z 

346.18, that the oxidized product 2.15 (calculated m/z 346.14 (M + H)+) had formed 

instead of the anticipated product 2.9 (calculated m/z 364.15 (M + H)+) (Scheme 2.9). 
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Figure 2.2. 1H NMR of 2.15 in DMSO-d6 at 400 MHz.  All signals observed 
downfield of 5 ppm are shown. 

 Signals (1H and 13C) for both the pyrimidine and ribose groups were once 

again observed based on literature values,77 and their assignments were confirmed by 

1H-13C HSQC and 1H-13C HMBC analysis (Appendix A.18 and A.19).  Data from 

these 2D spectra were also used to establish the connectivities of the oxidized 

MeQM-dC N3 adduct (2.15).  A key atom in the structure elucidation of the oxidized 

MeQM-dC N3 adduct is carbon 8 (C8).  C8 was identified by its correlations to the 

protons attached to C7.  The 13C chemical shift of C8 (73.1 ppm) was most consistent 

with the sp3 hybridization of the proposed spiro carbon of compound 2.15 (Scheme 

2.9).  The observed chemical shift is quite different from that predicted for the 

corresponding sp2 carbon (C8) in 2.9 (ca. 133 ppm).68 The comparison was with the 

compound 4-hydroxy-2,4-dimethyl-2,5-cyclohexadien-1-one (2.16).  This compound 

was chosen as a para-quinol model compound, as this was the expected 

transformation upon oxidation by BTI (Scheme 2.10).68  
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Scheme 2.10. Two possible products from the BTI oxidation of MeQM-dC N3 (2.9 
and 2.15).  A model compound used for comparison with the para-quinol moiety is 
also shown (2.16).68 

 

 Another key correlation was observed between the para-methyl protons (H14) 

and the adjacent vinyl proton (H13) by 1H-1H COSY NMR (Appendix A.17), as 

expected for 2.15 due to the conjugation between these protons.  This correlation 

would not be present for 2.9 or observed in 2.16 due to the lack of this conjugation.68 

The final key correlations center on C7 and the two attached protons (H7A and H7B).  

Restricted rotation of C7 is apparent from the diastereotopic relationship of the 

attached protons and their proximity to the carbonyl oxygen of C9 that alternatively 

extends in front or behind C8 (Figure 2.3).  A pair of doublets in the 1H NMR is 

created from this configuration.  The spectrum is further complicated by the 

diastereomeric mixture of 2.15 (2.15a and 2.15b) formed by the oxidation of MeQM-

dC N3 by BTI (Figure 2.3). 
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Figure 2.3. 1H-13C HMBC of 2.15 in DMSO-d6 at 400 MHz. 

 The oxidized MeQM-dC N3 adduct 2.15 is proposed to be formed through an 

intramolecular attack of the exo-imine to a position ortho to the phenolic oxygen in 

competition with an intermolecular attack of water to a position para to the phenolic 

oxygen.  While many literature examples show only intermolecular attack of water,72-

74,84 examples show when a nitrogen or oxygen nucleophile is present at an ideal 

position which would form a 5 or 6 member ring it will outcompete water due, in 

part, to the proximity effect.71,85-87 
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2.3.  Summary. 

Oxidative de-aromatization by BTI of the labile adduct formed between 

MeQM and dC results in the formation of a stable and identifiable compound.  The 

oxidative trapping by BTI meets the criteria outlined for application to MeQM-DNA 

adducts.  Specifically, BTI reacts quickly, quantitatively, and selectively with the QM 

phenol under physiological conditions.  The oxidative trap based on BTI will, for the 

first time, allow for the determination of the intrinsic selectivity and efficiency of o-

QM alkylation of DNA. 

Initial studies with QM-dC N3 highlight the necessity of an alkyl substituent 

para to the phenolic oxygen to block over-oxidation and subsequent rearrangement 

and reincorporation of bromine to the final product.  The novel precursor 4-

MeBrQMP (2.6) will therefore be applied to oxidative trapping studies with dG and 

dA.  The oxidized products of MeQM-dG and MeQM-dA will be characterized in a 

similar manner as the MeQM-dC N3 oxidized adduct.  This will allow for their use as 

analytical standards in the HPLC analysis of MeQM alkylation of DNA.    

 

2.4.  Materials and Methods. 

Starting materials, reagents, and solvents were obtained commercially and 

used without further purification.  [Bis(trifluoroacetoxy)iodo]benzene (BTI) was 

purchased from Acros and CH3CN (HPLC grade) was purchased from Fisher 

Scientific.  Water was purified to a resistivity of 18.2 MΩ-cm.  The silyl-protected 

quinone methide precursor 1.40 was prepared as described previously.55,58 NMR 
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experiments were performed on Bruker 400, 500, and 600 MHz spectrometers using 

deuterated solvents.  The residual non-deuterated solvent peaks were used as internal 

standards.  Chemical shifts (δ) and coupling constants (J) are reported in parts per 

million (ppm) and Hertz (Hz), respectively.  HPLC analysis employed a reverse-

phase, Alltech C18 Econosphere semi-preparative column (10 mm × 250 mm) for 

isolation of the nucleoside products and Varian C18 Microsorb column (4.6 mm × 

250 mm) for analytical studies.  Mass spectrometry analysis was performed at UMD 

on a JEOL AccuToF-CS ESI-MS in ESI+ ionization mode.  Mass spectrometry 

analysis was also performed at FDA on a Waters Corporation Q-TOF Premier 

(Quadrupole-TOF-MS) in ESI+ ionization mode and a Thermo-Electron Corporation 

“Exactive” FT-ICR-MS in ESI+ ionization mode. 

 

Formation and oxidation of the dC N3 adduct (1.42) generated by the ortho 

quinone methide (1.28).  Alkylation was initiated by addition of aqueous KF (32 µL, 

3.13 M) to a mixture of dC in DMF (70 µL, 143 mM), the QM precursor 1.40 in 

DMF (70 µL, 143 mM), and potassium phosphate (28 µL, 50 mM, pH 7). The 

reaction was stirred at 37 °C for 20 minutes to form the dC N3 adduct (1.42) in situ 

before subsequent oxidation by addition of an equal volume of BTI in CH3CN (0.10 

M, 4 equivalents compared to 1.40).  The resulting mixture was stirred at room 

temperature for 20 min and then raised from pH 5 to pH 7 by addition of saturated 

NaHCO3 and washed with diethyl ether to remove iodobenzene.  The aqueous phase 

was filtered through a 0.2 µm syringe filter and fractionated by preparative reverse-

phase C18 chromatography (3%-10% aqueous CH3CN over 10 min and 10%-25% 
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aqueous CH3CN over a subsequent 30 minutes, 5 mL/min).  The oxidized dC adduct 

2.2 was collected (tr = 30 minutes) and lyophilized to yield a brown solid.  A reliable 

yield could not be measured due to the small amounts of product isolated from each 

HPLC separation.  1H NMR (600 MHz, DMSO-d6): δ 2.23 (m, 2H), 3.62 (m, 2H), 

3.87 (m, 1H), 4.30 (m, 1H), 5.15 (br, 1H), 5.34 (br, 1H), 6.39 (t, J=6.6 Hz, 1H), 6.78 

(d, J=8.0 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 8.39 (s, 1H), 8.63 (s, 1H), 9.44 (s, 1H).  

13C NMR (600 MHz, DMSO-d6): δ 40.2, 61.1, 70.2, 85.6, 87.9, 98.1, 116.6, 124.4, 

129.9, 138.7, 143.2, 145.4, 145.2, 187.6.  15N NMR (600 MHz, DMSO-d6): δ 149.1, 

193.9, 253.9.  ESI+-MS: m/z 384.0141 (M + H+).  Calcd for C14H15BrN3O5 (M + H+): 

384.0195.  λmax = 219, 271, 335 nm (diode array detector, 20% aq. CH3CN). 

 

2-(tert-Butyldimethylsilyl)oxy-5-methylbenzaldehyde (2.4). 5-

Methylsalicylaldehyde (1.93 g, 14.2 mmol) was dissolved in 50 mL anhydrous DMF.  

tert-Butyldimethylsilyl chloride (TBDMS-Cl, 6.63 g, 44.0 mmol) and imidazole (6.63 

g, 97.4 mmol) were added sequentially to the reaction solution while stirring under N2 

at room temperature.  Stirring was continued at room temperature for 26 hours and 

then the reaction was quenched by addition of water (150 mL).  The mixture was 

extracted with CH2Cl2 (4 × 150 mL).  The organic fractions were combined, washed 

with brine (6 × 100 mL), dried over MgSO4 and evaporated under reduced pressure to 

a yellow oil.  Purification of the desired material by silica gel column 

chromatography (hexanes/diethyl ether, 80:20) yielded a very pale yellow oil (2.88 g, 

81 % yield).  1H NMR (500 MHz, d4-methanol) δ 10.36 (s, 1H), 7.53 (d, J=2.0 Hz, 

1H), 7.34 (dd, J=8.3, 2.0 Hz, 1H), 6.87 (d, J=8.3 Hz, 1H), 2.28 (s, 3H), 1.02 (s, 9H), 
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0.26 (s, 6H).  13C NMR (500 MHz, d4-methanol) δ 191.3, 158.3, 138.1, 132.5, 129.2, 

128.2, 121.7, 26.4, 20.6, 19.4, -4.1.  ESI+-MS: m/z 251.19 (M + H)+.  Calcd for 

C14H23O2Si (M + H)+: 251.15. 

 

2-Hydroxylmethyl-4-methyl-O-(tert-butyldimethylsilyl)phenol (2.5).  Borane/THF 

(1 M, 15 mmol) was slowly added over 5 min to a solution of 2-(tert-

butyldimethylsilyl)oxy-5-methylbenzaldehyde (2.47 g, 9.86 mmol) in 50 mL 

anhydrous THF while stirring under N2 at 0 °C.  The reaction was stirred for an 

additional 2.5 hr at 0 °C under N2 and then quenched slowly by addition of 150 mL 

water.  The resulting mixture was extracted with CH2Cl2 (4 × 150 mL).  The organic 

fractions were combined, washed with water (4 × 100 mL), brine (6 × 100 mL), dried 

over MgSO4 and evaporated under reduced pressure to a very pale yellow oil.  The 

crude product was used directly without purification for the next synthetic procedure.  

 

2-Bromomethyl-4-methyl-O-(tert-butyldimethylsilyl)phenol (2.6).79 A solution of 

PBr3 (0.99 mL, 10 mmol) in anhydrous CH2Cl2 (20 ml) was added dropwise under N2 

at 0 °C to the crude product generated above (2.50 g, ≤ 9.90 mmol) in 10 mL 

anhydrous CH2Cl2.  The reaction was stirred for 1.5 hr at 0 °C under N2 and then 

concentrated under reduced pressure to an orange oil.  The oil was dissolved with 60 

mL ethyl acetate and washed with 50 mL H2O.  The aqueous fraction was extracted 

with an additional 60 mL ethyl acetate, and all the organic fractions were combined, 

washed with H2O (2 × 50 mL), dried with MgSO4 and evaporated under reduced 

pressure to a pale yellow oil.  The yellow oil was purified by silica gel radial 
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chromatography (chromatotron) using hexanes/ethyl acetate (19:1) to yield a clear oil 

(1.74 g, 56 % yield).  1H NMR (400 MHz, d3-acetonitrile) δ 7.16 (d, J=2.1 Hz, 1H), 

7.02 (dd, J=8.2, 2.1 Hz, 1H), 6.78 (d, J=8.2 Hz, 1H), 4.54 (s, 2H), 2.24 (s, 3H), 1.05 

(s, 9H), 0.27 (s, 6H).  13C NMR (500 MHz, d3-acetonitrile) δ 152.6, 132.6, 131.7, 

131.6, 129.2, 119.6, 30.8, 26.3, 20.6, 19.0, -3.9.  ESI+-MS: m/z 235.17 (M - Br)+.  

Calcd for C14H23OSi (M - Br)+: 235.15. 

 

Formation of the dC N3 adduct (2.8) generated by the precursor 2.6 and its 

MeQM intermediate (2.7). Alkylation was initiated by addition of aqueous KF (20 

µL, 2.50 M) to a mixture the MeQM precursor 2.6 in CH3CN (25 µL, 200 mM), dC in 

DMF (45 µL, 112 mM), and potassium phosphate (10 µL, 50.0 mM, pH 7).  The 

reaction was stirred at 37 °C for 20 min and then cooled, filtered and fractionated by 

preparative reverse-phase HPLC using a 3 - 25% gradient of CH3CN in ammonium 

formate pH 6.8 over 76 min (5 mL/min).  The MeQM-dC N3 adduct 2.8 was 

collected (tr = 60 minutes) and lyophilized to yield a white solid.  A reliable yield 

could not be measured due to the small amounts of product isolated from each HPLC 

separation.  1H NMR (500 MHz, DMSO-d6):  δ 2.07 (m, 2H), 2.16 (s, 3H), 3.53 (m, 

2H), 3.76 (m, 1H), 4.22 (m, 1H), 4.89 (d, J=4.7 Hz, 2H), 5.90 (d, J=8.0 Hz, 1H), 6.21 

(t, J=6.9 Hz, 1H), 6.62 (d, J=8.2 Hz, 1H), 6.93 (dd, J=8.2, 2.0 Hz, 1H), 7.22 (d, J=2.0 

Hz, 1H), 7.45 (d, J=8.0 Hz, 1H).  13C NMR (500 MHz, DMSO-d6):  δ 20.2, 39.3, 

41.4, 61.3, 70.4, 84.8, 87.3, 100.0, 117.5, 123.1, 127.1, 130.1, 132.2, 133.5, 150.2, 

154.6, 158.3.  ESI+-MS: m/z 348.25 (M + H+), 232.17 (M - drb + H+).  Calcd for 

C17H21N3O5 (M + H+): 348.16.  Calcd for C12H13N3O2 (M - drb + H+): 232.11.  λmax = 
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219, 279 nm (diode array detector, 20% CH3CN in ammonium formate, 8 mM, pH 

6.8). 

 

Oxidation of the dC N3 adduct 2.8 to form 2.15.  The dC adduct 2.8 was generated 

in situ as described above at 37 °C for 20 minutes and then treated with an equal 

volume of BTI in CH3CN (0.10 M) for 20 min at room temperature.  The mixture was 

then diluted with water (25% v/v) and washed with diethyl ether.  The aqueous phase 

was filtered through a 0.2 µm syringe filter and fractionated by preparative reverse-

phase C18 HPLC using a 3 - 25% gradient of CH3CN in ammonium formate pH 6.8 

over 76 min (5 mL/min).  The product 2.15 was collected (tr = 26 min) and 

lyophilized to yield a yellow solid. A reliable yield could not be measured due to the 

small amounts of product isolated from each HPLC separation.  1H NMR (400 MHz, 

DMSO-d6): δ 1.90 (d, J=1.2 Hz, 3H), 2.04 (m, 2H), 3.53 (m, 2H), 3.70 (d, J=11.2 Hz, 

1H), 3.75 (m, 1H), 3.92 (d, J=11.2 Hz, 1H), 4.22 (m, 1H), 4.99 (br, 1H), 5.24 (br, 

1H), 5.78 (d, J=8.2 Hz, 1H), 5.97 (d, J=9.9 Hz, 1H), 6.06 (bd, J=6.4 Hz, 1H), 6.16 (t, 

J=7.0 Hz, 1H), 7.03 (dd, J=9.9, 2.2 Hz, 1H), 7.50 (d, J=8.2 Hz, 1H). 13C NMR (500 

MHz, DMSO-d6): δ 20.3, 39.5, 51.5, 61.4, 70.5, 73.1, 83.8, 87.1, 96.0, 123.5, 128.8, 

136.6, 137.0, 146.3, 147.5, 154.9, 199.7.  ESI+-MS: m/z 346.18 (M + H+).  Calcd for 

C17H20N3O5 (M + H+): 346.14.  λmax = 235, 283, 340 nm (diode array detector, 12% 

CH3CN in ammonium formate, 9 mM, pH 6.8). 
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Chapter 3: Formation and Oxidation of MeQM-dG Adducts 

 

3.1.  Introduction. 

Oxidative de-aromatization of the phenolic product formed between MeQM 

and dC has been proven to quench the reversible alkylation and allow the MeQM-dC 

N3 adduct to survive at least 24 hours for enzymatic digestion and HPLC analysis.76 

The usage of BTI allows the oxidative trapping to occur quickly, quantitatively, and 

selectively with the QM phenol under physiological conditions.  These properties are 

necessary considering the ultimate goal of analyzing the alkylation profile of MeQM 

and DNA over short times by quickly trapping the reaction prior to enzymatic 

digestion. 

To properly quantify the HPLC data for the alkylation of DNA by MeQM, 

each of the potential oxidized MeQM-dN adducts must be synthesized and 

characterized for use as analytical standards.  The aforementioned MeQM-dC N3 

oxidation product was synthesized and fully characterized by 1D and 2D NMR, ESI+-

MS, and UV-vis.76 The next nucleoside to be studied was 2′-deoxyguanosine (dG) as 

it contains the most nucleophilic position (dG N7) and produces the largest number of 

adducts at three.   

MeQM is expected to react with dG at the same positions as previously 

observed with the simple o-QM (Scheme 3.1).  Of the three initial alkylation products 

formed between MeQM and dG, the product at dG N7 is the most important as it is 

proposed to be the most physiologically relevant.  The N7 position of dG is the most 
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nucleophilic site of the DNA bases, and as such, is the most reactive site towards 

many electrophiles, the strongly electrophilic o-QMs included.14,58  

Scheme 3.1. Structures of products formed from the alkylation of dG (3.1) by MeQM 
(2.7). 

 

 Along with being the nucleophilic position in DNA, dG N7 is also the most 

accessible of the strong nucleophiles in DNA.  Unlike dC N3 and dA N1, which 

participate in hydrogen bonding in dsDNA, dG N7 is available in the major groove. 

(Figure 3.1).  This availability allows unobstructed access to dG N7 for electrophiles, 

while reaction with dC N3 or dA N1 necessitates the breaking of a hydrogen bond.   
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Figure 3.1. Watson-Crick base pairing in DNA with the major and minor grooves 
labeled.  The top pair is T-A and the bottom pair is C-G. 

The alkylation of dG by MeQM was expected to be a greater challenge to the 

oxidative trapping than dC, partly due to the lower solubility of dG in aqueous 

conditions when compared to dC.  Adding to the challenge of dG is that previous 

work determined that the alkylation of dG by a simple o-QM results in the formation 

of four unique adducts (dG N1, dG N2, dG N7, and guanine N7) instead of the single 

adduct formed by dC (dC N3) (Scheme 1.12).56 The formation of multiple adducts 

could complicate the HPLC isolation of individual products due to difficulties in their 

resolution. Further complicating the reaction of o-QM with dG is that there are two 
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competing processes in the reaction of the dG N7 adduct, reversibility to free o-QM 

and deglycosylation to form the guanine N7 adduct.  These processes limit the yield 

of QM-dG N7 and make it difficult to observe the adduct after DNA alkylation.  

Despite these challenges, each of the oxidation products of MeQM-dG must be 

isolated and fully characterized for use as an analytical standard in the quantification 

of MeQM alkylation of DNA. 

 

3.2.  Results and Discussion. 

3.2.1. Alkylation of dG with MeQM. 

The oxidized MeQM-dC N3 adduct was formed in a one-pot reaction in which 

the MeQM-dC N3 adduct was formed in situ and subsequently treated with four 

equivalents of BTI prior to work-up and HPLC purification.76 These reaction 

conditions were applied to the alkylation of dG by MeQM to rapidly isolate the four 

oxidized MeQM-dG products.  4-MeBrQMP (50.0 mM), dG (22.5 mM), potassium 

phosphate (5 mM, pH 7), and KF (500 mM) were combined in a solution of CH3CN 

(25%), DMF (45%), and H2O (30%).  The reaction was held at 37 °C for 20 minutes 

prior to addition of a four-fold excess of BTI.  This was then removed from heat for 

another 10 minutes followed by a work-up consisting of a saturated diethyl ether 

wash and HPLC analysis.  Unfortunately, the resulting HPLC chromatogram 

contained a number of low intensity peaks and there was no major product identified 

(Figure 3.2).  The reason for this failure is not known, but it may be due to any 

number of reactions between any of the chemical species in solution, leading to 

decomposition.  To avoid this, each adduct was isolated prior to their oxidation.  
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Figure 3.2. HPLC analysis of a “one-pot” MeQM-dG oxidation.  The MeQM-dG 
adducts were generated in situ prior to oxidation by BTI.  The reaction was analyzed 
with Gradient 1 using the analytical column (1 mL/min). 

  The alkylation of dG with MeQM consisted of combining 4-MeBrQMP (2.6) 

(10 mM), dG (10 mM), and KF (500 mM) in 2:1 DMF:H2O.  This mixture was held 

at 37 °C for 1 hour prior to filtration (0.2 µm) and analysis by HPLC using a semi-

prep column (Figure 3.3).  There were five products observed by HPLC and the 

product at tr = 46 minutes was the major product.  1H NMR confirmed that the 

compound was a MeQM-dG adduct by the presence of protons correlated to dG and 

MeQM.  The compound was later identified as MeQM-dG N1 (3.2).   
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Figure 3.3. HPLC analysis of the alkylation of dG with MeQM.  The reaction 
combined 10 mM each dG and 4-MeBrQMP in a 2:1 solution of DMF:H2O for 1 hour 
at 37 °C.  HPLC analysis used Gradient 1 with the semi-prep column (5 mL/min).  
Peak identification was confirmed with additional data from future experiments. 

Since the reactivity of MeQM was expected to be similar to the previously 

studied o-QM,58 it was expected that the MeQM-dG N7 adduct would form quickest 

of the adducts.  The above experiment demonstrated that after one hour at 37 °C 

produced primarily the MeQM-dG N1 adduct, which suggested that the MeQM 

reacted faster than the unsubstituted QM.  The MeQM-dG N1 adduct became the 

major product between QM and dG after approximately 8 hours.  A series of 

reactions were carried out at temperatures varying from 0 °C to 37 °C with a reaction 

time at one minute from KF activation of MeQM to HPLC analysis.  These reactions 

consisted of a 1:1:2 mixture of DMF:CH3CN:H2O containing dG (12.5 mM), 4-

MeBrQMP (12.5 mM), potassium phosphate buffer (12.5 mM, pH 7), and KF (625 

mM).  Unfortunately, these conditions did not result in the primary formation of 
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MeQM-dG N7.  While the lower temperature managed to slow the rate of adduct 

formation, the rate decreased proportionally for each adduct and did not maximize the 

amount of MeQM-dG N7 formed.  While MeQM reacted at the same positions of dG 

as QM, it appears that the product profile may have changed. 

The reaction conditions were adjusted due to the low overall yield of the 

previous alkylations.  The goal was to increase the yield of each MeQM-dG adduct 

instead of focusing on any individual adduct.  The concentrations of 4-MeBrQMP 

and dG were increased to 50 mM and 22.5 mM, respectively, in a 1.8:1:1.2 mixture of 

DMF:CH3CN:H2O.  The dG concentration was limited by its low solubility in the 

reaction solvents.  The HPLC analysis used an analytical column to obtain better 

resolution than the previously used semi-prep column (Figure 3.4).  There were four 

products isolated by HPLC, but only MeQM-dG N1 had sufficient yield for 1H NMR 

analysis.  The reaction was scaled up 2-fold and the subsequent HPLC purification 

used a semi-prep column to accommodate the larger reaction size.  Unfortunately, the 

resolution of adducts decreased and at least two of these co-eluted (Figure 3.5). 
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Figure 3.4. HPLC analysis of MeQM-dG alkylation with 50 mM 4-MeBrQMP and 
22.5 mM dG in a 1.8:1:1.2 mixture of DMF:CH3CN:H2O.  The reaction was held at 
37 °C for 20 minutes and fractionated using Gradient 1 with an analytical column (1 
mL/min).  Injection volume was 180 µL. 

 

Figure 3.5. HPLC analysis of a 2x scale MeQM-dG alkylation of Figure 3.4.  The 
analysis used Gradient 1 with a semi-prep column (5 mL/min).  Injection volume was 
370 µL.  The scale-up resulted in the co-elution of at least two of the MeQM-dG 
adducts between tr = 40 -50 minutes. 
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The reaction conditions were again varied in an attempt to form more of the 

other MeQM-dG adducts (dG N2 and dG N7).  New conditions were inspired by 

previously optimized conditions to form QM-dG N2 consisting of a 1:1 mixture of 

DMF:H2O with 4-MeBrQMP (25.0 mM), dG (12.5 mM), and KF (250 mM).56 This 

mixture was held at 37 °C for between 30 minutes and 23 hours before HPLC 

analysis.  The HPLC analysis utilized an analytical column for the improved 

resolution.  The different reaction times were used to find an ideal reaction length for 

the formation of the various adducts (Figure 3.6).  As expected, the yield of MeQM-

dG N7 decreases for reaction times over 30 minutes.  MeQM-guanine N7, however, 

increases in yield for reaction times over 30 minutes.  This relationship is expected as 

MeQM-guanine N7 forms from the deglycosylation of MeQM-dG N7.  MeQM-dG 

N1 and N2 appear to have a constant yield over the range of 30 minutes to 23 hours.  

These amounts were determined by comparing the peak area at A260 for each 

compound. 
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Figure 3.6. HPLC analysis of the MeQM-dG alkylation that consisted of a 1:1 
mixture of DMF:H2O with 4-MeBrQMP (25.0 mM), dG (12.5 mM), and KF (250 
mM).  The reaction was monitored by analyzing 100 µL aliquots by HPLC at 30 
minutes (A) and 3 hours (B).  The reaction was also monitored by analyzing a 50 µL 
aliquot at 23 hours (C). Gradient 1 was used with an analytical column (1 mL/min). 

Each of the five MeQM adducts observed by HPLC (including MeQM-H2O) 

were collected over the course of four runs and lyophilized overnight.  Initially, 
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identification of the adducts was done by comparing tr and UV-Vis data with the 

unsubstituted QM data (Table 3.1).56  

Table 3.1. Comparison of UV-Vis and tr data between MeQM-dG and QM-dG.56 

Adduct 
Experimental 

λmax for MeQM-dG 
(nm) 

Literature 
λmax for QM-dG 

(nm)  

Order of 
Elution for 
MeQM-dG 

Order of 
Elution for 

QM-dG 

dG N7 259, 279 260 1 1 
guanine N7 283 280 2 2 

dG N1 255, 271 257, 275 3 3 
dG N2 247, 275 256, 280 4 4 

  
Each of the lyophilized MeQM-dG products were then individually combined 

with 100 µL H2O and 100 µL CH3CN and analyzed by HPLC immediately to assess 

their stability.  There was no observed decomposition of MeQM-dG N1, MeQM-dG 

N2, or MeQM-guanine N7 after the overnight lyophilization.  This is expected as 

these three adducts were determined to be irreversible with the unsubstituted QM.58 

MeQM-dG N7, however, does show a small amount (< 2%) of MeQM-guanine N7, 

but no water adduct.  This indicates that, under lyophilizing conditions, the 

reversibility of MeQM-dG N7 is of small concern while the deglycosylation of 

MeQM-dG N7 does occur, albeit slowly (Appendix B.1).   

 The reaction was repeated several times to obtain enough material for 1H 

NMR analysis of each product (Appendix B.3 – B.6).  The 1H NMR chemical shifts 

were compared with the literature values for the QM-dG adducts in order to confirm 

the MeQM-dG adduct identities (Table 3.2).56 Specifically, the methylene bridge 

protons and the lone proton on guanine (H8) were used as points of direct 

comparison.     
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Table 3.2. 1H NMR comparison between MeQM-dG and QM-dG (ppm).  All 
MeQM-dG adducts analyzed in DMSO-d6.  QM-dG N7 was not analyzed by NMR, 
QM-guanine N7 was analyzed in NaOD/D2O, QM-dG N1 and QM-dG N2 were 
analyzed in DMF-d7.56  

Adduct 
MeQM-dG 

Methylene Bridge 
(ppm) 

QM-dG 
Methylene Bridge 

(ppm) 

MeQM-dG 
H8  

(ppm) 

QM-dG 
H8 

(ppm) 

dG N7 5.52 n/a 9.18 n/a 
guanine N7 5.30 5.39 7.84 7.64 

dG N1 5.06 5.28 7.96 8.05 
dG N2 4.36 4.58 7.90 7.99 

 
 ESI+-MS was carried out on each of the NMR samples of the MeQM-dG 

adducts.  To facilitate ionization and flow through the tubing, the DMSO-d6 samples 

were diluted to 40% water prior to analysis.  Each of the MeQM-dG adducts was 

observed along with their deglycosylated fragments.  The remaining NMR samples 

were analyzed by HPLC to observe their stability both dry in the freezer and in 

DMSO-d6.  The MeQM-dG N7 adduct decomposed such that only approximately 

50% of the original adduct remained after one day frozen at 0 °C in DMSO-d6 

(Figure 3.7).  Surprisingly, the major decomposition product was MeQM-dG N1 

(~50% of the dG N7 peak area at A260).  This result suggests that the rate of 

reversibility is faster than the rate of deglycosylation, further highlighting the 

importance of trapping the MeQM-dG N7 adduct.  The other decomposition products 

MeQM-H2O (<1% of dG N7) and MeQM-guanine N7 adduct (<7% dG N7) formed 

in very low concentrations.  The MeQM-dG N1 and MeQM-guanine N7 adducts did 

not show any detectable decomposition, confirming that they are irreversible 

products.  The MeQM-dG N2 adduct showed a small amount (<10%) of MeQM-dG 

N1 adduct, which was probably collected during the initial purification of the crude 

alkylation reaction.   
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Figure 3.7. HPLC analysis of the MeQM-dG N7 NMR sample that was stored in 
DMSO-d6 for 24 hours at -20 °C. 

The alkylation described above would yield a maximum of 3.9 mg MeQM-dG 

adducts (total) per 400 µL reaction.  Due to the high reactivity of MeQM the yield 

does not approach 100%, although the actual yield is difficult to determine due to the 

small amounts of product formed.  This low yield necessitated a scaled up reaction 

capable of delivering mgs of each MeQM-dG adduct in a shorter period of time.     

The solubility of dG was greatly improved by using a 70:30 mixture of 

DMF:H2O to produce a 100 mM stock solution of dG resulting in a final 

concentration of 25.0 mM dG in a reaction solvent consisting of 57.5% H2O and 

42.5% DMF.  This increased the maximum yield of the alkylation reaction 2-fold 

when considering all adducts.  Initial reaction purifications utilized the same HPLC 

gradient as before, Gradient 1 (Table 3.3), and a 200 µL reaction to confirm that the 

same products were formed as the less concentrated reaction (Figure 3.8).  Each of 
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the previously observed MeQM adducts was observed by HPLC and identified by tr 

and UV-Vis absorbance.  Once this was accomplished, the same gradient was run on 

the semi-preparative column in anticipation of larger injection volumes.  The same 

reaction was analyzed using five different HPLC gradients, each one improving on 

the separation of MeQM adducts of the previous gradient while decreasing the time 

for each run (Table 3.3).  The optimal gradient was Gradient 6 due to the separation 

of the MeQM-dG adducts from the by-products and the shorter method length 

(Figure 3.9). 

Table 3.3. HPLC gradient optimization for the fractionation of the MeQM-dG 
alkylation.  The aqueous buffer is 10 mM TEAA pH 5.  The flow rate was 5 mL/min 
with the semi-prep column. 

Gradient 
  

Starting CH3CN 
(%) 

Ending CH3CN 
(%) 

Time      
(min) 

Rate 
(%/min) 

1 Step 1 3 25 76 0.289 
Step 1 3 10 14 0.500 
Step 2 10 18 40 0.200 2 
Step 3 18 25 14 0.500 
Step 1 3 11.2 16.4 0.500 

3 
Step 2 11.2 16.2 50 0.100 
Step 1 3 12 18 0.500 

4 
Step 2 12 14 40 0.050 
Step 1 3 12 10 0.900 
Step 2 12 12 40 isocratic 5 
Step 3 12 14 10 0.200 
Step 1 3 12 10 0.900 

6 
Step 2 12 12 30 isocratic 
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Figure 3.8. HPLC analysis of MeQM-dG alkylation using a 42.5% DMF percentage.  
The reaction was held at 37 °C for 2 hours and fractionated using Gradient 1 with an 
analytical column (1 mL/min).  Injection volume was 200 µL. 

 

Figure 3.9. HPLC analysis of MeQM-dG alkylation.  The reaction was held at 37 °C 
for 1 hour and fractionated using Gradient 6 with a semi-prep column (5 mL/min).  
Injection volume was 200 µL. 
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With an optimized HPLC gradient, the alkylation reaction was gradually 

scaled up from 200 µL to 1 mL.  The optimized 1 mL alkylation reaction consisted of 

4-MeBrQMP in DMF (250 µL, 100 mM), dG in 70% aqueous DMF (250 µL, 100 

mM), and aqueous KF (500 µL, 500 mM) and was stirred at 37 °C for 1- 5 hr (Figure 

3.10).  The new reaction increased the theoretical yield 2.5-fold to 9.7 mg total 

adducts formed.  It was demonstrated that the alkylation products of MeQM-dG could 

be isolated in mg quantities sufficient for 1H NMR.  The next step was to develop an 

efficient method for forming and isolating the oxidized products of MeQM-dG. 

 

Figure 3.10. HPLC analysis of MeQM-dG alkylation using Gradient 6.  The reaction 
was held at 37 °C for 1 hour and was fractionated using a semi-prep column (5 
mL/min).  The injection volume was 1 mL. 
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3.2.2. Oxidation and Isolation of the MeQM-dG adducts. 

Since MeQM-dG N1 formed in the highest yield (35 – 55% of the total 

MeQM adducts measured by peak area at A260) it was the logical choice to start the 

individual oxidation studies.  The lyophilized MeQM-dG N1 adduct was dissolved in 

125 µL water and 125 µL CH3CN to prepare it for oxidation.  This solution was 

transferred to an Eppendorf tube and 200 µL BTI (200 mM in CH3CN) was added.  

The reaction was mixed and allowed to stand at room temperature for 20 minutes.  

Over the course of the reaction, the solution changed from pale yellow to orange in 

color.  Water (100 µL) was added to the reaction and the mixture was washed with 

water saturated diethyl ether (3 × 0.5 mL).  The aqueous layer was collected and 

filtered (0.2 µm) prior to analysis by HPLC (Figure 3.11).  

 

Figure 3.11. Crude oxidation of MeQM-dG N1 with BTI.  The reaction was held at 
room temperature for 20 minutes prior to HPLC analysis.  Gradient 1 was used with 
the analytical column (1 mL/min). 
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 The oxidation of MeQM-dG N1 yielded a very complex mixture.  The major 

products eluting between 20 - 24 minutes, 47 - 50 minutes, and 51 - 53 minutes were 

collected and lyophilized overnight for 1H NMR analysis.  Of these collected 

compounds, only the 2 peaks at 20 - 24 minutes yielded enough material for 1H NMR 

(Figure 3.12).   

 

Figure 3.12. 1H NMR of the product formed by oxidation of MeQM-dG N1 in 
DMSO-d6 at 400 MHz.  Two possible structures are shown as 3.6 and 3.7. 

 The structure for the oxidized product of MeQM-dG N1 was initially 

proposed to be a spiro-compound (3.6) due to the similarities between the 1H NMR of 

this compound and the MeQM-dC oxidized adduct which was determined to be a 

spiro compound.  Similarities include a downfield shift and small splitting (<2 Hz) of 

the 4-Me protons (H17).  The complex splitting of the (presumed) methylene bridge 

protons (H10) also mirrors that of the equivalent protons in the MeQM-dC oxidized 
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adduct.  Additionally, upon HPLC analysis of the NMR sample, two compounds (tr = 

25.5 and 26.5 min) with identical UV-Vis absorbances eluted, which also corresponds 

to the formation of a diastereomeric mixture as seen with the MeQM-dC oxidized 

adduct (Appendix B.2).  The synthesis of more MeQM-dG N1 oxidized adduct was 

necessary to perform additional 1D and 2D NMR to confirm the structure of the 

isolated compound. 

Fortunately, using the optimized alkylation conditions and purification using 

Gradient 6 (Table 3.3) synthesis of MeQM-dG N1 became efficient.  Under these 

conditions MeQM-dG N1 and MeQM-dG N2 elute sequentially with tr 30 and 33 

minutes and are not fully resolved (Figure 3.6).  Instead of attempting to collect the 

adducts separately, they were collected together for oxidation in the same reaction 

vessel which should produce two unique, stable compounds.  Lyophilized samples of 

the MeQM-dG N1 and MeQM-dG N2 were dissolved in a 1:1 solution of potassium 

phosphate (50 mM, pH 7) and CH3CN at an average of 50 µL solvent per vial of 

lyophilized adduct and then subjected to 20 mmol BTI for 5 minutes at room 

temperature.  These oxidation conditions were milder than previously used (40 mmol 

BTI for 20 minutes at room temperature) in an effort to reduce the number of by-

products simplify purification and increase yield.  The initial HPLC purification using 

Gradient 1 with the analytical column resulted in a number of compounds of similar 

UV-Vis spectra (λmax = approximately 243 and 271 nm) eluting from 21 - 36 minutes 

which were collected together for 1H NMR analysis (Figure 3.13).   



 

 69 
 

 

Figure 3.13. HPLC analysis of the crude oxidation of the mixture of MeQM-dG N1 
(3.2) and MeQM-dG N2 (3.3) with BTI.  The reaction was held at room temperature 
for 5 minutes.  Gradient 1 was used with the analytical column (1 mL/min). 

1H NMR of the collected sample suggested a mixture of two unique MeQM-

dG adducts from the presence of two proton signals for each H8, H17, and H10 

(Figure 3.14).  The aromatic region also appeared more complex than what would 

result from a single MeQM-dG adduct.  HPLC analysis of the NMR sample, which 

was first diluted by 50% with H2O, showed two pairs of peaks with much better 

resolution with retention times of approximately 24.5, 26.0, 29.0, and 30.0 minutes 

(Figure 3.15).  As the same column and gradient was used as the previous 

purification (Figure 3.13) this suggests that the initial purification of the oxidation 

reaction slightly overloaded the HPLC column, shifting the retention times of the 

adducts forward.  Each of the four peaks has an identical λmax (243 and 271 nm) 

suggesting a diastereomeric mixture for each product.   



 

 70 
 

 

Figure 3.14. 1H NMR of the material collected between 21 and 36 minutes of HPLC 
analysis of the crude oxidation of the mixture of MeQM-dG N1 (3.2) and MeQM-dG 
N2 (3.3) with BTI (Figure 3.13). 

 

Figure 3.15. HPLC analysis of the 1H NMR sample from Figure 3.14.  The NMR 
sample was diluted with H2O to 50% aqueous DMSO-d6 prior to re-injection into the 
HPLC.  Gradient 1 was used with the analytical column (1 mL/min). 
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The two pairs of compounds were collected separately, lyophilized overnight, 

and analyzed by 1H NMR.  Preliminary results showed that the first eluting 

compound was the oxidized product of MeQM-dG N1 (3.7) while the second 

compound was the oxidized product of MeQM-dG N2 (3.8).  These characterizations 

were based largely on the chemical shifts of H8 and H10 compared to the non-

oxidized adducts.  The oxidation was repeated until sufficient product was collected 

for 2D NMR. 

Scheme 3.2. Proposed structure of the product (3.7) formed by oxidation of MeQM-
dG N1 (3.2). 

 

The first compound characterized was the oxidized product of MeQM-dG N1 

(3.7) (Scheme 3.2).  NMR signals (1H and 13C) corresponding to the purine and 

ribose moieties of 3.7 were again assigned from literature values for dG and N1 

alkylated dG derivatives56,88,89 and confirmed by 1H-13C HSQC and 1H-13C HMBC 

spectra (Appendix B.7 – B.10).  The compound 4-hydroxy-2,4-dimethyl-2,5-

cyclohexadien-1-one (3.9) was used as a model for the p-quinol moiety (Appendix 

Table B.4).68 Specifically, the 13C chemical shift of the sp2 hybridized C11 (129.5 

ppm) and the sp3 hybridized C15 (66.5 ppm) are in agreement with the corresponding 

carbons in the model compound (133.3 ppm and 67.3 ppm, respectively).   
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Figure 3.16. 1H – 13C HMBC of 3.7 in DMSO-d6 at 600 MHz. 

Alkylation of the N1 position of dG was confirmed by 1H-13C HMBC NMR, 

which detected correlations between the methylene protons (H10) and C2, C6, C11, 

and C16 (Figure 3.16).  Only alkylation of N1 would satisfy these data.  The 

presence of diastereomers observed by HPLC was also seen in the splitting pattern of 

the methylene protons (H10).  The coupling constant (J=15.7 Hz) between the two 

protons is characteristic of geminal coupling, the result of restricted rotation around 

C10.  The splitting pattern is similar to the overlapping doublet of doublets observed 

in the 1H NMR spectra of MeQM-dC N3 oxidized adduct.76 Again, this unique 

splitting pattern is the result of the diastereomeric mixture of compounds along with 

the diastereotopic relationship of the protons (H10).  ESI+-MS provided a m/z 404.13 

(M + H)+ that corresponds with the proposed structure of 3.7 (calculated m/z 404.16 

(M + H)+).  The above evidence confirms that the p-quinol product is formed, not the 
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initially proposed spiro-cyclized product 3.6 (calculated m/z 386.15 (M + H)+) 

observed with the MeQM-dC N3 oxidized adduct.  

Scheme 3.3. Proposed structure of the product (3.8) formed by oxidation of MeQM-
dG N2 (3.3). 

 

The next compound to be characterized was the oxidized product of MeQM-

dG N2 (3.8) (Scheme 3.3).  NMR signals (1H and 13C) corresponding to the purine 

and ribose moieties of 3.8 were again assigned from literature values for dG and N2 

alkylated dG derivatives 56,88 and confirmed by 1H-13C HSQC and 1H-13C HMBC 

spectra (Appendix B.11 – B.14).  The compound 4-hydroxy-2,4-dimethyl-2,5-

cyclohexadien-1-one (3.9) was again used as a model for the p-quinol moiety.68 

Specifically, the 13C chemical shift of the sp2 hybridized C11 (131.7 ppm) and the sp3 

hybridized C15 (66.4 ppm) are in agreement with the corresponding carbons in the 

model compound (133.3 ppm and 67.3 ppm, respectively).  The 1H chemical shifts of 

H13 (6.06 ppm) and H14 (6.96 ppm), along with their coupling constants (J = 10.0 

Hz and J = 10.0 Hz, 2.9 Hz, respectively), also agree reasonably well with the 

corresponding values of the model compound (6.01 ppm, J = 9.9 Hz and 6.81 ppm, J 

= 9.9, 2.9 Hz).   
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Figure 3.17. 1H – 13C HMBC of 3.8 in DMSO-d6 at 600 MHz. 

The connectivity of C10 to the N2 position of dG was confirmed with 1H-13C 

HMBC NMR (Figure 3.17).  Protons H10 display correlations to C2, C11, C12, and 

C16, but not to C6.  A correlation to C6 would be indicative of an alkylation of the 

N1 position of dG.  Protons H10 are not observed as diastereomers despite the 

diastereomeric composition of the NMR sample, as shown by HPLC analysis (Figure 

3.15).  This is perhaps due to less hindered rotation about the C10 - N2 bond that is 

not possible in the other adduct, 3.7.  Protons H10 instead display a splitting pattern 

consistent with one adjacent proton (N-H).  ESI+-MS showed a m/z 404.18 (M + H)+ 

that corresponds with the proposed structure of 3.8 (calculated m/z 404.16 (M + H)+).  
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Scheme 3.4. Proposed structure of the product (3.11) formed by oxidation of MeQM-
dG N7 (3.4) and the subsequent deglycosylated product (3.10). 

 

For the remaining two oxidized products of MeQM-dG, dG N7 (3.11) and 

guanine N7 (3.10), the two adducts were collected together since MeQM-guanine N7 

is the result of deglycosylation of MeQM-dG N7.  The co-collection of these two 

products would facilitate the isolation of the lone stable oxidation product, 3.10 

(Scheme 3.4).  The two adducts were collected together after following the 1 mL 

alkylation reaction and purification previously used with MeQM-dG N1 and MeQM-

dG N2 (Table 3.3).  After overnight lyophilization, the two adducts were dissolved in 

a 1:1 solution of potassium phosphate (50 mM, pH 7) and CH3CN at an average of 50 

µL solvent per vial of lyophilized adduct and then subjected to the mild oxidation 

conditions (20 mmol BTI, 5 min, room temperature).  Using gradient 1 with an 

analytical column for increased resolution, a major product was collected with a 

retention time of 9 - 13 minutes (Figure 3.18).  Analysis by 1H NMR suggested the 

presence of both the oxidized products of MeQM-dG N7 (3.4) and MeQM-guanine 

N7 (3.5) due to the observation of two signals for H8, H17, and H10 (Figure 3.19).  

The presence of the deglycosylated adduct (guanine N7) could be inferred by the 

ribose protons that integrated to only one set of signals for H8 and the QM fragment.  

ESI+-MS analysis showed fragments corresponding to the mass of the two oxidized 
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adducts (m/z 404.16 and 288.11 respectively).  Unfortunately, product 3.10 is also the 

major fragmentation product of 3.11 under ESI+ conditions, so further NMR analysis 

was necessary to characterize the products. 

 

Figure 3.18. HPLC analysis of the crude oxidation of the mixture of MeQM-dG N7 
(3.4) and MeQM-guanine N7 (3.5) with BTI.  Reaction with BTI was held at room 
temperature for 5 minutes then worked-up and analyzed using Gradient 1 with the 
analytical column (1 mL/min). 
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Figure 3.19. 1H NMR of the material collected between 9 and 13 minutes of HPLC 
analysis of the crude oxidation of the mixture of MeQM-dG N7 (3.4) and MeQM-
guanine N7 (3.5) with BTI (Figure 3.18). 

Interestingly, two compounds with different retention times (20 and 21 

minutes) and different λmax (239, 280 nm and 235, 277 nm) eluted upon HPLC 

analysis of the NMR sample shown above (Figure 3.20).  These two compounds 

were combined and 1H NMR analysis again showed a mixture of oxidized adducts 

3.10 and 3.11.  This result again suggests that the initial purification of the oxidation 

reaction slightly overloaded the HPLC column, shifting the retention times of the 

adducts forward.  The initial NMR sample that was analyzed contained less material, 

and the adducts eluted at what is assumed to be their normal retention times (20 and 

21 minutes).  
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Figure 3.20. HPLC analysis of the 1H NMR sample from Figure 3.19.  The NMR 
sample was diluted with H2O to 50% aqueous DMSO-d6 prior to re-injection into the 
HPLC.  Gradient 1 was used with the analytical column (1 mL/min). 

The 1 mL scale alkylation reaction previously used with MeQM-dG N1 and 

MeQM-dG N2 was used again to collect 3.4 and 3.5 together after HPLC purification 

using gradient 6 with a semi-prep column (5 mL/min) (Table 3.3).  This will allow 

enough purified 3.10 to be obtained for analysis by 2D NMR.  After lyophilization to 

remove the elution buffer, the adducts were subjected to a 5 minute oxidation 

discussed above.  Purification by HPLC followed, again using gradient 1, and all 

compounds that eluted between 9 - 13 minutes were collected.  After another round of 

lyophilization, the remaining solid was dissolved with 600 µL of a 1:1 DMSO:H2O 

solution and held at 37 °C for 2 - 6 hours to complete the deglycosylation of 3.11 to 

form 3.10.  The solution was purified by HPLC using 200 µL per injection to avoid 

overloading the analytical column.  A single compound eluted for each run from 19 - 
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23 minutes, which was collected and lyophilized overnight.  This compound was fully 

characterized using 1H, 13C, 1H-13C HSQC, and 1H-13C HMBC NMR (Appendix 

B.15 – B.18). 

The structure of 3.10 was proposed to be the p-quinol product (Scheme 3.4).  

The lack of 2′-deoxyribose sugar NMR signals indicated that this was not the 

oxidized product of MeQM-dG N7 (3.11).  Assignment of the purine 13C NMR 

signals of C2 (154.4 ppm), C4 (159.7 ppm), C5 (107.9 ppm), and C6 (152.9 ppm) 

were based on literature precedence of 7-methyl guanine.90 The 1H and 13C NMR 

signals for C8 (7.84 and 143.4 ppm) were assigned based on 1H-13C HSQC.  The site 

of alkylation was confirmed by the observed correlation between the methylene 

bridge protons (H10) and carbons C5 and C8 associated with guanine and carbons 

C11, C12, and C16 associated with the former MeQM segment (Figure 3.21).  The 

same correlations were previously observed for the QM-guanine N7 adduct.56 C11 

was identified by its proximity to protons H10, H13, and H16.  Carbon C15 was 

identified by its proximity to protons H13 and H17.  The 13C chemical shift of C11 

(131.3 ppm) was consistent with sp2 hybridization, while the 13C chemical shift of 

C15 (66.3 ppm) was consistent with sp3 hybridization, which agree with 13C chemical 

shifts of the corresponding carbons in the model compound 4-hydroxy-2,4-dimethyl-

2,5-cyclohexadien-1-one (3.9).68 The protons at C10 show splitting consistent with a 

diastereomeric relationship due to the introduction of a chiral center at C15 and 

restricted rotation of the methylene bridge.  The two protons appear as doublets with 

a coupling constant of J=15.7 Hz, consistent with their geminal relationship.  ESI+-

MS resulted in a (M + H)+ of m/z 288.11 and corresponds with the structure of 3.10 
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(calculated m/z 288.11 (M + H)+).  Due to the location of nearby nitrogens it is 

mechanistically impractical for MeQM-guanine N7 or MeQM-dG N7 to form the 

spiro-cyclized product upon oxidation by BTI.  The above evidence confirms that the 

p-quinol product is formed and not the spiro-cyclized product observed with the 

oxidized product of MeQM-dC N3.76  

 

Figure 3.21. 1H – 13C HMBC of 3.10 in DMSO-d6 at 600 MHz. 

Each of the MeQM-dG adducts was confirmed to form the p-quinol product 

upon oxidation with BTI.  This result serves to highlight the unique environment 

necessary for the spiro-cyclization to occur, especially since MeQM-dG N1 3.2 and 

MeQM-dG N2 3.3 contain primary and secondary amines in the equivalent position as 

a primary imine in the MeQM-dC N3 adduct (2.8) (Figure 3.22).  The position of 

each nitrogen does not, however, take into account the nucleophilicity of the nitrogen.  

The primary imine in MeQM-dC N3 (2.8) would be expected to be the most 
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nucleophilic of the three compounds and therefore would be the most likely to form 

the spiro-cyclized product. 

 

Figure 3.22. Structural similarities, labeled in green, between MeQM-dG N1 (3.2), 
MeQM-dG N2 (3.3), and MeQM-dC N3 (2.8).   

 

3.3.  Summary. 

The goal of oxidative de-aromatization by BTI of the adducts formed between 

MeQM and dG has been accomplished.  Oxidation of the four MeQM-dG adducts 

(dG N7, dG N1, dG N2, and guanine N7) yields four unique products.  Due to the 

deglycosylation of MeQM-dG N7 to MeQM-guanine N7, only three of the oxidation 

products were fully characterized by 1D NMR, 2D NMR, and ESI+-MS as these are 

the only oxidized products expected to survive the enzymatic digestion of DNA.  The 

transformation of the QM phenol to a p-quinol was further confirmed by comparison 

to a model compound, 4-hydroxy-2,4-dimethyl-2,5-cyclohexadien-1-one (3.9).68 The 

p-quinol forms through an intermolecular addition of H2O, as opposed to the 

intramolecular addition of the dC exo-imine leading to the spiro-cyclized MeQM-dC 

N3 product.76 These results demonstrate the influence of the reaction environment on 

the oxidative de-aromatization of phenol analogues by BTI, specifically the 
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nucleophilicity of atoms capable of adding to the QM phenol upon its activation by 

BTI. 

 In addition to the synthesis and characterization of the oxidized MeQM-dC 

N3 adduct,76 the synthesis and characterization of the oxidized MeQM-dG adducts 

yielded four of the six analytical standards necessary for the eventual study of MeQM 

alkylation with DNA.  The remaining two analytical standards are the oxidized 

MeQM-dA adducts (dA N1 and dA N6), which will be characterized in a similar 

manner as the oxidized MeQM-dG adducts by my undergraduate mentee Omer Ad. 

 

3.4.  Materials and Methods. 

Formation of the dG N1, dG N2, dG N7, and guanine N7 adducts (3.2, 3.3, 3.4, 

3.5) generated by the precursor 2.6 and its MeQM intermediate 2.7.  Alkylation 

was initiated by addition of aqueous KF (500 µL, 500 mM) to a mixture of the 

MeQM precursor 2.6 in DMF (250 µL, 100 mM) and dG in 70% aqueous DMF (250 

µL, 100 mM).  The reaction was mixed and held at either room temperature (20-25 

°C) or 37 °C for 1 - 5 hr.  The reaction was then cooled and fractionated by semi-

preparative reverse-phase C-18 HPLC using a gradient of 3 - 12% over 10 min 

followed by 12% isocratic over 30 min of CH3CN in triethylammonium acetate (10 

mM, pH 5) at 5 mL/min. 

MeQM-dG N1 (3.2):  1H NMR (400 MHz, DMSO-d6): δ 2.10 (s, 3H), 2.19 (m, 1H), 

2.45 (m, 1H), 3.52 (m, 2H), 3.80 (m, 1H), 4.34 (m, 1H), 5.06 (s, 2H), 6.13 (q, J=6.9 

Hz, 1H), 6.76 (s, 1H), 6.78 (d, J=8.2 Hz, 1H), 6.90 (d, J=8.2 Hz, 1H), 7.96 (s, 1H).  

ESI+-MS: m/z 388.26 (M + H)+.  Calcd for C18H22N5O5
+ (M + H)+: 388.16.  λmax = 
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255, 271 nm (diode array detector, 18% CH3CN in triethylammonium acetate, 8 mM, 

pH 5). 

MeQM-dG N2 (3.3):  1H NMR (400 MHz, DMSO-d6): δ 2.17 (s, 3H), 2.22 (m, 1H), 

2.61 (m, 1H), 3.53 (m, 2H), 3.82 (m, 1H), 4.35 (m, 1H), 4.36 (s, 2H), 6.18 (t, J=6.9 

Hz, 1H), 6.72 (d, J=8.3 Hz, 1H), 6.89 (dd, J=8.3, 1.6 Hz, 1H), 7.03 (d, J=1.6 Hz, 1H), 

7.90 (s, 1H).  ESI+-MS: m/z 388.27 (M + H)+.  Calcd for C18H22N5O5
+ (M + H)+: 

388.16.  λmax = 247, 275 nm (diode array detector, 19% CH3CN in triethylammonium 

acetate, 8 mM, pH 5). 

MeQM-dG N7 (3.4):  1H NMR (600 MHz, DMSO-d6): δ 2.17 (s, 3H), 2.33 (m, 1H), 

2.56 (m, 1H), 3.60 (m, 2H), 3.89 (m, 1H), 4.36 (m, 1H), 5.52 (d, J=5.8 Hz, 2H), 5.86 

(s, 2H), 6.21 (t, J=6.2 Hz, 1H), 6.74 (d, J=8.3 Hz, 1H), 6.98 (dd, J=8.3, 1.8 Hz, 1H), 

7.22 (d, J=1.8 Hz, 1H), 9.18 (s, 1H).  λmax = 259, 279 nm (diode array detector, 15% 

CH3CN in triethylammonium acetate, 9 mM, pH 5). 

MeQM-guanine N7 (3.5):  1H NMR (400 MHz, DMSO-d6): δ 2.11 (s, 3H), 5.30 (s, 

2H), 6.72 (d, 1H), 6.80 (d, 1H), 6.90 (dd, 1H), 7.84 (s, 1H).  ESI+-MS: m/z 272.18 (M 

+ H)+.  Calcd for C13H14N5O2
+ (M + H)+: 272.11.  λmax = 283 nm (diode array 

detector, 17% CH3CN in triethylammonium acetate, 8 mM, pH 5). 

 

Oxidation of the dG N7 and guanine N7 adducts 3.4 and 3.5 to form 3.10.  The 

adducts 3.4 and 3.5 were combined with 100 µL CH3CN and 100 µL potassium 

phosphate (50 mM, pH 7).  The starting amount of 3.4 and 3.5 were unknown due to 

the small amounts isolated from each HPLC separation.  Instead, an average of 50 µL 

solvent per vial was used as a guideline to dissolve 3.4 and 3.5.  The mixture was 
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treated with 100 µL BTI (200 mM in CH3CN) for 5 minutes at room temperature.  

The reaction was then diluted with water (100 µL) and washed with diethyl ether (3 × 

500 µL).  The aqueous phase was filtered through a 0.2 µm syringe filter and 

fractionated by analytical reverse-phase C-18 HPLC using a linear gradient of 3 - 

25% CH3CN in ammonium formate (10 mM, pH 6.9) over 76 min (1 mL/min).  The 

product 3.10 was collected (tr = 20 min) and lyophilized to yield a white solid.  A 

reliable yield could not be measured due to the small amounts of product isolated 

from each HPLC separation.  1H NMR (600 MHz, DMSO-d6): δ 1.25 (s, 3H), 4.99 (d, 

J=15.7 Hz, 1H), 5.04 (d, J=15.7 Hz, 1H), 6.06 (d, J=10.1 Hz, 1H), 6.51 (s, 1H), 6.95 

(dd, J=2.8, 10.1 Hz, 1H), 7.84 (s, 1H).  13C NMR (600 MHz, DMSO-d6): δ 27.1, 43.8, 

66.3, 107.9, 125.2, 131.3, 143.4, 150.6, 154.6, 184.1.  ESI+-MS: m/z 288.11 (M + 

H)+.  Calcd for C13H14N5O3
+ (M + H)+: 288.11.  λmax = 239, 283 nm (diode array 

detector, 9% CH3CN in ammonium formate, 9 mM, pH 6.9). 

 

Oxidation of the dG N1 and dG N2 adducts 3.2 and 3.3 to form 3.7 and 3.8. 

The oxidation of 3.2 and 3.3 was identical to the above procedure for 3.4 and 3.5.  

The two products 3.7 and 3.8 were collected separately (tr = 25 min and 30 min) and 

lyophilized to yield a yellow solid (3.7) and a white solid (3.8).  A reliable yield could 

not be measured due to the small amounts of product isolated from each HPLC 

separation.  

MeQM-dG N1 Oxidized adduct (3.7):  1H NMR (600 MHz, DMSO-d6): δ 1.25 (s, 

3H), 2.22 (m, 1H), 2.54 (m, 1H), 3.53 (m, 2H), 3.81 (m, 1H), 4.34 (m, 1H), 4.62 (d, 

J=15.7 Hz, 1H), 4.88 (d, J=15.7 Hz, 1H), 6.09 (d, J=10.0 Hz, 1H), 6.13 (m, 1H), 6.15 



 

 85 
 

(t, J=6.9 Hz, 1H), 6.95 (dd, J=2.9, 10.0 Hz, 1H), 7.97 (s, 1H).  13C NMR (600 MHz, 

DMSO-d6): δ 27.4, 39.4, 39.5, 61.7, 66.5, 70.8, 82.2, 87.6, 115.6, 125.5, 129.5, 135.7, 

146.3, 149.4, 153.9, 154.3, 156.2, 184.8. ESI+-MS: m/z 404.13 (M + H)+.  Calcd for 

C18H22N5O6
+ (M + H)+: 404.16.  m/z 442.06 (M + K)+.  Calcd for C18H21KN5O6

+ (M + 

K)+: 442.11.  λmax = 243, 271 nm (diode array detector, 10% CH3CN in ammonium 

formate, 9 mM, pH 6.9). 

MeQM-dG N2 Oxidized adduct (3.8):  1H NMR (600 MHz, DMSO-d6): δ 1.31 (s, 

3H), 2.19 (m, 1H), 2.58 (m, 1H), 3.50 (m, 2H), 3.80 (m, 1H), 4.11 (d, J=5.3 Hz), 4.32 

(m, 1H), 6.06 (d, J=10.0 Hz, 1H), 6.14 (t, J=6.9 Hz, 1H), 6.80 (m, 1H), 6.96 (dd, 

J=2.9, 10.0 Hz, 1H), 7.91 (d, J=2.5 Hz, 1H).  13C NMR (600 MHz, DMSO-d6): δ 

27.3, 38.9, 39.3, 61.8, 66.4, 70.8, 82.8, 87.6, 117.0, 125.5, 131.7, 135.7, 149.4, 150.3, 

152.4, 154.5, 156.6, 185.1.  ESI+-MS: m/z 404.18 (M + H)+.  Calcd for C18H22N5O6
+ 

(M + H)+: 404.16.  λmax = 243, 271 nm (diode array detector, 12% CH3CN in 

ammonium formate, 9 mM, pH 6.9).  

 

HPLC gradients used in this chapter can found in Table 3.3.   
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Chapter 4: Alkylation of DNA by MeQM and Subsequent 

Enzymatic Digestion 

 

4.1.  Introduction. 

Identification of the complete profile of adducts formed between MeQM and 

DNA is necessary for understanding the selectivity of MeQM towards DNA.  While 

standard analysis of DNA alkylating agents would consist of a lengthy (24 hr) 

enzymatic digestion of alkylated DNA followed by LC/MS, this method fails for 

MeQM for two reasons.  The first reason is that multiple MeQM adducts at a 

particular nucleoside would have the same mass.  Therefore MS would be unable to 

provide important information about the position of the covalent linkage between 

MeQM and DNA.  The second reason is that the alkylation profile of DNA by MeQM 

would change drastically over the course of enzymatic digestion because some of the 

MeQM-DNA adducts are labile.   

 Oxidative de-aromatization of the QM phenol with BTI followed by HPLC 

analysis would solve both of the issues stated above.  The oxidative trapping of 

MeQM-DNA adducts would transform the labile adducts to stable adducts, allowing 

them to survive the enzymatic digestion.  Also, to eliminate the need to isolate and 

characterize the oxidized MeQM-DNA adducts (by LC/MS or NMR), analytical 

standards for each oxidized adduct were synthesized and fully characterized (Figure 

4.1).  The synthesis and characterization of oxidized MeQM-dC N3 (2.15) was 
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discussed in Chapter 2.76 The synthesis and characterization of oxidized MeQM-dG 

N1 (3.7), MeQM-dG N2 (3.8), and MeQM-guanine N7 (3.10) were discussed in 

Chapter 3.  Synthetic studies and structure elucidation of oxidized MeQM-dA N1 

(4.4) and oxidized MeQM-dA N6 (4.3) were carried out simultaneously by my 

undergraduate mentee Omer Ad.   

 

Figure 4.1. Fully characterized products of the BTI oxidation of MeQM-dC N3 
(2.15), MeQM-dG N1 (3.7), MeQM-dG N2 (3.8), MeQM-guanine N7 (3.10), and 
MeQM-dA N6 (4.3).  The oxidation product of MeQM-dA N1 (4.4) has not been 
confirmed.  

 The MeQM-dA N1 (4.1) and MeQM-dA N6 (4.2) adducts were successfully 

synthesized using procedures optimized for the formation of each adduct.91 As the dA 

N1 position is more reactive than the dA N6 position, the formation of MeQM-dA N1 

was favored at short reaction times (20 minutes) while the formation of MeQM-dA 

N6 was favored at longer reaction times (72 hours).  The formation of both adducts 
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was initiated by the addition of KF to a solution of 4-MeBrQMP, dA, and potassium 

phosphate in a 1:1.8:1.2 mixture of CH3CN:DMF:H2O.  The structure of both 

MeQM-dA N1 and MeQM-dA N6 was elucidated with 1H NMR, 13C NMR, and 

ESI+-MS.91 

MeQM-dA N1 and MeQM-dA N6 were oxidized separately, after HPLC 

purification, using the same procedure that was used to form the oxidized MeQM-dG 

adducts.  The structure of oxidized MeQM-dA N6 (4.3) was elucidated with 1D and 

2D NMR along with ESI+-MS and comparison to model compounds N6-Me-dA,92 

N1-Me-dA,93 and 4-hydroxy-2,4-dimethyl-2,5-cyclohexadien-1-one (3.9).68 

Unfortunately, oxidized MeQM-dA N1 (4.4) was not characterized due to instability 

of the product.  This remains the only uncharacterized oxidation product of MeQM 

alkylation of dN and studies are ongoing to remedy this issue.  Until that time, 

oxidation studies with MeQM-DNA that yield a single unknown product can only 

assume and not confirm that the product is the result of oxidation of MeQM-dA N1. 

 The alkylation of dsDNA by a simple o-QM has been previously studied by 

the Rokita laboratory.62 These studies observed predominant formation of QM-dG N2.  

At the time, this preference was explained solely by the ability of the exo-amino 

group of dG to maintain its reactivity from nucleosides to dsDNA.62 It was later 

discovered that the alkylation profile of nucleosides varies greatly over the time 

needed for enzymatic digestion of DNA (24 hours).58 Specifically, the initial 

alkylations occur with the stronger nucleophilic positions (dG N7, dA N1, and dC 

N3), but these adducts are reversible.  Alkylation with the weaker nucleophilic 

positions (dG N1, dG N2, and dA N6) occurs slower, but since the adducts are 
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irreversible they will accumulate over time.  The result of these processes is a 

significantly different alkylation profile at the beginning of DNA digestion than at the 

end of DNA digestion, when the mixture is analyzed by HPLC.  The oxidative de-

aromatization of QM phenols by BTI discussed earlier has the potential to trap the 

labile MeQM-DNA adducts prior to enzymatic digestion (Scheme 4.1).  This will 

allow, for the first time, quantification of MeQM alkylation of DNA at short, but 

biologically relevant, time points.  

Scheme 4.1. Oxidative de-aromatization can trap labile MeQM-DNA adducts.  The 
trapped MeQM-DNA adducts are stable enough to persist through enzymatic 
digestion of the DNA and the subsequent analysis by HPLC. 
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4.2.  Results and Discussion. 

4.2.1. Optimization of the Enzymatic Digestion of DNA. 

The early studies of QM alkylation of DNA were based on the following 

experiments involving the formation and subsequent oxidation of MeQM-DNA 

adducts.62 One aspect of the MeQM-DNA experiments to be optimized is the 

enzymatic digestion of DNA.  The complete enzymatic digestion of DNA to the 

nucleoside level is necessary for the subsequent HPLC analysis.  The individual 

nucleosides and nucleoside adducts are well resolved using a gradient of 3 – 11% 

CH3CN in 50 mM TEAA, pH 4 over 24 minutes (1 mL/min) followed by 11 – 25% 

CH3CN in 50 mM TEAA pH 4 over the next 85 minutes (1 mL/min).62 The different 

compounds are well resolved due to the large change in structure of each nucleoside 

adduct by the addition of MeQM.  Undigested DNA containing MeQM adducts, 

however, would elute as an unresolved peak.  This is because even several MeQM 

additions have little influence on a molecule the size of polymeric DNA and differing 

amounts of alkylation would not be distinguished by HPLC. 

The two enzymes involved in the digestion are phosphodiesterase I (from 

Crotalus adamanteus venom) and alkaline phosphatase (from Escherichia coli).  

Phosphodiesterase I is an exonuclease responsible for breaking the 3′ phosphorus-

oxygen bond in DNA stepwise from the 3′ terminus94,95 while alkaline phosphatase 

dephosphorylates the resulting mononucleotides at their 5′ position.  When used 

together, the two enzymes digest DNA to monomeric nucleosides free of phosphate.  

Alkaline phosphatase was stored at a concentration of 0.1 unit/µL in a solution of 50 

mM Tris-HCL pH 8, 50 µM ZnSO4, 10 mM MgCl2, and 50% glycerol.  
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Phosphodiesterase I was initially stored at a concentration of 0.001 unit/µL in 100 

mM TEAA pH 10.  For later studies, phosphodiesterase I was stored at a 

concentration of 0.005 unit/µL in a solution of 50 mM Tris-HCL pH 8, 50 µM 

ZnSO4, 10 mM MgCl2, and 50% glycerol.  These storage conditions protect against 

degradation from repeated freezing and thawing while providing Mg2+and Zn2+ 

needed for the catalytic activity of the enzymes.96,97  

The work-up and digestion conditions after alkylation of DNA were based on 

previous work by Gao et al.,98 Lewis et al.,43 and Pande et al.62 Initially for a 200 µL 

scale alkylation, once the alkylation and oxidation reactions are complete, the CH3CN 

was removed under a stream of N2 (15 minutes).  The DNA was precipitated by 

adding EtOH (55 µL, 100 %) and cooling to -20 °C for 30 minutes.  The EtOH was 

evaporated under reduced pressure and the remaining DNA was washed with 

additional EtOH (140 µL, 80 %), frozen with liquid N2, and centrifuged (15 minutes, 

14,800 rpm).  The supernatant was decanted from the Eppendorf tube and the 

remaining solid was dissolved in 100 mM TEAA (100 µL, pH 10) and hydrolyzed by 

alkaline phosphatase (0.2 units per 1 mM nts DNA) and phosphodiesterase I (0.006 

units per 1 mM nts DNA).  The digestion mixture was held at 37 °C for 24 hours, 

followed by neutralization to pH 7 with 1% aqueous acetic acid (5 µL).  The mixture 

was filtered through a 0.2 µm syringe filter (with an addition of 50 µL H2O when 

necessary) and fractionated by analytical reverse-phase C18 chromatography (3% 

CH3CN in 9.7 mM ammonium formate, pH 6.9, to 11% CH3CN in 8.9 mM 

ammonium formate, pH 6.9, over 24 minutes (1 mL/min), followed by 11% CH3CN 

in 8.9 mM ammonium formate, pH 6.9, to 25% CH3CN in 7.5 mM ammonium 
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formate, pH 6.9, over the next 85 minutes).  This is the only HPLC gradient used in 

this chapter.  This procedure for enzymatic digestion of DNA is known as Method 1. 

Prior to alkylation and oxidation studies, a number of control experiments 

were necessary to optimize conditions that resulted in the complete enzymatic 

digestion of the target DNA, along with confirming that the alkylation and oxidation 

conditions were compatible with enzymatic digestion.  The initial target DNA was 

calf thymus DNA (ctDNA), a large molecular weight DNA historically used to 

represent a large duplex DNA of random sequence.43,56,62 The findings are 

summarized in Table 4.1.  Experiments 1-4 did not contain 4-MeBrQMP or BTI and 

served as blank controls, containing only ctDNA and potassium phosphate pH 7 in a 

70:30 solution of H2O:CH3CN.  Experiment 1 revealed that 2 mM nucleotides (nts) of 

ctDNA was insufficient to determine digestion by HPLC.  Experiments 2-4 confirmed 

that 10 mM nts ctDNA was sufficient to observe digestion by HPLC.  An effective 

ratio of enzymes to ctDNA was also determined.  In experiment 5, ctDNA was 

alkylated by a ten-fold excess of 4-MeBrQMP activated with KF (525 mM) in 30% 

aqueous CH3CN for 30 minutes prior to enzymatic digestion, to simulate the 

alkylation conditions.  The complete enzymatic digestion of ctDNA was observed by 

HPLC.  In experiment 6, 4-MeBrQMP was omitted, but an excess of BTI (167 mM) 

was added to the ctDNA solution and the mixture was kept at room temperature for 5 

minutes followed by enzymatic digestion, to simulate the oxidation conditions.  

Again, complete enzymatic digestion of ctDNA was observed by HPLC.   
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Table 4.1. Enzymatic digestion conditions for the initial ctDNA experiments, 
compared to the literature precedent.62 

Exp [Nucleotides] 
(mM) 

Alkaline 
Phosphatase  Phosphodiesterase I  Complete 

Digestion? 
Literature62 20 10 units 0.27 units yes 

1 2 1 unit (10 µL) 0.03 units (30 µL)  Insufficient 
DNA 

2 - 6 10 2 units (20 µL) 0.06 units (60 µL) yes 

 

While the ctDNA was completely digested in each experiment, including 

experiment 6 containing BTI, one issue needed to be addressed.  This issue was that 

in experiment 6, precipitation occurred upon addition of the BTI.  If the precipitate 

was ctDNA, then it may prove to be difficult to oxidize the MeQM-DNA adducts.  A 

series of trials involving the alkylation conditions and the addition of BTI addressed 

the precipitation issue.  For these trials, three different duplex DNAs were used to 

observe any influence by the oligo length or sequence.  The three duplex DNAs were 

ctDNA, salmon sperm DNA (salDNA) which is another large molecular weight DNA 

historically99,100 used as a large duplex DNA of random sequence, and OD1/OD3 

which was conveniently available as excess material from Dr. Jen Buss from an 

unrelated project (Figure 4.2).  In each case that duplex DNA (ctDNA, salDNA, or 

OD1/OD3) was included in the mixture, a precipitate was formed upon addition of 

BTI.  A large concentration (>31 mM) of K+ also seemed to result in precipitate 

formation upon addition of BTI.  A large concentration (225 mM) of Na+ did not 

result in a precipitate upon addition of BTI.  Fluoride was also added at a 

concentration of 200 mM without precipitate formation upon addition of BTI.  

Washing the reaction with saturated diethyl ether (3 × 200 µL) 5 minutes after BTI 

addition appeared to decrease the amount of precipitate, suggesting that not all of the 
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precipitate was DNA.  These trials lead to general conditions for the alkylation and 

subsequent oxidation of duplex DNA.  These conditions for enzymatic digestion of 

DNA, further known as Method 2, effectively solved the precipitation issue and 

included the use of Na+ counter ions where possible and a saturated diethyl ether 

wash (3 × 200 µL) prior to EtOH precipitation of the DNA. 

 

Figure 4.2. Synthesized complimentary oligonucleotide sequences used as target 
duplex DNA.   

A series of experiments used the improved reaction conditions (Method 2) to 

confirm that the alkylation and oxidation conditions were compatible with enzymatic 

digestion.  For these experiments, ctDNA was replaced by salDNA as the random 

sequence duplex DNA because the remainder of ctDNA in the laboratory was 

dissolved in potassium phosphate buffer and a large quantity of lyophilized salDNA 

was available.  The first experiment was to dissolve the salDNA (8 mM nts) under 

alkylation and oxidation conditions without the presence of 4-MeBrQMP or BTI.  

The reaction was then worked-up and digested according to Method 2 using 2 units 

of alkaline phosphatase (20 µL) and 0.06 units of phosphodiesterase I (60 µL).  This 

resulted in fully digested salDNA with no background compounds eluting after the 

nucleosides (tr > 20 minutes) providing a clean baseline for the detection of 

nucleoside adducts (Figure 4.3).  The nucleosides are identified by comparison of tr 

to the literature.62 
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Figure 4.3. HPLC analysis of the enzymatic digestion of a reaction consisting of 
salDNA (8 mM nts), sodium phosphate (25 mM, pH 7), and NaF (200 mM) in an 
80:20 solution of H2O:CH3CN.  The reaction was worked-up and digested according 
to Method 2 using alkaline phosphatase (2 units, 20 µL) and phosphodiesterase I 
(0.06 units, 60 µL). 

The next experiment aimed to determine if BTI would inhibit the enzymatic 

digestion of salDNA.  Again, salDNA (8 mM nts) was combined with sodium 

phosphate (25 mM, pH 7), and NaF (200 mM) in an 80:20 mixture of H2O:CH3CN 

(200 µL).  BTI (20 µL, 91 mM) was added to the reaction and held for 5 minutes at 

room temperature prior to work-up following Method 2, using 2 units of alkaline 

phosphatase (20 µL) and 0.06 units of phosphodiesterase I (60 µL).  The salDNA was 

completely digested, with no observable background noise or oxidation by-products 

eluting after the nucleosides (tr > 20 minutes) (Figure 4.4). 
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Figure 4.4. HPLC analysis of the enzymatic digestion of a reaction consisting of 
salDNA (8 mM nts), sodium phosphate (25 mM, pH 7), and NaF (200 mM) in an 
80:20 solution of H2O:CH3CN.  BTI (91 mM) was added to the reaction and held for 
5 minutes prior to work-up and digestion according to Method 2 using alkaline 
phosphatase (2 units, 20 µL) and phosphodiesterase I (0.06 units, 60 µL). 

Through the course of these experiments, the phosphodiesterase I purchased 

from Sigma-Aldrich was exhausted and a new supplier (Worthington Biochemical) 

was found to offer significantly more enzyme activity (100 units vs. 0.6 units) for 

approximately the same price, which would be advantageous due to the large amount 

of enzyme needed for future experiments.  Unfortunately, the new phosphodiesterase 

I failed to fully digest salDNA in a series of experiments using previously successful 

reaction conditions.   

 To improve the solubility of the duplex DNAs (ctDNA and salDNA), a new 

duplex DNA was chosen to test the less active phosphodiesterase I.  The new DNA, 

OD1/OD3, was 40 base pairs long and was easily dissolved in the digestion buffer 
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after work-up, unlike ctDNA and salDNA which required more time to completely 

dissolve (Figure 4.2).  OD1/OD3 was also unsuccessfully digested by the 

phosphodiesterase I from Worthington Biochemical in a series of experiments, which 

included increasing the amount of enzyme from 0.06 units to 0.75 units while keeping 

the concentration of DNA at 8 mM nts.   

At this point there appeared to be enough evidence that the phosphodiesterase 

I from Worthington Biochemical was inferior to that from Sigma-Aldrich.  Due to the 

inability of the phosphodiesterase I from Worthington Biochemical to completely 

digest the target DNA, further experiments utilized the more expensive, but effective 

phosphodiesterase I from Sigma-Aldrich.  The large difference in activity of 

phopshodiesterase I from two different suppliers highlights the need to test chemicals 

and enzymes from previously unused suppliers to confirm their effectiveness. 

The activity of phosphodiesterase I from Sigma-Aldrich was tested by 

digesting a reaction that consisted of OD1/OD3 (20 mM nts), sodium phosphate (25 

mM, pH 7), and KF (500 mM) in a 70:30 solution of H2O:CH3CN.  The reaction was 

subjected to work-up and digestion conditions from Method 2 using alkaline 

phosphatase (10 units, 100 µL) and phosphodiesterase I (0.28 units, 56 µL).  This 

resulted in complete digestion of the target DNA (Figure 4.5).   
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Figure 4.5. HPLC analysis of the enzymatic digestion of a reaction consisting of 
OD1/OD3 (20 mM nts), sodium phosphate (25 mM, pH 7), and KF (500 mM) in an 
70:30 solution of H2O:CH3CN.  The reaction was subjected to work-up and digestion 
according to Method 2 using alkaline phosphatase (10 units, 100 µL) and 
phosphodiesterase I (0.28 units, 56 µL). 

Now that the enzymatic digestion of target DNA has been optimized, the 

alkylation of the target DNA by MeQM could be investigated. 

 

4.2.2. Alkylation of DNA by MeQM. 

Early experiments using ctDNA as the target DNA observed no alkylation 

when the reactions were analyzed by HPLC (Table 4.1).  This would make it 

impossible to observe the subsequently formed oxidized MeQM-DNA adducts.  A 

series of experiments replaced DNA in the alkylation reaction with an equimolar 

solution of nucleosides (dC, dG, dA, and dT) to determine the amount of dN and 4-

MeBrQMP needed to observe alkylation by HPLC.  The first reaction combined 8 
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mM dN, 25 mM sodium phosphate pH 7, 200 mM NaF, and 67 mM 4-MeBrQMP in 

a 80:20 aqueous: CH3CN solution.  The reaction was incubated in a 1.5 mL plastic 

Eppendorf tube for 30 minutes at 37 °C, filtered (0.2 µm), and analyzed by HPLC 

(Figure 4.6).  There was almost no detectable alkylation. 

 

Figure 4.6. HPLC analysis of an alkylation reaction consisting of 2 mM each dN, 25 
mM sodium phosphate (pH 7), 200 mM NaF, and 67 mM 4-MeBrQMP in an 80:20 
solution of H2O:CH3CN.  The reaction was carried out in a 1.5 mL plastic Eppendorf 
tube for 30 minutes at 37 °C. 

 The next reaction increased the concentration of 4-MeBrQMP to 160 mM, but 

these conditions still failed to produce a significant amount of alkylation (measured 

by integration of the peak area at A260, Figure C.1) compared to the baseline (Figure 

4.5).  Further increasing 4-MeBrQMP concentration to 240 mM, substituting KF (500 

mM) for NaF (200 mM) due to the higher solubility of KF in H2O, and increasing the 

CH3CN percentage from 20% to 30% slightly increased the alkylation yield (Figure 

C.2).  Lengthening the reaction time from 30 minutes to one hour further increased 
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the alkylation yield (Figure C.3), while a larger increase came with switching from 

plastic Eppendorf tubes to 0.3 mL glass Reacti-vials equipped with Teflon stirbars 

(Figure C.4).  This effect is most likely the result of stirring the reaction as opposed 

to allowing the reagents to react through diffusion.  The most promising results came 

when the concentration of nucleosides was increased to 20 mM total dN while 4-

MeBrQMp was kept at 240 mM (Figure 4.7).   

 

Figure 4.7. HPLC analysis of an alkylation reaction consisting of 5 mM each dN, 25 
mM sodium phosphate (pH 7), 500 mM KF, and 240 mM 4-MeBrQMP in a 70:30 
solution of H2O:CH3CN.  The reaction was stirred in a 0.3 mL glass Reacti-vial for 1 
hour at 37 °C. 

The next experiment used the optimum alkylation conditions of dN and 

applied them to the alkylation of salDNA.  Guided by the earlier nucleoside results, a 

200 µL reaction mixture consisting of 20 mM nts salDNA, 25 mM sodium phosphate 

pH 7, 500 mM KF, and 240 mM 4-MeBrQMP in a 70:30 aqueous: CH3CN solution 

was stirred in a 0.3 mL glass Reacti-vial for 1 hour at 37 °C.  To simulate the BTI 
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addition, an additional 40 µL CH3CN was added after the 1 hour.  The reaction was 

worked-up and digested according to Method 2 using 6 units of alkaline phosphatase 

(60 µL) and 0.18 units of phosphodiesterase I (90 µL).  Despite compensating for the 

2.5 fold increase in salDNA by increasing the amount of enzymes (units) by 3 fold, 

undigested salDNA was present in the analysis (Figure 4.8).  Another problem was 

that little to no alkylation was observed, which may have been due to the high 

concentration of 4-MeBrQMP that did not appear to be fully miscible in the reaction 

mixture.  

 

Figure 4.8. HPLC analysis of an alkylation reaction consisting of 20 mM salDNA, 25 
mM sodium phosphate (pH 7), 500 mM KF, and 240 mM 4-MeBrQMP in a 70:30 
solution of H2O:CH3CN.  The reaction was stirred in a 0.3 mL glass Reacti-vial for 1 
hour at 37 °C prior to an addition of 40 µL CH3CN to simulate the addition of BTI.  
The reaction was worked-up and digested according to Method 2 using alkaline 
phosphatase (6 units, 60 µL) and phosphodiesterase I (0.18 units, 90 µL). 
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To adjust for these two problems, the next experiment increased the amount of 

enzymes 4-fold to 8 units (80 µL) alkaline phosphatase and 0.24 units (120 µL) 

phosphodiesterase I while the concentration of 4-MeBrQMP was decreased from 240 

mM to 100 mM.  The ensuing reaction mixture was fully miscible and resulted in a 

complete digestion of the salDNA, but only trace amounts of alkylation were 

observed (Figure 4.9) when compared to the optimized dN alkylation (Figure 4.7).  

 

Figure 4.9. HPLC analysis of an alkylation reaction consisting of 20 mM salDNA, 25 
mM sodium phosphate (pH 7), 500 mM KF, and 100 mM 4-MeBrQMP in a 70:30 
solution of H2O:CH3CN.  The reaction was stirred in a 0.3 mL glass Reacti-vial for 1 
hour at 37 °C prior to an addition of 40 µL CH3CN to simulate the addition of BTI.  
The reaction was worked-up and digested according to Method 2 using alkaline 
phosphatase (8 units, 80 µL) and phosphodiesterase I (0.24 units, 120 µL). 

A possible complication with a large target DNA, such as ctDNA or salDNA, 

is the potential for it to form complex secondary structures that may suppress 

alkylation by MeQM.  The large target DNA was also difficult to dissolve following 

the work-up prior to enzymatic digestion.  The shorter duplex DNA OD1/OD3 was 
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easily dissolved at the same concentration and was used as the target in future 

experiments of MeQM alkylation.  The exact sequence had no significance, merely 

that there was not an excess of any one base-pair (52.5% G:C) and the melting 

temperature was above 37 °C (calculated at 69 °C by the supplier Integrated DNA 

Technologies) to limit the presence of single stranded DNA.  OD1/OD3 met these 

criteria as the target duplex DNA.  The reaction conditions were the same as used 

above with salDNA.  Specifically, OD1/OD3 (20 mM nts), sodium phosphate (25 

mM, pH 7), KF (500 mM), and 4-MeBrQMP (100 mM) were combined in a solution 

of 70:30 H2O:CH3CN.  The reaction was stirred in a 0.3 mL Reacti-vial for 1 hour 

prior to work-up and digestion using alkaline phosphatase (10 units, 100 µL) and 

phosphodiesterase I (0.28 units, 56 µL) (Method 2).  After enzymatic digestion for 24 

hours, the mixture was analyzed by HPLC (Figure 4.10).  The identification of the 

alkylated products was made with UV-Vis and tr comparisons to the individual 

nucleoside reactions (Figure 4.11, Appendix C.5). 
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Figure 4.10. HPLC analysis of an alkylation reaction consisting of 20 mM 
OD1/OD3, 25 mM sodium phosphate (pH 7), 500 mM KF, and 100 mM 4-
MeBrQMP in a 70:30 solution of H2O:CH3CN.  The reaction was stirred in a 0.3 mL 
glass Reacti-vial for 1 hour at 37 °C prior to an addition of 40 µL CH3CN to simulate 
the addition of BTI.  The reaction was worked-up and digested according to Method 
2 using alkaline phosphatase (10 units, 100 µL) and phosphodiesterase I (0.28 units, 
56 µL). 
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Figure 4.11.  Expansion of Figure 4.10 to better show the products of MeQM 
alkylation of OD1/OD3.  The same reaction without 4-MeBrQMP is shown in Figure 
4.5. 

HPLC analysis of the MeQM alkylation of OD1/OD3 confirmed that there 

was a higher yield of alkylation products formed when compared to salDNA (Figure 

4.9).  Unfortunately, there was still not a significant amount of MeQM alkylation 

products formed.  A low yield of alkylation products would be problematic for the 

planned oxidation and HPLC analysis due to the sensitivity of the HPLC and diode 

array detector.  The MeQM alkylation reaction shown in Figures 4.10 and 4.11 

revealed that the alkylation products are very close to the limit of detection. 

To confirm that the alkylation yield is insufficient for further oxidation 

studies, the reaction above (Figure 4.10) was repeated with an addition of BTI (40 

µL, 167 mM final concentration) after the 1 hour alkylation.  The work-up and 

digestion was identical to the previous alkylation reaction, using Method 2.  
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Unfortunately, HPLC analysis confirmed that the amount of oxidized MeQM-DNA 

adducts produced was insufficient for quantification (Figure 4.12).  At this point, a 

new method of analysis, such as Ultra High Performance Liquid Chromatography 

(UHPLC) or tandem Liquid Chromatography – Mass Spectrometry (LC/MS) may be 

necessary to continue the study of MeQM alkylation of DNA and the subsequent 

oxidative trapping of reversible adducts. 

 

Figure 4.12. HPLC analysis of an alkylation reaction consisting of 20 mM 
OD1/OD3, 25 mM sodium phosphate (pH 7), 500 mM KF, and 100 mM 4-
MeBrQMP in a 70:30 solution of H2O:CH3CN.  The reaction was stirred in a 0.3 mL 
glass Reacti-vial for 1 hour at 37 °C prior to an addition of 40 µL BTI in CH3CN (167 
mM final concentration).  The reaction was stirred for 5 minutes at room temperature 
prior to work-up and digestion according to Method 2 using alkaline phosphatase (10 
units, 100 µL) and phosphodiesterase I (0.28 units, 56 µL). 
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4.3.  Summary. 

The enzymatic digestion of DNA has proven to be effective after both 

alkylation and oxidation conditions are applied to a target DNA.  The efficiency of 

alkylation by MeQM of target DNA decreases as the target is changed from 

monomeric nucleosides to a short duplex DNA (OD1/OD3) and decreases further as 

the target DNA is changed to a long duplex DNA (salDNA).  Unfortunately, it has 

become apparent that the sensitivity of UV analysis of HPLC chromatograms is not 

high enough to quantify the formation of product from the MeQM alkylation of 

duplex DNA (salDNA or OD1/OD3).  This leads to an inability to quantify the 

products of oxidation of MeQM alkylated DNA.  Either a new method of detection is 

needed to increase sensitivity or new alkylation conditions are needed to increase the 

amount of MeQM-DNA adducts formed. 

 

4.4.  Materials and Methods. 

Calf thymus DNA (ctDNA) was purchased from Sigma-Aldrich and salmon 

sperm DNA (salDNA, Na+salt, highly polymerized) was purchased from NBCo 

Biochemicals (now MP Bio), both as lyophilized solids.  OD1 and OD3 were 

purchased from Integrated DNA Technologies with “standard desalting” and were not 

further purified prior to use.  To form duplex DNA, OD1 and OD3 were dissolved in 

either potassium or sodium phosphate buffer, mixed, heated to 90 °C for 5 minutes 

and slowly cooled to room temperature over several hours.  Alkaline phosphatase 

from Escherichia coli (P5931) and phosphodiesterase I from Crotalus adamanteus 
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venom (P3243) were purchased from Sigma-Aldrich as lyophilized solids and each 

was stored at a concentration of 0.1 unit/µL and 0.005 unit/µL, respectively, in a 

solution of 50 mM Tris-HCl pH 8, 50 µM ZnSO4, 10 mM MgCl2, and 50% glycerol.   

 

DNA work-up and digestion – Method 1.  For a 200 µL scale alkylation, once the 

alkylation and oxidation reactions were complete, the CH3CN was removed under a 

stream of N2 (15 minutes).  The DNA was precipitated by adding EtOH (55 µL, 100 

%) and cooling to -20 °C for 30 minutes.  The EtOH was evaporated under reduced 

pressure and the remaining DNA was washed with additional EtOH (140 µL, 80 %), 

frozen with liquid N2, and centrifuged (15 minutes, 14,800 rpm).  The supernatant 

was decanted from the Eppendorf tube and the remaining solid was dissolved in 100 

µL TEAA (100 mM, pH 10) and hydrolyzed by alkaline phosphatase (0.2 units per 1 

mM nts DNA) and phosphodiesterase I (0.006 units per 1 mM nts DNA).  The 

digestion mixture was held at 37 °C for 24 hours, followed by neutralization by 1% 

aqueous acetic acid (5 µL).  The mixture was filtered through a 0.2 µm syringe filter 

(with an addition of 50 µL H2O when necessary) and fractionated by analytical 

reverse-phase C18 chromatography (3% CH3CN in 9.7 mM ammonium formate, pH 

6.9, to 11% CH3CN in 8.9 mM ammonium formate, pH 6.9, over 24 minutes (1 

mL/min), followed by 11% CH3CN in 8.9 mM ammonium formate, pH 6.9, to 25% 

CH3CN in 7.5 mM ammonium formate, pH 6.9, over the next 85 minutes). 
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DNA work-up and digestion – Method 2.  For a 200 µL scale alkylation, once the 

alkylation and oxidation reactions were complete, the reaction mixture was washed 

with saturated diethyl ether (3 × 300 µL).  Ethanol (400 µL, 100%, 0 °C) was added 

to the aqueous phase and the solution was kept at -20 °C for 30 minutes to facilitate 

precipitation of the DNA.  The solution was centrifuged (5 minutes, 14,800 rpm) and 

the supernatant removed by pipette.  The remaining DNA was washed with 80% 

aqueous ethanol (140 µL) and centrifuged (5 minutes, 14,800 rpm).  The supernatant 

was removed by pipette and the remaining solid was dissolved in 100 µL TEAA (100 

mM, pH 10) and 44 µL MgCl2 (66.7 mM, 15 mM final concentration of Mg2+).  The 

DNA was hydrolyzed by 100 µL alkaline phosphatase (10 units for 20 mM nts DNA) 

and 56 µL phosphodiesterase I (0.28 units for 20 mM nts DNA).  The digestion 

mixture was held at 37 °C for 24 hours, followed by neutralization by 1% aqueous 

acetic acid (5 µL).  The mixture was filtered through a 0.2 µm syringe filter and 

fractionated by analytical reverse-phase C18 chromatography (3% CH3CN in 9.7 mM 

ammonium formate, pH 6.9, to 11% CH3CN in 8.9 mM ammonium formate, pH 6.9, 

over 24 minutes (1 mL/min), followed by 11% CH3CN in 8.9 mM ammonium 

formate, pH 6.9, to 25% CH3CN in 7.5 mM ammonium formate, pH 6.9, over the 

next 85 minutes). 

 

 

 

 



 

 110 
 

Chapter 5: Quantifying Quinone Methide Release from 
DNA with β-Mercaptoethanol 
 

 

5.1.  Introduction. 

Oxidative trapping of o-QM-DNA adducts can provide data on the intrinsic 

selectivity of a model o-QM (MeQM, 2.7) towards the nucleophilic positions on 

nucleosides.  Nucleophilic trapping of the o-QM released from DNA can provide 

complimentary data that allows for the quantification of how much of the o-QM-

DNA alkylation products are reversible.  Specifically, released QM from its adducts 

can be trapped by a nucleophile (such as β-mercaptoethanol, βME) and quantified.  

The kinetics of release can be observed by measuring QM release at various times 

between fluoride initiation of a precursor (to form o-QM) and nucleophile addition (to 

form o-QM-βME product) (Scheme 5.1).  For this project βME was chosen as a 

nucleophile for the trapping of MeQM as it reacts quickly with previous o-QMs and 

has been proven to be an effective trap of o-QM.61,101 Phenylhydrazine is another 

nucleophile previously used to trap the release of QM from QM-dG N7 adducts.58 

Subsequent studies completed prior to my arrival in the Rokita group replaced 

phenylhydrazine as a trapping nucleophile because decomposition of phenylhydrazine 

resulted in a more complicated HPLC chromatogram than equivalent trapping with 

βME. 

 



 

 111 
 

Scheme 5.1. Reaction scheme for nucleophilic trapping of MeQM (2.7) with βME to 
form MeQM-βME (5.3). 

 

As mentioned above, βME is an effective nucleophilic trap of active o-

QM.61,101 In these previous studies, βME suppressed cross-linking of a bisQM 

precursor with DNA by successfully competing with other nucleophiles such as water 

and dA to react irreversibly with an active bisQM present in solution to form QM-

βME.  This method provided the starting point for an alternative method for 

quantifying the reversibility of QMs.  Previously, transfer of a bisQM between 

complementary oligonucleotides has been used to observe the reversibility of the 

bisQM.61,102 Trapping of the released QM with a low molecular weight nucleophile 

would allow the reaction to be followed by HPLC.  The trapped products can also be 

unambiguously identified with analytical standards by comparing UV-Vis 

absorbencies and retention times.  Furthermore, the trapped products can be 

quantified with the help of molar extinction coefficients and an internal standard.  
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 The goal for the following studies is to, for the first time, quantify the 

reversible alkylation of DNA by using a model QM (MeQM, 2.7).  The release of 

QM from nucleosides, single stranded DNA (ssDNA), and double stranded DNA 

(dsDNA) was measured through the use of βME as a nucleophilic trap followed by 

HPLC analysis and quantification of the βME and water adducts of MeQM.  The 

expectation is that the βME product will form in high yield initially and gradually 

decrease as the QM is allowed more time to form irreversible adducts with H2O and 

the weaker nucleophiles of DNA (Scheme 5.1). 

 

5.2.  Results and Discussion. 

5.2.1. Synthesis of the Water and β-Mercaptoethanol Adducts of MeQM. 

The first step in this project was to synthesize the MeQM-H2O adduct (2-

(hydroxymethyl)-4-methylphenol, 5.2) and the MeQM-βME adduct (4-methyl-2-[(2-

hydroxyethylthio)methyl]phenol, 5.3) as standards to measure their molar extinction 

coefficients (ε) and obtain their HPLC retention times (tr).   

Synthesis of the MeQM-H2O adduct (5.2) was first attempted by combining 4-

MeBrQMP (2.6) and KF in a 3:2 solution of CH3CN:H2O.  The reaction was allowed 

to stir at room temperature for 26 hours to allow for the full reaction between MeQM 

and H2O.  The compound appeared to be MeQM-H2O from comparison of the HPLC 

tr to previous reactions with 4-MeBrQMP, which always contain a small amount of 

MeQM-H2O as a side product.  Additionally, 1H NMR confirmed the loss of the silyl 

protecting group and the presence of a significant amount of triethylammonium 
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acetate (TEAA) leftover from the HPLC buffer after lyophilization.  ESI+-MS was 

unable identify a parent ion of fragment that corresponded to MeQM-H2O, possibly 

due to TEAA repressing the signal.  Contamination with TEAA would also change 

the measured mass of MeQM-H2O and would introduce error into the molar 

extinction coefficient determination.  To minimize impurities, such as TEAA, a new 

method was needed to obtain pure MeQM-H2O.   

MeQM-H2O was synthesized by reduction of 5-methylsalicylaldehyde (2.3) 

with a 1 M borane/THF solution in high yield (> 95%) (Scheme 5.2).  The new 

synthesis had a shorter reaction time (< 2 hr), was much easier to scale up to gram 

quantities if needed and avoided the use of HPLC purification and 4-MeBrQMP (that 

required 3 steps to synthesize) as a starting material.  Most importantly, the product 

was observed to be pure based on 1H NMR and was characterized by 1H NMR, 13C 

NMR, and ESI+-MS (Appendix D1 – D3). 

Scheme 5.2. Synthesis of MeQM-H2O (5.2) in one step by reduction of 5-
methylsalicylaldehyde (2.3). 

 

The second standard to be synthesized was the MeQM-βME adduct (5.3).  

The first attempt at this synthesis was based on literature precedent.103 In the reaction 

vessel, βME was combined with KF prior to slow addition of 4-MeBrQMP for a 1:1 

reaction solution of DMF:H2O.  After 10 minutes the reaction was worked-up and 

purified by silica column chromatography to yield unreacted 2.6.  The reaction time 
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was then increased from 10 minutes to 26 hours and the amount of βME was 

increased 1.5-fold.  The starting material was completely consumed under these later 

conditions and a total of five compounds were isolated by HPLC.  Unfortunately, 

ESI+-MS was unable to identify the expected product, possibly due to TEAA that was 

still present from the final HPLC purification after multiple rounds of lyophilization 

that suppressed the MS signals.  The TEAA would also interfere with the 

determination of the molar extinction coefficient.  Another drawback of this synthetic 

method was again the need to use 4-MeBrQMP.  An alternative synthesis was 

developed to address the drawbacks of the earlier synthetic scheme by starting with a 

simpler, commercially available reagent and avoiding the use of buffered HPLC 

solvents. 

The new synthesis started from 5-methylsalicylaldehyde (2.3) and formed the 

product MeQM-βME (5.3) in two steps (Scheme 5.3).  The silica supported sodium 

hydrogen sulfate catalyst (NaHSO4/SiO2) was prepared from the literature 

procedure.104 The first attempt at dithiolation followed the literature procedure except 

for substituting 5-methylsailicylaldehyde (2.3) for the reported salicylaldehyde.  5-

Methylsalicylaldehyde (2.3) was combined with βME and stirred slowly at room 

temperature while NaHSO4/SiO2 was slowly added.  Immediately, the mixture 

formed a yellow paste that stopped stirring.  Petroleum ether was added to the paste, 

but did not dissolve the mixture.  TLC (3:1, hexanes: ethyl acetate) of the petroleum 

ether phase suggested the presence of only the starting material, 2.3.  The 

unsuccessful attempt was confirmed upon further work-up and 1H NMR (CDCl3).  
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Scheme 5.3. Synthesis of MeQM-βME (5.3) from 5-methylsalicylaldehyde (2.3.) 
through a dithioacetal intermediate (5.9).  1,4-CHD: 1,4-cyclohexadiene.  1,2-DCE: 
1,2-dichloroethane.   

 

   

 The second attempt at dithiolation of 2.3 was successful.  The amount of βME 

used was increased by more than 3-fold to alleviate the stirring difficulties involved 

with the paste formation.  5-Methylsalicylaldehyde (2.3) was again combined with 

βME and stirred slowly at room temperature while NaHSO4/SiO2 was slowly added 

to the mixture, stopping to add additional βME when a paste began to form.  

Immediately after the catalyst was completely added petroleum ether was added to 

the reaction, causing a solid to precipitate.  No compounds were observed by TLC 

(3:1, hexanes: ethyl acetate) in the liquid phase.  The petroleum ether was pipetted off 

of the solid and saved.  CHCl3 was added to dissolve the solid and produced a cloudy 

opaque solution.  TLC (3:1, hexanes: ethyl acetate) showed the presence of at least 

one compound at the baseline with no starting material (2.3) present.  The CHCl3 

solution was washed with petroleum ether (including the saved portion) and both 

layers were saved.  Additional CHCl3 was added to the CHCl3 layer and washed with 

H2O, dried with NaSO4, and removed under reduced pressure to yield a clear oil (1.73 

g, 63% crude yield).  The clear oil mostly crystallized upon standing and the 

remaining solvent was removed under vacuum overnight.  The clear solid was 
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confirmed to be the expected dithioacetal product 5.9 by 1H NMR (Figure 5.1) and 

ESI+-MS (Appendix D4).   

 

Figure 5.1. 1H NMR of 5.9 in CDCl3 at 400 MHz. 

In the second step of the synthesis the dithioacetal was reduced to a single 

thioether.105 The proposed mechanism by Ikeshita et al.105 of this transformation is 

shown in Scheme 5.4.  The Lewis acid, AlCl3, activates dithioacetal 5.9 and also 

abstracts a hydride from 1,4-cyclohexadiene (1,4-CHD).  The AlCl3 transfers the 

abstracted hydride to the activated dithioacetal, forming product 5.3 and reforming 

the catalyst AlCl3.  The cyclohexadienyl cation reacts with the previously formed 

AlCl3 - thioether to regenerate the catalyst AlCl3 along with benzene and βME, which 

should be easily separated from the desired product, 5.3.  



 

 117 
 

Scheme 5.4. Proposed mechanism for the reduction of dithioacetal 5.9 by 1,4-CHD.  
Adapted from Ikeshita et al.105 

 

Dithioacetal (5.9) and 1,4-CHD were combined with 1,2-dichloroethane (1,2-

DCE, 7 mL) under N2 at room temperature.  While stirring, a suspension of AlCl3 in 

hexanes was slowly added.  Upon addition of AlCl3, the solution changed from 

colorless to a red/orange color.  Within 5 minutes, a precipitate formed and the 

reaction gradually changed to yellow over an hour.  The reaction was followed by 

TLC (2:1, hexanes; ethyl acetate) by removing a 100 µL aliquot and slowly 

quenching it with 200 µL H2O in a 1.5 mL Eppendorf tube.  CHCl3 (100 µL) was 

added to the aliquot containing 1.5 mL Eppendorf, shaken, and the organic layer was 

sampled for TLC.  The first TLC (2 hr 40 min) showed 4 spots, one at the baseline 

and three mobile spots.  The second TLC (4 hr 40 min) showed no change from the 
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first, but when compared to the starting material, 5.9, it was determined that the 

baseline spot was starting material.  Further analyzing the aliquot removed at 4 hours 

40 minutes by 1H NMR (CD3CN) showed some starting material present, but also at 

least one other compound present, creating a complicated spectra.   

After seven hours, 9-fold more of the AlCl3 suspension was added and the 

reaction solution became a cloudy red.  The reaction was stirred overnight under N2 at 

room temperature.  After 22 hours, the solution was cloudy yellow with yellow solid 

on the sides of the round bottom flask.  TLC (2:1, hexanes: ethyl acetate) of the liquid 

phase revealed the same four spots, with the three mobile spots appearing darker.  

Analysis by ESI+-MS of the TLC aliquot was inconclusive while 1H NMR (CD3CN) 

gave a similar spectra as the earlier aliquot.  Analysis of the 1H NMR sample by 

HPLC shows the expected product formed as a minor component of the mixture 

(Figure 5.2).  MeQM-βME was identified by retention time and UV-Vis absorbance 

when compared to independently formed MeQM-βME from 4-MeBrQMP and βME. 
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Figure 5.2. HPLC analysis of the 1H NMR (CD3CN) sample of the MeQM-βME 
reaction at 23 hours.  Fractionation by HPLC uses a linear gradient of 5 – 30% 
CH3CN in ammonium formate (10 mM, pH 6.9) over 45 minutes (1 mL/min). 

An additional 10-fold of the AlCl3 suspension was added to the reaction after 

25.5 hours.  The reaction turned a cloudy dark red/brown and became cloudy brown 

within 45 minutes.  TLC (2:1, hexanes: ethyl acetate) at 27.5 hours revealed the same 

4 spots as the previous TLCs.  At this point, a total of 2 equivalents of AlCl3 have 

been added to the reaction.  After 28 hours, the reaction was slowly quenched with 

H2O and extracted with CHCl3.  The organic phase was washed with brine, dried over 

MgSO4, and removed under reduced pressure to yield a yellow/brown oil.  The oil 

was stored at 0 °C for 6 days, where a color change occurred leaving a brown/black 

oil.  The oil was dissolved with ethyl acetate and purified by chromatotron.  The 

expected product (5.3) was collected with a crude yield of 0.032 g (16 %) and 

analyzed by 1H NMR (Appendix D5). 
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 Additional purification by HPLC was undertaken due to the high purity 

necessary for extinction coefficient measurements.  To avoid the presence of buffer 

salts in the lyophilized product, the first HPLC purification used nanopure H2O as the 

aqueous phase, with CH3CN as the organic phase.  The desired product was purified 

using a gradient of 3 - 25% aqueous CH3CN over 76 minutes (1 mL/min).  The 32 mg 

sample was dissolved into 400 µL CH3CN and aliquots of 25 - 50 µL were 

fractionated by HPLC.  After the first run using nanopure H2O as the aqueous phase, 

the remaining runs used 0.1% trifluoroacetic acid as the aqueous phase to sharpen 

some of the compounds that were tailing on the column, while avoiding the use of 

TEAA (Figure 5.3).106 

 

Figure 5.3. HPLC purification of MeQM-βME following a first purification by 
chromatotron.  Crude material (31.6 mg) was dissolved in CH3CN (400 µL) prior to 
the injection of a 50 µL aliquot.  Fractionation by HPLC used a linear gradient of 3 – 
25% CH3CN in 0.1% aqueous TFA over 76 minutes (1 mL/min). 
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A total of 8 HPLC runs were needed to purify all of the crude oil.  The 

resulting clear oil was combined and analyzed by 1H NMR to confirm pure MeQM-

βME for a yield of 0.013 g (6.7 %) (Appendix D6).  ESI+-MS and 13C NMR were 

also used to fully characterize the product (Appendix D7 – D8).  While the final yield 

of MeQM-βME was low (13 mg), there was enough pure compound to obtain a molar 

extinction coefficient (greater than 10 mg).   

Although the necessary amount of MeQM-βME was obtained from the above 

procedure, some improvements could be made if more MeQM-βME is needed in the 

future.  The slow introduction of 3 equivalents (instead of 2) of AlCl3 to the reaction 

as a solid should improve the yield.  The original use of a suspension of AlCl3 in 

hexanes proved difficult to regulate the amount of AlCl3 added to the reaction.  The 

increase in AlCl3 will also compensate for the possible interaction between AlCl3 and 

the three hydroxy groups present in the starting material 5.9.  The amount of 1,4-

CHD should also be increased from 1 equivalent to 2 equivalents if the new AlCl3 

procedure is ineffective, to increase the amount of hydride source in solution. 

 

5.2.2. Determination of Extinction Coefficients for MeQM-H2O, MeQM-

βME, and Internal Standards. 

The molar extinction coefficients of MeQM-H2O, MeQM-βME, and the 

internal standards were determined in the eluting buffer used in the HPLC analysis of 

the alkylation reaction to compensate for any pH or solvent effect on their 

absorbance.  Quantification of the amounts of MeQM-βME and MeQM-H2O 

observed by HPLC require accurate molar extinction coefficients.  Molar extinction 
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coefficients for the two different internal standards used for HPLC analysis, phenol 

and meta-cresol, were also determined. 

For the βME trapping, three different elution buffers were used in the HPLC 

analysis.  Earlier work used 10 mM TEAA pH 5 as the aqueous phase and later work 

used either 0.1% aqueous TFA or 10 mM ammonium formate pH 6.9 as aqueous 

phase. The reasons for these adjustments will be discussed in the following section.   

The extinction coefficients at λ = 280 nm (ε280) of phenol and MeQM-H2O 

were determined in TEAA and TFA and ε280 values for m-cresol, MeQM-H2O, and 

MeQM-βME were determined in ammonium formate.  The wavelength at 280 nm 

was chosen for detection and ε determination because it is between the λmax of 

MeQM-H2O (279 nm) and MeQM-βME (283 nm).  This allows for maximum 

sensitivity to the detection of these compounds in the HPLC assay.  The molar 

extinction coefficient was calculated using the Beer-Lambert law (A = εcl) (Table 

5.1).  Stock solutions of each compound at 10 mM in H2O were prepared in triplicate.  

Aliquots were then diluted to a final concentration of 0.33 mM with the appropriate 

aqueous buffer.  With accurate ε280 values for each compound, MeQM-H2O and 

MeQM-βME can be directly compared to a known concentration of internal standard 

(phenol or m-cresol) and the HPLC peak area can be integrated and converted to the 

moles of compound in the reaction. 
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Table 5.1. Calculated molar extinction coefficients (ε) at λ280 nm of the compounds of 
interest in the βME trapping of MeQM. 

Compound 
(0.33 mM) 

ε280 (M-1cm-1) in 
9.7 mM TEAA pH 5 

ε280 (M-1cm-1) in 
0.097% aqueous TFA 

ε280 (M-1cm-1) in                                    
9.7 mM ammonium 

formate pH 6.9 

Phenol 560 ± 8 539 ± 30 572 ± 20 
m-Cresol n/a n/a 920 ± 30 

MeQM-H2O 2170 ± 40 1970 ± 30 1920 ± 60 
MeQM-βME 1420 ± 90 1460 ± 110 2170 ± 220 

 

 

5.2.3. Quantifying MeQM Released from Nucleoside Adducts by 

Trapping with β-Mercaptoethanol. 

Prior to conducting the βME trapping studies with both MeQM and a target 

nucleophile (dN or DNA), a series of control experiments confirmed the HPLC assay 

accurately measured the amount of MeQM-H2O, MeQM-βME, and the internal 

standard in the reaction mixture.  The goals of the control experiments were to 

confirm that MeQM-H2O and MeQM-βME are stable and to measure the persistence 

of MeQM and 4-MeBrQMP in solution in the absence of nucleophiles capable of 

forming labile adducts.  The rate of MeQM and 4-MeBrQMP persistence with and 

without the presence of DNA was measured by varying the aging time (Δt1) followed 

by addition of βME and a sufficient trapping time (Δt2) to allow for complete trapping 

of released MeQM by βME.  The aging time (Δt1) is necessary to allow MeQM to 

partition over time between irreversible reaction with water and reversible reaction 

with DNA prior to the addition of the βME trap.  The time needed for full transfer of 

reversible MeQM from DNA to βME was measured by holding the aging time (Δt1) 
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constant and varying the trapping time (Δt2).  MeQM-H2O (5.2) and MeQM-βME 

(5.3) were quantified by HPLC analysis of each reaction (Scheme 5.5). 

Scheme 5.5. Scheme for the trapping of MeQM with βME.  Varying the aging time 
(Δt1) revealed the persistence of MeQM and 4-MeBrQMP while varying the trapping 
time (Δt2) allowed the release of MeQM from DNA to be measured. 

 

The first control reaction did not contain any nucleophiles that could 

potentially form reversible MeQM adducts (nucleosides or DNA) to measure the 

persistence of MeQM or 4-MeBrQMP in solution.  The initial reaction conditions 

consisted of 5% aqueous CH3CN with 50 mM 3-(N-morpholino)propanesulfonic acid 

(MOPS) pH 7 (buffer), 5 mM phenol (internal standard), 2 mM 4-MeBrQMP (MeQM 

source), and 500 mM KF (MeQM initiator) (Table 5.2).  This reaction was combined 

for a total of 100 µL in a 1.5 mL plastic Eppendorf vial and held at 37 °C for 1 hour 

(Δt1), after the addition of KF to allow MeQM to react with water.  After 1 hour, 20 

µL βME (600 mM in 50 mM MOPS pH 7) was added for a 60-fold excess compared 

to 4-MeBrQMP.  The reaction mixture was then held at 37 °C for 24 hours (Δt2) prior 
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to HPLC analysis to allow for complete trapping of any reversible MeQM.  The 

HPLC analysis utilized a gradient of 5 – 30% CH3CN in TEAA (10 mM, pH 5) over 

45 minutes with an analytical column (1 mL/min).  The one hour reaction time (Δt1) 

was expected to result in the maximum amount of MeQM-H2O and a lack of 

observable formation of MeQM-βME due to previous studies determining that the 

unsubstituted BrQMP (1.40) is fully converted to the QM intermediate within 30 

minutes under aqueous conditions.58 The inclusion of the electron-donating methyl 

group para to the phenolic oxygen in 4-MeBrQMP (2.6) stabilized the electron 

deficient MeQM intermediate (2.7).80 This was observed to lead to faster generation 

of MeQM from 4-MeBrQMP than QM from BrQMP allowing for more time for 

irreversible MeQM-H2O formation prior to the addition of βME in the absence of 

other nucleophiles.80 In the presence of DNA, this would also lead to faster formation 

of MeQM-DNA adducts.  Surprisingly, MeQM-βME was observed in higher yield 

than MeQM-H2O (46 nmol vs. 15 nmol), suggesting that MeQM or 4-MeBrQMP 

persisted for more than 1 hour under aqueous conditions, without a known 

nucleophile capable of forming a labile MeQM adduct and extending the lifetime of 

MeQM (Figure 5.4).   
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Table 5.2. Reaction conditions without a DNA nucleophile expected to produce a 
maximum amount of MeQM-H2O and a minimum amount of MeQM-βME. 

Stock Solution Volume to Add 
(µL) 

Final Concentration 
(mM) 

Final Volume 
(µL) 

100 mM MOPS pH 7 25 50  

H2O 15   

50 mM Phenol 
in H2O 10 5  

100 mM MOPS pH 7 25   

40 mM 4-MeBrQMP     
in CH3CN 5 2  

2.5 M KF                      
in H2O 20 500 100 

Trapping:       
600 mM βME               

in 50 mM MOPS pH 7 20 100 120 

 

 

Figure 5.4. HPLC chromatogram from the reaction detailed in Table 5.2.  The 
reaction was held for 1 hour at 37 °C after KF initiation of MeQM and for another 24 
hours at 37 °C after addition of βME.  HPLC analysis used a linear gradient of 5 – 
30% CH3CN in TEAA (10 mM, pH 5). 
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A series of control (lacking DNA related nucleophiles) experiments were then 

carried out with the goal of determining the amount of time necessary for MeQM to 

form from 4-MeBrQMP (Δt1) and for βME to react with and trap any free MeQM 

(Δt2).  The amount of time between KF initiation of MeQM and βME addition was 

varied between 0 minutes and 2 hours.  MeQM-βME formation was detected for each 

time point, suggesting that MeQM or 4-MeBrQMP persists for at least 2 hours in 

solution.  Furthermore, these experiments revealed that only a fraction of the expected 

200 nmol of MeQM-H2O and MeQM-βME was being detected.  The experiments 

averaged 63 nmol MeQM-H2O and MeQM-βME, combined, which is only a 31% 

yield based on 4-MeBrQMP.  Varying a number of reaction variables, including KF 

concentration, βME concentration, CH3CN concentration, and the presence of phenol, 

failed to affect the yield of the two MeQM adducts or the persistence of MeQM.   

 One possible explanation for the apparent persistence of MeQM was that one, 

or both, of MeQM-H2O and MeQM-βME formed reversibly.  Three experiments 

were conducted that demonstrated that both adducts were irreversible and stable 

under the βME trapping conditions.  The first experiment tested the stability of 

MeQM-H2O in the βME trapping conditions by including it at 2 mM as a replacement 

for an equal amount of 4-MeBrQMP.  The mixture was held at 37 °C for 66.5 hours 

prior to HPLC analysis (Figure 5.5).  There was no detected formation of MeQM-

βME, which would have formed had MeQM-H2O regenerated the active MeQM. 
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Figure 5.5. HPLC chromatogram of the MeQM-H2O stability test.  MeQM-H2O was 
added at 2 mM (100% theoretical yield) to 4.2% aqueous CH3CN containing 50 mM 
MOPS pH 7, 5 mM phenol, 4 mM in nucleotides (nts) calf thymus DNA (ctDNA), 
500 mM KF, and 100 mM βME.  The reaction was held for 66.5 hours at 37 °C prior 
to HPLC analysis using a linear gradient of 5 – 30% CH3CN in TEAA (10 mM, pH 
5).  MeQM-H2O co-elutes with ctDNA, leading to the broad base of the peak at tr = 
23 minutes. 

 The second experiment tested the stability of MeQM-βME in the βME 

trapping conditions by including it at 2 mM as a replacement for an equal amount of 

4-MeBrQMP. The mixture was held at 37 °C for 68.5 hours prior to HPLC analysis 

(Figure 5.6).  Although a small amount of ctDNA did elute at the expected tr of 

MeQM-H2O, there was no significant formation of MeQM-H2O which would have 

been accompanied by a corresponding decrease in the amount of MeQM-βME from 

its regeneration of the active MeQM.  These two experiments also show that there is 

no interconversion between MeQM-H2O and MeQM-βME due to nucleophilic attack 

of βME or H2O, respectively.  
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Figure 5.6. HPLC chromatogram of the MeQM-βME stability test.  MeQM-βME 
was added at 2 mM (100% theoretical yield) to 4.2% aqueous CH3CN containing 50 
mM MOPS pH 7, 5 mM phenol, 4 mM in nucleotides (nts) calf thymus DNA 
(ctDNA), and 500 mM KF.  The reaction was held for 68.5 hours at 37 °C prior to 
HPLC analysis using a linear gradient of 5 – 30% CH3CN in TEAA (10 mM, pH 5). 

 The third experiment removed any potential MeQM source (4-MeBrQMP, 

MeQM-H2O, or MeQM-βME) from the above stability tests.  This experiment tested 

if ctDNA impurities or βME side-products (such as thiol dimers) would obscure any 

of the compounds of interest (MeQM-βME, MeQM-H2O, or phenol).  After the 

mixture was incubated at 37 °C for 70 hours, there were no compounds detected by 

HPLC at the tr of MeQM-βME (40 min) or phenol (labeled).  Calf thymus DNA, 

however, eluted at the tr of MeQM-H2O (23 min), but this would increase the 

observed yield of MeQM-H2O and would not explain the low yields.  This result 

provides evidence that the HPLC signals are not false positives from an impurity in 
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the reaction mixture or any side-reactions occurring with βME, as observed at tr = 10 

minutes (Figure 5.7). 

 

Figure 5.7. HPLC chromatogram of the stability test without a potential MeQM 
source. A 4.2% aqueous CH3CN solution containing 50 mM MOPS pH 7, 5 mM 
phenol, 4 mM in nucleotides (nts) calf thymus DNA (ctDNA), 500 mM KF, and 100 
mM βME was held for 70 hours at 37 °C prior to HPLC analysis using a linear 
gradient of 5 – 30% CH3CN in TEAA (10 mM, pH 5). 

 Next, the reaction vessel was varied to determine if this affected the 

persistence of MeQM or the yield of MeQM-H2O and MeQM-βME.  The previous 

experiments were carried out in polypropylene vials (1.5 mL).  The precursor 4-

MeBrQMP may interact more strongly with this plastic reaction vessel than a glass 

reaction vessel, sequestering it from reacting with the available H2O and βME.  To 

test glass reaction vessels, a 600 µL auto-sampler brown glass vial was fitted with a 

rubber septa.  Two identical reactions in which KF was added after βME to yield a 

maximum amount of MeQM adducts were used to compare the yield of MeQM 
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adducts between the plastic and glass reaction vessels (Table 5.3).  The reaction in 

the glass vessel resulted in 51% increase in the amount of MeQM-H2O and MeQM-

βME formed (175 nmol vs. 74 nmol) and 87.5% of the maximum yield (200 nmol) 

based on 4-MeBrQMP.  It was also discovered that shaking the reaction, as opposed 

to floating in a water bath, had a more dramatic effect on the yield of both adducts 

when reaction conditions consisted of 4 hours in between KF initiation of MeQM and 

addition of βME (Δt1) (Table 5.4).  The combined total of MeQM-H2O and MeQM-

βME increased 20% from 79 nmol to 120 nmol.  Furthermore, shaking with the glass 

vessel increased the combined yield of MeQM-H2O and MeQM-βME by 12% over 

shaking the plastic reaction vessel (144 nmol vs. 120 nmol).  These results suggest 

that better mixing of the reaction solution is key to obtaining the maximum recovery 

of MeQM adducts.  A change of reaction temperature from 37 °C to room 

temperature (20 – 25 °C) was also needed because the shaking device was on the 

benchtop.  
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Table 5.3. Reaction conditions used to compare the effect of reaction vessel on the 
persistence of MeQM and subsequent formation of MeQM-βME.  The reactions were 
carried out in a polypropylene vial (1.5 mL) and a glass auto-sampler vial (600 µL) at 
37 °C for 24 hours with no agitation after the initial mixing. 

Stock Solution Volume to Add 
(µL) 

Final Concentration 
(mM) 

Final Volume 
(µL) 

100 mM MOPS pH 7 10 8.3  

H2O 40   

CH3CN 15   

50 mM Phenol 
in H2O 10 4.2  

40 mM 4-MeBrQMP 
in CH3CN 5 1.7  

600 mM βME 
in 50 mM MOPS pH 7 20 100  

2.5 M KF 
in H2O 20 416.7 120 

Table 5.4. Reaction conditions used to compare the effect of shaking the reaction 
vessel on the persistence of MeQM and subsequent formation of MeQM-βME.  The 
reactions were carried out in a polypropylene vial (1.5 mL) and a glass auto-sampler 
vial (600 µL) at room temperature for 4 hours after KF initiation (Δt1) followed by 
addition of βME and no agitation at 37 °C for 24 hours (Δt2). 

Stock Solution Volume to Add 
(µL) 

Final Concentration 
(mM) 

Final Volume 
(µL) 

100 mM MOPS pH 7 10 10  

H2O 40   

CH3CN 15   

50 mM Phenol 
in H2O 10 5  

40 mM 4-MeBrQMP 
in CH3CN 5 2  

2.5 M KF 
in H2O 20 500 100 

Trapping:       

600 mM βME 
in 50 mM MOPS pH 7 20 100 120 
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Since the reaction conditions were changed significantly from the earlier 

studies (Table 5.2), a new control experiment was needed to measure the persistence 

of MeQM without the presence of DNA (Table 5.5).  Again, the aging time between 

KF initiation (Δt1) of MeQM and addition of the βME trap was varied between 0 – 24 

hours.  The subsequent formation of MeQM-βME was measured to quantify the 

persistence of MeQM or 4-MeBrQMP.  During this time, the reaction was shaken in 

the glass vessel at room temperature.  After βME addition, the reaction was kept in a 

water bath at 37 °C for 24 hours (Δt2) and subsequently analyzed by HPLC.  MeQM-

βME was observed to form after all reaction times (Δt1) of up to 2 hours, suggesting 

that MeQM or 4-MeBrQMP still persisted in solution as MeQM-βME has been 

shown to only form with MeQM.  

Table 5.5. Reaction conditions for the control experiment which measures the 
persistence of MeQM or 4-MeBrQMP in solution in the absence of DNA.  Reaction 
was shaken at room temperature after KF initiation of MeQM for 0 - 24 hours (Δt1) 
and was held at 37 °C for 24 hours after addition of βME (Δt2). 

Stock Solution Volume to Add 
(µL) 

Final Concentration 
(mM) 

Final Volume 
(µL) 

100 mM MOPS pH 7 10 10  

H2O 30   

CH3CN 25   

50 mM Phenol 
in H2O 10 5  

40 mM 4-MeBrQMP     
in CH3CN 5 2  

2.5 M KF                      
in H2O 20 500 100 

Trapping:       

pure βME 10 1290 110 
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Once it was determined that glass reaction vessels resulted in a higher yield of 

MeQM adducts, a more permanent solution than the septa capped auto-sampler vial 

was needed.  Glass Reacti-vials were the practical choice as they can use stir bars, can 

be stirred in the warm room at 37 °C, and they can accommodate a number of 

reaction volumes (0.3 mL and 5 mL vials).  All of the following reactions use Reacti-

vials as the reaction vessel. 

When ctDNA was introduced into the above reactions, HPLC analysis 

revealed that it co-elutes with MeQM-H2O, obscuring the actual amount of MeQM-

H2O in solution (Figure 5.8).  The broad peak at tr = 21 minutes was confirmed to be 

ctDNA by its λmax (259 nm) and it matches the tr of a prepared standard of only 

ctDNA and the reaction solvents. 
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Figure 5.8. Example HPLC chromatogram of the βME trapping reaction detailed in 
Table 5.4, including ctDNA at 4 mM nts.  The reaction was stirred for 14 hours at r.t. 
after KF initiation of MeQM (Δt1) followed by stirring for 4 hours at 37 °C after βME 
addition (Δt2).  HPLC analysis used a linear gradient of 5 – 30% CH3CN in TEAA 
(10 mM, pH 5). 

As a simple solution to ctDNA co-eluting with MeQM-H2O, different aqueous 

phases were tested to observe any effect of the tr of ctDNA so that it would not 

overlap with any of the compounds of interest (phenol, MeQM-H2O, and MeQM-

βME).  The original aqueous phase was 10 mM TEAA pH 5 and the first new 

aqueous phase tested was 10 mM TEAA pH 4 since the elution of DNA is pH 

dependant.  This resulted in an increased tr (23 minutes) for ctDNA that still 

overlapped with MeQM-H2O.  The next aqueous phase tested was 10 mM ammonium 

formate pH 6.9.  The ctDNA now eluted earlier (17 minutes) and did not overlap with 

MeQM-H2O.  Unfortunately, the ctDNA now co-eluted with phenol.  The next 

aqueous phase tested was 0.1% aqueous trifluoroacetic acid (TFA), with the 
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expectation that the lower pH (~2) would increase the tr beyond MeQM-H2O, but not 

to MeQM-βME.  Using this aqueous phase, the ctDNA did not elute during the 

course of the gradient as it precipitated out of solution on the column prior to the UV-

Vis detector.  One last aqueous phase tested was 10 mM ammonium formate pH 3 to 

avoid precipitation of ctDNA, but the ctDNA once again co-eluted with MeQM-H2O.  

The only aqueous phase (in the pH range tolerated by the C18 silica) to clearly 

resolve the three compounds of interest was 0.1% TFA.  To avoid precipitating DNA 

on the HPLC column, a work-up of the reaction consisting of an addition of 100 µL 

0.1% TFA followed by filtration (syringe filter, 0.2 µm) and an addition of another 

aliquot of 0.1% TFA (50 µL) to push the remainder of the reaction through the filter 

was utilized when 0.1% TFA was the aqueous phase.  The drop in pH upon addition 

of 0.1% TFA caused the ctDNA to precipitate out of solution.  After filtration, the 

ctDNA was removed from the subsequent HPLC analysis allowing for a cleaner 

HPLC chromatogram. 

An attempt to determine the mechanism behind the surprising persistence of 

MeQM in aqueous conditions analyzed the reaction prior to the addition of βME.  

The hypothesis was that an intermediate was formed with the active MeQM that 

could then reverse to form MeQM or be substituted directly by βME to form MeQM-

βME.  Either option would give the impression of MeQM persisting for hours in 

solution.  The reaction from Table 5.5 was analyzed by HPLC after 1 – 2.5 hours 

after KF activation of MeQM (Δt1), prior to βME addition.  A new compound was 

observed (tr = 15 min) that does not co-elute with any previous compound and has a 

unique UV-Vis absorbance (λmax = 287 nm) which suggested that it was a previously 
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unobserved MeQM adduct.  Multiple reactions without ctDNA and βME were carried 

out to allow for the collection of this new compound.  The compound proved stable 

enough in CD3CN for 1H NMR (Figure 5.9) and ESI+-MS (Figure 5.10). 

 

Figure 5.9. 1H NMR of the proposed MeQM-MOPS adduct (5.10) in CD3CN at 500 
MHz.  The methylene protons from the MOPS fragment were observed between 2.5 – 
4 ppm, but the specific identification was ambiguous. 

1H NMR supports the claim that this is a MeQM adduct due to the 

characteristic three aromatic protons (H3, H5, H6 - 6.93 - 7.20 ppm), methylene 

bridge (H7 - 4.47 ppm), and a peak possibly corresponding to the 4-Me group (H4′ - 

2.28 ppm).  Due to H2O in the NMR sample, integration of the numerous aliphatic 

protons was not possible.  The chemical shifts of the aromatic protons and the 

methylene bridge do not match any of the previously mentioned MeQM adducts, such 

as MeQM-H2O (H7 = 4.61 ppm) or MeQM-βME (H7 = 3.70 ppm).  The possibility 
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existed that the compound was the deprotected, but not debrominated, 4-MeBrQMP.  

This theory was disproved by ESI+-MS as there were no fragments characteristic of a 

bromine containing compound or of the deprotected and debrominated compound.  

There was, however, a fragment corresponding to a MeQM-MOPS adduct (m/z 

330.16 exp. vs. 330.14 calc.) and free MOPS (m/z 210.10 exp. vs. 210.08 calc.) 

(Figure 5.10).   

 

Figure 5.10. ESI+-MS of MeQM-MOPS (5.10).  The parent compound (5.10, M+) 
and the MOPS fragment are detected. 

Additional evidence supporting this structure was the disappearance of the 

compound at tr = 15 min when only MOPS is removed from the reaction.  

Unfortunately, attempts to recover the compound from the NMR solvent (CD3CN) 

were unsuccessful.  A majority of the compound eluted with the injection volume 

while in 100% CD3CN and when the sample was diluted to 50% CD3CN with water.  
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A portion of the NMR sample (30 µL in CD3CN) was subjected to the standard βME 

trapping conditions (70 µL water and 10 µL βME stirring for 4 hrs at 37 °C) to test 

the reversibility of the new MeQM adduct.  There was no observed MeQM-βME 

adduct, but due to the small amount of starting material in the NMR sample this result 

may be inconclusive.  Further testing of this adduct was not a priority, but provided 

enough reason to remove the MOPS buffer from the reaction and use a less 

nucleophilic buffer in its place.   

Upon the discovery that MOPS reacts with MeQM discovery, it was thought 

that this product was contributing to the persistence of MeQM. To investigate this 

claim, the βME trapping experiment was repeated by exchanging the MOPS buffer 

with H2O or potassium phosphate (50 mM, pH 7 stock solution).  Each reaction was 

incubated at room temperature for 2 hours after KF initiation of MeQM (Δt1) and 

another 4 hours at 37 °C after the βME addition to allow for the complete trapping of 

any reversible MeQM (Δt2). These conditions previously resulted in the formation of 

both MeQM-H2O and MeQM-βME to compare the three solvents (MOPS, H2O, and 

phosphate).  The reaction that included MOPS had the most MeQM-βME, accounting 

for 86% of the total adducts formed, while the reaction with H2O resulted in 17% 

MeQM-βME and the potassium phosphate reaction resulted in 10% MeQM-βME.  

Potassium phosphate was chosen to replace MOPS as the buffer in the following 

trapping studies based on this data. 

With the replacement of MOPS with potassium phosphate, the ability of 

ctDNA to extend the effective lifetime of MeQM was again investigated.  The 

reaction conditions followed the previous βME trapping experiments and consisted of 



 

 140 
 

a 30% aqueous CH3CN solution with phenol (internal standard), ctDNA (nucleophilic 

target), 4-MeBrQMP (MeQM source), and KF (MeQM initiator) (Table 5.6).  This 

solution was stirred at 37 °C for 30 minutes (Δt1) to allow for reaction with water or 

DNA prior to addition of βME (10 µL, 1.29 M final concentration).  The solution 

continued to stir at 37 °C for 4 hours (Δt2) to allow for full transfer of reversible 

MeQM from DNA to βME prior to 0.1% TFA work-up and HPLC analysis.  These 

conditions would allow for the capture of the initial MeQM by ctDNA and its 

subsequent release and trap by βME.  A blank reaction, without the ctDNA, was also 

analyzed by HPLC to quantify the effect of ctDNA on the persistence of MeQM, as 

measured by MeQM-βME.  The reaction containing ctDNA yielded a 2.5-fold 

increase in MeQM-βME over the blank reaction (35 nmol vs. 14 nmol) (Figure 5.11).  

In order to put this result in context, a number of DNA nucleophiles were also 

studied.  These included nucleosides, shorter dsDNA, and shorter ssDNA. 

Table 5.6. Reaction conditions for the comparison between the ability of various 
nucleoside based nucleophiles to extend the lifetime of MeQM in solution using 
potassium phosphate as a buffer.  ctDNA, OD1, OD2, OD1/OD3, and dNs were 
investigated at a final concentration of 4 mM in nucleotides. 

Stock Solution Volume to Add 
(µL) 

Final Concentration 
(mM) 

Final Volume 
(µL) 

H2O 15   

CH3CN 25   

50 mM Phenol            
in H2O 10 5  

16 mM nts DNA 
in 50 mM potassium 

phosphate pH 7 
25 4 (in nts)  

25 (phosphate)  

40 mM 4-MeBrQMP      
in CH3CN 5 2  

2.5 M KF                       
in H2O 20 500 100 

Trapping:       

pure βME 10 1290 110 



 

 141 
 

 

 

Figure 5.11. Comparing the formation of MeQM-βME in the presence of various 
nucleoside based nucleophiles.  Each reaction was stirred at 37 °C for 0.5 hr after KF 
initiation of MeQM (Δt1) and at 37 °C for 4 hr after βME addition (Δt2).  OD1 is an 
average of two reactions while the other data points are from single reactions.  The 
blank reaction does not contain nucleoside based nucleophiles. 

Previous studies have shown that dA will extend the effective lifetime of a 

bisQM in solution,61 and has been chosen as a positive control in place of ctDNA in 

the reaction above (Table 5.6).  The effect is observed due to the reversibility of the 

QM-dA N1 adduct and its ability to efficiently capture and release QM.  Formation of 

a reversible adduct, however, is not the only reason for success in this system as the 

reversible adducts of dG N7 and dC N3 failed to extend the lifetime of the bisQM 

under equivalent conditions that were successful with dA N1.101 Although dC N3 

forms a reversible adduct with o-QM, it is not as good of a nucleophile as dA N1 and 

cannot efficiently trap and release a bisQM under aqueous conditions.101 While dA 
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N1 and dC N3 form adducts at high initial yields with o-QM, dC N3 reacted slower, 

reaching a maximum yield after 10 hours versus 30 minutes for dA N1.58 The o-QM 

is also released slower by dC N3, when measured by the half-life of QM-dC N3 

(approx. 50 hours), than by dA N1 (approx. 4 hours).  The adduct formed with dG N7 

only forms in low yields and the reverse reaction is in direct competition with 

deglycosylation leading to the irreversible guanine N7 adduct.58 As the other two dG 

adducts (N1 and N2) are irreversible, dG also does not effectively trap and release an 

o-QM under aqueous conditions.101  

Due to its ability to extend the lifetime of o-QM, dA was chosen as a positive 

control with βME trapping (Table 5.6).  For comparison to ctDNA, dA also utilized a 

concentration of 4 mM and the same reaction times as the ctDNA study.  The reaction 

with dA resulted in a 7.2-fold increase of MeQM-βME over the blank reaction (101 

nmol vs. 14 nmol) and a 2.9-fold increase of MeQM-βME over the ctDNA reaction 

(101 nmol vs. 35 nmol) (Figure 5.11).  This result confirmed that dA is a much more 

effective nucleophile for extending the lifetime of MeQM.  An eqimolar mixture of 

each nucleoside (dA, dG, dC, and dT) was studied also at a total nucleoside 

concentration of 4 mM.  This reaction was to test if dA was the major contributing 

nucleoside to the increase in effective lifetime of MeQM.  The equimolar mixture of 

dNs resulted in a 3.3-fold increase of MeQM-βME over the blank reaction (46 nmol 

vs. 14 nmol) and a 1.3-fold increase of MeQM-βME over the ctDNA reaction (46 

nmol vs. 35 nmol) (Figure 5.11).  The equimolar mixture of dNs was 46% as 

effective as just dA suggesting that dG and dC also increase the lifetime of MeQM in 

solution, but not as effectively as dA.  If dA were the only contributing nucleoside, 
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the equimolar mixture would be 25% effective as just dA.  For each of these 

reactions, most of the unaccounted MeQM was trapped as MeQM-H2O (Appendix 

D.9).  The remaining MeQM was most likely trapped by the irreversible dN 

nucleophiles (dA N6, dG N1, and dG N2) or polymerized into dimers or trimers.  

Denatured ctDNA was used as the source of ssDNA to directly compare the 

contribution of ssDNA versus dsDNA to extend the effective lifetime of MeQM.  The 

ctDNA was denatured by heating the ctDNA stock solution to 90 °C for 5 minutes 

followed by quick cooling in an ice bath.  The ssDNA is expected to more effectively 

increase the lifetime of MeQM by providing access to the dA N1 position 

unencumbered by hydrogen bonding found in dsDNA.  The denatured ctDNA, 

however, resulted in a 0.8-fold decrease in the formation of MeQM-βME when 

compared to the non-denatured (annealed) ctDNA (29 nmol vs. 35 nmol) (Figure 

5.11, Appendix D.9 for MeQM-H2O).  The most likely reason for similar results with 

annealed and denatured ctDNA is that the denaturing procedure was not effective, 

due to the length of ctDNA.  To test this hypothesis, a shorter (40 base pairs) 

oligonucleotide was studied in its ssDNA form and annealed with its complementary 

strand for its dsDNA form (Figure 5.12).  The new oligonucleotide, OD1, consisted 

of 40 nucleotides (17.5% A, 30.0% T, 37.5% G, 15.0% C).  The exact sequence had 

no significance, merely that there was not a lack of any one base, it did not form any 

stable secondary structures (hairpin) at 37 °C, and the melting temperature of its 

duplex DNA was above 37 °C (calculated at 69 °C as OD1/OD3) to limit the 

presence of ssDNA in future dsDNA studies.  OD1 met these criteria as the ssDNA 

and was conveniently available as excess material from Dr. Jen Buss from an 



 

 144 
 

unrelated project (as JA2-62 REV).  The reaction above (Table 5.6) used 4 mM nts 

OD1 and yielded a 5.6-fold increase in MeQM-βME compared to the reaction 

without nucleosides (79 nmol, vs. 14 nmol) and an increase of 2.7-fold compared to 

the denatured ctDNA (79 nmol vs. 29 nmol) (Figure 5.11, Appendix D.9 for MeQM-

H2O).  To test if the nucleotide composition of OD1 contributed to the increase in 

effective lifetime of MeQM, a second oligonucleotide (OD2) was purchased (Figure 

5.12).  OD2 also consisted of 40 nucleotides (5.0% A, 37.5% T, 40% G, 17.5% C) 

and featured 12.5% less dA than OD1, previously determined to be the major 

contributing nucleoside to extending the lifetime of MeQM (dA vs. dN).  Use of OD2 

did yield a 4.5-fold increase in MeQM-βME when compared to the reaction without 

nucleosides (63 nmol vs. 14 nmol), but a 0.8-fold decrease when compared to OD1 

(63 nmol vs. 79 nmol), suggesting that the composition of ssDNA does correlate to its 

ability to extend the lifetime of MeQM in solution (Figure 5.11).  OD2 was still 2.2-

fold more effective in extending the lifetime of MeQM than denatured ctDNA (63 

nmol vs. 29 nmol), despite the higher dA content of ctDNA (55% A:T).107 This 

further shows that denatured ctDNA is not an effective model of ssDNA. 

 

Figure 5.12. Synthesized oligonucleotide sequences used as model of dsDNA and 
ssDNA.  OD1 and OD3 are complementary. 

OD1 was annealed with its complementary strand OD3 to form OD1/OD3 for 

direct comparison to ctDNA.  The comparison will again be based on measuring the 
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formation of MeQM-βME as a way to quantify the release of MeQM from DNA.  

The shorter OD1/OD3 is expected to have a greater effect on the lifetime of MeQM 

than ctDNA, based on the results of the ssDNA studies above.  The oligonucleotides 

OD1 and OD3 were annealed (OD1/OD3) in 50 mM potassium phosphate, pH 7 at 

90 °C for 5 minutes followed by slow cooling (overnight) to room temperature.  

OD1/OD3 was used in the reaction detailed in Table 5.9 at 4 mM nts and resulted in 

a 4.0-fold increase in the formation MeQM-βME compared to the reaction without 

nucleosides (56 nmol vs. 14 nmol) (Figure 5.11, Appendix D.9 for MeQM-H2O).  

OD1/OD3 was 0.7-fold less effective at extending the lifetime of MeQM than just 

OD1, which was expected as two of the positions capable of forming labile adducts 

with MeQM (dA N1 and dC N3) are occupied in OD1/OD3 due to hydrogen bond 

formation.  Most importantly, OD1/OD3 was 1.6-fold more effective at extending the 

lifetime of MeQM than ctDNA (56 nmol vs. 35 nmol of MeQM-βME).  Based on this 

result OD1/OD3 was used the standard dsDNA for the future experiments of MeQM 

trapping with βME, while OD3 will be the standard ssDNA for future experiments 

due to the increased percentage of dA compared to OD1 (30% vs. 17.5%). 

With a new standard dsDNA (OD1/OD3) and new reaction conditions 

(potassium phosphate in place of MOPS), the release of MeQM from dsDNA needed 

to be reexamined.  Previous studies determined that a trapping time of 4 hours after 

βME addition (Δt2) was sufficient to allow for the full transfer of reversible MeQM 

from ctDNA to βME.  The subsequent formation of MeQM-βME was measured 

while varying the time after βME addition (Δt2) from 0 – 24 hours.  Unfortunately, 

these experiments included MOPS buffer, which contributed to the enhanced 
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persistence of MeQM in solution.  The new experiment used the conditions detailed 

in Table 5.6 to quantify the release of MeQM from OD1/OD3 as measured by 

formation of MeQM-βME.  This information was necessary to determine the time 

needed after the addition of βME (Δt2) for the complete release of MeQM from 

dsDNA for use in future experiments that vary the aging time (Δt1).  Each reaction 

was stirred at 37 °C for 30 minutes after KF initiation of MeQM (Δt1) followed by 

βME addition.  The reaction was then stirred at 37 °C for 0 – 48 hours (Δt2) prior to 

work-up and HPLC analysis.  The maximum amount of MeQM-βME was observed at 

24 hours after βME addition, although the yield may have reached maximum as early 

as 1 hour, but it is difficult to tell because of the error in the measurements (Figure 

5.13).  Future experiments consistently used 24 hours between βME addition and 

work-up to ensure that all of the MeQM was released from the target DNA and for 

convenience of the analysis. 
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Figure 5.13. Measuring the release of MeQM from OD1/OD3 by quantifying the 
amount of MeQM-βME formed.  The data is best fit to a logarithmic trendline only to 
indicate product trends.  Data points prior to 16 hours are an average of three 
reactions.  Data points for 16, 24, and 48 hours are single reactions.  The error bars 
are based on the standard deviation of the data.  The amount of MeQM-H2O formed 
is shown in Appendix D.10. 

An issue with the new target dsDNA (OD1/OD3) was that, unlike ctDNA, it 

did not precipitate during the work-up prior to HPLC analysis.  While phenol 

(internal standard) and MeQM-βME were still well resolved by HPLC, OD1/OD3 

co-eluted with MeQM-H2O (Figure 5.14).  Previous attempts to alter the tr of ctDNA 

determined that higher pH elution buffers decreased the tr of DNA.  Specifically, use 

of ammonium formate (10 mM, pH 6.9) as the elution buffer resulted in both MeQM-

H2O and MeQM-βME to be well resolved.  Unfortunately, phenol was obscured by 

OD1/OD3.  The use of a new internal standard that did not co-elute with any other 

compound in the chromatogram was explored. The compound m-cresol differed from 

phenol only in the addition of a methyl group meta to the phenolic oxygen.  This 

difference was enough to alter the tr of m-cresol (31 minutes) so that it did not co-
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elute with any other compound in the reaction when ammonium formate (10 mM, pH 

6.9) was used as the elution buffer.   Therefore, m-cresol was chosen as the internal 

standard for the following experiments with the βME trapping of MeQM (Figure 

5.15). 

  

Figure 5.14. HPLC chromatogram of the reaction detailed in Table 5.6 with 
OD1/OD3 as the DNA nucleophile.  The reaction was stirred at 37 °C for 30 minutes 
after KF initiation of MeQM (Δt1) and 4 hours after βME addition (Δt2).  HPLC 
analysis used a linear gradient of 5 – 30% CH3CN in 0.1% TFA. 
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Figure 5.15. HPLC chromatogram of the reaction detailed in Table 5.7 with 
OD1/OD3 as the DNA nucleophile.  The reaction was stirred at 37 °C for 30 minutes 
after KF initiation of MeQM (Δt1) and 24 hours after βME addition (Δt2).  
Unidentified peaks are mostly βME by-products. HPLC analysis used a linear 
gradient of 5 – 30% CH3CN in ammonium formate (10 mM, pH 6.9). 

With a new internal standard, experiments analyzing the release of MeQM 

from various nucleoside based nucleophiles by measuring MeQM-βME formation 

were undertaken.  The reaction conditions consisted of a 30% aqueous CH3CN 

solution with 5 mM m-cresol, 4 mM nts nucleophile (OD1/OD3 (dsDNA), OD3 

(ssDNA), dA (dN), or no DNA (blank)), 2 mM 4-MeBrQMP, and 500 mM KF 

(Table 5.7).  TFA was removed from the work-up as it was no longer needed to 

precipitate the DNA.  In its place 100 µL of 10 mM ammonium formate pH 6.9 was 

added to the reaction followed by filtration (0.2 µm) and HPLC analysis.  The new 

work-up produced a white precipitate which is observed with dsDNA, ssDNA, dA, 
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and in the blank reaction.  It is unknown what the precipitate is, but it does not appear 

to be any of the compounds of interest (m-cresol, MeQM-H2O, or MeQM-βME).   

Table 5.7. Comparison between the ability of various nucleoside based nucleophiles 
to extend the lifetime of MeQM in solution using m-cresol as the internal standard 
instead of the previously used phenol. OD1/OD3, OD3, and dA were investigated at 
a final concentration of 4 mM in nucleotides in 25 mM potassium phosphate. 

Stock Solution Volume to Add 
(µL) 

Final Concentration 
(mM) 

Final Volume 
(µL) 

H2O 15   

CH3CN 25   

50 mM m-Cresol            
in H2O 10 5  

16 mM nts DNA 
in 50 mM potassium 

phosphate pH 7 
25 4 (in nts) 

25 (phosphate)  

40 mM 4-MeBrQMP      
in CH3CN 5 2  

2.5 M KF                       
in H2O 20 500 100 

Trapping:       

pure βME 10 1290 110 

 

The time points were chosen to give a profile of MeQM release from various 

nucleoside based nucleophiles by measuring the formation of MeQM-βME.  Each 

time point was an individual 110 µL reaction stirred in a 0.3 mL Reacti-vial at 37 °C. 

The time points after KF initiation of MeQM (aging, Δt1) were 0.5, 0.75, 1, 2, and 4 

hours, while the time after βME addition (trapping, Δt2) was a constant 24 hours.  The 

beginning Δt1 time point (0.5 hr) was chosen based on the length of time necessary 

for the BrQMP (1.40) to fully convert to the active QM intermediate.58 As MeQM is 

more reactive than QM, this should be sufficient time for the initial MeQM to be 
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captured by DNA and not by βME.  The final Δt1 time point (4 hr) was chosen 

because a similar electron-rich QM-dA N1 adduct was observed to have a half-life of 

less than 4 hours.80 As this is the major source of released MeQM in the experiment, 

it was anticipated that MeQM release after 4 hours would be insignificant.  In 

addition to the reactions without nucleosides, dA, OD3, and OD1/OD3 were present 

in reactions at a concentration of 4 mM nts (Figure 5.16). 

 

Figure 5.16. Measuring the formation of MeQM-βME in the presence of various 
DNA based nucleophiles. Each reaction is stirred at 37 °C for the indicated time after 
KF initiation (Δt1) and stirred at 37 °C for 24 hours after addition of βME (Δt2).  The 
data is best fit to an exponential trendline only to indicate product trends.  Each data 
point is an average of reactions repeated in triplicate with the error based on the 
standard deviation. 
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 For this assay, an increase in the formation of MeQM-βME can be correlated 

to an increase in the effective lifetime of MeQM in solution.  Immediately obvious is 

the drastic decrease in yield of MeQM-βME at 30 minutes after KF activation of 

MeQM (19 nmol) when compared to the previous assay conditions (128 nmol, 

Figure 5.13 – 24 hr after βME addition).  The cause of this discrepancy is unknown, 

but may be due to the new ammonium formate based work-up and eluting buffer (10 

mM ammonium formate pH 6.9) in combination with the new internal standard (m-

cresol) discussed earlier as these were the only conditions altered between the 

experiments shown in Figures 5.13 and 5.16.  It is also apparent that over shorter 

periods of KF initiation of MeQM (Δt1 < 1 hr), dA and OD3 more than double the 

amount of MeQM that persists in solution.  OD1/OD3, however, does not effect the 

lifetime of MeQM in solution when compared to the blank (no nucleoside based 

nucleophiles) reaction. At 2 hours after KF activation of MeQM (Δt1), only OD3 

shows increased formation of MeQM-βME, but not to the extent of the earlier time 

points. 

The ability of dA and OD3 to apparently extend the lifetime of MeQM can be 

attributed to their reversible nucleotide adducts dA N1, dC N3, and dG N7. 

Meanwhile, OD1/OD3 does not appear to extend the lifetime of MeQM. This can be 

attributed to the dA N1 and dC N3 positions participating in hydrogen bonding, 

leaving only dG N7 available in the major groove to form reversible adducts with 

MeQM.  The dG N7 position, as previously discussed, does not efficiently capture 

and release MeQM due in part to the reverse reaction being in direct competition with 

deglycosylation leading to the irreversible MeQM-guanine N7.  This results in OD3 
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containing 83% of its bases capable of reversible alkylation (based on A, C, and G 

content), while OD1/OD3 only contains 26% of its bases capable of reversible 

alkylation (based on G content), but not the effective dA N1 position.  The threefold 

difference in available reversible alkylation positions should, at least partially, explain 

why OD3 is more effective at extending the lifetime of MeQM than OD1/OD3 

(Figure 5.16).  One problem with this reasoning is that dA should then be 

consistently better than OD3 at extending the lifetime of MeQM, but actually is 

equally effective after one hour.  More complex effects such as ssDNA secondary 

structures that sequester MeQM from the surrounding aqueous environment may 

provide a mechanism to increase the lifetime of MeQM.  The inability of dA to form 

these secondary structures could contribute to its decreased performance after one 

hour.  Additionally, proximate dA nucleotides in OD3 may better capture newly 

released MeQM while the monomeric dA nucleosides won’t have the same ability. 

 

5.3.  Summary. 

The goal of the previous studies was to, for the first time, quantify the release 

of MeQM from DNA.  The release of MeQM from nucleosides, ssDNA, and dsDNA 

was measured through the use of βME as a nucleophilic trap followed by HPLC 

analysis and quantification of the resulting βME and H2O adducts of MeQM.  The 

expectation was that the βME product would form in high yield initially and 

gradually decrease as MeQM was allowed more time to form irreversible adducts 

with H2O and the weaker nucleophiles of DNA. 
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During the βME trapping studies a number of variables have been adjusted to 

allow for the unobstructed reaction of MeQM first with DNA and later with βME to 

quantify the release of MeQM from DNA.  These adjustments have resulted in the 

removal of competing compounds (MOPS), changed the reaction vessel 

(polypropylene to glass), and introduced constant stirring of the reactions.  All of 

these adjustments lead to the near complete consumption of MeQM by both H2O and 

βME.  This was necessary to isolate the contribution of various forms of DNA 

towards extending the effective lifetime of MeQM.  Furthermore, HPLC conditions 

were optimized to ensure that the three compounds of interest (MeQM-H2O, MeQM-

βME, and m-cresol) were eluted fully resolved from each other or any reaction by-

products. 

 The effective lifetime of MeQM under aqueous conditions can be extended by 

the presence of either dA or a short ssDNA (OD3) with dA providing a larger initial 

effect (< 1 hr).  Somewhat surprisingly, a short dsDNA (OD1/OD3) appears to have 

no effect on the effective lifetime of MeQM under aqueous conditions.  However, 

their does seem to be contradicting data on the total yield of MeQM adducts from the 

experiments shown in Figures 5.13 and 5.16.  Specifically, the experiments with m-

cresol as the internal standard and ammonium formate (10 mM, pH 6.9) as the 

aqueous HPLC phase yield 15% of MeQM adducts as the experiments with phenol as 

the internal standard and 0.1% TFA as the aqueous HPLC phase.  Further analysis of 

the assay conditions, including possibly selecting a new internal standard and aqueous 

HPLC phase, may be needed to identify the mechanism behind the apparent 

differences in these results.   
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5.4.  Materials and Methods. 

Organic starting materials, reagents, and solvents were obtained commercially 

and used without further purification.  Silica gel used in the NaHSO4/SiO2 catalyst 

was grade 60 Å, <230 mesh and purchased from Fisher Scientific.  All CH3CN was 

HPLC grade purchased from Fisher Scientific.  UV-Vis spectroscopy was performed 

on a Hewlett Packard 8453 spectrophotometer.  OD1, OD2, and OD3 were purchased 

from Integrated DNA Technologies with “standard desalting” and were not further 

purified prior to use.  To form duplex DNA, OD1 and OD3 were dissolved in the 

indicated buffer, mixed, heated to 90 °C for 5 minutes and slowly cooled to room 

temperature over several hours. 

 

Synthesis of 2-(hydroxymethyl)-4-methylphenol (MeQM-H2O, 5.2).   

5-Methylsalicylaldehyde (0.809 g, 5.94 mmol) was dissolved in anhydrous THF (40.0 

mL), under N2 at 0 °C.  While stirring, a 1 M solution of BH3/THF (10.0 mL, 10.0 

mmol) was slowly added.  The reaction was stirred for 1.33 hr under N2 at 0 °C.  The 

reaction was slowly quenched by addition of 200 mL H2O and extracted with CH2Cl2 

(3 × 100 mL).  The organic layers were combined, washed with H2O (2 × 100 mL) 

and brine (3 × 100 mL), and dried with MgSO4.  The solvent was removed at reduced 

pressure and the remaining product was purified by chromatotron (1:1, hexanes: ethyl 

acetate) to yield a white crystalline solid (0.821 g, 100 % yield).  1H NMR (400 MHz, 

d4-methanol) δ 7.06 (d, J=2 Hz, 1H), 6.89 (dd, J=8, 2 Hz, 1H), 6.65 (d, J=8 Hz, 1H), 

4.61 (s, 2H), 2.23 (s, 3H).  13C NMR (500 MHz, d4-methanol) δ 154.1, 130.0, 129.8, 
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129.7, 128.4, 116.0, 61.4, 20.7. ESI+-MS: m/z 121.0627 (M + H – H2O)+.  Calcd for 

C8H9O+ (M + H – H2O)+: 121.0648.  m/z 241.1197 (2M + H – 2H2O)+.  Calcd for 

C16H17O2
+ (2M + H – 2H2O)+: 241.1223. m/z 361.1604 (3M + H – 3H2O)+.  Calcd for 

C24H25O3
+ (3M + H – 3H2O)+: 361.1798.  λmax = 223, 279 nm (diode array detector, 

17% CH3CN in ammonium formate, 8 mM, pH 6.9). 

 

 

Preparation of NaHSO4/SiO2 catalyst.104 NaHSO4 (6.9 g, 50 mmol) was dissolved 

in nanopure water (100 mL) at room temperature.  While stirring, <230 mesh silica 

gel (15 g) was added and the solution stirred at room temperature for 30 minutes.  

The water was evaporated under reduced pressure to yield a white powder.  The white 

powder was further dried in an oven at 120 °C for 2.5 hr and stored in a sealed 250 

mL round bottom flask at room temperature.   

 

Synthesis of 4-methyl-2-[bis[(2-hydroxyethyl)thio]methyl]phenol (5.9).104  

5-Methylsalicylaldehyde (1.37 g, 10.0 mmol) and β-mercaptoethanol (2.80 mL, 40.0 

mmol) were combined in a 50 mL round bottom flask with a magnetic stirrer.  

NaHSO4/SiO2 (2.01g, w/w 23 %) was added slowly over several minutes while 

stirring at room temperature.  As the reaction became more viscous an additional 1.00 

mL β-mercaptoethanol was added.  Once all of the NaHSO4/SiO2 was added, an 

additional 1.00 mL β-mercaptoethanol was added.  The reaction was immediately 

washed with petroleum ether (20 mL) and the organic layer was checked by TLC 

(3:1, hexanes:ethyl acetate), but showed no products.  The petroleum ether was 
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removed by pipette once the solid settled to the bottom of the flask and CHCl3 (10 

mL) was added to the reaction producing an opaque solution upon stirring.  TLC (3:1, 

hexanes:ethyl acetate) of the reaction mixture showed complete consumption of the 

starting material (5-methylsalicylaldehyde).  The reaction mixture was extracted by 

petroleum ether (3 × 20 mL) and the CHCl3 layer was saved.  An additional 20 mL 

CHCl3 was added to the CHCl3 layer and the combined solution was washed with 

H2O (2 × 20 mL), dried with Na2SO4, and evaporated under reduced pressure to yield 

a clear oil (1.73 g, 63.0 % crude yield).  The clear oil began to crystallize over several 

hours and the remaining solvent was removed overnight under vacuum.  1H NMR 

(400 MHz, CDCl3) δ 7.79 (s, 1H), 7.30 (d, J=1.4 Hz, 1H), 6.92 (dd, J= 1.4, 8.2 Hz, 

1H), 6.70 (d, J= 8.2 Hz, 1H), 5.50 (s, 1H), 3.76 (s, 2H), 3.70 (m, 4H), 2.81 (m, 2H), 

2.66 (m, 2H), 2.25 (s, 3H).  ESI+-MS: m/z 197.09 (M + H - βME)+.  Calcd for 

C10H13O2S+ (M + H - βME)+: 197.06.  m/z 257.10 (M - OH)+.  Calcd for C12H17O2S2
+ 

(M - H2O)+: 257.07.  m/z 297.09 (M + Na)+.  Calcd for C12H18NaO3S2
+ (M + Na)+: 

297.06. 

 

Synthesis of 4-methyl-2-[(2-hydroxyethylthio)methyl]phenol (MeQM-βME, 

5.3).105 The crude product generated above (5.9) (0.27 g, 0.98 mmol) was combined 

with 1,4-cyclohexadiene (0.09 mL, 0.95 mmol) in 1,2-dichloroethane (7 mL).  A 

suspension of AlCl3 in hexanes (0.10 mL, 0.96 M, 0.096 mmol) was added dropwise 

to the reaction solution while stirring under N2 at room temperature.  A color change 

in the reaction mixture from colorless to red/orange was observed, along with a 

precipitate formed within five minutes of the addition of AlCl3.  Within one hour, the 
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reaction solution changed from red/orange to yellow.  The reaction was monitored by 

TLC (2:1, hexanes:ethyl acetate) and 1H NMR (CD3CN) after a quick workup in 

which a 100 µL aliquot of the reaction solution was quenched slowly in a 1.5 mL 

Eppendorf with 200 µL H2O.  Additional CHCl3 (100 µL) was added and, after 

shaking, the organic phase was removed for analysis.  A second addition of AlCl3 in 

hexanes (0.90 mL, 0.96 M, 0.86 mmol) was added dropwise to the reaction after 5 

hours.  A color change from yellow to cloudy red was observed and the reaction was 

stirred under N2 at room temperature overnight.  A third addition of AlCl3 in hexanes 

(1.0 mL, 0.96 M, 0.96 mmol) was added dropwise to the reaction after 25.5 hours and 

a color change from yellow to dark red was observed.  The solution became a cloudy, 

dark brown color within 45 minutes.  The reaction was slowly quenched with H2O 

(20 mL) after 28 hours.  The quenched reaction was extracted with CHCl3 (3 × 20 

mL), washed with brine (3 × 20 mL), dried with MgSO4, and evaporated under 

reduced pressure to yield a yellow/brown oil, which changed color to a brown/black 

oil while stored at 0 °C.  The brown/black oil was purified by silica gel radial 

chromatography (chromatotron) using hexanes, then 2:1 hexanes:ethyl acetate with 

<1 % methanol, and finally ethyl acetate with <1 % methanol.  The second band 

contained the product, but was not pure by 1H NMR (CD3CN) (32 mg, 16 % crude 

yield).  The product was further purified by analytical reverse-phase C18 HPLC using 

a 3 - 25% gradient of CH3CN in 0.1% aqueous TFA over 76 minutes (1 mL/min).  

The product 5.3 was collected (tr = 50 - 60 minutes) and lyophilized to yield a clear 

oil (13 mg, 6.7 % yield).  1H NMR (400 MHz, d3-acetonitrile) δ 6.99 (s, 1H), 6.92 (d, 

J=8.4 Hz, 1H), 6.71 (d, J=8.4 Hz, 1H), 3.71 (s, 2H), 3.64 (t, J=6.4 Hz, 2H), 2.57 (t, 



 

 159 
 

J=6.4 Hz, 2H), 2.22 (s, 3H).  13C NMR (500 MHz, d3-acetonitrile) δ 154.2, 132.3, 

130.1, 130.0, 126.1, 116.9, 62.6, 35.2, 31.6, 20.9.  ESI+-MS: m/z 199.0838 (M + H)+.  

Calcd for C10H15O2S+ (M + H)+: 199.0787.  m/z 121.0689 (M – βME)+.  Calcd for 

C8H9O+ (M – βME)+: 121.0648.  m/z 221.0669 (M + Na)+.  Calcd for C10H14NaO2S+: 

221.0607.  m/z 237.0584 (M + K)+.  Calcd for C10H14KO2S+: 237.0346.  λmax = 219, 

283 nm (diode array detector, 26% CH3CN in ammonium formate, 7 mM, pH 6.9). 
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Chapter 6: Conclusions 

 

A variety of exogenously generated electrophiles have proven to be capable of 

alkylating DNA.  If not repaired, these DNA adducts can lead to mutations and either 

cancer or cell death.  Prediction of the toxicity of any DNA alkylating agent utilizing 

this mechanism of action would require the determination of its reactivity towards 

DNA under biologically relevant conditions.  An added complication to the 

determination of the reactivity of an alkylating agent with DNA is that some of these 

electrophiles can alkylate DNA reversibly, effectively extending their lifetime in vivo 

while making their detection more difficult than that for irreversible alkylating agents.  

The ability to predict toxicity of a DNA alkylating agent is important because a 

number of these compounds have found success as chemotherapeutic agents whose 

mechanism of action is the targeted alkylation of DNA contained in tumor cells.  

While effective, any non-specific alkylation outside of the tumor can lead to 

genotoxicity and the devastating side-effects experienced with chemotherapy.  The 

development of a trapping system allowing for the detection and quantification of the 

reversible DNA adducts would greatly enhance understanding of the reactivity of the 

reversible DNA alkylating agent and help to guide the synthesis of more selective 

agents. 

 Electrophilic ortho-quinone methides (o-QM) can alkylate DNA and are 

generated during xenobiotic metabolism of a variety of compounds.  From model 

studies based on nucleosides, o-QMs react most readily, but reversibly with strong 

nucleophiles.  Their reaction is less efficient, but irreversible with weak nucleophiles.  
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The hour time-scale of the reverse reactions complicates analysis of their products in 

DNA, which requires enzymatic digestion and chromatographic separation.  The 

alkylation profile of DNA can change drastically from the beginning of the digestion 

to the chromatographic separation.  Instead, a chemical trap utilizing 

bis[(trifluoroacetoxy)iodo]benzene (BTI) has been developed to transform the 

reversible MeQM-DNA adducts into irreversible derivatives capable of surviving 

such analysis, allowing the intrinsic selectivity of MeQM alkylation of DNA to be 

determined for the first time.  The goal of this dissertation was to synthesize and 

characterize the oxidation products of each individual MeQM-dN adduct and then use 

these products as analytical standards to determine the MeQM alkylation profile of 

DNA at short time points. 

 Oxidative trapping studies with the unsubstituted o-QM and dC highlight the 

necessity of an alkyl substituent para to the phenolic oxygen to block over-oxidation 

and the subsequent rearrangement and reincorporation of bromine to the final 

product.  The novel precursor 4-MeBrQMP (2.6) included a methyl group para to the 

phenolic oxygen to block the over-oxidation.  Initial studies with dC resulted in the 

formation of MeQM-dC N3 (2.8) which was subsequently oxidized to a single stable 

product (2.15).  The oxidized MeQM-dC N3 adduct (2.15) was fully characterized by 

1D NMR, 2D NMR, and ESI+-MS. 

 Oxidation of the four MeQM-dG adducts (dG N7, dG N1, dG N2, and guanine 

N7) yielded four unique products.  Due to the deglycosylation of MeQM-dG N7 to 

MeQM-guanine N7, only three of the oxidation products were fully characterized by 

1D NMR, 2D NMR, and ESI+-MS as these are the only oxidized products expected to 
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survive the enzymatic digestion of DNA.  Interestingly, BTI oxidation of the MeQM-

dG adducts resulted in the transformation of the QM phenol to a p-quinol, unlike the 

oxidation of MeQM-dC N3 that resulted in the transformation of the QM phenol to a 

spiro-cyclized product.  The result of both transformations is the formation of stable 

products capable of surviving the enzymatic digestion conditions.  

 Initial studies involving duplex DNA were begun as my undergraduate mentee 

Omer Ad carried out the synthesis and characterization of the oxidized products of 

MeQM-dA N1 and MeQM-dA N6.  The enzymatic digestion of DNA was observed to 

be sensitive to the quality of enzyme used, specifically phosphodiesterase I.  The 

enzyme supplier has therefore become an important variable to in the digestion of 

DNA.  With suitably high quality enzymes, both from Sigma-Aldrich, enzymatic 

digestion was determined to be effective after both alkylation and oxidation 

conditions are applied to a target DNA.  It was also observed that the efficiency of 

alkylation of target DNA by MeQM decreases as the target is changed from 

monomeric nucleosides to a short duplex DNA (OD1/OD3) and decreases further as 

the target DNA is changed to a long duplex DNA (salDNA).  The result is that 

amount of MeQM-DNA adducts formed is near the level of detection of the HPLC 

analysis.  This leads to conditions that are not sufficient to quantify the products of 

oxidation of MeQM alkylated DNA.  One possible solution is to use a method of 

analysis that is more sensitive than HPLC/UV-Vis, such as LC/MS or ultra high 

performance liquid chromatography (UHPLC).  The increased sensitivity of either 

method would lower the limit of detection for the products of oxidation of MeQM-

DNA.  Another possible solution would be to increase the concentrations of starting 
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materials in the MeQM alkylation of DNA, either 4-MeBrQMP or target DNA, to 

increase the amount of MeQM-DNA adducts formed.  The subsequent oxidation 

would lead to a larger amount of oxidized MeQM-DNA adducts formed for analysis.  

Similar to this solution, increasing the maximum injection volume on the HPLC 

would allow the alkylation and oxidation reactions to be scaled-up and increase the 

amount of product analyzed.  Another method to increase the amount of MeQM-

DNA adducts that are formed would be the use of a shorter duplex DNA as the target 

DNA. 

 Experiments were also performed to study a different aspect, but with the 

same goal, of reversible MeQM alkylation of DNA by analyzing the release of 

MeQM from alkylated DNA.  Oxidative dearomatization of the QM phenol with BTI 

can trap the reversible MeQM-DNA adducts by transforming these adducts into 

irreversible DNA adducts while β-mercaptoethanol (βME) can irreversibly trap 

MeQM released from DNA to form MeQM-βME.  HPLC quantification of MeQM-

βME can be used to measure the amount of reversible MeQM-DNA adducts still 

present in a specific target DNA at a specific time.  Alkylations of target DNA 

(dsDNA, ssDNA, and dN) by MeQM for less than 4 hours were subsequently reacted 

with βME.  These studies showed that the nucleoside dA and the ssDNA OD3 

successfully extended the lifetime of MeQM in solution.  The dsDNA OD1/OD3, 

however, had no effect on the lifetime of MeQM when compared to the reaction 

without a nucleoside based nucleophile.  The ability of single stranded OD3 to 

effectively capture and release MeQM while double stranded OD1/OD3 did not 

capture and release MeQM suggests that OD3 may have a greater amount of MeQM-
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DNA adducts formed initially and, therefore, may be a better target DNA for the 

oxidative trapping studies than OD1/OD3.  The presence of reversible MeQM-DNA 

adducts should allow for a higher yield of oxidized products at short reaction times, 

increasing the amount of oxidized MeQM-DNA adducts available for HPLC analysis. 

 The analytical standards necessary for the quantification of the oxidative 

trapping of reversible MeQM-DNA adducts have been synthesized and characterized.  

Unfortunately, the alkylation yield of duplex DNA is insufficient for analysis by 

HPLC.  A number of solutions including increasing the concentration of reagents, 

substituting ssDNA for dsDNA, and utilizing a more sensitive analytical method for 

the detection of MeQM-DNA adducts have been proposed and will be pursued in the 

future.  Once the oxidative trapping of MeQM-DNA adducts can be accomplished, 

the alkylation time can be varied to obtain an alkylation profile of MeQM towards 

DNA.  It can also be determined if MeQM alkylates DNA at the most nucleophilic 

and accessible position (dG N7) or if there is a sequence specificity that influences 

the reactivity of MeQM towards DNA.  If, as predicted, dG N7 is preferentially 

alkylated initially, MeQM may be useful also as a molecular probe of duplex DNA 

structure.  For example, if there are portions of duplex DNA that are not base paired, 

the presence of MeQM-dC N3 and MeQM-dA N1 would be detected.   

 The goal of the studies presented in this dissertation is to develop a method of 

trapping the reversible QM-DNA adducts to determine the intrinsic selectivity of o-

QM towards DNA.  With the BTI based oxidative trapping system and the 

synthesized analytical standards, this intrinsic selectivity can be determined.  

Knowledge of the type, location, and amount of DNA adducts formed by o-QM can 
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be used to assess the potential toxicity of QM-based DNA alkylating agents.  

Furthermore, a targeted QM-based DNA alkylating agent can be developed with the 

hope of finding use as an anti-cancer chemotherapeutic agent with the information 

gained from the future MeQM-DNA studies. 
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Appendices 
 

Appendix A. Supporting Information for Chapter 2 
 

Table A.1. 13C and 1H NMR data for the product (2.2) formed by oxidation of QM-
dC adduct 1.42 (DMSO-d6). 

Position 13C shift (ppm) 1H shift (ppm) HMBC Connectivity 
1' 85.6 6.39 (t, J=6.6 Hz) 2', 3', 4', 6 
2' 40.2 2.23 (m) 4' 
3' 70.2 4.30 (m) 2', 4', 5' 
4' 87.9 3.87 (m) 2', 3', 5' 
5' 61.1 3.62 (m) 2', 3', 4' 

2, 4 145.2, 145.2   1', 5, 6, 7 
5 98.1 6.78 (d, J=8.0 Hz) 6 
6 129.9 7.85 (d, J=8.0 Hz) 1', 5 
7 116.6 8.63 (s) 10 
8 138.7   7, 10 
10 143.2 8.39 (s)   
11 124.4   10, 12 
12 187.6 9.44 (s) 10 
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Table A.2. 13C and 1H NMR data for the product (2.15) formed by oxidation of 
MeQM-dC adduct 2.8 (DMSO-d6). 

Position 13C shift (ppm) 1H shift (ppm) HMBC Connectivity 
1' 83.8 6.16 (t, J=7.0 Hz) 2', 3', 4', 6 
2' 39.5 2.04 (m)   
3' 70.5 4.22 (m) 2', 4', 5' 
4' 87.1 3.75 (m) 2', 5' 
5' 61.4 3.53 (m) 3' 
2 147.5   1', 6 
4 154.9   5, 6, 7 
5 96 5.78 (d, J=8.2 Hz) 6 
6 137 7.50 (d, 8.2 Hz) 1', 5 

7 51.5 3.70 (d, J=11.2 Hz), 
3.92 (d, J=11.2 Hz)    

8 73.1   7, 10 
9 199.7   7 
10 123.5 5.97 (d, J=9.9 Hz)   
11 146.3 7.03 (dd, J=9.9, 2.2 Hz) 14 
12 128.8   11, 14 
13 136.6 6.06 (bd, J=6.4 Hz) 7, 10, 11, 14 
14 20.3 1.90 (d, J=1.2 Hz) 11, 13 
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Figure A.1. Reverse-phase C18 chromatography was used to detect and isolate 
formation and oxidation of the QM-dC N3 adduct (1.42).  (A) Separation of the QM-
dC adduct 1.42 used a gradient of 3 - 25% CH3CN in triethylammonium acetate pH 5 
over 76 min (analytical, 1 mL/min).  (B) Separation of the adduct 2.2 after oxidation 
by BTI used a gradient of 3 - 25% CH3CN in water over 66 min (preparative, 5 
mL/min).  

 

Figure A.2. HPLC analysis of the BTI oxidation of MeQM-dC N3.  Oxidized product 
2 was the initial focus of the structure elucidation efforts.  Unfortunately, oxidized 
product 1 appears to have been the eventually isolated and characterized MeQM-dC 
N3 oxidized adduct. 
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Figure A.3. Reverse-phase C18 chromatography was used to detect and isolate 
formation and oxidation of the MeQM-dC N3 adduct (2.8).  (A) Separation of the 
MeQM-dC adduct 2.8 and (B) its oxidation product 2.15 used a gradient of 3 - 25% 
CH3CN in ammonium formate pH 6.8 over 76 min (analytical, 1 mL/min).  

 

Figure A.4. 1H NMR of the combined isolated product from the Sep-Pak solvent 
exchange for 4 oxidations in DMSO-d6 at 500 MHz. 
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Figure A.5. 1H NMR of 2.2 in DMSO-d6 at 600 MHz. 

 

Figure A.6. 13C 1D (top) and DEPT135 (bottom) NMR of 2.2 in DMSO-d6 at 600 
MHz. 
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Figure A.7. 1H – 13C HSQC of 2.2 in DMSO-d6 at 600 MHz. 

 

Figure A.8. 1H – 13C HMBC of 2.2 in DMSO-d6 at 600 MHz. 
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Figure A.9. 1H – 15N HMBC of 2.2 in DMSO-d6 at 600 MHz. 

 

Figure A.10. ESI+-MS of 2.2. 
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Figure A.11. ESI+-MS/MS of 2.2 (m/z 384). 

 

Figure A.12. ESI+-MS/MS of deglycosylated 2.2 (m/z 268). 
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Figure A.13. 1H NMR of 2.8 in DMSO-d6 at 500 MHz. 

 

Figure A.14. 13C 1D (top) and DEPT135 (bottom) NMR of 2.8 in DMSO-d6 at 500 
MHz. 
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Figure A.15. 1H NMR of 2.15 in DMSO-d6 at 400 MHz. 

 

Figure A.16. 13C 1D (top) and DEPT135 (bottom) NMR of 2.15 in DMSO-d6 at 500 
MHz. 



 

 176 
 

 

Figure A.17. 1H – 1H COSY of 2.15 in DMSO-d6 at 400 MHz. 

 

Figure A.18. 1H – 13C HSQC of 2.15 in DMSO-d6 at 400 MHz. 
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Figure A.19. 1H – 13C HMBC of 2.15 in DMSO-d6 at 400 MHz. 

 

Figure A.20. ESI+-MS of 2.15. 
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Appendix B. Supporting Information for Chapter 3 
 

Table B.1. 13C and 1H NMR data for the product (3.7) formed by oxidation of 
MeQM-dG N1 (DMSO-d6). 

Position 13C shift (ppm) 1H shift (ppm) HMBC Connectivity 
1' 82.2 6.15 (t, J=6.9 Hz) 2', 3' 
2' 39.5 2.54 (m), 2.22 (m)   
3' 70.8 4.34 (m) 2', 4', 5' 
4' 87.6 3.81 (m) 2', 5' 
5' 61.7 3.53 (m)   
2 153.9   10 
4 149.4   1', 8 
5 115.6   8 
6 156.2   10 
8 135.7 7.97 (s) 1' 

10 39.4 4.88 (t, J=15.7 Hz),       
4.62 (t, J=15.7 Hz) 16 

11 129.5   10, 13 
12 184.8   13, 14, 16 
13 125.5 6.09 (d, J=10.0 Hz)   
14 154.3 6.95 (dd, J=2.9, 10.0 Hz) 16, 17 
15 66.5   13, 17 
16 146.3 6.13 (m) 10, 14, 17 
17 27.4 1.25 (d, J=2.4 Hz)   
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Table B.2. 13C and 1H NMR data for the product (3.8) formed by oxidation of 
MeQM-dG N2 (DMSO-d6). 

Position 13C shift (ppm) 1H shift (ppm) HMBC Connectivity 
1' 82.8 6.14 (t, J=6.9 Hz) 2' 
2' 39.3 2.58 (m), 2.19 (m)   
3' 70.8 4.32 (m) 2', 4', 5' 
4' 87.6 3.80 (m) 2', 5' 
5' 61.8 3.50 (m)   
2 152.4   10 
4 150.3   1', 8 
5 117.0   8 
6 156.6     
8 135.7 7.91 (d, J=2.5 Hz) 1' 
10 38.9 4.11 (d, J=5.3 Hz) NH 
11 131.7   10, 13 
12 185.1   10, 14, 16 
13 125.5 6.06 (d, J=10.0 Hz)   
14 154.5 6.96 (dd, J=2.9, 10.0 Hz) 16, 17 
15 66.4   13, 17 
16 149.4 6.80 (m) 10, 14, 17 
17 27.3 1.31 (s) 14 
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Table B.3. 13C and 1H NMR data for the product (3.9) formed by oxidation of 
MeQM-guanine N7 (DMSO-d6). 

Position 13C shift (ppm) 1H shift (ppm) HMBC Connectivity 
2 154.4     
4 159.7   8 
5 107.9   8, 10 
6 152.9     
8 143.4 7.84 (s) 10 

10 43.8 4.99 (d, J=15.7 Hz, 1H),  
5.04 (d, J=15.7 Hz, 1H) 8, 13, 16 

11 131.3   10, 13, 16 
12 184.1   10, 13, 14, 16 
13 125.2 6.06 (d, J=10.1 Hz)   
14 154.6 6.95 (dd, J=2.8, 10.1 Hz) 16, 17 
15 66.3   13, 17 
16 150.6 6.51 (s) 10, 14, 17 
17 27.1 1.25 (s) 14, 16 
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Table B.4. 13C and 1H NMR data for the p-quinol model compound 4-hydroxy-2,4-
dimethyl-2,5-cyclohexadien-1-one (3.9) (CDCl3).68 

Position 13C shift (ppm) 1H shift (ppm) 
1 186.3   
2 126.6 6.01 (d, J=9.9 Hz, 1H) 
3 152.3 6.81 (d, J=2.9, 9.9 Hz, 1H) 
4 67.3   
5 148 6.63-6.60 (m, 1H) 
6 133.3   
7 26.8 1.40 (s, 3H) 
8 15.4 1.79 (d, J=1.5 Hz, 3H) 
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Figure B.1. HPLC analysis of MeQM-dG N7 after overnight lyophilization.  The dry 
product was dissolved in 1:1 H2O:CH3CN prior to Gradient 1 using the analytical 
column (1 mL/min). 

 

Figure B.2. HPLC analysis of the product formed by oxidation of MeQM-dG N1.  
The 1H NMR sample (Figure 3.12) was diluted with H2O to make a 50% aqueous 
DMSO-d6 solution prior to re-injection into the HPLC.  The peak at approximately 30 
minutes was DNA contamination from the HPLC column. 
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Figure B.3. 1H NMR of MeQM-dG N7 (3.4) in DMSO-d6 at 600 MHz. 

 

Figure B.4. 1H NMR of MeQM-guanine N7 (3.5) in DMSO-d6 at 400 MHz. 
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Figure B.5. 1H NMR of MeQM-dG N1 (3.2) in DMSO-d6 at 400 MHz. 

 

Figure B.6. 1H NMR of MeQM-dG N2 (3.3) in DMSO-d6 at 400 MHz. 
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Figure B.7. 1H NMR of 3.7 in DMSO-d6 at 600 MHz. 

 

 

Figure B.8. 13C 1D (top) and DEPT135 (bottom) NMR of 3.7 in DMSO-d6 at 600 
MHz. 
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Figure B.9. 1H – 13C HSQC of 3.7 in DMSO-d6 at 600 MHz. 

 

Figure B.10. 1H – 13C HMBC of 3.7 in DMSO-d6 at 600 MHz. 
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Figure B.11. 1H NMR of 3.8 in DMSO-d6 at 600 MHz. 

 

 

Figure B.12. 13C 1D (top) and DEPT135 (bottom) NMR of 3.8 in DMSO-d6 at 600 
MHz. 
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Figure B.13. 1H – 13C HSQC of 3.8 in DMSO-d6 at 600 MHz. 

 

Figure B.14. 1H – 13C HMBC of 3.8 in DMSO-d6 at 600 MHz. 
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Figure B.15. 1H NMR of 3.10 in DMSO-d6 at 600 MHz. 

 

 

Figure B.16. 13C 1D (top) and DEPT135 (bottom) NMR of 3.10 in DMSO-d6 at 600 
MHz. 
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Figure B.17. 1H – 13C HSQC of 3.10 in DMSO-d6 at 600 MHz. 

 

Figure B.18. 1H – 13C HMBC of 3.10 in DMSO-d6 at 600 MHz. 
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Appendix C. Supporting Information for Chapter 4 
 

 

Figure C.1. HPLC analysis of an alkylation reaction consisting of 2 mM each dN, 25 
mM sodium phosphate (pH 7), 200 mM NaF, and 160 mM 4-MeBrQMP in an 80:20 
solution of H2O:CH3CN.  The reaction was carried out in a 1.5 mL plastic Eppendorf 
tube for 30 minutes at 37 °C. 

 

Figure C.2. HPLC analysis of an alkylation reaction consisting of 2 mM each dN, 25 
mM sodium phosphate (pH 7), 500 mM KF, and 240 mM 4-MeBrQMP in an 70:30 
solution of H2O:CH3CN.  The reaction was carried out in a 1.5 mL plastic Eppendorf 
tube for 30 minutes at 37 °C. 
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Figure C.3. HPLC analysis of an alkylation reaction consisting of 2 mM each dN, 25 
mM sodium phosphate (pH 7), 500 mM KF, and 240 mM 4-MeBrQMP in an 70:30 
solution of H2O:CH3CN.  The reaction was carried out in a 1.5 mL plastic Eppendorf 
tube for 1 hour at 37 °C. 

 

Figure C.4. HPLC analysis of an alkylation reaction consisting of 2 mM each dN, 25 
mM sodium phosphate (pH 7), 500 mM KF, and 240 mM 4-MeBrQMP in an 70:30 
solution of H2O:CH3CN.  The reaction was carried out in a 0.3 mL glass Reacti-vial 
for 1 hour at 37 °C. 



 

 193 
 

 

Figure C.5. Overlay of 3 HPLC chromatograms showing the MeQM alkylation of 
monomeric nucleosides (dC in black, dG in red, and dA in green).  Each reaction 
consisted of 4-MeBrQMP (25 mM), dN (25 mM), and KF (250 mM) in a 1:1 solution 
of DMF:H2O.  Each reaction was stirred in a 0.3 mL Reacti-vial for 1 hour at 37 °C 
prior to analysis by HPLC using an analytical column (1 mL/min).  The HPLC 
gradient was identical to the one used for the DNA digestion studies (Method 2).   
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Figure C.6. HPLC analysis of undigested salDNA.  A mixture consisting of salDNA 
(8 mM nts), sodium phosphate (25 mM, pH 7), and NaF (200 mM) in an 80:20 
solution of H2O:CH3CN was subjected to work-up and digestion conditions (Method 
2) without the presence of alkaline phosphatase or phosphodiesterase I. 

 

Figure C.7. HPLC analysis of undigested OD1/OD3.  An aqueous mixture consisting 
of OD1/OD3 (16 mM nts) and potassium phosphate (25 mM, pH 7) was subjected to 
work-up and digestion conditions (Method 2) without the presence of alkaline 
phosphatase or phosphodiesterase I. 
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Appendix D. Supporting Information for Chapter 5 

 

Figure D.1. 1H NMR of MeQM-H2O (5.2) in d4-methanol at 400 MHz. 

 

Figure D.2. 13C NMR of MeQM-H2O (5.2) in d4-methanol at 500 MHz. 
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Figure D.3. High resolution ESI+-MS of MeQM-H2O (5.2) calibrated with CsI.  Mass 
error is 22.1 ppm (M + H – H2O)+. 

 

Figure D.4. ESI+-MS of the dithioacetal intermediate (5.9).  Compound 2.3 is 
residual starting material, 5-methylsalicylaldehyde. 
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Figure D.5. 1H NMR of MeQM-βME (5.3) in CD3CN at 400 MHz after purification 
by chromatotron. 

 

Figure D.6. 1H NMR of MeQM-βME (5.3) in CD3CN at 400 MHz after purification 
by HPLC. 
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Figure D.7. 13C 1D (top) and DEPT135-SP (bottom) NMR of MeQM-βME (5.3) in 
CH3CN at 500 MHz.  For DEPT135-SP positive signals are CH and CH3 carbons, 
negative signals are CH2 carbons.  Quaternary carbons are not observed. 

 

Figure D.8. High resolution ESI+-MS of MeQM-βME (5.3) calibrated with CsI.  
Mass error is 22.5 ppm (M + H)+. 
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Figure D.9. Comparing the formation of MeQM-H2O in the presence of various 
nucleoside based nucleophiles.  Each reaction was stirred at 37 °C for 0.5 hr after KF 
initiation of MeQM (Δt1) and at 37 °C for 4 hr after βME addition (Δt2).  OD1 is an 
average of two reactions while the other data points are from single reactions.  The 
blank reaction does not contain nucleoside based nucleophiles. 

 

Figure D.10. Measuring the capture of MeQM by H2O by quantifying the amount of 
MeQM-H2O formed.  The data is best fit to a logarithmic trendline.  Data points prior 
to 16 hours are an average of three reactions.  Data points for 16, 24, and 48 hours are 
single reactions. 
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Figure D.11. Measuring the formation of MeQM-H2O in the presence of various 
DNA based nucleophiles. Each reaction is stirred at 37 °C for the indicated time and 
stirred at 37 °C for 24 hours after addition of βME.  The data is best fit to an 
exponential trendline and are an average of reactions repeated in triplicate. 
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