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In this thesis we consider two problem areas involving spatiotemporally chaotic

systems. In Part I we investigate data assimilation techniques applicable to large

systems. Data assimilation refers to the process of estimating a system’s state from a

time series of measurements (which may be noisy or incomplete) in conjunction with

a model for the system’s time evolution. However, for practical reasons, the high di-

mensionality of large spatiotemporally chaotic systems prevents the use of classical

data assimilation techniques such as the Kalman filter. Here, a recently developed

data assimilation method, the local ensemble transform Kalman Filter (LETKF),

designed to circumvent this difficulty is applied to Rayleigh-Bénard convection, a

prototypical spatiotemporally chaotic laboratory system. Using this technique we

are able to extract the full temperature and velocity fields from a time series of

shadowgraphs from a Rayleigh-Bénard convection experiment. The process of es-

timating fluid parameters is also investigated. The presented results suggest the

potential usefulness of the LETKF technique to a broad class of laboratory experi-

ments in which there is spatiotemporally chaotic behavior.



In Part II we study magnetic dynamo action in rotating electrically conduct-

ing fluids. In particular, we study how rotation effects the process of magnetic field

growth (the dynamo effect) for a externally forced turbulent fluid. We solve the

kinematic magnetohydrodynamic (MHD) equations with the addition of a Corio-

lis force in a periodic domain. Our results suggest that rotation is desirable for

producing dynamo flows.
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Preface

This thesis is organized into two parts. Both are concerned with the study of

spatiotemporal chaos, a form of chaos characterized by disorder in both space and

time. Spatiotemporal chaos often arises in spatially extended systems which have a

finite correlation length; in particular, those which have a correlation length much

smaller than the full system size. These complex systems are high dimensional; they

have many (often hundreds or thousands) of dynamical degrees of freedom. Exam-

ples of spatiotemporal chaos have been found in optics [1], chemical and biological

media [2], and hydrodynamics [3, 4], including geophysical flows in the ocean and

atmosphere.

Part I is concerned with the problem of state and parameter estimation in

spatiotemporally chaotic systems. In particular we study the problem in relation to

a common experimental system, Rayleigh-Bénard convection. In Part II we report

on results from magnetohydrodynamic simulations of rotating turbulence.

Often spatiotemporal chaos is distinguished from turbulence [5, 6], and thus

many geophysical flows, such as the atmosphere (which is highly turbulent) and

magnetohydrodynamic turbulence, would not be classified as spatiotemporal chaos.

For our purposes this distinction is unimportant, but it is instructive to discuss the

differences. Consider the various length scales in a system. The size of the full system

is denoted D while the correlation length is denoted ξc. In addition, the length scale

at which energy is introduced into the system is lE, while the length scale at which

energy is dissipated (usually the smallest scale in the system) is lD. When lD ¿ lE
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the system is said to be turbulent. While for lD ∼ lE, the system may exhibit low

dimensional temporal chaos (ξc ∼ D) or spatiotemporal chaos (ξc ¿ D). Despite

this distinction, both turbulence and spatiotemporal chaos are high dimensional,

spatially disordered states. Part II is concerned with a turbulent type of chaos,

while Part I is concerned mainly with Rayleigh-Bénard convection, an example of

non-turbulent spatiotemporal chaos. However, many of the results and techniques

described in Part I can (and have) been applied to turbulent systems (in particular,

for the purpose of weather forecasting).
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Part I

PARAMETER AND STATE ESTIMATION IN EXPERIMENTS EXHIBITING

SPATIOTEMPORAL CHAOS
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Chapter 1

Introduction

Estimation of the state of an evolving dynamical system from measurements is

often a prerequisite for prediction and control of the system. However, obtaining the

system state is a common experimental difficulty for many spatiotemporally chaotic

systems, where available measurements may be incomplete and noisy. When an

approximate model for the system is available, it can be used in conjunction with

incoming measurements to estimate the evolving system state, a process referred to

as ‘data assimilation’.

Most data assimilation algorithms are iterative, cycling between a predict and

update step once every time interval ∆t. In the update step, current measurements

are used to update (or correct) the prediction. The prediction step then propagates

the updated state, via the model, to the next measurement time (i.e., it is a short

term forecast). The aim of this process is to synchronize the system and its model

by coupling them via the measurements.

The Kalman filter [7], described in Section 1.3, optimally solves the data as-

similation problem for systems with linear dynamics. Several methods extending the

Kalman filter methodology to nonlinear systems have been proposed, including the

extended Kalman filter (EKF) [8] (Section 1.3), and the class of ensemble Kalman fil-

ters (EnKF) [9] (Section 1.4). Straightforward application of these methods to large
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spatiotemporally chaotic systems is often completely infeasible. In particular, the

EKF requires inversion ofN×N matrices, whereN is the number of model variables.

This can be quite prohibitive; for a discretized partial differential model evolving

M scalar spatial fields in time, the number of model variables is M multiplied by

the number of grid points (which can number in the millions). In addition, the en-

semble (EnKF) methods require prohibitively large ensemble sizes when applied to

high-dimensional systems. Despite these difficulties, recent developments [10, 11, 12]

from the field of numerical weather prediction [13, 14, 15, 16, 17, 18] suggest the

possibility of achieving good accuracy (as in a Kalman filter), but in a way that is

computationally feasible for large nonlinear systems.

In this thesis we demonstrate the efficacy of a new method, the local ensemble

transform Kalman filter (LETKF) [12] (Chapter 2). Although originally motivated

by application to weather prediction, the LETKF is potentially broadly applicable to

any large spatiotemporally chaotic system. In particular, we investigate Rayleigh-

Bénard convection (Section 1.1). Flows such as spiral defect chaos [19, 3] in the

Rayleigh-Bénard problem are, perhaps, the best studied experimental examples of

spatiotemporal chaos; nevertheless, many general aspects of spiral defect chaos re-

main poorly understood.

The LETKF is motivated by the observation that spatiotemporally chaotic

systems exhibit a finite correlation length much smaller than the system size. Fre-

quently, regions much smaller than the system size can be described by relatively

few degrees of freedom. With this in mind, the LETKF employs many independent

data assimilations in a set of overlapping local regions, each with a characteristic
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length on the order of the correlation length. Because these regions are relatively

small, their individual computations are not prohibitive. Furthermore, by use of a

simple example [10, 11] it was indicated that, by exploiting localization in this way,

state estimates with accuracies virtually the same as those for a classical Kalman

filter technique (thus presumably of near optimal accuracy) can be achieved.

What follows is an introduction to Rayleigh-Bénard convection in Section 1.1

and an introduction to the classical methods of data assimilation in Sections 1.2, 1.3,

and 1.4. Details of the LETKF algorithm, as well as our application of the LETKF

to Rayleigh-Bénard convection is described in Chapter 2. Tests of the accuracy of the

LETKF are presented in Sections 3.1 and 3.2, in which we investigate performance

with extremely sparse/noisy measurements and test extensions of the LETKF for

estimating model parameters.

1.1 Rayleigh-Bénard Convection

In Rayleigh-Bénard convection, a horizontal fluid layer of thickness d is con-

fined between a heated lower plate and a cooled upper plate. For a temperature

difference between the plates ∆T that is sufficiently small, the fluid is at rest, and

heat is transported by conduction. In this state, the temperature rises linearly from

the lower boundary with temperature TH to the upper boundary with temperature

TC = TH −∆T . The onset of fluid motion occurs when buoyancy overcomes viscous

dissipation and thermal diffusion as ∆T is raised above a critical value ∆Tc.

Initial analytic work on Rayleigh-Bénard convection showed that, in a space
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of infinite horizontal extent, the system has a stable state consisting of parallel

convection rolls. However, Rayleigh-Bénard convection was recently shown [3] to

support a type of spatiotemporal chaos which has been named spiral defect chaos

due to the abundance of spiral structures and roll defects present in the evolving

state. This state has been extensively studied theoretically, numerically, and exper-

imentally [20, 21, 22, 23, 24, 25, 6, 3, 26]. For a recent review of Rayleigh-Bénard

convection see [19].

Rayleigh-Bénard convection is typically modeled using the Boussinesq equa-

tions [27], which are commonly nondimensionalized with temperature scaled by ∆T ,

length scaled by d, and time scaled by the vertical diffusion time tv = d2/κ, where

κ is the thermal diffusivity. This system of units is used throughout Part I of this

thesis. The temperature field is denoted T , while the temperature deviation from

the conducting static solution is denoted θ; T (x, y, z) = ∆Tθ(x, y, z) + TH − ∆T z
d
.

We solve the Boussinesq equations in the disk shaped region x2 + y2 ≤ Γ2, |z| ≤ 1
2
,

with Dirichlet boundary conditions u = 0, θ = 0 on all walls. Γ is the radius of the

disk in units of d and is often referred to as the aspect ratio. The θ boundary con-

dition represents the situation which would occur for a conducting wall (when the

wall’s thermal conductivity much higher than the fluid’s thermal conductivity). In

terms the fluid’s velocity u, temperature deviation θ, and pressure p, the Boussinesq

equations take the form

(

∂

∂t
+ u · ∇

)

u = −∇p+ Pr∇2u + PrR θ ẑ ,

(

∂

∂t
+ u · ∇

)

θ = ∇2θ + u · ẑ , (1.1)
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∇ · u = 0 .

These equations have two dimensionless parameters, the Rayleigh number R and

the Prandtl number Pr,

R =
gαd3∆T

νκ
, Pr =

ν

κ
. (1.2)

Here α is the thermal expansion coefficient, ν is the kinematic viscosity, and g is

gravitational acceleration (in the −ẑ direction). The critical Rayleigh number for

convective onset is Rc ≈ 1707. The reduced Rayleigh number

ε =
R−Rc

Rc

=
∆T − ∆Tc

∆Tc

(1.3)

measures the amount above onset. Fluid convection arises when ε > 0.

We have investigated the parameter region near ε = 1, P r = 1. At these

values of ε and Pr, the spatiotemporally chaotic state known as spiral defect chaos

can arise [3, 19]; however, in our studies using Γ ≈ 20, the region is too small to

support the large spirals typically seen in spiral defect chaos. Nevertheless, the

convective flows in our studies exhibit complex behavior in both space and time.

See Fig. 1.1 for an example of the spatial structure of the evolving state (the images

show simulated shadowgraphs, an imaging technique described in Section 1.1.1).
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Figure 1.1: Images from simulated Rayleigh-Bénard convection (ε = 1, Γ = 20),

demonstrating the time evolution of a typical system state. White represents cold

descending fluid, while black represents warm rising fluid.

The z-dependence of the θ(x, y, z) field from a typical state on the system

attractor exhibits asymmetry about z = 0, as shown in Fig. 1.2.

Figure 1.2: The z-dependence of the temperature deviation is shown in this cross-

section (the x = 0 plane). Red indicates that the temperature is higher than the

conducting profile, whereas blue indicates that it is lower.

Our technique for integrating equations (1.1) is the pseudospectral method
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described in [28]. Briefly, it uses a backward Euler time step for the linear terms,

and a second order Adams-Bashforth method for the nonlinear terms. All fields are

expressed in terms of their Fourier components in the periodic azimuthal φ direction,

and in terms of Chebyshev polynomials in the bounded directions −1/2 < z < 1/2

and 0 < r < Γ. Thus the physical space representation exists on a mesh of grid

points (rm, φn, zl) which are evenly spaced in φ and located at the Chebyshev

points in z and r; φn = 2πn
Nφ
, rm = Γ cos( π(m−1)

2(Nr−1)
), zl = 1

2
cos(π(l−1)

Nz−1
). Here, the

number of grid points in the r, z, and φ direction are Nr, Nz, and Nφ respectively.

The dynamics of this system are driven by two instabilities. The skewed

varicose instability, for large wave numbers (small wavelengths) and the Eckhaus

instability (dilation instability), associated with small wave numbers (large wave-

lengths). Between these extremes lie stable wave numbers inside the Busse balloon,

a compact region of stable wavelengths in the space (ε, k). The motion of defects

in the roll planform are ultimately a consequence of these instabilities.

Small structures (defects) rapidly evolve on a time scale of approximately one

vertical diffusion time. Large structures evolve on a time scale of one horizontal

diffusion time th = Γ2tv. The correlation length ξ decreases with increasing ε ap-

proximately according to a power law, ξ ∼ ε−1/2 [19]. For the investigated parameter

region (Pr, ε ≈ 1) the correlation length of this system is much smaller than the

diameter of the domain; approximately 2d to 3d.

Other than the Boussinesq equations, several models for Rayleigh-Bénard con-

vection have been proposed and studied [6]. In particular, the modified Swift-

Hohenberg equations [29, 30] reduce the problem to two dimensions; compared to
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three dimensions for the full Boussinesq equations (and thus they may be simu-

lated more easily than the full Boussinesq equations). These equations are used to

model many spatiotemporally chaotic phenomena, including spatiotemporal chaos

in lasers [31]. They are

∂ψ

∂t
+ gmu · ∇ψ =

[

ε′ − (1 + ∇2)2
]

ψ − Ψ3, (1.4)

∂v

∂t
=

[

∂ψ

∂y

∂f

∂x
− ∂ψ

∂x

∂f

∂y

]

+ Pr
(

∇2 − c2
)

v. (1.5)

The ψ field is similar to the midplane temperature field of the Boussinesq equations,

the v = ∇2ζ field is vertical vorticity of the fluid flow u = ∂ζ
∂y

x̂− ∂ζ
∂x

ŷ, and f = ∇2ψ.

The parameter ε′ is related to ε via the relation ε′ ≈ 2.78ε. These equations, when

simulated with boundary conditions ψ = v = ζ = f = 0 on the boundary of a

circular region, result in patterns very similar to those found in experiments on

Rayleigh-Bénard convection. In particular, large rotating spirals and defects are

present. Although these equations produce qualitatively similar solutions to the

Boussinesq equations, they exhibit spiral defect chaos only as a transient behavior.

Thus, in contrast to the full Boussinesq equations, spiral defect chaos does not occur

on the Swift-Hohenberg attractor. Because of this drawback we decided to use the

full Boussinesq equations as our model of Rayleigh-Bénard convection, despite the

computational complexity of simulating a full three dimensional domain.

Spiral defect chaos in Rayleigh-Bénard convection exhibits sensitivity to initial

conditions. It is instructive to demonstrate the error growth of an initial perturba-

tion. To do so, we simulate two fluid states, one termed the reference, and the other

which is identical to the reference state except for a small local perturbation in the
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initial condition. The state of the reference field is denoted Tr(x, y, z),ur(x, y, z),

while the perturbed state is denoted T (x, y, z),u(x, y, z). Fig. 1.3 shows a sequence

of images demonstrating the nonlinear growth of T (x, y, 0)−Tr(x, y, 0) (in the mid-

plane z = 0). The error initially decays, and the two states remain close for several

tv. When the states diverge it is usually at the location of a defect. For example,

in the reference state a roll may be pinched off by the action of the skewed varicose

instability forming a defect while the second state may not undergo the pinch-off

event. This defect related error growth quickly spreads across the entire disk in

a time much less than the horizontal diffusion time. This highlights an important

property of spiral defect chaos; the dynamics are stable to small local perturbations

almost everywhere. It is only near some defects that the perturbation grows. This

was shown in [20]. The Lyapunov vector associated with the largest Lyapunov ex-

ponent is negative almost everywhere (except near a few defects, where it is large

and positive).
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Figure 1.3: Sequence of images showing the growth of a small initial perturbation

located in the upper center of the disk at frame 0. Contours are the curves for

which Tr(x, y, 0) = 0. Red indicates a slightly warmer midplane temperature than

the reference state, while blue indicates a slightly cooler temperature. The time

spanned between frame 0 and frame 6 is approximately 10tv.
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1.1.1 The Shadowgraph Method

In experiments, Rayleigh-Bénard flows are visualized using the shadowgraph

method [32]. The typical setup consists of a reflecting bottom plate and a trans-

parent top plate, confining the (transparent) fluid. Light shines down through the

fluid, reflects from the bottom plate, travels up through the fluid and out of the disk

region. The exiting light is modified by the index of refraction of the fluid (which has

a slight temperature dependence) and imaged via a CCD camera. With this method

the vertically integrated temperature field of the fluid is indirectly measured.

We connect the shadowgraph light intensity I(x, y) to the temperature field

in the flow using the relation derived from geometric optics [32, 33]

I(x, y) =
I◦(x, y)

1 − a∇2
⊥θ̄(x, y)

. (1.6)

Here, ∇2
⊥ ≡ ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian, and the temperature field

is vertically averaged: θ̄(x, y) ≡
∫

θ(x, y, z)dz. I◦(x, y) is the incident light intensity

and a = 2z1|dn/dT |, where n is the index of refraction of the fluid, z1 is the optical

path length from the midplane of the fluid layer to the image plane (in units of d),

and the temperature coefficient of the index of refraction |dn/dT | is evaluated at

the average temperature of the fluid layer. Equation (1.6) is derived in Appendix A.

For geometric optics to be valid, the condition ‖a∇2
⊥θ̄‖ ¿ 1 must hold.

This remote sensing method represents an incomplete observation of the full

fluid state. The z-dependence of the temperature field is unmeasured, as is the entire

velocity field. The velocity field is largely composed of the circulating roll velocity.

However, there is a smaller dynamically important component to the velocity field
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known as the mean flow ū(x, y) (which advects the roll pattern),

ū(x, y) ≡
∫

u⊥(x, y, z) dz, (1.7)

where u = u⊥ + uzẑ. This component of the velocity field plays a significant role in

the dynamics [24] and is difficult to measure in the experiments. In order to achieve

prediction and control of Rayleigh-Bénard convection, accurate estimates of the fluid

state are required, including the mean flow. Thus we pursue the use of data assimi-

lation techniques for the purpose of estimating the fluid state (u(x, y, z), θ(x, y, z))

from a sequence of shadowgraph images.

1.2 Data Assimilation

In the most general situation, we are given a time series of measurements from a

particular dynamical system, where the measurements are made at the times tj (j =

1, 2 . . .). These measurements may not describe the system state ξ exactly; they may

be incomplete, sparse, or noisy. Suppose that, at each time, a measurement may be

written as a collection of scalar quantities so that we can represent a measurement

by a s-component vector y, and the time series as the collection of the vectors

y1, y2, . . .. Our goal, at each time tj, is to infer the N component system state ξj

from the time series y1, y2, . . ..

We begin with the dynamical model,

ξj+1 = G(ξj), (1.8)

which describes the time evolution of the system from a time tj to tj+1. In this thesis

we shal not consider the situation where there is an added random component on
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the right hand side of (1.8). We assume the system evolves in continuous time,

dξ

dt
= F(ξ), (1.9)

so that G is an integration of (1.9) from t = tj to tj+1. G may be exact, though

generally it describes only approximately the dynamics of the true system. This

discrepancy, when it exists, is known as model error. In addition, we assume that

measurements are ideally (in the absence of measurement noise) uniquely determined

by the system state, y = M (ξ). M is known as an observation operator, the

mapping of ξ into the observation space; it need not be a one-to-one mapping.

When measurement noise is present, individual measurements take the form yj =

M (ξj) + δ. Here, δ represents a random error, which is assumed to be normally

distributed with mean zero and (s× s) covariance matrix R. In addition to model

error, the observation operator M may be approximate. We refer to this form of

error as observation operator error.

There are many ways to view the above problem. In one sense it can be

thought of as an inversion problem: find ξ1, ξ2, . . . given y1, y2, . . .. Even though

M may not be invertible, this is possible because all measurements can be used, in

conjunction with the model, to determine each ξj. In other words, each individual

yj may not contain enough information to determine the state ξj, but the entire

time series y1, y2, . . . contains quite a bit of information, potentially enough to

obtain any individual ξj.

In a different sense, we can think of the problem as finding the trajectory in

state space satisfying (1.8) that, when projected into the observation space, best fits
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the measured time series. In this sense we can construct a quadratic cost function

to be minimized in order to obtain a maximum likelihood estimate of the trajectory.

Since we have assumed measurement noise follows Gaussian statistics, the most

sensible cost at each time is given by c(ξ,y) = (M (ξ)−y)T R−1(M (ξ)−y). To see

why this form is used, consider the vector ∆ = S−1(M(ξj)−yj) where S is real and

symmetric and solves S2 = R. We have c(ξ,y) = (M (ξ)−y)T S−1S−1(M (ξ)−y) =

∆T∆ = |∆|2 . Roughly speaking, the cost is then the square ‘distance’ between

ξ and y in units of the number of standard deviations they are separated in the

observation space.

The trajectory is uniquely determined from the state at ant particular time

tk: ξj = Gj−k(ξk) ∀j, where the notation Gn(ξ) means applying G to ξ n times (G

is invertible so n may be negative). Using this notation, the cost of a trajectory is

given by

C(ξk) =
∑

j

c(Gj−k(ξk),yj),

where the trajectory is constrained to pass through the point ξk at time tk.

Yet another perspective would be to look at the problem as a synchronization

problem, as alluded to in the introduction. If we can use the measurements to

synchronize the model with the true system, we will have obtained a trajectory

similar to the one sought above.

The last two perspectives, that of synchronization, or finding the trajectory

with maximum likelihood, are instructive. They propose not only ways of thinking

about the problem, but ways of solving it as well, i.e. by synchronizing the model
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to the true system, or by minimizing a cost function. When G and M are linear,

there is a solution which accomplishes all the above objectives, the Kalman filter.

1.3 The Kalman Filter

Suppose that the model and observation operator are linear, G(ξ) = Qξ, and

M (ξ) = Hξ, where H and Q are matrices of size s×N andN×N , respectively. The

Kalman filter is an recursive Bayesian approach to the problem of state estimation.

It is provably optimal given the statement of the problem (Gaussian measurement

noise, linear G and M ). Before describing the Kalman filter, we introduce the

concepts of Bayesian estimation.

1.3.1 Bayesian Estimation

Suppose we have a probability distribution function (PDF) p(ξ) representing

our knowledge of the system state. It is unimportant how exactly we came about

this information. When a new piece of information comes along, in the form of a

measurement y, we wish to update the PDF to reflect the new information. Denote

the conditional probability of measuring y, given that the state is ξ, as p(y|ξ). Using

Bayes’ rule, the new PDF of the state, reflecting the new information provided by

the measurement is then

p(ξ|y) =
p(y|ξ)p(ξ)

p(y)
, (1.10)

16



where p(y) =
∫

p(y|ξ)p(ξ)dξ is simply a normalizing factor. If we make the as-

sumption that p(ξ) is Gaussian, we have

p(ξ) ∼ exp

[

−1

2
(ξ − ξ̄

p
)TP−1(ξ − ξ̄

p
)

]

, (1.11)

for some covariance matrix P and mean ξ̄
p
. The assumption that measurement

noise is Gaussian leads to

p(y|ξ) ∼ exp

[

−1

2
(y − Hξ)T R−1(y − Hξ)

]

. (1.12)

Using equation (1.10) we get the updated PDF

p(ξ|y) ∼ exp

[

−1

2

(

(y − Hξ)T R−1(y − Hξ) + (ξ − ξ̄
p
)TP−1(ξ − ξ̄

p
)
)

]

. (1.13)

This PDF is Gaussian as well. Expressing p(ξ|y) in the form

p(ξ|y) ∼ exp

[

−1

2
(ξ − ξ̄

u
)T U−1(y − ξ̄

u
)

]

, (1.14)

leads to the relation

(ξ−ξ̄
u
)T U−1(ξ−ξ̄

u
)+C◦ = (y−Hξ)T R−1(y−Hξ)+(ξ−ξ̄

p
)TP−1(ξ−ξ̄

p
). (1.15)

The constant C◦ may take any value since it leavs p(ξ|y) proportional to p(y|ξ)p(ξ)

(any normalization is fixed by the factor p(y)). In order for this relation to hold for

all ξ, we must have

U =
[

P−1 + HT R−1H
]−1

, (1.16)

ξ̄
u

= U
[

P−1ξ̄
p
+ HT R−1y

]

. (1.17)

To summarize, beginning with an initial Gaussian PDF p(ξ) with mean ξ̄
p

and

covariance P, we have included new information obtained from a measurement made

17



in the observation space with mean y and covariance R. The end result is the

updated PDF with mean ξ̄
u

and covariance U , given by equations (1.16) and (1.17).

1.3.2 Kalman Filter Equations

With the tools of Bayesian estimation established, we proceed with the Kalman

filter formulation. Note that, since G is linear, that a Gaussian PDF transforms,

under the action of G to another PDF with Gaussian form. The PDF with mean

ξ̄
u
j−1 and covariance U j−1 at a time tj−1 transforms into the PDF at time tj with

mean and covariance

ξ̄
p
j = Qξ̄

u
j−1, (1.18)

Pj = QU j−1Q
T . (1.19)

This PDF is known as the predicted PDF; it is then updated using (1.16) and (1.17),

forming the updated PDF with mean and covariance,

U j =
[

P−1
j + HT R−1H

]−1
, (1.20)

ξ̄
u
j = U j

[

P−1
j ξ̄

p
j + HT R−1yj

]

. (1.21)

These update equations are often rewritten in the form

U j =
(

I + PjH
T R−1H

)−1
Pj, (1.22)

ξ̄
u
j = ξ̄

p
j + U jH

T R−1(yj − Hξ̄
p
j). (1.23)

Equations (1.18), (1.19), (1.22), and (1.23) are the complete Kalman filter

equations. In words, the Kalman filter evolves a PDF of the system state forward
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in time with successive updates whenever measurements are made. This process of

predict/update steps continues in an iterative fashion for all measurements in the

time series. At any given time, the PDF represents the accumulated information

provided by all previous assimilated measurements. The process typically begins

with a covariance P1 which is large enough that the initial PDF spans the entire

system attractor (or the range of possible system states).

1.3.3 The Extended Kalman Filter

In the case that G and M are not linear, we can still perform the Kalman filter

steps by linearizing them about the current state estimate in equations (1.19), (1.22),

and (1.23). Although this allows one to proceed with the computation, it is no longer

provably optimal. However, if the nonlinearities are weak, or measurements are very

frequent, linearization may be a successful strategy. We have the linear maps

Ĝ(ξ, ξ◦) = G(ξ◦) + DG(ξ◦)(ξ − ξ◦), (1.24)

M̂ (ξ, ξ◦) = M (ξ◦) + DM (ξ◦)(ξ − ξ◦), (1.25)

where DG(ξ◦) is the Jacobian of G evaluated at the point ξ◦, and DM (ξ◦) is the

Jacobian of M evaluated at the point ξ◦.

Replacing the Kalman filter equations with

ξ̄
p
j = G(ξ̄

u
j−1), (1.26)

Pj = DG(ξ̄
u

j−1
)U j−1DG(ξ̄

u

j−1
)
T
, (1.27)

U j =
(

I + PjDM (ξ̄
p
j)

T R−1DM (ξ̄
p
j)
)−1

Pj, (1.28)

ξ̄
u
j = ξ̄

p
j + U jDM (ξ̄

p
j)

T R−1(yj − M(ξ̄
p
j)), (1.29)
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gives the extended Kalman filter (EKF) equations.

Since the EKF does not treat the nonlinear evolution of the PDF, it is of

interest how quickly the exact PDF (if it were evolved with the full nonlinear model)

would deviate from a normal distribution. The growth in the skewness and kurtosis

of the distribution measure this tendency to deviate from normality, which gives a

sense for the accuracy of the approximation made in (1.27). Appendix A treats this

problem by considering the initial time evolution of the skewness and kurtosis of a

Gaussian PDF evolving in a generic nonlinear model. The growth of the standard

skewness and kurtosis measures is shown to be second order in time for short times.

One method for roughly compensating for the nonlinear evolution of the covariance

matrix is the method of multiplicative variance inflation, in which the predicted

covariance matrix is inflated by a factor Ω2 > 1 [16, 12].

Although the EKF has solved (approximately) the problem of state estimation

for nonlinear systems, it still must compute the inverse of at least one N×N matrix.

When N numbers in the millions this is computationally infeasible. In addition,

consider that with 8 bytes of precision per floating point number, simply storing P

when N = 106 would require 4 terabytes (even after taking advantage of symmetry).

These restrictions limit the applicability of the EKF.

1.4 Ensemble Kalman Filters

For a spatially extended system evolving according to a set of partial differ-

ential equations, the system state is usually represented as a collection of values
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(for each variable of interest) on each grid point of a mesh. This collection of vari-

ables may number in the millions (N ∼ 106). Often, the system investigated has

many fewer dynamical degrees of freedom, in the sense that the dimension of the

attractor is much less than N . One could conceivably take advantage of this fact

by constructing a reduced rank representation of the covariance matrices U and P.

The class of ensemble Kalman filters (EnKF) accomplish this through the

representation of the PDF, not by its mean and covariance, but by an ensemble of

system states. This ensemble gives a finite sampling approximate representation of

the probability distribution function (PDF) of the system state. For an ensemble

ξ1, ξ2, . . . ξk with k members, the PDF mean ξ̄ is

ξ̄ =
1

k

k
∑

i=1

ξi, (1.30)

while the covariance C is given by

C =
1

k − 1
ZZT , (1.31)

where the matrix Z has columns

Z =
[

δξ1|δξ2| . . . |δξk
]

, (1.32)

and δξi are the ensemble perturbations

δξi = ξi − ξ̄. (1.33)

The EnKF approach is to approximate the PDF as lying in the space spanned by the

k ensemble members [9, 34, 16, 14]. The number of ensemble members must then be

large enough to account for the many dynamical degrees of freedom in the system,
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but it need not be so large as to span the entire N dimensional space of possible

states. The general procedure is to compute the updated ensemble {ξu,1 . . . ξu,k}

from an update of the predicted ensemble {ξp,1 . . . ξp,k},

update step : {ξp,1
j . . . ξ

p,k
j } +

{measurements} → {ξu,1
j . . . ξ

u,k
j } (1.34)

predict step : ξ
p,i
j+1 = G(ξu,i

j ) i = 1 . . . k. (1.35)

This iterative procedure begins with an initial predicted ensemble {ξp,1
0 . . . ξ

p,k
0 }

consisting of states randomly sampled from the system attractor. The maximum

likelihood estimate of the system’s state after an update step is the center of the

updated ensemble given by (1.30). Here, the entire ensemble evolves nonlinearly,

not just the mean as in equation (1.26) of the EKF. Furthermore, in the space

spanned by the ensemble, only k × k matrices are required, rather than the N ×N

matrices of the EKF. Although the EnKF comes in many forms, they all approach

the problem in this way. Here we follow a particular type of EnKF known as an

ensemble square-root Kalman filter [14].

The predicted ensemble ξp,i has mean ξ̄
p

and covariance P, defined as in (1.30)

and (1.31). From this point on, all quantities are assumed to have a subscript j (we

are performing the t = tj update step). We wish to find the updated ensemble ξu,i

with mean ξ̄
u

and covariance U , also defined as in (1.30) and (1.31). This update

step is performed in the space of k-component vectors ξ̃ which transform to the full

state space via

ξ = ξ̄
p
+ Zpξ̃, (1.36)
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where Zp is defined as in (1.32) for the predicted ensemble ξp,i. In this space of ξ̃

vectors, the predicted ensemble has mean zero and a covariance which is simply a

multiple of the k × k identity matrix, P̃ = (k − 1)−1I.

Each predicted ensemble member is projected into the observation space by

forming the ensemble yp,i = M (ξp,i), using the full (possibly nonlinear) form of

M . The observation mean ȳp is defined similarly to (1.30). In addition, we define

the matrix Y p, containing the ensemble perturbations, Y p =
[

δyp,1|δyp,2| . . . |δyp,k
]

,

where δyp,i = yp,i−ȳp. Y p can be considered as a linear mapping from k-component

ξ̃ vectors to s-component y vectors. By regarding Y p as an observation operator of

the new k-dimensional space, we effectively have linearized M . This linearization is

not the same as in the EKF equation (1.25). Rather, regarding Y p as an observa-

tion operator effectively linearly interpolates between the full (possibly nonlinear)

observations yp,i.

Although the predicted ensemble may not be Gaussian, we apply the standard

Kalman filter update equations (1.22) and (1.23) by making the substitutions

ξ̄
p → ¯̃

ξ
p

= 0,

P → P̃ = (k − 1)−1I,

H → Y p,

Hξ̄
p → ȳp.

Application of these substitutions to equations (1.22) and (1.23) results in the EnKF

update equations for computing the updated covariance Ũ and mean ¯̃
ξ

u
.

Ũ =
(

(k − 1)I + (Y p)T R−1Y p
)−1

, (1.37)
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¯̃
ξ

u
= Ũ (Y p)T R−1(y − ȳp). (1.38)

In principle, we could now compute the full state space mean and covariance

ξ̄
u

= ξ̄
p
+ Zp¯̃ξ

u
, (1.39)

U = ZpŨ (Zp)T . (1.40)

However, it would be an inefficient to compute U directly; all that is required is to

obtain the updated ensemble ξu,i, and this can be obtained directly from Ũ and ξ̄
u
.

A Monte-Carlo method of obtaining the ensemble would be to randomly sam-

ple k points in the k-dimensional space according to a PDF with mean ¯̃
ξ

u
and

covariance Ũ . These points could them be transformed into the state space us-

ing (1.36), forming the updated ensemble. However, it is generally beneficial if

the choice of updated ensemble is deterministic. We seek a linear transformation

from the predicted ensemble perturbations δξp,i (equivalently, the matrix Zp) to the

updated ensemble perturbations δξu,i (equivalently, the matrix Zu) such that the

covariance of the updated ensemble perturbations, as computed by (1.31), gives the

required U of equation (1.40). The transformation is written Zu = ZpW . Plugging

this into (1.31) gives U = (k − 1)−1Zu(Zu)T = (k − 1)−1ZpWW T (Zp)T . Thus if

W satisfies

Ũ = (k − 1)−1WW T , (1.41)

equation (1.40) will be satisfied. There are several W matrices which satisfy equa-

tion (1.41). However there is a unique real W which satisfies (1.41) and is sym-

metric; this is our choice of W . It can be found numerically by computing the
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Eigendecomposition of Ũ ,

Ũ = V DV T , (1.42)

leading to

W =
√
k − 1V D1/2V T . (1.43)

The final updated ensemble is

ξu,i = ξ̄
u

+
k
∑

j=1

Wijδξ
p,j, (1.44)

where the Wij are elements of the W matrix, and ξ̄
u

is given by (1.39). This step

completes the EnKF update.

1.4.1 Parameter Estimation

There is a straightforward extension of the ensemble methods for cases in

which some model parameters are unknown. Consider the model

ξj+1 = G(ξj,p) (1.45)

and the extended state space to vectors having the form γ =









ξ

p









, where p, the

vector of model parameters, is treated as a state variable. The extended model

evolves as

γj+1 =









ξj+1

pj+1









=









G(ξj,pj)

pj









= Ĝ(γj). (1.46)

Estimates of γ (and therefore the parameters p) result from an implementation in

the same way as for ξ, but in the space of γ vectors.
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1.4.2 Discussion

Although this form of EnKF has many advantages over the EKF, it may still

be computationally infeasible for systems exhibiting high dimensional chaos. As

the system size grows and the dynamical degrees of freedom increase, so too must

the number of ensemble members k in order to sample the state space. This is a

major drawback of ensemble methods like the EnKF, preventing their use for spa-

tiotemporal chaos in large domains which would require an unfeasibly large k. In

this case, the bottleneck in the computation may not be the EnKF update, but

rather the simulation of k different system states. This is especially true when the

model must simulate a system of partial differential equations, as in many spa-

tiotemporally chaotic systems. This motivated the development of the LETKF of

Chapter 2. The LETKF algorithm is presented in the next section in a context

specific to Rayleigh-Bénard convection.

26



Chapter 2

Application of Data Assimilation to Rayleigh-Bénard Convection

The EnKF reduces the rank of covariance matrices by only keeping track of

the PDF in the space spanned by the ensemble members. The LETKF reduces the

rank further, by considering that, for spatiotemporal chaos with a small correlation

length, the system state at any point is uncorrelated with the system state at points

far away. For example, it is unnecessary to compute or store elements of covariance

matrices corresponding to the temperature at two points far from one another (we

can expect this element of the matrix to be approximately zero). Alternatively,

one can consider that in spatiotemporally chaotic systems the dynamics in local

regions tend to lie in a low dimensional space. To take advantage of this property

of spatiotemporal chaos, the LETKF performs local updates on overlapping patches

covering the domain. This is advantageous since the number of ensemble members

required is independent of the system size, making the method applicable to large

domains [10, 11]. Local regions may be spanned by fewer ensemble members, and

thus the required k is smaller for the LETKF as compared to the EnKF. Other than

this important difference, the LETKF operates similarly to the EnKF. The LETKF

update uses the same equations as the EnKF, using an ensemble of system states to

represent the PDF. The only difference being that the computations take place for

many local ensembles, rather than one global ensemble. The full LETKF algorithm
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is presented in Section 2.1.

Our goal is to determine the full fluid state of a Rayleigh-Bénard convection

experiment, from a time series of shadowgraph measurements. We view this as a test

case investigation of the general usefulness of the LETKF technique for laboratory

experiments on spatiotemporal chaos. The fluid state ξ consists of the variables θ

and u defined on the grid points (rm, φn, zl) of the cylindrical mesh; symbolically

ξ =









θ

u









.

For the model G we simulate the Boussinesq equations (1.1). We assume that mea-

surements are made at constant intervals ∆t (tj ≡ j∆t). In this context the measure-

ments come as a collection of shadowgraph pixels, y = [I(x1, y1) I(x2, y2) . . . I(xs, ys)]
T

where I(xl, yl) is the light intensity at the location (xl, yl) of pixel l. Note that the lo-

cation of these intensity measurements need not occur on a uniform mesh; we assume

that their location is fixed but arbitrary. We assume for simplicity that R = σ2I,

i.e., a multiple of the identity matrix, so that measurement noise is homogeneous

and uncorrelated with a standard deviation of σ. This assumption is justified for

most experimental setups, as shown in Section 3.2. The map M (ξ) outputs the

vector of pixel intensities y using a finite resolution approximation to (1.6), where

for ∇2
⊥ we use a finite difference on the cylindrical mesh. Note that, since we require

‖a∇2θ̄‖ ¿ 1 for (1.6) to be a good approximation, M is only weakly nonlinear.

An application of any of the previously introduced data assimilation techniques

(EKF, EnKF) to high aspect ratio Rayleigh-Bénard convection leads to enormous

computation. Either inversion of an N × N matrix, or the requirement for a large
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number of ensemble members make both methods infeasible. For example, we found

for the Rayleigh-Bénard problem (with Γ = 20) that, using the EnKF, it was not

computationally feasible to use large enough ensembles to obtain results of any use.

For a small domain (Γ = 6 with ε = 2.0) we found that the EnKF required k ≈ 100

ensemble members. Since the dimensionality of Rayleigh-Bénard convection has

been shown to be extensive [20], we expect on the order of k ∼ 1000 ensemble

members would be required for an aspect ratio Γ = 20.

2.1 The Local Ensemble Transform Kalman Filter

We now describe the LETKF’s update step (1.34). This Appendix is an adap-

tation to our Rayleigh-Bénard problem of the technique developed in [12]. Let ξmn

be a vector whose components consist of the collection of all elements of ξ (in any

order) that lie on grid points within a horizontal distance L of the point (rm, φn) of

the mesh used by the model. We call ξmn a local state and L the local region radius.

There are as many (overlapping) local regions as horizontal grid points (rm, φn), see

Fig. 2.1. Note that, since the problem of interest is essentially two dimensional,

local regions are indexed by two indices (m,n). The three dimensional nature of the

system is reflected in the fact that, for each horizontal grid point, the vector ξmn

contains the state at all z levels zl, l = 1 . . . Nz. Associated with the updated and

predicted (global) ensemble members ξu,i and ξp,i are the local ensemble members

ξu,i
mn and ξp,i

mn (all local states, global states, and ensemble states have an implied

time index j).
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Figure 2.1: Two local regions are shown on a reduced resolution mesh. Every grid

point (m,n) is the center of a local region. Associated with each local region (m,n)

is the local state vector ξmn consisting of state variables on the indicated horizontal

grid points and all vertical grid points associated with them.

Recal that the observation ensemble of predicted shadowgraphs {yp,1 . . . yp,k}

is defined as yp,i = M (ξp,i) (the projection of the predicted ensemble into the

observation space). Let yp,i
mn be all elements of yp,i within the local region (m,n).

If there are smn measurements made within the local region (m,n), then the vector

yp,i
mn has dimension smn. Form the matrix Y p

mn ≡ [δyp,1
mn | δyp,2

mn | · · · | δyp,k
mn] where

δyp,i
mn = yp,i

mn − ȳp
mn and ȳp

mn is defined as in (1.30). The local measurements ymn

have an associated local smn × smn covariance matrix Rmn, which is equal to σ2

multiplied by the smn × smn identity matrix. We modify this matrix by forming the
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tapered diagonal covariance matrix Qmn having i, ith element

Qii
mn ≡ [σe(r/rf )2 ]2, (2.1)

where r is the (horizontal) distance from the grid point (m,n) to the location of

the ith element of ymn, and rf is some falloff distance. This modification effec-

tively weights measurements further from the grid point (m,n) less heavily when

estimating the state of the (m,n) local region. This type of distance-dependant

modification to the covariance matrices has been investigated previously [17]. The

form (2.1) in particular is very effective for reducing the convergence time in our tests

on Rayleigh-Bénard convection when compared to other forms (for example a linear

function of r/rf ). We also weight current measurements more heavily than prior

ones by the method of multiplicative variance inflation. The predicted covariance

matrix is inflated by a factor Ω2 > 1, to lessen the influence of prior measurements

on the current state, and to compensate in some rough way for model nonlineari-

ties [16, 12]. Ordinarily Ω is chosen empirically.

We proceed to compute the updated ensemble. The following equations take

place in the k-dimensional space of local predicted perturbations δξp,i
mn. The inputs

are the global predicted ensemble ξp,i and the measurement y. The output is the

global updated ensemble ξu,i.

Compute each yp,i = M (ξp,i).

For each grid point (m,n):
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1. Form ymn from the elements of the measurement y, along with the tapered

covariance matrix Qmn.

2. Form ȳp
mn and Y p

mn from the ensemble yp,i.

3. Compute the updated k × k covariance matrix,

Ũmn = [(k − 1)Ω−2I + (Y p
mn)TQ−1

mnY
p
mn]−1. (2.2)

4. Next compute the update vector

wmn = Ũmn(Y p
mn)TQ−1

mn(ymn − ȳp
mn), (2.3)

which is a transformation of the difference between the predicted and actual

measurement into the k dimensional space of perturbations δξp,i
m,n.

5. Calculate the matrix

W mn = [(k − 1)Ũmn]1/2 + wmn, (2.4)

where, by adding a vector to a matrix we mean adding it to each column of

the matrix. The 1/2 power here indicates taking a symmetric square root.

6. Form the local predicted ensemble {ξp,1
mn . . . ξp,k

mn} from the global predicted en-

semble {ξp,1 . . . ξp,k} as well as the matrix Zp
mn ≡ [δξp,1

mn | δξp,2
mn | · · · | δξp,k

mn].

7. Finally, compute the local updated ensemble perturbations δξu,i
mn,

Zu
mn = Zp

mnW mn. (2.5)
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As before, Zu
mn ≡ [δξu,1

mn | δξu,2
mn | · · · | δξu,k

mn], and the local updated ensemble

is given by ξu,i
mn = ξ̄

p
mn + δξu,i

mn.

To complete the update step, the global updated ensemble member ξu,i is

obtained from the center elements of each ξu,i
mn. by setting the value of ξu,i at each

point (m,n) equal to the elements of ξu,i
mn corresponding to the center of local region

(m,n) (i.e., corresponding to the local state at grid point (m,n)). Note that each

local region is assimilated independently, allowing for massive parallelization.

To estimate parameters, simply replace ξ with γ everywhere in the above

steps. This formulation assumes state variables are spatially extended. Thus,

when adding global parameters to the state space we must assume that they are

spatially dependant. That is, when estimating both the Rayleigh number and

a of (1.6) (p = [R a]T), the state γ is the concatenation of ξ and p̂, where

p̂ = [R11 . . . Rmn . . . a11 . . . amn . . .]T. The LETKF is then augmented by av-

eraging these parameter values over the grid, after the update step, to form global

parameters. This average is performed for each global ensemble member γu,i by

setting its p̂ component to p̂u,i = [R̄i R̄i . . . āi āi . . .]T, where R̄i and āi are the

ith ensemble members spatial averages of R and a, respectively. If the model allows

for spatially dependent parameters then this last averaging step is not necessary.
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2.2 Direct Insertion

In order to assess how well the LETKF method is performing, we will compare

it to a more naive approach that we call Direct Insertion (DI). The DI approach is

motivated by a style of synchronization used by Pecora and Carroll in [35] in which

the available measurements simply substitute their corresponding state variables.

This only applies to when state variables are measured directly. With shadowgraph

measurements, no state variables are measured directly; however, there is a one to

one correspondence between a shadowgraph and the vertically averaged field θ̄(x, y).

With this in mind, the DI update step adjusts the predicted t = tj temperature field

θ̄p
j (x, y) to reflect the current measurement exactly.

At the time tj of the shadowgraph measurement Ij(x, y), the DI method up-

dates the predicted temperature field θp
j (x, y, z) by adding a correction δθj(x, y, z)

which is the unique field that is quadratic in z, matches the boundary conditions at

|z| = 1
2
, and for which the updated field θu

j (x, y, z) = θp
j (x, y, z)+δθj(x, y, z) satisfies

Ij(x, y) =
I◦(x, y)

1 − a∇2
⊥θ̄

u
j (x, y)

. (2.6)

This gives the update

δθj(x, y, z) = (θ̄u
j (x, y) − θ̄p

j (x, y))

(

3

2
− 6z2

)

, (2.7)

where θ̄u
j (x, y) is found by solving a Poisson equation,

∇2θ̄u
j (x, y) =

1

a

[

1 − I◦(xc, yc)

Ij(xc, yc)

]

, (2.8)

and (xc, yc) is the location of the closest pixel to (x, y) that is observed. Note that

with DI the velocity is not updated, uu
j (x, y, z) = up

j(x, y, z), rather it develops
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through coupling with the temperature during the simulation step,
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The z-dependence of the predicted field is only slightly affected by the update

since, if measurements are sufficiently frequent, the correction δθj(x, y, z) (which

has quadratic dependence) is small. This method is the most successful data assim-

ilation technique we have tested that does not use an update based on the Kalman

Filter. It is meant to represent what one might try without knowledge of the local-

ization techniques described in this section.
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Chapter 3

Results

3.1 Perfect Model

In this section we describe so-called perfect model tests in which a time series

of states, generated from a Boussinesq simulation (Γ = 20, ε = 1, Pr = 1) of one

particular initial condition, serves as a proxy for the experimental system. Simulated

shadowgraph measurements of this time series are generated every ∆t = 1/4 by

using (1.6) with the parameters a = 0.08, I◦(x, y) = 0.5. By this technique we

generate a situation in which the ‘true state’ to be estimated and the model used to

estimate it both evolve under exactly the same dynamical rules. In Sec. 3.2 we use

real (not simulated) observations of a physical system for which the model dynamics

is surely not an exact description.

To reproduce the effects of measurement noise we add to each pixel a small

random error that is an uncorrelated normally distributed number with mean zero

and standard deviation σ. Measurements are made sparse by removing shadow-

graph pixels, leaving only those which lie on observation locations. We introduce

the measurement density ρ ≡ s/(πΓ2) as a measure of sparseness, where s is the

number of observation locations. For ρ ≥ 4 we randomly and uniformly distribute

observation locations over the disk, otherwise the observation locations are placed on

a Cartesian grid covering the disk (giving more repeatable results when using sparse

36



measurements). The observation locations are fixed for the entire data assimilation

process.

We apply the LETKF and DI methods to our simulated shadowgraph time se-

ries to approximately reconstruct the original time series of true states. Performance

is quantified via the temperature and mean flow RMS relative error,

Eθ(t) =

√

〈|θ(x, y, z, t) − θt(x, y, z, t)|2〉
〈|θt(x, y, z, t)|2〉 , (3.1)

Eū(t) =

√

〈|ū(x, y, t) − ūt(x, y, t)|2〉
〈|ūt(x, y, t)|2〉 , (3.2)

where θt(x, y, z, t) and ūt(x, y, t) are the temperature and mean flow from the ‘true’

time series of states, and 〈·〉 indicates a spatial average.

Simulated shadowgraphs are assimilated at times tj, j = 1 . . . J . During this

process we converge on an estimate of the system state (J chosen large enough to

ensure convergence). At time tJ assimilation is turned off and the final updated

state estimate is used as an initial condition for a long term forecast. We note

that the initial state estimate does not attain the minimum error, instead it occurs

about 1 tv into the forecast. This is a result of the simulation rapidly balancing the

fields by strongly suppressing field errors with large wave numbers. This effect is

very slight in the LETKF forecasts, but can be quite strong in DI forecasts. Three

measures of the quality of a state estimate are used: the minimum values attained

by Eθ(t) and Eū(t) during a forecast, denoted Emin
θ and Emin

ū
, and the predictability

time τ , defined as the time when Eθ(t) first crosses the (somewhat arbitrary) value

of 0.15. The perfect model tests reported here for the LETKF use k = 18 ensemble

members, a variance inflation factor Ω = 1.0 − 1.1, a local region radius L = 2.6d,
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and a falloff distance rf = 1.4d.

3.1.1 Performance with Noise/Sparseness

Here we document the performance of DI and the LETKF as a function of

measurement noise σ and measurement density ρ. We define the ideal scenario as

measuring a shadowgraph every tv/4 with ρ = 127 (corresponding to a 451 × 451

shadowgraph image) and σ = 0.01 (this situation can be achieved in an experiment).

Under these conditions the DI and LETKF (with k = 18 ensemble members) con-

verge on a state estimate within ∼ tv and ∼ 3tv, respectively (observing ∼ 4 and

∼ 12 shadowgraphs, respectively). Both DI and the LETKF are effective for es-

timation of the (unobserved) mean flow ū(x, y), however the LETKF achieves a

minimum error Emin
ū

that is less than half that of DI. The forecast error for a typical

state estimate is shown in Figs. 3.1 and 3.2. The general character of the forecasts

is a shadowing of the true state, followed by rapid divergence. When divergence

begins, the spatial structure of the error is concentrated near defects. This behavior

is expected, as the magnitude of the Lyapunov vector associated with the largest

Lyapunov exponent is largest at the location of defects [20].

38



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80

E
θ(
t
)
 
f
o
r
e
c
a
s
t

t (t v )

DI

LETKF

 0  1  2  3
 0

 0.1

 0.2

t (t v )

DI

LETKF

E θ(t) converging

Figure 3.1: The error of the forecast temperature Eθ(t) with σ = 0.01 and ρ =

127. Also shown in the small graph is Eθ(t) as each method converges on a state.

Assimilation is turned off at time tJ = 3.25 in the small graph, corresponding to

time 0 in the large graph. The dashed line is our chosen threshold, Eθ(t) 6 0.15,

below which we consider the forecasts ‘good’.
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Figure 3.2: Mean flow error Eū(t) of forecasts with σ = 0.01 and ρ = 127. Assimi-

lation is turned off at time tJ = 3.25 in the small graph, corresponding to time 0 in

the large graph. The insert shows Eū(t) as each method converges on a state.

Under non-ideal conditions the LETKF proves much more robust than DI.

Results for sparse measurements, shown in Fig. 3.3, demonstrate the large range of

ρ for which the LETKF converges. One can observe the existence of a critical density

of observations above which the LETKF does not substantially improve and below

which it fails to converge. By adjusting the parameters of the LETKF’s update step

(as described in the Appendix) we have been able to push the critical density as

low as ρ = 1.3 without a significant loss of quality in the state estimate. DI on the

other hand exhibits a steady increase in Emin
θ and Emin

ū
as ρ is decreased, as well as

a rapidly deteriorating forecast when even a few observation locations are removed.
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Figure 3.3: Emin
θ , Emin

ū
, and the predictability time τ as the density of observations

ρ is reduced.

Just as there is a critical measurement density, we have also found evidence

of a critical measurement frequency. This frequency lies somewhere between 1 and

2 shadowgraph images per vertical diffusion time for repeatable convergence of the

LETKF under ideal conditions. This corresponds to about 1 Hz in a typical exper-

iment.

Since the shadowgraph signal is simply variations from the background in-

tensity I◦(x, y), the magnitude of measurement noise is best represented, not when

compared with the typical shadowgraph magnitude, but when compared to the typ-

ical RMS intensity variation σsg of a shadowgraph. In other words, the meaningful

signal to noise ratio is σsg/σ (σsg ≈ 0.12 when a = 0.08 and I◦(x, y) = 0.5). DI relies

on the Poisson solve (2.8) which is fundamentally insensitive to noise (it smoothes
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the right hand side). However, this insensitivity competes with the sensitivity of the

chaotic system dynamics when producing forecasts. The net result, in Fig. 3.4 indi-

cates that DI forecasts are only useful for σ . 0.4σsg, whereas the LETKF operates

up to and exceeding σ = σsg.
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Figure 3.4: Emin
θ , Emin

ū
, and the predictability time τ as measurement noise is in-

creased.

We note that all results are from one particular realization of the possible

‘true’ time series, generated from one particular initial condition. These results are

typical of what one can expect; however, variability can be expected (particularly

in τ) for different data sets.
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3.1.2 Parameter Estimation

The relevant parameters available for estimation include not only the model

parameters Pr and R but also the observation operator parameter a of (1.6). In

general, the LETKF facilitates estimation of observation operator parameters in

exactly the same way as model parameters, by replacing M (ξ) by M (ξ,p) ≡ M̂(γ).

The initial ensemble {γp,1
0 . . .γp,k

0 } is constructed as before, from states sampled from

the attractor in the ξ component, while the p component is sampled from a normal

distribution. When estimating a and R (with true values a = 0.08 and R = 3414)

the initial distribution was given mean (a = 0.07, R = 3073) and standard deviation

(σa = 0.02, σR = 683). The convergence process is demonstrated in Fig. 3.5.
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Figure 3.5: Simultaneously estimating the parameters a (with true value 0.08) and

R (with true value 3414.0). The error bars give a visual representation of the

ensemble spread, extending one standard deviation up and down. The thick error

bars represent the case ρ = 127 and σ = 0.01, while the thinner represent the sparse

measurement case, ρ = 3.6 and σ = 0.01.

Under ideal conditions the ensemble converges in 8tv on p = [R a]T =

[3414.26 0.07979]T±[1.61 0.000072]T, compared to the true value p = [3414.0 0.08]T.

Here the error estimates for R and a are the standard deviations of the p component

of the ensemble after the last update. Remarkably, even when measurements are
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sparse (ρ = 3.6, near the critical measurement density) the parameter estimates are

very good, p = [3416.71 0.07976]T ± [9.9 0.00044]T. When estimating the state

and parameters simultaneously, the values of Emin
θ and Emin

ū
are similar to those

shown in Fig. 3.3 and 3.4. That is, the ability to estimate the system state is not

adversely affected when parameters are simultaneously estimated. It is important

to note that estimating parameters (in γ space) requires more ensemble members

than when parameters are known, thus parameter estimation tests were performed

with k = 20.

Due to limitations in our simulation, we were unable to estimate Pr in the

full Γ = 20 system. Instead we estimated Pr, a, and R together in small aspect

ratio tests (Γ = 4, R = 8540, Pr = 1). This small aspect ratio made possible

the application of the EnKF, allowing for comparisons between the LETKF and

the full EKF. Fig. 3.6 and 3.7 show the convergence of the ensemble toward the

true parameter values. Both the EKF and LETKF assimilated data from simulated

shadowgraphs (ρ = 93, σ = 0.01), and both achieve lower than 1% error in Pr

parameter estimates.
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Figure 3.6: Convergence of the ensemble mean of the parameter R toward the true

value, indicated by the red line. The initial ensemble had a large spread about the

mean R = 7857.
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Figure 3.7: Convergence of the ensemble mean of the parameter Pr toward the true

value, indicated by the red line. The initial ensemble had a large spread about the

mean Pr = 1.2.
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3.2 Experiment

3.2.1 Experimental Setup

The experiment differs from a perfect model scenario in that G and M are now

approximations, requiring robustness to model error as well as observation operator

error. In particular, the Boussinesq model is an approximation to the more exact

Navier-Stokes equations and our geometric optics treatment is an approximation to

a more involved physical optics treatment. For example, the Boussinesq equations

do not treat the temperature dependence of the fluid viscosity, thermal expansion

coefficient, specific heat (at constant pressure), or conductivity; each of which varies

by 5% to 10% over the temperature range ∆T of the experiment.

The geometry, parameter values and boundary conditions are closely matched

between experiments and simulations. For our experiments, the fluid is a thin

(d = 0.0602 cm) layer of carbon dioxide gas compressed at a gauge pressure 31.58

bar. The layer is surrounded by a circular boundary of radius 1.25 cm. In the exper-

iment, the top, bottom and lateral boundaries are composed of sapphire, aluminum

and polyethersulfone, respectively; the thermal conductivities of the boundaries ex-

ceed that of the gas by at least an order of magnitude. For this fluid, the critical

temperature difference for convection onset is ∆T = 6.02 ◦C and tv = 1.66 s. A

fixed temperature difference ∆T = 10.23 ±0.09 ◦C is imposed across the layer at a

fixed mean temperature of 22.6 ±0.1 ◦C. These conditions correspond to R = 2902

(ε = 0.7), Pr = 0.97, and Γ = 20.8.

DI and the LETKF were used to assimilate shadowgraph images from the
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experiment. Images were taken every ∆t = tv/5 (3.0 Hz) as 395× 395 bitmaps (ρ =

90) having σsg = 0.06, a signal to noise ratio of approximately 20 (σ/σsg ≈ 0.05).

In experiments, the true fluid state is not available for directly ascertaining the

accuracy of state estimates. Instead, we generate a forecast of the state estimate,

using the model, and compare the predicted shadowgraph sequence to subsequent

measurements (M is applied to the forecast state every ∆t). Shadowgraphs are

first filtered by removing high frequency components (wavelengths less than d/2).

We then threshold the image such that half the pixels are set to 1 (the remaining

half are 0). This filtering/threshold procedure is applied to both the predicted and

measured shadowgraph time series. The natural error measure is then the fraction

of pixels incorrectly predicted, denoted EI .

The results reported here using experimental data use an inflation factor of

Ω ≈ 1.4. The large variance inflation is used to account for some of the model error,

and greatly improves stability. In this section, in which we assimilate experimental

data, the LETKF uses the parameter values k = 18, L = 2.6d, and rf = 1.4d.

3.2.2 Analysis of Measurement Noise

Recall that the s component vector δ represents measurement noise (yj =

M (ξj) + δ). It is is a random variable which, in order to apply the Kalman filter

methodology, is assumed to be normally distributed with mean 0. Two shadowgraph

images (I
(1)
◦ and I

(2)
◦ ) were taken below onset (ε < 0) and compared to estimate the

distribution of noise in shadowgraph images. The the shadowgraph light intensity
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at the location of pixel [i, j] in each image is denoted I
(1)
◦ [i, j] and I

(2)
◦ [i, j], and

the average is computed as Iavg
◦ = (I

(1)
◦ + I

(2)
◦ )/2. The distribution of the quantity

δij = I
(1)
◦ [i, j] − Iavg

◦ [i, j] over the entire image is denoted f(δij). Fig. 3.8 shows

the distribution f(δij) is symmetric and normally distributed with mean zero and

standard deviation σ ≈ 0.003. Thus the assumption made regarding the normality

of measurement noise is a good approximation.
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Figure 3.8: Probability distribution of shadowgraph pixel noise δij.

The noise at each pixel is weakly correlated to noise at nearby pixels. This

correlation can be measured via the quantity

C(m,n) ≡
∑

ij

(

I
(1)
◦ [i+m, j + n] − Iavg

◦ [i+m, j + n]
)(

I
(1)
◦ [i, j] − Iavg

◦ [i, j]
)

∑

ij

(

I
(1)
◦ [i, j] − Iavg

◦ [i, j]
)2 .

The one dimensional correlation function is denoted C(n),

C(n) ≡ 1

4

∑

i2+j2=n2

C(i, j). (3.3)

Fig. 3.9 shows this correlation versus pixel distance.
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Figure 3.9: Correlation of shadowgraph pixel noise to the noise of nearby pixels.

There is a slight correlation between immediately adjacent pixels. Although we

could build this slight correlation into the noise covariance matrix R, Fig. 3.9 shows

that the correlation is small. Thus we assume that pixel noise is independent and

isotropic so that R is a multiple of the identity matrix. The full correlation C(m,n)

is plotted in Fig. 3.10. One can notice a slight asymmetry, the vertically adjacent

pixels are more highly correlated than horizontally adjacent ones. Presumably this

is specific to our shadowgraph apparatus.
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Figure 3.10: The correlation function C(m,n) of shadowgraph measurement noise

from the experiment.

The optimal value of σ for the LETKF update step was typically much larger

than the measured value σ = 0.003. The best results were obtained with σ ≈

0.01 − 0.03, most likely due to the ability of an inflated σ to roughly compensate

for some observation operator error.

3.2.3 Parameter Estimation and Performance with Sparseness

The LETKF is given 4tv to converge on state and R estimates, this is suffi-

cient for both ideal (ρ = 90) and sparse observation (ρ = 4) cases. In the ideal

case, the LETKF converges on the parameter estimate R = 2625 (the experimen-

51



tally measured value is R = 2902 ± 26). When ρ = 4 the LETKF converges on

the estimate R = 2491. These estimates are obtained consistently throughout the

experimental data set. Typical forecasts demonstrate a linear forecast error growth

up to the saturation point near EI = 0.5. Since R has been measured in the ex-

periment, parameter estimation is not necessary. However, forcing the LETKF to

use the measured R value harms the forecast, bringing it up to the level of the DI

forecast. This indicates that the advantage of the LETKF in this case lies in its

ability to estimate parameter values, as model error can typically be compensated

for, to some extent, by adjustment of model parameters off their measured values.

An example of the resulting mean flow estimate is shown in Fig. 3.11. This

data assimilation technique has allowed us to obtain (indirectly) the mean flow

from shadowgraph measurements. Fig. 3.12 shows a typical state estimate from

the LETKF. To the eye, DI state estimates look nearly identical to the LETKF

estimates. However, DI forecasts shown in Fig. 3.13, which use the ‘true’ value of

R = 2902 are significantly worse than LETKF forecasts, which use their respective

R estimates.
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Figure 3.11: Close up image of the mean flow structure from the LETKF state

estimate inferred from experimental data. The background shows the experimental

shadowgraph image.
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Figure 3.12: An estimate of the fluid state after assimilating for 4tv of data (J = 20

frames). A: The t = tJ shadowgraph measurement indicating columns of warm

rising fluid (dark) and cold descending fluid (light). B: Temperature profile θ̄(x, y)

from the state estimate. C: The modeled shadowgraph M [θ(x, y, z)] of the state

estimate for comparison to A. D: The inferred vorticity potential φ(x, y) which

solves ∇2φ(x, y) = −ẑ · (∇× ū) and indicates regions of clockwise rotating (dark)

and counter-clockwise rotating (light) mean flow.
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Figure 3.13: Forecast error EI for DI and LETKF methods are shown for high

and low measurement densities. The LETKF forecast uses its parameter estimate

(R = 2625 for ρ = 90,R = 2491 for ρ = 4) while the DI forecast uses the measured

value R = 2902.

Fig. 3.14 shows how the forecasts of Fig. 3.13 compare with typical perfect

model forecasts (the best that can be expected) using the same parameters as the

experiment (R = 2902, Γ = 20.8, Pr = 0.97) as well as the same measurement

frequency (∆t = tv/5), density (ρ = 90), and noise level (σ/σsg ≈ 0.05). The

experiment’s forecast is unable to shadow the true state as seen in the perfect model

case, likely due to model error.
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Figure 3.14: Forecast error EI for DI and LETKF methods in perfect model (PM)

tests and when using experimental data (E). The LETKF forecasts use the estimated

value of R, while DI uses the true value.

3.3 Discussion

The results from applying the LETKF and DI methods to experimental data

are far from the ideal results presented in the perfect model tests. There is significant

model error. We have attempted to compensate for this model error by introducing

a temperature dependence in the thermal conductivity and specific heat (each varies

by about 5% over the temperature range in the experiment). However, we found

that this did not improve forecasts. The model error may be a result of other

assumptions made in the Boussinesq model. For example, that the velocity field is

divergence free.

Recently it has been shown [36] that the dimension density δD = D/Γ2 (where

D is the dimension of the full system) for spiral defect chaos is D/Γ2 ≈ 0.25 when
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ε = 2.5. This result was obtained in the same disk-shaped geometry we have inves-

tigated, with aspect ratios up to Γ = 15. This indicates that for our aspect ratio

of Γ = 20, there is approximately D = 100 degrees of freedom (note that this is for

ε = 2.5 only; the dependence of dimension on ε remains unknown). The number of

ensemble members will presumably scale with the number of dynamical degrees of

freedom in a local region, which can be computed from this dimension density as

Dlocal = δDL
2. We used a local region radius of L = 2.6d and a falloff distance of

rf = 1.4d for the perfect model tests. For the experimental data, we found that a

local region radius of L = 2.6d and a falloff distance of rf = 1.0d worked well. In

both cases, L is comparable to the correlation length of spiral defect chaos of 2.7d

when ε = 0.7 and 2.3d when ε = 1.0 [37]. With these local region radii, local regions

have (on average) only a few (1 or 2) degrees of freedom.

As the ensemble converges, it tends to confine itself to a space of dimension

lower than k. The E dimension [38] DE is a measure for the number of important

directions in the space spanned by the ensemble perturbations. Roughly speaking,

it gives the dimension of the space in which the ensemble is spread out. The E

dimension is computed by forming the N×k matrix Z having the (global) ensemble

perturbations as its columns. The real eigenvalues of the k×k positive semi-definite

matrix ZT Z, denoted σ2
i are used to compute the E dimension [38],

DE ≡
(

k
∑

i=1

σi

)2( k
∑

i=1

σ2
i

)−1

. (3.4)

Fig. 3.16 and 3.15 show the E dimension decreasing as the LETKF converges on

the state and parameters. The update step generally increases the E dimension,
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while the predict step generally decreases it. In perfect model tests the E dimension

decreases to approximately DE ∼ 5, while when working with experimental data, it

generally decreases to DE ∼ 8. This is consistent with the claim that local regions

contain only a few degrees of freedom, and indicates that one could optimize by

‘pruning’ the ensemble size as it converges. All the results in sections 3.1 and 3.2

are for a constant k = 18 (or k = 20 when estimating parameters), but we have found

that starting with k = 18 and reducing to k = 8 linearly within 10 measurement

times gives similar results with a significant reduction in computation time. A large

number of ensemble members (k ≈ 20, as in the reported results of the previous

sections) are required only for the first few assimilation steps. In addition, the

strength of the model nonlinearities is largest when the ensemble spread is large

(during the first few assimilation steps) thus one might begin assimilation with a

large Ω and reduce it linearly to speed convergence. This procedure was found to

be successful, but was not performed in the results reported here.
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Figure 3.15: E dimension decreasing as the LETKF converges on perfect model

data. Blue dots indicate the time just after an update step, while the red dots

indicate the time just after the predict step. The ensemble has k = 20 ensemble

members, and the measurements are ideal (in the sense described in section 3.1).
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Figure 3.16: E dimension decreasing as the LETKF converges on experimental data.

Blue dots indicate the time just after an update step, while the red dots indicate

the time just after the predict step. The ensemble has k = 22 ensemble members

in this example, and the measurements are at the highest measurement density (in

the sense described in section 3.2).

In our model for incomplete measurements, observation locations are dis-

tributed uniformly. However, data may be incomplete due to large data voids in

the shadowgraph time series. We have found that the LETKF can estimate the

fluid state in these regions when the data voids have a characteristic radius not

much larger than a correlation length. Fig. 3.17 shows a sequence of images of

the midplane temperature estimate taken from the LETKF’s assimilation of several

experimental shadowgraph images having a large data void in the upper right.
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Figure 3.17: The midplane temperature field as the LETKF converges on an es-

timate of the system state using measurements which have a large data void. No

measurements occur in the region with a red tint. The sequence of images occur at

the times tj = t1, t3, t10, and t20.

We have investigated two methods for estimating the fluid state in Rayleigh-

Bénard convection experiments, DI and the LETKF. Both methods are effective

for this purpose, with the LETKF outperforming DI both when using experimental

data and in perfect model tests, especially when data is sparse/noisy. The LETKF

is a promising technique for large experimental systems, as its complexity does not

grow with the system size. In addition, it can take advantage of multiple processors,

even if the model cannot, by parallelizing over the ensemble members during the
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forecast step and over grid points during the update step. The LETKF method we

have presented is potentially applicable to a large class of spatiotemporally chaotic

laboratory experiments. Support for part I of this thesis we provided by National

Science Foundation Grant 04-34193 and 04-34193 and the Office of Naval Research

(Physics).
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Part II

THE EFFECT OF ROTATION ON DYNAMO ACTION IN

MAGNETOHYDRODYNAMIC TURBULENCE

63



Chapter 4

Introduction to Magnetohydrodynamics

Magnetohydrodynamics (MHD) is concerned with the study of conducting

fluids (liquid metals or plasma), and the interaction between the fluid flow and

electromagnetic fields. One motivation for the study of MHD is that planets and

stars contain complex flows of molten metal or plasma. These flows are thought to

be driven by convection, and may be responsible for the large scale magnetization

of the atmosphere of stars and some planets such as the Earth. However, though

the fundamental physics of MHD is understood, there is still much to learn about

the dynamics of the flows, which are often chaotic and complex. For example, much

research is focused on the question: Does an initial small magnetic field grow as a

result of the flow? The answer to this question depends on the system investigated;

if the answer is yes, the system is known as a dynamo.

The study of MHD via computer simulations is generally separated into two

classes. In one case, the problem is simplified as much as possible to bring out the

essential dynamics [39, 40, 41, 42, 43]. In these studies, to isolate the bulk dynamics

from the effects of boundary conditions, periodic domains (x, y, z ∈ [0, 2π]) are

employed. Rotation and convection are usually not included in favor of external

forcing to drive the system. These studies investigate the role of turbulence and the

conditions necessary for the generation of a dynamo in the simplest situations. The
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other case involves complex simulations in which realistic boundary conditions are

employed [44, 45, 46, 47]. These simulations generally include convection to drive

the system and, in some cases, attempt to model the entire Earth. The study of

MHD simulations (in both cases) is limited by the available resolution of computer

models, which in turn is limited by available computing power.

There is a region between the two cases of complex, fully modeled flow and

simple, idealized flow, which has not received as much attention as either extreme.

It is the aim of this chapter to investigate one aspect of the MHD problem in

this region which has not been addressed previously: the inclusion of the effects of

rotation in an externally forced periodic domain. Investigation of this particular

problem is interesting, as the effects of rotation may be isolated, providing insight

into otherwise complex phenomena. There is some evidence that rotation plays a

role in the ability of planets to generate a magnetic field. Venus, with a rotation rate

116 times slower than the Earth, has no measurable terrestrial magnetic field [48].

Mercury, with a rotation rate 176 times slower than earth, has a magnetic dipole

moment about 1700 times weaker than Earth’s [48]. We will focus on incompressible

motion in which the fluid mass density is constant.

The dimensionless incompressible MHD equations describing the evolution of

the velocity field v and magnetic field B take the form [49, 50]

∂v

∂t
+ v · ∇v = −∇p+ (∇ × B) × B + ν∇2v + F, (4.1)

∂B

∂t
+ v · ∇B = B · ∇v + η∇2B, (4.2)

∇ · v = 0, (4.3)
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∇ · B = 0. (4.4)

A constant external force F is present to drive the flow,

F = [(sin z + cos y) x̂ + (sinx+ cos z) ŷ + (sin y + cos x) ẑ] . (4.5)

All quantities above are dimensionless. Our simulations are done on a peri-

odic domain in (x, y, z) where the periodicity length is 2π. Using overbars to denote

dimensional quantities, we have that (x, y, z) = (2π/L̄)(x̄, ȳ, z̄) where L̄ is the dimen-

sional periodicity length of the system. Our dimensionless system with periodicity

length 2π lends itself to the spectral decomposition of the fields described in Chap-

ter 5 in which the allowed wave numbers in each coordinate direction are integer

kx,y,z ∈ N. The dimensionless force as defined in equation (4.5) has a spatial RMS

value of
√

3. This implies that velocities are normalized to Ū ≡
√

L̄F̄ /(2π
√

3ρ̄),

(i.e., v = v̄/Ū) where F̄ is the spatial RMS of the dimensional applied force density

and ρ̄ is the mass density of the fluid (assumed constant in space and time). Times

are in units of L̄/(2πŪ) (i.e. t = 2πŪ t̄/L̄) and the magnetic field is normalized to

√
ρ̄µ̄Ū (i.e., B = B̄/(Ū

√
ρ̄µ̄)), where µ̄ is the magnetic permeability of the fluid.

In these units, a normalized magnetic field B with magnitude |B| = 1 represents a

magnetic field for which the dimensional Alfvén wave velocity is Ū ; thus these units

are termed Alfvénic units.

The first three equations (4.1), (4.2), and (4.3) are all that are necessary to

simulate the flow, since if the initial B field is divergence free, equation (4.2) implies

that B remains divergence free for all time. The dimensionless pressure p is found by

taking the divergence of equation (4.1), imposing (4.3), and solving the Poisson-type
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equation

∇2p = ∇ · F − ∇ · (v · ∇v) + ∇ · ((∇ × B) × B) . (4.6)

The quantities ν = 2πν̄/ŪL̄ and η = 2πη̄/ŪL̄ which appear in (4.1) and (4.2)

are the dimensionless viscosity and magnetic diffusivity respectively; ν̄ and η̄ are the

dimensional viscosity and magnetic diffusivity respectively. The Reynolds number

and magnetic Reynolds number are

R =
L̄Ūrms

ν̄
=

2πUrms

ν
and (4.7)

Rm =
L̄Ūrms

η̄
=

2πUrms

η
. (4.8)

Here, Ūrms and Urms are the space/time RMS average of the velocity field v̄(x̄, t̄) and

v(x, t) respectively, Urms = Ūrms/Ū . Larger R (smaller viscosity) leads to smaller

structure in the v flow and generally larger flow velocities. Similarly, larger Rm

(lower Ohmic resistance) leads to smaller structure in the B field and less dissipation.

The ratio Rm/R = ν/η is known as the magnetic Prandtl number Prm.

Dimensional analysis gives the viscous dissipative scale ξ̄v = ν̄3/4/ε̄1/4 and

Joule diffusive scale ξ̄B = η̄3/4/ε̄1/4, where ε̄ is the input power per unit mass [39].

These scales are the characteristic size of the smallest structures in the v̄ and B̄ field,

respectively. The ratio of the viscous dissipative scale to the Joule diffusive scale

is ξ̄v/ξ̄B = (ν̄/η̄)3/4 = (ν/η)3/4 = Pr
3/4
m . For liquid metals the magnetic Prandtl

number is very small [44] Prm ∼ 10−5−10−6, and thus structures in the fluid flow are

much smaller than structures in the magnetic field. Such a large separation in scales

means that a fully realistic simulation must employ a very dense mesh, capable of

resolving the fluid flow while simultaneously being large enough to capture the large
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spatial scales of the magnetic structure.

The forcing (4.5) is an oft studied form [43, 42, 51]. In the absence of a

magnetic field, and if sufficiently weak, it generates a so-called ABC flow (vABC =

F/ν). This flow has as its only wave numbers |kx| = 1, |ky| = 1, and |kz| = 1 and

is known to generate chaotic particle trajectories. The ABC flow also possesses the

special property that ∇ · vABC = 0, ∇ × vABC = vABC , and thus (∇ × vABC) ×

vABC = 0. This flow has the maximum possible helicity for fixed kinetic energy,

where helicity is defined as

H ≡ v · (∇ × v). (4.9)

Flow helicity is thought by some to be important for dynamo generation of magnetic

fields [52]. For this ABC flow the helicity and energy density coincide. At sufficiently

small ν, the ABC flow becomes unstable, and turbulent flows with time-dependence

and higher wave number components result.

The dimensionless kinetic energy Ev and magnetic energy EB in the periodic

domain Γ are

Ev =

∫

Γ

1

2
|v|2dx3, (4.10)

EB =

∫

Γ

1

2
|B|2dx3. (4.11)

Energy is injected by the external forcing F into the flow v, after which it cascades

to smaller scales and dissipates through viscous damping or is transferred to the B

field. The energy in B in turn is damped through Ohmic dissipation.
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4.1 The Kinematic Dynamo

We note that the system of equations (4.1)-(4.4) has a solution with the mag-

netic field identically equal to zero. In such a case the fluid velocity can (depending

on ν) come to a turbulent, chaotic, periodic, or time-independent steady state. One

can then ask whether this flow state is stable to the introduction of a small initial

magnetic perturbation. If it is unstable, the initial perturbation will grow with time

and is expected to eventually saturate in a nonlinear magnetized state. The prob-

lem of determining the stability of an initially unmagnetized flow to small magnetic

perturbations is referred to as the kinematic dynamo problem.

The magnetic diffusivity is critical in determining whether a flow is a kinematic

dynamo. For η << 1 the magnetic field is largely frozen into the fluid, stretching

through differential flow in v, while diffusion is unimportant in all but the smallest

scales (this situation is conducive to dynamo action). For η >> 1 the magnetic

field is highly dissipative, decaying toward B = 0. Taking a dynamical systems

perspective, for η >> 1 the system attractor lies in the B = 0 plane. A blowout

bifurcation occurs for a critical value of η at which the attractor expands into the full

v, B space [42]. In order to study the growth of a small initial B field, we B-linearize

equations (4.1) and (4.2) around B = 0. Since the Lorentz term in equation (4.1)

is second order in B, we arrive at the standard Navier-Stokes equation,

∂v

∂t
+ v · ∇v = −∇p+ ν∇2v + F. (4.12)

In our B-linearized situation, this equation is completely decoupled from the induc-

tion equation (4.2), which remains unchanged since every term is linear in B. The

69



(simplified) kinematic MHD equations consist of (4.12), (4.2), and (4.3).

Because the velocity field now evolves according to equation (4.12), it takes

all the usual properties common to standard unmagnetized fluids. In particular, it

becomes turbulent for sufficiently small ν; if the fluid is not rotating, the energy

spectrum is isotropic and follows the well known Kolmogorov spectrum Ev ∼ k−5/3

for turbulence in the inertial range (the range where inertial forces dominate both

viscous forces and the external force F). Because v is time-dependant we cannot

expect to find exactly time-exponential B solutions. However, we can still investigate

the average growth or decay of EB.

4.2 Rotation

The effect of rotation on dynamo action was first investigated by Moffatt

in [53, 54]. Here we investigate the effect of rotation in the kinematic case, in which

the study of the velocity field reduces to the study of rotating fluids without regard

to the magnetic field. This is advantageous because much literature already exists

on rotating fluid turbulence [55, 56].

In a frame rotating with constant angular velocity Ω = Ωẑ, the addition of

the Coriolis and centrifugal forces modifies equation (4.12),

∂v

∂t
+ v · ∇v = −∇P − 2Ω × v + ν∇2v + F. (4.13)

The rotation rate Ω is dimensionless and takes Alfvénic units, Ω = Ω̄L̄/(2πŪ).

Since the centrifugal force −Ω× (Ω× r) can be written as a gradient of a scalar, it

is incorporated into the new ‘pressure’ P ≡ p− (1/2)|Ω × r|2. The addition of the
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Coriolis force leads to two natural dimensionless numbers, the Rossby and Ekman

numbers,

Ro ≡ Ūrms

2L̄Ω̄
=
Urms

4πΩ
, (4.14)

Ek ≡ ν̄

2L̄2Ω̄
=

ν

8π2Ω
=
Ro

R
. (4.15)

The Rossby number measures the relative magnitude of inertial forces to the Coriolis

force, while the Ekman number measures the relative magnitude of viscous forces

to the Coriolis force.

When Ro ¿ 1 and Ek ¿ 1 the fluid may be regarded as rapidly rotating.

Rapidly rotating flows do not follow the Kolmogorov energy spectrum. Energy

typically falls faster with wave number, Ev ∼ k−2 [56]. In addition, the energy

wave number spectrum is highly anisotropic, with much smaller energy in the kz

direction (along the axis of rotation). The Taylor-Proudman theorem states that,

for the most rapidly rotating flows, this effect can be so strong that the fluid motion

becomes essentially two dimensional, with derivatives in z approximately zero. To

see how this happens, we note that Ro ¿ 1 implies that, to a first approximation,

the inertial terms in (4.13) are small compared to the Coriolis force, while Ek ¿ 1

implies that the viscous force is similarly small. Thus, to a first approximation, we

ignore all terms except the Coriolis force and the pressure, which in steady state

must balance each other, 2Ω × v = −∇P . Removing the pressure by taking the

curl gives (Ω ·∇)v = Ω∂v

∂z
= 0. Thus, v is approximately independent of z for large

Ω. Two dimensional flows are known to exhibit an inverse energy cascade to larger

scales than the scale at which energy is introduced [57].
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Linearizing equation (4.13) about the state v = 0 and taking a curl we obtain

∂

∂t
(∇ × v) = 2Ω · ∇v + ν∇ × (∇2v). (4.16)

This equation supports traveling wave solutions known as inertial waves [54, 55].

Letting v = v◦e
i(k·r−ωt) gives

(k × v◦)ω = 2i(Ω · k)v◦ − iνk2(k × v◦), (4.17)

which leads to the dispersion relation ω = 2Ω(kz/k)−iνk2 and the condition v◦ ·k =

0. This relation shows that inertial waves cannot have angular frequencies above

2Ω. The quality factor Q ≡ Re(ω)/(2Im(ω)) of these waves is given by

Q =
kz

8π2k

( ν

2λ2Ω

)−1

, (4.18)

where λ = 2π/k. This expression shows that the wave with the highest Q factor

has kx = ky = 0, kz = 1. The factor
(

ν
2λ2Ω

)

is similar to the Ekman number (and

exactly equal to it for the largest scale λ = 2π waves). Equation 4.18 holds only

in the bulk (far from boundaries). In bounded flows the quality factor is known to

have a different dependence on Ek than derived here [58].
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Chapter 5

Numerical Approach

5.1 Spectral Representation

The fields v = vxx̂ + vyŷ + vzẑ and B = Bxx̂ + Byŷ + Bzẑ are expanded in

Fourier series in which kx, ky, kz are integer,

vx,y,z(x) =
∞
∑

kx,ky ,kz=−∞
v(k)

x,y,ze
ik·x, (5.1)

Bx,y,z(x) =
∞
∑

kx,ky ,kz=−∞
B(k)

x,y,ze
ik·x, (5.2)

v(k) = v(k)
x x̂ + v(k)

y ŷ + v(k)
z ẑ, (5.3)

B(k) = B(k)
x x̂ +B(k)

y ŷ +B(k)
z ẑ. (5.4)

The fields v and B are real, thus the conditions v
(−k)
x,y,z = (v

(k)
x,y,z)∗ and B

(−k)
x,y,z =

(B
(k)
x,y,z)∗ must hold, where ∗ is the complex conjugate operation. The condition

v
(0)
x,y,z = 0 is enforced, so that the fluid has no net momentum. We also require

B
(0)
x,y,z = 0 since the k = 0 mode does not feel the effects of Ohmic dissipation

(∇2B = 0 for this mode), and is thus unrealistic. For convenience we define the

nonlinear terms

a = v · ∇v, (5.5)

g = B · ∇v, (5.6)

h = v · ∇B, (5.7)
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which have associated Fourier transforms a(k), g(k), and h(k), defined similarly to

equations (5.1 - 5.4). Taking the Fourier transform of the rotating kinematic MHD

equations (4.13) and (4.2) we get the system of ordinary differential equations:

d

dt
v(k) = −ikP (k) − a(k) − 2Ω × v(k) − νk2v(k) + F(k), (5.8)

d

dt
B(k) = g(k) − h(k) − ηk2B(k); (5.9)

one set of equations for every discrete k vector. It is straight-forward to compute

the pressure in spectral space,

P (k) = k−2
(

ik · a(k) − 2Ω · (ik × v(k))
)

. (5.10)

In this representation, the fields v, B, a, g, h and P together represent the system

state. Although v and B alone are enough to determine all these quantities, it is

more convenient to think of all 6 fields collectively as the system state. The method

used is pseudospectral, the nonlinear terms a, g, and h are computed in physical

space, while all derivatives are computed in spectral space.

The Fourier space representation of all fields is truncated to include only wave

numbers satisfying |k| < K, reducing the problem to only the largest, most impor-

tant scales. Truncating scales smaller than the viscous dissipative scale K ∼ 2π/ηv

has little effect of the dynamics, as the removed modes have negligible energy con-

tent. The sums in equation (5.1) and (5.2) then only sum over modes satisfying

|k| < K. The physical space representation of fields consists of values on aN×N×N

Cartesian grid.
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5.2 Time Stepping

In this section we discretize the system in time, forming a map which takes

the system state at the current and previous times, t = tj, tj−1, tj−2 . . ., and outputs

the system state at the next time t = tj+1 = tj + δt. The state at the current time

t = tj consists of vj, Bj, aj, gj, hj, and Pj. We use a 3rd order semi-implicit method

which mixes the explicit Adams-Bashforth method with the implicit Adams-Moulton

method. For the system ∂y/∂t = M (y) the 3rd order Adams-Moulton method is

yj+1 = yj + δt
[

(5/12)M (yj+1) + (8/12)M (yj) − (1/12)M (yj−1)
]

, (5.11)

while the 3rd order Adams-Bashforth method is given by

yj+1 = yj + δt
[

(23/12)M (yj) − (16/12)M (yj−1) + (5/12)M (yj−2)
]

. (5.12)

The Adams-Moulton method requires that M be inverted to solve for yj+1, hence

it is used for the linear terms, while the Adams-Bashforth method is used for the

nonlinear terms. For the system ∂y/∂t = Ly + NL(y) with linear term Ly and

nonlinear term NL(y) the mixed method is

yj+1 = (1 − 5

12
δtL)−1

[

(1 +
8

12
δtL)yj −

1

12
δtLyj−1 +

δt
[23

12
NL(yj) −

16

12
NL(yj−1) +

5

12
NL(yj−2)

]

]

. (5.13)

Although the induction equation (4.2) cannot produce divergence in the B

field when solved exactly, all time stepping schemes (including implicit methods like

the mixed method above) are unstable in this regard, and will generate a divergence.

This instability is easy to overcome, by adding a divergence cleaning step after each
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time step. Divergence cleaning can be accomplished in spectral space by subtracting

the projection of B(k) onto k,

B(k) → B(k) − k̂(k̂ · B(k)). (5.14)

The final time stepping method takes all 6 fields and their Fourier transforms

for the current and last two time steps, and outputs all fields and their Fourier

transforms for the next time step:

Input : vj,Bj,aj, gj,hj, Pj,v
(k)
j ,B

(k)
j ,a

(k)
j , g

(k)
j ,h

(k)
j , P

(k)
j ,

vj−1,Bj−1,aj−1, gj−1,hj−1, Pj−1,v
(k)
j−1,B

(k)
j−1,a

(k)
j−1, g

(k)
j−1,h

(k)
j−1, P

(k)
j−1,

vj−2,Bj−2,aj−2, gj−2,hj−2, Pj−2,v
(k)
j−2,B

(k)
j−2,a

(k)
j−2, g

(k)
j−2,h

(k)
j−2, P

(k)
j−2.

Output : vj+1,Bj+1,aj+1, gj+1,hj+1, Pj+1,v
(k)
j+1,B

(k)
j+1,a

(k)
j+1, g

(k)
j+1,h

(k)
j+1, P

(k)
j+1.

The following steps take place in the order they are written. Below, the notation

Ff(x) is used to indicate the Fourier transform of the function f(x), while F
−1f(k)

indicates the inverse transform.

Let R(k)
x = (1 − 8

12
δtνk2)(v(k)

x )j + δt
[ 1

12
νk2(v(k)

x )j−1 +

2
8

12
Ω(v(k)

y )j − 2
1

12
Ω(v(k)

y )j−1 +

23

12
(−ikxP

(k)
j − (a(k)

x )j) −
16

12
(−ikxP

(k)
j−1 − (a(k)

x )j−1) +

5

12
(−ikxP

(k)
j−2 − (a(k)

x )j−2) + Fx

]

.

Let R(k)
y = (1 − 8

12
δtνk2)(v(k)

y )j + δt
[ 1

12
νk2(v(k)

y )j−1 −

2
8

12
Ω(v(k)

x )j + 2
1

12
Ω(v(k)

x )j−1 +

23

12
(−ikyP

(k)
j − (a(k)

y )j) −
16

12
(−ikyP

(k)
j−1 − (a(k)

y )j−1) +
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5

12
(−ikyP

(k)
j−2 − (a(k)

y )j−2) + Fy

]

.

Let R(k)
z = (1 − 8

12
δtνk2)(v(k)

z )j + δt
[ 1

12
νk2(v(k)

z )j−1 +

23

12
(−ikzP

(k)
j − (a(k)

z )j) −
16

12
(−ikzP

(k)
j−1 − (a(k)

z )j−1) +

5

12
(−ikzP

(k)
j−2 − (a(k)

z )j−2) + Fz

]

.

Compute (v(k)
x )j+1 =

(1 + 5
12
δtνk2)R

(k)
x + 2 5

12
δtΩR

(k)
y

(1 + 5
12
δtνk2)2 + (2 5

12
δtΩ)2

. (5.15)

Compute (v(k)
y )j+1 =

(1 + 5
12
δtνk2)R

(k)
y − 2 5

12
δtΩR

(k)
x

(1 + 5
12
δtνk2)2 + (2 5

12
δtΩ)2

. (5.16)

Compute (v(k)
z )j+1 = (1 +

5

12
δtνk2)−1R(k)

z . (5.17)

Compute B
(k)
j+1 = (1 +

5

12
δtηk2)−1

[

(1 − 8

12
δtηk2)B

(k)
j +

δt
[ 1

12
ηk2B

(k)
j−1 +

23

12
(g

(k)
j − h

(k)
j ) −

16

12
(g

(k)
j−1 − h

(k)
j−1) +

5

12
(g

(k)
j−2 − h

(k)
j−2)

]

]

. (5.18)

Assign B
(k)
j+1 → B

(k)
j+1 − k̂(k̂ · B(k)

j+1) (5.19)

Compute vj+1 = F
−1v

(k)
j+1 and Bj+1 = F

−1B
(k)
j+1. (5.20)

Let J (k)
mn = ikm(v(k)

n )j+1 ∀m,n ∈ {x, y, z}. (5.21)

Let L(k)
mn = ikm(B(k)

n )j+1 ∀m,n ∈ {x, y, z}. (5.22)

Compute Jmn = F
−1J (k)

mn and Lmn = F
−1L(k)

mn ∀m,n ∈ {x, y, z}. (5.23)

Compute (an)j+1 =
∑

m∈{x,y,z}
(vm)j+1Lmn ∀n ∈ {x, y, z}. (5.24)

Compute (gn)j+1 =
∑

m∈{x,y,z}
(Bm)j+1Lmn ∀n ∈ {x, y, z}. (5.25)

Compute (hn)j+1 =
∑

m∈{x,y,z}
(vm)j+1Jmn ∀n ∈ {x, y, z}. (5.26)

Compute a
(k)
j+1 = Faj+1, g

(k)
j+1 = Fgj+1, and h

(k)
j+1 = Fhj+1. (5.27)

Compute P
(k)
j+1 = k−2

(

ik · a(k)
j+1 − 2Ω · (ik × v

(k)
j+1)

)

. (5.28)
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Compute Pj+1 = F
−1P

(k)
j+1. (5.29)

For small δt this system approximates the continuous equations. There are a total

of 25 inverse Fourier transforms and 9 forward Fourier transforms, for a total of

34 transforms per time step. The transform in step (5.29) is not required, but is

included for completeness. Each Fourier transform is accomplished by a fast Fourier

transform (FFT) using a publicly available library [59] which takes advantage of the

fact that the fields in physical space are real, speeding up transforms by a factor of

roughly 2 over a complex calculation.

5.3 Parameters and Resolution Requirements

Ideally we wish to resolve all scales up to ξv and ξB. However, in practice

this is usually not necessary, as the energy content of modes drops quickly in k,

even for scales larger than ξv or ξB. The required K must be large enough to

resolve the inertial range, but need not increase to the point where ξv is resolved.

When the effects of rapid rotation are included, the resolution requirements drop

further. By the Taylor-Proudman theorem, rapidly rotating flows do not require

high resolution in the ẑ direction (the axis of rotation). However, although some

speedup could be gained by exploiting these properties, a uniform resolution (N 3)

grid was always employed. The highest possible resolved wave number is given by

the Nyquist frequency K = N/2. However, in many studies involving the simulation

of partial differential equations in a periodic cube, the relation K = N/3 is used to

avoid aliasing issues. It was found that both cutoff wave numbers resulted in nearly
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identical behavior for the runs performed, thus the condition K = N/2 was used for

simplicity (and because most investigated resolutions were a power of 2).

We investigate the range ν ∼ 10−1 − 10−2, η ∼ 100 − 10−1, and rotation rates

up to Ω = 8. The inverse of ν appears in the Reynolds number. Thus, we typically

refer to ν by its inverse (and similarly with η). In particular, the values ν−1 = 6.3,

18, and 36 were used for most runs, for which the resolution was N = 16, 32, and

64, respectively. All three values of ν are small enough that without rotation the

ABC flow vABC is unstable. The Reynolds numbers, Ekman numbers, and Rossby

numbers of these flows will be computed from Urms and discussed in Chapter 6.

In the dimensionless form employed, a time ∆t = 1 is on the order of one

large eddy turnover time, the characteristic time for the large scales in the flow to

transit the domain. The most basic requirement for the time step is then δt¿ 1. To

resolve the process of advection we must also have the standard Courant-Fredericks-

Levy (CFL) condition δt < δx/Urms = 2π/(NUrms). Another requirement is that

inertial waves with frequency 2Ω must be well resolved. The numerical method is

3rd order in time, and thus the eventual time step is chosen at a point well within

the region in which convergence follows a δt−3 law. Typically this results in a much

smaller time step than the CFL condition requires. For example, most ν−1 = 18

runs used δt = 0.002, while most ν−1 = 36 runs used δt = 0.0005, about one order

of magnitude smaller than the CFL condition requires and giving at least 500 time

steps per period (τ = 2π/Ω) for the fastest rotation rate (Ω = 8).
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Chapter 6

Simulation Results

Simulations of the fluid flow velocity v begin with the initial condition v(x, y, z, 0) =

0 and evolve for many large eddy turnover times (typically to t = 400 ≡ T ). When

calculating time averages, the evolution up to the time t = 100 ≡ t◦ is disregarded to

ensure that transient effects are no longer present and that the dynamics reflect mo-

tion on the attractor. The investigated rotation rates are Ω = 0, 0.5, 1, 2, 4, 6, 8.

The notation

〈?〉 =

√

1

(2π)3

∫

Γ

| ? |2dxdydz (6.1)

is used for the spatial RMS average of a scalar or vector quantity ?; and the notation

〈〈?〉〉 =
1

T − t◦

∫ T

t◦

〈?〉dt (6.2)

is used for averages over space and time.

The average RMS velocity Urms = 〈〈v〉〉 is shown for ν−1 = 36, ν−1 = 18, and

ν−1 = 6.3 in Tables 6.1, 6.2, and 6.3, respectively. This average velocity is used to

compute the Reynolds number, Rossby number, and Ekman number. The largest

investigated Reynolds number is R ≈ 4 × 103.
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Ω 0 1 2 4 6 8

Urms 4.63 5.28 5.55 8.58 12.89 16.78

R 1048 1194 1256 1941 2916 3796

Ro (×10−1) ∞ 7.37 4.20 2.21 3.42 3.36

Ek (×10−4) ∞ 6.17 3.34 1.14 1.17 0.89

Table 6.1: Urms, Reynolds number R, Rossby number Ro, and Ekman number Ek

for ν−1 = 36 and various rotation rates.

Ω 0 0.5 1 2 4 6 8

Urms 4.57 4.48 4.70 6.17 9.76 13.01 15.47

R 517 506 532 698 1104 1471 1750

Ro (×10−1) ∞ 7.13 3.74 2.45 1.94 1.72 1.53

Ek (×10−4) ∞ 14.1 7.03 3.52 1.76 1.17 0.880

Table 6.2: Urms, Reynolds number R, Rossby number Ro, and Ekman number Ek

for ν−1 = 18 and various rotation rates.
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Ω 0 0.5 1 2 4 6 8

Urms 5.53 5.12 5.45 6.35 8.10 8.90 8.90

R 219 203 216 251 321 352 352

Ro (×10−1) ∞ 8.15 4.34 2.53 1.61 1.18 0.89

Ek (×10−4) ∞ 40.2 20.1 10.0 5.03 3.35 2.51

Table 6.3: Urms, Reynolds number R, Rossby number Ro, and Ekman number Ek

for ν−1 = 6.3 and various rotation rates.

One can see that the conditions for rapid rotation (Ek ¿ 1 , Ro ¿ 1) are

satisfied for these flows. Equation (4.18), derived in section 4.2 shows that the

quality factor for inertial waves goes like Ek−1. Thus, for the investigated rotation

rates, especially those for which Ek ∼ 10−4, we can expect to see inertial waves

lasting for long times.

6.1 Flow Characterization

Each simulation stores a time series of the average helicity 〈H〉, input power

〈F ·v〉, inertia 〈v ·∇v〉, Coriolis force 〈2Ω×v〉, viscous force 〈ν∇2v〉, pressure force

〈∇P 〉, as well as the energy Ev, and EB. Fig. 6.1 shows the time series of four force

strengths from equation (4.13) for various rotation rates. Fig. 6.2 shows time series

of the average helicity, velocity, and external power input. All quantities exhibit a

chaotic time evolution.
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Figure 6.1: Time series (from t = 100 to t = 400) of the average inertia 〈v · ∇v〉, pressure force 〈∇P 〉, viscous force 〈ν∇2v〉,
and Coriolis force 〈2Ω × v〉 for various rotation rates (Ω = 0, 2, 4, 6, and 8) with ν−1 = 18. For reference, 〈F〉 =

√
3.
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Figure 6.2: Time series (from t = 100 to t = 400) of the average velocity 〈v〉, helicity 〈H〉, and power 〈F ·v〉 for various rotation
rates (Ω = 0, 2, 4, 6, and 8) with ν−1 = 18.
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A convenient means of characterizing these plots is through the RMS fluctua-

tion

〈〈?〉〉σ =

[

1

T − t◦

∫ T

t◦

(〈?〉 − 〈〈?〉〉)2 dt

]1/2

. (6.3)

Figures 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9 show these quantities as a function of Ω

for the cases ν−1 = 36, ν−1 = 18, and ν−1 = 6.3. In each case the error bars do not

indicate uncertainty in the mean quantity (this uncertainty is of the order of the line

thickness). Rather, they extend vertically to represent the time variability of each

quantity (as computed by (6.3)). We note that, when ν−1 = 6.3, the variability

〈〈?〉〉σ in all flow variables drops to near zero for Ω > 4. For these fast rotation

rates, the ν−1 = 6.3 flow is constant in time. Evidently the ABC flow is stabilized

by the addition of the Coriolis force. However, the flow is turbulent and chaotic for

all investigated Ω when ν−1 = 18, as can be seen in Fig. 6.2 (ν−1 = 36 is similarly

chaotic for all Ω).
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Figure 6.3: The average velocity 〈〈v〉〉 with varying Ω. The error bars do not indicate

uncertainty in 〈〈v〉〉, they extend up and down by the amount 〈〈v〉〉σ.
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Figure 6.4: The average inertial force 〈〈v · ∇v〉〉 with varying Ω. The error bars

do not indicate uncertainty in 〈〈v ·∇v〉〉, they extend up and down by the amount

〈〈v · ∇v〉〉σ.
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Figure 6.5: The average pressure force 〈〈∇P 〉〉 with varying Ω. The error bars

do not indicate uncertainty in 〈〈∇P 〉〉, they extend up and down by the amount

〈〈∇P 〉〉σ.
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Figure 6.6: The average power 〈〈v · F〉〉 with varying Ω. The error bars do not

indicate uncertainty in 〈〈v ·F〉〉, they extend up and down by the amount 〈〈v ·F〉〉σ.
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Figure 6.7: The average helicity 〈〈H〉〉 = 〈〈v · (∇× v)〉〉 with varying Ω. The error

bars do not indicate uncertainty in 〈〈H〉〉, they extend up and down by the amount

〉〈H〉〉σ.
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Figure 6.8: The average viscous force 〈〈ν∇2v〉〉 with varying Ω. The error bars

do not indicate uncertainty in 〈〈ν∇2v〉〉, they extend up and down by the amount

〈〈ν∇2v〉〉σ.
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Figure 6.9: The average Coriolis force 〈〈2Ω × v〉〉 with varying Ω. The error bars

do not indicate uncertainty in 〈〈2Ω×v〉〉, they extend up and down by the amount

〈〈2Ω × v〉〉σ.
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If inertial waves are present in the most rapidly rotating flows, we expect to

see frequencies near 2Ω in spectra of dynamical quantities. This signal is most easily

seen in the spectrum of the average power 〈v ·F〉, shown in Fig. 6.10 for Ω = 8. The

temporal Fourier transform of the average power is denoted Pow(ω). The spectrum

consists of a peak near the highest allowed frequency (2Ω = 16) superimposed on a

background of turbulent noise. A Gaussian fit of this power spectrum to a function

of the form c + ae−b∗(ω−ω◦)2 to the range 11.6 < ω < 18.6 finds the peak center

at ω◦ = 14.3. Note that the k = 2ẑ + x̂ and k = 2ẑ + ŷ modes are expected to

have a frequency ω = 2√
5
Ω = 14.31. From equation (4.18), the expected quality

factor for k = 2ẑ + ŷ and k = 2ẑ + x̂ waves is Q = 25.8. However, a Gaussian

fit to the peak in Fig. 6.10 gives an inverse fractional full width at half height of

ω/∆ω ∼ 6.5, approximately one fourth of the quality factor expected from linear

theory for perturbations about v = 0. The peak in Fig. 6.10 is a clear sign that

inertial waves are present.
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Figure 6.10: The spectrum of the spatially averaged power 〈v · F〉 at the rotation

rate Ω = 8 (and ν−1 = 18). The peak is centered at ω = 14.3.

6.1.1 Flow Structure

The spatial structure of the flow develops anisotropy as rotation rates increase

past Ω = 2. Fig. 6.11 shows the structure of the pressure on the cube surface. The

trend toward two-dimensionalization of the fluid state is evident, as predicted by the

Taylor-Proudman Theorem. Figures 6.12 and 6.13 show the structure of the velocity

magnitude and Coriolis force magnitude on the cube surface. The flow structure

undergoes a qualitative transition as the rotation rate increases past Ω = 2.
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Figure 6.11: The pressure P at the time t = T is shown on the cube surface for

various rotation rates and ν−1 = 18. The scale has been normalized so that the color

spectrum approximately spans the range between the lowest and highest pressures

attained on the cube surface. For each state, the pressure increases from blue to

green to red, with pure green mapping to P = 0. The spatial average of the pressure

is defined to be zero.
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Figure 6.12: The velocity magnitude |v| at the time t = T is shown on the cube

surface for various rotation rates and ν−1 = 18. The state is the same as that

shown in Fig. 6.11. The scale has been normalized so that the color spectrum

approximately spans the range between the lowest and highest velocity magnitudes

on the cube surface. The velocity increases from blue to green to red.
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Figure 6.13: The magnitude of the Coriolis force |2Ω×v| = 2Ω
√

v2
x + v2

y at the time

t = T is shown on the cube surface for various rotation rates and ν−1 = 18. The

state is the same as that shown in Fig. 6.11 and 6.12. The scale has been normalized

so that the color spectrum spans the range between the lowest and highest Coriolis

force magnitude on the cube surface. The strength of the Coriolis force increases

from blue to green to red.
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Figure 6.14: The velocity magnitude |v| at the time t = T is shown on the cube

surface for the rotation rates Ω = 2 and Ω = 4 for the high Reynolds number case

ν−1 = 36 at a high resolution (N=64). These similar-looking flows are vastly differ-

ent in terms of their ability to generate a dynamo (as will be shown in Section 6.2).

The scale has been normalized so that the color spectrum approximately spans the

range between the lowest and highest velocity magnitudes on the cube surface. The

velocity increases from black to white.

6.1.2 The Energy Spectrum

The one dimensional time averaged kinetic energy spectrum is

Ev(k) =
1

T − t◦

∫ T

t◦

〈E(k)
v

〉|k|=kdt, (6.4)

where E
(k)
v = F

[

|v|2/2
]

, and 〈?〉|k|=k indicates an average over all k vectors having

length k. As a test case we compute the energy spectrum for a high resolution test

case (N = 96, K = 48) with low viscosity ν−1 = 50. Fig. 6.15 shows the results,
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verifying that the code has produced a result roughly consistent with the expected

Kolmogorov result of Ev(k) ∼ k−5/3 in the inertial range. We regard the inertial

range as extending from k = 2 to k ≈ 10. Ev is largest for k = 1, which is the mode

that F injects energy into.
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Figure 6.15: The normalized kinetic energy spectrum Ev(k)/Ev is shown for the test

case ν−1 = 50, Ω = 0, with resolution N = 96, δt = 5 × 10−4. The inertial range is

seen to follow the expected Kolmogorov scaling in which log
(

Ev(k)
)

≈ C◦− 5
3
log(k)

for some constant C◦.

For the range of ν investigated, there is no substantial inertial range, the ar-

guments that lead to the k−2 spectrum in rotating turbulence do not hold here; a

much lower ν (requiring a much higher resolution) would be needed to see this be-

havior. Instead, the energy spectrum exhibits k−3 behavior as seen in [55], although

the conditions in this case are quite different (in [55] random forcing was applied at

small scales, and the k−3 behavior was seen for scales larger than the forcing scale).
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Fig. 6.16 shows the effect of rotation on the compensated kinetic energy spectrum

Ev(k)k3/Ev. These spectra are computed from K = 32 simulations.
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Figure 6.16: The compensated energy spectrum is shown for the rotation rates:

Ω = 0, 0.5, 1, 2, 4, 6, 8 with ν−1 = 18.

One can identify a transition in the spectrum occurring between Ω = 1 and

Ω = 6. Rotation rates below Ω = 2 (Ω = 0, 0.5, 1) largely follow the non-rotating

expectation, with viscous dissipation at small scales causing the spectrum to curve

downward, deviating from a power law. Rotation rates above Ω = 2 (Ω = 4, 6, 8)

approximately follow a k−3 law from k = 3 to k = 10. This transition in the

spectrum near Ω = 2 coincides with the transition seen in the flow structure images

of the previous section. High rotation rates have significantly more energy in the

large scale k = 2 mode. We will see that the kinematic dynamics of the magnetic

field also change substantially as the rotation rate increases past Ω = 2.
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6.2 Kinematic Dynamo Characterization

The growth or decay of the magnetic energy is measured by the finite time

exponential growth rate

στ =
1

τ
log

[

EB(t◦ + τ)

EB(t◦)

]

. (6.5)

The initial seed magnetic field B◦ at time t = t◦ is random, with a small energy

EB(t◦) distributed evenly in the lowest 10 modes (k = 1 to k = 10). The initial

velocity field v◦ is taken from a long-time simulation and thus reflects a randomly

chosen state from the attractor of the rotating Navier-Stokes system (4.13). The

growth rate στ appears to limit to a constant for large τ , we denote this constant

σ∞ as the average of στ over random initial conditions for M long, (τ = 300)

simulations. We have

σ∞ ≈ σ̄τ =
1

M

M
∑

i=1

σi
τ , (6.6)

where σi
τ denotes the value of στ for initial condition i (vi

◦, Bi
◦). The error in this

approximation due to finite sampling (finite M) is estimated as

∆στ ≈ 1√
M

√

√

√

√

1

M − 1

M
∑

i=1

(σi
τ − σ̂τ )2, (6.7)

the sample standard deviation divided by
√
M . For ν−1 = 18 we average over

M = 10 initial conditions, while for ν−1 = 6.3 we typically average over more

(between M = 10 and M = 20). In the ν−1 = 36 case, the resolution requirements

are such that we only average over M = 2 or 3 initial conditions. Figure 6.17 shows

a set of σi
τ time series; 10 traces for each of two different η values. Dynamo action

is characterized by a positive σ∞ indicating average growth of the seed magnetic
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field, while negative σ∞ indicates average decay of the field. Thus, in Figure 6.17

the black curves (η−1 = 14) show dynamo action, while the red curves (η−1 = 10)

show an absence of dynamo action.
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Τ

-0.2

-0.1

0

0.1

0.2

Σ
Τ

Figure 6.17: An example of the magnetic energy growth rate στ converging on σ∞

for several initial conditions. The red curves correspond to η−1 = 10 while the black

correspond to η−1 = 14. In all cases Ω = 1, ν−1 = 18. From these ensembles

we obtain the estimates σ∞ ≈ σ̄300 ± ∆σ300 = −0.0587 ± 0.0129 (η−1 = 10) and

σ∞ ≈ σ̄300 ± ∆σ300 = 0.0967 ± 0.0126 (η−1 = 14).

For fixed ν and Ω, σ∞ increases with η−1. Fig. 6.18 shows this typically linear

dependence. The critical value of η for which σ∞ = 0 is denoted ηc. The fluid flow

is independent of η, and thus for fixed ν and Ω the average velocity Urms = 〈〈v〉〉

is independent of η. We may then define (again, for fixed ν and Ω) the critical

magnetic Reynolds number as Rc
m = 2πUrms/ηc = 2π〈〈v〉〉η−1

c .
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Figure 6.18: The magnetic energy growth rate versus η−1 for ν = 18−1, Ω = 0.5.

The red line is a linear fit to the data points, which intersects σ300 = 0 at a critical

value of ηc ≈ 11.6−1.

To estimate ηc we fit the σ∞ values to a straight line (σ̄300 = aη−1 + b). Giving

η−1
c = −b/a. This fit takes into account the uncertainty ∆σ300 of each point by

finding the line with maximum likelihood and assuming Gaussian statistics. This

procedure is performed for several values of Ω and ν; the results are shown in

Fig. 6.19. Just as the energy spectrum and flow structure change dramatically for

rotation rates above Ω = 2, so does the propensity for dynamo action. The value of

η−1
c decreases dramatically as rotation increases, indicating that rotation is desirable

for the generation of a dynamo flow. The observed transition in the kinetic energy

spectrum coincides with this drop in η−1
c near Ω = 2.

As rotation increases, so does 〈〈v〉〉, increasing the average input power 〈〈v·F〉〉
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proportionately. In an experiment the maximum input power is typically limited by

practical constraints. Thus, although the critical magnetic diffusivity has changed

favorably for higher rotation rates, the critical input power dependence on Ω is cru-

cial. The critical magnetic Reynolds number Rc
m is a more fair comparison because

it multiplies η−1
c by the RMS velocity, which is roughly proportional to the power

input (see Fig. 6.6 and 6.3). Fig. 6.20 shows the critical magnetic Reynolds number

versus rotation rate. Although the drop in Rc
m is not as large as for η−1

c , there is

still a significant drop as Ω increases past Ω = 2. Fig. 6.20 summarizes the main

result of this part of the thesis.
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Figure 6.19: The critical magnetic diffusivity η−1
c as a function of rotation rate. The

error due to finite sampling of initial conditions is on the order of the line thickness.

Faster rotation rates are seen to be conducive to dynamo action, with over a ten-fold

decrease in η−1
c when Ω > 4 compared to the no rotation case.
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Figure 6.20: The critical magnetic Reynolds number Rc
m as a function of rotation

rate. Faster rotation rates are seen to be conducive to dynamo action. The finite

sample size induced uncertainty is on the order of the line thickness.

The drop off of Rc
m occurs for approximately the same values of Ω for all

viscosities (ν−1 = 36, ν−1 = 18, and ν−1 = 6.3). Thus, the viscous force is unlikely

to be important in the observed behavior. The Rossby number, which compares the

strength of the Coriolis force to the strength of the inertial force (not the viscosity

as in the Ekman number), is the important dimensionless number. The favorable

conditions for dynamo action occur for Ω > 4 corresponding approximately to Ro <

0.3 (for ν−1 = 36 and ν−1 = 18).

The spatial structure of the growing magnetic field is shown in the surface of

the cube for various rotation rates in Fig. 6.21. In these images, the values of η−1

are slightly above the value η−1
c for the given rotation rate so that the magnetic

field experiences average growth. These images give a sense of the spatial scale
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and distribution of growing of magnetic structures in each case. The qualitative

difference for different Ω largely reflects differences due to the changing η. Small

scale structure is heavily suppressed for smaller η−1.

Figure 6.21: The magnitude of the magnetic field |B| at the time t = T is shown

on the cube surface for various rotation rates. Each state occurs for a value of

η near (but below) ηc for that particular value of Ω; from left to right they are

η−1 = [12, 14, 14, 9, 2.5, 1.2, 0.8]. The scale has been normalized so that the color

spectrum spans the range between the lowest and highest value of |B| on the cube

surface, where the strength of the magnetic field increases from blue to green to red.
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6.3 Connection to an Envisioned Experimental Situation

Although the studied system is highly idealized (periodic boundaries, external

ABC forcing, etc.), we are interested in how the reported results of section 6.2

can be used to inform and improve dynamo experiments. The important question

we wish to address is this: given an available average input power density P̄ =

〈〈F̄·v̄〉〉, viscosity ν̄, and magnetic diffusivity η̄ (and hence fixed Prm), is it generally

beneficial to rotate the experimental apparatus (the goal being the generation of a

dynamo flow)? In Fig. 6.20, the curves are for fixed ν, not fixed ν̄ (the relationship

between ν and ν̄ involves Ū and thus the forcing strength F̄ ), making Fig. 6.20

difficult to use to answer the question posed above. In our envisioned experiment,

the power density P̄ is controlled by the experimenter, who we suppose increases P̄

until a dynamo is achieved. Thus, we wish to locate the critical power density P̄c,

above which a dynamo is obtained for various fixed rotation rates Ω̄.

The average power density is

P̄ = 〈〈F̄ · v̄〉〉, (6.8)

which can also be expressed as

P̄ =
F̄ Ū√

3
〈〈F · v〉〉

=
2πρ̄Ū3

L̄
〈〈F · v〉〉

=
2πρ̄

L̄

(

2πη̄

L̄η

)3

〈〈F · v〉〉, (6.9)

where Ū depends on the magnetic diffusivity via Ū = (2πη̄)/(L̄η). Defining the
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dimensionless power to be P = P̄ (L̄/(2π))4(1/(ρ̄η̄3)) we have

P =
1

η3
〈〈F · v〉〉. (6.10)

This normalization is motivated by envisioning a situation in which a particular fluid

is used (hence ν̄ and η̄ are fixed and known) in an experiment of fixed configuration

(for us with our periodic boundary conditions this corresponds to having a fixed

known L̄). Thus, in such a case, the dimensional power density P̄ is easily computed

from P , since L̄, ν̄, η̄, and ρ̄ are fixed and known.

From our normalized Navier-Stokes equation 4.12, we see that the average

value of 〈〈F · v〉〉 is in general a function of the dimensionless pair (ν,Ω). The

normalized quantities ν and Ω involve the dimensional variable Ū . We regard this as

undesirable since Ū depends on F̄ which is not fixed in our envisioned experimental

situation. To remedy this, a new dimensionless variable is used,

C =
Ω̄L̄2

2πη̄
=

2πΩ

η
, (6.11)

which is the ratio of the magnetic diffusion time to the rotation period. Additionally,

Prm depends only on the fluid used; hence we express the power P as a function

of C, Prm, and η to construct the space of dimensionless parameters (Prm, C, P )

which has three desirable properties: 1) this triple is uniquely determined from the

previously used dimensionless triple (ν, η,Ω), 2) all three quantities are easily com-

puted from known dimensional quantities in an experiment, and 3) the relationship

between (ν̄, η̄, Ω̄) and (Prm, C, P ) involves only fixed quantities.

Our procedure consists of fixing Prm and C, varying η to numerically find

ηc, and computing the critical power Pc(Prm, C) = P (Prm, C, ηc). To accomplish
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this using our results from the previous section and without performing additional

simulations for fixed values of C, we make the approximation that the surface sep-

arating the parameter space (ν, η,Ω) into dynamo and non-dynamo regions can be

formed by linearly interpolating between the curves of Fig. 6.19. Fig. 6.22 shows

this surface with the addition of points at ν−1 = 3. This approximation is justified

by the observation that the curves in Fig. 6.19, being roughly similar, indicate a

smooth dependence on ν.
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Figure 6.22: Surface seperating dynamo behavior from non-dynamo behavior for

the parameter region 3 ≤ ν−1 ≤ 36, 0 ≤ Ω ≤ 8. Points above this surface generate

a dynamo, while points below do not.

P is computed by first linearly interpolating between the curves of Fig. 6.6 to

obtain a value for 〈〈F·v〉〉 for any given (ν, Ω) in the range 3 ≤ ν−1 ≤ 36, 0 ≤ Ω ≤ 8.
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This value is then multiplied by η−3 to obtain P (of equation (6.10)). The surface in

Fig. 6.22 may then be mapped to the space (Prm, C, P ). Fig. 6.23 shows an example

of how the critical surface maps to constant Prm planes, demonstrating that for a

fixed P , increasing the dimensionless rotation rate C is desirable for the generation

of a dynamo (in the region of Prm investigated here).
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Figure 6.23: Curve separating dynamo behavior from non dynamo behavior in the

plane (P,C) for Prm = 0.5.

The top portion of the curve in Fig. 6.23 is denoted P
(+)
c , the critical power

above which a dynamo is always attained. The bottom surface is denoted P
(−)
c , it

represents the boundary of a small dynamo window which exists for low powers. In

addition, there is another critical power P
(−−)
c < P

(−)
c such that no dynamo action

occurs for P < P
(−−)
c . We define the point (C?, P ?) where P

(+)
c and P

(−)
c meet; as

well as the point (C??, P ??) where P
(−)
c and P

(−−)
c meet (see Fig. 6.24). The curve

P
(−−)
c is positive for all C > C?? (for zero power P we cannot have a dynamo). The
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dynamo region is P > P
(+)
c when C < C??, P

(−−)
c > P > P

(−)
c and P > P

(+)
c when

C?? < C < C?, and P > P
(−−)
c when C > C?.

The dynamo window that exists in the range P
(−−)
c > P > P

(−)
c is shown in

Fig. 6.24 along with the curve P T
c for which the flow has complex time dependence

for P > P T
c and is time-independent or periodic for P < P T

c . The curve P
(−−)
c can

be seen to exist in a region in which the power is so low that the resulting flow is not

turbulent. The non-turbulent dynamo region evidently yields time independent or

periodic flows having a spatial structure particularly efficient for dynamo generation.

For increasing powers, turbulence develops above P T
c in the form of fluctuations on

top of a mean flow. This mean flow is similar in spatial structure to the time-

independent flows just below P T
c . Our interpretation of Fig. 6.24 is that when

the additional turbulence is weak, the mean flow is able to preserve the efficient

dynamo; however, as P increases past P
(−)
C , turbulence causes the flow to become

disordered (perhaps introducing a greatly enhanced effective turbulence induced

magnetic diffusivity) and the dynamo is lost. Above P
(+)
c the power is sufficiently

high that dynamo action occurs for highly turbulent flow.
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Figure 6.24: The critical power curves P
(−−)
c , P

(−)
c , and P T

c for Prm = 0.2.

Experiments operate in the regime Prm ¿ 1. In principle, we wish to locate

the critical power curves P
(+)
c , P

(−)
c , and P

(−−)
c in the limit as Prm goes to zero.

The increase in η−1
c with ν−1 seen in Fig. 6.19 corresponds to a rising P

(+)
c as Prm is

decreased. As one approaches the low Prm limit, we expect that P
(+)
c will limit to a

curve denoted P
(+)
c∞ corresponding to a ν-independent ηc. This expectation is based

on results obtained in the non-rotating case, demonstrating that Rc
m increases for

decreasing Prm, reaching a plateau for small Prm (Prm ∼ 0.3) [40]. We expect that

the shape of P
(+)
c will not be altered drastically in the limit Prm → 0. However,

investigation of very small magnetic Prandtl numbers proved to be beyond the

capabilities of our available computer resources. The lowest Prm for which we have

obtained the entire upper curve P
(+)
c is Prm ≈ 0.45. (data for which ν−1 > 36 would

be required to obtain P
(+)
c for lower Prm).
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Although we only obtain the upper curve for a relatively small region of Prm,

we are able to obtain large portions of the P
(−)
c curve as low as Prm ∼ 0.1. We are

uncertain as to the behavior of P
(−)
c in the limit Prm → 0; its behavior as Prm is

decreased is shown in Fig. 6.25 (the dynamo window bounded by P
(−)
c and P

(−−)
C

exists for Prm as low as Prm = 0.1 and thus we cannot rule out its existence for

Prm → 0). The curve P
(−−)
c versus C is relatively unchanged as Prm decreases.
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Figure 6.25: Critical power curves P
(+)
c and P

(−)
c versus C for several values of Prm;

they are Prm = 0.8, 0.6, 0.5, 0.4, 0.3, 0.2. Curves P
(+)
c which do not extend back

to C = 0, are incomplete because it would require data from outside of the region

3 ≤ ν−1 ≤ 36.
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6.4 Conclusions

As early as 1970 it was hypothesized that rotation increases the propensity

for dynamo action in a magnetohydrodynamic fluid [53, 54]. Here we have shown,

through the use of numerical simulations, that rotation is desirable for dynamo

action. Moreover, the behavior change is marked by a sharp transition in the critical

magnetic Reynolds number. This transition in magnetic behavior was found to

coincide with changes in the flow structure and kinetic energy spectrum. In addition,

the flow helicity grows with rotation rate, providing a possible explanation for the

observed magnetic behavior.

6.4.1 Future Prospects

Our study has focused on external forcing on the scale of the domain (the

largest scale k = 1 mode). However, quasi two-dimensional flows, which occur for

the highest rotation rates investigated, are known to have an inverse energy cascade

to larger scales. Studying rotation with a forcing scale small compared to the domain

(perhaps with the use of a Taylor-Green vortex with k◦ > 1) is thus of great interest.

It is also of interest how boundaries effect the flow. These topics are appropriate

for future study, when more computational recourses become available.
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Appendix A

Geometric Optics Derivation of the Shadowgraph Light Intensity

The path of a light ray parameterized by the path length s is denoted r(s).

Using this parameterization, v ≡ dr/ds has magnitude 1. A light ray beginning

at r◦ = x◦x̂ + y◦ŷ in the xy plane with initial v vector pointing down along the

z-axis (v◦ = −ẑ), travels into a fluid contained between the planes z = d/2 and

z = −d/2. Upon hitting the z = −d/2 plane, the light ray reflects and exits the

fluid for subsequent imaging (through a series of lenses followed by a CCD).

In a medium with general index of refraction n(x, y, z) the path satisfies

d

ds

[

n(r(s))
dr(s)

ds

]

= ∇n(r(s)). (A.1)

Applying the chain rule we have

(

∇n(r) · dr

ds

)

dr

ds
+ n(r)

d2r

d2s
= ∇n(r). (A.2)

Substituting v = dr/ds leads to

dv

ds
= R(r) − (R(r) · v)v, (A.3)

dr

ds
= v, (A.4)

where

R(r) =
∇n(r)

n(r)
. (A.5)

The right hand side of equation (A.3) is simply the projection of R(r) onto the

plane perpendicular to v. The index of refraction of a fluid can be expressed as
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n(x, y, z) = 1 + δn(x, y, z) where δn is treated as a small perturbation, δn¿ n. We

wish to treat the problem to first order in δn. Thus R(r) becomes

R(r) ≈ ∇δn(r). (A.6)

To lowest order we ignore ray deviations within the fluid so that the ray exits

the fluid at the same point it entered (r◦). Additionally, the vector v is only slightly

modified during transit through the fluid, thus we substitute v = ±ẑ in the right

hand side of (A.3). This gives the simplified system

dv

ds
= R⊥(r). (A.7)

Here, the subscript ⊥ indicates the projection of the R vector onto the xy plane.

The exiting v vector ve = δvxx̂ + δvyŷ + ẑ picks up a small component in the

xy plane. The ray then travels in a straight line along the direction ve to a final

location r = (x◦ + δx)x̂ + (y◦ + δy)ŷ + (z1 + d/2)ẑ in the image plane, a distance

z1 À d above the fluid. The offsets δx = z1δvx, and δy = z1δvy are treated as

perturbations. Integrating (A.7) gives

δv⊥ ≡ δvxx̂ + δvyŷ

=

∫ −d/2

d/2

R⊥(r◦)ds+

∫ d/2

−d/2

R⊥(r◦)ds

= 2∇⊥

∫ d/2

−d/2

δn(r◦ + zẑ)dz (A.8)

δr⊥ ≡ δxx̂ + δyŷ = z1δv⊥

= 2z1∇⊥

∫ d/2

−d/2

δn(r◦ + zẑ)dz

= 2z1d∇⊥δn(r◦), (A.9)
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where the overbar indicates vertically averaging, δn = (1/d)
∫ d/2

−d/2
δndz. The map

from the ray entrance point r◦ to the final horizontal location rf where it hits the

image plane is

rf = P (r◦) ≡ r◦ + 2z1d∇⊥δn(r◦). (A.10)

The map P is one-to-one since the deviation δr⊥ is small. The determinant of the

Jacobian is the factor by which areas grow under the action of the map P :

|DP (r◦)| =
drfx

dr◦x

drfy

dr◦y
− drfx

dr◦y

drfy

dr◦x

=

(

1 + 2z1d
d2δn

d2x
(r◦)

)(

1 + 2z1d
d2δn

d2y
(r◦)

)

−

4z2
1d

2

(

d2δn

dxdy
(r◦)

)2

≈ 1 + 2z1d∇2
⊥δn(r◦). (A.11)

Equation (A.11) is accurate to first order in δn. For an incident light intensity I◦

at the point r◦ the point rf will receive intensity I = |DP (r◦)|−1I◦. Thus we have

the relation

I(x, y) =
I◦(x, y)

1 + 2z1d∇2
⊥δn(x, y)

. (A.12)

The fluid’s index of refraction varies due to spatial temperature variations.

For slight dependence of n on the temperature deviation θ (ignoring the higher

derivatives such as d2n/dT 2) we have: δn = δn◦ +(dn/dT )θ. Typically dn/dT < 0;

a convenient form for the final shadowgraph formula is then

I(x, y) =
I◦(x, y)

1 − 2z1d|dn/dT |∇2
⊥θ̄(x, y)

. (A.13)
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Appendix B

Short-Time Nonlinear Evolution of an Initially Gaussian PDF

The goal of this appendix is to compute the initial time derivative of the mean,

covariance, skewness, and kurtosis of a multivariate normal distribution (PDF, or

equivalently, density of an ensemble of states) under nonlinear evolution. The last

two quantities (skewness and kurtosis) are measures of deviations from normality.

We consider a continuous time dynamical system

∂x

∂t
= F(x), (B.1)

in which the N components of F can be written

Fi(x) = Ci + Aijxj +Bijkxjxk, (B.2)

where repeated indices are summed. Without loss of generality, the B tensor is sym-

metric in its last two indices; Bijk = Bikj. This form of F(x), in which second order

terms are the highest present, is very common. The Boussinesq equations (1.1), the

standard Navier-Stokes equations (4.12), and the MHD equations (4.1) and (4.2)

take this form when discretized in space, with all nonlinearities arising from terms

which are second order in their state variables.

Denote the PDF as ρ(x). Conservation of probability leads to the continuity

equation in state space

∂ρ

∂t
+ ∇ · (ρF) =

∂ρ

∂t
+ ρ∇ · F + ∇ρ · F = 0. (B.3)
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The initial (t = t◦) density ρ◦(x) is Gaussian with covariance Σ◦ and mean µ◦,

ρ◦(x) =
1

(2π)N/2|Σ◦|1/2
exp

[

−1

2
(x − µ◦)

TΣ−1
◦ (x − µ◦)

]

. (B.4)

For this distribution we have ∇ρ◦ = −Σ−1
◦ (x − µ◦)ρ◦. It will be convenient to

transform into a coordinate system in which ρ◦ is centered on the origin and nor-

mally distributed with covariance matrix equal to the N ×N identity matrix. This

coordinate transform is given by

∆ = P−1
◦ (x − µ◦), (B.5)

where P is real, symmetric, and satisfies

P2
◦ = Σ◦. (B.6)

Using these new definitions, ∇ρ◦ = −P−1
◦ ∆ρ◦. The initial time evolution of the

density is then

ρ̇◦ ≡
∂ρ

∂t

∣

∣

∣

∣

t=t◦

= P−1
◦ ∆ρ◦ · F − ρ◦∇ · F. (B.7)

Using (B.4) and (B.2), equation (B.7) becomes

ρ̇◦ = ρ◦
[

(Ci + Aijxj +Bijkxjxk)P
−1
◦il ∆l − Aii − 2Biijxj

]

. (B.8)

Eliminating x using the substitution x = µ◦ + P◦∆ leads to the form

ρ̇◦ = ρ◦

[

CiP
−1
◦il ∆l + Aijµ◦jP

−1
◦il ∆l + AijP◦jpP

−1
◦il ∆p∆l +

Bijkµ◦jµ◦kP
−1
◦il ∆l + 2Bijkµ◦kP◦jpP

−1
◦il ∆p∆l +BijkP◦knP◦jpP

−1
◦il ∆n∆p∆l −

Aii − 2Biijµ◦j − 2BiijP◦jl∆l

]

. (B.9)

115



Although long and seemingly cumbersome, this form is convenient because we can

easily make use of the relations

∫

ρ◦dx = 1 , (B.10)

∫

∆iρ◦dx = 0 , (B.11)

∫

∆i∆jρ◦dx = δij , (B.12)

∫

∆i∆j∆kρ◦dx = 0 , (B.13)

∫

∆i∆j∆k∆lρ◦dx = δijδkl + δikδjl + δilδjk ,

≡ Wijkl {δδ} , (B.14)

∫

∆i∆j∆k∆l∆mρ◦dx = 0 , (B.15)

∫

∆i∆j∆k∆l∆m∆nρ◦dx = δijWklmn {δδ} + δikWjlmn {δδ} +

δilWjkmn {δδ} + δimWjkln {δδ} + δinWjklm {δδ} ,

≡ Wijklmn {δδδ} , (B.16)

∫

∆i∆j∆k∆l∆m∆n∆pρ◦dx = 0 , (B.17)

...

These relations follow from noting that |Σ◦|1/2 = |P◦| and under change of variables

dx → |P◦|d∆.

At any time, the distribution mean is computed as

µ =

∫

xρ(x)dx, (B.18)

and its initial time derivative is

µ̇◦ ≡
∂µ

∂t

∣

∣

∣

∣

t=t◦

=

∫

xρ̇◦(x)dx =

∫

µ◦ρ̇◦(x)dx +

∫

P◦∆ρ̇◦(x)dx. (B.19)
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Noting that
∫

ρ̇◦(x)dx = 0 we have

µ̇◦i = P◦ij

∫

∆j ρ̇◦dx. (B.20)

Only terms with odd powers of ∆ in (B.9) will give non-zero contributions to this

integral. After plugging (B.9) into (B.20) and using the relations P◦ij = P◦ji, Σ◦ij =

P◦ikP◦jk, and P◦ijP
−1
◦jk = δik, we obtain

µ̇i = Fi(µ) + Σ◦jkBijk. (B.21)

Evidently the mean evolves initially just as if it were a state evolving under the action

of F, except for a nonlinear correction due to the finite extent of the distribution.

For very tight distributions (small Σ◦), the distribution mean follows µ̇ = F(µ).

The distribution covariance is given by

Σij =

∫

(xi − µi)(xj − µj)ρ(x)dx, (B.22)

and its initial time derivative is

Σ̇◦ij ≡
∂Σij

∂t

∣

∣

∣

∣

t=t◦

=

∫

(xi − µ◦i)(xj − µ◦j)ρ̇◦dx −

µ̇◦i

∫

(xj − µ◦j)ρ◦dx − µ̇◦j

∫

(xi − µ◦i)ρ◦dx

= P◦inP◦jm

∫

∆n∆mρ̇◦dx − (µ̇◦iP◦jn + µ̇◦jP◦in)

∫

∆nρ◦dx

= P◦inP◦jm

∫

∆n∆mρ̇◦dx. (B.23)

Only terms with even powers of ∆ in (B.9) will give non-zero contributions to this

integral. After plugging (B.9) into (B.23) we obtain

Σ̇◦ = DF ◦Σ◦ +
(

DF ◦Σ◦

)T

, (B.24)
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where DF◦ij ≡ Aij + 2Bijkµ◦k is defined as the Jacobian of F at the point µ◦. The

same formula (B.24) is obtained when the dynamics are linear.

The skewness and kurtosis measures are given by [60] as

s =

∫

[

(x − µ)TΣ−1(y − µ)
]3
ρ(x)ρ(y)dxdy, (B.25)

κ =

∫

[

(x − µ)TΣ−1(x − µ)
]2
ρ(x)dx, (B.26)

Note that the skewness of ρ◦ is zero and the kurtosis of ρ◦ is N 2 + 2N (recall that

N is the dimension of the space).

The initial time derivative of the skewness is

ṡ◦ ≡
∂s

∂t

∣

∣

∣

∣

t=t◦

=

∫

[

(x − µ◦)
TΣ−1

◦ (y − µ◦)
]3

(ρ̇◦(x)ρ◦(y) + ρ◦(x)ρ̇◦(y))dxdy −

3

∫

[

(x − µ◦)
TΣ−1

◦ (y − µ◦)
]2
(

(x − µ◦)
TΣ−1

◦ Σ̇◦Σ
−1
◦ (y − µ◦) +

µ̇T
◦ Σ

−1
◦ (y − µ◦) + µ̇T

◦ Σ−1
◦ (x − µ◦)

)

ρ◦(x)ρ◦(y)dxdy. (B.27)

Where we have used the relation

∂

∂t
Σ−1

∣

∣

∣

∣

t=t◦

= −Σ−1
◦ Σ̇◦Σ

−1
◦ . (B.28)

The skewness is symmetric with respect to the interchange of x and y. Using this

fact, along with the notation ∆(x) = P−1
◦ (x−µ◦), ∆

(y) = P−1
◦ (y−µ◦), and defining

L ≡ P−1
◦ DF ◦P◦ + P◦DF T

◦ P−1
◦ , (B.29)

we get

ṡ◦ = 2

∫

[

(∆(x))T∆(y)
]3

ρ̇◦(x)ρ◦(y)dxdy −

3

∫

[

(∆(x))T∆(y)
]2

(∆(x))T L∆(y)ρ◦(x)ρ◦(y)dxdy. (B.30)
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Both integrals have odd powers of ∆y, thus evaluating the dy portion of both

integrals first gives ṡ◦ = 0.

The initial time derivative of the kurtosis is

κ̇◦ ≡
∂κ

∂t

∣

∣

∣

∣

t=t◦

=

∫

[

(x − µ◦)
TΣ−1

◦ (x − µ◦)
]2
ρ̇◦dx −

2

∫

[

(x − µ◦)
TΣ−1

◦ (x − µ◦)
]

(

(x − µ◦)
TΣ−1

◦ Σ̇◦Σ
−1
◦ (x − µ◦) +

2µ̇T
◦ Σ−1

◦ (x − µ◦)
)

=

∫

[

∆T∆
]2
ρ̇◦dx − 2

∫

[

∆T∆
]

∆T L∆ρ◦dx

=

∫

∆i∆i∆j∆j ρ̇◦dx − 2

∫

Ljl∆i∆i∆j∆lρ◦dx. (B.31)

Using (B.9) and the fact that δii = N , we arrive at

κ̇◦ = 4(N + 2)DF◦ii − 2(N + 2)Lii

= 0,

since Lii = 2DF◦ii (which can be shown using (B.29)).

In summary, we computed the short-time evolution of the mean, covariance,

skewness, and kurtosis for a multivariate normal distribution. The results are sum-

marized as

µ̇ = F(µ) + BΣ◦, (B.32)

Σ̇◦ = DF ◦Σ◦ +
(

DF ◦Σ◦

)T

, (B.33)

ṡ◦ = 0, (B.34)

κ̇◦ = 0. (B.35)

The initial growth of these measures of skewness and kurtosis are zero; thus the
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growth of skewness and kurtosis must be (at least) second order in time for short

times.
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