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1 Introduction

Material handling contributes significantly to overall manufacturing costs. Fixed costs are associ-
ated with the investment in material handling equipment during system construction, while variable
costs arise from the material transfer between the resources of the manufacturing facility during
system operation. These costs are conflicting in nature, since acquiring more equipment may re-
duce the material handling effort at the expense of increased investment. The goal of this study
is to support the material handling system design process by determining the minimum number of
transporters required to transfer parts/batches in the manufacturing facility with minimal material
handling effort

Most of the related research discussed below has addressed Automated Guided Vehicle (AGV)
systems. However, it is equally applicable to all types of horizontal, carrier-based transportation
systems such as rail carts, industrial trucks, forklifts etc. [10].

Egbelu [6] developed a set of simple formulas to calculate the minimum number of carriers in a
manufacturing system, based on the loaded traveling times as well as on some empirical estimates
of the unloaded traveling times. This work can be employed in an initial economic justification of
AGYV systems. To address the same problem, Tanchoco et al. [18] employed a queueing theory-
based computer model (CAN-Q), and Wysk et al. [19] used spread-sheet analysis. Their results
compared favorably to a simulation-based method (AGVSim). All these approaches provide initial
estimates for the number of carriers, which may be further refined by simulation. As such, they
do not consider detailed aspects of the problem, that may be important during system operation,
such as the distribution of moves (loaded and unloaded) among the vehicles. For the problem of
determining the AGV fleet size, Sinriech and Tanchoco [16] developed a multi-criteria optimization
model that considers the trade-off between investment costs and system throughput. To support
the design process they proposed the use of decision tables relating the investment cost, the number
of AGVs and their utilization, as well as the trade-off ratio between the corresponding conflicting
costs. In this approach, optimality is not guaranteed and the deviation from the optimal of a
solution chosen by the designer cannot be evaluated.

The design of efficient horizontal unit-load material handling systems was studied by Maxwell
and Muckstadt [13]. They considered the case in which the production rate of each manufacturing
resource is constant and knowne. To determine the minimum number of AGVs, they solved a

transportation problem that distributes the unloaded vehicle moves among pairs of resources, in a



way that minimizes the unloaded vehicle traveling time. Subsequently, they determined sequences of
moves that originate and terminate at the same resource (routes) and assigned them to AGVs. Their
routing algorithm created a delivery schedule with a near-constant inter-arrival time of material at
each resource. The authors, however, do not provide analytical tools to determine vehicle routes,
which are critical in assigning moves to vehicles. In large applications, evaluation of these routes
may be a complex, and often intractable, problem. Furthermore, the authors do not consider the
periodicity of vehicle operations that may lead to additional unloaded moves in order to drive the
system to its initial state.

In a related research area, the merit of topologically simple flow path designs for better AGV
control has been examined by several authors (e.g. Bartholdi and Platzmann [1], Bozer and Srini-
vasan [2] and Sinriech and Tanchoco [17]). Bozer and Srinivasan [3] presented a partitioning algo-
rithm for the design of single vehicle loops, in an effort to distribute the workload evenly among the
AGYVs in the material handling system. Although these designs offer simplicity and allow analytical
performance evaluation, no rigorous arguments have been presented to support their advantages
against conventional networks.

Assuming a fixed shop layout with predetermined material flow paths, the problem of minimizing
fixed acquisition and variable transportation costs addresses the following control-related issues:
i) Assignment of available transportation equipment to service requests by jobs waiting in the
queues of output stations, and ii) transporter optimal routing from a resource output station to
the destination input station. However, since this problem is relevant to the design stage of a
manufacturing facility, during which no real-time information is available, we propose a static
integer programming formulation closely related to vehicle routing [7]. The resulting optimization
problem is NP-hard, and two efficient heuristics are developed to solve it. The first is a greedy
algorithm similar to the nearest neighbor approach for the traveling salesman problem. The second
is a composite algorithm that solves the assignment relaxation of the integer program, determines
closed sequences of resources with a common origin (routes) and assigns these routes to transporters
by solving a two-stage bin-packing problem [11, 12]. Both heuristics run in polynomial time and
their worst case performance is bounded by ratios of problem parameters. Extensive computational
tests against lower bounds also show that they provide satisfactory solutions for applications of
practical size.

The remainder of this paper is organized as follows. Section 2 introduces our assumptions as

well as relevant definitions and notation. Section 3 presents the integer programming formulation



of the problem and the assignment model used to compute lower bounds. Section 4 describes the
two heuristic solution approaches, and Section 5 presents results on the computational complexity
and the worst case performance of the heuristics. Section 6 includes the numerical experiments,

and Section 7 summarizes the conclusions of this work.

2 Assumptions, definitions and notation

The development of the mathematical model is based on the following assumptions: 1) The place-
ment of the manufacturing resources on the shop floor is given, together with the location of the
resource pick-up (output) and drop-off (input) stations. (For a review of effective shop layout tech-
niques see (8, 14].) 2) The material flow paths between resources are fixed. (For existing methods in
flow path design see [9].) 3) The inter-resource material flow rates (in terms of loads per unit time)
are constant from time period to time period and known. They are calculated from the production
routings (sequences of operations) of the products to be manufactured and their demand over the
design horizon. 4) Whenever a transporter visits a resource output station, there always exists
material to be transferred to subsequent resources. This assumption is necessary since no real-time
information is available at the system design stage. 5) Horizontal material handling transporters
are considered (e.g. AGVs, manual or automated rail carts, industrial trucks, and forklifts) with
unit load capacity; no sharing of moves between different material flow types (i.e., different batches)
is allowed.

There exist three types of transporter operations between a pair of manufacturing resources: i)
A loaded move i is the transporter operation from the output station of the manufacturing resource
o(4) to the input station of the destination resource, d(i). The set of loaded moves is denoted by L,
and its cardinality (|L|) will be referred to as n throughout the text. ii) An unloaded move is the
transporter operation from the input station of a manufacturing resource to the output station of
another resource, during which no load is carried. The set of all possible unloaded moves is denoted
by U. iii) A complete move is the concatenation of a loaded move and a subsequent unloaded move.
The set of compléte moves is denoted by C.

Each element of L is associated with a unit entry of the flow matrix. Assuming that there exists
a path between each input-output pair, it is easy to see that after the completion of a loaded move,
a transporter can perform an unloaded move to the origin of any other loaded move in L. As a

result, either three or only two resources may be included in a complete move. In the latter case,



d(i) = o(j), where 7 and j are consecutive moves.

A cost c;; is associated with each complete move (,5) € C. Assuming that the costs 7;, 77, 78,
and Tij reflect the time needed to perform loaded move 4, to pick-up the load from o(3), to deliver
the load to d(é), and to travel from d(i) to o(j), respectively, then c;; is defined as:

'r,-+'rf+Tid+'rzj ifi#y
Cij = (1)
00 ifi=jy

The set of material handling transporters available for transfer of parts is denoted by V. For
each transporter k € V, the scaled capital investment is denoted by wy; this cost is appropriately
scaled to reflect the relative weights of the variable and fixed components of the objective function.

A route u is a sequence of moves performed by a transporter that originates and terminates at
the same resource output station. This definition is adopted from Maxwell and Muckstadt [13],
and will be employed by the second heuristic presented in Section 4. A set of routes that have the
same origin is a route set, denoted by I'. The time needed to perform all the complete moves of
a route is denoted by ¢, = E(i,j)e’Yu cij, where v, is the set of complete moves of route u. In the
remainder of the paper we will refer to a route either by its index u or by the corresponding set ;.

Finally, T is the period within which all loaded moves must be performed. Note that T is scaled

appropriately to reflect the time costs ¢;; in (1).

3 Mathematical model

To formulate the problem of minimizing the fixed acquisition and the variable operational costs
of the material handling system, we use the following additional notation: For all elements of the
transporter set V we define a binary variable that indicates which transporters perform at least

one loaded move in L, and thus should be acquired; i.e.,

1 if transporter k € V is employed for some move in L
Yk =
0 otherwise

Let xfj be a binary variable associated with each complete move:

k 1 if move j € L is performed following move 4 € L by transporter k € V

0 otherwise

The design problem can now be expressed as follows:



Problem P
minimize Z= wgyr+ > > cijwi'cj 2
kev (i.J)€C keV

subject to :

Yo Y ak=1 VieL (3)

(3,5)eC keV
Z Z a’fj =1 VieL (4)
(5,5)eC keV
ooak— > k=0 VieL keV (5)
(i,5)eC (ji)eC
PIDIEEDIDIL B! VFCL:2<|F|< Y 2%, VkeV (6)
ieF jeF i€F jeL (i5)eC
Z Cijxfj <T VkeV (7)
(i.5)eC
<y VG EC, keV ®)
afu €{0,1}  V(i,5)€C, keV (9)

The objective function Z in (2) accounts for the capital investment to acquire transportation
equipment and for the operational cost of material handling. Constraints (3)-(4) ensure that each
loaded move in L is performed by exactly one transporter k£ € V. Constraint (5) imposes continuity
on the path consisting of loaded moves performed by each transporter, by ensuring material flow
conservation. The exponential set of constraints (6) enforces subtour elimination, guaranteeing the
existence of a single tour for each transporter £ € V. Note that a subtour is a sequence of moves of
the form (41,4, ...,41). Constraint (7) limits the time that each transporter operates to the design
horizon T'. Constraint set (8) prohibits material movement by non-activated vehicles (y; = 0).
Finally, constraint (9) forces the variables wfj and yj to assume binary values.

In order to guarantee a feasible solution to problem P, the following property should be satisfied
by each complete move: ¢;; < T'/2,V(i,5) € C. The case in which there exist some complete moves
with ¢;; > T'/2 may lead to an empty feasible solution space, if these moves have to be performed
by the same transporter. Based on this property, and the fact that at least two loaded moves are
required to complete a tour, it is easily seen that

> <51 (10)

keV



Assignment lower bounds

The problem that results by considering only the operational cost in the objective function of P,
by removing the capacity constraints (7), and by disregarding the transporter indices, is the well

known assignment problem (or minimum weight matching problem [15]) which is presented below.

Problem A
minimize Zg = Z CijTij (11)
(1.5)eC
subject to :

Y mii=1 VieL (12)

(i.j)eC
Z zij =1 VjeL (13)

(i.)€L
z;; € {0,1} V(i,j) e C (14)

The optimal solution Z; of A provides for every loaded move ¢ € L the loaded move ¢(i) that
should follow 4, such that the total variable cost is minimized. Z} and the associated ¢(i)’s are
derived in polynomial time by the Hungarian algorithm, an application of the primal-dual method
[15]. It is clear that Z; bounds from below the variable component Z3,, of the optimal solution of
Pyie. Zg < Zgy = 3 i jyeC Lkev c,-jmfj*, where (a:f;,y,*;) is the optimal variable vector of P.
The above lower bound on the variable cost can be used to obtain a lower bound on the number
of transporters, which is given by:
Ry =[] (15)
Note that if we assume identical transporters in terms of acquisition costs, i.e. wy = w, Vk € V,
then we have a lower bound on the optimal fixed cost in (2): R} - w < Z‘{pt = Ypev WkYp =
w Y rev Yi- The lower bounds derived above will be employed for the evaluation of the heuristics

during numerical experiments.

4 Solution algorithms

Since problem P is closely related to the well known NP-complete vehicle routing problem, optimal
solutions cannot be computed for medium to large-sized problems. Thus, we develop heuristic

approaches that provide near-optimal solutions.



4.1 A greedy heuristic

Let us consider the set of loaded moves. An intuitive approach for minimizing the cost Z is to start
matching moves that have the minimum cost coefficients c;;, and attempt to allot as many complete
moves to each available transporter as possible. Note that by matching two loaded moves 7,5 € L,
an unloaded move from d(z) to o(j) is fixed. Thus, we can proceed by allotting to each transporter
complete moves with minimal cost in a greedy fashion, until capacity constraints are violated.
This results in selecting minimum cost moves at the beginning of the procedure. However, as the
algorithm proceeds, non-favorable selections may be made, as is typical with nearest-neighbor type
approaches. The minimization of the number of transporters is implicitly introduced by forcing
each transporter to be loaded to near-capacity before another transporter is activated. This greedy
algorithm is presented below. Note that L, is an auxiliary set used in the presentation of the

algorithm, & is the transporter index, and Dy the associated variable cost.

Algorithm GREEDY

Setk=1,Ly=1L
If L,=0,g0to08
Choose a loaded move p € Ly at random
Set g=p, D=0
Ly = Ly \ {p}
Select j € Ly : cp; = minjer, {cp;}
6. If Dy + cpj +cjqg < T, then:
Dy = Dg + ¢y
Ly =Ly \ {5}
If Ly = 0 then
Dy =Dy + Cjq
Go to 8
p=7J
Go to 5
7. If Dg + ¢pj +¢jq > T, then
Dk = Dk + Cpq
k=k+1
Go to 2
8. Output number of transporters, assignment of moves, and variable cost

Ll

o

The above algorithm is straightforward. Capacity constraints play an important role in its
progress, since they impose the threshold for transporter activation and, thus, for fixed cost alloca-
tion. GREEDY attempts to assign complete moves of minimum cost to transporters; at the same
time it forces each vehicle to perform closed continuous loops. Note that regardless of the value of

the fixed costs, the above heuristic will provide the same solution for a given set of variable costs.



4.2 An assignment/bin-packing (ABP) composite heuristic

An intuitive first step towards minimization of the variable portion of Z in (2) is to solve the as-
signment problem A. Starting from any loaded move ¢ € L and following the sequence ¢(i), #(¢(3)),
..., we will return to 7, since 3j; € L : ¢(¢) = j; and Jjo € L : i = ¢(jz). The resulting closed
sequences of loaded moves form subtours. If one transporter is allotted to each subtour, then the
variable cost in (2) is minimal. However, this ad-hoc allotment of moves to transporters may not
be feasible -since capacities may be violated- and is, in general, not economical -since an unneces-
sary large number of transporters may be activated. Consequently, an algorithmic approach driven
by the preservation of the minimal variable cost is required to translate the solution of A into a
near-optimal solution of P. This is the basis of the heuristic ABP presented below.

ABP starts with the subtours of the optimal solution of A and allots moves to transporters in
order to minimize the objective of P. This is accomplished by identifying routes and routes sets
and performing a two-stage bin-packing [11, 12]. Figure 1 illustrates the definition of subtours,

routes, and route sets. A subtour derived from the solution of the assignment problem is shown in

route 1 o(4)
subtour of loaded moves 1, 2, 3, 4
1=0(4)
(1,2) 4,1)
route
set
2=¢(1) 4=003)
2,3) (34
3=0(2)
route 2 o(2)
(a) (b)

Figure 1: Illustration of terminology: a) moves and subtours; b) routes and route sets

generated by the subtour of (a)

Figure la. The nodes 7 = 1,...,4 represent loaded moves, while the arcs (1,2),...,(4,1) represent
the unloaded moves connecting the loaded ones. If some moves of the subtour have common origin,

then the subtour is decomposed into routes which intersect at this origin. This transformation of



moves to routes is unique, since it is based on the assignment matchings. In Figure 1b, two routes
are shown, connected at o(1) = o(3). These routes form one route set corresponding to station
o(3) = o(1). The nodes of a route set represent resource input/output stations, while the arcs
represent loaded/unloaded moves.

In the algorithm given below, L; is an auxiliary set initially equal to the set of loaded moves;
pack(i), Vi € L is the transporter that move 1 is assigned to; K is the total number of transporters;
Dy, is the total scaled time it would take transporter k to perform the moves allotted to it; ¢,
is a variable that corresponds to each activated transporter; M is the set of resources and f,
the material flow between resources r,s € M. Furthermore, FFD refers to the first-fit-decreasing
algorithm for solving bin-packing problems; the F F' D heuristic was employed due to its tight worst-
case bounds (11/9 times the optimal [11]). Finally, the load of a transporter is the sum of the cost

coefficients associated with the complete moves performed by this transporter.

Algorithm ABP

Solve A to obtain ¢(i), Vi € L
Set Ly =L
Setu=1,v=1,9%=0¢=0T,=0
Identify r € M : ZSGM frs = mameM{EseM fms}
Select move i € Ly : o(1) = r
do
Ly = Ly \ {i}
Jo@ydi) = fotiyag) — 1
Yu = Yu U {3, ¢(3)}, cu = cu + Ci,p(3)
i = ¢(i)
until o(z) =7
7. Ty =Ty U{v}
8 If Yogers frs >0
U=U+1,’)’u=®, Cu—_—O
Go to step 5 (new route)
9. If Ly £0
v=v+1,T,=0
v=u+1,v%=0¢c=0
go to 4 (new route set)
10. For f=1,...,v, apply FFD to ¢,’s of 7, €'
Get temporary transporters K, loads Dy, ..., Dk, and pack(i),Vi € L
11. Renumber transporters in decreasing order of Dy’s, as | = {t1,...tx}
12. Get first element of [
13. Setp=g=1and =1\ {tp}

S W



14. do
Let ¢, = next element of [, after current %,
If Dy + Dy < T then:

Omin = MiNict, jet[Cip(5) + Cip(s) = Cig(s) ~ Cirg()]

If Dp+ Dy + 0min < T and dppin < wy then:
i) Set I =1\ {tq}, Dp = Dp + Dg + dmin
il) Vi € tq, pack(i) = t,

If {; = last element of {:

Set t, = first element of [

Set I =1\ {tp}

Set t4 = first element of |

untill =0
15. Output transporter number and final assignment of moves to transporters

The solution of A generates the loaded move matchings ¢(i) and the optimal subtours of loaded
moves in Step 1 of algorithm ABP. After the initializations in Steps 2 and 3, routes and route
sets are identified in Steps 4 through 9. Specifically, Step 4 determines the resource r with the
maximum outgoing flow in the current flow matrix. Step 5 selects a loaded move 4 that originates
at resource r. Step 6 follows the sequence of moves %, ¢(i), p(¢(3)), ..., until a new move originating
at r is encountered. This sequence forms route -,. Each time the loop of Step 6 is performed, the
inter-resource flow matrix and the route cost ¢, are appropriately updated.

Step 7 adds the route 7, that has just been formed to the current route set I',,, which contains
the routes that originate from the output station of resource r. If there remain moves that originate
at resource r, Step 8 initiates a new route from this resource. Otherwise, Step 9 initializes a new
route set, provided that there exist moves yet unassigned to routes (L; # @). Steps 4 through 9 are
repeated until all moves are assigned to routes and routes are grouped into route sets.

Routes are alloted to transporters in two stages. Step 10 solves a bin-packing problem for every
route set I'y, in which the routes v, correspond to objects with weights equal to the route costs
¢, and the bin capacity equals the time horizon T. The first-fit-decreasing (FFD) [11] algorithm
is employed to determine the minimal number of bins (transporters) required to complete the
moves in I'y. After this procedure is applied to all route sets I',, a temporary assignment of routes
(and moves) to K transporters is determined. Note that the optimality of the variable cost is
maintained until the end of Step 10. Step 11 renumbers the temporary transporters in list { such
that if ty,,%x, €1 : k1 < ko, then Dy, > Dy,.

The final stage of the algorithm addresses the fixed component of the objective function. Given

the temporary assignment of routes to transporters, Steps 12 through 14 reduce the number of

10



transporters by combining the routes assigned to more than one transporters. The goal is to
reassign routes from underutilized transporters to more utilized ones, thus merging several disjoint
routes not necessarily from the same route set. To achieve that, a procedure similar to the FFD
heuristic is used. Step 13 removes the top element from the list [, i.e. the transporter with maximum
load t,, and Step 14 examines whether this transporter can be merged with any other one, without
violating capacity constraints or increasing the variable cost more than the transporter fixed cost.
The routes of the first subsequent (in [) transporter ¢, that satisfies these conditions, are merged
with those of ¢,, to form a modified transporter t,. In this case, the number of transporters is
decreased by one, and ¢, is removed from [. When all the remaining elements of the list are
examined for possible merger with ¢,, the algorithm returns to the top of / and examines possible
transporter mergers with the next maximum load transporter. Step 14 is repeated until no further
transporter mergers can be performed.

To calculate the minimum increase of the variable cost when attempting to merge the routes
of two transporters, Step 14 calculates the cost augmentations for all possible connections d;;
between moves ¢ and j that are allotted to different transporters. The connection that results in
the minimum cost increase is implemented. Figure 2 illustrates the process of cost augmentation

for moves 2 and 3 that belong to routes {(1,2),(2,1)} and {(3,4),(4,3)}. When attempting to

0(2) o(1)

d@3) d4) 3

o(4)

Figure 2: Cost augmentation during merging of transporter loads

merge the two routes, unloaded moves (2,1) and (4,3) are replaced by unloaded moves (2,3) and
(4,1). This results in a variable cost increase of dg3 = ¢33+ 4,1 — 2,1 — c4,3. If this is the minimum

cost augmentation (i.e., d23 < o4, 023 < 841, d23 < d13) then the route connection is implemented

11



between d(2),0(3) and d(4),0(1). After the route merger, one transporter will perform all moves
1, 2, 3, and 4. Note that in Step 14 optimality with respect to the variable cost may be sacrificed.
However, by selecting the minimum augmentation cost at each iteration, the algorithm tries to keep
the variable cost as close to the lower bound Z} as possible.

It easy to see that ABP attempts to reduce the fixed cost in Steps 10 and 14, when routes
from the same or different route sets are connected. However, it is clear that the main concern of
algorithm ABP is the variable cost, the optimality of which is preserved until Step 14. Also, note
that in order to apply the FFD in Step 10, we have assumed that ¢, < T, Yu. This assumption
is well justified in manufacturing applications, since the moving and loading/unloading times are

negligible compared to the design horizon 7', resulting in small route costs.

5 Evaluation of heuristics

In this section some important properties of the two heuristics are established. The proofs of all

theorems are included in Appendix A.

Computational complexity

The greedy heuristic is particularly fast; its computational complexity is bounded by a low order
polynomial. The computational complexity of the composite assignment/bin-packing heuristic is

dominated by the time to compute the solution to the assignment problem.
Theorem 1 The computational complezity of GREEDY is O(n?).
Theorem 2 The computational complezity of ABP is O(n3).

Worst case analysis

In this analysis we examine the variable and fixed costs separately. Let cpee = (z;,r];)aexc{cij},
and cpin = (.I,Il.)iélC{Cij}, i.e. the maximum and minimum elements of the cost matrix [c;;]. Also,
let Zy and Zy be the variable costs of the solutions derived by applying GREEDY and ABP,
respectively, and Ry and R} the corresponding numbers of the activated transporters.

The following two theorems establish the worst case performance of the heuristics, with respect

to the variable cost.

12



Theorem 3 For any instance of problem P, algorithm GREEDY provides a solution that satisfies
the property
Z;]) Cmax
gpt Cmin
Thus, if the ratio of the maximum to the minimum entry of matrix [c;;] is small, it is guaranteed
that this heuristic performs well even in the worst case, with respect to the variable portion of the
cost. In manufacturing systems, the transporter moves are bounded in the area of the shop floor.
Thus, the move time costs are relatively close and the worst-case bound of Theorem 3 is anticipated

to be particularly tight.

Theorem 4 For any instance of problem P, algorithm ABP provides a solution that satisfies the

property
Z_f,’ < Cmax

Z; ~ Cmin

Since Zg,, > Z;, it follows directly from Theorem 4 that:

Corollary 1 For any instance of problem P, algorithm ABP provides a solution that satisfies the

property
Z},’ < Crmaz

gpt Cmin
Let us now consider the fixed cost, which is proportional to the number of activated transporters

fw, =w,VkeV.

Theorem 5 For any instance of problem P, algorithms GREEDY and ABP provide solutions

that satisfy the property
By 1 T
Ropt 2 Cmin

where Ry, represents the number of transporters in the appropriate heuristic (h = g for GREEDY,
h =b for ABP) and R,p; the number of transporters in the optimal solution.

Thus, although both heuristics are guaranteed to provide solutions for which the fixed part of
the cost in (2) is bounded with respect to the optimum, they may perform arbitrarily bad, if the
ratio of the time period T over the minimum entry of matrix [c;;] becomes large. However, the
results of the next section indicate that on the average the numbers of transporters provided by

the heuristics are very close to the optimal.
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6 Numerical results

Algorithms GREEDY and ABP were implemented in the C programming language on a Sun
Sparc workstation. In order to evaluate their effectiveness, a large number of sample problems of
various sizes were solved. An algorithmic approach was employed to generate the random example
sets, solve the resulting problems P, and compare the solutions to the lower bound Z;.

Bach example set was generated by considering a square of side length b;, with 1 < i < e,

e € N*, as shown in Figure 3. The number of manufacturing resources |M| was selected at

Y\

o
| J

Figure 3: Example generation scheme

random, and the £ —y coordinates of the input and output stations of each resource were randomly
generated within this square. Given these coordinates, the from-to distance matrix was evaluated.
As a measure of the inter-resource distance we used the Manhattan distance, defined as: p,3 =
|zr — 25| + |yr — ys|,Vr, s € M The resulting distances were transformed to traveling times for a
given transporter speed. The pick-up and drop-off times were assumed negligible. Based on the
above assumptions, all the time costs for the formulation of problem P were computed.

For each pair of resources r,s € M the material flow intensity f,; was randomly generated.
However, the overall loaded traveling time, ., c s 3" ;car frs, Was restricted between a lower and an

upper bound, to generate examples with almost invariant loaded traveling time. Finally, a constant

14



time horizon T, and constant fixed transporter costs were assumed.

For the square shop in Figure 3 with side b1, a set of 100 different examples was generated. For
each example, GREEDY was applied 20 times starting from different loaded moves and the best
solution obtained was used in the comparisons. ABP is deterministic and, therefore, was applied
to each example once. Subsequently, the dimension of the square shop was decreased by a factor
o (ie., b= "ﬂT‘l, 2 <i < e), the average of the entries of the from-to flow matrix was increased by
o, and the example generation and solution procedure was repeated e times.

To gain some insight in the relative average performance of the two heuristics, the average

results for e = 10, T' = 500, and ¢ = 1.5 are shown in Table 1. The table includes the average

Table 1: Results of heuristics for 10 example sets

(average values over 100 examples per set)

Variable cost Transporters % Unutilized capacity
Ezample set No. of moves Zg Zg’ Rg R, lEg lcy
1 107.45 4035.38 3837.45 9.28 9.85 21.15 24.32
2 141.68 4012.27 3803.58 9.17 9.36 18.24 21.37
3 205.31 4001.55 3785.13 8.92 9.18 14.32 17.56
4 258.42 3967.48 3746.76 8.34 9.03 11.56 14.28
5 315.57 3943.94 3728.31 825 8.78 9.12 12.03
6 412.28 3917.32 3705.67 8.16 8.69 7.23 10.64
7 547.32 3985.47 3721.83 8.04 8.55 6.58 9.47
8 693.67 4005.12 3736.55 7.95 8.60 6.04 8.71
9 901.55 4020.24 3785.18 8.02 849 5.79 8.25
10 1157.42 4043.12 377226 7.98 832 5.30 7.98

number of moves for each example set, the average value of the variable cost obtained from each
heuristic over the 100 examples of the set (Z;’ for GREEDY and Z} for ABP), the average number
of transporters obtained by the heuristics (R, for GREEDY and R, for ABP), and the average
percentage of time the transporters are idle within the time period T":

- Ykev Ty — Zgp
legp = = x 100%
ot 2kev Tyk

Idle time indicates poor allocation of fixed cost. The subscripts g and b refer to the solutions

derived by GREEDY and ABP, respectively.
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Interesting trends are depicted in Table 1. The average variable cost as derived by the heuris-
tics remains nearly constant; thus, the unloaded traveling time remains nearly constant as well.
Furthermore, the average number of transporters decreases, as the number of moves increases and
the inter-resource distances decrease. This is expected, since the packing of smaller moves to trans-
porters is easier and more efficient for both heuristics; in addition, the return moves that close
the loop for each transporter become smaller. Comparing the results for the two heuristics, it is
clear that ABP outperforms GREEDY with respect to the variable cost. The opposite occurs in
terms of activated transporters. From the last two columns of Table 1, it is evident that as the
average length of transporter moves decreases, the idle time also decreases. This is due to better
assignment of complete moves to transporters. Finally, the transporters obtained by GREEDY
are better utilized than those derived by ABP.

In Table 2 the performance of the heuristics with respect to the deviation from the assignment
lower bounds is summarized. Column 2 lists the average deviation of the solution derived by
GREEDY from the lower bound Z; of the variable cost. Column 3 lists the average deviation of
the number of transporters derived by GREEDY from the lower bound R}. Columns 4 and 5 list

the same measures for the ABP heuristic.

Table 2: Performance of the heuristics: solutions vs. lower bounds

Ezample Heuristic GREEDY Heuristic ABP
set number 2% Z* x 100 % @ 100 (%) gbz*— x 100 % R”R. x 100 %
1 14.32 36.42 9.85 41.27
2 14.03 31.72 9.13 35.37
3 13.95 25.74 8.74 30.18
4 13.48 20.86 8.12 24.32
5 11.97 17.38 7.31 20.71
6 11.08 14.63 6.25 19.38
7 10.76 9.54 6.14 14.20
8 10.12 6.97 5.67 12.15
9 9.75 3.76 5.28 8.56
10 9.26 1.98 4.56 3.74

From Table 2 it is clear that as the problem size increases, while the total loaded traveling time
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remains approximately invariant, the heuristics perform better and the solution values approach
those of the lower bounds. Furthermore, it is obvious that ABP is consistently closer to the
assignment lower bound (variable cost), while the GREEDY solutions are closer to the lower
bound of the number of transporters.

It is emphasized that in manufacturing applications a large number of moves is typical, with
small times associated to each one with respect to the time period T'. For example, the shop of
a radar assembly manufacturer in Baltimore comprises ~100 workstations, and produces about
5000 different parts with an average demand of 40 units per year. Since the average number of
operations in the parts’ routings is 3, the total number of inter-resource moves per year is about
600,000. Consequently, for a 300 days per year working schedule with a single shift per day, about
2000 moves per day should be performed by the transporters. Thus, both heuristic algorithms
are expected to provide satisfactory results when applied to evaluate the number of necessary

transporters and the optimal assignment of unloaded moves between manufacturing resources.

7 Conclusions

In this paper we have studied the problem of designing a material handling system that employs the
minimum number of transporters to transfer material within a manufacturing facility with minimal
handling effort. Fixed acquisition and variable operational costs were explicitly considered. An
integer program was formulated to capture the trade-off between these two costs. To solve the
resulting NP-hard optimization problem, we developed two heuristic solution approaches: the first
allots in a greedy fashion moves to transporters, while the second starts from the optimal solution of
the assignment problem and, after grouping moves to routes, allots them to transporters through a
two-stage bin-packing procedure. The heuristics were analyzed in terms of computational time and
worst-case performance, and extensive computational tests were executed to evaluate their average
performance.

The computational results indicate that both heuristics are efficient, and adequate to support the
material handling system design process. Their performance drastically improves when the size of
the problems, in terms of the total number of inter-resource moves, increases. GREEDY solutions
diverge from the lower bound of the number of required transporters (provided by the assignment
problem A) less than 2% in large-size problem instances; thus, if the fixed cost is the primary

consideration, GREEDY seems to be more appropriate. On the other hand, ABP solutions diverge
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from the variable cost lower bound less than 5% for large-size problem instances; consequently, this
heuristic is more appropriate when material handling cost is the main consideration.

The mathematical formulation accurately models the design-level control problem if the design
horizon T is a relatively small period (e.g. a shift). In such cases the same pattern of material flow is
repeated in each period and the unloaded travel of transporters during shop operation is expected to
be relatively close to that resulting from the solution pf P. However, if the manufacturing system
is not expected to demonstrate consistent periodicity, the model may not capture the effects of
on-line control. In this case, the assumption of availability of inventory to be transfered at each
resource may not be satisfied. The may, in turn, lead to an underestimation of the unloaded travel
and the number of transporters required. To overcome this drawback, a time window [5] may be
introduced to reflect the time within which each loaded move is to be performed. To incorporate
time windows in the formulation, minor modifications in the graph of moves are necessary to reflect
feasible move sequences [5].

In addition to offering a good initial estimate of the number of transporters required for a man-
ufacturing system, the algorithms presented here may be integrated with facility design methods.
Given a machine layout, the material handling flow paths can be optimally designed to provide the
actual inter-resource distances; subsequently, the number of transporters and the unloaded moves
can be evaluated by solving P. This will provide a realistic cost for the shop layout under consid-
eration. The procedure can be repeated by generating new layouts, until a better global solution,
in terms of total material handling investment and operational costs, is found. Search techniques
such as simulated annealing or genetic algorithms could be employed in such an integrated facility

design methodology.
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Appendix A

This Appendix provides the proofs of the theorems of Section 5.
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Proof of Theorem 1

At each iteration of GREEDY exactly one loaded move is assigned to a transporter. However,
when the capacity of a transporter is exceeded the last move of the current iteration must be
reexamined in a subsequent iteration, since it cannot be assigned to the current transporter. This
will occur at most once for each transporter, and if I is the total number of iterations, we obtain:
I <n+ Yhey Yk From inequality (10), Yxey ¥k < [n/2]. Thus, I <n+[2] <341

Identifying the minimum row element of the matrix [c;;] in Step 5 of GREEDY, requires at
most n comparisons at each iteration; actually, we need n — 1 at the first iteration, n — 2 at the
second one, etc. As a result, the maximum total number of operations, OP, of this heuristic is
bounded as follows:

3n 3n? +2n

OP <n-I<n-(F+1)="— (16)

Consequently, the computational complexity of GREEDY is O(n?).

Proof of Theorem 2

The primal-dual algorithm for the assignment problem in Step 1 of ABP requires O(n?®) oper-
ations, since thé n loaded moves in L must be matched [15]. The identification of routes and route
sets in Steps 4 through 9 requires inspection of each loaded move in the sequences given by the
optimal solution of A. Thus, exactly n operations are required before the criterion of Step 9 is no
longer satisfied.

Since the maximum number of routes is n/2, Step 10 would require at most (n/2) - log(n/2)
operations to sort them in decreasing order of their lengths [4] and n/2 operations to pack these
routes into transporters of size T' [11]. Finally, the enumeration of the best connecting points in
Step 14 requires at most O(n2) operations, as shown below. Cosider K transporters to be merged,
and let ny,...,nx be the number of moves assigned to each of them. Then in the worst case, Step
14 would examine each possible pair. This would require Z{il 25{:1,#1 n;n; operations. Since
Zfil n; = n, the maximum number of operations at this Step is n2.

Combining the results of above arguments, the total number of operations, OP, is bounded by:

OP§n3+n+g-log(g)+g+n2 (17)

Consequently, the computational complexity of ABP is O(n3).
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Proof of Theorem 3

The GREEDY algorithm selects the minimum element of the cost matrix in the first iteration.
However, in the remaining n — 1 iterations the algorithm may select elements different than those
of the optimal solution. Since the maximum deviation of the cost elements is ¢;00 — Cmin, it follows
that:

Z;’ - ngt < (n=1) - (Cmaz — tmin) <N (Cmaz — Cmin) (18)
The variable cost of the optimal solution to problem P is bounded from below by ncp,: Thus,

from inequality (18), we conclude that:

v v v

Z g — “opt n (Cmam — Cmin ) A P Cmazx
~ = . <

opt NCmin opt Cmin

Lemma 1 shows that the bound provided by the first of inequalities (18) is tight, i.e. there exist
problem instances of P, for which (18) holds at equality.

Lemma 1 There ezists an n X n matriz [c;j] of cost coefficients, a time horizon T, and a sequence

Q = {p1,p2, ...} of loaded moves selected in Step 2 of GREEDY for which:
Z;) - gpt = (n - 1) : (cmaz - Cmm)

Proof  Consider an instance of problem P with cnez = 2¢min and T = 5cmin. Let [c;5] be the

5 X 5 matrix with entries ¢pq4, and ¢, only, as shown below:

X Cmin Cmin Cmin Cmin
Cmin X Cmar Cmaz Cmazx
[cij ] = | Cnax Cmin O  Cmin  Cmin

Cmin Cmin Cmin o0 Cmazx

| Cmin  Cmin  Cmin Cmes 0 |
We claim that for this problem instance (18) holds at equality.

Let @ = {1,4} be a sequence that could be followed by GREEDY , which could provide the
following matchings (assigned to the two transporters, /; and l3), depending on the tie-breaking

rules:
L ={(1,2),(2,3),(3,1)} subtour length = cpin + 2¢maz =T

la = {(4,5),(5,4)} subtour length = 2¢ypey < T
The resulting variable cost is Z;’ = Crin + 4Cmaz- The optimal solution to this instance of P gives
the following assignment matchings for a single transporter: {; = {(1,5), (5,3), (3,4), (4,2),(2,1)},

and the variable cost is Z5,, = 5cmin. Thus, Zy — Z5,, = 4(Cmaz — Cmin)-
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Proof of Theorem 4

Consider the subtours derived by solving the assignment problem corresponding to P. If each
subtour comprises two moves of length ¢y, and since the maximum number of subtours is n/2,
the total variable cost is Z; = n - ¢nin. When ABP attempts to connect route sets, the total cost
is augmented at most by 2 - (¢jhaxr — Cmin)- This connection removes two complete moves from the
solution and introduces two new complete moves. In the worst case, [n/2] — 1 connections will be

performed, and, consequently
n
Zlf - Zc’zk < (l—'z’] - 1) : (2Cmaz - 2cmin) <n- (cma:v - Cmin) (19)

From (19) and the assignment cost, we conclude that:

Zé’ - ZZ < (cmam - cmin) o _?,’ < Cmaz

Z; - Cmin Z; ~ Cmin
Proof of Theorem 5

The optimal number of transporters is bounded from below by the ratio of the variable cost

over the design horizon T, i.e., Rop; > [Z—gv?—t] > Z—::;J!i From inequality (10) we know that Ry < n/2.

Z'U
Also Z3,; > ncmin, and consequently Ry < f:f:_n Thus,
Ry, 1 T
R01th 2 Cmin
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