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The analysis of the high throughput sequencing (HTS) data includes a number of

involved computational steps, ranging from the assembly of transcriptome, mapping or

alignment of the reads to existing or assembled sequences, estimating the abundance of

sequenced molecules, performing differential or comparative analysis between samples,

and even inferring dynamics of interest from snapshot data. Many methods have been

developed for these different tasks that provide various trade-offs in terms of accuracy and

speed, because accuracy and robustness typically come at the expense of sacrificing speed

and vice versa. In this work, I focus on the problems of alignment and quantification of

RNA-seq data, and review different aspects of the available methods for these problems.

I explore finding a reasonable balance between these competing goals, and introduce

methods that provide accurate results without sacrificing speed.

Aligning sequencing reads to known reference sequences is a challenging

computational step in the RNA-seq pipeline mainly because of the large size of sample

data and reference sequences, and highly-repetitive sequence. Recently, the concept



of lightweight alignment is introduced to accelerate the mapping step of abundance

estimation. I collaborated with my colleagues to explore some of the shortcomings of

the lightweight alignment methods, and to address those with a new approach called the

selective-alignment. Moreover, we introduce an aligner, PuffAligner, which benefits from

both the indexing approach of Pufferfish and also selective-alignment to produce accurate

alignments in a short amount of time compared to other popular aligners.

To improve the speed of RNA-seq quantification given a collection of alignments,

some tools group fragments (reads) into equivalence classes which are sets of fragments

that are compatible with the same subset of reference sequences. Summarizing the

fragments into equivalence classes factorizes the likelihood function being optimized and

increases the speed of the typical optimization algorithms deployed. I explore how this

factorization affects the accuracy of abundance estimates, and propose a new factorization

approach which demonstrates higher fidelity to the non-approximate model.

Finally, estimating the posterior distribution of the transcript expressions is a crucial

step in finding robust and reliable estimates of transcript abundance in the presence of high

levels of multi-mapping. To assess the accuracy of their point estimates, quantification

tools generate inferential replicates using techniques such as Bootstrap sampling and

Gibbs sampling. The utility of inferential replicates has been portrayed in different

downstream RNA-seq applications, i.e., performing differential expression analysis. I

explore how sampling from both observed and unobserved data points (reads) improves

the accuracy of Bootstrap sampling. I demonstrate the utility of this approach in

estimating allelic expression with RNA-seq reads, where the absence of unique mapping

reads to reference transcripts is a major obstacle for calculating robust estimates.
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Chapter 1: Introduction

Out of the four major biological macromolecules (proteins, carbohydrates, lipids

and nucleic acids), nucleic acids carry the most significant information about the identity

of each organism. Even within each organism, the different content of nucleic acids in

different organs and cells, defines their main functions and characteristics, also known as

phenotypes. There are four types of nucleic acids (Adenine, Cytosine, Thymine(Uracil),

Guanine) which are the main components of the DeoxyriboNucleic Acids (DNA) and

RiboNucleic Acid (RNA) in living organisms (Archaea, Bacteria, and Eukarya). Each

DNA or RNA molecule is formed by a sequence of the nucleic acids. While the DNA

content of different organisms are distinct, the DNA molecules across all cells of each

individual are almost identical. Even during the cell division, all the DNA molecules are

duplicated and preserved in each new cell’s nucleus in the form of chromosomes. On

the other hand, there exists different types of RNA molecules in different cells of each

organism, leading to their different functions. RNA molecules are created from specific

regions of chromosomes, called genes, in a process called transcription. A gene is called

expressed in a specific cell if it is transcribed to RNA molecules. Different genes being

expressed in different cell types leads to their vastly various functions. The set of all the

genes, and the set of all the RNA molecules present in a cell are called the genome and
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the transcriptome respectively.

The transcription of a gene is started by a specific protein called the RNA

polymerase. This protein copies the sequence of nucleic acids from a gene into a new

RNA-sequence, called the pre-mRNA. There are two main types of subsequences present

in each pre-mRNA, introns (intragenic regions) and exons (expressed regions).The pre-

mRNA molecules turn into the mRNA molecules after the intronic regions are spliced out.

Alternative splicing of the set of introns and exons generates various mRNA molecules

from a single gene. The set of all mRNA molecules generated from a single gene are

called the isoforms or transcripts of the gene. Figure 1.1 shows how two different isoforms

are generated from a single gene through alternative splicing.

Many technologies have been proposed for gathering information about the

transcriptomic contents of an organism. RNA sequencing (RNA-seq) is a powerful

sequencing technique, and has become very popular since its introduction [1]. In

the RNA-seq protocols, RNA sequences are first fragmented into smaller pieces, then

these fragments are amplified through the PCR process, and finally the set of amplified

fragments are sequenced and read sequences are generated. If both ends (5’ and 3’) of the

fragments are sequenced paired end reads will be generated, while single end reads are

sequenced only from a single end of each fragment. Transcriptome assembly, detecting

novel isoforms, and measuring the expression level of any isoform in a sample, are some

of the main important applications of RNA-seq data. Mapping or alignment of RNA-

seq reads to the set of known references is one of the early computational steps in many

of these applications. Throughout this section, some famous computational approaches

proposed for this critical step are introduced.
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The number of reads generated from each isoform of a gene depends on the gene’s

level of expression in the cell. Each gene consists of encoding segments called exons.

Each transcript or isoform of a gene consists of a set of particular exons. To illustrate

the alternative splicing, consider the example in fig. 1.1 that shows two different isoforms

of genea which is a gene with three exons. Different splicing events can lead to new

combinations of exons in each isoform, e.g., t1 and t2 are two isoforms generated from

genea, each containing specific subset of exons of genea. While in rare cases, i.e., back-

splicing, the order of the exons can be changed in the isoforms, generally we expect to

see the same ordering of the exons in the isoforms as in the genes. The number of reads

mapping to specific exons and exon junctions is proportional to the expression level of

the isoforms containing those exons. As more copies of an isoform exist in the sample,

more reads map to it. According to sequence similarities in different genes or exons

shared between different isoforms of a gene, a read may map to multiple isoforms in the

transcriptome, this ambiguity makes abundance estimation challenging. An example of

reads generated from different isoforms of a gene in RNA-seq experiments is displayed

in fig. 1.1. In this example, green and blue reads suggest expressions of both t1 and t2,

while red reads are only compatible with t1.

Reads spanning two different exons can be evidence for the splicing events, e.g.,

the green-blue read in fig. 1.1 spans the red and green exons which suggest the existence

of an isoform containing these two exons next to each other, i.e., t2. In this example, t1

and t2 are the known isoforms (also called transcripts) of the gene genea. In an RNA-seq

experiment reads might be generated that do not map to any known isoforms of genes,

e.g., the gray reads mapping to the intronic gray region of genea in fig. 1.1 or green-gray

3
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Figure 1.1: An example of splicing events in the gene genea, resulting in two transcripts t1 and
t2. According to sequence similarities the RNA-seq reads might be mapped to single
or multiple isoforms.

read that maps to the exon-intron junction. Presence of such reads could be evidence for

discovering new exons or isoforms of genea, or preserved intronic regions in the isoforms

(intron retention). Finding evidence for novel isoforms or intron retention events is an

important advantage of RNA-seq assay over alternative sequencing techniques.

In the following sections of this chapter I review the existing tools which are widely

used for alignment (computing the edit distance of the reads to the reference sequences)

and quantification (estimating the expression ratio of the isoforms) of RNA-seq samples.

Both of these steps greatly affect the accuracy of the downstream analysis in RNA-seq

pipelines [2]. Qunatification of RNA-seq data is a very challenging task due to a high

degree of multimapping [3]. Accurate RNA-seq abundance estimations are essential for

detecting differentially expressed genes and transcripts. It has been shown that disease-

associated transcriptomic alterations can be studied with precise abundance estimation at

the transcript level [4].

In chapter 2, we present a fast mapping technique called selective-alignment [5].
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This technique is built alongside quasi-mapping to achieve a higher sensitivity that results

in more accurate abundance estimates. Chapter 2 also introduces a new tool for computing

alignment of DNA-seq and RNA-seq reads to known reference sequences. In chapter

3, an improved factorization of the quantification likelihood function is presented that

maintains a high fidelity to the underlying data and will result in higher confidence for

more fine grained analysis of transcripts.

1.1 Mapping RNA-seq reads to a known transcriptome

Alignment is a crucial and expensive computational step in an RNA-seq analysis

pipeline. The main goal of this step is to find, for each read, the region on the reference

genome (or transcriptome) from which it is originally fragmented. The length of each

short RNA-seq read is usually between 100 and 200 bases, while the length of the latest

human genome is about three billion bases. The goal, for each read, is to find a substring

in the reference sequences that best matches the read. Often it is not possible to find an

exact match for a read because of the variations present in the samples with respect to the

reference sequences. The variations are divided into two main types, variations introduced

by technical errors or the biological variations existing in each new sample. Therefore,

the alignment procedure most of the time results in an inexact match for each read rather

than a region which exactly matches the read. In order to find the most compatible regions

in the reference sequences to each read, we should define the edit distance between two

sequences. The edit distance is proportional to the number of edits required to convert

one sequence to the other one. Different types of edits, such as substitutions and indels
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(insertions/deletions), are considered.The sequence of edits can be shown in the form

of CIGAR strings. CIGAR strings are a sequence of operators to be applied in the first

sequence to be converted into the other one. The penalties assigned to each type of edit

can be different and are usually configurable in most aligners. The sum of all the penalties

is considered to be the edit distance between two sequences. Therefore, we can define the

alignment problem as finding the region on the reference with the minimum edit distance

to each read. This can be achieved by classical algorithms, such as Smith-Waterman [6],

in O(n ∗ m) time and O(n ∗ m) space, where n and m are the length of the reference

sequence and the read sequence respectively. This task becomes super expensive when the

length of reference sequences and the number of read sequences are very large which is

common in RNA-seq experiments. Therefore, a number of methods have been developed

to accelerate this procedure while maintaining the accuracy of Smith-Waterman. It’s

important to note that the best alignment (with the highest alignment score) for a read

on the reference is not necessarily unique. So, it is important for an aligner to find all

such alignments that are likely to be where the read originates from. In the following

sections, some of the common approaches will be discussed briefly.

1.1.1 The main approaches for computing read alignments

One of the most common approaches for accelerating the alignment problem is

“seed and extend”. The seeds are supposed to reduce the search space for the alignment

problem into smaller regions that are most likely to include a reasonable alignment for

the queried read rather than comparing each read sequence to all the reference sequences.
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Seeds are often shorter than the reads and represent an exact match from a substring in

the read to some region in reference. The seeds are later extended into full alignments

for the read by computing the full alignment of the reads to the regions identified by each

read.

Finding the seeds requires pre-processing the reference sequences called the

indexing step. Different indexing strategies have various space and time requirements

that are used in different aligners. There are two main types of indices, full-text indices

and hash-based indices. The full-text indices are often smaller in size, and a sequence of

any different size can be queried in them, while the hash-based indices take more space

and only accept queries with a fixed size. The main benefit of the hash-based indices

are their speed compared to the full text indices. Full text indices are used in popular

RNA-seq aligners, such as Bowtie [7], Bowtie2 [8], BWA [9], and STAR [10]. It is worth

noting that index of STAR employs a hybrid approach of both full text and hash-based

indices which results in being faster at the expense of larger memory requirements. Other

aligners, such as deBGA [11] and Minimap2 [12], use hash-based indices to find the seeds

for the alignment.

FM-index and Suffix Array (SA) are two closely related full text indices. The suffix

Array of a string S with the length n is defined by the sorted order of all suffixes of string

S concatenated with a terminal character that is lexicographically smaller than all other

characters in the alphabet. Adding the terminal character ($) ensures that no suffix is

the prefix of any other suffix in S. In practice, the suffix array stores only the indices

corresponding to each suffix in an array. If pattern p exist in the string S, then, it will be

a prefix of some suffix in S. Lexicographically sorting the suffixes in SA, provides this
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property that all suffixes with the same pattern p as their prefix, will appear in consecutive

rows in the SA. Therefore, to query a pattern in S, it suffices to find an interval [a,b)

in the SA which are all the suffixes that include p as their prefix. Each pattern can be

searched in the SA by a binary search with the order O(log(|S|)x|p|). The search process

can be enhanced by keeping some extra information like the longest common prefix (LCP)

lengths for some pair of suffixes, as a result the query time will be O(log|S|+ |p|) instead.

STAR is one of the most popular aligners which use the Suffix Array to index the reference

sequences [10]. STAR uses some hash tables for accelerating the search process as well

which comes at the cost of increasing the index size.

FM-Index is another full text index which consists of some auxiliary data structures

alongside the Burrows Wheeler Transform (BWT) of the reference string S. BWT(S) is

closely related to the Suffix Array. To enable efficient search for every pattern using BWT,

the LF mapping property in the BWT is utilized with the help of storing the occurrence

information of every character in the BWT. Using the succinct data structures, this can

be stored in O(|S|) space. One other useful characteristic of the BWT is that it tends to

put repetitions of each character next two each other, this doesn’t mean that all repetitions

are put next to each other, but it is common to find longer substrings of A or any other

character in the BWT of a sequence compared to the original sequence. This property of

the BWT makes it more compressible compared to the original sequence which results

in smaller index size. Bowtie, Bowtie2, and BWA are popular aligners that index the

reference sequences with a FM-Index.

The other main type of indices used for finding the alignment of a query in a large

set of reference sequences are hash-based indices. Hash-based indices use substrings of

8
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CT TT TG GCACC

CCC
GCC

CGC

CCG

CCT CTT TTG TGC AC CC

CG

CTTG GCACC

CCC
GCC

CGC

CCG

CCT TGC

ACC
CCC
CCT

CTT
TTG
TGC

GCC
CCG
CGC

3-mers

de Bruijn Graph (edge-centric) for S: compacted de Bruijn Graph for S:

Figure 1.2: The edge-centric de Bruijn graph and the compacted De Bruijn graph for the sequence
S. There are 9 3-mers in this sequence which correspond to the edges in the de Bruijn
graph. 2-mers form the nodes of the de Bruijn graph. 3 nodes (CT, TT and TG)
are combined together in the compacted De Bruijn graph since they are on a non-
branching path of the de Bruijn graph.

a fixed size from the reference sequence to search each new query. The substrings of

length k from a string are called k-mers of the string. K-mers constitute the keys in the

hash-based indices. Hash-based indices store the location where each k-mer occurs in the

reference sequences. During the query time, we are able to extract all the k-mers from

each read and query those in the set of keys of the hash-based index. The index will then

retrieve all the positions each k-mer occurs in the reference that will later play the role of

the seeds for the seed and extend procedure. It is important to note that queries of length

smaller than k cannot be made into these hash-based indices, so one drawback of these

types of indices is that in order to find a seed for the query in the reference, there needs

to be at least one substring of length k in the read which matches the reference sequences

with an edit distance of zero. Therefore, the length of k should be carefully selected based

on the error rate of the sequencing technology, so that with high probability at least one

match from each read is found on the reference, if the read is actually originating from a

position on the reference sequences.

Another approach for indexing all the k-mers of a set reference sequence is to build
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the de Bruijn graph. Each k-mer forms an edge in the de Bruijn graph between the prefix

and suffix k-1 mers that it consists of. Figure 1.2 shows a de Bruijn graph built from the

sequence S = ACCCTTGCCCGC and the k equal to 3. One main property in the de

Bruijn graph is that every k-mer appears exactly once in the graph. This property helps

to reduce the redundancy of repeats that usually exist in the DNA and RNA sequences.

The compacted De Bruijn graph is built after compacting the non-branching paths from

the original de Bruijn graph, as shown in the fig. 1.2. The length of the nodes in the

compacted De Bruijn graph might be larger than k-1, but still each k-mer appears at most

once in the graph (either as an edge or as a substring in one node). If the de Bruijn graph

is built from multiple sequences (e.g., the set of human transcripts, or a collection of

microbial genomes), one is interested to know in which reference sequences each k-mer

appears. A k-mer might appear in multiple reference sequences due to shared exons in

transcripts or sequence similarities in different strains of some species.

A colored de Bruijn graph stores this data for each k-mer (edge) of the graph as the

color information. For example, in the case of the transcriptome, each color represents the

set of transcripts in which the k-mer corresponding to that edge exists. K-mers appearing

in the same set of transcripts (e.g., due to shared exons) will have the same colors. A

unitig in the compacted De Bruijn graph is a non-branching path in the graph, and if the

edges are colored, not all the k-mers in a unitig might have the same color. If all the

k-mers that are part of a non-branching path also have the same color set assigned, those

k-mers can be combined together and form a unitig in the colored compacted de Bruijn

graph.

Pufferfish [13] is a space and time efficient index built on top of the colored
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compacted de Bruijn graph. So, it can be used to perform efficient k-mer queries

from each read sequence to large transcriptomic or genomic references. We used

Pufferfish index to develop PuffAligner. PuffAligner queries the k-mers from the read

into the Pufferfish index, which contain all the reference sequences, to find the seeds for

alignment.

1.1.2 Alignment Free Approaches for Mappings reads

Exploiting the methods of abundance estimation for RNA-seq reads revealed the

fact that although alignment is very useful for finding the candidate transcripts to

which reads map, the full alignment information (i.e., exact details of all the gaps

and mismatches) are unnecessary for performing quantification. In fact the position,

orientation and length of the matching fragment on each transcript is adequate for

achieving accurate estimates. Therefore, lightweight methods were developed to avoid

performing full alignments upstream of the quantification. These methods typically build

an index over the reference sequence (similar to the FM index in alignment tools). Then,

in the quantification step, the reads are mapped to the reference on the fly using the built-in

index. Therefore, the peak memory footprint of such methods is bounded by the reference

size and complexity and scales well with respect to the number of reads increases. Note

that for performing quantification over multiple samples to the same reference, the index

needs to be built only once.

The first lightweight algorithm for mapping reads to reference transcripts was

introduced in Sailfish [14]. Sailfish is an alignment-free quantification tool that builds

11



an index over all subsequences of size k from the reference, called k-mers. The Sailfish

index consists of a perfect hash function mapping each k-mer in the reference to a unique

integer, an array indicating the counts of each k-mer, an index mapping each k-mer to the

set of transcripts in which it appears, and another index mapping each transcript to the

multiset of k-mers it contains. In the quantification step, Sailfish explores all the k-mers

the read contains and keeps the count for the ones appearing in the reference. So instead

of mapping the whole reads, Sailfish only maps the k-mers, and uses their count for each

transcript as evidence for the relative expression of the transcripts. Although approach of

Sailfish is 30 times faster than fastest quantification tools that perform alignment upstream

of quantification, it suffers from increased ambiguity of a large rate of multi-mapping k-

mers, which sometimes reduces the accuracy of abundance estimation. The smaller k size

causes a higher multi-mapping rate, while the larger size of the k results in less robustness

to sequencing errors because each k-mer is mapped with no error using the perfect hash

function.

The idea of mapping k-mers instead of the whole reads to reference transcriptome

introduces a huge improvement in the speed of quantification tools. However, it is sub-

optimal to only consider occurrence of subsequences of size k as evidence of expression

while the observed data is of larger length. Hence, the developers of Sailfish introduced

a new idea for mapping the whole reads using the perfect hash function of k-mers by

benefiting from the suffix array data structure. The new mapping approach is called

Quasi-mapping [15] and is utilized in the newer version of Sailfish software and also

in the new quantification tool called Salmon [16].

The suffix array of a sequence is a sorted array of all of the suffixes of the sequence.
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Therefore, all suffixes starting with the same prefix are located in adjacent positions of the

suffix array. Note that only the position of the occurrence of suffixes in T are stored in the

suffix array. The number of elements of the array is equal to the length of the sequence

and there is a one-to-one mapping from each row of the suffix array to a character in the

BWT of the sequence. We can also introduce suffix array intervals similar to intervals of

the Burrows-Wheeler transform. In the quasi-mapping index the suffix array SA(T ) is

built from reference transcriptome T . Therefore, each row in the SA starts at a unique

transcript of the transcriptome. There is a hash function I(ki) = [b, c) from each k-mer

ki in T to a suffix array interval from row b until row c; all rows that contain ki as a

prefix. For mapping each read, the k-mers, ki of the read (existing in the hash table) are

hashed to find SA intervals. It is often possible to extend a match between the query

and a subset of rows of the SA interval. The quasi-mapping algorithm attempts to find

the longest subsequence of the query starting with the ki as a prefix in the interval (also

called maximum mappable prefix of ki (MMPi) [10]) with a binary search, as the SA

is sorted lexicographically. [15] Quasi-mapping retrieves a set of transcripts for each k-

mer, the transcripts appearing in all sets are reported as mapping candidates for the read.

The reverse complement of the read is also mapped and the sequence (either forward or

reverse complement) with the higher number of matching k-mers determines the mapping

orientation. For paired end reads, the other end of the read is also quasi-mapped to the

reference. Then, transcripts appearing as candidates for both ends of the reads are reported

as the mapping possibilities for the paired end reads.

It has been demonstrated that quasi-mapping finds very high quality mappings

which result in highly-accurate abundance estimations. However, there are different
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aspects of the algorithm that can be modified in order to retrieve mappings with higher

specificity and sensitivity. In fact, this idea is presented in chapter 2 as selective-

alignment. Quasi-mapping extends the k-mer matches by the MMP length in order to

find legitimate matches for queries. However, if an extension is not possible and no other

k-mer match exists in the read, quasi-mapping may report all transcripts of the interval as

the mapping candidates for the read. These low quality matches introduce a number of

spurious mappings. A new filtering process was introduced in order to further filter the

spurious hits in this case. Other than suffering from spurious mappings quasi-mapping

could also miss true mappings of the read in rare cases where errors are positioned

adversarially on the read. An obvious case of losing the true mapping is if a read contains

no subsequence of size k from the true transcript. In another case, the true mapping of

the read might be lost from the SA interval by performing MMP extension, if a longer

exact match of the read to the interval masks the match to the row with true location. The

hits in the reverse complement of the read are only considered if there are less number of

hits in forward strand compared to reverse complement. Therefore, spurious mappings in

the forward strand might mask the true hit in the reverse complement. For some reads,

multiple positions might be found on the same transcript where the read maps. Quasi-

mapping greedily considers the left most one as the true mapping while that might not

be the best possible matching of the read to that transcript. To address these challenges

in quasi-mapping, selective-alignment is introduced as a new lightweight approach to

achieve both higher sensitivity and specificity than quasi-mapping.

A similar approach to quasi-mapping is employed in kallisto [17] called

pseudoalignment. Kallisto index consists of a colored de Bruijn graph from reference
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where nodes are k-mers and each node receives the colors of transcripts in which it

appears. The unitigs in the graph are formed from the linear stretches of the nodes (k-

mers) with identical sets of colors. Kallisto also maintains a hash table mapping each

k-mer to the unitig it is contained in and the position of the k-mer in the unitig. Using

this index, the reads’ k-mers are mapped to unitigs. Since all the k-mers appearing in the

same unitig receive the same set of colors, and therefore the same transcripts, the rest of

the k-mers in the unitig can be skipped for mapping, similar to the idea of skipping to the

next informative position (NIP) in quasi-mapping.

1.2 Abundance estimation of the transcriptome

In this section, we formalize the problem of abundance estimation with RNA-seq

reads according to the model laid out by RSEM [18]. There are M transcript types

in transcriptome T , t1, t2, ..., tM . In a given sample there are ci copies of transcript

type ti, which are not observed directly. Existence of more copies of a transcript

indicates its higher expression in the sample compared to other transcripts, which is

generally proportional to the number of proteins generated from that transcript. Therefore,

quantification of transcriptome is used as an indicator for the expression level of proteins

as well.

1.2.1 The generative model of a sequencing experiment

The generative model of RNA-seq experiments states that the number of fragments

sequenced from ith transcript type is proportional to the total number of sequenceable
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nucleotides belonging to transcripts of type ti. If the length of the ith transcript is given

by li, assuming all the reads have the size lr, we can define effective length, l̃i = li− lr+1

which is all possible start positions on transcript ti for sequencing a read of size lr. The

portion of sequenceable nucleotides of transcript type ti is ηi = cili∑
j cj lj

and αi ∝ ηi, where

αi is the number of fragments drawn from transcripts of type ti.

If F with |F| = N , is the set of sequenced fragments, assuming independence for

drawing each fragment, the likelihood of the underlying transcript abundances, θ, can be

written as:

L (θ;F) =
∏
fj∈F

M∑
j=1

Pr (ti | θ) Pr (fj | ti) . (1.1)

The conditional probability of drawing a particular fragment fj , given transcript

ti, Pr (fj|ti), is particularly critical for reaching accurate estimates and is derived from

mapping information. This term encodes, given parameters of the model and experiment,

how likely it is to observe a specific fragment fj arise from transcript ti. Many terms can

be included in such a conditional probability, some common terms include:

Pr (dj | fj, ti) =
PrD (dj)∑l̃i
k=1 PrD (k)

, (1.2)

the probability of observing a mapping of implied length di for fi given that it

derives from tj , where PrD (k) is the probability of observing a fragment of length k

under the empirical fragment length distribution D;
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Pr (pj | di, fj, ti) =
1

li − dj + 1
, (1.3)

the probability of a observing a mapping starting at position pi for fragment fi given

that it has implied length di and is derived from tj;

Pr (oi | fi, tj) =



{
0.5 if the library is unstranded
1.0− ϵ if compatible orientation

ϵ if incompatible orientation

if the library is strand-specific

,

(1.4)

the probability of observing a mapping with a specific orientation oj (i.e., forward

or antisense) with respect to the underlying transcript for fj , given ti, ϵ (a user-defined

constant), and knowledge of the underlying protocol, and

Pr (ai | fi, oi, di, pi, tj) , (1.5)

the probability of observing the particular alignment (e.g., CIGAR string) ai for

fi given it is sampled from transcript tj , has orientation oi, implied length di and starts

at position pi—such a probability is calculated from a model of alignments, like those

presented in [16, 18, 19].

In fact, one can conceive of many such general models of “fragment-transcript

agreement” [16]. However, here we consider that Pr (fj | ti) is simply the product of the

conditional probabilities defined in Equations (1.2) to (1.5), appropriately normalized.
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1.2.2 Expectation-Maximization for optimizing the model parameters

Exact inference from the likelihood function is intractable for the large scale of

RNA-seq data. Local optimization methods, like expectation maximization (EM), are

often applied to fit the best parameters in the model. The parameters of the model

indicate the rate of expression for each transcript in the underlying samples. The EM

approach is employed by both alignment based tools such as RSEM [18], mmseq [20],

and IsoEM [21], and also non-alignment based tools, e.g., Sailfish [14], Salmon [16], and

kallisto [17].

Algorithm 1: Overview of the EM algorithm for optimizing the generative
model

Data: T = {ti}, F = {fj}, Pr (fj|ti) for all fragment transcript pairs,
ℓ̃i = ℓi − µ, where µ is the mean of the empirical fragment length distribution
and ℓi is the length of the transcript ti.
Result: θ, relative abundance of transcripts

1 Uniform initialization:
2 for ti ∈ T do
3 αi ← 0, θi ← 1

|T |

4 end
5 while not converged do
6 E-step:
7 for fj ∈ F do
8 sum←

∑
tk∈T θk × Pr (fj|tk)

9 for ti ∈ T do
10 αi ← αi +

θi×Pr (fj |ti)
sum

11 end
12 end
13 M-step:
14 sum←

∑
tk∈T

αk

l̃k

15 for ti ∈ T do
16 θi ← αi/l̃i

sum
, αi ← 0

17 end
18 end
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The overview of the EM algorithm for optimizing eq. (1.1) is displayed in algorithm

1. In the E-step, the expected number of fragments sequenced from each transcript type

in the sample is calculated. Using these expectations, alongside effective lengths the prior

probability of observing each transcript type is obtained in the M-step. This iterative

process is repeated until the convergence on θ values is reached.

If a transcript ti is not present in the set of transcripts to which fragment fj is

mapped, the value of Pr (fj|ti) is equal to zero. The EM updates can benefit from the

sparsity of Pr (fj|ti) matrix by only performing updates in the E-step for the set of

transcripts that fj maps to instead of the whole set of transcripts. Hence, if Ω(fj) is

the set of compatible transcripts with read fj , in algorithm 1, the line 8 shall be modified

to : sum =
∑

tk∈Ω(fj)
θk × Pr (fj|tk) and the loop iteration in line 9 to : ti ∈ Ω(fj).

1.2.3 Factorizations of the likelihood function

Each iteration of the EM algorithm updates the α values for each fragment

independently. Although each update cost has collapsed considerably by benefiting from

the sparsity of mapping matrix, the number of EM updates still scales with the number

of fragments (and alignments). Sequence similarities in reads are utilized for factorizing

the likelihood function, which results in bounding the number of updates as the number

of fragments grows.

If a set F ′ of fragments exactly map to the same set T ′ of transcripts with the same

conditional probabilities (meaning that for each pair fa, fb ∈ F ′, Ω(fa) = Ω(fb) = T ′

and the equation Pr (fa|tk) = Pr (fb|tk) holds for all tk ∈ T ′), then all fragments in
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F ′ are exactly equivalent, and they result in the same update rule in the EM iterations.

Hence, they can be grouped together to apply the update once for all such fragments. The

factorization introduced by IsoEM [22], maintains full fidelity to information regarding

fragment mappings to transcripts because all fragments in a group are identical.

A more popular approach for factorizing the likelihood is employed by mmseq [20]

and also later in alignment-free tools like Sailfish [14], Salmon [16] and kallisto [17].

Mmseq introduced a notion of fragment equivalence classes, which treats as equivalent

any fragments that map to the same set of transcripts. Unlike IsoEM, the equivalence

notion does not depend on the values of conditional probabilities. According to this

definition, every set of fragments like F q such that for all fa, fb ∈ F q, Ω(fa) =

Ω(fb) = Ω(F q), form an equivalence class with the label Ω(F q). Define N q = |F q|

to be the number of fragments in class F q. Then, the likelihood function based on these

equivalence classes, can be approximated as:

L (θ;F) ≈
∏
[q]∈C

 ∑
⟨i,ti⟩∈Ω([q])

Pr (ti | θ) · Pr (fq | [q] , ti)

Nq

, (1.6)

where C is the set of all equivalence classes, and Pr (fq | [q] , ti) is the probability

of generating a fragment fq given that it comes from equivalence class [q] and transcript

ti. The key to the efficiency of likelihood evaluation (or optimization) under this

factorization, is that the probability Pr (fq | [q] , ti) is assumed to be identical for each of

the N q fragments in each equivalence class [q]—hence, we do not subscript f in eq. (1.6).

This allows one to replace the product over all fragments fj in full model (eq. (1.1))

with a product over all equivalence classes in eq. (1.6). The approximation, of course,
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stems from the fact that, under the full model, a fragment fj may have a probability

Pr (fj | ti) that is arbitrarily different from Pr (fq | [q] , ti), where fq represents all the

fragments in equivalence class [q] which are assumed to be identical. Moreover, the most

common approximations, like those adopted in mmseq, Sailfish, and kallisto consider

this probability to be fixed and essentially independent of any fragment-level information

(e.g., it is set to one divided by the effective length of ti).

After applying any factorization to group a set of fragments together in equivalence

classes F q, the fragments in the EM iteration can be substituted with equivalence classes

(groups) and each update would increase the α values based on the number of fragments

in each equivalence class. The modified version of the E step in algorithm 1 is displayed

in algorithm 2.

Algorithm 2: Modified E step after employing factorization

1 E-step:
2 for F q ∈ C do
3 sum =

∑
tk∈Ω(Fq) θk × Pr (f |F q, tk)

4 for ti ∈ Ω(F q) do
5 αj+ = θk×Pr (f |Fq ,tk)

sum

6 end
7 end

1.2.4 Online EM for optimizing the likelihood function

The conditional probability values are stored in memory during the EM iterations

in order to avoid expensive I/O operations and re-computation in each EM round. If

no factorization is used, for each existing mapping pair fj and ti, a value is stored. This

makes the memory requirement scale with the number of mappings. eXpress [19] attempts
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to bound the memory requirement by benefiting from an online-EM algorithm rather than

a batch-EM. An online-EM consists of a single iteration over all fragments in the sample,

updating α values once for each fragment. Fragments are not stored in memory after

being observed, which makes memory require of eXpress independent of the number of

fragments in the sample. The large number of fragments in RNA-seq samples lets eXpress

often achieve high quality abundance estimates with a single run over the data. eXpress

requires the output of an alignment tool for mapping reads to transcripts to run the online

phase. Again, here the mapping information shall limit the number of updates performed

for each fragment.

eXpress applies a modified version of online updates to prevent the algorithm from

performing updates for each transcript in each iteration. The online update rules for each

fragments are:

αi+1 = αi +miτ̃
i, (1.7)

where:

τ̃ it = Pr (T = t|F = fj), (1.8)

and

mi+1 = mi ×
γi+1

1− γi
× 1

γi
, (1.9)

αi is the optimized value after observing the first i fragments. Bayes’ rule can be

applied to obtain the probability in eq. (1.8) from the conditional probabilities. The value

mi is called forgetting mass and depends on the forgetting factor γi. The γ values are set

as γi = 1
ic

where 0.5 < c < 1.0. After observing all N , fragments the relative counts of
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fragments from each transcript type can be obtained from the vector αN .

1.2.5 Dual phase optimization

The inference algorithm in Salmon [16] consists of two phases. First, Salmon runs

an online EM optimization to obtain high quality primary estimates of abundances. In

this phase, Salmon is able to achieve a good estimation of fragment length distribution by

examining many fragments as they are streamed in the online EM. Therefore Salmon can

derive good estimates of conditional probabilities using the fragment length distribution

and other information provided with mappings. The equivalence classes over sets of

fragments are also created in the online phase. Salmon introduces the notion of rich

equivalence classes by assigning a single scalar to each transcript in an equivalence class,

averaging the conditional probabilities of all fragments in the class to the transcript. This

value is equal to 1
|Ω(F q)| in non-rich equivalence classes.

Salmon uses the estimates obtained in the online phase as a starting point for

performing a batch EM algorithm in the second phase. This two-phase optimization

allows Salmon to rich very high quality estimates compared to other existing

quantification tools. The online phase of the Salmon enables deriving a new factorization

of the likelihood function to be optimized in the batch EM phase, which does not

discard any necessary information for accurate abundance estimation. The details of this

factorization is discussed in chapter 3.
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1.2.6 Metrics for evaluating quantification accuracy

The formula for calculating the metrics used for evaluating the abundance

estimation results in the manuscript are as follows. The metrics are Mean Absolute

Relative Difference (MARD), Mean Absolute Error (MAE), and Mean Squared Error

(MSLE).

MARD(y, ŷ) =
1

nrefs

nrefs−1∑
i=0

|yi − ŷi|
yi + ŷi

.

MAE(y, ŷ) =
1

nrefs

nrefs−1∑
i=0

|yi − ŷi| .

MSE(y, ŷ) =
1

nrefs

nrefs−1∑
i=0

(yi − ŷi)
2.

(1.10)

All of these metrics compute the difference of the estimated abundances with

the truth. In addition to these metrics, we also evaluate the correlation between the

estimations and truth by computing the Spearman correlation. Spearman correlation is

computed using the pandas library [23] in Python.

1.2.7 Inference of the Posterior Distribution of RNA-seq quantification

Estimating the inference uncertainty of the RNA-seq quantification is one of the

crucial steps for many downstream analysis, e.g., finding the differentially expressed

genes or transcripts, i.e., DE analysis. In fact, methods like Swish [24] directly use the

inferential replicates created by RNA-seq quantification tools for finding the DE genes

with a higher precision compared to other approaches.
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There are two main approaches for sampling the posterior distribution for

estimating the uncertainty of quantification estimates; Gibbs sampling and Bootstrap

sampling. The Gibbs sampling is a Markov chain Monte Carlo (MCMC) procedure

that walks through the space that the EM explores for finding the maximum likelihood

estimations of the transcripts expressions. At the end of each iteration of the Gibbs

sampling, the transcript expression vector could be identified as a new inferential replicate

for estimating the posterior distribution. To decrease between replicate correlations,

the sampling could take place after every fixed number of iterations which is called

the thinning factor for the sampling. Running the Gibbs sampling procedure for long

enough could reach to the convergance of the posterior estimate, this will be reached only

after the Gibbs sampler has explored all the posterior samples. The number of iterations

required for Gibbs sampling to converge depends on the properties of the sample, and as

the number of transcripts in the sample increases the convergance usually takes longer.

Bootstrap sampling is the other main approach for estimating the posterior

distribution of the abundance estimations in RNA-seq. The bootstrap procedure [25] is a

widely-used and computationally straightforward procedure for calculating measures of

accuracy of an estimator. It works by resampling (with replacement) from the observed

data, and treating these as population samples. The procedure has been used in many

contexts for non-parametric estimation. In RNA-seq, quantifying all the Bootstrap

replicates leads to a estimating the posterior distribution for the abundances.

RNA-seq quantification tools [26, 27] have implemented the regular bootstrap

sampling by resampling the equivalent class counts. Equivalent classes are a summerized

representations of the reads; therefore, sampling the equivalent class counts instead
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of each individual read improves the efficiency of the Bootstrap sampling. Positional

Bootstrap sampling is also another way of generating Bootstrap replicates by sampling

the positions where the reads map to on each transcript [28]. Furthermore, the RNA-seq

quantification tool, Salmon [27] also includes a Gibbs sampling procedure for estimating

the posterior distribution. BitSeq [29] applies a MCMC Gibbs sampler to generate

samples from the posterior probabilty distribution.

1.3 Overview of the document and contribution

In the first chapter, I discussd about some of the main important computational

steps for analysis of RNA-seq data including alignment and quantification. In chapter

2, novel methods are presented for improving the accuracy and efficiency of short read

mapping. More specifically, I have contributed in development of selective-alignment [5]

which improves the accuracy of lightweight mapping without a significant effect on their

efficiency. Furthermore, PuffAligner [30] will be discussed in chapter 2 which is an

accurate aligner for short reads to a set of references which maintains a moderate memory

usage while being very fast. In chapter 3, I present an improved factorization of the

RNA-seq likelihood [31] which bridges the accuracy gap between the approximate and

full models and has almost no effect on the efficiency of fast RNA-seq quantification

approaches. In chapter 4, I attempt to improve the uncertainty estimation of RNA-seq

quantification by introdcing the augmented Bootstrap. More particularly, I will discuss

how this approach improves estimating the posterior distrubtion of abudance estimation

of allelic expressions.
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Chapter 2: Improving accuracy and speed of mapping and alignment

methods

In this chapter, I explore new ideas for improving the alignment and mapping

methods. In the first part of the chapter, I address some of the existing obstacles with

the lightweight alignment approaches. These methods are employed in the recent non-

alignment based quantfication tools, such as Salmon [16] and kallito [17], to map the

RNA-seq reads to the set of known reference sequences instead of aligning the reads. We

show that the accuracy of the lightweight quantification methods decline in the difficult

cases which often exist in the real samples. We introduce a new algorithm for selectively

aligning RNA-seq reads to a transcriptome, with the goal of improving transcript-level

quantification in adversarial scenarios. 1

Furthermore, in the second section of this chapter, we build upon the idea of

selective alignment to introduce Puffaligner [30], an all purpose aligner for short read

sequencing reads which can be used in many cases ranging from alignment of RNA-seq,

DNA-seq and metagenomic samples to known set of references. Puffaligner indexes the

reference sequences using the Pufferfish index [13] which efficiently indexes the colored

compacted de Bruijn graph built from the reference sequences.2

1This is a joint project with Hirak Sarkar and is presented in BCB 2017 [5]
2This is a joint project with Fatemeh Almodaresi and is published in Bioinformatics [30]
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2.1 Towards Selective Alignment

While alignment is a staple of many genomic analyses, it sometimes represents

more information than is actually necessary to address the analysis at hand. For

example, recent tools, like Sailfish [14], RNAskim [32], kallisto [17], Salmon [16],

and Fleximer [33], demonstrate that accurate quantification estimates can be obtained

without all of the information encoded in traditional alignments. By avoiding

traditional alignment procedures, these tools are much faster than their alignment-based

counterparts. Furthermore, by building the mapping phase of the analysis directly into

the quantification task, they dispense with the need to write, store, and read large

intermediate alignment files. However, these non-alignment-based tools, while highly-

efficient, have the disadvantage of potentially losing sensitivity or specificity in certain

cases where alignment-based methods would perform well. For example, in the presence

of paralogous genes, with high sequence similarity, there is an increased probability that

the mapping strategies employed by such tools, and the efficient heuristics upon which

they rely, will mis-map reads between the paralogs (or return a more ambiguous set of

mapping locations than an aligner, which expends computational resources to verify the

returned alignments) [34]. Similarly, in the case of de novo assemblies, poorly assembled

contigs may have a larger number of mis-mapped reads due to lower sensitivity (here, the

issue would be primarily due to aberrant exact matches masking the true origin of a read).

Other than suffering from spurious mappings, these fast non-alignment-based

approaches can also miss true mappings of a read in rare cases where errors are positioned

adversarially on the read. An obvious case of losing the true mapping is if a read contains
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no subsequence of sufficient length from the true transcript. In another case, the true

mapping of the read might be lost from the set of potential mapping loci due to the greedy

nature of the mapping procedures. For some reads, multiple positions might be found on

the same transcript where the read maps. In such cases, improved heuristics are required

to address these challenges. In this section, we present a novel algorithm, selective-

alignment, that extends quasi-mapping to compute and store edit distance information

where necessary. The reads for alignment are chosen based on certain criteria calculated

during mapping. This strikes a balance between speed and accuracy, i.e., it does not

compromise the superior speed of non-alignment-based algorithms and also addresses

some of the challenges mentioned above. Specifically, the motivation for selective-

alignment is to enhance both the sensitivity and specificity of fast mapping algorithms by

reducing or eliminating cases where spurious exact matches mask true mapping locations

as well as cases where small exact matches support otherwise poor alignments. Selective-

alignment algorithm is built atop the framework of RapMap [15], which uses an index

that combines a fixed-length prefix hash table and an uncompressed suffix array [35].

We introduce a coverage-based consensus scheme to identify critical read candidates for

which alignment is necessary.

Furthermore, we explore the challenging cases where the heuristics employed by

fast mapping algorithms may fail to locate the correct locations for a read, while the

traditional aligners do not. We do this by making a number of modifications to the

underlying mapping algorithm to increase its sensitivity. We also introduce multiple filters

and scoring schemes designed to eliminate spurious mappings (i.e., situations where the

best mapping is unlikely to represent the true origin of the read). In this work, we focus on
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the effect of selective-alignment on transcript quantification estimates. We also perform

a further evaluation of the alignment qualities in section 2.2.

2.1.1 Main characteristics of selective-alignment

The process of selective-alignment builds upon the basic data structures of

RapMap [15], but there are a number of important algorithmic distinctions. Specifically,

compared to the algorithm of RapMap, selective-alignment introduces the k-safe

longest common prefix (k-safe-LCP), replaces maximum mappable prefixes (MMP) with

maximum mappable safe prefixes (MMSP), increases mapping sensitivity by adopting

a different consensus rule over hits, makes use of co-mapping to filter and prioritize

potential mapping loci, introduces a new mechanism for selecting a mapping position for

a read when multiple candidates exist on the same transcript, and, finally, introduces a fast

edit distance filter (with alignment sub-problem caching) to remove spurious mappings

and provide quality scores for mappings that pass the filter. A block diagram of different

steps used in the selective alignment pipeline is shown in fig. 2.2.

Below, we recapitulate the basic data structures and concepts that will be required

to explain the selective alignment algorithm. To start with, the index built on the

transcriptome in selective-alignment is a combination of a suffix array and a hash table

constructed from unique k-mers (substrings of length k) and suffix array intervals.

The suffix array of a sequence T— denoted SA(T )—is an array of starting positions

of all suffixes from T in the original sequence. The values in the array are sorted

lexicographically by the suffixes they represent. Therefore, all suffixes starting with the
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same prefix are located in adjacent positions of the suffix array. Formally, given a suffix

array SA(T ) = Λ, constructed from the transcriptome sequence T , we construct a hash

table, h, that maps each k-mer κ to a suffix array interval, I (κ) = [b, e), if and only if

all the suffixes within interval [b, e) contain the k-mer κ as a prefix. We define Λ[i], for

every 0 ≤ i ≤ |Λ|, to be the suffix T [SA[i]] (i.e., the suffix of T starting from position

SA[i]). In the selective-alignment index, in addition to suffix array intervals, we store

two extra pieces of information for each interval; the longest common prefix (LCP) and

the k-safe-LCP corresponding to the interval. The longest common prefix (LCP) of any

pair of suffixes in the suffix array is simply the length of the prefix that these suffixes

share. Though the LCPs for the suffixes in the suffix array can be pre-computed, we

instead compute them on demand using a linear scan. These methods are detailed below.

As an alternate to the suffix array and the LCP array, one could make use of other data

structures that encode this information. For example, the recently-introduced method,

Fleximer [33] makes use of the suffix tree for selecting informative sig-mers [32] from

the transcriptome, and matching reads against them.

2.1.2 Defining and computing k-safe-LCPs

Here, we formally define the concept of k-safe-LCPs (see figure fig. 2.1). The

determination of k-safe-LCPs starts by labeling each suffix array interval with the length

of its corresponding longest common prefix and the associated transcript set it represents.

Formally, LCP(Λ[b],Λ[e− 1]) for an interval [b, e) is the length of the common prefix of

the suffixes Λ[b] and Λ[e− 1]. Given k-mer κ, where κ ∈ K and K is the set of all k-mers
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Figure 2.1: Calculation of k-safe-LCP from the suffix array data structure. The transcripts present
in each suffix array interval determine the relevant transcript sets, and which k-mers
will be considered as intruders. To determine the k-safe-LCP of the suffix array
interval starting with the k-mer CGTCA, we check all the k-mers sequentially. Some
k-mers do not yield an interval with transcripts other than t1 and t2, e.g., CAACG.
Detection of a k-mer (AACGG) (as intruder) that maps to suffix array interval labeled
(t1, t2, t3) determines the k-safe-LCP here.
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Figure 2.2: The three main steps of the selective-alignment process are demonstrated here. First,
suffix array “hits” are collected. Then, in co-mapping, spurious mappings are removed
by the orientation filter and then distance filter. At most a single locus per-transcript
is selected based on the coverage filter. Finally, an edit-distance-based filter is used to
select the valid target transcripts.
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from the reference sequence T , and the related interval I (κ) = [b, e), for all p ∈ [b, e), we

consider each transcript t such that the suffix Λ[p] starts in transcript t in the concatenated

text. Then, for this interval, we can construct a set Cκ = {ti, tj, . . . }, which denotes the

set of distinct transcripts that appear in the suffix array interval, indicated by κ. We note

that this notion discards duplicate appearances of the same transcript in this interval.

We compute the k-safe-LCP for an interval indicated by k-mer κi iteratively. The

initial length for the k-safe-LCP of the interval is k, length of a k-mer. We check,

sequentially, each of the k-mers in the longest common prefix of the interval. For each

new k-mer, the k-safe-LCP is increased by one character. We terminate the k-safe-LCP

extension if any of the following conditions is encountered: (1) we reach the last k-mer

contained in the LCP of this interval, (2) we encounter a k-mer κj such that Cκj ̸⊆ Cκi or

(3) we encounter a k-mer κj such that the reverse complement of κj appears elsewhere in

the transcriptome. When we encounter case (2) or (3), we call the k-mer κj an intruder.

That is, the k-mer will potentially alter our belief about the set of potential transcripts

to which a sequence containing this k-mer maps (by strictly expanding this set), or the

orientation with which it maps to the transcriptome. We denote the k-safe-LCP of a

particular interval I (κi) as k-safe-LCP(I (κi)).

As shown in fig. 2.1, the k-safe-LCP determination for the top suffix array interval

starts with matching k-mers within the longest common prefix. The k-mer “CAACG”

maps to a suffix array interval labeled with (t1, t2). The next k-mer “AACGG”, on the

other hand, maps to a suffix array interval (shaded in green) labeled with (t1, t2, t3),

thereby implying the k-safe-LCP, shown as a dotted line. For each k-mer in the hash

table, we store the length of the LCP and k-safe-LCP, along with the corresponding suffix
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array interval.

2.1.3 Discovering relevant suffix array intervals

As shown in fig. 2.2, the selective-alignment approach can be broken into three

major steps: collecting suffix array intervals, co-mapping, and selecting the high quality

mappings. Gathering the suffix array intervals for a query read closely follows the quasi-

mapping approach. It involves iterating over the read from left to right and repeating

two steps. First, hashing a k-mer from the read sequence and then discovering the

corresponding suffix array intervals. The process of k-mer lookup is aided by the k-safe-

LCP stored in the index (discussed in section 2.1.2). The inbuilt lexicographic ordering

of the suffixes in the suffix array, and the computed k-safe-LCP values of intervals enable

safely extending k-mers to longer matches without the possibility of masking potentially-

informative substring matches. Given a matching k-mer κr from the read sequence

r, we extend the match to find the longest substring of the read that matches within

k-safe-LCP(I (κr)). The matched substring can be regarded as maximum mappable

prefix (MMP) [10], that resides within the established k-safe-LCP. We call this a maximal

mappable safe prefix (MMSP — eliding k where implied). For a k-mer κr and interval

[b, e), we note that k-safe-LCP(I (κr)) ≥ ℓMMSPκr
, where ℓMMSPκr

is the length of

MMSPκr , the MMSP between the read’s suffix starting with κr and the interval I (κr).

The next k-mer lookup starts from the (MMSPκr − k + 1)-th position. By restricting

our match extensions to reside within the MMSP, we ensure that we will not neglect

to query any k-mer that might expand the set of potential transcripts where our read
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may map. We note here both the theoretical and practical relation between the MMSP

matching procedure, and the concept of a unique maximal exact match (uni-MEM), as

introduced in deBGA [11]. The k-safe-LCP for suffix array intervals are closely related

to the lengths of unitigs in the reference colored compacted de Bruijn graph of order k.

Thus, our procedure for finding MMSPs, that limits match extension by the k-safe-LCP,

is similar to the uni-MEM seed generation procedure described in deBGA [11], with the

distinction that in our method, we only consider extending seeds in one direction, and

that we also choose not to terminate the k-safe-LCP when the set of implied reference

transcripts corresponding to the interval decreases in cardinality.

Given all the suffix array intervals collected for a read end (i.e. one end of a paired-

end read), we take the union of all the transcripts they encode. Formally, if a read r maps

to suffix array intervals labeled with Cr1 , . . . , Crn , then we consider all transcripts in the

set Cr1 ∪Cr2 ∪ . . .∪Crn and the associated positions implied by the suffix array intervals.

As shown in fig. 2.2; this step is done before co-mapping.

We adopt a heuristic to avoid excessive k-mer lookups when we encounter a

mismatch. When extension of an MMP is no longer possible, it is most probable that the

mismatch results from an error in the read. If the mismatch is due to the presence of an

error, then checking each k-mer overlapping this error can be a costly process. Instead, we

move forward by a distance of k/2 in the read, and check the k-mer from the read such that

the mismatch occurs in the middle position. If this k-mer lookup leads to another suffix

array interval, we continue with the MMP extension process there; otherwise, we move

again to the first k-mer that does not overlap this mismatch position. We observe that, in

practice, the k-safe-LCP, and hence the MMSP lengths, can be quite large (Figure 2.3).
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2.1.4 Co-Mapping

After collecting the suffix array intervals corresponding to left and right ends of

the read, we wish to exploit the paired-end information in determining which potential

mapping locations might be valid. Hence, from this step onward, we use the joint

information for determining the position and target transcripts. Given the suffix array

intervals for individual ends of a paired-end read, the problem of aligning both ends

poses a few challenges. First, a single read can map to multiple transcripts, and we

wish to report all equally-best loci. Second, there can be multiple hits from a read on

a single transcript (e.g., if a transcript contains repetitive sequence), and extra care must

be taken to determine the correct mapping location. Finally, there may be hits that do not

yield high-quality alignments (i.e. long exact matches that are nonetheless spurious). To

address the first and third points, we employ an edit distance filter to discard spurious and

sub-optimal alignments. To address the second challenge, we devise a consensus strategy

to choose at most one unique position from each transcript.

Before applying the above mentioned strategy, we remove transcripts that do not

contain hits from both the left and right ends of the read. Formally, given two ends

of a read r, re1 and re2 , and the corresponding suffix array intervals labeled with

Cr
e1
1 , . . . , Cr

e1
n and Cr

e2
1 , . . . , Cr

e2
m respectively, we only consider transcripts present in the

set (Cr
e1
1 ∪ . . . ∪ Cr

e1
n ) ∩ (Cr

e2
1 ∪ . . . ∪ Cr

e2
m ). We further refine this set by checking the

validity of the alignments these hits might support. Currently, we use two validity checks

illustrated in fig. 2.2. First, we apply an orientation-based check, and second, we employ

a distance-based check. The orientation check removes potential mappings which have an

36



Figure 2.3: The distribution of k-safe-LCP lengths and LCP lengths are similar and tend to be
large in practice (human transcriptome). Here, we truncate all lengths to a maximum
value of 100 (so that any LCP or k-safe-LCP longer than 100 nucleotides is placed in
the length 100 bin).

orientation inconsistent with the underlying sequencing library type (e.g., both ends of a

read mapping in the same orientation). The distance check removes potential alignments

where the implied distance between the read ends is larger than a given, user-defined

threshold (1, 000 nucleotides by default).

Coverage based consensus: In selective-alignment, the potential positions on a

transcript are scored by their individual coverage on the target transcript. Figure 2.4

depicts the mechanism of choosing the best postion on a transcript from multiple probable

mappings to the same transcript. The coverage mechanism employed in selective-

alignment makes use of the MMSP lengths collected during a prior step of the algorithm

rather than simply counting k-mers. In fig. 2.4, the transcript t2 has two potential mapping

positions given the reads: position 10 and 20. The coverage consensus mechanism selects

position 20 over position 10 due to the higher coverage by tiling MMSPs on the read.
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Figure 2.4: The MMSPs corresponding to a read are derived from multiple suffix array intervals.
Here, all MMSPs happen to be of length k as LCPs are of size k. The coverage scheme
finds out the exact positions on each transcript by adjusting the starting position of the
MMSPs. The total score takes into account the positions where matches overlap. The
final position is chosen by selecting the locus with maximum coverage.

2.1.5 Selecting the best candidate transcripts

Once the positional ambiguity within a transcript is resolved, the next step is

selecting the best candidate transcripts from a set of mappings. Since mapping relies

on finding exact matches, the length of the matched subsequence between the read and

reference can sometimes be misguiding when comparing different candidate transcripts.

That is, the transcripts with the longest exact matches do not always support optimal

alignments for a read. At this point in our procedure, we follow the approach taken by

many conventional aligners, and use an existing optimal alignment algorithm to compute

the edit distance, by which we select the best candidate transcripts.

When performing alignment, we assume that a given read aligns starting at the

position computed in the previous steps. This helps us to reduce the search space within

the transcript where we must consider aligning the read, and thereby considerably reduces

the cost of alignment. To align the read at a specific position on the transcript and
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calculate the edit distance between them, we use Myer′s bounded edit distance bit-vector

algorithm [36], as implemented in edlib [37]. For a fixed maximum allowable edit

distance, this algorithm is linear in the length of the read. We note that the bounded

edit distance algorithm we employ will automatically terminate an alignment when the

required edit distance bound is not achievable.

We remove all alignments with edit distance greater than a user-provided threshold.

This is similar to the approach used by many existing aligners, and allows us to specify

that even the best mapping for a given read may have too many edits to believe that it

reasonably originated from a known transcript in the index. An appropriate threshold

should be based on the expected error rate of the instrument generating the sequenced

reads, and a very low threshold can lead to a decreased mapping rate.

2.1.6 Enhancement of quantification accuracy based on edit distance

We investigated the effect of incorporating edit distance in downstream

quantification. Since we integrated the selective-alignment scheme into the quantification

tool Salmon [16], the edit distance scores from selective-alignment can be used as a new

parameter to Salmon’s inference algorithm.

In the framework of abundance estimation, we define the conditional probability

of a generating a particular fragment, fj , given that it comes from a specific transcript,

ti, as P (fj | ti). Given the edit distance between the fragment and the transcript, we can

incorporate this parameter into this conditional probability. [18] Soft filtering introduces

a new term in the conditional probability based on di,j , which is the sum of the edit
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distances between the read ends of fragment fj and transcript ti. We set this probability

according to an exponential function P (aj|fj, ti) = e−4di,j . The aggregate of threshold

filtering and soft filtering can be described as follows:

Pr (aj | di,j, ti) =


0 di,j > threshold

e−4di,j di,j ≤ threshold

. (2.1)

Preventing redundant alignments by exploiting shared LCPs: Exploiting the common

subsequences in the transcriptome is instrumental to the superior speed of fast mapping,

non-alignment-based tools. Reads generated from exonic sequences common to multiple

transcripts from the same gene or paralogous genes are the main source of ambiguous

mappings. As we rely on the suffix array data structure to obtain the initial set of

transcripts to which a read maps, there are cases where exactly identical reference

sequences all act as mapping targets for the read. For a suffix array interval [b, e), we

identify such common subsequences by examining the longest common prefix (LCP) of

the interval. If the length of the LCP is equal or greater than the length of the read, then

the actual alignment against the underlying reference at these positions will be identical.

We observed that for almost half of the read-transcript pairs, the alignment process can be

avoided. Note that if the read sequence shares a complete match with the common prefix,

meaning that maximum mappable safe prefix length is equal to read length (i.e., the read

matches the reference exactly at some set of positions), we can also bypass the Meyer’s

edit distance algorithm call completely.
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Avoiding redundant work by caching alignment sub-problems further: We also extend

a similar idea to the scenario where only part of the reference sequence is shared

between references. Specifically, when performing an alignment between anchoring exact

matches, we store the result in a hash table where the key is a tuple (s, e, h (s′, e′))

and the associated value is the computed edit distance. Here, s and e denote the start

and end of the read interval being aligned and s′ and e′ denote the start and end of the

reference sequence; h(s′, e′) is a hash of the corresponding reference sequence (we use

xxhash [38]). This allows us to detect when a redundant alignment sub-problem for a

read is shared between references, and to reuse the cached result in such cases.

2.1.7 Evaluating the performance of selective-alignment

To evaluate the effectiveness of selective-alignment, we coupled it with the

quantification tool Salmon (branching from the v0.9.1 release). This enables us to

measure the effect of different alignment based and non-alignment based algorithms on

transcript-level quantification results directly, holding the statistical estimation procedure

fixed. We also include kallisto (v0.43) in our benchmarks, which provides a perspective

on pseudoalignment-based quantification. Furthermore, we compare the performance

of selective-alignment with the recent, fast, hashing and alignment-based, abundance

estimation tool (currently un-published) Hera 3. We note, this is an early version of

the Hera (v1.2) software, which is already performing very well in our testing, but is

subject to changes and improvements. Given its impressive performance (in both time and

accuracy), we decided to include Hera in our comparisons with the consent of its authors

3https://github.com/bioturing/hera
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(personal communications). We measure the Spearman correlation and Mean Absolute

Relative Differences (MARD) of read counts as performance metrics when comparing the

different methods. All experiments of this section were performed on an Intel(R) Xeon(R)

CPU (E5-2699 v4 @2.20GHz with 44 cores and 56MB L3 cache) with 512GB RAM and

a 4TB TOSHIBA MG03ACA4 ATA HDD running ubuntu 16.10 and each method was

run using 16 threads.

In all our experiments, reads are mapped to the transcriptome using using Bowtie2,

kallisto, Hera, selective-alignment and STAR. Subsequently, transcripts are quantified

by Salmon (v0.9.1) using the relevant mappings (from alignment or the non-alignment-

based methods) as input (except in the cases of kallisto (0.43) and Hera (1.2), which

include implementations of their quantification algorithms). The alignment mode of

Salmon enables us to use STAR (v2.5) and Bowtie2 (v2.3) output as a direct input to the

quantification module — thereby reducing variability due to differences in the underlying

methodology used for quantification. To achieve the most sensitive alignment, Bowtie2

is run with the alignment options suggested for use with RSEM [39]. For aligning

reads to the transcriptome using STAR, we used the same options described in [15].

When processing alignments, Salmon was run with --rangeFactorizationBins

4 [40] and --useErrorModel. With selective-alignment, Salmon was run using the

--softFilter flag (discussed in section 2.1.6), a range factorization value of 4 and an

edit distance threshold of 7. Kallisto was run with default parameters. Both the selective-

alignment and kallisto indices were built with k = 25; Hera does not include k-mer size

as a user-defined parameter.
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2.1.8 Quantification of simulated reads against mutated transcriptomes

We explored the performance of different alignment-based and alignment-free

methods by quantifying simulated short RNA-seq reads against mutated reference

sequences. The simulation process consists of two steps. In the first step, we

mapped an experimental RNA-seq sample (accession number SRR5638585) to the human

transcriptome (Ensembl release 80 [41]) using Salmon. The resulting abundance vector, in

conjunction with the full transcriptome sequence generated from the full human genome

and the corresponding annotations (version GRCh37.p13), is used to simulate five batches

of 100bp paired-end RNA-seq samples, where each batch contains∼ 47M reads. We used

the sequence simulator Polyester [42] for generating the read datasets.

While the simulated dataset enables comparison with the ground truth, the quality of

the reads is high and does not show the subtle nuances that arise when mapping reads from

experimental sequencing datasets. In reality, the sequenced reads could differ from the

annotated reference sequence due the presence of mutations (variants) in the sequenced

organism. In other cases, a reference sequence from one species could be used to analyze

data from a phylogenetically closely related species, for which an annotated reference in

unavailable. Therefore, to recapitulate these adversarial situations, instead of mapping

the simulated reads to the exact underlying transcriptome used for read generation, we

map them against references mutated at a controllable rate.

The mutated version of the transcriptome is derived from the underlying reference

genome that was subject to random mutations. The nucleotides of the reference genome

were randomly altered based on a Poisson process with a tunable rate parameter. The
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Figure 2.5: Performance variation of different tools on paired end reads produced with five random
seeds.

rate parameter enables controling the rate of mutation that we want to introduce in

the reference genome. For the current manuscript we have used 5 equally spaced rate

parameters from 0.01 to 0.05. The mutated genome sequences and the original annotation

are used to generate the mutated reference transcriptomes. As the resulting transcriptomes

contain devations from the indexed reference, we believe that mapping to these references

will capture some aspects of the difficulties encountered when applying such tools to

certain experimental datasets.

To evaluate the performance we have measured the quantification accuracy of

different tools with respect to the ground truth provided to Polyester. As explained

earlier, tools such as kallisto, Hera and selective-alignment have a quantification pipeline

attached to the mapping module and are, therefore, capable of generating abundance

vectors directly. On the other hand, Bowtie2 and STAR generate alignment files that we

have coupled with Salmon (run in alignment-based mode) to obtain abundance estimates.

Performance of the various methods on a simulated sample is shown in table 2.1

and table 2.2. In this case, the simulated sample is mapped against 5 different mutated
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Mutation Rate kallisto Hera Selective-alignment STAR-Salmon Bowtie2-Salmon

0.01 0.906 0.935 0.946 0.942 0.948
0.02 0.871 0.925 0.942 0.939 0.945
0.03 0.844 0.910 0.935 0.933 0.942
0.04 0.817 0.880 0.925 0.925 0.937
0.05 0.793 0.845 0.904 0.909 0.927

Table 2.1: Synthetic dataset quantified against the mutated reference transcriptome with different
mutation rates. The spearman correlation is calculated with respect to the ground truth.

transcriptomes with increasing error rates and the corresponding spearman correlation

and MARD values calculated using the ground truth. As shown in table 2.1, the

correlation between quantification estimates using selective-alignment and the ground

truth is higher than the other self-contained quantification methods, kallisto and Hera.

This gap between correlation values increases as the rate of mutation in the reference

transcriptome is increased, showing the ability of selective-alignment to accurately map

reads against diverging transcriptomes. The MARD values for selective-alignment are

lower in comparison with other non-alignment-based methods as well.

To measure the variation in quantification about a single random instance of

simulated data (i.e., data generated with a particular random seed), we have also generated

five different simulated RNA-seq datasets by passing different seeds to Polyester. To

minimize external variation, we used the least mutated transcriptome (rate 0.01) as

reference. By plotting the spearman correlations, as shown in fig. 2.5, we observe that,

given that all the tools perform well on the random samples, the performance of selective-

alignment is grouped with the alignment-based methods, such as Bowtie2 and STAR.

Further, the variation in quantification performance of all methods (i.e. the standared

error) across these different simulated replicates is very small.
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Mutation Rate kallisto Hera selective-alignment STAR-Salmon Bowtie2-Salmon

0.01 0.161 0.116 0.100 0.104 0.096
0.02 0.193 0.132 0.108 0.109 0.100
0.03 0.215 0.172 0.120 0.115 0.107
0.04 0.236 0.231 0.143 0.127 0.118
0.05 0.257 0.291 0.186 0.150 0.142

Table 2.2: Synthetic dataset quantified against the mutated reference transcriptome with different
mutation rates. The MARD (mean absolute relative difference) is calculated with
respect to the ground truth.

2.1.9 Experimental reads from human transcriptome

We have also benchmarked our proposed selective-alignment method on

experimental data from SEQC(MAQC-III) consortium [43] samples (SRA accession

SRR1215996 - SRR1216000). Each of the five technical replicates consists of

∼11M, 100bp, paired-end reads, sequenced on an Illumina Hiseq 2000 platform.

We follow the same basic assessment methodology as discussed in section 2.1.8,

and report the mean Spearman correlation and MARD value for each method. However,

we note that, since this is experimentally-derived data, there is no knowledge of ground

truth transcript abundances. Instead, we have measured the overall concordance between

different approaches. Given the results obtained in all of our other testing, we expect

the Bowtie2-based pipeline to be the most accurate, so we are generally looking for high

concordance with those quantifiaction estimates.

In table 2.3, we compare the quantification results produced by different methods.

Each individual cell contains the average obtained across the five samples. High

Spearman correlation and low MARD value between Bowtie2 and selective-alignment

show that selective-alignment produces results most similar to those based on Bowtie2.
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Method kallisto Hera selective STAR Bowtie2

kallisto 1.000
0.000

0.189 0.160 0.153 0.168

Hera 0.868 1.000
0.000

0.135 0.147 0.138

selective 0.898 0.902 1.000
0.000

0.129 0.059

STAR 0.898 0.896 0.913 1.000
0.000

0.129

Bowtie2 0.890 0.901 0.966 0.913 1.000
0.000

Table 2.3: The Spearman correlation and MARDS between transcript abundances computed by
all methods on experimental data. Each number is the mean on 5 different samples; the
numbers in the lower left triangle of the matrix are the Spearman correlations and the
ones in upper right are the MARD values. ”selective ” refers to selective-alignment.

Interestingly, the concordance between the selective-alignment and Bowtie2-based

pipelines is even higher than the concordance between the two pipelines based on more

traditional alignment approaches (i.e. Bowtie2 and STAR). While we cannot assess the

accuracy with respect to known ground truth on these samples, we nonetheless believe

assessments based on real data like this are important to perform, as the complexity of

experimental data seems to be considerably higher than that of simulated data and its

characteristics can be markedly different. Finally, Table 2.4 provides timing and memory

assessments of all the methods running on sample SRR1215996. Since the mapping

phase of selective-alignment is not distinct from the quantification phase, the memory

and time footprints include the mapping part of the pipeline. Further, disk space is not

comparable to alignment-based methods, since alignment files are not written directly

as output of selective-alignment (rather, the selective-alignment algorithm informs the

mappings and provides edit-distance-based scores — as described in eq. (2.1) — directly

to the quantification algorithm).
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Method time (s) memory (KB)

kallisto 61.000 4,006,284.000
Hera 38.000 6,736,576.000
selective-alignment 65.000 7,994,324.000
STAR 398+96 max(8,342,444.000,5,513,432.000)
Bowtie2 977+125 max(1,020,032.000,9,949,380.000)

Table 2.4: Comparison of timing and memory foot-print of selective-alignment with other
alignment and non-alignment methods on experimental sample SRR1215996. The
timing performance for STAR and Bowtie2 is the sum of mapping and quantification
(with Salmon) steps (first number is the mapping step) and memory footprint is the
max memory footprint of these two steps (first number is for the mapping step).

2.1.10 Conclusion

Recently, fast non-alignment-based approaches have been developed for mapping

RNA-seq reads to transcriptomes. Rather than generating full alignments, these

approaches compute “mapping” information that is often sufficient for a number of

given analysis tasks (e.g., transcript quantification [14, 16, 17, 32, 33] or metagenomic

abundance estimation [44]). Yet, there exist scenarios where such non-alignment-based

approaches can go awry; either failing, by the greedy nature of their procedures, to find the

true target of origin of a read, or by allowing spurious mappings to targets supported by

exact matches that would nonetheless fail reasonable alignment scoring filters. Moreover,

it is sometimes desirable to be able to produce, on demand, the edit distance or alignment

that would result from a given mapping location. The recently-introduced Hera validates

mapping quality using alignment, which resolves spurious mappings, though it still

suffers a loss of sensitivity compared to traditional alignment methods, and fails to process

de novo assembled transcriptomes. In this section, we introduced a selective alignment
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algorithm that attempts to bridge the gap between these non-alignment-based algorithms

and more traditional alignment approaches. Selective-alignment improves upon both the

sensitivity and specificity of these non-alignment-based algorithms while making very

moderate concessions with respect to the computational budget. To achieve this level of

efficiency, a number of algorithmic innovations were required, some of which may be of

general interest. In the future, we hope to expand upon the notion of selective alignment

even further, both by improving the algorithm and implementation, and by exploring

use cases where selective alignment applies. Such situations are those where fast non-

alignment-based approaches are inappropriate and traditional alignment approaches are

too slow. In terms of improving the method, we hope to add functionality to automatically

predict the optimal edit distance threshold in the read mappings based on the quality of

the alignments, and for selective-alignment to self-tune to properly handle edge cases,

such as soft clipping. The selective-alignment algorithm currently implements user

specified edit distance threshold for filtering spurious reads. A more data-driven choice

of filter can lead to a more resilient threshold that can perform gracefully while handling

both adversarial reads as well as high-quality reads in heterogeneous read samples. In

high quality samples, the edit distance bound can be set lower to further speed-up the

algorithm. Future work will also include support for reporting the actual CIGAR strings

for applications that require this information, such as RNA-seq based variant calling or

allele identification.
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2.2 Puffaligner: An efficient and accurate aligner based on the pufferfish

index

Short-read aligners are a major workhorse of modern genomics. Given the

importance of the alignment problem, a tremendous number of different tools have been

developed to tackle this problem. Some widely used examples are BWA [45], Bowtie2 [8],

HISAT 2 [46, 47] and STAR [10]. Existing alignment tools use a variety of indexing

methods. Some tools, such as BWA, Bowtie2, and STAR use a full-text index over the

reference sequences; BWA and Bowtie2 use variants of the FM-index, while STAR uses a

suffix array.

A popular alternative approach to full-text indices is to instead, index sub-strings

of length k (k-mers) from the reference sequence. Trading off index size for potential

sensitivity, such indices can either index all of the k-mers present in the underlying

reference, or some uniform or intelligently-chosen sampling of k-mers. There are a

large variety of k-mer-based aligners, including tools like the Subread aligner [48],

SHRiMP2 [49], mrfast [50], and mrsfast [51]. To reduce the index size, one can choose

to select specific k-mers based on a winnowing (or minimizer) scheme. This approach

has been particularly common in tools designed for long-read sequence alignment like

mashmap [52] and minimap2 [12].

Recently, a set of new indices for storing k-mers have been proposed based

on graphs, specifically de Bruijn graphs (dBg). A de Bruijn graph is a graph

over a set of distinct k-mers where each edge connects two neighboring k-mers that
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appear consequently in a reference sequence and therefore, overlap on “k − 1” bases.

Kallisto [26], deBGA [11], BGreat [53], BrownieAligner [54], and Pufferfish [13] are

some tools which use an index constructed over the de Bruijn graph built from the

reference sequences. Cortex [55], Vari [56], Rainbowfish [57], and Mantis [58] are also

tools that use a colored compacted de Bruijn graph for building their index over a set of

raw experiments. All these approaches cover a wide range of the possible design space,

and different design decisions yield different performance tradeoffs.

Generally, the fastest aligners (like STAR) have very large memory requirements for

indexing, and make some sacrifices in sensitivity to obtain their speed. On the other hand,

the most sensitive aligners (like Bowtie2) have very moderate memory requirements, but

obtain their sensitivity at the cost of a higher runtime. Maintaining the balance between

time and memory is especially more critical while aligning to a large set of references,

like a large collection of microbial and viral genomes which may be used as an index in

microbiome or metagenomic studies. As both the collection of reference genomes and

the amount of sequencing data grows quickly, it is import for alignment tools to achieve

a time-space balance without loosing sensitivity.

Based on the compact Pufferfish [13] index, we introduce a new aligner called

PuffAligner, that we believe strikes an interesting and useful balance in this design space.

PuffAligner is designed to be a highly-sensitive alignment tool while, simultaneously,

placing a premium on computational overhead. By using the colored compacted de

Bruijn graph to factor out repeated sub-sequences in the reference, it is able to leverage

the speed and cache friendliness of hash-table based aligners while still controlling

the growth in the size of the index; especially in the context of redundant reference
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sequences. By carefully exploring the alignment challenges that arise in different

assays, including single-organism DNA-seq, RNA-seq alignment to the transcriptome,

and metagenomic sequencing, we have engineered a versatile tool that strikes desirable

balance between accuracy, memory requirements and speed. We compare PuffAligner

to some other popular aligners and show how it navigates these different tradeoffs.

PuffAligner is a free and open-source software and it is implemented in C++14 and can

be obtained from https://github.com/COMBINE-lab/pufferfish/tree/

cigar-strings.

2.2.1 Main pipeline in PuffAligner

PuffAligner is an aligner built on top of the Pufferfish indexing data structure.

Pufferfish is a space-efficient and fast index for the colored compacted de Bruijn graph

(ccdBg). A colored compacted de Bruijn graph is a graph whose vertices (strings) are the

compacted non-branching paths of the underlying de Bruijn graph, with the restriction

that each node also have the same color set (set of reference sequences in which it

appears). The nodes in the colored compacted de Bruijn graph are referred to as unitigs.

Each unitig can be mapped to a list of <reference ID, position, orientation> tuples that

describe exactly how this subsequence appears in the unlderying collection of references.

The basic query operation in the Pufferfish index is to query a k-mer from the input

sequence against the index. Given this query, the pufferfish index returns the unique

position (and orientation) where this k-mer appears in the colored compacted de Bruijn

graph (or a sentinel value if this k-mer does not occur). This match between the query
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and the graph can then be easily “unpacked” into the implied list of matches with the

underlying references by finding all of the places that the matched unitig appears in

the reference sequences and translating the relative position within the unitig into the

corresponding reference position (and adjusting the orientation if necessary). The output

of this step is then a list of all of the reference sequences, positions, and orientations

where this exact match occurs. While k-mer query is the basic operation performed by

the index, we actually do not use k-mer matches directly, and instead extend the initial

match into unique maximal exact matches (uni-MEMs).

Specficially, each k-mer match is extended simultaneously in both the query and

reference to obtain a longer exact match. The exact matches to the unitigs, called uni-

MEMs, are then projected to the positions on the references associated to that unitig.

Then, uni-MEMs are aggregated into MEMs (described below) on each reference, and

the chains of MEMs with the highest score are selected. In the case of paired-end reads,

the chains of the left and right ends are paired with respect to their distance, orientation,

etc. Finally, rather than fully aligning each query sequence to the anchored position on

the reference, only the sub-sequences from the query that are not part of the uni-MEMs

(exact matches) are aligned to the reference; we call this procedure the between-MEM

alignment. Each of these steps are explained in detail in the following sections.

2.2.2 Exact matching in the Pufferfish index

The pufferfish index provides PuffAligner with an efficient index for k-mer lookup

within a list of references. Specifically, the core components of the index are (1) a minimal
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perfect hash function (MPHF), (2) a unitig sequence vector, (3) a unitig-to-reference table,

and (4) a vector storing the position associated with each k-mer in the unitig sequence

vector. The unitig sequence vector contains all the unitigs in the ccdBg. The Pufferfish

index admits efficient exact search for k-mers, as well as longer matches that are unique in

both the query string and colored compacted de Bruijn graph. These matches, called uni-

MEM, were originally defined in deBGA [11]. A uni-MEM is a Maximal Exact Match

(MEM) between the query sequence and a unitig. Using the combination of the MPHF

and the position vector, a k-mer is mapped to a unitig in the unitig sequence vector. The

k-mer is then extended to a uni-MEM via a linear scan of the query sequence and the

unitig sequence vector. Each uni-MEM can appear in multiple different references, and

since uni-MEMs must be completely contained within a unitig, it is possible for multiple

uni-MEMs to be directly adjacent on both the query and some references where the unitig

appears.

Uni-MEM collection: The first step in read alignment is to collect exact matches shared

between the query (single-end or paired-end reads) and the reference. In PuffAligner, this

is accomplished by collecting the set of uni-MEMs that co-occur between the query and

reference. PuffAligner starts processing the read from the left-end and looks up each k-

mer that is encountered until a match to the index is found. Once a match is discovered,

it is extended in both query and the reference until one of these termination conditions

occur: (1) a mismatch is encountered, (2) the end of the query is reached, or (3) the end

of the unitig is reached. This process results in a uni-MEM match shared between the

query and reference. Uni-MEMs where extension is terminated as a result of reaching
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the end of a unitig must later be examined and potentially “collpased” together to form

MEMs with respect to the references on which they appear. If the uni-MEM extension is

not terminated as a result of reaching the end of the query, then the position in the read is

incremented by a small value and the same procedure is repeated for the next k-mer on

the read. This process continues until either the uni-MEM extension terminates because

the end of the query is reached, or because the last k-mer of the query is searched in

the index. Here, we recall an important property of uni-MEM extension that is different

from e.g. MEM extension or maximum mappable prefix (MMP) extension [10]. Due to

the definition of the ccdBg, it is guaranteed that any k-mer appearing within a uni-MEM

cannot appear in any other unintig in the ccdBg. Thus, extending k-mers to maximal

uni-MEMs is, in some sense, safe with respect to greedy extension, as such extension

will never cause missing a k-mer that would lead to another distinct uni-MEM shared

between the query and reference. The concept of safe extension of kmer matches was

introduced in [5].

Filtering highly-repetitive uni-MEMs: In order to avoid expending computation on

performing the subsequent steps on regions of reads mapping to highly-repeated regions

of the reference, any uni-MEM that appears more than a user-defined number of times

in the reference is discarded. In this manuscript, we use the threshold of 1000. This

filter has a strong impact on the performance, since, even if one k-mer from the read

maps to a highly-repetitive region of the reference, the following expensive steps of the

alignment procedure should be performed for every mapping position of the uni-MEM

to find the right alignment for the read, while the less repetitive uni-MEMs also map to
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the true origin of the read on the reference as well. The drawback of this filter is that

for a very small fraction of the reads which are truly originating from a highly-repetitive

region, all of the matched uni-MEMs will be filtered out and no hit remains for aligning

the read. However, we find that in the case of aligning paired-end reads, usually one

end of the read maps to a non-repetitive region, then, the alignment of the other end can

be recovered using orphan recovery (explained in Section 2.2.6). Futheremore, we also

provide a flag –allowHighMultiMappers that mitigates the effect of this filter for a slight

tradeoff on the alignment performance.

uni-MEM compaction: For paired-end reads, PuffAligner aligns each end the read pairs

individually. For each end, all the uni-MEMs are sorted on the basis of their positions on

the reference. Consecutive uni-MEMs with no gap (both on the reference and the read)

are merged into larger MEMs. The compactable uni-MEMs result from terminating the

extension process due to reaching the end of a unitig. Such consecutive uni-MEMs can

be safely compacted to form longer MEMs that will be used later in the MEM chaining

algorithm. After the compaction of uni-MEMs, there is a list of MEMs which are shared

sequences between the query and a set of reference positions, that are sorted based on the

reference positions.

2.2.3 Finding promising MEM chains

As shown in fig. 2.6, having all the MEMs (maximal exact matches) from a read to

each target reference, the goal of this step is to find promising chains of MEMs that cover

the most unique bases in the read in a concordant fashion and that can potentially lead to
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a high quality alignment.

To accomplish this, we adopt the dynamic programming approach used in

minimap2 [12] for finding co-linear chains of MEMs that are likely candidates to support

high-scoring read alignments. As mentioned in minimap2, all the MEMs from a read r

to the reference t, are sorted by the ending position of the MEMs on the reference. Then,

this algorithm computes a score for each set of MEMs based on the number of unique

covered bases in the read, the coverage score is also penalized by the length of the gaps,

both in the read and reference sequence, between each consecutive pair of MEMs.

In PuffAligner, if the distance between two MEMs, m1 and m2, on the read and

the reference is dr and dt respectively, these two MEMs should not be chained together

if |dr − dt| > C, where C is the maximum allowed gap. So, the penalization term, the

β value in [12], in the coverage score computation is modified accordingly to prevent

pairing of such MEMs.

Also, unlike what is done in minimap2 [12], rather than considering together the

MEMs that are discovered on both ends of a paired-end read, we consider the chaining

and chain filtering for each end of the read separately. This is done in order to make

it easier to enforce the orientation consistency of the individual chains. Specifically,

the chaining algorithm that is presented in minimap2 [12] introduces a transition in the

recursion that can be used to switch between the MEMs that are part of one read and

those that are part of the other. However, such switching makes it difficult to enforce the

orientation consistency of the chains that are being built for each end of the read. One

solution to this problem is to add another dimension to the dynamic programming table,

encoding if one has already switched from the MEMs of one read end to the other, and the
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left read right read

reference

m1 m2 m3 m4 m5

Chaining the mems on each end 
- right chains: "m4" and "m5"

one pair: (m1-m2,m4)

- left chains: "m1-m2"

Joining left and right chains Between-Mem alignment 

left read right read

reference

Figure 2.6: This figure shows the main steps of chaining and between-MEM alignment in the
PuffAligner procedure via an example. In this example, m1, m2 and m3 are the
projected MEMs from the left end of the read to the reference and m4 and m5 are
the projected MEMs from the right end of the read. In the first step, the chaining
algorithm chooses the best chain of MEMs that provide the highest coverage score for
each end of the read, that is the m1-m2 chain for the left end and two single MEM
chain for the right end. Then, the selected chains from each end are joined together
to find the concordant pairs of chains, that is the (m1-m2, m4) pair for this read as
m5 is too far from m1-m2. Then, the chain from each end will go through to the
next step, between-MEM alignment. For the green areas (MEMs) no alignment is
recalculated as they are exact matches. Only the un-matched blue parts of the chains
(those nucleotides not occurring within a MEM) are aligned using a modified version
of KSW2.
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recurrence can be modified to allow only one switch from the one read end to the other,

allowing enforcement of orientation consistency. However, we found that, in practice,

simply chaining the read ends separately led to better performance.

Finally, we also adopt the heuristic proposed by minimap2 [12] when calculating

the highest scoring chains. That is, when a MEM is added to the end of an existing chain,

it is unlikely that a higher score for a chain containing this MEM will be obtained by

adding it to a preceding chain. Thus, we consider only a small fixed number of rounds

(by default 2) of preceding chains once we have found the first chain to which we can add

the current MEM.

The chaining algorithm described above finds the best chains of MEMs shared

between the read r and the reference t in orientation o. A chain is accepted if its score

is greater than a configurable fraction, which we call the consensusFraction, times the

maximum coverage score found for the read r to any reference. Throughout all the

experiments in this manuscript the consensusFraction is set to 0.65. If a chain passes the

consensus fraction threshold, we call it a valid chain. Additionally, rather than keeping all

valid chains, we also filter highly-suboptimal chains with respect to the highest scoring

chain per-reference. All valid chains shared between r and t are sorted by their scores, and

chains having scores within 10% of the highest scoring chain for reference t are selected

as potential mappings of the read r to the reference t. While these filters are essential

for improving the throughput of the algorithm in finding the right alignment, they are

carefully selected to have very little effect on the sensitivity of PuffAligner. For all the

experiments in this manuscript, the same default settings of these parameters are used if

not mentioned otherwise.
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2.2.4 Computing base-to-base alignments between MEMs

After finding the high-scoring MEM chains for each reference sequence, a base-to-

base alignment of the read to each of the candidate reference sequences is computed. Each

selected chain implies a position on the reference sequence where the read might exhibit

a high quality alignment. Thus, we can attempt to compute an optimal alignment of the

read to the reference at this implied position, potentially allowing a small bit of padding

on each side of the read. This approach utilizes the positional information provided by

the MEM chains. However, the starting position of the alignments is not the only piece

of information embedded in the chains. Rather each chain of MEMs consists of sub-

sequences of the read (of size at least k, though often longer) which match exactly to

the reference. While the optimal alignment of the read to the reference at the position

being considered is not guaranteed to contain these exact matches as alignments of the

corresponding substrings, this is almost always the case.

In PuffAligner, we aim to exploit the information from the long matches to

accelerate the computation of the alignments. In fact, since only chains with relatively

high coverage score are selected, a large portion of the read sequences are typically

already matched to the positions in the reference with which they will be matched in

the final optimal alignment. For instance, in fig. 2.6, for the final chains selected on

the reference sequence, it is already known for the light blue, dark blue and green sub-

sequences on the left end of the read precisely where they should align to the reference.

Likewise this is the case for the yellow and purple sub-sequences on the right read. The

unmapped regions of the reads are either bordered by the exact matches on both sides, or
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they occur at the either ends of the read sequence. PuffAligner skips aligning the whole

read sequence by considering the exact matches of the MEMs to be part of the alignment

solution. As a result, it is only required to compute the alignment of the small unmapped

regions, which reduces the computation burden of the alignments.

When applying such an approach, two different types of alignment problems are

introduced, which we call bounded sub-sequence alignment and ending sub-sequence

alignment. For bounded sub-sequence alignment, we need to globally align some interval

ir of the read to an interval it of the reference. If ir and it are of different lengths,

the alignment solution will necessarily include insertions or deletions. If ir and it are

of the same length, then the optimal global alignment between them may or may not

include indels. For each such bounded sub-sequence alignment, we determine the optimal

alignment of ir to it by computing a global pair-wise alignment between the intervals, and

stitching the resulting alignment together with the exact matches that bound these regions.

Gaps at the beginning or the end of the read are symmetric cases, and so we

describe, without loss of generality, the case where there is an unaligned interval of the

read after the last MEM shared between the read and the reference. In this case, we need

to solve the ending sub-sequence alignment problem. Here, the unaligned interval of the

read consists of the substring spanning from the last nucleotide of the terminal MEM in

the chain, up through the last nucleotide of the read. There is not a clearly-defined interval

on the reference sequence. While the left end of the relevant reference interval is defined

by the last reference nucleotide that is part of the bounding MEM, the right end of the

reference interval should be determined by actually solving an extension or “end-free”

alignment problem. We address this by performing extension alignment of the unaligned
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interval of the read to an interval of the reference that begins on the reference at the end

of the terminal MEM, and extends for the length of the unaligned query interval plus the

length of some problem-dependent buffer (which is determined by the maximum length

difference between the read and reference intervals that would still admit an alignment

within the acceptable score threshold).

An example of both of these cases is displayed in Figure 2.6. Specifically, an

alignment of the read could be obtained by only solving two smaller alignment problems;

one is the ending sub-sequence alignment of the unmapped region after the green MEM

on the left read and the other is the bounded sub-sequence alignment of region on the

right read bordered by the yellow and purple MEMs.

PuffAligner uses KSW2 [12, 59] for computing the alignments of the gaps between

the MEMs and for aligning the ending sequences. KSW2 exposes a number of alignment

modes such as global and extension alignments. For aligning the bounded regions, KSW2

alignment in the global mode is performed, and for the gaps at the beginning or end of

reads, PuffAligner uses the extension mode to find the best possible alignment of that

region. PuffAligner, by default, uses a match score of 2 and mismatch penalty of 4. For

indels, PuffAligner uses an affine gap scoring schema with gap open penalty of 5 and gap

extension penalty of 3. In PuffAligner, after computing the alignment score for each read,

only the alignments with a score higher than τ times the maximum possible score for the

read are reported. The value of τ is controlled by the option –minScoreFraction, which is

set to 0.65 by default.
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2.2.5 Enhancing alignment computation

By only aligning the read’s sub-sequences that are not included in the MEMs, the

size of alignment problems being solved in PuffAligner are often much shorter than the

length of the read. However, to further speed up alignment, we also incorporate a number

of other techniques to improve the performance of the alignment calculation. We describe

the most important of these below:

• Skipping alignment calculation by recognizing perfect chains and alignment

caching: It is possible to avoid the alignment computation completely in a

considerable number of cases. In fact, as has been explained in previous work [5],

the alignment calculation step can be completely skipped if the set of exact matches

for each chain covers the whole read. PuffAligner skips alignment for cases where

the coverage score of chains of MEMs is the length of the read, and assigns a

total matched CIGAR string for that alignment. Alignment computation of a read

might be also skipped if the same alignment problem has been already detected and

computed for this read. For example, in the case of RNA seq data, reads often map

to the same exons on different transcripts. In such cases, each alignment solution

for a read is stored in a cache (a hash table) so that if the same alignment problem

is detected, the solution can be directly retrieved from the cache, and no further

computation is required (see table 2.5).

• Early stopping of the alignment computation when a valid score cannot be

achieved: While care is taken to produce only high-scoring chains between the

63



sample Cache Hits Perfect Chains None Alignable Total Skipped

DNA-seq experimental 52.894% 19.008% 0.710% 72.670%
RNA-seq simulated 28.692% 50.803% 0.970% 80.460%
Metagenomic simulated 61.096% 31.334% 0.000 % 92.430%

Table 2.5: The percentage of aligner engine calls skipped in the alignment calculation pipeline.

read and reference, it is nonetheless the case that the majority of the chains do

not lead to an alignment of acceptable quality. Since the minimum acceptable

alignment score is immediately known based on τ and the length of the read, the

base-to-base alignment calculation can be terminated at any point where it becomes

imposible for the minimum required alignment score to be obtained. This approach

can be applied both during the KSW2 alignment calculation, and also after the

alignment calculation of each gap is completed. During this procedure, for each

base at position i, starting from position 1 on the read of length n, if the best

alignment score p up to the i-th position is si, we can calculate the maximum

possible alignment score, smax, that might be achieved starting at this location given

the current alignment score by:

smax = si +MS ∗ (n− si), (2.2)

where MS is the score assigned to each match. If smax is smaller than minimum

required score for accepting the alignment, the alignment calculation can be

immediately terminated, since it is already known that this anchor is not going

to yield a valid alignment for this read.

• Full-sensitivity banded alignment: KSW2 is able to perform banded alignment to
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make alignment calculation more efficient. In this mode, the dynamic programming

matrix for the alignment problem is only filled out along the sub-diagonals out to a

certain distance d away from the main diagonal. If one is guaranteed that any valid

alignment must have fewer than d insertions or deletions, then the alignment must

not exit these bands of the dynamic programming matrix. Note that alignments with

> d indels can be represented within these bands as insertions and deletions move

in opposite anti-diagonal directions, but it is certainly the case that no alignment

with ≤ d indels can exit these bands. By calculating the maximum number of gaps

(insertions or deletions) allowed in each sub-alignment probem, in a way that we are

certain that any alignment having greater than this number of gaps must drop below

the acceptable threshold, we utilize the banded alignment in KSW2 within each

sub-alignment problem without losing any sensitivity with respect to non-banded

alignment.

2.2.6 Joining mappings for read ends and orphan recovery

Finally, once alignments have been computed for the individual ends of a read,

they must be paired together to produce valid alignments for the entire fragment. At

this point in the process, on each reference sequence, there are a number of locations

where the left end of each read or the right end of each read, or both, are mapped to

the reference. For the purpose of determining which mappings will be reported as a

valid pair, the mappings are joined together only if they occur on opposite strands of the

reference, and if they are within a maximum allowed fragment length. There are two
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different types of paired-end alignments that can be reported by PuffAligner; concordant

and discordant. If PuffAligner is disallowed from reporting discordant alignments, then

the mapping orientation of the left and right end should agree with the library preparation

protocols of the reads. PuffAligner first tries to find concordant mapping pairs on a

reference sequence, and if no concordant mapping is discovered and the tool is being

run in a mode where discordant mappings are allowed, then PuffAligner reports pairs that

map discordantly. Here, discordant pairs may be pairs that do not, for example, obey the

requirement of originating from opposite strands. While this is not expected to happen

frequently, it may occur if there has been an inversion in the sequenced genome with

respect to the reference.

Orphan recovery: If there is no valid paired-end alignment for a fragment (either

concordant or discordant, if the latter is allowed), then PuffAligner will attempt to

perform orphan recovery. The term “orphan” refers to one end of paired-end read that

is confidently aligned to some genomic position, but for which the other read end is

not aligned nearby (and paired). To perform orphan recovery, PuffAligner examines the

reference sequence downstream of the mapped read (or upstream if the mapped read is

aligned to the reverse complement strand) and directly performs dynamic programming

to look for a valid mapping of the unmapped read end. For this purpose, we use the

“fitting” alignment functionality of edlib [37] to perform a simple Levenshtein distance

based alignment that will subsequently be re-scored by KSW2. Finally, if, after attempting

orphan recovery, there is still no valid paired-end mapping for the fragment, then orphan

alignments are reported by PuffAligner (unless the “--noOrphans” flag is passed).
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2.2.7 Assessing PuffAligner’s performance

For measuring the performance of PuffAligner and comparing it to other aligners,

we have designed a series of experiments using both simulated and experimental data

from different sequencing assays. We compare PuffAligner with Bowtie2 [8], STAR [10]

and deBGA [11]. Bowtie2 is a popular, sensitive and accurate aligner with the benefit

of having very modest memory requirements. STAR requires a much larger amount

of memory, but is much faster than Bowtie2 and can also perform “spliced alignment”

against a reference (which PuffAligner, Bowtie2, and deBGA currently do not allow).

DeBGA, is most-related tool to PuffAligner conceptually, as it is an aligner with a colored

compacted de Bruijn graph-based index that is focused on exploiting redundancy in the

reference sequence.

We use different metrics to assess both the performance and accuracy of each

method on a variety of types of sequencing samples. These experiments are designed

to cover a variety of different use-cases for an aligner, spanning the gamut from

situations where most alignments are expected to be unique (DNA-seq), to situations

where each fragment is expected to align to many loci with similar quality (RNA-

seq and metagenomic sequencing), and spanning the range of index sizes from small

transcriptomes to large collections of genomes.

First, we show PuffAligner exhibits similar accuracy for aligning DNA-seq reads

to Bowtie2, but it is considerably faster. In the case of experimental reads, since the true

origin of the read is unknown, we use measures such as mapping rate and concordance

of alignments to compare the methods. Furthermore, we evaluate the accuracy of
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aligners by aligning simulated DNA-seq reads that include variation (single-nucleotide

variants and small indels with respect to the reference). For aligning RNA-seq reads,

we compare the impact of alignments produced by each aligner on downstream analysis

such as abundance estimatation. Finally, we show PuffAligner is very efficient for

aligning metagenomic samples where there is a high degree of shared sequence among

the reference genomes being indexed. We also illustrate that using alignments produced

by PuffAligner yields the highest accuracy for abundance estimation of metagenomic

samples.

2.2.8 Configurations of aligners in the experiments

The performance of each tool is impacted by the different alignment scoring

schemes they use, e.g. different penalties for mismatches, and indels. To enable a fair

comparison, we attempted to configure the tools so as to minimize divergences that simply

result from differences in the scoring schemes. For the experiments in this section, we

use Bowtie2 in a near-default configuration (though ignoring quality values), and attempt

to configure the other tools, as best as possible, to operate in a similar manner.

The deBGA scoring scheme is not configurable, so we use this aligner in

the default mode (unfortunately, the inability to disable local alignment and forcing

just computation of end-to-end alignments in deBGA makes certain comparisons

particularly difficult). For PuffAligner we use a scheme as close to Bowtie2 as

possible. The maximum possible score for a valid alignment in Bowtie2 is 0 (in

end-to-end mode) and each mismatch or gap subtracts from this score. Bowtie2
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uses an affine gap penalty scoring scheme, where opening and extending a gap

(insertion or deletion) have a cost of 5 and 3 respectively. For DNA-seq reads,

we configure STAR to allow as many mismatches as Bowtie2 and PuffAligner

by setting the options “--outFilterMismatchNoverReadLmax 0.12” and

“--outFilterMismatchNmax 1000”. Also, we use “--alignIntronMax 1”

in STAR to perform non-spliced alignments while aligning genomic reads. For RNA-seq

reads, STAR has a set of parameters which we change in our result evaluations, and which

are detailed below in the relevant sections.

In Bowtie2 we also use the option --gbar 1 to allow gaps anywhere on the

read except within the first nucleotide (as the other tools have no constraints on where

indels may occur). Furthermore, for consistency, we also run Bowtie2 with the option

“--ignore-quals”, since the other tools do not utilize base qualities when computing

alignment scores.

As explained in Section 2.2.2, for the sake of performance, highly repeated anchors

(more than a user-defined limit) will be discarded before the alignment phase. This

threshold is by default equal to 1000 in PuffAligner. We set the threshold to the same

value for STAR and deBGA using options --outFilterMultimapNmax 1000 and

-n 1000 respectively. There is no such option exposed directly in Bowtie2.

Since PuffAligner finds end-to-end alignments for the reads, we are also running

other tools in end-to-end mode, which is the default alignment mode in Bowtie2 as well.

In STAR we enable this mode using the option --alignEndsType EndToEnd. In

the case of deBGA, although the documentation suggests it is not supposed to find local

alignments by default, the output SAM file contains many reads with relatively long soft
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clipped ends, so if a read is not aligned end-to-end, deBGA reports the local alignment

for that. We were not able to find any option to force deBGA to perform end-to-end

alignments for all reads, and so we have compared it in the configuration in which we

were able to run it.

For aligning DNA-seq samples, each aligner is configured to report a single

alignment, which is the primary alignment, for each read. Bowtie2 outputs

one alignment per read by default. To replicate this in the other tools, we

use the option --outSAMmultNmax 1 in STAR, -o 1 -x 1 in deBGA, and

--primaryAlignment in PuffAligner.

2.2.9 Alignment of whole genome sequencing reads

First, we evaluate the performance of PuffAligner with a whole genome sequencing

(WGS) sample from the 1000 Genomes project [60]. We downloaded the ERR013103

reads from sample HG00190, which is a low-coverage sample from a Finnish male,

sequenced in Finland. 4. There are 18, 297, 585 paired-end reads, each of length 108

nucleotides in this sample. Using fastp [61], we remove low quality ends and adapter

sequences from these reads. After trimming, there are 15, 404, 412 reads remaining in the

sample. Indices for each of the tools are built over all DNA chromosomes of the latest

release of the human genome (v33) by gencode5 [62].

In this experiment, all aligners are configured report only concordant alignments,

i.e., only pairs of alignments that are cocordant and within the “maximum fragment

4https://www.internationalgenome.org/data-portal/sample/HG00190
5https://www.gencodegenes.org/human/release 33.html
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length” shall be reported. The maximum fragment length in all aligners is set to

1000, using the option --alignMatesGapMax 1000 in STAR, --maxins 1000 in

Bowtie2 and -u 1000 -f 0 in deBGA. The default value for the maximum fragment

length in PuffAligner is set to 1000, the user can cofigure this value by using the flag

--maxFragmentLength. This concordance requirements also prevents Bowtie2,

PuffAligner, and STAR from aligning both ends of a paired end read to the same strand.

The alignment rate, run-time memory usage and running time for all the aligners are

presented in table 2.6. The reason that deBGA has the highest mapping rate in table 2.6

compared to other tools is that it is local alignments for the reads that are not alignable

end-to-end under the scoring parameters for the other tools. Bowtie2 and PuffAligner

are both able to find end-to-end alignments for about ∼ 95% of the reads. STAR and

PuffAligner are the fastest tools, with STAR being somewhat faster than PuffAligner.

On the other hand, PuffAligner is able to align more reads than STAR, while requiring

less than half as much memory. The memory usage of Bowtie2 is the smallest, since

Bowtie2’s index does not contain a hash table. However, this comes at the cost of having

the longest running time compared to other methods. Overall, PuffAligner benefits from

the fast query of hash based indices while its run-time memory usage, which is mostly

dominated by the size of the index, is significantly smaller than other hash based aligners.

Although deBGA’s index is based on the de Bruijn graphs, similar to the Pufferfish index,

the particular encoding for it is not as space-efficient as that of Pufferfish.

To look more closely how the mappings between the tools differ, we investigate

the agreement of the reads which are mapped by each tool and visualize the results in

an upset plot in fig. 2.7 using the UpsetR library [63]. We are only comparing the three
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aligner mapping-rate(%) time (mm:ss) memory (GB)

PuffAligner 95.583 6:14 13.091
deBGA 99.753 10:46 41.041
STAR 93.881 4:29 30.358
Bowtie2 95.443 16:15 3.501

Table 2.6: The performance of different tools for aligning experimental DNA-seq reads. The time
reports are benchmarked after warming up the system cache so that the influence of
index loading time is mitigated.
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tools for each read.
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Figure 2.8: Caomparing the alignments in terms of agreement of the alignments found by different
tools based on the location of the mappings.

methods which perform end-to-end alignment in this plot, since outliers from the local

alignments computed by deBGA would otherwise dominate the plot. The first bar shows

that the majority of the reads are mapped by all three tools. The next largest set represents

the reads which are only mapped by Bowtie2 and PuffAligner. All the other sets are much

smaller compared to the first two sets. This fact illustrates that the highest agreement in

the aligners is between Bowtie2 and PuffAligner. Exploring a series of individual reads

from the smaller sets in the upset plot, suggests that some of these differences happen as

a result of small differences in the scoring configuration, while some result from different

search hueristics adopted by the different tools. fig. 2.8 shows the coherence between the

alignments reported by the tools by also including the exact location to which the reads

are aligned in the reference.
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2.2.10 Alignment of simulated DNA-seq reads in the presence of

variation

To further investigate the accuracy of the aligners, we used simulated DNA-seq

reads. One of the main differences between simulated reads and experimental reads is

that simulated reads are often generated from the same reference sequences to which

they are aligned, with the only differences being due to (simulated) sequencing error.

While (simulated) sequencing error prevents most reads from being exact substrings of

the reference, it actually does not tend to complicate alignment too much. On the other

hand, while dealing with experimental data, the genome of the individual from which

the sample is sequenced might include different types of variations with respect to the

reference genome to which we are aligning [2]. Therefore, it is desirable to introduce

variations in the simulated samples, and to measure the robustness and performance of

the different aligners in the presence of the variation. Mason [64] is able to introduce

different kinds of variations to the reference genome, such as SNVs, small gaps, and also

structural variants (SV) such as large indels, inversions, translocations and duplications.

We use Mason to simulate 9 DNA-seq samples with different variation rates ranging from

1e − 7 to 1e − 3. Each sample includes 1M paired-end Illumina reads of 100bp length

from chromosome 21 of the human genome, ensembl release 98 6.

For this analysis, we do not restrict the aligners to only report concordant

alignments, since the structural variations in the samples can lead to valid discordant

alignments, such as those on the same strand or with inter-mate distances larger than

6ftp://ftp.ensembl.org/pub/release-98/fasta/homo sapiens/dna/
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Figure 2.9: Comparing the accuracy of aligners in the presence of different rates of variations in
the reference genome in terms of the precision of the alignments reported by each
aligner. True positives (TP) are the compatible reads that are aligned to the original
location, and the FP set consists of both the compatible reads aligned to sub-optimal
locations (alignments with larger edit distance than the alignment to the original
location) and the non-compatible reads that are aligned with high (> 25) edit distance.
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Figure 2.10: Comparing the accuracy of aligners in the presence of different rates of variations in
the reference genome in terms of the ratio of the alignments in the true SAM file that
are recovered by each aligner. The recall is the result of dividing the number of TP
reads by the total number of compatible reads.
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the maximum fragment length. To be specific, we do not use the options which limit

Bowtie2 and PuffAligner to report only concordant alignments, in addition, we use the

option “--dovetail” in Bowtie2 to consider dovetail pairs as concordant pairs.

The alignments reported by deBGA already include discordant pairs and also

orphan mappings. Furthermore, To remove any restrictions on the fragment length

in the alignments reported by deBGA, we set the minimum and maximum insert size,

respectively to 0 and the 50000, since setting a larger value resulted in the tool running

into segmentation fault.

To allow dovetail pairs and also larger gaps between the pairs in STAR, we use the

following options:

“--alignEndsProtrude 1000000 ConcordantPair”

“--alignMatesGapMax 1000000”

By default there is not a specific option in STAR for allowing orphan alignment of paired

end reads. Instead, we can increase the number of allowed mismatches to be as large as

one end of the read by using the following options:

“--outFilterMismatchNoverReadLmax 0.5”

“--outFilterMismatchNoverLmax 0.99”

“--outFilterScoreMinOverLread 0”

“--outFilterMatchNminOverLread 0”

For each sample, Mason produces a SAM file which includes the alignment of

the simulated reads to the original, non-variant version of the reference — the version

which was used for building the aligner’s indices in this experiment. Based on the

alignments reported in the truth file, some reads did not have a valid alignment to the
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original reference. This was the result of a high rate of variations at some sequencing

sites. We called the set of reads that, according to the truth SAM file, were aligned to the

original reference as compatible reads.

We compared the performance of aligners based upon how well they are able to

align the compatible reads. We computed the precision and recall of the alignments

reported for these reads as follows. True positives are considered the reads that are

mapped by the aligner to the same location stated by the truth file. Then, recall is

computed by dividing the number of true positives by the number of all compatible reads.

Furthermore, we considered an alignment as a false positive in two different cases. First,

an alignment was considered discordant if the reported alignment had a large edit distance

(larger than 25) for the non-compatible reads. Second, in the case that an aligner reported

an alignment to a location other than the one in the truth file, it was considered as a false

positive if the edit distance of the reported alignment is greater than the edit distance of

the true alignment. Having defined the set of TP and FP for the alignments, and also

having considered the set of all compatible reads as the set we are trying to recover, we

computed precision and recall for the set of alignments reported by each aligner.

Figure 2.10 shows the precision and recall of the aligners for different samples.

According to fig. 2.10, for lower variation ratios up until 10e − 5, most of the tools

are able to make accurate alignment calls with a high specificity. As the variation ratio

introduced in the sample is increased, all the tools start to have lower precision and recall.

deBGA and STAR perform worse in higher variation samples, as they fail to recover the

true alignment for more reads, while Bowtie2 and PuffAligner are able to align most of

the reads to their true location on the original reference.

77



These results show that PuffAligner’ accuracy is stable in the face of variation which

makes the tool suitable for datasets that are known to have substantial variation, such as

when aligning reads to microbial genomes where the specific sequenced strain may not

be represented in the reference set.

2.2.11 Quantification of transcript abundance from RNA-seq reads

Mapping sequencing reads to target transcriptomes is the initial step in many

pipelines for reference-based transcript abundance estimation. While lightweight

mapping approaches [26, 27] greatly speed-up abundance estimation by, in part, eliding

the computation of full alignment between reads and transcripts, there is evidence that

alignments still yield the most accurate abundance estimates by providing increased

sensitivity and avoiding spurious mappings [2, 5, 65]. Thus, the continued development

of efficient methods for producing accurate transcriptome alignments of RNA-seq reads

remains a topic of interest. In this section, we compare the effect of alignments produced

by each tool on the accuracy of RNA-seq abundance estimation.

We generated 9,968,245.000 paired-end RNA-seq reads using the Polyester [66]

simulator. The reads are generated by the simulate experiment countmat

module in Polyester. The input count matrix is calculated based on the estimates from

the Bowtie2-Salmon pipeline on the sample SRR1085674 (where reads are first aligned

with Bowtie2 and then the alignments are quantified using Salmon). This sample is a

collection of paired-end RNA-seq reads sequenced from human transcriptome using an

Illumina HiSeq [67]. The human transcriptome from gencode release (33) is used to build
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aligner spearman MARD time (mm:ss) memory (GB)

PuffAligner 0.920 0.052 1:17 2.543
deBGA N/A N/A 5:19 9.965
STAR- transcriptome 0.920 0.053 1:57 8.734
STAR- genome 0.901 0.064 3:30 32.573
Bowtie2 0.920 0.053 32:59 1.146

Table 2.7: Abundance estimation of simulated RNA-seq reads, computed by Salmon, using
different tools’ alignment outputs. The time and memory are only for the alignment
step of each tool and the time for abundance estimation by Salmon is not considered.

all the aligners’ indices. Also, for building STAR’s index in the genome mode, the human

genome and the comprehensive gene annotation (main annotation file) is obtained from

the same release of gencode.

As the reads in this experiment are RNA-seq reads sequenced from the human

transcriptome, it is important to account for multi-mapping, as often, a read might map to

multiple transcripts which share the same exon or exon junction. This property makes

the direct evaluation of performance at the level of alignments difficult. Therefore,

a typical approach in evaluating the accuracy of the transcriptomic alignments is to

assess the accuracy of downstream analysis such as abundance estimations by computing

the correlation and relative differences of the estimates with the true abundance of the

transcripts. To compare the accuracy of each tool we give the alignments produced by

each aligner, which are in the SAM format, as input to Salmon to estimate the transcript

expressions.

PuffAligner, by default, outputs up to 200 alignments with an alignment score

greater than 0.65 times the best alignment score, i.e., the alignment for the read in the

case that all bases are perfectly matched to the reference. To enable the multi-mapping to

take into account the characteristics of alignment to the transcriptome, Bowtie2 is run with
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the option -k 200 which lets the tool output up to 200 alignments per read. The value

of 200 is adopted from the suggested parameters for running RSEM [68] with Bowtie2

alignments. We note that running Bowtie2 with this option makes the tool considerably

slower than the default mode, as many more alignments will be computed and output to

the SAM file under this configuration. For both Bowtie2 and PuffAligner, and also for

STAR by default, orphan and discordant mappings are not allowed.

We ran STAR with the ‘ENCODE‘ options, which are recommended in the STAR

manual for RNA-seq reads. STAR is also run in two different modes, one is by building the

STAR index on human genome, while it is also provided a GTF file for gene annotation. In

this mode, STAR performs spliced alignment to the genome, then projects the alignments

onto transcriptomic coordinates. The other mode is building the STAR index on the human

transcriptome directly, which allows STAR to align the RNA-seq reads directly to the

transcripts in an unspliced manner. We chose to run STAR in the transcriptomic mode as

well, since we find that it yields higher accuracy, though this increases the running time

of STAR.

The deBGA index is built on the transcriptome, as are the Bowtie2 and PuffAligner

indices, since these tools do not support spliced read alignment. DeBGA is run in the with

options -o 200 -x 200, which nominally has the same effect as -k 200 in Bowtie2,

according to the documentation of deBGA.

Accuracy of abundance estimation by Salmon, when provided the SAM output

generated by each aligner, is displayed in table 2.7. The timing and memory benchmarks

provided in this table is only for the alignment step. Alignments produced by PuffAligner,

Bowtie2 and STAR in the transcriptomic mode produce the best abundance estimates.
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DeBGA’s output alignments are not suitable for any abundance estimation as many

reads are aligned only to the same strand which are later filtered during the abundance

estimation by Salmon, so we could not provide a meaningful correlations for abundance

estimation using deBGA’s alignments. Aligning the reads by STAR to genome and then

projecting to transcriptomic coordinates does not generate as high correlation as directly

aligning the reads to the transcriptome by STAR. However, we note that, as described

by Srivastava et al. [2], there are numerous reasons to consider alignment to the entire

genome that are not necessarily reflected in simulated experiments. While the memory

usage by PuffAligner is only 2 fold larger than memory used by Bowtie2, it computes the

alignments much more quickly.

According to the results in table 2.7 PuffAligner is the fastest aligner in these

benchmarks, and the accuracy as high as Bowtie2 and STAR for aligning RNA-seq reads.

Here, PuffAligner leads to the most accurate abundance estimates, while being 30 times

faster than Bowtie2. Moreover, The memory usage is much less than other fast aligners

such as STAR.

2.2.12 Alignment to a collection of microorganisms — simulated short

reads

To demonstrate the performance and accuracy of PuffAligner for metagenomic

samples, we designed two different experiments. One main property of metagenomic

samples is the high similarity of the reference sequences against which one typically

aligns, where a pair (or more) of references may be more than 90% identical. The first
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experiment we designed for this scenario, to specifically evaluate issues related to this

challenge, we call the “single strain” experiment. Additionally, metagenomic samples

also have the property of containing reads from a variety of genomes, some of which are

not even assembled yet – and hence unknown. This leads to the second experiment, which

we call the “bulk” experiment, that compares the aligners in the presence of a high variety

of species in the sample in addition to the high similarity of references.

For simplicity and uniformity, all the experiments have been run in the concordant

mode for both PuffAligner and Bowtie2 (both of which support such an option),

disallowing orphans and discordant alignments. All aligners are run in three different

confiurations, allowing three specific maximum numbers of alignments per fragment; 1

(primary output with highest score, breaking ties randomly), 20, and 200. PuffAligner

and STAR, as the only tools that support this option, also are run in the bestStrata mode.

In this mode, the aligner outputs all equally-best alignments for a read with highest score

without the limitation on number of reported alignments. This option is inspired by the

similarly-named option in Bowtie [69]. However, unlike Bowtie, PuffAligner and STAR

only make a best-effort attempt to find the score of the best stratum alignments, and do

not guarantee to find the best stratum (though the cases in which they fail to seem to

be exceedingly rare). This option is especially useful in the metagenomic analyses, as

we will report only the best-score alignments without having an arbitrary limitation on

the number of allowed alignments. This allows proper handling of highly multi-mapping

metagenomic reads. In other words, using this option, one can achieve a high sensitivity

without the need to hurt specificity. The details of each experiment is explained in the

following sections.
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2.2.13 A single-strain Experiment

For this experiment, we download the viral database from NCBI, and choose three

similar coronavirus genomes. This set includes one of the recently-uploaded samples

from Wuhan [70, 71]. We select three very similar viral genomes to simulate reads

from, which are: NC 045512.2, NC 004718.3, and NC 014470.1. There are also a lot

of literature discussing the similarity in sequence and behavior for these three species of

coronavirus [72, 73, 74]. The first is the complete genome for severe acute respiratory

syndrome coronavirus 2 isolate Wuhan-Hu-1 known as Covid19 with length of 29, 904

bases. NC 004718.3 is the ID of SARS coronavirus complete genome (length: 29, 752)

and finally, NC 014470.1 is a Bat coronavirus BM48-31/BGR/2008 complete genome

(length: 29, 277).

We use Mason [64] to generate three simulated samples, each sample contains

500, 000 reads only from one of the three viral references we mentioned earlier. Then,

reads were aligned back to the database of viral sequences using each of the four aligners.

The results are shown in table 2.8 for the reads simulated from the covid19 strain.

As the results show, the alignments of all aligners, except for deBGA, are distributed

only across the three references of interest out of all the reference sequences in the

complete viral database. deBGA reports only a few alignments to a forth virus. In

general, all of the aligners do a good job of reporting the correct alignment among the

returned alignments for each read. Here, we are more interested in exploring how sub-

optimal alignments are computed and filtered under different settings when aligning to

a collection of very similar genomes. The results show that all tools have very high
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sensitivity even when considering only a single (primary) alignment per read. As we

allow more alignments to be reported, the sensitivity increases and quickly levels off for

all the tools. On the other hand, more alignments are generated and Bowtie2, in particular,

generates a considerable number of extra alignments as the maximum number of allowed

reported alignments is increased. However, the results do not change when allowing more

than 20 alignments, which means no more than 20 alignments ever pass the alignment

score threshold for these reads in the viral database for any of the tools we are testing.

The results indicate that, when allowing more than one alignment to be reported

for every read, Bowtie2 tends to report a large number of sub-optimal (yet, still valid)

alignments compared to other tools. These are alignments that are accepted within the

alignment score threshold, but are to another target than the one from which the read truly

originates. Generating these sub-optimal alignments is in no way wrong, but it has a non-

trivial computational cost, as shown in fig. 2.11, even if these alignments are not used in

downstream analysis. Further, the score of the best alignment for each read is specific to

that read and not known ahead of time, meaning that this situation cannot be completely

addressed simply by setting more stringent parameters for which alignment scores should

be allowed. This behavior of Bowtie2 gives the other tools a computational advantage

when the user only truly requires the set of equally-best alignments for each read.

Interestingly, there is one read that all tools, except for PuffAligner fail to properly

align. Inspecting this alignment reveals it is a valid alignment within the range of the

acceptable scoring threshold, and it is unclear why it is not discovered by the other

tools. Overall, the aligners tested perform very well here in reporting the true strain

of origin without reporting too many extra alignments. Interestingly, despite changing the
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parameters to allow more alignments, STAR tends to return the same set of alignments

under all configurations in this experiment. Figure 2.11 shows that PuffAligner has the

lowest running time, even when the number of allowed alignments per read increases.

BestStrata Mode In this small example, all tools showed good sensitivity (and

PuffAligner and STAR showed near-perfect sensitivity) even when reporting only a single-

alignment per read. This experiment is, of course, an atypically small test for multi-

mapping read. In in larger samples, with reads deriving from more organisms and

a larger database of references, permitting more alignments usually yields non-trivial

improvements in sensitivity. To control the rate of reporting sub-optimal alignments,

PuffAligner supports the “best strata” option – also available to STAR, which allows

only the alignments with the best calculated score to be reported (as a replacement for

maximum allowed number of alignments). Using this option, PuffAligner achieves full

specificity and sensitivity in this experiment table 2.8. We further demonstrate the positive

impact of this option on the alignment of bulk metagenomic samples in the next section.

2.2.14 Experiments with a mixture of organisms

We chose a random set of 4000 complete bacterial genomes downloaded from the

NCBI microbial database and constructed the indices of PuffAligner, Bowtie2, STAR, and

deBGA on the selected genomes. Figure 2.13 shows the time and memory required for

constructing each of the indices, while the size of the final index on disk is displayed

in fig. 2.12. Overall, PuffAligner and Bowtie2 show a similar trend in time and memory

requirements, while STAR and deBGA require an order of magnitude more memory. In
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Alignment Mode Tool NC 045512.2 NC 004718.3 NC 014470.1 Others

Primary

PuffAligner 500,000.000 0.000 0.000 0.000
Bowtie2 499,981.000 18 0.000 0.000
STAR 499,999.000 0 0.000 0.000
deBGA 499,991.000 0 0 9

Up to 20

PuffAligner 500,000.000 134.000 46.000 0.000
Bowtie2 499,999.000 21,461.000 2,311.000 0.000
STAR 499,999.000 0.000 0.000 0.000
deBGA 499,991.000 0.000 0.000 9.000

Up to 200

PuffAligner 500,000.000 134.000 46.000 0.000
Bowtie2 499,999.000 21,461.000 2,311.000 0.000
STAR 499,999.000 0.000 0.000 0.000
deBGA 499,991.000 0.000 0.000 9.000

Best strata
PuffAligner 500,000.000 0.000 0.000 0.000
STAR 499,999.000 0.000 0.000 0.000

Table 2.8: Alignment Distribution for 500000 simulated reads from reference sequence
NC 045512.2 (known as covid19). The best specificity is achieved by PuffAligner in
bestStrata mode (as well as the primary mode). In this simulated sample, many
alignments are not ambiguous, resulting in the good performance observed when using
only primary alignments. However, typically in metagenomic analysis, many equally-
good alignments exist, and selecting only one is equivalent to making a random choice.
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terms of the final index size, Bowtie2 has the smallest index, PuffAligner has the second-

smallest, and STAR has the largets.

For simulating a bulk metagenomic sample, we generated a list of simulated whole

genome sequencing (WGS) reads through the following steps:

• Select a real metagenomic WGS read sample

• Align the reads of the chosen real experiment to the 4000 genomes using Bowtie2,

limiting Bowtie2 to output one alignment per read.

• Choose all the references with count greater than C from the quantification results.

This defines the read distribution profile that we will use to simulate data.

• For each of the expressed references, use Mason [64], a whole genome sequence

simulator, to simulate 100bp paired-end reads with counts proportional to the

reported abundance estimates so that total number of reads is greater than a

specified value n. In this step we ran Mason with default options.

• Mix and shuffle all of the simulated reads from each reference into one sample

which is used as the mock metagenomic sample.

We selected three Illumina WGS samples that are publicly available on NCBI. A

soil experiment with accession ID SRR10948222 [75] from a project for finding sub-

biocrust soil microbial communities in the Mojave Desert. The sample has ∼ 27M

paired-end reads, containing a mixture of genomes from various genera and families.

However, less than 200k of the reads in the sample were aligned to the strains present

in our database, leading the selection of 98 species from a variety of genera. We scaled
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Table 2.9: Basic information for samples selected for simulating mock bulk metagenomic
samples. The SRR10948222 sample is collected for Finding sub-biocrust soil
microbial communities in Mojave Desert, California, United States. The SRR11283975
sample collected from the Jiaodong Peninsula, China to study the impact of different
acidification degrees on the bacterial community. The SRR11496426 sample is
collected from the oil site of Uzon Caldera to study the composition, genetics
characteristics and structure of the microbial communities.

Accession # of reads

# of reads
aligned to
4k selected
reference

# of simulated reads

# of references of
origin
for the simulated
reads

SRR10948222 27,296,270 200k 5,550,650 98

SRR11283975 35.5k 8,333 1,012,176 92

SRR11496426 42.3k 30,203 1,029,382 179

the read counts in the simulation to ∼ 50M reads. The other two selected samples are

SRR11283975 and SRR11496426 the details of which are explained in table 2.9. In

this section we only report the performance of the tools on the first sample.

The assessment of “accuracy” directly from the aligned reads is not a trivial task.

Due to the high rate of multi-mapping in these simulated samples, and due to the fact that

multiple references can produce alignments of the same quality as the “true” origin of the

read, we calculate the accuracy by comparing the true and estimated abundances using

a quantification tool (in this case, Salmon) rather than by comparing the read alignments

directly.

In table 2.10 the accuracy metrics are calculated over the abundance estimations

obtained using the alignments produced by running the aligners in the different modes

specified. The list of metrics for metagenomic expression evaluations have been chosen

to be similar to previous work such as in Bracken [76] and Karp [77].
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The metrics selected are Spearman Correlation, Mean Absolute Relative Difference

(MARD), Mean Absolute Error (MAE), and Mean Squared Log Error (MSLE). Each

metric measures different characteristics of the predicted versus true abundance estimates.

For example, lower MARD indicates better distribution of the reads among the references

relative to the abundance of each reference, while MAE shows the quality of the

distribution of the reads in a more absolute way regardless of the difference between

the abundance of the references. In this case, one misclassified read has the same impact

on the MAE metric both for a high-abundance and low-abundance reference.

This experiment leads to three main observations. First, regardless of the alignment

mode, quantifications derived from the deBGA alignments seem to lead to systematic

underestimation of abundance. However, PuffAligner, STAR and Bowtie2, show very

similar behavior with respect to accuracy. STAR is the best in primary mode as well as

when allowing 20 alignments, closely followed by PuffAligner. When allowing up to 200

alignments per read, Bowtie2 tends to yield the most accurate abundances, again with

PuffAligner being the close runner-up. These results demonstrate that PuffAligner is a

reliable alignment tool showing a stable pattern of being comparable to the best aligner

under all the scenarios tested. That is, the good performance of PuffAligner is robust

across a variety of different parameter settings.

Moreover, due to the nature of the metagenomic data — the high degree of

ambiguity and multi-mapping — we expect to see improvement in the accuracy metrics

as more alignments are reported per read, as this leads to a higher recall. While STAR’s

accuracy changes only slightly from 20 alignments to 200 alignments (only improving

MAE) the results for PuffAligner and Bowtie2 improve considerably when allowing more
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Accession ID
Alignment
Mode

Tool Spearman MARD MAE MSLE

SRR11283975
Jiandong
Peninsula

Primary

PuffAligner 0.71 0.024 0.426 0.044

Bowtie2 0.615 0.04 0.640 0.071

STAR 0.727 0.02 0.406 0.039

deBGA 0.274 0.521 106.776 3.788

Up to 20

PuffAligner 0.942 0.003 0.074 0.002

Bowtie2 0.909 0.005 0.049 0.004

STAR 0.946 0.003 0.087 0.002

deBGA 0.277 0.489 101.385 3.366

Up to 200

PuffAligner 0.979 0.001 0.068 0.000

Bowtie2 0.97 0.002 0.039 0.001

STAR 0.951 0.003 0.086 0.001

deBGA 0.278 0.483 100.961 3.293

Best strata
PuffAligner 0.979 0.001 0.063 0.000

STAR 0.951 0.003 0.086 0.001

SRR11496426
Uzon Caldera

Primary

PuffAligner 0.568 0.112 32.552 0.953

Bowtie2 0.53 0.14 38.062 1.101

STAR 0.559 0.118 31.823 0.825

deBGA 0.367 0.566 115.882 3.569

Up to 20

PuffAligner 0.789 0.03 7.426 0.239

Bowtie2 0.74 0.042 10.834 0.304

STAR 0.713 0.049 6.939 0.165

deBGA 0.368 0.554 109.289 3.317

Up to 200

PuffAligner 0.865 0.017 5.635 0.105

Bowtie2 0.879 0.015 7.208 0.134

STAR 0.724 0.045 6.496 0.133

deBGA 0.369 0.549 108.986 3.273

Best strata
PuffAligner 0.85 0.019 5.571 0.092

STAR 0.723 0.046 6.544 0.134

SRR10948222
Mojave Desert

Primary

PuffAligner 0.69 0.028 1.390 0.075

Bowtie2 0.58 0.053 2.910 0.153

STAR 0.727 0.023 1.493 0.048

deBGA 0.28 0.616 656.080 6.530

Up to 20

PuffAligner 0.9 0.006 0.400 0.006

Bowtie2 0.85 0.01 0.220 0.012

STAR 0.929 0.004 0.303 0.002

deBGA 0.28 0.573 637.600 5.650

Up to 200

PuffAligner 0.97 0.002 0.360 0.001

Bowtie2 0.99 0.001 0.190 0.000

STAR 0.929 0.004 0.299 0.002

deBGA 0.28 0.571 637.830 5.550

Best strata
PuffAligner 0.97 0.002 0.36 0.001

STAR 0.929 0.004 0.3 0.002

Table 2.10: Accuracy of abundance estimation with Salmon using alignments reported by each
aligner for the mock samples simulated from the real samples with accession IDs
SRR10948222, SRR11283975 and SRR11496426. We have run all the aligners
in three main modes; allowing only one best alignment with ties broken randomly
(Primary), up to 20 alignments reported per read, and up to 200 alignments reported
per read. PuffAligner and STAR also support a mode that allows reporting all equally
best alignments (bestStrata).
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alignments per read. However, this higher accuracy comes in the cost of alignment time

for Bowtie2. As shown in fig. 2.11, Bowtie2 alignment time increases sharply when

allowing more alignments per read, while PuffAligner exhibits only small changes in

alignment time regardless of the maximum number of alignments being reported per read.

The difference becomes especially evident when allowing up to 200 alignments per read,

where PuffAligner is 4 times faster than Bowtie2. Additionally, in experimental data,

many of the alignments reported do not necessarily have high quality, and only appear

in the output as one of the 200 alignments for the read. In fact, we note the similar

accuracy achieved by PuffAligner in bestStrata mode compared to when we allow up to

200 alignments per read. In the other two samples PuffAligner is the most accurate aligner

in different modes for both samples.

Overall, these results along indicate that PuffAligner is a sensitive and fast aligner.

Specifically PuffAligner exhibits similar accuracy (and is sometimes more accurate)

as well-known aligners like Bowtie2 and STAR. On these data, it exhibits memory

requirements close to those of the memory-frugal Bowtie2, while being much faster.

2.2.15 Scalability

Figure 2.13 and fig. 2.12 represents how the construction time and index size of

each tool scales over different types of sequences. The trend shows the effect of database

size as well as redundancy and sequence similarity on the scalability of each of the tools.

Tools such as PuffAligner and deBGA, which build a de Bruijn graph based index on the

input sequence, specifically compress similar sequences into unitigs and therefore scale
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(a)

(b)

Figure 2.11: Time performance of different aligners on the two microbiome experiments. In (a),
the results are averaged over the three alignment processes for the samples covid19,
sars, and bat200, each having ∼ 1M paired-end reads. The performance shown
in (b) is for aligning reads in the mock sample simulated from SRR10948222 with
5M paired-end reads. As shown in the bulk experiment, the alignment for Bowtie2
increases when asking for more alignments per read while the other tools show
a constant alignment time scaling over number of reads. The dashed area shows
fraction of the time spent purely on aligning reads where the remaining portion is the
time required for index loading. PuffAligner is the fastest tool in this experiment, yet
most of its time is still dedicated to loading the index.
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Figure 2.12: Scalability of different tools over the final index disk space, construction memory, for
three different datasets, human transcriptome (gencode version 33), human genome
(GRCh38 primary assembly), and collection of genomes (4000 random bacterial
complete genomes). All tools are run with 16 threads.
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Figure 2.13: Scalability of different tools over the construction running time for three different
datasets, human transcriptome (gencode version 33), human genome (GRCh38
primary assembly), and collection of genomes (4000 random bacterial complete
genomes). All tools are run with 16 threads.
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well for databases with high redundancy such as microbiomes. It is worth mentioning

that Bowtie2 requires a switch from a 32-bit index to a 64-index as the total count of the

input bases increases, which is another reason why the size is growing super-linearly.

2.2.16 Discussion & Conclusion

In this section we introduced PuffAligner, an aligner suitable for the contiguous

alignment of short-read sequencing data. We demonstrate its use in aligning DNA-seq

reads to the genome of a single species, aligning RNA-seq reads to the transcriptome, and

aligning DNA-seq reads from metagenomic samples to a large collection of references.

It is built on top of the Pufferfish index, which constructs a colored compacted de

Bruijn graph using the input reference sequences. PuffAligner begins read alignment

by collecting unique maximal exact matches, querying k-mers from the read in the

Pufferfish index. The aligner then chains together the collected uni-MEMs using a

dynamic programming approach, choosing the chains with the highest coverage as

potential alignment positions for the reads. Finally, PuffAligner is able to efficiently

compute alignment, exploiting information from long matches in the chains and making

use of an alignment cache to avoid redundant work.

We compared the accuracy and efficiency of PuffAligner against two widely-used

alignment tools, Bowtie2 and STAR, that perform unspliced and (optionally) spliced

alignments of reads, respectively. We also compare the results against deBGA, an aligner

that also utilizes an index built over the de Bruijn graph.

We analyze the performance of these tools on both simulated and experimental
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DNA and RNA sequencing datasets. The accuracy of PuffAligner is comparable to

Bowtie2, which exhibits very high alignment. PuffAligner generally performs better

than STAR and deBGA (though, unlike STAR, none of these other tools currently support

spliced read alignment). In terms of speed and memory, PuffAligner reaches a tradeoff

between the relatively high memory usage of STAR and deBGA and the slower speed

of Bowtie2. Hence, while the memory requirement of PuffAligner is more than that

of Bowtie2, the speed gain is significant. In the tests performed in this manuscript,

PuffAligner is almost always the fastest tool ( with the exception being that STAR is faster

when aligning unspliced DNA-seq reads to a single human genome).

An additional advantage of the Pufferfish index utilized in PuffAligner is that it can

be built on a mixed collection of genomes, transcriptomes, or both. This feature is already

utilized in a specific pipeline for RNA-seq quantification that makes use of a joint index

over the genome and transcriptome [2]. The analysis shows that specificity of alignments

in such a case can be improved by filtering from quantification reads that are better aligned

to some genomic locus that is not present in the transcriptome.

Furthermore, the nature of the Pufferfish index, that explicitly factorizes out highly-

repetive sequence, coupled with the fast (and repetition-aware) alignment procedure of

PuffAligner makes it a particularly useful for indexing and aligning to a highly similar

collection of sequences. This potentially makes it a good match for metagenomic

analyses.

We have provided a proof of concept for such a PuffAligner-based metagenomic

analysis pipeline, and plan to build a more sophisticated and fully-featured metagenomic

analysis framework around PuffAligner in the future.
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Chapter 3: Improved Data-Driven Likelihood Factorizations for

Transcript Abundance Estimation 1

3.1 Introduction

Shortly after the RNA-seq assay became popular as a tool for transcriptome

profiling and quantification, the computational community began developing principled

inference methodologies to allow accurate transcript-level quantification in the presence

of multi-mapping reads. Tools such as Cufflinks [78], RSEM [18], mmseq [20] and

IsoEM [21] provided statistical models by which transcript-level abundance estimates

could be inferred. These methodologies principally rely on maximum likelihood

estimation to infer the transcript abundances that would be most likely given the observed

data (i.e., the alignments of the sequenced fragments to the underlying genome or

transcriptome). Bayesian methodologies such as BitSeq [79] and Tigar [80] were

also developed and adopt different inferential approaches varying from fully-Bayesian

approaches like collapsed Gibbs sampling [79] to approximate inference approaches like

variational Bayesian optimization [80, 81, 82].

These methods vary widely in their details, though adopt a similar generative model

of the underlying RNA-seq experiment; one which is well-represented by the generative

1This work is presented in the proceedings of ISMB 2017
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model of RSEM [18, 39]. In this chapter, we shall refer to this as the full model. It is a

generative model of an RNA-seq experiment that considers the likelihood of observing a

collection of alignments as dependent upon the parameters of interest (i.e., the transcript

abundances), as well as the details of each alignment of a sequenced fragment to the

reference transcriptome. In this way, the full model provides very high fidelity, and is

capable of incorporating a tremendous amount of information into the inference procedure

(e.g., the implied fragment length under each alignment, details about the alignment and

the fragment’s quality values, the probability of different start positions for the sampled

fragment, etc.).

Unfortunately, however, this means that straightforward inference procedures that

adopt this full model scale in the number of considered alignments per-iteration. For

example, a 30 million fragment RNA-seq experiment may produce 100 million fragment

alignments, all of which are considered by the inference procedure in each of its

(typically) hundreds to thousands of iterations. This approach, then, poses two problems.

First, inference is typically slow since each iteration must consider a large number

of independent probabilities. Second, so as to prevent the inference algorithm from

becoming even slower, these per-alignment probabilities are typically retained in memory,

which can lead memory requirements to scale linearly with the number of alignments.

One approach to mitigate the cost associated with optimizing the full model is to alter

the actual inference algorithm that is used. For example, eXpress [19] uses an online-EM

algorithm, rather than a batch-EM algorithm (by default), to infer transcript abundances.

This eliminates the need to cache alignments in memory for efficiency, resulting in

constant memory usage. However, a single pass over the data is not always sufficient
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to achieve the same accuracy as methods that run batch algorithms to convergence.

One of the more popular approaches for reducing the computational burden and

speeding up the inference procedure is to form an approximate factorization of the

likelihood function (see Section 3.2.1). For example, mmseq introduced a notion of

fragment equivalence classes, which treats as equivalent any fragments that align to

exactly the same set of transcripts. This leads to a likelihood function in which the counts

of fragments compatible with subsets of transcripts serve as sufficient statistics. The

likelihood defined over these counts is typically orders of magnitude faster to evaluate,

but it can discard certain fragment-level information encoded in the alignments. Distinct

but related notions of equivalence classes were also introduced by Salzman et al. [83] and

Nicolae et al. [21].

Because of the computational economy of this approximate factorization, it

(or similar variants) were later adopted by new lightweight approaches for transcript

quantification like Sailfish [14, 15] and kallisto [17]. By coupling a very fast inference

approach with techniques that removed the requirement of computing traditional

alignments for each sequenced fragment, such approaches reduced the time required

to obtain transcript-level quantification estimates by orders of magnitude over existing

approaches. These lightweight methods have proven an important and popular

development. Recently, Patro et al. [16] introduced a new lightweight approach, Salmon,

that uses a “dual-phase” inference algorithm, which combines an online stochastic

inference method with an efficient offline inference algorithm. While adopting a

similar approximate factorization as mmseq, Sailfish and kallisto, Salmon also maintains

aggregate (i.e., average) weights per equivalence class that allow retaining some
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information about fragment-level probabilities during the offline inference algorithm.

However, this information is restricted to a single scalar value per transcript-equivalence

class pair, and so is necessarily limited in its ability to represent the full model with

complete fidelity.

In this chapter, we argue that the dual-phase algorithm introduced by Salmon

allows one to derive a data-driven approximate factorization of the full model likelihood

function. The online phase of the algorithm assess each individual fragment probability,

and uses this information to build a highly-reduced but accurate proxy for the full

model likelihood that can be efficiently optimized during the offline phase. While only

slightly increasing the per-iteration cost of the underlying inference algorithm, this data-

driven factorization can represent the fragment-level likelihood function with much higher

fidelity. In fact, we demonstrate that a data-driven likelihood factorization can produce

transcript-level abundance estimates that display essentially no loss in accuracy compared

to what is obtained under the full model. Thus, such a factorization is preferable to

the more common compatibility-based approximate factorization, since it can provide

a substantial improvement in accuracy while introducing only a small increase in the

computational burden. We note that we focus in this chapter on how to factorize the

likelihood function, and not, specifically, the algorithm by which this function is best

optimized. Thus, we expect the approaches we introduce here to easily translate to other

likelihoods or optimization approaches; e.g., to variational Bayesian optimizations [80],

or natural gradient-based optimization algorithms [82]. Our data-driven factorizations are

incorporated into the Salmon transcript quantification tool.
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3.2 Approach

3.2.1 The likelihood function and its factorizations

We begin by considering the basic generative model laid out by Li et al. [18]. We

consider a transcriptome T to consist of a set of M transcripts, t1, t2, . . . , tM . In a given

sample, there are ci copies of the ith transcript. Further, we can assign to each transcript

its length, such that the length of ti is given by ℓi. The generative model of an RNA-seq

experiment states that the expected number of fragments sequenced from each transcript

type ti is proportional to the total number of sequencable nucleotides that it constitutes

in the underlying mixture — that is we expect that αi ∝ ηi =
ci·ℓi∑
j cj ·ℓj

— where αi is the

number of fragments drawn from transcripts of type ti. Assuming that each fragment is

drawn independently, the likelihood of a collection F of fragments can be written as:

L (θ;F) =
∏
fj∈F

M∑
i=1

Pr (ti | θ) Pr (fj | ti) , (3.1)

where θ denotes the parameters of the model, which are the underlying transcript

abundances. We note that, throughout this manuscript, we use the term “fragment” as

a generic term which is represented by a single read (in single-end protocols) and a read

pair (in paired-end protocols). The methods we propose in Section 3.3 work only in terms

of the conditional fragment probabilities, and so are equally-applicable in both single

and paired-end protocols, though the definition of these conditional probabilities will be

protocol dependent.
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The primary quantity of interest, with respect to the factorizations being proposed

in this chapter, are the Pr (fj | ti) terms — that is, the conditional probability of drawing

a particular fragment fj , given transcript ti. This term encodes, given parameters of

the model and experiment, how likely it is to observe a specific fragment fj arise from

transcript ti. Many terms can be included in such a conditional probability, some common

terms include:

Pr (dj | fj, ti) =
PrD (dj)∑ℓi
k=1 PrD (k)

, (3.2)

the probability of observing a mapping of implied length dj for fj given that it derives

from ti, where PrD (k) is the probability of observing a fragment of length k under the

empirical fragment length distribution D;

Pr (pj | dj, fj, ti) =
1

ℓi − dj + 1
, (3.3)

the probability of a observing a mapping starting at position pj for fragment fj given that

it has implied length dj and is derived from ti;

Pr (oj | fj, ti) =



{
0.5 if unstranded
1.0 if compatible orientation

ϵ if incompatible orientation

if strand-specific

, (3.4)

the probability of observing a mapping with a specific orientation oj (i.e., forward

or antisense) with respect to the underlying transcript for fj , given ti, ϵ (a user-defined

constant), and knowledge of the underlying protocol, and
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Pr (aj | fj, oj, dj, pj, ti) , (3.5)

the probability of observing the particular alignment (e.g., CIGAR string) aj for fj given

it is sampled from transcript ti, has orientation oj , implied length dj and starts at position

pj—such a probability is calculated from a model of alignments, like those presented

in [16, 18, 19].

In fact, one can conceive of many such general models of “fragment-transcript

agreement” [16]. The framework we propose in Section 3.3 can naturally account for

such conditional probabilities that one might consider as part of Pr (fj | ti). However,

in this manuscript, we consider that Pr (fj | ti) is simply the product of the conditional

probabilities defined in Equations (3.2) to (3.5), appropriately normalized.

3.2.2 Equivalence classes and approximate likelihood factorizations

Here, we describe the most common definition of fragment equivalence classes,

and explain how they are used to derive an approximate factorization of the likelihood

function, we adopt a notation similar to Patro et al. [16].

Let A (T , fj) be the set of all alignments of fragment fj to the transcriptome T

and let Ω (fj) = {⟨i, ti⟩ | ti ∈ A (T , fj)} be the tuple of transcripts to which fj maps—

considering the ti are ordered by their index i. Fragment equivalence classes are defined

in terms of the equivalence relation ∼, such that fm ∼ fn if and only if Ω (fm) = Ω (fn).

Thus, fragment equivalence classes consider as equivalent (for the purposes of inference),

sequenced fragments that align to the same set of transcripts. We will refer to Ω (fj) as
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the label of fj for all fj ∈ [q], where [q] is the equivalence class to which fj belongs. We

will also refer to Ω ([q]) = Ω (fj) ,∀fj ∈ [q] as the label of fj’s equivalence class. Finally,

it will be convenient to define the total size of each such equivalence class as N q = | [q] |,

which is the total number of equivalent fragments in the class [q].

Now, we can write the equivalence class-based approximation to the likelihood

function as:

L (θ;F) ≈
∏
[q]∈C

 ∑
⟨i,ti⟩∈Ω([q])

Pr (ti | θ) · Pr (f | [q] , ti)

Nq

, (3.6)

where C is the set of all equivalence classes, and Pr (f | [q] , ti) is the probability of

generating a fragment f given that it comes from equivalence class [q] and transcript

ti. The key to the efficiency of likelihood evaluation (or optimization) under this

factorization, is that the probability Pr (f | [q] , ti) is assumed to be identical for each

of the N q fragments in each equivalence class [q]—hence, we do not subscript f

in Equation (3.6). This allows one to replace the product over all fragments fj

in Equation (3.1) with a product over all equivalence classes in Equation (3.6). The

approximation, of course, stems from the fact that, under the full model, a fragment

fj may have a probability Pr (fj | ti) that is arbitrarily different from Pr (f | [q] , ti).

Moreover, the most common approximations, like those adopted in mmseq, Sailfish, and

kallisto consider this probability to be fixed and essentially independent of any fragment-

level information (e.g., it is set to one divided by the effective length of ti).
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isoform A

isoform B

200 bp

450 bp

Figure 3.1: A fragment multimapping between two different isoforms (A,B) of a gene. Depending
on the parameters of the fragment length distribution of the underlying sample,
either multi mapping locus could be more probable a priori. Under the approximate
likelihood factorization that considers only compatibility-based equivalence classes,
such information is necessarily hidden from the resulting inference algorithm. We
note that, of course, such multi-mapping can also happen between different genes
(e.g., paralogs).

3.2.3 What approximate factorizations elide

Figure 3.1 provides an illustrative example why considering conditional fragment

probabilities can be important. Consider a multi-isoform gene, and a single fragment

fj , which aligns equally well (i.e., the sequence of both ends of the fragment match

the sequence of the underlying transcripts equally well) to isoforms A and B of this

gene. If we consider only transcript-fragment compatibility, then both of the alignments

illustrated in fig. 3.1 are delineated only in that isoform A has fewer potential start

locations. However, considering the implied length of this fragment, given the expected

insert size distribution of the experiment (either provided as input to the model, or

inferred from the collection of previously aligned fragments), can provide strong evidence

that one or the other of these isoforms was more likely to have generated fj . For

example, were the mean of the fragment length distribution 250, then we would expect

isoform A to be much more likely to have generated fj . Conversely, were the mean

of the fragment length distribution 400, then we would expect that, in fact, isoform B

might have been more likely to generate this fragment. Standard (i.e., compatibility-

104



based) approximate factorizations of the full likelihood function into equivalence classes

discard (or collapse) this fragment-level information. For example, compatibility-only

factorizations of the likelihood into equivalence classes simply treat Pr (dj | fj, ti) as

equal for all transcripts in the equivalence class to which fragment fj belongs. The

factorization adopted by Salmon attempts to maintain slightly more information by

computing these conditional probabilities and averaging them; maintaining a single extra

scalar per transcript-equivalence class pair, that represents the conditional probability that

any fragment coming from a particular equivalence class would derive from a particular

transcript. Though this maintains some extra information, it is not always enough to

faithfully approximate the full-model likelihood function.

Below, we describe a data-driven approach that allows for a much more faithful

representation of the full model likelihood function, while still greatly reducing the

amount of information that must be maintained for inference. A broad overview of

how these factorizations relate to each other is given in Figure 3.2, and the specific

factorizations are described in more detail below.

3.3 Methods

As illustrated in Figure 3.2 and described above, the approximations that rely

on compatibility-based factorizations can discard information that may be useful for

correct transcript abundance estimation. Specifically, such notions of equivalence classes

sacrifice per-fragment information encoded in the conditional probabilities Pr (fj | ti).

We propose here alternative notions of equivalence classes that take into account
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Full model 
RSEM, Salmon-FM, eXpress (offline)

Fidelity to fragment-level model
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“Uniform” equivalence classes 
kallisto, mmseq, Sailfish (quasi)

“Rich” equivalence classes 
Salmon

Data-driven equivalence classes 
this paper — e.g., Salmon-RF

Figure 3.2: There is a conceptual tradeoff between the computational efficiency of an inference
technique, and the fidelity with which it models the full, fragment-level likelihood
function. kallisto, Sailfish (using quasi-mapping [15]) and mmseq simply consider
the compatibility of fragments with transcripts, and thereby discard the conditional
fragment-level probabilities completely. Salmon collapses the fragment-level
conditional probabilities to a single scalar (their average value) per-equivalence
class; this recovers some of the fidelity lost in the other approaches, but can still
discard useful fragment-level information. Approaches that consider each fragment
independently in each round of the optimization algorithm (e.g. RSEM and Salmon-
FM and eXpress (offline)) sacrifice no fidelity, but each iteration scales with the
total number of aligned / mapped fragments. Our proposed data-driven clustering
approach (Salmon-RF) captures most of the important fragment-level probabilities
of the full model, while retaining an update time very similar to Salmon’s standard
model in its offline rounds. The online rounds of Salmon and eXpress are not directly
comparable to the batch rounds considered in this figure (they update the parameters
more frequently), but they do consider the conditional probability of each fragment
individually.
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both the transcripts with which a fragment is compatible, as well as the vector of

conditional probabilities that encodes how likely the fragment is to have been sequenced

from each such transcript. That is, these factorizations account both for the set of

transcripts t1, . . . , tk to which a fragment fj maps, as well as the conditional probabilities

Pr (fj | t1) , . . . ,Pr (fj | tk) that fj was sampled from each of these transcripts. Our

approach is agnostic to how Pr (fj | ti) is computed, but, as stated in Section 3.2.1, we

consider here each conditional probability to be the product of Equations (3.2) to (3.5),

appropriately normalized.We accomplish this by defining new equivalence relations over

fragments that consider and summarize these conditional probabilities in a data-driven

manner.

As one divides each equivalence class into smaller sub-classes of fragments, the

factorized likelihood approaches the likelihood (and hence fidelity) of the full model.

Conversely, as the number of equivalence classes increases so does the complexity of

evaluating and optimizing the likelihood.

Here, we introduce two different factorization methods that refine the compatibility-

based notion of equivalence classes. These approaches are a refinement in the strict sense

that each sub-cluster of fragments that fall within the newly-defined equivalence classes

align to the same set of transcripts as all other fragments in the original, compatibility-

based definition of the equivalence class. However, in these factorizations, the conditional

fragment probabilities (with respect to the set of transcripts) tend to exhibit smaller

distance to mean; i.e., the approximate weight used to summarize the conditional

probability of all fragments within these refined equivalence classes is much closer to the

individual conditional probabilities of all the fragments placed in the class. Subsequently,
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this leads to a more accurate approximation of the likelihood function. Moreover, we find

that only a small number of such refined equivalence classes is required to approximate

the full likelihood very closely, meaning that the computational complexity of evaluating

and optimizing the likelihood function is very close to what is required when considering

the original compatibility-based equivalence class factorization (table 3.3).

3.3.1 Rank-based factorization

We call the first factorization method that we consider to refine the notion of

equivalence classes the “rank-based factorization”. We consider all transcripts to which

a fragment aligns, and sort the transcripts based on the conditional probability values

of the fragment given each transcript. Then, the equivalence class for a fragment is

determined by the set of transcripts to which it maps, and the rank-order of the conditional

probabilities for this fragment given those transcripts. For instance, consider 1,000.000

fragments which all align to the transcripts t1 and t2, where 250 of these fragments align

to t1 with a higher conditional probability than that with which they align to t2 (and

vice-versa for the rest). In this case, the rank-based equivalence relation will induce

2 equivalence classes (whereas the compatibility-based relation would have induced

1), the first 250 fragments will become members of one equivalence class with label

{⟨1, t1⟩, ⟨2, t2⟩} and the rest will be assigned to another equivalence class with the label

{⟨1, t2⟩, ⟨2, t1⟩}. As with the original notion of rich equivalence classes in Salmon [16],

a single scalar value per transcript is saved in each equivalence class, which is the mean

of all conditional probabilities of the fragments given each transcript. Of course, in this
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Figure 3.3: Factorizing an equivalence class consisting of 225 fragments and 2 transcripts into
k=3 bins. Each dot represents one fragment. The vertical lines indicate borders of bins
for transcript t1 and the horizontal lines show borders of bins for transcript t2. The
purple circle with label call shows the center for original equivalence class. The rest
of the circles are indicators of the centers for each cluster after the factorization.

factorization, the total number of equivalence classes is typically larger than the number of

compatibility-based equivalence classes. Formally, we define the rank-based equivalence

relation∼< as follows: let r
(
f, {⟨i1, ti1⟩, ⟨i2, ti2⟩, . . . , ⟨ij, tij⟩}

)
be a function that returns

a permutation σ of
(
ti1 , ti2 , . . . , tij

)
such that Pr (f | tσ1) ≤ Pr (f | tσ2) ≤ · · · ≤

Pr
(
f | tσj

)
, with ties broken arbitrarily in favor of the transcript having the smaller

index. We define two fragments fm and fn to be equivalent (fm ∼< fn) if and only

if Ω (fm) = Ω (fn) and r (fm,Ω (fm)) = r (fn,Ω (fn)).

3.3.2 Range-based factorization

We consider a second factorization approach that we call “range factorization”

(Salmon-RF). In this approach, we seek equivalence classes that have fragments which
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both align to the same set of transcripts and which have similar conditional probabilities

with respect to these transcripts. To motivate this approach, consider, first, the case

of two fragments that have exactly the same conditional probabilities for the same set

of transcripts, then one can safely group them together without any loss of accuracy

with respect to the original likelihood function. In fact, this is the equivalence relation

proposed by Nicolae et al. [21]. However, this particular factorization can have a

negative impact on performance since most of the time probabilities of fragments are

not exactly proportional. Hence, this can lead to a model similar to the full model that

considers all fragment-transcript likelihood values. However, we can compromise the

“exact” proportionality of probabilities for the sake of performance. Instead of clustering

fragments that have exactly proportional probabilities, we place fragments with the same

conditional probability “range” into the same equivalence class. We first divide the valid

range of probabilities [0, 1] into k bins, and then consider two conditional probabilities

equal if their values are in the same bin. Two fragments are considered equivalent under

this definition, denoted ∼r, if they fall into the same set of bins with respect to all

transcripts to which they align. Formally, let bk
(
f, {⟨i1, ti1⟩, ⟨i2, ti2⟩, . . . , ⟨ij, tij⟩}

)
be

a function that returns a vector of bin values (one for each transcript, and each between 0

and k − 1). We define two fragments fm and fn to be equivalent (fm ∼r fn) if and only

if Ω (fm) = Ω (fn) and bk (fm,Ω (fm)) = bk (fn,Ω (fn)).

We can tune the parameter k to tradeoff of the number of such equivalence classes

versus the accuracy they provide. As k approaches infinity (or, rather, machine precision),

the fidelity provided by this factorization approaches that of the full model, because all

fragments will end up in either single-member equivalence classes, or in equivalence
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classes of fragments having conditional probabilities exactly proportional to theirs. On

the other hand, as k gets smaller, the number of clusters gets closer to a small constant

times the number of compatibility-based equivalence classes, but each cluster consists of

fragments with the wider range of conditional probabilities. In this approach, we do not

simply replace each conditional probability with the center of the bin into which it falls.

Rather, for each bin, we record the sum and a total number of conditional probabilities

stored in this bin. After processing all fragments, the centroid of each bin is computed

and used as the representative conditional probability for this bin. This model is a natural

extension of the rich equivalence class model used in Salmon, and the models coincide

when k = 1. Throughout this chapter, range-based equivalence classes have a number of

bins equal to 4 +
⌈√
|Ω ([q])|

⌉
.

Figure 3.3 provides a good example of this factorization and its impact on the

average of conditional probabilities for each transcript. There are 225 fragments that

all are aligned to the two transcripts in this equivalence class. Each dot represents a

fragment with its x value equal to Pr (f | t1) and y value equal to Pr (f | t2). call shows

the average value of conditional probabilities of all fragments for transcript t1 and t2. As

can be observed, the deviation of call from many of the conditional probabilities is large

since the conditional probabilities are widely distributed over the range from zero to one.

However, when we divide the range into three bins and then separate fragments based on

the bin into which their conditional probabilities fall, we obtain three clusters containing

fragments whose within-cluster conditional probabilities fall into much smaller ranges.

So, in this case, all fragments that have the same bin for their conditional probability

given t1 and their conditional probability given t2 end up in the same cluster. Lines
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show the borders of each bin and colored circles show the centroids used to represent the

conditional probabilities in each bin. In this case, we expect to obtain results closer to

the full model; yet, the number of clusters over which one must iterate to apply the EM

algorithm is sill much smaller than the total number of fragments (see Table 3.3).

Though we have implemented and experimented with both of these alternative

factorizations, in this results of this chapter we will focus on the range-based

factorization, as we observe that it almost always provides a better approximation of the

likelihood than the rank-based factorization.

3.4 Results

We test the ability of our proposed factorization to improve the approximation

of the full model likelihood on both synthetic and experimental data. We demonstrate

that, as expected, the range-based factorization almost always provides a very good

approximation of the full model likelihood. Interestingly, we also observe that it

sometimes leads to a slightly more accurate solution than when no factorization is applied

(i.e., when the likelihood is evaluated for each fragment independently). Though we have

not investigated this in depth, it is likely that, in some cases, a small degree of smoothing

of the conditional probabilities can lead to a more stable and accurate solution.

We consider both small-scale and transcriptome-wide simulated data.

In Section 3.4.1 we consider simulations over the transcripts from families of paralogous

genes. Such situations represent the most challenging abundance estimation problems

for transcript quantification tools since high levels of multi-mapping are prevalent. We
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conduct the simulations over many random settings of the abundances of these transcripts,

and look at how well different methods are able to recover the true abundances at different

average coverage levels. We directly observe how, in the most adversarial situations, the

proposed factorization allows us to recover important information that leads to improved

abundance estimates.

In Section 3.4.2 we explore the effect that different factorizations have on

abundance estimates transcriptome-wide. Here, we observe that, while the data-driven

factorizations lead to improved abundance estimates, the differences between methods

becomes much smaller, since the statistics are aggregated over the entire transcriptome

and since many transcripts fall into the “easy” case of abundance estimation. The

differences between methods, while still moderate, are larger when we restrict our

assessment to a more difficult subset of transcripts.

Finally, in Section 3.4.3, we examine the effect of different factorization methods

over experimentally sequenced data. We explore how closely different factorizations

approach the abundance estimates derived by RSEM—though we note (as observed

in some of the simulated data) that RSEM is not necessarily more accurate than the

alternative methods or factorizations.

In Sections 3.4.1 to 3.4.3 we consider the transcript abundance estimates generated

by RSEM, eXpress (both in default mode and with 50 batch EM rounds) and variants of

Salmon (using different factorizations). We focus on the performance of these tools when

quantifying abundances using alignments, instead of mappings [15]. We keep the input

data as close as possible, since the purpose of this chapter is not an investigation of the

effect of alignment versus mapping on expression estimation, but rather the effect of the
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Figure 3.4: Applying different methods of transcript abundance estimation in alignment mode
on two sets of data in 3 depth of fragment sequencing. Top (a) are all isoform
transcripts of gene RAD51. The bottom (b) is from transcripts of four different
paralogs of RAD51, RAD51B,RAD51C, RAD51D. In each row the left most plot refers
to experiment with counts of 1X coverage, the middle one to 10X and the most right
plot refers to the experiment with fragment counts of 100X coverage. Distribution of
ARDs on isoforms of RAD51.
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Figure 3.5: Applying different methods of transcript abundance estimation in alignment mode
on two sets of data in 3 depth of fragment sequencing. Top (a) are all isoform
transcripts of gene RAD51. The bottom (b) is from transcripts of four different
paralogs of RAD51, RAD51B,RAD51C, RAD51D. In each row the left most plot refers
to experiment with counts of 1X coverage, the middle one to 10X and the most right
plot refers to the experiment with fragment counts of 100X coverage. Distribution of
ARDs on isoforms of a family of 4 RAD51 paralogs.
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factorization of the likelihood and how that factorization affects inference. We noticed

that, regardless of the factorization used, there was a small but persistent gap between

non-alignment-based tools (kallisto and mapping-based variants of Salmon) compared to

RSEM and alignment-based variants of Salmon on the RSEM-sim data. It is not clear that

this is due to any fundamental superiority of alignment compared to mapping, but rather,

may be a result of the fact that the specific error model, learned by RSEM and used to

simulate reads in RSEM-sim, acts as a “side-channel” of information for alignment-based

approaches. However, this question, though outside the scope of this work, deserves

further consideration and analysis.

Alternative factorization variants: Salmon (i.e., without any modification) uses a

compatibility-based notion of equivalence classes called “rich” equivalence classes.

Under this notion, the equivalence classes themselves are compatibility-based, but each

transcript-equivalence class pair is associated with a scalar weight which is computed

as the mean conditional probability of all fragments in this equivalence class to derive

from this transcript. We also consider a variant of Salmon (denoted as Salmon-U herein)

that adopts a purely compatibility-based notion of equivalence classes. That is, it stores

no extra information about the conditional probability of deriving the fragments in each

equivalence class from the different transcripts, and during inference considers only that

Pr (f | t) = Pr (p | f, t) = 1/ℓ̃t, where ℓ̃t is the effective length of transcript t and is

defined as ℓ̃t = ℓt − µℓt
d . µℓt

d is the mean of the truncated empirical fragment length

distribution as described in [16].

We also consider a variant of Salmon, Salmon-FM, that performs no additional
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factorization. Instead, like RSEM, it considers each fragment and its relevant conditional

probabilities independently. In this case, the only difference between Salmon-FM and

RSEM is that the former computes the conditional fragment probabilities using an

online stochastic inference algorithm, while RSEM recomputes the conditional fragment

probabilities after updating auxiliary model parameters during the first 10 iterations of an

offline (i.e., batch) EM procedure.

Finally, we consider a variant of Salmon, Salmon-RF, that uses the range-

factorization described in Section 3.3.2 to generate equivalence classes based on ∼r and

compute the associated weights.

We use both the mean absolute relative difference (MARD) and Spearman

correlation to assess performance. We define the absolute relative difference (ARD) as:

ARDi =


0 if xi + yi = 0

|xi−yi|
(xi+yi)

otherwise

, (3.7)

Where yi is the estimated number of reads originating from ti and xi is the true (or

assumed) number of reads originating from ti. The MARD is simply defined as MARD =

1
M

∑M
i=1 ARDi, where M is the total number of transcripts.

Experimental setup and software parameters: In the tests below, Salmon v0.8.0 was run

in alignment mode with the --useErrorModel flag. Salmon-RF consists of Salmon

run with --useRangeClusterEqClasses 4. Salmon-U consists of Salmon run

with --noRichEqClasses. RSEM v1.3.0 was run with default parameters. eXpress
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v1.5.1 was run with --no-bias-correct and other parameters were left as default

(the extra parameter --additional-batch 50 was used to produce the eXpress

(+50) results). All alignments were generated using Bowtie 2 version 2.2.9 with the

default parameters chosen by RSEM. We note that these default parameters disallow

indels in the resulting alignments (though Salmon and eXpress allow indels in the

alignments the process, RSEM does not). Further, we note that since we examine

simulated data without bias and since we compare against RSEM (which does not model

sequence-specific or fragment-GC bias) in the experimental data, we run all other methods

without bias correction. On experimental RNA-seq data, one might expect bias correction

alone to substantially improve the accuracy of a given method. Though those accuracy

improvements should be orthogonal to those obtained by improving the fidelity of the

likelihood function. All the tests are performed on a 64-bit Linux server with 256GB of

RAM and 4 x 6-core Intel Xeon E5-4607 v2 CPUs running at 2.60GHz.

3.4.1 Small-scale simulations on RAD51 and its paralogs

We first consider a few small-scale simulations to motivate how the conditional

probabilities considered by the full model (and approximated closely by the range-based

equivalence classes) might improve abundance estimates. We note that these simulations

are specifically constructed to represent adversarial and difficult-to-quantify mixtures of

highly related isoforms. We consider the transcripts from large families of paralogous

genes, under many random distributions of abundances. Often, the fragments will

align to many different transcripts with few-or-no nucleotide differences, and sometimes
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even with similar implied insert sizes. Thus, we expect that closely approximating

the conditional fragment probabilities might have a large effect in this case. We note,

however, that such adversarial abundance configurations are likely rare in experimental

data.

We consider two different, small-scale tests focusing around the gene RAD51 and

members of its paralogous family in Homo Sapiens. The RAD51 family includes eight

paralogous genes including RAD51 itself. RAD51 codes for a 339-amino acid protein that

has a significant role in repairing double strand breaks of DNA [41].

In the first experiment we apply RSEM and all varieties of Salmon on all isoforms

of the RAD51 gene. We extracted all (10) reference transcripts of RAD51 from the

human transcriptome (Ensembl release 80 [41]). True reads counts for all transcripts

were generated by sampling a read count for each transcript uniformly over [1, 200]; these

counts represent base-depth coverage (left) in Figure 3.4. These counts were multiplied

by 10 to derive the input read counts at 10X coverage (Figure 3.4, center) and by 100 to

derive the counts at 100X coverage (Figure 3.4, right).

Given these read counts, the Polyester simulator [42] was then used to simulate 5

different read sets (replicates) from the same input distribution. This entire procedure was

repeated 30 times, setting R’s random seed from 1 to 30 in sequence.

Since the reads are simulated, we can assess the deviation of the estimated

abundances from the exact abundances for each transcript. We use the absolute

relative difference (ARD) of estimated versus true read counts (Equation (3.7)) as the

metric to evaluate the accuracy of different methods for each transcript over replicates,

and Figure 3.4 shows a box plot of the distribution of ARD values over the 30 simulations.
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As we expect, Salmon-U generally yields the largest ARDs, failing to utilize

the information contained in the conditional fragment probabilities. Salmon generally

performs better, suggesting that, even in this complex scenario, the aggregate weight

maintained in the rich equivalence classes helps to recover some (but not all) of the fidelity

of the full model. However, Salmon-RF, while only slightly increasing the number of

equivalence classes considered, produces ARDs very close to those of RSEM, eXpress

(+50) and Salmon-FM. This suggests that, even in this adversarial scenario, the range-

based equivalence classes allow us to recover the inferential accuracy of the full model.

To further explore difficult abundance estimation scenarios, we consider the case

of the presence of high abundance isoforms from more than one gene in the reference.

Therefore, in the second set of experiments we consider 4 paralogs of RAD51 (RAD51,

RAD51B, RAD51C and RAD51D). We extract all transcripts corresponding to these

genes and we run the same simulation as above with respect to all of these transcripts.

Evaluation of ARDs for every transcript in all genes is displayed in Figure 3.5. The

results in this case are similar to what was observed in the single gene experiment. In

some cases, like transcript ENST00000553595 from RAD51B (which is displayed as

t10 in Figure 3.5), both Salmon-U and Salmon fail to estimate an accurate abundance. In

other cases Salmon performs better than Salmon-U, e.g., transcript ENST00000585947

from RAD51D (displayed as t50 in Figure 3.5). For almost every transcript, Salmon-RF,

Salmon-FM, eXpress (+50) (eXpress under default settings performs a bit worse) and

RSEM all perform similarly and better than the methods that adopt a purely compatibility-

based factorization of the likelihood. As this simulation contains a large number of

transcripts, we plot, in Figure 3.5, the box plots for only every 5th transcript to make the
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plot more interpretable. The complete plot containing the ARD values for all transcripts

of this paralogous family is provided in the supplementary materials of the published

version of this work [31].

3.4.2 Transcriptome-wide analysis on synthetic data

To assess the performance of the proposed model on a large dataset of RNA seq

reads, we generate synthetic data using RSEM-sim, and adopting the procedure used

by Bray et al. [17]. RSEM model parameters were generated by running RSEM on sample

NA12716 7 from the GEUVADIS [84] study. Using these model parameters, RSEM-sim

was then used to generate a sample consisting of 30M 100bp paired-end RNA-seq reads.

Again, we explore the performance of RSEM, eXpress (both in default mode and

with 50 rounds of batch EM) and 4 different variants of Salmon (Salmon-U, Salmon,

Salmon-RF and Salmon-FM). We compute the Spearman correlation and MARD metrics

of each of these methods compared with the true (i.e., simulated) abundances which are

shown in the first two columns of Table 3.1 (MARD-all and Spearman-all). As we observe

here, discarding all weight information in equivalence classes (Salmon-U) causes a drop

in performance compared to the case with a single scalar per equivalence class-transcript

pair (Salmon). Using the range-factorization proposed in this chapter improves both the

correlation and MARD measures even further, and bring its accuracy on par with that

of RSEM and Salmon-FM, which adopt no factorization and run an EM algorithm that

scales in the number of alignments in each iteration. In the default mode (i.e., using

a single online pass), eXpress produces a larger MARD and lower correlation than any
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of the tools that run the batch EM until convergence. With 50 extra batch EM rounds

(eXpress (+50)), eXpress performs more similarly to the other tools. We note that, in

this data, the number of equivalence classes produced by the range-based factorization is

∼ 586, 000, only∼ 150, 000 greater than the∼ 438, 000 compatibility-based equivalence

classes. Both of these numbers are orders-of-magnitude smaller than the ∼ 100, 000, 000

distinct alignments for this dataset. The number of equivalence classes for all methods is

shown in Table 3.3. This table also reports the number of “hits”. The number of hits is the

sum, over each equivalence class, of the number of transcripts in this equivalence class—

i.e.,
∑

[q]∈C |Ω ([q])|. This is the total number of items processed during each round of

the EM algorithm. This small number of equivalence classes and hits allows the Salmon-

RF model to run as fast as Salmon, which runs considerably faster than Salmon-FM,

which, in turn, runs considerably faster than RSEM. With the exception of eXpress, which

implements a constant-memory algorithm by design, the memory usage profiles for these

different tools track the timing results (as expected). For more details, refer to figs. 3.6

and 3.7.

Though we observe an improvement for Salmon-RF and Salmon-FM over Salmon

and especially Salmon-U in this case, we note that it is relatively small in scale. This is

because, while the aggressive compatibility-based factorizations do give up information,

common expression patterns may not be complex or difficult enough to be greatly affected

by the lossy factorization of the likelihood. Also, however, these aggregate metrics are

computed over the entire transcriptome, and so, difficulties of these factorizations in

deconvolving particularly complex scenarios may become lost in the noise of the vast

number of good predictions.
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MARD-all Spearman-all MARD-subset Spearman-subset

Salmon-U 0.239 0.800 0.460 0.561
Salmon 0.223 0.813 0.432 0.575
Salmon-RF 0.214 0.825 0.412 0.644
Salmon-FM 0.214 0.825 0.411 0.647
eXpress 0.289 0.778 0.526 0.543
eXpress (+50) 0.227 0.827 0.477 0.593
RSEM 0.212 0.820 0.408 0.654

Table 3.1: Spearman correlation and MARD of quantification results compared to true abundances
for synthetic data on all transcripts (MARD-all and Spearman-all), and the subset
of transcripts (MARD-subset and Spearman-subset) where RSEM’s ARD is in
[0.25, 0.75].

MARD-all Spearman-all MARD-subset Spearman-subset

Salmon-U 0.239 0.800 0.460 0.561
Salmon 0.223 0.813 0.432 0.575
Salmon-RF 0.214 0.825 0.412 0.644
Salmon-FM 0.214 0.825 0.411 0.647
eXpress 0.289 0.778 0.526 0.543
eXpress (+50) 0.227 0.827 0.477 0.593
RSEM 0.212 0.820 0.408 0.653

Table 3.2: Spearman correlation and MARD of quantification results compared to true abundances
for synthetic data on all transcripts (MARD-all and Spearman-all), and the subset
of transcripts (MARD-subset and Spearman-subset) where RSEM’s ARD is in
[0.25, 0.75].
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Figure 3.6: Maximum memory used by each method while running on input read files of sizes
from 30M paired-end read counts to 120M. Memory usage of RSEM and Salmon-FM
keeps increasing linearly by the read input counts since those tools provide full fidelity
by storing conditional probabilities of each fragment-transcript pair. Salmon and
Salmon-RF keep memory usage constant by using the notion of equivalence classes
and clustering reads together. eXpress and eXpress (+50) also have constant memory
usage, which is the lowest among all methods. However, this low memory usage is
obtained at the expense re-loading all the alignments from the input BAM file in each
iteration of the EM algorithm. This induces a considerable runtime burden, per EM-
round, compared to other tools as displayed in fig. 3.7.

To focus on the more difficult cases, we computed our accuracy metrics on a subset

of the simulated data. Specifically, retaining the original abundance estimates over the

entire transcriptome, we restricted our analysis to those transcripts for which RSEM

obtained an ARD between 0.25 and 0.75. The motivation for choosing these values is

to discard the particularly “easy” to quantify transcripts (where the full model is likely

neither necessary nor particularly helpful) as well as the “hopeless” transcripts (those

where the inference exhibits significant error even under the reference implementation of

the full model). The results of this analysis are shown in second two columns of Table 3.1

(MARD-subset and Spearman-subset). While the trend is similar to that observed on the

123



limit of zommed plot

0

50000

100000

150000

200000

30 60 90 120

W
al

l C
lo

ck
 T

im
e 

(in
 s

ec
)

0

2500

5000

7500

10000

12500

30 60 90 120
Number of Reads (in millions)

W
al

l C
lo

ck
 T

im
e 

(in
 s

ec
)

Method
Salmon RF

RSEM

eXpress

eXpress (+50 batch EM)

Salmon

Salmon FM

Figure 3.7: Total wall-clock time of each method as the number of paired-end reads is scaled from
30M to 120M. All methods receive the alignment BAM file as pre-computed input (i.e.,
alignment time is not considered in these evaluations). Salmon-RF is as fast as Salmon,
and both are twice as fast as Salmon-FM which is the result of the reduced complexity
of their batch EM rounds. RSEM, which also uses the full model in each iteration, takes
longer than the Salmon variants. Note, unlike other methods, eXpress does not scale
beyond 2 threads (when bias correction is disabled). Thus, we have placed an asterisk
next to eXpress in the legend here to designate that the results should not be taken as a
direct comparison to the other methods (which are using 16 threads). eXpress (+50) is
considerably slower than other methods since eXpress is a constant-memory algorithm
that iterates through the entire alignment BAM file (reading the alignments from disk)
once per EM round.

full data, the difference between methods (and the impressive performance of Salmon-

RF) becomes more clear. Specifically, we observe that Salmon outperforms Salmon-U,

but this time the gap between Salmon and Salmon-RF, Salmon-FM and RSEM is larger.

This is most likely because this particular subset of transcripts presents a more difficult

inference challenge, where the conditional probabilities provide useful evidence. In the

case of these transcripts, running the EM algorithm until convergence seems particularly

important, as we observe that eXpress (and even eXpress (+50)) trail the other methods,

especially in terms of the MARD. This makes it evident that further refinement of the
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Figure 3.8: The Spearman correlation of transcripts abundance estimations with RSEM results
reveals that Salmon-FM is highly correlated with RSEM. Very similar correlation with
RSEM is observed by the proposed data-driven factorization, Salmon-RF. Salmon
displays a lower correlation than Salmon-RF, but a higher correlation than Salmon-
U. The variants of eXpress show a lower correlation than Salmon-U, with the offline
EM iterations increasing eXpress’ correlation considerably.

abundance estimates (i.e. more rounds of the EM) over a representation of the data

encoding conditional fragment probabilities (as done in RSEM, Salmon-FM and Salmon-

RF) is necessary to obtain improved accuracy on these transcripts.

We further investigate the performance of tools in non-alignment mode as well.

Spearman correlation and MARD of transcript quantification with different tools on

RSEM simulated data is presented in Tables 3.4 and 3.5.
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# eq. classes # hits

Salmon-U 438393 5986371
Salmon 438393 5986371
Salmon-RF 625638 8212669
Salmon-FM 29447710 103663423

Table 3.3: The number of equivalence classes and hits, in the simulated data, under different
likelihood factorizations.

kallisto Salmon Salmon-RF Salmon-FM

MARD 0.231 0.227 0.227 0.227
Spearman Correlation 0.805 0.810 0.811 0.811

Table 3.4: The Spearman correlation and MARD of estimations by different tools in “mapping”
mode on synthetic data simulated by RSEM-sim as described in section 3.4.2. We
observe that, when using mappings instead of full alignments, the factorization being
used has a smaller effect (an observation worthy of further consideration in future
work). Still, we observe that Salmon performs slightly better than kallisto (which has a
factorization akin to Salmon-U), while Salmon-RF and Salmon-FM perform best.

kallisto Salmon Salmon-RF Salmon-FM

MARD 0.441 0.433 0.430 0.429
Spearman Correlation 0.591 0.603 0.614 0.614

Table 3.5: The Spearman correlation and MARD of the estimates of different methods in mapping
mode on synthetic data simulated by RSEM-sim. These metrics are computed only over
the “difficult” transcripts—the set of transcripts for which RSEM achieves ARD values
between 0.25 and 0.75.
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Figure 3.9: Comparing the MARD of estimated transcript fragment counts with respect to RSEM
results shows similar trend to that observed with the Spearman correlations;i.e.,
Salmon-FM has the least error rate using RSEM abundances as the truth while Salmon-
RF perform equally well. Salmon exhibits a lower MARD than Salmon-U, which is
followed by both variants of eXpress.

3.4.3 Transcriptome-wide analysis on experimental data

Finally, we explore the effect of our data-driven factorization method with

the different versions of Salmon using experimental data from the SEQC(MSEQ-III)

consortium [43] (NCBI GEO accession SRR1215996 - SRR1217002). Specifically,

the library is prepared on Universal Human Reference RNA (UHRR) from Stratagene

and ERCC Spike-In controls and consists of ∼11M 100bp, paired-end reads sequenced

on an Illumina HiSeq 2000 platform. The experiment consists of seven replicates with

the same flowcell and barcodes but on different lanes.

As defined previously in section 3.4.1 we compare the performance of Salmon,
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Salmon-FM, Salmon-RF, Salmon-U, eXpress, eXpress (+50) with RSEM. However,

unlike in previous sections, here, we lack a ground truth. Thus, we measure the accuracy

of each method on the estimated number of reads, treating RSEM’s estimations of the

number of reads for each transcript (which is observed to be among the most accurate

on synthetic data in previous sections) as the truth. We perform a comparison across

all seven replicates and consider the Spearman correlation and MARD metrics. Since

these are technical replicates, we expect the performance over each replicate to be very

similar, though we plot the results as a distribution in Figure 3.8 and Figure 3.9. The

results on experimental data follow the same trend as we observed on synthetic data. That

is, Salmon-FM correlates well with RSEM (as expected) because of the availability of

full fragment level transcript probabilities. Likewise, we again observe that our proposed

data-driven factorization method, Salmon-RF, performs essentially the same as the full

model. Both of these methods agree more closely with RSEM than does Salmon, and

again, Salmon-U, ignoring all fragment-level conditional probabilities, is further from

RSEM’s results. The number of equivalence classes for each factorization are shown

in Table 3.6. We also observe that eXpress, in its default mode, performs most differently

from RSEM of the methods we considered. As expected, running additional rounds of the

batch EM (eXpress (+50)) increases the similarity of eXpress’ estimations with those of

RSEM; though it is still less similar than the other methods.
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Salmon-U Salmon Salmon-RF Salmon-FM

# eq. classes 427,611.000 427,611.000 624,340.000 9,077,708.000
# hits 5,737,414.0005,737,414.0008,318,638.000 50,325,595.000

Table 3.6: The number of equivalence classes and hits, in the experimental data, under different
likelihood factorizations.

3.5 Conclusion

While compatibility-based equivalence class factorizations [14, 15, 17, 20, 21]

have paved the way in terms of substantially improving the efficiency of the iterative

optimization procedures used for transcript-level quantification from RNA-seq data, they

nonetheless make sacrifices in modeling fidelity to achieve this. While these methods

generally perform adequately in terms of transcriptome-wide assessments, there are still

important situations in which their compatibility-centric factorization of the underlying

likelihood function discards information that can be important for accurate abundance

estimates. Salmon [16] uses a dual-phase inference algorithm that allows it to recover

some of the information discarded by other approaches. It improves upon the approximate

factorization of the full likelihood function by incorporating a notion of rich equivalence

classes of fragments. In some, but not all cases, this improved factorization is sufficient

to recover the lost accuracy of the full model.

In this chapter, we have introduced a data-driven factorization of the likelihood

function that makes use of Salmon’s dual-phase inference algorithm (Salmon-RF). We

have shown that this improved factorization is able to match the accuracy of the full model

while still maintaining a reduced representation that is orders of magnitude smaller than

the total number of fragment alignments.
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We believe that this data-driven factorization represents the right tradeoff between

efficiency and accuracy. Specifically, it demonstrates an almost indistinguishable sacrifice

in efficiency beyond the factorization already employed by Salmon (which, itself, is

similar in size to those employed by mmseq, Sailfish and kallisto), while producing no

perceptible loss in accuracy compared to the full per-fragment likelihood function used

by RSEM and similar methods.

In this chapter, we have focused on the effect that the adopted factorization of the

likelihood function can have on the ability of a method to accurately estimate transcript

abundance. However, we note that there still remain small but interesting differences

between methods that employ alignment and those that rely on mapping (i.e., quasi-

mapping or pseudoalignment). Fully exploring the nature of these differences, and how

they interact with the factorizations proposed herein, is an interesting direction for future

work.

Finally, while we have investigated the effect different factorizations have on

maximum likelihood estimates, fully-exploring the effect they have in estimating the

variance of these estimates (e.g., via bootstrapping) or even in estimating the full

posterior distribution of abundances (e.g., via Gibbs sampling) is another interesting

direction for future work.
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Chapter 4: Estimating the posterior with an improved version of

bootstrap sampling based on Equivalence Classes

4.1 Overview

Rubin [85] introduced the Bayesian Bootstrap procedure, which generalizes the

bootstrap and introduces a procedure for placing a prior over the sampling weights used

in bootstrap resampling. The classic bootstrap is the posterior mean of the Bayesian

bootstrap, and Rubin demonstrated they have quite similar estimation properties,

generality, and similar limitations.

In particular, in the discussion of the paper introducing the Bayesian Bootstrap,

when discussing model specification, Rubin muses:

“is it reasonable to use a model specification that effectively assumes all possible

distinct values of X have been observed?”

Specifically, both the non-parametric bootstrap and the Bayesian Bootstrap

make this assumption — no unobserved value will ever be included in a bootstrap

replicate. This renders unobserved values “impossible” under the model, and prevents

understanding the effect they might have on the inference procedure or the estimator

being computed.
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Here, we introduce the notion of the Augmented Bootstrap. This procedure follows

the general framework of the bootstrap (or, optionally, the Bayesian Bootstrap), but

augments the observed data with additional “pseudo-observations” that represent values

that are possible given a conceptual model for data generation, but which were not

observed in the sample.

4.2 Methods

We will explain this idea in the underlying context of the problem of quantifying

the abundance of transcripts from RNA-sequencing (RNA-seq) data. In this problem,

we observe a collection of sequenced fragments, from which we can then estimate the

abundance of the distinct transcripts using an expectation-maximization procedure (our

“estimator” in the case of the bootstrap). Consider that we observe a collection F of N

sequenced fragments. Each fragment aligns to a set of distinct locations which we denote

as a(fi) = {(j1, k1), (j2, k2), . . . } signifying that fragment fi aligns to transcript j1 at

position k1, to transcript j2 at position k2, and soforth. For a given set η of transcript

abundances, we can write the probability of observing the set F of fragments as:

L =
N∏
i=1

∑
(j,k)∈a(fi)

P (tj|η)P (fi|tj,k = 1)

where P (tj|η) is the probability of selecting transcript tj for sequencing conditional

on the transcript abundances and P (fi|tj,k = 1) is the probability of generating fragment

i from transcript j at position k.

While there is no closed-form solution to determine the η that maximize L, we can,
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at least locally, optimize this quantity using an EM algorithm. We are then interested in

assessing the accuracy of η̂, our maximum likelihood estimator for η.

To assess this accuracy, we can use the non-parametric bootstrap. In this framework,

we will resample (with replacement) from F to produce a series of bootstrap replicates

{F∞,F∈, . . .F⌊}, and for each we can use the EM procedure to obtain a maximum

likelihood estimate of the transcript abundances given this bootstrap replicate; we denote

these esitimates as {η̂1, η̂2, . . . , η̂b}. We can then assess e.g. the variance of the estimate

for the abundance of transcript j, denoted as η̂(j), by assessing the sample variance of

{η̂1(j), η̂2(j), . . . , η̂b(j)}.

Because we are resampling sequenced fragments with replacement, we will never

observe in our resampling a pattern of alignments for a fragment different from what we

saw in our original sample F . This leads to some interesting, and perhaps undesirable

behavior of the bootstrap.

Consider a pair of alleles of a transcript that differ only at a single locus. Further,

imagine that these transcripts are sequence distinct from the rest of the transcriptome (i.e.

they share no multimapping reads with other transcripts apart from their sibling allele).

Let there be Nt reads that map to both of these transcripts, and 0 reads that map uniquely

to either (i.e. 0 reads that overlap the variant locus).

From the perspective of our estimator, these transcripts are inferentially

indistinguishable. Specifically, with no prior information on whether one of these alleles

is a priori more likely than the other, we have no information about how the Nt fragments

should be allocated among these transcripts. Perhaps tp and tm each give rise to Nt

2

fragments (what the EM will likely tell us), or perhaps tp gives rise to 0 fragments and tm

133



gives rise to all Nt fragments. In fact, any combination between the two alleles that sums

to Nt is feasible and has equal likelihood.

The crux of the issue in uncovering this uncertainty using the non-parametric

bootstrap (either the traditional or the Bayesian variant) is that no observation was made

that distinguishes between these alleles. Thus, no matter how we resample the original

observations, we will never be able to recover the underlying uncertainty in the abundance

of these transcripts. Our estimator will demonstrate some variance over the bootstrap

replicates, of course, but only related to what fraction of the original Nt reads we sample

within each replicate (with the expected value, of course, being Nt).

4.2.1 The Augmented Bootstrap

To address this issue, we propose the augmented bootstrap. This procedure is

applicable in situations where the data over which inference is being performed have a

finite (and ideally “small”) support. We describe the procedure in full generality, and then

explain the heuristics that we adopt to make the procedure computationally expedient in

our use case.

The main idea behind the augmented bootstrap is that we will augment our

observed data with some set of “pseudo-observations” — data values that might have

been observed, but which were not observed in our sample. This is analogous to placing

a prior over the discrete set of possible observations that may be made. The prior may

be informative or noninformative, and this can be represented by means of the sampling

weights assigned to each of these pseudo-observations.
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Let us consider our chosen problem of transcript abundance from RNA sequencing

data. To simplify the exposition, let us further assume we are dealing with single-end

reads, and that we will ignore the possibility of sequencing error when generating our

“pseudo-observations”. Then, in this case we may consider producing a set of pseudo-

observations by drawing, from every transcript, a fragment starting at every position.

Let this set of pseudo-observations be denoted as P and let us denote by FA the set

F ∪ P . This is our collection of augmented observations — the set of samples over

which we will perform our augmented bootstrapping procedure. While we could consider

every observation f ∈ FA to be sampled with replacement with equal probability, this

introduces an obvious dependency between |F| and |P| where the effect of the pseudo-

observations will be relatively larger when the original sample is small and less important

when the original sample is very large. Thus, we will consider modifying the sampling

weights between “true” observations (those in F ) and pseudo-observations (those in P).

While we can consider giving each pseudo-observation a distinct sampling weight, let us

consider here the simpler case where we define w < 1 to be the sampling weight applied

to every pseudo-observation. In fact, this gives us a direct way to interpret the weight of all

pseudo-observations as a proportion of the weight of the true observations. Consider that

we want the pseudo-observations to account for 1% of the samples in a given bootstrap

sample — then we can set the weights in the following way.

Let |F| = N and |P| = N ′ so taht |FA| = N + N ′. We would like the weight

of each pseudo-observation to be proportional to w times the weight of each true datum,

where 0 ≤ w ≤ 1.

Now, when we perform a bootstrap replicate, we wish to resample with replacement
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from FA = ⟨f1, f2, . . . , fN , p1, p2, . . . , pN ′⟩ where we will use the sampling weights

⟨y1, y2, . . . , yN , z1, z2, . . . , zN ′⟩ where

yi =
(1− w)(N +N ′)

N

zi =
w(N +N ′)

N ′

This gives the relative sampling weight of every pseudo-observation and every true

observation equal to w and 1 − w respectively. Thus, in expectation, (100 × w)% of our

sampled data in each bootstrap replicate will consist of pseudo-observations, while the

rest will consist of true observations.

The effect of adding these pseudo-observations to augment our bootstrap sampling

is that we can now observe outcomes in our estimates that previously would have not been

possible due to plausible observations that were missing from our specific sample.

Returning to the running example of the alleles of a single transcript; in addition

to the Nt fragments compatible with both alleles, there will now be pseudo-observations

compatible only with tm and pseudo-observations compatible only with tp. In a given

bootstrap replicate the inclusion or exclusion of these pseudo-observations will result in a

different relative estimate between the abundances of these two alleles than we will ever

arrive at under a bootstrap replicate of the original data. In a sense, this augmentation is

enabling us to approach the bootstrap procedure from a more Bayesian perspective, where

data are possible even when they are not observed. The cost for this, of course, is that we

must make some decision about their prior probability.

136



4.2.2 Heuristics for augmenting the bootstrap

We have defined the augmented bootstrap procedure as augmenting the observed

sample with pseudo-observations for all possible observations. This can immediately

pose some challenges. First, it requires that the set of possible observations is finite and

sufficiently small to be enumerated. Second, many possible pseudo-observations, though

technically possible given the imposed prior, may have little to no effect on the resulting

inference of interest.

Again, consider our running example of transcript abundance estimation. Here,

under observations of the original sample, many transcripts will both have an estimated

abundance of 0 and, further, will simply have no observed sequenced fragments

compatible with them. Generating and possibly sampling pseudo-observations from these

transcripts may lead to small fluctuations in the estimated abundance of these transcripts

across bootstrap replicates, but it is unlikely to have any substantial effect on the ”main”

inference problem (i.e. the estimated maximum likelihood abundances of non-trivially

expressed transcripts) — and since no ”true” observations are compatible with these

transcripts, we’d expect their posterior samples to be rather uninteresting.

This immediately suggests one potential heuristic for limiting the number of

pseudo-observations with which we will augment our true samples. Let T be our

complete set of transcripts and let TF be the set of transcripts having at least one fragment

in F that aligns to them. Rather than generating pseudo-observations from all of T , we

may consider generating pseudo-observations only from TF — that is from transcripts that

we predict to be expressed and from those that have compatible observations (but which
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we may not predict to be expressed in the maximum likelihood estimate). In general,

this will produce far fewer pseudo-observations than if we generate them from all of T .

Furthermore, the sampling of these pseudo-observations are much more likely to lead to

alternative high-likelihood estimates across bootstrap-replicates, because they are most

likely to change the balance of observations in highly-ambiguous components within the

inference problem. Thus, we are, in effect, selecting a smaller set of pseudo-observations

that are more likely to uncover the relevant uncertainty in our estimator.

4.3 Results

We have created a simulated dataset of Drosophila with an expression of the reads

from two alleles of each gene. To create the allelic reads, we flip a random base in

the original genes and then generate reads with Polyester RNA-seq simulator [42] from

both allelic genes. Based on the procedure for generating the allelic reads, most, if not

all, the reads mapping to a transcript, map to both its paternal and maternal alleles.

We demonstrate how the augmented Bootstrap improves the accuracy of abundance

estimation on a sample with high levels of ambiguity.

4.3.1 Estimating the allelic expression of a simulated sample

To investigate how the posterior sampling could improve the accuracy of the

abundance estimation, we follow a specific procedure for creating the multi-allelic RNA-

seq sample from the Drosophila genome. We assume the original genome is one parental

allele, and generate the second allele by adding a random mutation to 5 exons of each
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Figure 4.1: The regular bootstraps do not capture any uncertainty in relative expression of two
alleles of the same transcript. Using the augmented bootstrap improves uncertainty
estimation.

gene.

To increase the uncertainty in the abundance estimations, we simulate reads from

both alleles of every transcript in the reference transcriptome. Each transcript in the

paternal allele is expressed by two reads. Then we select 1000 transcripts from each

gene with 3 to 6 isoforms and alter the expression of the maternal allele of the transcript

randomly in a way that the final gene count of the maternal allele will have the same

expression level as the paternal allele.

We should acknowledge that the way this data is simulated is unrealistic because

each transcript has multiple alleles in the sample and all the transcripts are expressed.

The reason, we follow the procedure is to include a very high level of uncertainty so that

estimating the posterior distribution becomes more challenging.

First we simulated a small sample and looked at the relative expression of two

alleles of the same transcript. We observed that the regular bootstrap estimate the

expression of two alleles to be the same in all the inferential replicates. This means that all
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the reads mapping to these alleles are always separated equally to both sequences in all the

bootstrap samples. This has been displayed in fig. 4.1. This figure also shows how using

the augmented Bootstrap sampling with w = 0.01 estimates the existing uncertainty for

the relative expression of these two alleles properly. Because of the unique reads that are

sampled in some inferential replicates from each alleles, the multi-mapping reads are not

always equally distributed between the two alleles and their expressions are not always

the same in all the inferential replicates.

Then we created a larger simulated sample with 30 M reads. In this sample,

we demonstrate how the regular Bootstrap sampling fail to capture the entire posterior

distributions for many T in this sample. We create inferential replicates by Bootstrap

sampling available in Salmon and kallisto. We also create Bootstrap samples using the

augmented Bootstrap sampling with different weights. We ran Salmon in two different

optimization modes of ‘EM’ and ‘VBEM’. The ‘EM’ mode is the regularly expected

maximization algorithm and the ‘VBEM’ is a variational bayesian version of the EM

(VBEM) with non-zero priors for the model’s parameters which induces further sparsity

on the final solution.

Table 4.1 shows the performance of allelic expression quantification with both

point estimates and the mean of the posterior distributions. We observe that using the

augmented Bootstrap sampling with both 0.01 and 0.1 weights increase the accuracy of

the abundance estimation. This suggests that augmenting the sample with one unique

read for each possible transcript increases the ability of the uncertainty estimation with

Bootstrap sampling.

We also evaluated the performance of the two optimization methods ‘EM’ and
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Method Spearman Correlation

kallisto 0.939
kallisto Bootstrap 0.942
Salmon EM point-estimates 0.954
Salmon VBEM point-estimates 0.797
Salmon VBEM regular Bootstrap 0.901
Salmon VBEM augmented Bootstrap (w=0.01) 0.985
Salmon VBEM augmented Bootstrap (w=0.1) 0.992
Salmon EM regular Bootstrap 0.956
Salmon EM augmented Bootstrap (w=0.01) 0.986
Salmon EM augmented Bootstrap (w=0.1) 0.992

Table 4.1: Accuracy of abundance estimation based on the Spearman correlation between the truth
and the mean of the posterior distrubtion. Using the mean of the posterior distribution
generated by augmented Bootstrap sampling with weight 0.01 and 0.1 significantly
improves the accuracy in the allelic expression quantification with RNA-seq.

‘VBEM’. Because of the sparsity imposed by ‘VBEM’ and the specific characteristics

of the simulated sample that almost all the transcripts are expressed, the point estimates

calculated by ‘VBEM’ become less correlated with the truth. However, we observe that

using the mean of the posterior distribution, both ‘EM’ and ‘VBEM’ reach a very high

correlation with the truth.

To further investigate the effect of the augmented Bootstrap sampling for recovering

the posterior distribution, we evaluated the confidence intervals calculated based on both

regular Bootstrap sampling and augmented Bootstrap sampling. In this analysis, we

look at confidence intervals with different lengths (0 to 100%) and at each level we

calculate how many times the truth is found in that interval. If we have the true posterior

distribution, the truth should be found in each interval relative to the length of the interval,

e.g., if we are looking at the 95% confidence interval, we should be able to find the true

value of the abundance at least 95% of the time.

Table 4.2 shows the percentage of the transcripts at each level for which the truth is
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Confidence interval length 5% 25% 50% 75% 95%

Salmon VBEM regular Bootstrap 0.064 0.296 0.540 0.746 0.888
Salmon VBEM augmented Bootstrap (w=0.01) 0.068 0.332 0.613 0.820 0.942
Salmon VBEM augmented Bootstrap (w=0.1) 0.028 0.145 0.299 0.479 0.684
Salmon EM regular Bootstrap 0.061 0.287 0.523 0.725 0.876
Salmon EM augmented Bootstrap (w=0.01) 0.068 0.326 0.608 0.818 0.941
Salmon EM augmented Bootstrap (w=0.1) 0.028 0.147 0.303 0.480 0.686

Table 4.2: Evaluating the confidence intervals achieved by each Bootstrap sampling method.
Augmenting the bootstrap samples with ‘0.01’ of unique reads has a empirical posterior
distribution similar to the theoretical distribution, specifically in the largest interval.
(95%)

recovered in the corresponding interval. We observe that either optimization method using

a pseudo-observation with 1% reaches an empirical posterior distribution similar to the

theoretical distribution, specifically in the largest interval. The highest similarity between

the empirical and theoretical distribution is achieved at the 95% confidence interval of

the augmented Bootstrap sampling with w = 1%. As we observed earlier, increasing the

pseudo-observation weight to 10% increased the spearman correlation of the mean with

the truth, however, in this evaluation we observe that sampling too many reads from the

pseudo-observation do not lead to an improved estimation of posterior distribution.

4.4 Discussion

We demonstrated that following a Bayesian approach to augment the Bootstrap

sampling for generating inferential replicates increases the reliability of the posterior

distribution. Our approach selects all the possible transcripts in a sample based on the

existence of at least one read aligning to a transcript. We augment the set of observed

reads with an extra unique read per possible transcript. Then, the pseudo-observations will
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be sampled in each Bootstrap sample based on a weight that is typically much smaller than

the weight that observed reads are sampled from. In the allelic expression experiment, we

observed that having 1% of the reads coming from the added set improves the estimation

of the posterior distribution. We note that carefully selecting the w parameter is crucial

for finding better estimations of the existing uncertainty. We argue that w can be defined

as a function of the existing uncertainty in the sample, based on the parameters such as

library size. E.g., a sample with 100K reads from 100K transcripts will have a very high

uncertainty, so the w should be set a larger value. On the other hand when the number

of reads compared to the number of reference sequences increases, the uncertainty will

be smaller and the w should be set to a smaller value. In future work, we will further

investigate how this parameter can be tuned for samples with different characteristics.
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Chapter 5: Conclusion

Throughout this dissertation, we have explored improving the lightweight

approaches employed in various steps of the RNA-seq analysis pipeline, i.e., mapping

or alignment of the reads to a known reference, estimating the abundance of transcripts,

and assessing the accuracy of the point estimates by evaluating the posterior distribution.

The recurring theme of all the methods we have introduced here is improving the accuracy

of lightweight methods while maintaining their efficiency.

In chapter 2, we introduced selective-alignment as a new algorithm for efficiently

aligning the reads to the reference transcriptome. This approach increases both sensitivity

and specificity of quasi-mapping. Selective-alignment increases the sensitivity by

performing safe skips for querying each k-mer and relaxing other constraints imposed

on merging the mappings discovered for a read. It also introduces the concept of co-

mapping for further refining the candidate mappings. Selective-alignment computes an

alignment score for each mapping to filter spurious hits further. Using the alignment-

score in the quantification step improves the accuracy of the estimations. We show that

selective-alignment improves the accuracy of the quantification with lightweight methods

without sacrificing the performance.

Furthermore, we have introduced PuffAligner in chapter 2. PuffAligner is built
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on top of the Pufferfish index, which is an efficient colored compacted de Bruijn graph

base index of a collection of reference sequences. PuffAligner is a multi-purpose aligner

that can be utilized for aligning DNA-seq, RNA-seq, and metagenomic reads. PuffAligner

finds high-quality alignments for short reads similar to those discovered by accurate tools,

e.g., Bowtie2, in a significantly shorter amount of time.

We have investigated the effect of the factorization of the likelihood employed

by lightweight RNA-seq quantification tools on the accuracy of the estimations. These

tools treat all the fragments (reads) mapping to the same set of reference sequences as

identical and represent all the fragments compatible with the same set of transcripts as

one equivalence class in the likelihood function. This factorization approximates the

likelihood function because of the differences in the characteristics of each fragment in

an equivalence class, e.g., different fragment length and alignment compatibilities lead to

different conditional probabilities. I have proposed an improved factorization in chapter 3

that groups the fragments in an equivalence class that is not only similar in terms of the

set of transcripts by which they are compatible but also similar in terms of the conditional

probabilities to those set of transcripts. We observed that this improved factorization leads

to greater accuracy of the abundance estimation with almost no effect on the speed of the

lightweight methods.

In chapter 4, we have tackled the problem of estimating the posterior distribution

for RNA-seq abundance estimations. The posterior distribution is necessary to assess

the accuracy of the quantification results. Bootstrap sampling is a popular approach

for creating the inferential replicates from the original observed sample. However,

the existing Bootstrap approaches only consider the observed set of reads (equivalence
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classes) for generating the inferential replicates. We introduced the concept of augmented

Bootstrap sampling, which augments the original sample with additional observations.

We illustrated that augmenting the Bootstrap samples with reads uniquely mapping to

each possible transcript, i.e., the set of transcripts with at least one aligned read from the

observed sample, improves the uncertainty estimation.

5.1 Future Work

Most RNA-seq quantification tools rely on the generative model proposed by

RSEM [18]. A shortcoming of this model is that it assumes the set of reference sequences

against which we are quantifying is complete and that all the fragments in the sample

come from one of the transcripts in the reference. RSEM tries to address this issue by

including an extra transcript as the noise transcript to which all the fragments not aligned

to any other transcripts would map. However, based on how the reference transcripts are

created by alternative splicing, there might exist a fragment that is completely compatible

with an existing transcript in the reference sequence, but it comes from a transcript missed

in our reference transcriptome. This might happen because the exon that the fragment

comes from is present in one of the existing transcripts. Such fragments possibly lead

to coverage anomalies of the transcripts present in the reference, which is completely

ignored by the generative model of RNA-seq quantification.

Recently, different post quantification analyses have been proposed to detect

and possibly fix such coverage anomalies. For instance, in a recent paper [86], the

authors develop a method for detecting anomalies in the coverages of transcripts in the
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RNA-seq quantification results. As they state, such anomalies could be evidence of

misquantification of transcripts. They try to resolve the anomalies by moving around

reads between transcripts to which they map, to obtain results with fewer expression

anomalies while maintaining a high likelihood. This study also suggests that the

cases where the anomalies could not be resolved by simply transferring reads between

the existing transcripts could indicate some mis-annotated transcripts in the reference

transcriptome.

We believe this issue could be addressed more properly during the quantification

step rather than post analysis of the abundance estimations. It is possible to detect

coverage anomalies during both the online and offline phases of the quantification

procedure. During the online phase, reads are assigned only once; therefore, scanning

all the transcripts once at the end of the online phase could highlight the anomalies.

However, the reads are redistributed during each iteration of the offline EM. Therefore,

keeping track of the anomalies, in that case, is more challenging. Another challenge is

that the mapping positions are not available in this phase in the current implementation

of offline EM. One possible solution is keeping track of mapping positions by increasing

the resolution of the equivalence classes. In addition to these challenges, some anomalies

will never be resolved by redistributing the reads, probably because the reads are not

sequenced from any of the sequences in the reference set. This suggests the existence of

novel isoforms which are missing from the set of known reference sequences. Therefore,

the next step in improving RNA-seq quantification model would be detecting such cases

and reporting possible existing transcripts in the reference at the end of the quantification

procedure.
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