
ABSTRACT

Title of dissertation: THE TAYLOR-COUETTE PROBLEM FOR
FLOW IN A DEFORMABLE CYLINDER

David Bourne
Doctor of Philosophy, 2007

Dissertation directed by: Professor Stuart Antman
Department of Mathematics

The Taylor-Couette problem is a fundamental example in bifurcation theory

and hydrodynamic stability, and has been the subject of over 1500 papers. This

thesis treats a generalization of this problem in which the rigid outer cylinder is

replaced by a deformable (nonlinearly viscoelastic) cylinder whose motion is not

prescribed, but responds to the forces exerted on it by the moving liquid. The inner

cylinder is rigid and rotates at a prescribed angular velocity, driving the liquid,

which in turn drives the deformable cylinder. The motion of the outer cylinder is

governed by a geometrically exact theory of shells and the motion of the liquid by

the Navier-Stokes equations, where the domain occupied by the liquid depends on

the deformation of the outer cylinder.

This thesis treats the stability of Couette flow, a steady solution of the non-

linear fluid-solid system that can be found analytically, first with respect to pertur-

bations that are independent of z, then with respect to axisymmetic perturbations.

The linearized stability problems are governed by quadratic eigenvalue problems.

For each problem, this thesis gives a detailed characterization of how the spectrum



of the linearized operator depends on the control parameter, which is the angular

velocity of the rigid inner cylinder. In particular, there are theorems detailing how

the eigenvalues cross the imaginary axis. The spectrum is computed by a mixed

Fourier-finite element method. The spectral properties determine the conditions

under which the system loses its linearized stability. The same conditions support

theorems on nonlinear stability. New physical phenomena are discovered that are

not observed in the classical Taylor-Couette problem. The fluid-solid interaction

models that are developed have applications in structural engineering and human

physiology.
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Notation

Linear Algebra. We employ Gibbs notation (see Antman (2005, Chapter 11))
for vectors and tensors: Vectors, which are elements of Euclidean n-space En, and
vector-valued functions are denoted by lower-case, italic, bold-face symbols. The
dot product of (vectors) v and u is denoted by v · u . A (second-order) tensor is
just a linear transformation from En to itself. The value of tensor A at vector u is
denoted A · u or Au and the product of A and B is denoted A ·B or AB . The
transpose of A is denoted A∗. We write v ·A = A∗ · v . The inner product of A
and B (which equals the trace of A · B∗) is denoted A : B . The identity tensor
is denoted by I . The dyadic product of vectors a and b is the tensor denoted ab
(in place of the more usual a ⊗ b), which is defined by (ab) · v = (b · v)a for all
v . If {e1, e2, e3} is an orthonormal basis for E3, then these definitions imply that
I = e1e1 + e2e2 + e3e3. The trace trA := I : A.

Calculus. If u 7→ f (u) is (Fréchet) differentiable at v , then its differential in the
direction h is

d

dt
f (v + th)

∣∣∣∣
t=0

=:
∂f

∂u
(v) · h ≡ [∂f (v)/∂u ] · h ≡ fu(v) · h .

The tensor ∂f (v)/∂u is the (Fréchet) derivative or the transposed gradient of f at
u . The partial derivative of a function f with respect to a scalar argument such as
t is denoted by either ft or ∂tf . The operator ∂t is assumed to apply only to the
term immediately following it. We sometimes denote the function u 7→ f (u) by
f (·). The divergence of f at x is tr fx (x ) ≡ I : fx (x ).

Complex Variables. We denote the real part of a complex number z by Re(z).
The complex conjugate of z is denoted z̄.

Bases. Let {i , j , k} be a right-handed orthonormal basis for Euclidean 3-space.
For any angle χ we define the vectors

e1(χ) := cosχ i + sinχ j ,

e2(χ) := − sinχ i + cosχ j ≡ k × e1(χ),

e3(χ) := k .

Symbols. The following tables list the bilinear forms and function spaces that
are used and where they are introduced (equation number). Some symbols have a
different meaning in different parts of the thesis, in which case there is more than
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one equation listed for where they are defined.

Bilinear forms:

af (2.10.32) as (2.10.39) a0 (2.11.9), (5.10.3)
â0 (2.11.19) ã0 (2.11.42), (5.10.12) ak

0 (2.11.52), (5.10.24)
âk

0 (2.11.65) a1 (2.11.10), (5.10.4) ã1 (2.11.43), (5.10.13)
ak

1 (2.11.53), (5.10.25) a2 (2.11.11), (5.10.5) ã2 (2.11.44), (5.10.14)

ak
2 (2.11.54), (5.10.26) b (2.11.11), (5.10.6) b̃ (2.11.45), (5.10.15)
bk (2.11.55), (5.10.27) bk1 (2.12.49) bk2 (2.12.49)
ck (2.12.66) d1 (2.11.23) dk

1 (2.11.69)
d2 (2.11.23) dk

2 (2.11.69) dk
3 (2.11.69)

Function spaces:

Hm
0 (Ω; div) (2.10.22) Hm

a (Ω; div) (2.10.22)
H1

a(Ω) (2.11.6), (5.10.1) Hm
S (T2π) (2.10.22)

H1
S (ΓR) (5.10.1) Π (2.11.6), (5.10.1)
Πk (2.11.49), (5.10.20) Πk

h (2.12.29)

Πm(Ω) (2.10.22) Π̃ (2.11.40), (5.10.10)
V1 (2.11.6), (5.10.1) V2 (2.11.6), (5.10.1)
V1 (2.11.38), (5.10.10) V2 (2.11.39), (5.10.10)
V k

1 (2.11.49), (5.10.20) V k
2 (2.11.49), (5.10.20)

V k
1,h (2.12.29) V k

2,h (2.12.29)
Vh (2.12.31) Z1 (2.11.17)
Z2 (2.11.17) Z (2.11.26)
Z0 (2.11.26) Zk

1 (2.11.63)
Zk

2 (2.11.63) Zk (2.11.72)
Zk

0 (2.11.72)

The following tables list the principal symbols used, their meanings, and where
they are introduced (section or equation number). Some symbols have a different
meaning in different parts of the thesis. This is indicated in the table.
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γ kinematic viscosity of the fluid (2.3.1)
γ0 trace operator Sec. 2.10
γR restricted trace operator Sec. 2.10
η strain variable for the ring (3.2.4)

strain variable for the shell (5.2.5)
θ characterizes orientation of material fibers (3.2.3), (5.2.4)
λ eigenvalue representing the perturbation growth rate Sec. 2.9, 3.8, 5.8
µ strain variable for the ring (3.2.4)

strain variable for the shell (5.2.6)
µ̃ dynamic viscosity of the fluid (2.3.1)
ν stretch of the string (2.2.3)

strain variable for the ring (3.2.4)
strain variable for the shell (5.2.5)

ρ density of the fluid (2.3.1)
% density of the 2-dimensional elastic body Sec. 4.2

2%h density of the shell (5.2.8)
%A density of the string (2.2.6)

density of the ring (3.2.9)
%I first moment of mass of the ring & shell (3.2.9), (5.2.8)
%J second moment of mass of the ring & shell (3.2.12), (5.2.8)
σ strain variable for the shell (5.2.6)
Σ length of the vector m2 Sec. 5.2

Σ̂ constitutive function for the shell (5.2.12)
Σ Cauchy stress tensor (2.3.3)
τ strain variable for the shell (5.2.6)
ω angular velocity of the inner cylinder Ch. 1
ωcrit critical values of ω : Re(λ(ωcrit)) = 0 Sec. 2.10
Ω the annulus {a < |x | < R} Sec. 2.10

period cell for the fluid (5.9.1)

a radius of the rigid cylinder Sec. 2.1
a unit vector orthogonal to d (3.2.2), (5.2.3)
C Cauchy-Green deformation tensor Sec. 4.2
d characterizes orientation of material fibers Sec. 3.2, 5.2
D symmetric part of ∂v/∂x (2.3.2)
f force of the fluid on the deformable cylinder (2.2.6), (3.2.9), (5.2.8)
F deformation gradient Sec. 4.2
g Lagrange multiplier (5.2.8)
h mesh size Sec. 2.12

thickness of the 2-dimensional annulus Sec. 4.2
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Ĥ constitutive function for the ring (3.2.21)
constitutive function for the shell (5.2.12)

k Fourier wave number (2.10.16)
m1 internal contact couple in the shell Sec. 5.2
m2 internal contact couple in the shell Sec. 5.2
M internal contact couple in the ring (3.2.12)

component of the vector m1 Sec. 5.2

M̂ constitutive function for the ring (3.2.21)
constitutive function for the shell (5.2.12)

n internal contact force in the string (2.2.6)
internal contact force in the ring (3.2.9)

n1 internal contact force in the shell Sec. 5.2
n2 internal contact force in the shell Sec. 5.2
nΩ unit outer normal vector to ∂Ω Sec. 2.10
N length of the vector n (for the string) (2.2.7)

(N,H) components of the vector n (for the ring) (3.2.10)
components of the vector n1 Sec. 5.2

N̂ constitutive function for the string (2.2.8)
constitutive function for the ring (3.2.21)
constitutive function for the shell (5.2.12)

p fluid pressure (normalized by density) (2.3.1)
p position of the 2-dimensional elastic body Sec. 4.2

(q, ψ) polar coordinates for r (for the string) (2.2.5)
(q, ζ) polar coordinates for r (for the shell) (5.2.2)
R radius of deformable cylinder, Couette solution Sec. 2.5
r position of the string Sec. 2.2

position of the ring Sec. 3.2
position of the shell Sec. 5.2

s identifies material points of the string & ring Sec. 2.2, 3.2
(s, φ) identifies material points of the shell Sec. 5.2
S second Piola-Kirchhoff stress tensor Sec. 4.2

Ŝ constitutive function for the 2-dimensional body Sec. 4.2
t time Sec. 2.2
T length of the vector n2 Sec. 5.2

T̂ constitutive function for the shell (5.2.12)
T first Piola-Kirchhoff stress tensor Sec. 4.2

T̂ constitutive function for the 2-dimensional body Sec. 4.2
(u, v) polar coordinates for v (2.3.11)

(u, v, w) polar coordinates for v (5.3.1)
v velocity of the fluid (2.3.1)
x point in the fluid domain (2.3.1)
Z axial period (5.5.1)

viii



Chapter 1

Introduction

Background and Motivation. The classical Taylor-Couette problem concerns

the motion of a viscous incompressible fluid in the region between two rigid coax-

ial cylinders, which rotate at constant angular velocities. If, for example, the outer

cylinder is held fixed and angular velocity of the inner cylinder is small, then laminar

flow is observed. As the angular velocity of the inner cylinder is slowly increased

past a critical value, the laminar flow destabilizes into a secondary steady flow.

Increasing the angular velocity further produces a rich family of bifurcations and

flows, e.g., periodic solutions, quasiperiodic solutions, and turbulence. Since Cou-

ette first performed this experiment 100 years ago, this fundamental problem in

bifurcation theory has been the subject of over 1500 papers. See Chandrasekhar

(1981) and Chossat & Iooss (1993) for introductions to the Taylor-Couette problem

and Tagg (1992) for an extensive bibliography. Taylor (1923) conducted the first

serious mathematical analysis of the problem.

This thesis treats a generalization of this problem in which the outer cylinder

is a deformable (nonlinearly viscoelastic) shell. The motion of the shell is not pre-

scribed, but responds to the forces exerted on it by the moving liquid. The inner

cylinder is rigid and rotates at a prescribed angular velocity ω, driving the liquid,

which in turn drives the deformable shell.
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The motivation for this project, in addition to its connection with the classi-

cal Taylor-Couette problem, is to develop new modelling and analysis techniques for

fluid-structure interaction problems, which are of great importance in structural en-

gineering and biomechanics. For example, the fluid-solid interaction models derived

here could be used to model blood flow in arteries or biomembranes. Dynamical

problems for the interaction of fluids with deformable solids undergoing large dis-

placements are notoriously difficult to analyze. This thesis treats a rare instance of

such an interaction in which the geometry is simple, the physics is interesting, and

the behavior of solutions can be determined by mathematical analysis, without an

immediate recourse to numerical computation.

There has been great interest in fluid-structure problems in the past few years.

Existence theorems for the interaction of fluids with deformable bodies are given in

Chambolle et al. (2005), Coutand & Shkoller (2005, 2006), and Cheng et al. (to

appear). Numerical methods and eigenvalue problems governing linear stability of

coupled fluid-structure systems have been studied by Planchard & Thomas (1991),

Conca & Durán (1995), and Bermúdez & Rodŕıguez (2002). Applications are given

in Quarteroni & Formaggia (2005), Shelley et al. (2005), and Čanić et al. (2006).

This represents just a small sample of recent work.

Modelling. We limit our attention to two types of motion of the coupled fluid-

solid system: cylindrical motions and axisymmetric motions. See Figure 1.1.1.

In Chapters 2–4 we consider cylindrical motions, where the deformable cylinder

remains cylindrical, although not necessarily a circular cylinder, and there is no

2



Figure 1.1.1: In Chapters 2–4 we consider cylindrical motions of the deformable

cylinder (pictured left) and in Chapter 5 we consider axisymmetric motions of the

deformable cylinder (pictured right).
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motion of the fluid in the axial direction. Thus we can represent the system by a

horizontal cross section, reducing the problem to two dimensions. We present three

different models for a horizontal cross section of the deformable cylinder: We model

a cross section as a viscoelastic string in Chapter 2, a viscoelastic ring in Chapter 3

(using a Cosserat rod theory), and a 2-dimensional elastic body in Chapter 4 (using

2-dimensional continuum mechanics).

In Chapter 5 we consider axisymmetric motions of the fluid-solid system, where

the base surface of the deformable cylinder is axisymmetric and the components of

the fluid velocity with respect to a polar basis are independent of the angle variable.

Axisymmetric motions were the starting point for studying the classical Taylor-

Couette problem. The deformable cylinder is modelled using a geometrically exact

shell theory, the special Cosserat theory of shells, which accounts for flexure, base

surface extension, and shear. The motion of the shell is governed by a quasilinear

parabolic-hyperbolic system of partial differential equations. We assume that the

shell is viscoelastic and work with a broad class of nonlinear constitutive functions.

For both the cylindrical and axisymmetric problems we assume that the fluid

is viscous, incompressible, and Newtonian, so that its motion is described by the

Navier-Stokes equations. These are coupled to the equations for the deformable

body through the adherence boundary condition, which states that the velocity

of the fluid at the boundary equals the velocity of the boundary, and through the

traction condition, which states that the force of the fluid on the deformable cylinder

is equal and opposite to the force of the deformable cylinder on the fluid. For the

string, ring, and shell models, the traction condition is included as a body force term

4



in the linear momentum equation for the deformable body. For the 2-dimensional

elasticity model, the traction condition is included as a boundary condition. In total

this thesis includes four different fluid-solid interaction models.

The Couette Steady Solution. For both the cylindrical and axisymmetric prob-

lems there exists a rigid Couette steady solution analogous to the Couette solution

of the classical Taylor-Couette problem: The fluid streamlines are concentric circles

and the deformable cylinder rotates rigidly with the same angular velocity ω as the

rigid inner cylinder. See Sections 2.7, 3.6, 4.6, and 5.6.

We study the stability of the rigid Couette solution with respect to the pre-

scribed angular velocity ω, which is taken to be the bifurcation parameter.

Linearization and the Quadratic Eigenvalue Problem. For both the cylin-

drical and axisymmetric problems problems, linearizing the equations of motion

about the Couette steady solution yields a quadratic eigenvalue problem, which can

be thought of as a perturbation of the Stokes eigenvalue problem with complicated

boundary conditions (governing the motion of the shell); the eigenvalue parameter

λ appears quadratically in the boundary conditions for the fluid. See Sections 2.9,

3.8, and 5.8.

Typically in hydrodynamic stability problems, the eigenvalues of the linearized

problem migrate towards the right as a bifurcation parameter (ω in our case) is

increased, and the way the eigenvalues cross the imaginary axis can yield important

information about the stability and structure of solutions to the fully nonlinear

5



problem.

Analytical Results: Cylindrical Motions of the Shell. Due to the complex-

ity of the quadratic eigenvalue problem it is not possible to compute the eigenvalues

analytically. Much information can be obtained, however, before turning to numer-

ics. For the string model we prove that the eigenvalues λ cross the imaginary axis

through the origin (Theorem (2.10.4)) and find an explicit formula for the critical

values of ω at which the eigenvalues cross (Theorem (2.10.21)), highlighting the role

of the material properties. Unlike the classical Taylor-Couette problem, it turns

out that the Couette solution is unstable for all ω > 0, and so not observable: We

prove that λ = 0 is an eigenvalue when ω = 0. (This is shown for the string, ring,

and 2-dimensional elasticity models. See Sections 2.10, 3.9, and 4.7.) Numerical

results in Section 2.13 indicate that for the string problem these eigenvalues move

into the right half-plane as ω is increased. This instability occurs via a drift of the

deformable string off-center, breaking axisymmetry. If this mode is stabilized by

a suitable feedback control to keep the center of mass of the string at the origin,

then we can study other bifurcations; numerical results show that as the control

parameter ω is increased, complex-conjugate pairs of eigenvalues in the left half-

plane move towards the origin. Such pairs meet at the origin and then move into

the right half-plane, whereupon they cease to be real. This is known as a Takens-

Bogdanov bifurcation. Mathematically the unstable mode can be stabilized for the

3-dimensional problem by seeking axisymmetric solutions, which is what we do in

Chapter 5.

6



For the string model we also characterize the spectrum of the linear operator.

See Theorems (2.10.23) and (2.12.69).

Analytical Results: Axisymmetric Motions of the Shell. As for the string

problem, we prove that the eigenvalues λ of the quadratic eigenvalue problem cross

the imaginary axis through the origin. See Theorem (5.9.18). We also find a shear

instability, Theorem (5.9.19), and a cubic equation for the critical values of ω2 at

which the eigenvalues cross, equation (5.9.25). To determine whether the eigenvalues

λ cross through the origin along the real axis (suggesting a steady state bifurcation)

or in complex conjugate pairs (as for the string problem) requires a numerical study,

which we perform in Section (5.11) and describe below.

Numerical Results: Cylindrical Motions of the Shell. Due to the coupling

terms between the fluid and deformable solid, deriving a well-posed weak formulation

of the quadratic eigenvalue problem is tricky. The pressure terms must be treated

with care and different function spaces must used for the eigenfunctions and the test

functions. See Section 2.11.

For the string problem the eigenvalues of this non-selfadjoint problem are

computed using the Fourier-finite element method: Fourier series in the angle vari-

able are used to reduce the partial differential equations on an annulus to ordinary

differential equations in the radial variable r, which are discretized using the 1-

dimensional finite element method. Employing the direct QZ eigensolver to solve

the matrix eigenvalue problem leads to a fast algorithm. For stability of this mixed

7



problem we used the Taylor-Hood finite element. (Only very recently were discrete

inf-sup conditions proved for the Fourier-finite element discretization of Stokes prob-

lem in axisymmetric domains. See Belhachmi et al. (2006a, 2006b).) Our discretized

eigenvalue problem, like the discretized Stokes eigenvalue problem, has many infi-

nite eigenvalues (corresponding to the zero eigenvalues of a related problem), which

must be computed in a stable manner, using the shift and invert transformation,

or factored out by performing the linear algebra on the divergence-free subspace.

See Cliffe, Garratt, and Spence (1994). We verify our computations with COMSOL

Multiphyics, using the exact formula for the critical values of ω (Theorem (2.10.21)),

and using Bessel functions to obtain a transcendental equation for the eigenvalues

for the case k = 0. See Section 2.13.

We prove continuous and discrete inf-sup conditions for the bilinear forms

appearing in the weak formulation (Theorems (2.11.56), (2.11.64), (2.12.47), and

(2.12.63)). Rate of convergence estimates for the eigenvalues then follow from results

in Babuška & Osborn (1991) and Kolata (1976). See Section 2.12.

Numerical Results: Axisymmetric Motions of the Shell. The eigenvalues

for the axisymmetric problem are computed using the Fourier-finite element method

with the QZ eigensolver, as for the string problem. We find that the first eigenvalue

to cross the imaginary axis is real, indicating a steady state bifurcation. See Section

(5.11). As ω crosses its critical value ωcrit, the Couette steady solution destabilizes

into a new steady solution where the deformable shell is buckled, but the fluid

steamlines are still concentric circles. This is a new phenomenon not observed in

8



Chapters 2–4 or in the classical Taylor-Couette probelm.

Organization of the Thesis. In Chapters 2–4 we study cylindrical motions of the

shell, modelling a horizontal cross section as a string (Chapter 2), a ring (Chapter 3),

and a 2-dimensional body (Chapter 4). In Chapter 5 we study axisymmetric motions

of the shell. The most important results are in Chapters 2 and 5. In Chapter 2 we

carefully characterize the spectrum of the quadratic eigenvalue problem, derive a

well-posed weak formulation, prove continuous and discrete inf-sup conditions, and

uses these to prove convergence of the numerical method. In subsequent chapters

we do not pause to use the techniques of Chapter 2 to check all of these details.

9



Chapter 2

Cylindrical Motions of the Shell: The String Model

2.1 Introduction

In this chapter we begin our study of cylindrical motions of the deformable

shell, where there is no motion of the fluid in the axial direction and the deformable

shell remains cylindrical, but not necessarily a circular cylinder. We can repre-

sent this system by a horizontal cross section, which reduces the problem to two

dimensions. In this chapter we model a cross section of the deformable shell as a de-

formable string. This is the simplest model. In Chapters 3 and 4 we use more refined

models; we model a cross section of the shell as a ring and a 2-dimensional elastic

body. By definition, a string offers no resistance to bending, only to stretching.

Thus we study the motion of a viscous incompressible liquid in the region

between a rigid circular disk of radius a < 1 rotating at a prescribed angular velocity

ω and a viscoelastic string whose natural state is circle of radius 1. The motion of

the string is not prescribed, but responds to the forces exerted on it by the moving

liquid; the rigid disk drives the liquid, which in turn drives the deformable string.

We find a rigid Couette steady solution of this coupled system and analyze

its stability with respect to the bifurcation parmeter ω. By linearizing the gov-

erning equations about this steady solution and seeking normal modes we arrive

at a quadratic eigenvalue problem. In this chapter we adhere to high standards
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of mathematical hygiene; we characterize the spectrum of the quadratic eigenvalue

problem, find a well-posed weak formulation, prove continuous and discrete inf-sup

conditions, and apply the Galerkin approximation theory for polynomial eigenvalue

problems to derive a convergent numerical scheme. In subsequent chapters we do

not pause to check all these details.

The main results of this chapter are theorems detailing how the spectrum

of the linearized operator depends on the control parameter, which is the angular

velocity ω of the rigid inner cylinder, and the computation of the spectrum using a

mixed Fourier-finite element method.

2.2 Formulation of the Equations for the String

In this section we summarize the theory of deformable strings from Antman

(2005, Chapter 2).

Geometry of Deformation

Let {i , j , k} be a right-handed orthonormal basis for Euclidean 3-space. For

any angle ψ we define the vectors

e1(χ) := cosχ i + sinχ j , e2(χ) := − sinχ i + cosχ j ≡ k × e1(χ). (2.2.1)

The reference configuration of the string is a circle of radius 1, given parametrically

by

r ◦(s) = e1(s). (2.2.2)
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The arc-length parameter s ∈ [0, 2π] identifies material points of the string, with

the points 0 and 2π identified. The position of material point s at time t is r(s, t).

The curve r(·, t) is assumed to lie in the {i , j }-plane for each t. The stretch ν(s, t)

is defined by

ν(s, t) := |rs(s, t)| ≡
√

rs · rs. (2.2.3)

Note that ν = 1 in the reference configuration. Since ν measures the stretch of the

string, i.e., the local ratio of deformed to reference length of the string, we stipulate

that ν > 0. We require that the configuration satisfy the periodicity conditions

r(2π, t) = r(0, t), rs(2π, t) = rs(0, t). (2.2.4)

Sometimes it will be convenient to work in polar coordinates. We define functions

q(s, t) := |r(s, t)| and ψ(s, t) ∈ [0, 2π) by

r(s, t) =: q(s, t)e1(ψ(s, t) + ωt). (2.2.5)

Mechanics

Let n(ξ, t) be the internal contact force exerted at time t by the material of

the string with s ∈ (ξ, ξ + ε] on the material of the string with s ∈ [ξ − ε, ξ] where

ε is a sufficiently small positive number and this interpretation is independent of ε.

Let f (s, t) be the force per unit reference length exerted by the fluid on material

point s of the string at time t. We give an expression for the force f in Section 2.4.

The string obeys the Linear Momentum Law

%Artt = ns + f (2.2.6)
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where (%A)(s) is the mass density of the string per reference length. We assume

that the string is uniform so that %A is constant and 2π%A is the mass of the string.

Equation (2.2.6) is derived by adding up all the forces on a segment [s1, s2] of the

string, n(s2, t)−n(s1, t)+
∫ s2

s1
f (s, t) ds, and setting this equal to the rate of change

of linear momentum of the segment, ∂t

∫ s2

s1
%Art(s, t) ds. Differentiating the resulting

equation with respect to s2 gives (2.2.6).

We assume that the string can bend and stretch, but that it offers no resistance

to bending, only to stretching. Thus the internal contact force n(s, t) is tangent to

the string and has the form

n =: N(s, t)
rs

|rs| . (2.2.7)

Constitutive Equations

We assume that the string is uniform and viscoelastic of strain-rate type, i.e.,

there is a function

ν, ν̇ 7→ N̂(ν, ν̇) (2.2.8)

such that

N(s, t) = N̂(ν(s, t), νt(s, t)). (2.2.9)

The superposed dot on the last argument of (2.2.8) has no operational significance;

it merely identifies the argument of the constitutive function that is to be occupied

by the time derivative of ν. This form of N̂ is derived by starting with a general

constitutive function of the form N = N̂(r , rs, rt, t) and applying the Principle of

Frame-Indifference, which requires that material properties be invariant under rigid
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motions. We assume that the constitutive function N̂ is as smooth as necessary for

our analysis.

We assume that the monotonicity conditions hold:

N̂ν > 0 and N̂ν̇ > 0. (2.2.10)

These mean that increases in strain and strain-rate are each accompanied by an

increase in stress. Similarly, it is expected that an extreme strain be accompanied

by an extreme stress. Therefore we stipulate that the constitutive function satisfies

the growth conditions

N̂(ν, ν̇) −→





+∞

−∞





as ν −→





+∞

0





(2.2.11)

for fixed values of ν̇. Finally, we make the nonrestrictive assumption that the resul-

tant vanishes when the body is at rest in the reference configuration:

N̂(1, 0) = 0. (2.2.12)

This means that the reference configuration of the string is a natural configuration

for it.

2.3 Formulation of the Equations for the Fluid

Coordinate-free Equations

Let D(t) be the domain occupied by the fluid at time t. This is the region

between the rigid disk of radius a < 1 and the curve r(·, t). We assume that the
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fluid is viscous, incompressible, and homogeneous. We denote by

ρ the density of the fluid,

µ̃ the dynamic viscosity of the fluid,

γ the kinemetic viscosity of the fluid, γ = µ̃/ρ,

v(x , t) the velocity of the fluid particle occupying position x ∈ D(t) at time t,

ρp(x , t) the pressure on the fluid particle occupying position x ∈ D(t) at time t,

Σ(v , p) the Cauchy stress tensor,

D(v) the symmetric part of the velocity gradient, which is defined by

(2.3.1)

D(v) =
1

2

[
∂v

∂x
+

(
∂v

∂x

)∗]
(2.3.2)

where the asterisk denotes the transpose. (Note that the ρ for the density of the

fluid differs from the % appearing in the %A for the density per unit reference length

of the string.) We assume that the fluid is Newtonian, so that the Cauchy stress Σ

has the Navier-Stokes form

Σ(v , p) = −ρp I + 2µ̃D(v). (2.3.3)

The requirement that the fluid be incompressible is that ∇ · v = 0. In this case,

1
ρ
div Σ = −∇p+ γ∆v , (2.3.4)

so that the momentum equation is the Navier-Stokes equation

vt +
∂v

∂x
· v = 1

ρ
div Σ = −∇p+ γ∆v in D(t),

∇ · v = 0 in D(t).

(2.3.5)
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Polar Coordinates

We assign polar coordinates (r, φ) to a typical point x in the {i , j }-plane with

respect to the basis {e1(ωt), e2(ωt)} rotating with the rigid inner disk by

x = re1(φ+ ωt) = r[cosφe1(ωt) + sinφe2(ωt)]. (2.3.6)

The virtue of such a rotating basis is explained in Section 2.7. We denote by

r̃(x ) := |x | and φ̃(x , t) ∈ [0, 2π) the unique solution of (2.3.6) for r and φ in terms

of x and t. Thus the functions satisfy the identity

x =: r̃(x ) e1(φ̃(x , t) + ωt). (2.3.7)

Differentiate (2.3.7) with respect to t to obtain

∂φ̃

∂t
= −ω. (2.3.8)

The Chain Rule yields

I ≡ e1(φ+ ωt)e1(φ+ ωt) + e2(φ+ ωt)e2(φ+ ωt)

=
∂x

∂x
=
∂x

∂r

∂r̃

∂x
+
∂x

∂φ

∂φ̃

∂x
= e1(φ+ ωt)

∂r̃

∂x
+ re2(φ+ ωt)

∂φ̃

∂x
,

(2.3.9)

whence

∂r̃

∂x
= e1(φ+ ωt),

∂φ̃

∂x
=

1

r
e2(φ+ ωt). (2.3.10)

We write the fluid velocity v in the form

v(re1(φ+ ωt), t) =: u(r, φ, t)e1(φ+ ωt) + v(r, φ, t)e2(φ+ ωt). (2.3.11)

Therefore

v(x , t) = u(r̃(x ), φ̃(x , t), t) e1(φ̃(x , t) + ωt) + v(r̃(x ), φ̃(x , t), t) e2(φ̃(x , t) + ωt).

(2.3.12)
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Differentiating (2.3.12) with respect to t, and using (2.3.8), we find that

vt = (uφφ̃t + ut)e1 + (vφφ̃t + vt)e2 = (ut − ωuφ)e1 + (vt − ωvφ)e2. (2.3.13)

Here and through the rest of this subsection the argument of e1 and e2 is φ + ωt.

The (transposed) gradient of v is given by the Chain Rule:

∂v

∂x
=
∂[ue1 + ve2]

∂r

∂r̃

∂x
+
∂[ue1 + ve2]

∂φ

∂φ̃

∂x

= [ure1 + vre2] e1 +
1

r
[uφe1 + vφe2 + ue2 − ve1] e2.

(2.3.14)

Substitute (2.3.14) into (2.3.2) to derive

D(v) = ure1e1 +
1

2

(
vr + 1

r
uφ − 1

r
v
)
(e1e2 + e2e1) +

1

r
(vφ + u)e2e2. (2.3.15)

Substituting (2.3.11), (2.3.13), and (2.3.14) into (2.3.5) gives the Navier-Stokes

equations in rotating polar coordinates:

ut − ωuφ + uur +
vuφ

r
− v2

r
= −pr + γ

[
urr +

ur

r
+
uφφ

r2
− 2vφ

r2
− u

r2

]
,

vt − ωvφ + uvr +
vvφ

r
+
uv

r
= −pφ

r
+ γ

[
vrr +

vr

r
+
vφφ

r2
+

2uφ

r2
− v

r2

]
,

(ru)r + vφ = 0.

(2.3.16)

2.4 The Coupling Between the Fluid and the String Equations

The equations for the fluid and the string are coupled through the adherence

boundary condition (no-slip) and the body force term f in the equation for the

string, equation (2.2.6).

We adopt the standard requirement for viscous fluids that the fluid adhere to
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solid surfaces, here the disk and the string, with which it is in contact. Thus

u(a, φ, t) = 0, v(a, φ, t) = aω ∀φ, t, (2.4.1)

v(r(s, t), t) = rt(s, t) ∀ s, t. (2.4.2)

Now we derive an expression for the body force f exerted by the fluid on the

string. The outward pointing unit normal to r(·, t) is rs × k/|rs|. The definition

of the Cauchy stress tensor says that the force per unit (actual) length exerted by

the ring on the fluid at r(s, t) is thus Σ · (rs× k)/|rs|. Therefore the force per unit

reference length exerted by the fluid on the ring at r(s, t) is

f = −Σ · (rs × k) = Σ · (k × rs) = [−ρpI + 2µ̃D(v)] · (k × rs)

= −ρp(k × rs)

+ µ̃
[
2ure1e1 +

(
vr + 1

q
uφ − 1

q
v
)

(e1e2 + e2e1) + 2
q
(vφ + u)e2e2

]
· (k × rs),

(2.4.3)

where we have used (2.3.3) and (2.3.15). The components u and v of the fluid

velocity are evaluated at (r, φ) = (q(s, t), ψ(s, t)), which are the polar coordinates

for r(s, t) (see equation (2.2.5)), and the argument of e1 and e2 is ψ(s, t) + ωt.

Substituting (2.2.3), (2.2.7) and (2.4.3) into the linear momentum equation for the

string (2.2.6) gives

%Artt =
(
N̂ν νs + N̂ν̇ νst − N̂

νs

ν

) rs

ν
+ N̂

rss

ν
+ Σ · (k × rs). (2.4.4)

2.5 The Area Side Condition

The fluid in our problem is incompressible and so it has constant area. Fix

R > 1, and fix the area of the fluid to be π(R2 − a2), i.e., the area of fluid is the
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same as the area of the annulus {a < |x | < R}. This choice is motivated by the

form of the Couette steady solution. See Section 2.7. The area of the rigid disk is

πa2. Therefore in order to prohibit the formation of cavities in the fluid we must

enforce the side condition that the area enclosed by the string is πR2. By Green’s

Theorem in the Plane

πR2 = 1
2
k ·

∫ 2π

0

r(s, t)× rs(s, t) ds. (2.5.1)

The parametersR and ω are at our disposal, and the choice ofR and ω uniquely

determines the pressure of the fluid in the Couette steady solution (see Section 2.7).

This situation is different from that for problems involving an incompressible fluid

in a domain with fixed boundary, where the pressure of the fluid is determined only

up to a constant. It is easy to see why the pressure constant must be determined

uniquely: Suppose that we add a constant to the pressure. This will have the effect

of inflating the string. But inflating the string increases the area it encloses. This

cannot happen without the formation of cavities in the fluid.

Recall that our 2-dimensional problem can be thought of as a horizontal cross

section of the 3-dimensional problem of a fluid confined to the region between a

rotating rigid cylinder and a membrane where the there is no motion of the fluid in

the z-direction, the fluid variables are independent z, and the membrane remains

cylindrical, but not necessarily a circular cylinder (see Section 2.1). Equivalent

to prescribing the area of the fluid in each cross section (which is equivalent to

prescribing R), we could prescribe the pressure on the fluid at the ends of the

cylinder z = ±∞. This pressure dictates how much fluid is squeezed into each cross
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section, i.e., determines R. In this thesis, however, we will always prescribe the area

of the fluid rather than the pressure at the ends of the cylinder.

While our equations make sense for all values of R > 1 and ω, we limit

ourselves to those values that lead to a physical pressure p > 0 everywhere. (We

do not explicitly calculate the values of R and ω that lead to a positive pressure

p, but it will be implicitly understood that we only work with values of R and ω

that satisfy this property. Thus our problem has the character of a semi-inverse

problem.)

2.6 Summary of the Initial-Boundary-Value Problem

In this section we summarize the equations that were derived in Sections 2.2–

2.5. Given constants ω, γ, µ̃, ρ, a, R, and %A, constitutive function N̂ , and initial

data v0, p0, and r0, we seek functions

D(t)× [0,∞) 3 (x , t) 7→ v(x , t) ∈ R2, (2.6.1)

D(t)× [0,∞) 3 (x , t) 7→ p(x , t) ∈ R, (2.6.2)

R/2πZ× [0,∞) 3 (s, t) 7→ r(s, t) ∈ R2, (2.6.3)

satisfying the initial conditions v(x , 0) = v0(x ), p(x , 0) = p0(x ), r(s, 0) = r0(s)

and the following equations, where D(t) is the domain between the circle of radius

a < 1 centred at the origin and the curve r(·, t):

Navier-Stokes equations.

vt +
∂v

∂x
· v = −∇p+ γ∆v in D(t)× [0,∞),

∇ · v = 0 in D(t)× [0,∞).

(2.6.4)
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The equation for the string.

%Artt =
(
N̂ν νs + N̂ν̇ νst − N̂

νs

ν

) rs

ν
+ N̂

rss

ν
+ Σ · (k × rs) in [0, 2π]× [0,∞),

(2.6.5)

where ν(s, t) := |rs(s, t)|, and where Σ = Σ(v(r(s, t), t), p(r(s, t), t)). Σ was

defined in equation (2.3.3). The constitutive function N̂(ν, ν̇) was introduced in

Section 2.2.

The adherence boundary condition.

v(ae1(φ+ ωt), t) = aω e2(φ+ ωt) ∀φ, t, (2.6.6)

v(r(s, t), t) = rt(s, t) ∀ s, t. (2.6.7)

The area side condition.

πR2 = 1
2
k ·

∫ 2π

0

r(s, t)× rs(s, t) ds ∀ t. (2.6.8)

2.7 The Couette Steady Solution

In this section we show that our problem admits a rigid Couette steady solu-

tion. The symmetry of our problem suggests that we seek a steady solution in which

the string is circular and rotates rigidly with constant angular velocity Ω, and the

fluid streamlines are concentric circles. Thus we seek solutions of the following form

(using the polar coordinates introduced in Section 2.3):

u(r, φ, t) = 0, v(r, φ, t) = V (r), p(r, φ, t) = P (r), (2.7.1)

r(s, t) = Re1(s+Ωt). (2.7.2)
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Note that r satisfies the side condition (2.5.1). R > 1 is the radius of the circle

formed by the string. (Recall that the natural state of the string is a circle of radius

1.) In the notation introduced in equations (2.2.3) and (2.2.5),

ν = |rs| = R, q = |r | = R, ψ(s, t) = s+ (Ω − ω)t. (2.7.3)

The substitution of (2.7.1) into the Navier-Stokes equations (2.3.16) yields

Pr =
V 2

r
, Vrr +

Vr

r
− V

r2
≡

[
Vr +

V

r

]

r

≡
[
1

r
(rV )r

]

r

= 0. (2.7.4)

Thus there are constants B, C, D such that

V (r) = Br +
C

r
, (2.7.5)

P (r) =
B2r2

2
+ 2BC ln r − C2

2r2
+D. (2.7.6)

The adherence conditions (2.4.1), (2.4.2) imply that

aω = Ba+
C

a
, RΩ = BR+

C

R
⇐⇒ B =

R2Ω − a2ω

R2 − a2
, C =

R2a2(ω −Ω)

R2 − a2
.

(2.7.7)

We must obtain equations for the unknown constants Ω and D in terms of param-

eters ω, a, R and N̂ . By substituting (2.7.1) and (2.7.2) into the equation for the

string (2.6.5) we find that

−%AΩ2Re1(s+Ωt) = −N̂(R, 0)e1(s+Ωt) + ρRP (R)e1(s+Ωt) +
2Cµ̃

R
e2(s+Ωt).

(2.7.8)

Taking the inner product of (2.7.8) with e2(s+Ωt) yields

C = 0 =⇒ Ω = ω, B = ω. (2.7.9)
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Therefore the fluid and the elastic string rotate rigidly with the same angular velocity

as the rigid disk. The system behaves like a rigid body. We call this the rigid Couette

solution.

Note that this rigid Couette solution is not time independent; the position of

the string r depends on t. However, the coordinates of r with respect to the rotating

basis {e1(ωt), e2(ωt)} are time independent. This explains why the rotating basis

was introduced in Section 2.3 and why we refer to the rigid Couette solution as a

steady solution.

An expression for D can be obtained by taking the inner product of equation

(2.7.8) with e1(s+Ωt). By (2.7.9), formulas (2.7.5) and (2.7.6) for V and P reduce

to the simple forms

V = ωr, P (r) = 1
2
ω2r2 +D, (2.7.10)

where

D = D(R,ω2) =
N̂(R, 0)

ρR
− %Aω2

ρ
− 1

2
ω2R2. (2.7.11)

Observe that

P (R) = P (R;ω2) =
N̂(R, 0)

ρR
− %Aω2

ρ
, (2.7.12)

i.e., the pressure at the liquid-solid interface is the balance of the tension in the

string and the centrifugal force.

Other steady solutions. The rigid Couette solution is not the only steady so-

lution. It is easy to check that for any α ∈ R, r(s, t) = Re1(s + α + ωt) is also

a steady solution with the same fluid velocity and pressure as above. This steady
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solution can be obtained from the rigid Couette solution by a rotation or by rela-

belling the material points, and therefore is not essentially different. Consequently

we will factor it out in Section 2.10. When ω = 0, r(s) = Re1(s) + c is a steady

solution for any c ∈ R2 with |c| < R − a. This is an off-center solution: the rigid

disk and circular string are not concentric. We will see in Section 2.10 that this

gives rise to an instability, which could be factored out if we had a feedback control

to keep the center of mass of the string at the origin.

2.8 Linearization

We are interested in the stability of the rigid Couette solution with respect

to the parameter ω. For what range of angular velocities ω is the rigid Couette

solution observable? First we consider linear stability. To do this we must linearize

the equations of motion about the rigid Couette solution.

Coordinate-free Equations

Let (v 0, p0, r 0, ν0) be the coordinate-free representation of the rigid Couette

solution found in Section 2.7:

v 0(x ) = ω |x | e2(φ̃(x , t) + ωt), p0(x ) = 1
2
ω2 |x |2 +D, (2.8.1)

r 0(s, t) = Re1(s+ ωt), ν0 = R, (2.8.2)

where φ̃ was defined in equation (2.3.7). To linearize our equations of motion about

the rigid Couette solution, we first introduce the small parameter ε and perturbation
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variables, decorated with a superscript 1, by

v(x , t, ε) = v 0(x ) + εv 1(x , t) +O(ε2),

p(x , t, ε) = p0(x ) + εp1(x , t) +O(ε2),

r(s, t, ε) = r 0(s, t) + εr 1(s, t) +O(ε2),

ν(s, t, ε) = ν0 + εν1(s, t) +O(ε2).

(2.8.3)

We linearize the evolution equations by substituting (2.8.3) into them, differentiating

the resulting equations with respect to ε, and then setting ε = 0. The domain of

the linearized fluid equations is the annulus {a < |x | < R} rather than the time-

dependent domain D(t).

The Navier-Stokes equations. From (2.3.14) and (2.8.1) we obtain

∂v 0

∂x
(re1(φ+ωt)) = ω[e2(φ+ωt)e1(φ+ωt)−e1(φ+ωt)e2(φ+ωt)] ≡ ωk× . (2.8.4)

Therefore the tensor ∂v 0/∂x is constant and skew; in particular D(v 0) = 0. Lin-

earizing the Navier-Stokes equations (2.3.5) by the method described above yields

v 1
t + ωk × v 1 +

(
∂v 1

∂x

)
· v 0 = −∇p1 + γ∆v 1,

∇ · v 1 = 0.

(2.8.5)

The equation for the string. Linearizing the forcing term Σ · (k ×rs) in (2.4.4)

requires care:

d

dε

∣∣∣∣
ε=0

Σ · (k × rs) =
d

dε

∣∣∣∣
ε=0

Σ(v(r(s, t, ε), t, ε), p(r(s, t, ε), t, ε)) · (k × rs(s, t, ε))

= −ρP (R)(k × r 1
s ) + ρR2ω2(e1 · r 1)e1 −RΣ(v 1, p1) · e1,

(2.8.6)
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where e1 and e2 have argument s+ ωt. Therefore by linearizing (2.4.4) we obtain

%Ar 1
tt =

[(
N◦

ν −
N◦

R

)
ν1

s +N◦
ν̇ ν

1
st

]
e2 −

[(
N◦

ν −
N◦

R

)
ν1 +N◦

ν̇ ν
1
t

]
e1 +

N◦

R
r 1

ss

− ρP (R)(k × r 1
s ) + ρR2ω2(e1 · r 1)e1 −RΣ(v 1, p1) · e1, (2.8.7)

where N◦, N◦
ν and N◦

ν̇ denote N̂(R, 0), N̂ν(R, 0) and N̂ν̇(R, 0). The fluid variables

v 1 and p1 are evaluated at (x , t) = (Re1(s+ ωt), t).

The adherence boundary condition. The linearization of the adherence con-

dition for the disk (2.4.1) yields

v = 0, on |x | = a. (2.8.8)

Next we linearize the adherence condition for the string. Differentiate (2.4.2) with

respect to ε, then set ε = 0 to obtain

∂v 0

∂x
(Re1(s+ ωt), t) · r 1(s, t) + v 1(Re1(s+ ωt), t) = r 1

t (s, t). (2.8.9)

(Note that ∂v 0/∂x = (∂v/∂x )|ε=0 as a consequence of (2.8.3).) Now substitute

(2.8.4) into (2.8.9) to derive

r 1
t = ωk × r 1 + v 1, (2.8.10)

where v 1 has arguments (Re1(s+ ωt), t).

The strain-configuration relation. Linearizing (2.2.3) yields

ν1 = r 1
s · e2(s+ ωt). (2.8.11)
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The area side condition. By linearizing (2.5.1) we obtain

∫ 2π

0

r 1(s, t) · e1(s+ ωt) ds = 0. (2.8.12)

Polar Coordinates

In the following section we seek solutions of the linearized equations with

exponential time dependence exp(λt), λ ∈ C, which replaces every time derivative in

the linearized equations with λ, to obtain an eigenvalue problem for the perturbation

growth rate λ. Since the rigid Couette solution is steady (time-independent) in polar

coordinates with respect to the rotating basis, but not steady in coordinate-free

form, it is necessary to introduce polar coordinates before seeking solutions with

exponential time dependence.

The Navier-Stokes equations. By substituting equations (2.3.11), (2.3.13),

(2.3.14), and (2.8.1) into (2.8.5), or alternatively by linearizing (2.3.16), we obtain

the linearized Navier-Stokes equations in rotating polar coordinates:

u1
t − 2ωv1 = −p1

r + γ

(
u1

rr +
u1

r

r
+
u1

φφ

r2
− 2v1

φ

r2
− u1

r2

)
,

v1
t + 2ωu1 = −p

1
φ

r
+ γ

(
v1

rr +
v1

r

r
+
v1

φφ

r2
+

2u1
φ

r2
− v1

r2

)
,

(ru1)r + v1
φ = 0,

(2.8.13)

where the fluid variables have arguments (r, φ, t).

The equations for the string. By linearizing equation (2.2.5) we obtain

r 1(s, t) = q1(s, t) e1(s+ ωt) +Rψ1(s, t) e2(s+ ωt). (2.8.14)
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Substituting equations (2.3.11), (2.3.14), (2.8.1), and (2.8.14) into equation (2.8.7),

then taking the inner products of the resulting equation with e1(s+ωt) and e2(s+ωt)

yields the linearized string equations in polar coordinates. The expression for Σ in

polar coordinates can be read off from equation (2.4.3).

%A (q1
tt − ω2q1 − 2ωRψ1

t ) = − (
N◦

ν − 1
R
N◦) ν1 −N◦

ν̇ ν
1
t + 1

R
N◦(q1

ss − q1 − 2Rψ1
s)

+ ρP (R)(Rψ1
s + q1) + ρR2ω2q1 +Rρp1 − 2Rµ̃u1

r, (2.8.15)

%A (Rψ1
tt−ω2Rψ1 + 2ωq1

t ) =
(
N◦

ν − 1
R
N◦) ν1

s +N◦
ν̇ ν

1
st +

1
R
N◦(Rψ1

ss−Rψ1 + 2q1
s)

− ρP (R)(q1
s −Rψ1)−R µ̃(v1

r − 1
R
v1 + 1

R
u1

φ), (2.8.16)

where the fluid variables u1, v1, p1 have arguments (R, s, t).

The adherence boundary condition. Writing the adherence boundary condi-

tions (2.8.8) and (2.8.10) in polar coordinates gives

u1(a, φ, t) = 0, v1(a, φ, t) = 0, (2.8.17)

q1
t (s, t) = u1(R, s, t), R ψ1

t (s, t) = v1(R, s, t). (2.8.18)

The strain-configuration relation. In polar coordinates equation (2.8.11) be-

comes

ν1 = q1 +Rψ1
s . (2.8.19)

The area side condition. In polar coordinates equation (2.8.12) becomes

∫ 2π

0

q1(s, t) ds = 0. (2.8.20)
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2.9 The Quadratic Eigenvalue Problem

Polar Coordinates

We seek solutions of the linearized equations with exponential time-dependence:

u1(r, φ, t) = u(r, φ) eλt, v1(r, φ, t) = v(r, φ) eλt, p1(r, φ, t) = p(r, φ) eλt, (2.9.1)

q1(s, t) = q(s) eλt, ψ1(s, t) = ψ(s) eλt, ν1(s, t) = ν(s) eλt, (2.9.2)

where λ ∈ C is the perturbation growth rate. Note that the letters u, v, p, q, ψ, and

ν have a meaning here different from those they had in the previous sections. We

substitute the normal mode decompositions (2.9.1) and (2.9.2) into the linearized

equations (2.8.13)–(2.8.20) to obtain a quadratic eigenvalue problem (note that each

time derivative in (2.8.13)–(2.8.20) has been replaced by a power of λ):

The Navier-Stokes equations.

λu− 2ωv = −pr + γ

(
urr +

ur

r
+
uφφ

r2
− 2vφ

r2
− u

r2

)
,

λv + 2ωu = −pφ

r
+ γ

(
vrr +

vr

r
+
vφφ

r2
+

2uφ

r2
− v

r2

)
,

(ru)r + vφ = 0.

(2.9.3)

The equations for the string. Substituting (2.9.2) into the strain-configuration

relation (2.8.19) yields

ν = q +Rψs. (2.9.4)
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We use (2.9.4) to eliminate ν from the string equations. Substituting (2.9.1), (2.9.2),

(2.9.4) into the string equations (2.8.15), (2.8.16) gives

λ2%Aq + λ(N◦
ν̇ q − 2ω%ARψ +N◦

ν̇Rψs)

= (%Aω2 −N◦
ν + ρP (R) + ρR2ω2) q + 1

R
N◦qss + (ρP (R)R−N◦ −RN◦

ν )ψs

+Rρp(R, s)− 2Rµ̃ur(R, s),

(2.9.5)

λ2%ARψ + λ(2%Aωq −N◦
ν̇ qs −N◦

ν̇Rψss)

= (N◦
ν + 1

R
N◦ − ρP (R)) qs + (%Aω2R−N◦ + ρRP (R))ψ +N◦

νRψss

+ µ̃[−Rvr(R, s) + v(R, s)− uφ(R, s)].

(2.9.6)

The adherence boundary condition.

u(a, φ) = 0, v(a, φ) = 0, (2.9.7)

λq(s) = u(R, s), λRψ(s) = v(R, s). (2.9.8)

The area side condition.
∫ 2π

0

q(s) ds = 0. (2.9.9)

Coordinate-free Equations

Now that the time dependence has been removed from our equations, we

rewrite them in coordinate-free form. This will be convenient for the analysis in

Section 2.10. (It is easier to derive energy estimates in coordinate-free form). Define

ṽ(x ), p̃(x ) and r̃(s) by

ṽ(re1(φ)) := u(r, φ) e1(φ) + v(r, φ) e2(φ), p̃(re1(φ)) := p(r, φ), (2.9.10)

r̃(s) := q(s) e1(s) +Rψ(s) e2(s). (2.9.11)
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We now drop the tilde from these variables. Equations (2.9.10) and (2.9.11) can be

used to write eigenvalue problem (2.9.3)–(2.9.9) in the coordinate-free form (2.9.12),

given below. It is easy to check that the substitution of (2.9.10) and (2.9.11) into

(2.9.12) yields (2.9.3)–(2.9.9). Note that it is not easy to derive eigenvalue problem

(2.9.12) directly from equations (2.8.5)–(2.8.12) because these equations are the lin-

earization of the governing equations about a solution that is not time independent.

Eigenvalue problem (2.9.12) is a perturbation of the Stokes eigenvalue problem

(obtained by setting ω = 0 in (2.9.13)), but with complicated boundary conditions:

The eigenvalue parameter λ appears in the boundary terms and appears quadrati-

cally.

2.9.12 Classical formulation of the quadratic eigenvalue problem.

Find eigenvalue-eigenvector pairs (λ, (v , r , p)) satisfying

The Navier-Stokes equations. For a < |x | < R,

λv = −∇p+ γ∆v − 2ω k × v = 1
ρ
div Σ(p, v)− 2ω k × v ,

∇ · v = 0.

(2.9.13)

The string equation. For s ∈ [0, 2π),

λ2%Ar = λ[N◦
ν̇ (e2e2 · rs)s + 2%Aωr × k ] + 1

R
N◦rss + (N◦

ν − 1
R
N◦)(e2e2 · rs)s

− ρP (R)k × rs + %Aω2r + ρR2ω2(r · e1)e1 −RΣ(v , p) · e1. (2.9.14)

The adherence boundary condition.

v = 0 for |x | = a,

λr(s) = v(Re1(s)).

(2.9.15)
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The area side condition.

∫ 2π

0

r(s) · e1(s) ds = 0. (2.9.16)

2.10 Analysis of the Spectrum

If all the eigenvalues λ of problem (2.9.12) satisfy Re(λ) < 0, then the per-

turbations v 1, r 1, p1 decay exponentially in time and we say that the rigid Couette

solution is linearly stable. On the other hand, if one eigenvalue satisfies Re(λ) > 0,

then the perturbation corresponding to this eigenvalue will grow exponentially in

time and we say that the rigid Couette solution is linearly unstable.

The eigenvalues are a function of the angular velocity ω, λ = λ(ω), and we

are interested in how the eigenvalues move as ω is increased from 0. Typically in

hydrodynamic stability problems all the eigenvalues are in the left half-plane when

some parameter is small, and they migrate towards the right as the parameter is

increased. If the eigenvalues cross the imaginary axis, then the way that they cross

can provide valuable information about solutions to the fully nonlinear problem.

For example, if the leading eigenvalues cross the imaginary axis in complex conju-

gate pairs, then (under some additional mild assumptions) periodic solutions of the

nonlinear problem have a (Hopf) bifurcation from the trivial solution. In Sections

2.10–2.13 we study the eigenvalue problem (2.9.12).
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Critical Values of ω and Eigenvalue Crossings

Due to the complicated form of the eigenvalue problem (2.9.12) it is not pos-

sible to compute the eigenvalues analytically. Much information can be obtained,

however, before turning to numerics. We prove that the eigenvalues cross the imag-

inary axis through the origin (Theorem (2.10.4)) and compute explicitly the critical

values of ω at which the eigenvalues cross (Theorem (2.10.21)), obtaining a formula

that highlights the role of the material properties. Since the eigenvalue problem

has real coefficients and the eigenvalues cross the imaginary axis through the ori-

gin, then either the eigenvalues cross along the real axis, suggesting a steady-state

bifurcation, or they cross through the origin in complex-conjugate pairs (meaning

that complex-conjugate pairs of eigenvalues in the left half-plane move towards the

origin, meet at the origin, and then move into the right half-plane, whereupon they

cease to be real) suggesting a Takens-Bogdanov bifurcation. The computational

results in Section 2.13 indicate that a Takens-Bogdanov bifurcation takes place.

Let Ω denote the annulus {x : a < |x | < R}.

Lemma 2.10.1 (Energy equality). Let (λ, (v , r , p)) be a smooth eigenpair of

(2.9.12). Then

Re(λ)
(
||v ||2L2(Ω) + N◦

ρR
||rs · e1||2L2(0,2π) + N◦

ν

ρ
||rs · e2||2L2(0,2π)

+%A
ρ
|λ|2||r ||2L2(0,2π) − %Aω2

ρ
||r ||2L2(0,2π) −R2ω2||r · e1||2L2(0,2π)

)

= −N◦
ν̇

ρ
|λ|2||rs · e2||2L2(0,2π) − 2µ̃

ρ
||D(v)||2L2(Ω) − P (R) Re(λ)

∫ 2π

0

(k × rs) · r̄ ds.

Proof. Let nΩ be the unit outer normal to ∂Ω. Take the inner product of (2.9.13)
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with v̄ , where a bar denotes complex conjugation, and integrate by parts to obtain

λ||v ||2L2(Ω) = 1
ρ

∫

Ω

div Σ · v̄ dx − 2ω

∫

Ω

(k × v) · v̄ dx

= 1
ρ

∫

{|x |=R}
nΩ ·Σ · v̄ dS − 1

ρ

∫

Ω

Σ :
∂v̄

∂x
dx − 2ω

∫

Ω

(k × v) · v̄ dx

= 1
ρ

∫ 2π

0

e1 ·Σ · v̄ Rds− 2µ̃
ρ
||D(v)||2L2(Ω) − 2ω

∫

Ω

(k × v) · v̄ dx,

(2.10.2)

where we have used the adherence boundary condition v = 0 on {|x | = a}, the

divergence-free constraint I : ∂v̄/∂x ≡ div v̄ = 0, and the identity D(v) : ∂v̄/∂x =

|D(v)|2.

In the first term on the right-hand side of (2.10.2) substitute for Σ · e1 from

(2.9.14), substitute for v̄ with λ̄r̄ , and integrate by parts to find that

1
ρ

∫ 2π

0

e1 ·Σ · v̄ Rds

= −N◦
ν̇

ρ
|λ|2||rs · e2||2L2(0,2π) + 2%Aω

ρ
|λ|2

∫ 2π

0

(r × k) · r̄ ds− N◦
ρR
λ̄||rs||2L2(0,2π)

− (N◦
ν−R−1N◦)

ρ
λ̄||rs · e2||2L2(0,2π) − P (R) λ̄

∫ 2π

0

(k × rs) · r̄ ds+ %Aω2

ρ
λ̄||r ||2L2(0,2π)

+R2ω2λ̄||r · e1||2L2(0,2π) − %A
ρ
λ|λ|2||r ||2L2(0,2π). (2.10.3)

Observe that (r × k) · r̄ and (k × v) · v̄ are purely imaginary. It can be shown that

the term
∫ 2π

0

(k × rs) · r̄ ds

is real by taking its complex conjugate and integrating by parts. By substituting

(2.10.3) into (2.10.2), taking the real part of the resulting equation, and simplifying,

we complete the proof.
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Theorem 2.10.4 (Eigenvalue crossings). Let (λ, (v , r , p)) be a smooth eigen-

pair of problem (2.9.12). Suppose that Re(λ) = 0. Then λ = 0. Therefore any

eigenvalues that cross the imaginary axis cross through the origin.

Proof. By substituting Re(λ) = 0 into the energy equality in Lemma (2.10.1) we

find that ||D(v)||L2(Ω) = 0, which implies that v = 0 by the Korn and Poincaré

inequalities. But v = 0 implies λ = 0 by equation (2.9.15)2.

Theorem 2.10.5 (Eigenvalue-free regions of C). Define

M := 1
%A

(
%Aω2 + ρR2ω2 + 1

4
ρP (R)2 max{R/N◦, 1/N◦

ν }
)
.

Then problem (2.9.12) has no eigenvalues in the set

{λ ∈ C : |λ|2 ≥M, Re(λ) > 0} ∪ {λ ∈ C : Re(λ) = 0, λ 6= 0}.

Remark. Note that M increases as ω2 increases. Also note that when ω = 0,

M =
ρP (R)2 max{R/N◦, 1/N◦

ν }
4%A

=
N◦2 max{R/N◦, 1/N◦

ν }
4%AR2

→ 0 as R→ 1

since N◦ = N(R, 0) → N(1, 0) = 0 and Nν > 0.

Proof of Theorem (2.10.5). By rearranging the energy equality in Lemma (2.10.1)

we obtain

0 ≥ Re(λ)
(
||v ||2L2(Ω) + N◦

ρR
||rs · e1||2L2(0,2π) + N◦

ν

ρ
||rs · e2||2L2(0,2π) + %A

ρ
|λ|2||r ||2L2(0,2π)

−%Aω2

ρ
||r ||2L2(0,2π) −R2ω2||r · e1||2L2(0,2π) + P (R)

∫ 2π

0

(k × rs) · r̄ ds
)
. (2.10.6)

Let ε > 0. Using the Cauchy-Bunyakovskĭı-Schwarz inequality and the Young in-

equality ab ≤ εa2 + b2/4ε we can bound

∫ 2π

0

(k × rs) · r̄ ds ≥ −ε||rs||2L2(0,2π) − 1
4ε
||r ||2L2(0,2π). (2.10.7)
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By substituting (2.10.7) into (2.10.6) and writing

||r ||2L2(0,2π) = ||r · e1||2L2(0,2π) + ||r · e2||2L2(0,2π), (2.10.8)

we obtain the estimate

0 ≥ Re(λ)
(
||v ||2L2(Ω) + c1||rs · e1||2L2(0,2π) + c2||rs · e2||2L2(0,2π) + c3||r · e1||2L2(0,2π)

+c4||r · e2||2L2(0,2π)

)
, (2.10.9)

where

c1 =
N◦

ρR
− ε|P (R)|, c2 =

N◦
ν

ρ
− ε|P (R)|,

c3 =
%A|λ|2
ρ

− %Aω2

ρ
−R2ω2 − |P (R)|

4ε
, c4 =

%A|λ|2
ρ

− %Aω2

ρ
− |P (R)|

4ε
.

Choose ε = min{R−1N◦, N◦
ν }/ρ|P (R)| so that c1 and c2 are nonnegative. With this

choice of ε it is easy to check that c3 ≥ 0 if and only if |λ|2 ≥ M , where M was

defined in the theorem statement. Note that c4 > c3.

Let (λ, (v , r , p)) be a smooth eigenpair of (2.9.12) with |λ|2 ≥ M . (We will

prove that the eigenfunctions of (2.9.12) are smooth in Theorem (2.10.56).) Then

c1, c2, c3, and c4 are nonnegative and so Re(λ) ≤ 0 by inequality (2.10.9). Therefore

problem (2.9.12) has no eigenvalues in the set {λ ∈ C : |λ|2 ≥ M, Re(λ) > 0}.

We proved that there are no eigenvalues in the set {λ ∈ C : Re(λ) = 0, λ 6= 0} in

Theorem (2.10.4). This completes the proof.

Next we find explicit formulas for the values of ω at which eigenvalues cross the

imaginary axis. We denote these critical values of ω by ωcrit. Since the eigenvalues

cross the imaginary axis through the origin (Theorem (2.10.4)) we can substitute

λ = 0 into eigenvalue problem (2.9.12) to obtain a new eigenvalue problem for ωcrit:
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2.10.10 Eigenvalue problem for ωcrit.

Find eigenvalue-eigenvector pairs (ωcrit, (v , r , p)) satisfying

Navier-Stokes equations. For a < |x | < R,

0 = −∇p+ γ∆v − 2ωcrit k × v = 1
ρ
div Σ(p, v)− 2ωcrit k × v ,

∇ · v = 0.

(2.10.11)

The string equation. For s ∈ [0, 2π),

0 = 1
R
N◦rss + (N◦

ν − 1
R
N◦)(e2e2 · rs)s − ρP (R)k × rs + %Aω2

critr

+ ρR2ω2
crit(r · e1)e1 −RΣ(v , p) · e1. (2.10.12)

The adherence boundary condition.

v = 0 for |x | = a,R. (2.10.13)

The area side condition.

∫ 2π

0

r(s) · e1(s) ds = 0. (2.10.14)

The fluid equations are now uncoupled from the string equation. Clearly

v = 0 and p = constant satisfy (2.10.11) and (2.10.13). To see that this is the only

solution, multiply (2.10.11)1 by v̄ , integrate by parts, and take the real part of the

resulting equation to obtain ||∇v ||2L2(Ω) = 0, which implies that v = 0, and so p is

constant.

Next we substitute v = 0 and p = constant into the string equation. It is

convenient to return to polar coordinates. Substitute λ = 0, ω = ωcrit, P (R) =
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( 1
R
N◦ − %Aω2)/ρ, v = 0, and p(R, s) = p = constant into the string equations

(2.9.5) and (2.9.6) in polar coordinates to obtain

1
R
N◦qss + ( 1

R
N◦ −N◦

ν + ρR2ω2
crit)q −R(N◦

ν + %Aω2
crit)ψs = −Rρp,

RN◦
νψss + (N◦

ν + %Aω2
crit)qs = 0.

(2.10.15)

Integrate (2.10.15)1 over [0, 2π] and use (2.9.9) and the periodicity of qs and ψ to

see that p = 0. Let qk and ψk be the Fourier coefficients of q and ψ:

q(s) =
∑

k∈Z
qke

iks, ψ(s) =
∑

k∈Z
ψke

iks. (2.10.16)

For each k ∈ Z take the L2-inner product of (2.10.15) with eiks and use Parseval’s

Theorem to obtain the linear system




1
R
N◦(1− k2)−N◦

ν + ρR2ω2
crit −ikR(N◦

ν + %Aω2
crit)

ik(N◦
ν + %Aω2

crit) −k2RN◦
ν






qk

ψk


 =




0

0


 . (2.10.17)

The matrix on the left-hand side has determinant

det = −Rk2[(%A)2ω4
crit +N◦

ν (2%A+ ρR2)ω2
crit − 1

R
N◦N◦

ν (k2 − 1)]. (2.10.18)

If det = 0, then (2.10.17) has nontrivial solutions and so ωcrit is an eigenvalue of

(2.10.10) and λ = 0 is an eigenvalue of (2.9.12) when ω = ωcrit. If k = 0, then

det = 0 for all ωcrit ∈ R. If |k| = 1, then det = 0 if and only if ωcrit = 0. For |k| ≥ 2,

det = 0 if and only if

ω2
crit = ω2

crit(k)

= − 1
2(%A)2

N◦
ν (2%A+ ρR2) + 1

2(%A)2

√
[N◦

ν (2%A+ ρR2)]2 + 4
R
(%A)2N◦N◦

ν (k2 − 1).

(2.10.19)

We analyze each Fourier mode in turn.
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For k = 0, det = 0 for all ωcrit ∈ R and so λ = 0 is an eigenvalue of (2.9.12)

for all ω ∈ R, with corresponding eigenvector (v , p, r) = (0, 0, q0e1 + Rψ0e2). This

appears to be a very undesirable situation: no matter what the value of our control

parameter ω, λ = 0 is an eigenvalue. We will demonstrate, however, that this

eigenvalue does not have any physical significance and can be factored out.

Equation (5.10.11) implies that the constant q0 = 0. Therefore λ = 0 has

eigenvector (v , p, r) = (0, 0, Rψ0e2) and the perturbation r 1 has the form r 1(s, t) =

Ce2(s+ωt), where C is a constant. (This follows from (2.8.14), (2.9.2) and (2.9.11).)

Since the perturbed solution r ≈ r 0 + εr 1 = Re1(s + ωt) + εCe2(s + ωt) (note

that r 0 and r 1 are orthogonal) and since ε is small, then |r | ≈ |r 0| = R. This

suggests that r(s, t) = Re1(s + α + ωt) for some α ∈ R, which can be obtained

from the rigid Couette solution by a rotation or by relabelling the material points.

See Section 2.7. These steady solutions arise from the symmetry of the problem

and are not essentially different from the rigid Couette solution; the two strings

r(s, t) = Re1(s + ωt) and r(s, t) = Re1(s + α + ωt) would look the same to an

observer. Thus we factor out these solutions and the eigenvalue λ = 0 corresponding

to k = 0 by supplementing (2.10.10) with the side condition

∫ 2π

0

r(s) · e2(s) ds = 0. (2.10.20)

Now we consider the case |k| = 1. We saw that det = 0 if ωcrit = 0, which

suggests that the rigid Couette solution is linearly unstable for all ω > 0 and so not

observable. (We expect the eigenvalue λ = 0 to move into the right half-plane when

ω is increased from 0. Numerical results in Section 2.13 confirm this.) To understand
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how this instability occurs we compute the eigenvector of (2.10.10) corresponding

to eigenvalue ωcrit = 0. Substitute ωcrit = 0 and k = ±1 into (2.10.17) to obtain


−N◦

ν ∓iRN◦
ν

±iN◦
ν −RN◦

ν






q±1

ψ±1


 =




0

0


 ,

which has nontrivial solutions [q±1, ψ±1] = c[∓iR, 1], c constant. Take c = 1 for

now. Therefore the unstable perturbations have the form

r 1
±1(s) = [q±1e1(s) +Rψ±1e2(s)]e

±is = [∓iRe1(s) +Re2(s)]e
±is,

which have real parts

Re(r 1
±1) = R sin(s)e1 +R cos(s)e2 = Rj .

Thus the unstable perturbation is a translation of the circular string in the j di-

rection. (Any other direction can be achieved by choosing the eigenvector scaling c

appropriately.) This corresponds to the off-center steady solution that we found at

the end of Section 2.7 and suggests that the rigid Couette solution becomes unstable

through the following mechanism: Experimentally it is not possible to exactly align

the center of the rigid disk with the center of the circular string. So when ω = 0 we

observe an off-center solution and not the rigid Couette solution. As ω is increased

from 0 the misalignment of the centers will cause the string to move eccentrically

and deform. Even if the string was rigid we still expect the rigid Couette solution

to be unstable; in this case it would move eccentrically, but not deform. This type

of instability could be avoided by introducing a suitable feedback control to fix the

center of mass of the string at the origin. We assume that this is done, and thereby

give meaning to our subsequent analysis.

40



Finally we turn to the case |k| ≥ 2. Equation (2.10.19) gives all the values of

ω at which the eigenvalues of (2.9.12) cross the imaginary axis. Observe that each

Fourier mode k gives rise to exactly one unstable perturbation (only one eigenvalue

crosses the imaginary axis for each k) and that the Fourier modes become unstable

in order, i.e.,

0 = ω2
crit(±1) < ω2

crit(±2) < ω2
crit(±3) < · · · .

Also, the critical values of ω do not depend on the viscosities µ and N◦
ν̇ . Since

N◦ → 0 as R → 1 (by equation (2.2.12)), we see from formula (2.10.19) that

ωcrit → 0 as R → 1 for all k. We also see that the behavior of ωcrit for large

R depends on the behavior of R−1N◦N◦
ν . If R−1N◦N◦

ν → ∞ as R → ∞ (the

material response in tension is asymptotically strictly superlinear), then ωcrit →∞

as R → ∞. If R−1N◦N◦
ν → 0 as R → ∞ (the material response in tension is

asymptotically strictly sublinear), then ωcrit → 0 as R→∞.

Recall that we only consider values of ω for which the pressure is positive (see

Section 2.5). In particular we must have 0 < ρP (R) = R−1N◦ − %Aω2. For some

materials and some Fourier modes, ωcrit(k) is greater than the physically admissible

values.

We summarize our results in the following theorem.

Theorem 2.10.21 (Critical values of ω). Let ωcrit denote the critical values of

ω at which eigenvalues λ of (2.9.12) cross the imaginary axis, i.e., Re(λ(ωcrit)) = 0

(which implies that λ(ωcrit) = 0 by Theorem (2.10.4)). Then {ωcrit} are eigenvalues

of problem (2.10.10). The eigenvalue problem obtained by supplementing (2.10.10)
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with the side condition (2.10.20) has eigenvalues

ωcrit(k) ≡ ωcrit(k,R)

= − 1
2(%A)2

N◦
ν (2%A+ ρR2) + 1

2(%A)2

√
[N◦

ν (2%A+ ρR2)]2 + 4
R
(%A)2N◦N◦

ν (k2 − 1)

for |k| = 1, 2, 3, . . ., which satisfy

• 0 = ω2
crit(±1) < ω2

crit(±2) < ω2
crit(±3) < · · · .

• For |k| ≥ 2, limR→1 ωcrit(k,R) = 0.

• For |k| ≥ 2,

lim
R→∞

ωcrit(k,R) =





∞ if R−1N◦N◦
ν →∞ as R→∞ (superlinear),

0 if R−1N◦N◦
ν → 0 as R→∞ (sublinear).

Characterization of the Spectrum for Elastic Strings

We shall characterize the spectrum of the quadratic eigenvalue problem (2.9.12),

considering separately the cases Nν̇ ≡ 0 (elastic strings) and Nν̇ 6≡ 0 (viscoelastic

strings). It is easier to characterize the spectrum for elastic strings, which is what

we do in this section (Theorem (2.10.23)). Viscoelastic strings are considered in the

following section. Before stating the spectral theorem we need to introduce some

more notation.
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Notation. Recall that Ω = {x ∈ R2 : a < |x | < R}. Let T2π be the torus R/2πZ.

For 0 ≤ m ∈ R, define function spaces

Hm
a (Ω; div) := {v ∈ Hm(Ω;C2) : v = 0 on |x | = a, div v = 0},

Hm
0 (Ω; div) := Hm

0 (Ω;C2) ∩Hm
a (Ω; div),

Hm
S (T2π) :=

{
r ∈ Hm(T2π;C2) :

∫ 2π

0

r · e1 ds = 0
}
,

Πm(Ω) :=
{
p ∈ Hm(Ω;C) :

∫

Ω

p dx = 0
}
.

(2.10.22)

Let γ0 denote the usual trace operator; γ0 : Hm(Ω;C2) → Hm−1/2(∂Ω;C2) for

m ≥ 1; see Temam (1977, p. 9). Let γR denote the restriction of γ0 to {|x | = R},

the outer boundary of the annulus Ω.

Theorem 2.10.23 (Spectral characterization of eigenvalue problem (2.9.12)).

Set N◦
ν̇ = 0 in problem (2.9.12). The resulting problem has nontrivial solutions

(λ, (v , p, r)) ∈ C×H2
a(Ω; div)×H1(Ω;C)×H2

S (T2π).

The set of eigenvalues {λ} is countable with its only possible accumulation point at

infinity, and each eigenvalue has finite multiplicity.

Since the proof of this theorem requires a lot of preliminary lemmas we first

sketch the main idea.

Idea of the proof of Theorem (2.10.23). The quadratic eigenvalue problem

(2.9.12) can be written in the form

(λ2T2 + λT1 + L)(v , p, r) = 0, (2.10.24)
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where Ti are bounded linear operators and L is an elliptic operator defined on

appropriate function spaces (for the precise definition of T2, T1, and L see equations

(2.10.49) and (2.10.50)). The main tool for characterizing the spectrum of (2.10.24)

is the following theorem.

Theorem 2.10.25 (Spectral theorem for compact polynomial operator

pencils). Let

A(λ) = I +
n∑

k=0

λkTk,

where Tk : H → H are compact operators on a Hilbert space H. Define the spectrum

of A to be the set of points λ ∈ C such that A(λ) lacks a bounded inverse. Then

either the spectrum of A is the entire complex plane or it consists of eigenvalues of

finite multiplicity with infinity as their only possible accumulation point.

For a proof see Markus (1988, Theorem 12.9). We would like to show that L

has a compact inverse since then (2.10.24) could be written in the form

A(λ)(v , p, r) := (λ2L−1T2 + λL−1T1 + I)(v , p, r) = 0, (2.10.26)

with A(λ) satisfying the hypotheses of theorem (2.10.25). This would prove Theorem

(2.10.23). Therefore proving Theorem (2.10.23) reduces to proving an existence and

regularity theorem for our steady linearized problem with nonhomogeneous term,

L(v , p, r) = (g ,h ,Φ). (An existence theorem would imply that L is invertible, and

a regularity theorem would imply that L−1Ti are compact.)

It turns out, however, that L is not invertible, but there exists a bounded

linear operator T0 such that L̃ := L− T0 is invertible and L̃−1 is compact. Then

Ã(λ) := λ2L̃−1T2 + λL̃−1T1 + L̃−1T0 + I (2.10.27)
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satisfies the hypotheses of Theorem (2.10.25), and Ã(λ)(v , p, r) = 0 is equivalent to

equation (2.10.24), which proves Theorem (2.10.23).

Before giving the full proof of Theorem (2.10.23) we state some preliminary

results. In many cases these are slight variations of well-known results and so we

just sketch the proof.

Lemma 2.10.28 (Corollary of the Fundamental Lemma of the Calculus of

Variations). Let f ∈ L2(T2π,C2). If

∫ 2π

0

f · q ds = 0 for all q ∈ L2(T2π,C2) such that

∫ 2π

0

q · e1 ds = 0,

then f (s) = c e1(s), where c is a constant.

Proof. Write f (s) = f1(s)e1(s) + f2(s)e2(s) and q(s) = q1(s)e1(s) + q2(s)e2(s).

Then

0 =

∫ 2π

0

f · q ds =

∫ 2π

0

(f1 q1 + f2 q2) ds.

Set q1 = 0. Then

∫ 2π

0

f2 q2 ds = 0 for all q2 ∈ L2(T2π,C),

and so f2 = 0 by the Fundamental Lemma of the Calculus of Variations. Therefore

∫ 2π

0

f1 q1 ds = 0 for all q1 ∈ L2(T2π,C) such that

∫ 2π

0

q1 ds = 0. (2.10.29)

Recall the Du Bois-Reymond Lemma:

If f ∈ L1(a, b) satisfies

∫ b

a

f(x)ϕ′(x) dx = 0 ∀ϕ ∈ C∞c (a, b), then f = constant.

(See Giaquinta and Hildebrandt (1996, p. 32, Lemma 4) for a proof.)
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Since all ϕ ∈ C∞c ((0, 2π);C) satisfy
∫ 2π

0
ϕs(s) ds = 0, equation (2.10.29) with

q1 = ϕs implies that

∫ 2π

0

f1ϕs ds = 0 for all ϕ ∈ C∞c ((0, 2π),C),

and so f1 is a constant by the Du Bois-Reymond Lemma. This completes the

proof.

Theorem 2.10.30 (Equivalent formulations of the Stokes-like system). Let

g ∈ L2(Ω;C2) and ϕ ∈ H1/2({|x | = R};C2) with
∫ 2π

0
ϕ(Re1(s)) · e1(s) ds = 0.

Let u0 ∈ H1
a(Ω;C2) satisfy u0 = ϕ on {|x | = R} and u1 ∈ H1

0 (Ω;C2) satisfy

divu1 = −divu0. (The existence of u0 and u1 is shown in Temam (1977, pp. 31-

32, Section 2.4.). ) Then the following are equivalent:

(i) v ∈ H1
a(Ω; div) satisfies v = ϕ on {|x | = R}, and there exists p ∈ L2(Ω,C),

unique up to a constant, such that

−γ∆v + 2ωk × v +∇p = g in Ω

in the sense of distributions.

(ii) v ∈ H1
a(Ω; div) and u := v − u0 − u1 ∈ H1

0 (Ω; div) satisfies

af (u ,w) = (g ,w)L2(Ω)−af (u0+u1,w) for all w ∈ H1
0 (Ω; div), (2.10.31)

where

af (u , v) := γ

∫

Ω

{
∂u

∂x
:
∂w̄

∂x
+ 2ω(u × w̄) · k

}
dx . (2.10.32)
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Proof. We just sketch the proof since it is very similar to the proof for the standard

Stokes equations (the case ω = 0), which is given in Temam (1977, p. 22, Lemma

2.1). First we show that (i) implies (ii). From (i) it follows that equation (2.10.31)

holds for all w ∈ D. Now use a density argument to show that (2.10.31) holds for all

w ∈ H1
0 (Ω; div). To prove the converse, integrate by parts in (2.10.31) and use De

Rham’s Theorem (see Temam (1977, p. 14, Propositions 1.1,1.2)) to obtain (i).

Theorem 2.10.33 (Existence for the Stokes-like system). Equation (2.10.31)

has a unique solution u ∈ H1
0 (Ω; div).

Proof. This is also a standard result. Note that Re(u × ū) = 0. Then the theorem

follows easily from the complex version of the Lax-Milgram Theorem.

Theorem 2.10.34 (Regularity for the Stokes-like system). Let m ∈ (0,∞)

and let v ∈ H1(Ω;C2), p ∈ L2(Ω;C) be solutions of the Stokes-like system

−γ∆v + 2ωk × v +∇p = g in Ω,

∇ · v = 0 in Ω,

γ0v = Φ, i.e., v = Φ on ∂Ω.

If g ∈ Hm(Ω;C2) and Φ ∈ Hm+3/2(∂Ω;C2), then

v ∈ Hm+2(Ω;C2), p ∈ Hm+1(Ω;C). (2.10.35)

Proof. The proof of this regularity theorem is very similar to the proof of the

regularity theorem for the Stokes equation, which can be found in Temam (1984,

p. 33, Proposition 2.2), and which follows from the elliptic regularity results of

Agmon, Douglis, and Nirenberg (1964) .
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Theorem 2.10.36 (G̊arding inequality for the string equation). Given h ∈

L2(T2π;C2), consider the following equation for r ∈ H1
S (T2π):

−R−1N◦rss−(N◦
ν−R−1N◦)(e2e2 ·rs)s+ρP (R)k×rs−%Aω2r−ρR2ω2(r ·e1)e1 = h ,

(2.10.37)

which has the following weak formulation: Find r ∈ H1
S (T2π) such that

as(r , q) = (h , q)L2(0,2π) for all q ∈ H1
S (T2π), (2.10.38)

where

as(r , q) :=

∫ 2π

0

{R−1N◦rs · q̄s + (N◦
ν −R−1N◦)(rs · e2)(q̄s · e2)

+ ρP (R)(rs × q̄) · k − %Aω2r · q̄ − ρR2ω2(r · e1)(q̄ · e1)} ds. (2.10.39)

Then for all r ∈ H1
S (T2π)

as(r , r) = Re[as(r , r)] ≥ C1||rs||2L2(0,2π) − C2||r ||2L2(0,2π), (2.10.40)

where

2C1 = min{R−1N◦, N◦
ν }, C2 = %Aω2 + ρR2ω2 +

ρ2|P (R)|2
2 min{R−1N◦, N◦

ν }
.

Proof. In the proof of Theorem (2.10.2) we saw that the expression

∫ 2π

0

(rs × r̄) · k ds
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is real. Therefore

Re[as(r , r)] = as(r , r)

= R−1N◦||rs||2L2(0,2π) + (N◦
ν −R−1N◦)||rs · e2||2L2(0,2π)

+ ρP (R)

∫ 2π

0

(rs × r̄) · k ds− %Aω2||r ||2L2(0,2π) − ρR2ω2||r · e1||2L2(0,2π)

= R−1N◦||rs · e1||2L2(0,2π) +N◦
ν ||rs · e2||2L2(0,2π)

+ ρP (R)

∫ 2π

0

(rs × r̄) · k ds− (%Aω2 + ρR2ω2)||r · e1||2L2(0,2π)

− %Aω2||r · e2||2L2(0,2π)

≥ min{R−1N◦, N◦
ν }||rs||2L2(0,2π) − ρ|P (R)| ||rs||2L2(0,2π)||r ||2L2(0,2π)

− (%Aω2 + ρR2ω2)||r ||2L2(0,2π).

We can estimate the right-hand side using the Young inequality ab ≤ εa2 + b2/4ε:

Re[as(r , r)] ≥ min{R−1N◦, N◦
ν }||rs||2L2(0,2π) − ρ|P (R)|

(
ε||rs||2L2(0,2π) + 1

4ε
||r ||2L2(0,2π)

)

− (%Aω2 + ρR2ω2)||r ||2L2(0,2π).

By choosing ε = min{R−1N◦, N◦
ν }/(2ρ|P (R)|), we obtain the desired estimate

(2.10.40).

Theorem 2.10.41 (Existence for the string equation). Let h ∈ L2(T2π;C2).

Then there exists a unique r ∈ H1
S (T2π) such that

as(r , q) + 2C2(r , q)L2(0,2π) = (h , q)L2(0,2π) for all q ∈ H1
S (T2π), (2.10.42)

where as and C2 were introduced in Theorem (2.10.36).

Proof. This follows easily from the G̊arding inequality (2.10.40) and the Lax-

Milgram Theorem.
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Theorem 2.10.43 (Regularity for the string equation). Let m ≥ 0 be an

integer and h ∈ Hm(T2π;C2). Suppose that r ∈ H1
S (T2π) satisfies (2.10.42). Then

r ∈ Hm+2
S (T2π).

Proof. Consider the unconstrained version of problem (2.10.42): Find r̃ ∈ H1(T2π;C2)

such that

as(r̃ , q) + 2C2(r̃ , q)L2(0,2π) = (h , q)L2(0,2π) for all q ∈ H1(T2π;C2). (2.10.44)

This problem has a unique solution r̃ by the Lax-Milgram Theorem. First we show

that if r̃ ∈ Hm+2(T2π;C2), then r ∈ Hm+2
S (T2π). We complete the proof by showing

that r̃ ∈ Hm+2(T2π;C2).

If r̃ ∈ Hm+2(T2π;C2), then we can integrate by parts in (2.10.44) to obtain

−R−1N◦r̃ss−(N◦
ν−R−1N◦)(e2e2·r̃s)s+ρP (R)k×r̃s−%Aω2r̃−ρR2ω2(r̃ ·e1)e1+2C2r̃

= h . (2.10.45)

We modify r̃ to obtain a function r̂ ∈ Hm+2
S (T2π):

r̂ := r̃ − 1

2π

(∫ 2π

0

r̃ · e1 ds

)
e1.

Observe that r̂ satisfies the same equation as r̃ , equation (2.10.45), but with a mod-

ified right-hand side where h is replaced by h + ce1, for some constant c. Therefore

r̂ satisfies the constrained problem (2.10.42). But (2.10.42) has a unique solution

r . Thus r = r̂ ∈ Hm+2
S (T2π), as required.

Now we show that r̃ ∈ Hm+2(T2π;C2). Integrate by parts in equation (2.10.44)

to replace q wherever it appears in the volume terms with qs:

∫ 2π

0

{(R−1N◦e1e1+N
◦
νe2e2)r̃s−ρP (R)(k×r̃)−ζ}·q̄s ds = −ζ(2π)·q̄(2π), (2.10.46)
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where

ζ(s) =

∫ s

0

{−%Aω2r̃ − ρR2ω2(r̃ · e1)e1 + 2C2r̃ − h} ds.

Let e be a constant vector and 0 < s1 < s2 < 2π be Lebesgue points of the function

(R−1N◦e1e1 +N◦
νe2e2)r̃s − ρP (R)(k × r̃)− ζ.

Define Hε to be the piecewise linear (pre-Heaviside) function

Hε :=





0 s ∈ [0, s1 − ε
2
],

s−(s1− ε
2
)

ε
s ∈ [s1 − ε

2
, s1 + ε

2
],

1 s ∈ [s1 + ε
2
, s2 − ε

2
],

− s−(s2+
ε
2
)

ε
s ∈ [s2 − ε

2
, s2 + ε

2
],

0 s ∈ [s2 + ε
2
, 2π].

Substitute q = Hεe into (2.10.46) to obtain

1

ε

∫ s1+ε/2

s1−ε/2

{(R−1N◦e1e1 +N◦
νe2e2)r̃s − ρP (R)(k × r̃)− ζ} ds · ē

=
1

ε

∫ s2+ε/2

s2−ε/2

{(R−1N◦e1e1 +N◦
νe2e2)r̃s − ρP (R)(k × r̃)− ζ} ds · ē .

Now apply the Lebesgue Differentiation Theorem to pass to the limit ε→ 0 to yield

{[R−1N◦e1(s1)e1(s1) +N◦
νe2(s1)e2(s1)]r̃s(s1)− ρP (R)[k × r̃(s1)]− ζ(s1)} · ē

= {[R−1N◦e1(s2)e1(s2) +N◦
νe2(s2)e2(s2)]r̃s(s2)− ρP (R)[k × r̃(s2)]− ζ(s2)} · ē .

(2.10.47)

Denote the right-hand side by C(s2). Since (2.10.47) holds for all e we obtain

[R−1N◦e1(s1)e1(s1) +N◦
νe2(s1)e2(s1)]r̃s(s1)− ρP (R)[k × r̃(s1)]− ζ(s1) = C(s2).
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Therefore

r̃s(s1) = [R−1N◦e1(s1)e1(s1)+N
◦
νe2(s1)e2(s1)]

−1{ρP (R)[k× r̃(s1)]+ζ(s1)+C(s2)}.

(2.10.48)

This holds for almost every s1 ∈ (0, 2π). Note that the right-hand side of (2.10.48)

is absolutely continuous and its derivative with respect to s1 belongs to L2(0, 2π).

Therefore r̃s ∈ H1(T2π;C2) and so r̃ ∈ H2(T2π;C2). Since h ∈ Hm(T2π;C2), by

repeatedly differentiating (2.10.48) we find that r̃ ∈ Hm+2(T2π;C2), as required.

Now we are in a position to prove Theorem (2.10.23).

Proof of Theorem (2.10.23). Define H1 := H2
a(Ω; div) × H1(Ω;C) × H2

S (T2π).

For j ∈ {0, 1, 2}, define linear operators

Tj : H1 → H2(Ω; div)×H2(T2π;C2)×H2
S (T2π),

L : H1 → L2(Ω;C2)× L2(T2π;C2)×H
3/2
S (T2π) =: H2

by

T0(v , p, r) =




0

−2C2r

0



, T1(v , p, r) =




v

−2%Aωr × k

r



, T2(v , p, r) =




0

%Ar

0



,

(2.10.49)

L(v , p, r) =




L1(v , p, r)

L2(v , p, r)

L3(v , p, r)



, (2.10.50)
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where

L1(v , p, r) = −γ∆v + 2ωk × v +∇p,

L2(v , p, r) = R−1N◦rss − (N◦
ν −R−1N◦)(e2e2 · rs)s + ρP (R)k × rs − %Aω2r

− ρR2ω2(r · e1)e1 +RΣ(v , p) · e1,

L3(v , p, r) = −(γRv)(Re1(s)).

(2.10.51)

Define L̃ := L − T0 : H1 → H2. Then (λ, (v , p, r)) ∈ H1 satisfies the quadratic

eigenvalue problem (2.9.12) if and only if it satisfies

(λ2T2 + λT1 + T0 + L̃)(v , p, r) = 0. (2.10.52)

We characterize the spectrum of (2.10.52), and thus the spectrum of (2.9.12), using

Theorem (2.10.25). To put (2.10.52) in a form that satisfies the hypotheses of

Theorem (2.10.25) we need to show that L̃ is invertible and L̃−1Tj : H1 → H1 are

compact.

First we show that L̃ is invertible, i.e., we show that given (g ,h , ϕ) ∈ H2, there

exists a unique (v , p, r) ∈ H1 such that L̃(v , p, r) = (g ,h , ϕ). The existence and

regularity theorems (2.10.30), (2.10.33), and (2.10.34) imply that there is a unique

v ∈ H2
a(Ω; div) and a unique p̃ ∈ Π1(Ω) such that

−γ∆v + 2ωk × v +∇p̃ = g , −(γRv)(Re1(s)) = ϕ(s).

By the existence and regularity theorems (2.10.41) and (2.10.43), there exists a

unique r ∈ H2
s (T2π), such that

as(r , q) + 2C2(r , q)L2(0,2π) = (h −RΣ(v , p̃) · e1, q)L2(0,2π) for all q ∈ H1
S (T2π),

(2.10.53)
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where as was defined in equation (2.10.39). Integrate by parts in equation (2.10.53)

and use Lemma (2.10.28) to obtain

−R−1N◦rss−(N◦
ν−R−1N◦)(e2e2·rs)s+ρP (R)k×rs−%Aω2r−ρR2ω2(r ·e1)e1+2C2r

= h −RΣ(v , p̃) · e1 + ce1, (2.10.54)

where c is the constant coming from Lemma (2.10.28). Equation (2.10.54) does not

have the desired form L̃2(v , p̃, r) = h since we have the extra term ce1 on the right-

hand side. Note, however, that the pressure p̃ ∈ Π1(Ω) is essentially only determined

up to a constant. We fix the constant by defining a new pressure p = p̃ − c/(ρR).

Then L̃(v , p, r) = (g ,h , ϕ), as required, and so L̃−1 : H2 → H1 exists.

Next we show that L̃−1Tj : H1 → H1 is compact for each j. Fix j and

let (g ,h , ϕ) be in the range of Tj. Then g ∈ H2(Ω;C2), h ∈ H2(T2π;C2), and

ϕ ∈ H2
S (T2π). Following the same arguments we used to show that L̃ is invertible,

and setting m = 1
2

in Theorem (2.10.34) and m = 1 in Theorem (2.10.43), we

find that L̃−1(g ,h , ϕ) ∈ H
5/2
a (Ω; div) × H3/2(Ω;C) × H3

S (T2π), which is compactly

embedded in H1. Therefore L̃−1Tj : H1 → H1 is compact.

Multiplying equation (2.10.52) by L̃−1 puts it in a form that satisfies the

hypotheses of Theorem (2.10.25):

A(λ)(v , p, r) := (λ2L̃−1T2 + λL̃−1T1 + L̃−1T0 + I)(v , p, r) = 0. (2.10.55)

Theorem (2.10.5) implies that not every λ ∈ C in an eigenvalue of (2.10.55), which

implies that the spectrum of A is not the whole complex plane. (Note that the

alternative in Theorem (2.10.25) that the spectrum be the whole complex plane is
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equivalent to every point being an eigenvalue: A(µ) has a bounded inverse if and

only if I − (−µNTN − . . . − µT1 − T0) =: I − K has a bounded inverse, where K

is compact. By Fredholm’s Alternative, I − K has a bounded inverse if and only

if the equation 0 = (I − K)u ≡ µNTNu + . . . + µT1u + T0u + u has no nontrivial

solutions., i.e., if and only if µ is not an eigenvalue of A.) Therefore we can apply

Theorem (2.10.25) to complete the proof.

In Section 2.12 we give an alternative proof that the spectrum is countable.

The proof given above is more direct and avoids the tricky weak formulation of the

coupled system and the inf-sup conditions, but instead relies on elliptic regularity

results.

Theorem 2.10.56 (Regularity of the eigenfunctions). The eigenfunctions

(v , p, r) of (2.9.12) are smooth (C∞) functions.

Proof. Let (λ, (v , p, r)) ∈ C × H2
a(Ω; div) × H1(Ω;C) × H2

S (T2π) satisfy (2.9.12).

In the notation of the proof of Theorem (2.10.23),

(λ2T2 + λT1 + T0 + L̃)(v , p, r) = 0,

which implies that

(v , p, r) = −L̃−1(λ2T2(v , p, r) + λT1(v , p, r) + T0(v , p, r)).

By the ellipticity of L̃, it can be shown using the same arguments as in the proof of

Theorem (2.10.23) that

(v , p, r) ∈ H5/2
a (Ω; div)×H3/2(Ω;C)×H3

S (T2π).
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By iterating this process we see that

(v , p, r) ∈ H7/2
a (Ω; div)×H5/2(Ω;C)×H4

S (T2π)

(v , p, r) ∈ H9/2
a (Ω; div)×H7/2(Ω;C)×H5

S (T2π)

...

(v , p, r) ∈ C∞(Ω;C2)× C∞(Ω;C)× C∞(T2π;C2).

Characterization of the Spectrum for Viscoelastic Strings

The proof of Theorem (2.10.23) given above does not apply if N◦
ν̇ 6= 0. In this

case the operator T1 defined in (2.10.49) is replaced by

T1(v , p, r) =




v

N◦
ν̇ (e2e2 · rs)s − 2%Aωr × k

r



, (2.10.57)

which is regularity decreasing. It follows that L̃−1T1 is not compact and so the spec-

tral theorem for compact polynomial operator pencils, Theorem (2.10.25), cannot

be applied. In Section 2.12 we prove that for N◦
ν̇ 6= 0 the spectrum of (2.9.12) is

countable (although not necessarily without finite accumulation points) by intro-

ducing a Fourier decomposition. This has the effect of removing the troublesome

derivatives in (2.10.57). See the remark following Theorem (2.12.69).
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2.11 Weak Formulation of the Quadratic Eigenvalue Problem

We derive a mixed weak formulation of the quadratic eigenvalue problem

(2.9.12), which will be used in Sections 2.12 and 2.13 to compute the eigenval-

ues numerically. Our weak formulation is motivated by weak formulations of other

fluid-structure interaction problems. See Planchard & Thomas (1991) and Cham-

bolle et al. (2005). We use a mixed formulation because it is inconvenient to apply

the finite element method with incompressible shape functions.

Derivation

Recall that Ω = {x ∈ R2 : a < |x | < R} and nΩ is the unit outer normal

to ∂Ω. Let w ∈ H1(Ω;C2) satisfy w = 0 on {|x | = a}. Take the inner product

of (2.9.13)1 with w̄ , where a superscript bar denotes complex conjugation, and

integrate over Ω to obtain

λ

∫

Ω

v · w̄ dx =

∫

Ω

{
1
ρ
div Σ(v , p) · w̄ − 2ω (k × v) · w̄

}
dx

=−
∫

Ω

{
1
ρ
Σ(v , p) :

∂w̄

∂x
+ 2ω (k × v) · w̄

}
dx

+ 1
ρ

∫

|x |=R

nΩ ·Σ(v , p) · w̄ dS

=− 2

∫

Ω

{γD(v) : D(w̄) + ω (k × v) · w̄} dx +

∫

Ω

p div w̄ dx

+ 1
ρ

∫ 2π

0

e1(s) ·Σ(v , p) · w̄ Rds,

(2.11.1)

where v , p, and w̄ are evaluated at x = Re1(s) in the boundary term in the last

line.
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Let q ∈ Π0(Ω), where Π0(Ω) was defined in equation (2.10.22). Multiply

(2.9.13)2 by q̄ and integrate over Ω to obtain

∫

Ω

q̄ div v dx = 0. (2.11.2)

Let q ∈ H1
S (T2π), where H1

S (T2π) was defined in equation (2.10.22). Take the

inner product of (2.9.14) with q̄ and integrate by parts over [0, 2π] to derive

λ2 %A

∫ 2π

0

r · q̄ ds+ λ

∫ 2π

0

{N◦
ν̇ (rs · e2)(q̄s · e2)− 2%Aω(r × k) · q̄} ds

= −
∫ 2π

0

{
R−1N◦rs · q̄s + (N◦

ν −R−1N◦) (rs · e2)(q̄s · e2) + ρP (R)(k × rs) · q̄

− %Aω2r · q̄ −ρR2ω2(r · e1)(q̄ · e1)
}
ds−R

∫ 2π

0

e1(s) ·Σ(v , p) · q̄ ds. (2.11.3)

Recall that γRv denotes the trace of v restricted to {|x | = R}. Taking the

H1/2 inner product of the adherence condition (2.9.15)2 with t ∈ H1/2(T2π;C2) gives

λ 〈r , t〉H1/2 = 〈γRv , t〉H1/2 , (2.11.4)

where 〈·, ·〉H1/2 is the inner product on H1/2(T2π;C2). The importance of enforcing

the adherence boundary condition in the H1/2-inner product rather than just the

L2-inner product will become clear in the proof of Theorem (2.11.18). If r =

r1(s)e1(s) + r2(s)e2(s), t = t1(s)e1(s) + t2(s)e2(s), and if rj and tj have Fourier

coefficients {rj
k}k∈Z and {tjk}k∈Z, for j ∈ {1, 2}, then the H1/2-inner product can be

defined by

〈r , t〉H1/2 =
∞∑

k=−∞
(1 + |k|) r1

k t
1
k +

∞∑

k=−∞
(1 + |k|) r2

k t
2
k.

Observe that if we choose test functions w and q with q = γRw , then mul-

tiplying equation (2.11.1) by ρ and adding it to equation (2.11.3) eliminates the
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boundary terms involving Σ(v , p). This is an important trick: if the boundary

terms are not eliminated, then we must seek solutions with high enough regularity

(v ∈ H2(Ω;C), p ∈ H1(Ω;C)) so that the restriction of Σ to ∂Ω makes sense.

The sum of equation (2.11.3), equation (2.11.4), and ρ times equation (2.11.1)

is

λ2%A

∫ 2π

0

r · q̄ ds+ λ

(∫ 2π

0

{N◦
ν̇ (rs · e2)(q̄s · e2)− 2%Aω(r × k) · q̄} ds

+ρ

∫

Ω

v · w̄ dx − 〈r , t〉H1/2

)

= −
∫ 2π

0

{R−1N◦rs ·q̄s+(N◦
ν−R−1N◦) (rs ·e2)(q̄s ·e2)+ρP (R)(rs×q̄)·k−%Aω2r ·q̄

− ρR2ω2(r · e1)(q̄ · e1)} ds

− 2

∫

Ω

{µD(v) : D(w̄) + ρω(k × v) · w̄} dx + ρ

∫

Ω

p div w̄ dx − 〈γRv , t〉H1/2 .

(2.11.5)

Notation. Define

H1
a(Ω) :=

{
v ∈ H1(Ω;C2) : v = 0 on {|x | = a}}, (2.11.6)

V1 :=
{
(v , r) ∈ H1

a(Ω)×H1
S (T2π)

}
,

V2 :=
{
(w , q , t) ∈ H1

a(Ω)×H1
S (T2π)×H1/2(T2π;C2) : γRw(Re1(s)) = q(s)

}
,

Π := Π0(Ω) =

{
p ∈ L2(Ω;C) :

∫

Ω

p dx = 0

}
.

Lemma 2.11.7 (Norms on V1 and V2). Define

〈(v1, r1), (v2, r2)〉V1
:= 〈D(v1),D(v2)〉L2(Ω) + 〈r1, r2〉H1(0,2π),

|| (v , r) ||V1
:=

(||D(v)||2L2(Ω) + ||r ||2H1(0,2π)

)1/2
,
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and

〈(w1, q1, t1), (w2, q2, t2)〉V2
:= 〈D(w1),D(w2)〉L2(Ω) + 〈q1, q2〉H1(0,2π) + 〈t1, t2〉H1/2(0,2π),

|| (w , q , t) ||V2
:=

(||D(w)||2L2(Ω) + ||q ||2H1(0,2π) + ||t ||2H1/2(0,2π)

)1/2
.

Then (V1, 〈· , ·〉V1
) and (V2, 〈· , ·〉V2

) are complex Hilbert spaces.

Proof. This is left as an easy exercise. Note that ||D(·)||L2(Ω) is a norm on H1
a(Ω)

by Korn’s inequality and Poincaré’s inequality.

Equations (2.11.2) and (2.11.5) constitute the

Weak formulation of the quadratic eigenvalue problem. Find λ ∈ C and

0 6= (v , r , p) ∈ V1 × Π such that for all (w , q , t , q) ∈ V2 × Π

λ2a2(r , q) + λa1((v , r), (w , q , t)) + a0((v , r), (w , q , t)) + b(w , p) = 0,

b(v , q) = 0,

(2.11.8)

where

a0((v , r), (w , q , t)) :=

∫ 2π

0

{
R−1N◦rs · q̄s + (N◦

ν −R−1N◦) (rs · e2)(q̄s · e2) + ρP (R)(k × rs) · q̄

−%Aω2r · q̄ − ρR2ω2(r · e1)(q̄ · e1)
}
ds

+ 2

∫

Ω

{µ̃D(v) : D(w̄) + ρω(k × v) · w̄} dx + 〈γRv , t〉H1/2 , (2.11.9)

a1((v , r), (w , q , t)) :=

∫ 2π

0

{N◦
ν̇ (rs · e2)(q̄s · e2)− 2%Aω(r × k) · q̄} ds+ ρ

∫

Ω

v · w̄ dx − 〈r , t〉H1/2 ,

(2.11.10)

a2(r , q) := %A

∫ 2π

0

r · q̄ ds, b(w , p) := −ρ
∫

Ω

p div w̄ dx . (2.11.11)
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Lemma 2.11.12 (Smooth solutions of the weak problem satisfy the classi-

cal problem). Let (λ, (v , r , p)) be a smooth solution of the weak problem (2.11.8).

Then there exists a unique constant Q such that (λ, (v , r , p+Q)) satisfies the clas-

sical problem (2.9.12).

Proof.

(i) Setting w = 0, q = 0, and t = λr−γRv in (2.11.8)1 yields ||λr−γRv ||2
H1/2 = 0,

which implies that γRv = λr , i.e., v = λr on {|x | = R}.

(ii) By the Divergence Theorem and (i),

∫

Ω

div v dx =

∫

∂Ω

v · n dx = λ

∫ 2π

0

r · e1 ds = 0. (2.11.13)

Therefore we can substitute q = div v into (2.11.8)2 to obtain ||div v ||2L2(Ω) =

0. Thus div v = 0.

(iii) Set q = t = 0 in (2.11.8)1 to obtain the following (note that q = 0 implies

w = 0 on ∂Ω):

λρ

∫

Ω

v · w̄ dx =

∫

Ω

{−2µ̃D(v) : D(w̄)− 2ρω(k × v) · w̄} dx

+

∫

Ω

ρ p div w̄ dx

=

∫

Ω

{2µ̃ divD(v)− 2ρω(k × v)− ρ∇p} · w̄ dx

(2.11.14)

for all w ∈ H1
0 (Ω,C2). Since v is divergence-free, 2 divD(v) = ∆v . Therefore

equation (2.11.14) implies that the Stokes-like equation (2.9.13)1 is satisfied.

(iv) Set t = 0 in (2.11.8)1, then integrate by parts and use (2.9.13)1 and γRw = q
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to obtain

0 =

∫ 2π

0

{
λ2%Ar − λ[N◦

ν̇ (e2e2 · rs)s + 2%Aωr × k ]−R−1N◦rss

−(N◦
ν −R−1N◦)(e2e2 · rs)s + ρP (R)k × rs − %Aω2r

−ρR2ω2(r · e1)e1 +RΣ(v , p) · e1

} · q̄ ds

for all q ∈ H1
S (T2π). Therefore by Lemma (2.10.28) there exists a constant Q1

such that

Q1e1 = λ2%Ar − λ[N◦
ν̇ (e2e2 · rs)s + 2%Aωr × k ]−R−1N◦rss

−(N◦
ν−R−1N◦)(e2e2·rs)s+ρP (R)k×rs−%Aω2r−ρR2ω2(r ·e1)e1+RΣ(v , p)·e1.

The term on the left-hand side can be included in the pressure term:

0 = λ2%Ar−λ[N◦
ν̇ (e2e2·rs)s+2%Aωr×k ]−R−1N◦rss−(N◦

ν−R−1N◦)(e2e2·rs)s

+ ρP (R)k × rs − %Aω2r − ρR2ω2(r · e1)e1 +RΣ(v , p+Q1/ρR) · e1.

If we define Q := Q1/ρR, then we see that (λ, (v , r , p+Q)) satisfies the string

equation (2.9.14).

From the weak formulation (2.11.8) we could use the 2-dimensional finite ele-

ment method to compute the eigenvalues. A more efficient method, however, is to

write equation (2.11.8) in polar coordinates and then use Fourier series in the angle

variable φ to reduce the partial differential equations in r and φ to ordinary differen-

tial equations in r. Then the 1-dimensional finite element method can be used. This
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is what we do in the following sections, but first we prove that the bilinear forms a0

and b satisfy the inf-sup conditions. These inf-sup conditions could be used to give

an alternative proof of the spectral theorem (2.10.23), and discrete versions of these

inf-sup conditions could be used to prove convergence of the 2-dimensional finite

element method. While we do not do this, it is illuminating to prove the inf-sup

conditions anyway because it shows that our weak formulation is well-posed and

shows why it is important to enforce the adherence boundary condition in H1/2 and

not just L2.

The following result is well-known (see Girault & Raviart (1986) or Brenner

& Scott (2002, Chapter 12, Section 2)) :

Theorem 2.11.15 (b satisfies an inf-sup condition). Let b be the bilinear form

defined in equation (2.11.11). Then

inf
p∈Π

sup
w∈H1

0 (Ω)

|b(w , p)|
||p||Π||w ||H1

= β > 0.

It follows immediately that

inf
p∈Π

sup
(w ,q ,t)∈V2

|b(w , p)|
||p||Π||(w , q , t)||V2

= β > 0. (2.11.16)

Define

Z1 := {(v , r) ∈ V1 : b(v , p) = 0 for all p ∈ Π},

Z2 := {(w , q , t) ∈ V2 : b(w , p) = 0 for all p ∈ Π}.
(2.11.17)

Theorem 2.11.18 (a0 satisfies a G̊arding-type inf-sup condition). There

exists a constant Cg > 0 such that the bilinear form â0 : V1 × V2 → C defined by

â0((v , r), (w , q , t)) := a0((v , r), (w , q , t)) + Cg

∫ 2π

0

r · q̄ ds (2.11.19)
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satisfies the inf-sup conditions

inf

(v , r) ∈ Z1

||(v , r)||V1 = 1

sup

(w , q , t) ∈ Z2

||(w , q , t)||V2 = 1

|â0((v , r), (w , q , t))| = α > 0, (2.11.20)

(w , q , t) = 0 if â0((v , r), (w , q , t)) = 0 for all (v , r) ∈ Z1. (2.11.21)

Will we use the following lemma to prove Theorem (2.11.18).

Lemma 2.11.22. Decompose the bilinear form a0 defined in (2.11.9) into three

bilinear forms:

a0((v , r), (w , q , t)) =: d1(r , q) + d2(v ,w) + 〈γRv , t〉H1/2 , (2.11.23)

where d1 and d2 correspond to the string terms and the fluid terms of a0. (Note that

d1 is the same as the bilinear form as defined in equation (2.10.39).) Then

(i) d1 satisfies a G̊arding inequality: There exists a constant Cg1 > 0 such that

d1(r , r) + Cg1||r ||2L2(0,2π) ≥ α1||r ||2H1(0,2π) for all r ∈ H1
S (T2π);

(ii) d2 is coercive:

Re[d2(v , v)] = 2µ̃||D(v)||2L2(Ω) for all v ∈ H1
a(Ω).

Proof. Part (i) is just a restatement of Theorem (2.10.36). Part (ii) is clear.

Proof of Theorem (2.11.18). Recall that the inf-sup conditions (2.11.20) and

(2.11.21) are equivalent to the well-posedness of the following problem:

Find (v , r) ∈ Z1 such that â0((v , r), (w , q , t)) = F (w , q , t) for all (w , q , t) ∈ Z2,

(2.11.24)
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where F ∈ (Z2)
∗, the space of bounded linear functionals on Z2. See Ern & Guer-

mond (2004, p. 85, Theorem 2.6). To prove Theorem (2.11.18) we will prove that

problem (2.11.24) is well-posed.

Choose Cg = Cg1 , where Cg is the constant appearing in the definition of â0

and Cg1 was defined in Lemma (2.11.22)(i).

We start by constructing a candidate for the solution (v , r) of (2.11.24). Sub-

stitute w = 0, q = 0 into (2.11.24) to obtain the problem: find γRv(Re1(s)) =

ϕ(s) ∈ H1/2(T2π;C2) such that

〈ϕ, t〉H1/2 = F (0, 0, t) for all t ∈ H1/2(T2π;C2). (2.11.25)

By the Riesz Representation Theorem there exists a unique solution ϕ to (2.11.25).

Note that ||ϕ||H1/2 = ||F (0, 0, ·)||, where ||F (0, 0, ·)|| denotes the norm of the bounded

linear operator F (0, 0, ·).

Let

Z = {w ∈ H1(Ω;C2) : b(w , p) = 0 for all p ∈ Π},

Z0 = H1
0 (Ω;C2) ∩ Z.

(2.11.26)

Substitute q = 0, t = 0 in (2.11.24) to obtain the problem: Find v ∈ Z with v = 0

on {|x | = a} and γRv = ϕ such that

d2(v ,w) = F (w , 0, 0) for all w ∈ Z0. (2.11.27)

There exists a g ∈ Z such that g = 0 on {|x | = a}, γRg = ϕ, and ||g ||H1 ≤

C||ϕ||H1/2 . (The existence of g is proved as follows. Since ϕ ∈ H1/2(T2π;C2) the

Trace Theorem (see for example Ern & Guermond (2004, p. 488, Theorem B.52))
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implies that there exists a function h ∈ H1(Ω;C2) such that h = 0 on {|x | = a} and

h = ϕ on {|x | = R} in the sense of trace, and ||h ||H1 ≤ ||ϕ||H1/2 . This highlights the

importance of enforcing the adherence boundary condition in the H1/2-inner product

(see (2.11.4)). If we had used only the L2-inner product, then ϕ need not belong

to H1/2, in which case the Trace Theorem would not apply, g would not exist, and

our eigenvalue problem would not be well-posed. Let q = −div h + 1
|Ω|

∫
Ω

div h dx .

Since
∫

Ω
q dx = 0, it is well-known that there exists an f ∈ H1

0 (Ω;C2) satisfying

div f = q and ||f ||H1 ≤ C||q||L2 (see Brenner & Scott (2002, p. 282, Lemma 11.2.3)).

The function g := h + f has the desired properties.)

Define u = v −g . Then problem (2.11.27) is equivalent to: Find u ∈ Z0 such

that

d2(u ,w) = F (w , 0, 0)− d2(g ,w) for all w ∈ Z0. (2.11.28)

By (2.11.22)(ii), Korn’s inequality, and the Lax-Milgram Theorem, there exists a

unique u ∈ Z0 satisfying (2.11.28). This determines v = u + g . By substituting

w = u into (2.11.28) and using (2.11.22)(ii) we obtain the estimate

||D(v)||L2 ≤ C(||F (·, 0, 0)||+ ||ϕ||H1/2) = C(||F (·, 0, 0)||+ ||F (0, 0, ·)||). (2.11.29)

Set t = 0 in (2.11.24) to obtain the problem: Find r ∈ H1
S (T2π) such that

d1(r , q) + Cg

∫ R

a

r · q̄ ds = F (w , q , 0)− d2(v ,w) (2.11.30)

for all (w , q , 0) ∈ Z2. Note that, given q ∈ H1
S (T2π), the right-hand side of (2.11.30)

is independent of our choice of w by (2.11.27). By the Trace Theorem we can take

w = h , where h ∈ H1(Ω;C2) satisfies h = 0 on {|x | = a} and h = q on {|x | = R}
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in the sense of trace, and ||h ||H1 ≤ ||q ||H1/2 . Substitute w = h into (2.11.30) to

obtain the problem: Find r ∈ H1
S(T2π) such that

d1(r , q) + Cg

∫ R

a

r · q̄ ds = F (h , q , 0)− d2(v ,h) (2.11.31)

for all q ∈ H1
S (T2π). By the G̊arding inequality (2.11.22)(i), the bilinear form on

the left-hand side of (2.11.31) is coercive, and so there exists a unique solution

r ∈ H1
S (T2π). Moreover, (2.11.30), (2.11.22)(ii), and (2.11.29) imply that

||r ||H1 ≤ C(||F (·, ·, 0)||+ ||F (·, 0, 0)||+ ||F (0, 0, ·)||) ≤ C ′||F ||. (2.11.32)

It follows from (2.11.25) and (2.11.30) that (v , r) satisfies (2.11.24).

If we have two solutions (v 1, r 1), (v 2, r 2) of (2.11.24), then the difference

(v 1 − v 2, r 1 − r 2) satisfies (2.11.24) with F = 0. By substituting into (2.11.24)

(w , q) = (0, 0), then (q , t) = 0, and then t = 0, as above, we see that (v 1−v 2, r 1−

r 2) = (0, 0), and so (2.11.24) has a unique solution.

Finally, the continuous dependence of (v , r) on the data F follows from the

estimates (2.11.29) and (2.11.32).

The Weak Formulation in Polar Coordinates

In this section we write the weak equations (2.11.8) in polar coordinates. De-

compose the functions in V1 × Π as

v(re1(φ)) = v1(r, φ)e1(φ) + v2(r, φ)e2(φ), r(s) = r1(s)e1(s) + r2e2(s), (2.11.33)

p(re1(φ)) = p̃(r, φ). (2.11.34)
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Note that, in the notation of Section 2.9, v1 = u, v2 = v, r1 = q, r2 = Rψ, and

p̃ = p. See equation (2.9.11). Decompose the functions in V2 × Π as

w(re1(φ)) = w1(r, φ)e1(φ) + w2(r, φ)e2(φ), q(s) = q1(s)e1(s) + q2e2(s),

(2.11.35)

t(s) = t1(s)e1(s) + t2e2(s), q(re1(φ)) = q̃(r, φ). (2.11.36)

Now drop the tilde from p̃ and q̃. Define

(v, r) := (v1, v2, r1, r2), (w,q, t) := (w1, w2, q1, q2, t1, t2). (2.11.37)

We obtain new function spaces V1, V2, and Π̃ by substituting the polar coordinates

for (v , r), (w , q , t), and p into V1, V2, and Π:

V1 :=
{

(v, r) ∈ [H1([a,R]× T2π;C)]2 × [H1(T2π;C)]2 :

vi(a, φ) = 0 ∀φ,
∫ 2π

0

r1 ds = 0
}
, (2.11.38)

V2 :=
{

(w,q, t) ∈ [H1([a,R]× T2π;C)]2 × [H1(T2π;C)]2 × [H1/2(T2π;C)]2 :

wi(a, φ) = 0 ∀φ, wi(R, s) = qi(s) ∀s,
∫ 2π

0

q1 ds = 0
}
, (2.11.39)

Π̃ :=
{
p ∈ L2([a,R]× T2π;C) :

∫ 2π

0

∫ R

a

p(r, φ) rdrdφ = 0
}
. (2.11.40)

Now drop the tilde from Π̃. Note that we do not need to include weights such as r

and 1/r in the Sobolev spaces for v, w, and p since r ∈ [a,R], a bounded set that

does not include the origin. Equip V1 and V2 with the norms

||(v, r)||
V1

:= ||(v1e1 + v2e2 , r
1e1 + r2e2)||V1

= ||(v , r)||V1
,

||(w,q, t)||
V2

:= ||(w1e1 + w2e2 , q
1e1 + q2e2 , t

1e1 + t2e2)||V2
= ||(w , q , t)||V2

.

(V1, || · ||V1
) and (V2, || · ||V2

) are complex Banach spaces.

If we substitute (2.11.33)–(2.11.36) into (2.11.8), we obtain a
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Weak formulation of the quadratic eigenvalue problem in polar coordi-

nates. Find λ ∈ C and 0 6= (v, r, p) ∈ V1×Π such that for all (w,q, t, q) ∈ V2×Π

λ2ã2(r,q) + λã1((v, r), (w,q, t)) + ã0((v, r), (w,q, t)) + b̃(w, p) = 0,

b̃(v, q) = 0,

(2.11.41)

where

ã0((v, r), (w,q, t)) := a0((v , r), (w , q , t))

=

∫ 2π

0

{
R−1N◦[(r1

s − r2)(q1
s − q2) + (r1 + r2

s)(q
1 + q2

s)]

+ (N◦
ν −R−1N◦)(r1 + r2

s)(q
1 + q2

s) + ρP (R)[q2(r1
s − r2)− q1(r1 + r2

s)]

− %Aω2(r1q1 + r2q2)− ρR2ω2r1q1
}
ds

+ 2

∫ R

a

∫ 2π

0

{
µ̃[v1

rw
1
r + 1

r2 (v
2
φ + v1)(w2

φ + w1) + 1
2
(1

r
v1

φ − 1
r
v2 + v2

r)(
1
r
w1

φ − 1
r
w2 + w2

r)]

+ ωρ(v1w2 − v2w1)
}
rdφ dr + 〈γRv

1e1 + γRv
2e2, t

1e1 + t2e2〉H1/2 , (2.11.42)

ã1((v, r), (w,q, t)) := a1((v , r), (w , q , t))

=

∫ 2π

0

{
N◦

ν̇ (r2
s + r1)(q2

s + q1) + 2%Aω(r1q2 − r2q1)
}
ds (2.11.43)

+ ρ

∫ R

a

∫ 2π

0

{
v1w1 + v2w2

}
rdφ dr − 〈r1e1 + r2e2, t

1e1 + t2e2〉H1/2 ,

ã2(r,q) := a2(r , q) = %A

∫ 2π

0

{
r1q1 + r2q2

}
ds, (2.11.44)

b̃(w, p) := b(w , p) = −ρ
∫ R

a

∫ 2π

0

p(w1
r + 1

r
w1 + 1

r
w2

φ) rdφ dr. (2.11.45)

Fourier Decomposition and a Family of Weak Problems

In this section we expand the functions in V1, V2, and Π as Fourier series in the

angle variable (φ or s) and use this to generate a family of weak problems indexed

by the Fourier wave number.
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For j ∈ {1, 2} decompose

vj(r, φ) =
∞∑

k=−∞
vj

k(r)e
ikφ, rj(s) =

∞∑

k=−∞
rj
ke

iks, (2.11.46)

wj(r, φ) =
∞∑

k=−∞
wj

k(r)e
ikφ, qj(s) =

∞∑

k=−∞
qj
ke

iks, tj(s) =
∞∑

k=−∞
tjke

iks, (2.11.47)

p(r, φ) =
∞∑

k=−∞
pk(r)e

ikφ. (2.11.48)

Define

(vk, rk) := (v1
k, v

2
k, r

1
k, r

2
k), (wk,qk, tk) := (w1

k, w
2
k, q

1
k, q

2
k, t

1
k, t

2
k).

We define a family of spaces indexed by the Fourier wave number k ∈ Z. For k 6= 0

V k
1 :=

{
(vk, rk) ∈ [H1([a,R];C)]2 × C2 : vj

k(a) = 0
}
,

V k
2 :=

{
(wk,qk, tk) ∈ [H1([a,R];C)]2 × C2 × C2 : wj

k(a) = 0, wj
k(R) = qj

k

}
,

Πk := L2([a,R];C).

(2.11.49)

(Note that these spaces are independent of k.) For k = 0

V 0
1 :=

{
(v0, r0) ∈ [H1([a,R];C)]2 × C2 : vj

0(a) = 0, r1
0 = 0

}
,

V 0
2 :=

{
(w0,q0, t0) ∈ [H1([a,R];C)]2 × C2 × C2 : wj

0(a) = 0, wj
0(R) = qj

0, q
1
0 = 0

}
,

Π0 :=

{
p0 ∈ L2([a,R];C) :

∫ 2π

0

p0(r) rdr = 0

}
.

(2.11.50)

We equip V k
1 , V k

2 , and Πk with the norms

||(vk, rk)||2V k
1

= ||vk||2H1([a,R]) + |rk|2,

||(wk,qk, tk)||2V k
1

= ||wk||2H1([a,R]) + |qk|2 + |tk|2,

||pk||2Πk =

∫ R

a

|pk|2 rdr.
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Note that as before we do not need to include weights r and 1/r in the Sobolev

spaces V k
1 and V k

2 because r ∈ [a,R], a bounded set that does not include the

origin. We shall see that it is convenient to include the weight r in the pressure

space.

Let k ∈ Z, (wk,qk, tk) ∈ V k
2 , qk ∈ Πk. Substitute into (2.11.41) the Fourier

decompositions (2.11.46) and (2.11.48) and

wj(r, φ) = wj
k(r)e

ikφ, qj(s) = qj
ke

iks, tj(s) = tjke
iks, q(r, φ) = qk(r)e

ikφ

to obtain the following family of weak problems:

A family of weak problems indexed by the Fourier wave number. For each

k ∈ Z, find λ ∈ C and 0 6= (vk, rk, pk) ∈ V k
1 × Πk such that for all (wk,qk, tk, qk) ∈

V k
2 × Πk

λ2ak
2(rk,qk) + λak

1((vk, rk), (wk,qk, tk)) + ak
0((vk, rk), (wk,qk, tk)) + bk(wk, pk) = 0,

bk(vk, qk) = 0

(2.11.51)
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where

ak
0((vk, rk), (wk,qk, tk))

:= R−1N◦[(ikr1
k − r2

k)(−ikq1
k − q2

k) + (r1
k + ikr2

k)(q
1
k − ikq2

k)]

+ (N◦
ν −R−1N◦)(r1

k + ikr2
k)(q

1
k − ikq2

k) + ρP (R)[q2
k(ikr

1
k − r2

k)− q1
k(r

1
k + ikr2

k)]

− %Aω2(r1
kq

1
k + r2

kq
2
k)− ρR2ω2r1

kq
1
k

+ 2

∫ R

a

{
µ̃[(v1

k)r(w1
k)r + 1

r2 (ikv
2
k + v1

k)(−ikw2
k + w1

k)

+ 1
2
( ik

r
v1

k − 1
r
v2

k + (v2
k)r)(− ik

r
w1

k − 1
r
w2

k + (w2
k)r)] + ωρ(v1

kw
2
k − v2

kw
1
k)

}
rdr

+ (1 + |k|)(v1
k(R)t1k + v2

k(R)t2k), (2.11.52)

ak
1((vk, rk), (wk,qk, tk))

:= N◦
ν̇ (ikr2

k + r1
k)(−ikq2

k + q1
k) + 2%Aω(r1

kq
2
k − r2

kq
1
k) + ρ

∫ R

a

{
v1

kw
1
k + v2

kw
2
k

}
rdr

− (1 + |k|)(r1
kt

1
k + r2

kt
2
k), (2.11.53)

ak
2(rk,qk) := %A(r1

kq
1
k + r2

kq
2
k), (2.11.54)

bk(wk, pk) := −ρ
∫ R

a

pk[(w1
k)r + 1

r
w1

k − ik
r
w2

k] rdr. (2.11.55)

Now we prove that the bilinear forms ak
0 and bk satisfy the inf-sup conditions.

These conditions are used in section 2.12 to characterize the spectrum of problem

(2.11.51). By proving discrete versions of these inf-sup conditions in section 2.12

we will also be able to construct a convergent numerical scheme for computing the

eigenvalues.

Theorems (2.11.56), (2.11.64), and (2.11.68) are analogous to Theorems (2.11.15),

(2.11.18), and (2.11.22).
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Theorem 2.11.56 (bk satisfies an inf-sup condition). Let k ∈ Z. Let bk be the

bilinear form defined in equation (2.11.55). Then

inf
pk∈Πk

sup
wk∈[H1

0 ]2

|bk(wk, pk)|
||pk||Πk ||wk||H1

= β > 0. (2.11.57)

The constant β is independent of k.

Proof. Bernardi et al. (1999, Prop. IX.1.1) prove a very similar and more gen-

eral result (for general 3-dimensional axisymmetric domains rather than just the

2-dimensional annulus). Their proof follows from the well-known inf-sup condition

for the Stokes equation, Theorem (2.11.15), which in turn is proved by inverting the

divergence operator. Since we are only interested in a 2-dimensional annular do-

main, inverting the divergence operator amounts to solving an ordinary differential

equation in r, and so Theorem (2.11.56) has an elementary proof, which we give

here.

First consider the case k = 0. Given p0 ∈ Π0, we wish to construct a u1
0 ∈

H1
0 ([a,R];C) satisfying

(ru1
0)r = p0r (2.11.58)

and ||u1
0||H1 ≤ C||p0||Π0 since then

sup
w0∈[H1

0 ]2

|b0(w0, p0)|
||w0||H1

≥ |b0((u1
0, 0), p0)|

||u1
0||H1

=
ρ

∫ R

a
|p0|2 rdr

||u1
0||H1

≥ β ||p0||Π0 (2.11.59)

for β = ρa/C, which implies (2.11.57). The unique solution of (2.11.58) with u1
0(a) =

u1
0(R) = 0 is

u1
0(r) =

1

r

∫ r

a

p0(%)% d%.
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Note that u1
0(R) = 0 because p0 ∈ Π0. It is easy to check the estimate ||u1

0||H1 ≤

C||p0||Π0 .

Now consider the case k 6= 0. Given pk ∈ Πk, we wish to construct a uk ∈

[H1
0 ([a,R];C)]2 satisfying

(ru1
k)r + iku2

k = pkr (2.11.60)

and ||uk||H1 ≤ C||pk||Πk . Then we can argue as in (2.11.59) to prove (2.11.57).

Given u2
k, equation (2.11.60) and the boundary condition u1

k(a) = 0 determines u1
k:

u1
k(r) =

1

r

∫ r

a

(pk(%)%− iku2
k(%)) d%.

Now we must choose u2
k such that

u2
k(a) = u2

k(R) = u1
k(R) = 0 (2.11.61)

and ||uk||H1 ≤ C||pk||Πk . We try u2
k(r) = c2(r − a)2 + c1(r − a). Equation (2.11.61)

determines c1 and c2:

c1 = −c2(R− a), c2 =
6i

k(R− a)3

∫ R

a

pk rdr.

Once again, it is easy to check the estimates ||u1
k||H1 ≤ C||pk||Πk , ||u2

k||H1 ≤ C′
|k| ||pk||Πk ,

where C and C ′ are independent of k. Therefore ||uk||H1 ≤ C(1 + 1/|k|)||pk||Πk ≤

2C||pk||Πk , as required.

It follows immediately from Theorem (2.11.56) that

inf
pk∈Πk

sup
(wk,qk,tk)∈V k

2

|bk(wk, pk)|
||pk||Πk ||(wk,qk, tk)||V k

2

= β > 0. (2.11.62)

For k ∈ Z, define

Zk
1 := {(vk, rk) ∈ V k

1 : bk(vk, pk) = 0 for all pk ∈ Πk},

Zk
2 := {(wk,qk, tk) ∈ V k

2 : bk(wk, pk) = 0 for all pk ∈ Πk}.
(2.11.63)
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Theorem 2.11.64 (ak
0 satisfies a G̊arding-type inf-sup condition). Let k ∈ Z.

There exists a constant Ck
g > 0 such that the bilinear form âk

0 : V k
1 ×V k

2 → C defined

by

âk
0((vk, rk), (wk,qk, tk)) := ak

0((vk, rk), (wk,qk, tk))

+ Ck
g

(∫ R

a

{v1
kw

1
k + v2

kw
2
k} dr + r1

kq
1
k + r2

kq
2
k

) (2.11.65)

satisfies the inf-sup conditions

inf

(vk, rk) ∈ Zk
1

||(vk, rk)||V k
1

= 1

sup

(wk,qk, tk) ∈ Zk
2

||(wk,qk, tk)||V k
2

= 1

|âk
0((vk, rk), (wk,qk, tk))| = α > 0, (2.11.66)

(wk,qk, tk) = 0 if âk
0((vk, rk), (wk,qk, tk)) = 0 for all (vk, rk) ∈ Zk

1 . (2.11.67)

Will we use the following lemma to prove Theorem (2.11.64).

Lemma 2.11.68. Let k ∈ Z. Decompose the bilinear form ak
0 defined in (2.11.52)

into three bilinear forms:

ak
0((vk, rk), (wk,qk, tk)) =: dk

1(rk,qk) + dk
2(vk,wk) + dk

3(vk(R), tk), (2.11.69)

where dk
1, d

k
2, and dk

3 correspond to the string terms, the fluid terms, and the adher-

ence boundary condition terms of ak
0. Then

(i) dk
1 satisfies a G̊arding inequality: There exists a constant Ck

g1
> 0 such that

dk
1(rk, rk) + Ck

g1
|rk|2 ≥ α1|rk|2 for all rk ∈ C2;

(ii) dk
2 satisfies a G̊arding inequality: There exists a constant Ck

g2
> 0 such that

Re[dk
2(vk,vk)] +Ck

g2
||vk||2L2(a,R) ≥ α2||vk||2H1(a,R) for all vk ∈ [H1([a,R];C)]2;
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(iii) dk
3 is coercive (positive definite):

dk
3(tk, tk) = (1 + |k|)|tk|2 for all tk ∈ C2.

Proof. These are easy estimates.

Proof of Theorem (2.11.64). We just prove the case k 6= 0. The proof for k = 0

is similar. Recall that the inf-sup conditions (2.11.66) and (2.11.67) are equivalent

to the well-posedness of the following problem:

Find (vk, rk) ∈ Zk
1 such that âk

0((vk, rk), (wk,qk, tk)) = F (wk,qk, tk) (2.11.70)

for all (wk,qk, tk) ∈ Zk
2 , where F ∈ (Zk

2 )∗, the space of bounded linear functionals on

Zk
2 . See Ern & Guermond (2004, p. 85, Theorem 2.6). To prove Theorem (2.11.64)

we will prove that problem (2.11.70) is well-posed.

Choose Ck
g ≥ max{Ck

g1
, Ck

g2
}, where Ck

g is the constant appearing in the defi-

nition of âk
0 and Ck

g1
and Ck

g2
were defined in Lemma (2.11.68).

We start by constructing a candidate for the solution (vk, rk) of (2.11.70).

Substitute wk = 0, qk = 0 into (2.11.70) to obtain the problem: Find vk(R) ∈ C2

such that

dk
3(vk(R), tk) = F (0, 0, tk) for all tk ∈ C2. (2.11.71)

Since dk
3 is coercive (positive definite), see (2.11.68)(iii), there exists a unique solution

vk(R) = ϕ to (2.11.71). Note that |ϕ| ≤ C||F (0, 0, ·)||, where ||F (0, 0, ·)|| denotes

the norm of the bounded linear operator F (0, 0, ·).
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Let

Zk = {wk ∈ [H1([a, r];C)]2 : bk(wk, pk) = 0 for all pk ∈ Πk},

Zk
0 = [H1

0 ([a,R];C)]2 ∩ Zk.

(2.11.72)

Substitute qk = 0, tk = 0 in (2.11.70) to obtain the problem: Find vk ∈ Zk with

vk(a) = 0 and vk(R) = ϕ such that

dk
2(vk,wk) + Ck

g

∫ R

a

{v1
kw

1
k + v2

kw
2
k} rdr = F (wk, 0, 0) for all wk ∈ Zk

0 . (2.11.73)

There exists a gk ∈ Zk such that gk(a) = 0, gk(R) = ϕ, and ||gk||H1 ≤ C|ϕ|.

(The existence of gk is proved as follows. Define hk = ϕ(r − a)/(R − a). Then

hk(a) = 0, hk(R) = ϕ, and ||hk||H1 ≤ C|ϕ|. By the same method used to prove

the inf-sup condition (2.11.57) there exists a function fk ∈ [H1
0 ([a,R];C)]2 such that

(f 1
k )r + 1

r
f 1

k + ik
r
f 2

k = −((h1
k)r + 1

r
h1

k + ik
r
h2

k) and ||fk||H1 ≤ C||(h1
k)r + 1

r
h1

k + ik
r
h2

k||L2 ≤

C|ϕ|. The function gk := hk + fk has the desired properties.) Define uk = vk − gk.

Then problem (2.11.73) is equivalent to: Find uk ∈ Zk
0 such that

dk
2(uk,wk) + Ck

g

∫ R

a

{u1
kw

1
k + u2

kw
2
k} dr

= F (wk, 0, 0)− dk
2(gk,wk)− Ck

g

∫ R

a

{g1
kw

1
k + g2

kw
2
k} dr (2.11.74)

for all wk ∈ Zk
0 . By the G̊arding inequality (2.11.68)(ii) and the Lax-Milgram

Theorem, there exists a unique uk ∈ Zk
0 satisfying (2.11.74). This determines vk =

uk + gk. By substituting wk = uk into (2.11.74) and using (2.11.68)(ii) we obtain

the estimate

||vk||H1 ≤ C(||F (·, 0, 0)||+ |ϕ|) ≤ C ′(||F (·, 0, 0)||+ ||F (0, 0, ·)||). (2.11.75)
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Set tk = 0 in (2.11.70) to obtain the problem: Find rk ∈ C2 such that

dk
1(rk,qk) +Ck

g (r1
kq

1
k + r2

kq
2
k) = F (wk,qk, 0)− dk

2(vk,wk)−Ck
g

∫ R

a

{v1
kw

1
k + v2

kw
2
k} dr

(2.11.76)

for all (wk,qk, 0) ∈ Zk
2 . Note that, given qk ∈ C2, the right-hand side of (2.11.76) is

independent of our choice of wk by (2.11.73). Substitute wk = qk(r−a)/(R−a) =:

hk into (2.11.76) to obtain the problem: Find rk ∈ C2 such that

dk
1(rk,qk) + Ck

g (r1
kq

1
k + r2

kq
2
k) = F (hk,qk, 0)− dk

2(vk,hk)− Ck
g

∫ R

a

{v1
kh

1
k + v2

kh
2
k} dr

(2.11.77)

for all qk ∈ C2. By the G̊arding inequality (2.11.68)(i), the bilinear form on the the

left-hand side of (2.11.77) is coercive (positive definite), and so there exists a unique

solution rk ∈ C2. Moreover, (2.11.76), (2.11.68)(ii), and (2.11.75) imply that

|rk| ≤ C(||F (·, ·, 0)||+ ||F (·, 0, 0)||+ ||F (0, 0, ·)||) ≤ C ′||F ||. (2.11.78)

It follows from (2.11.71) and (2.11.76) that (vk, rk) satisfies (2.11.70).

If we have two solutions (v1
k, r

1
k), (v2

k, r
2
k) of (2.11.70), then the difference

(v1
k − v2

k, r
1
k − r2

k) satisfies (2.11.70) with F = 0. By substituting into (2.11.70)

(wk,qk) = (0, 0), then (qk, tk) = 0, and then tk = 0, as above, we see that (v1
k −

v2
k, r

1
k − r2

k) = (0, 0), and so (2.11.70) has a unique solution.

Finally, the continuous dependence of (vk, rk) on the data F follows from the

estimates (2.11.75) and (2.11.78).
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2.12 Numerical Analysis of the Spectrum

Galerkin Approximation of Polynomial Eigenvalue Problems

In this section we summarize the spectral approximation theory for polynomial

eigenvalue problems of the form

Find λ ∈ C and 0 6= u ∈ V1 such that for all v ∈ V2

A(u, v) = λNBN(u, v) + λN−1BN−1(u, v) + . . .+ λB1(u, v) +B0(u, v) (2.12.1)

where V1 and V2 are Hilbert spaces and A, B0, . . . , BN are bilinear forms. We

apply this theory in the following sections to design a convergent numerical scheme

for computing the eigenvalues of (2.11.51). The spectral approximation theory of

standard eigenvalue problems (the case N = 1 in (2.12.1)), which was developed

in the 1970s, is described in Babuška and Osborn (1991). Kolata (1976) showed

how to extend this theory to polynomial eigenvalue problems. We give a slightly

different presentation; we weaken one of the hypotheses (see the paragraph preceding

Theorem (2.12.15)) and simplify some of the arguments. We explain the main

difference before going into details. It is possible to write eigenvalue problem (2.12.1)

as an operator eigenvalue problem of the form

λNTNu+ λN−1TN−1u+ . . .+ λT1u+ T0u+ u = 0, (2.12.2)

where Tj : V1 → V2 are linear operators. To study the spectrum of (2.12.1), or

equivalently (2.12.2), we must reduce the problem to a standard eigenvalue problem

of the form

a(u, v) = λb(u, v) for all v, (2.12.3)
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or equivalently an operator eigenvalue problem of the form

Tu = λu. (2.12.4)

Ultimately we must arrive at a problem of the form (2.12.4) so that we can apply

the Spectral Theorem for Compact Operators. There are two ways to arrive at

(2.12.4) from (2.12.1). The first choice, used by Kolata (1976), is to reduce equation

(2.12.1) to another bilinear form equation of the form (2.12.3), and then derive an

operator equation of the form (2.12.4). The second choice, used here, is to write

(2.12.1) as an operator equation of the form (2.12.2), and then reduce this to another

operator equation of the form (2.12.4). We believe that the second choice simplifies

the presentation.

Let V1, V2, and W be complex Hilbert spaces with norms || · ||V1 , || · ||V2 , and

|| · ||W , and with V1 compactly embedded in W . Let A : V1×V2 → C, B0 : W ×V2 →

C, . . . , BN : W × V2 → C be continuous bilinear forms satisfying

|A(u, v)| ≤ C||u||V1||v||V2 for all u ∈ V1, v ∈ V2,

|Bj(u, v)| ≤ Cj||u||W ||v||V2 for all u ∈ W, v ∈ V2, for j ∈ {0 . . . N}.
(2.12.5)

We assume that A satisfies the inf-sup conditions

inf

u ∈ V1

||u||V1 = 1

sup

v ∈ V2

||v||V2 = 1

|A(u, v)| = α > 0, (2.12.6)

v = 0 if A(u, v) = 0 for all u ∈ V1. (2.12.7)

Under the assumption that A is continuous, it can be shown that (2.12.6) and
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(2.12.7) hold if and only if

inf

v ∈ V2

||v||V2 = 1

sup

u ∈ V1

||u||V1 = 1

|A(u, v)| = α > 0, (2.12.8)

u = 0 if A(u, v) = 0 for all v ∈ V2. (2.12.9)

See Babuška and Osborn (1991, p. 692). We consider the spectral approximation of

the following problem:

The Continuous Problem. Find λ ∈ C and 0 6= u ∈ V1 such that for all v ∈ V2

A(u, v) = λNBN(u, v) + λN−1BN−1(u, v) + . . .+ λB1(u, v) +B0(u, v). (2.12.10)

If (λ, u) satisfies (2.12.10), then we call λ an eigenvalue and u an eigenvector of

(2.12.10).

The continuity and inf-sup conditions (2.12.5)–(2.12.7) imply that there exists

unique bounded linear operators T0 : V1 → V1, . . . , TN : V1 → V1 satisfying

A(Tju, v) = −Bj(u, v) for all v ∈ V2, for j ∈ {0, . . . , N}.

See Ern & Guermond (2004, p. 85, Theorem 2.6). Moreover, T0, . . . , TN are

compact: Let {un} be a bounded sequence in V1. Then it has a subsequence {unk
}

converging strongly in W by the compact embedding V1 ⊂⊂ W . For each j ∈

{0, . . . , N}, the inf-sup conditions imply that

||Tju||V1 ≤
Cj

α
||u||W .

Therefore

||Tj(unk
− unl

)||V1 ≤
Cj

α
||unk

− unl
||W → 0
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and {Tjunk
} is a Cauchy sequence in V1. This shows that Tj is compact.

For λ ∈ C define T (λ) : V1 → V1 by

T (λ) := λNTN + . . .+ λT1 + T0 + I, (2.12.11)

where I : V1 → V1 is the identity operator on V1.

Lemma 2.12.12 (An equivalent formulation of the continuous eigenvalue

problem). The pair (λ, u) ∈ C× (V1 r 0) satisfies problem (2.12.10) if and only if

it is an eigenpair of T , i.e.,

T (λ)u ≡ λNTNu+ . . .+ λT1u+ T0u+ u = 0. (2.12.13)

Proof. First we assume that (λ, u) satisfies (2.12.13). Then for all v ∈ V2

0 = A(λNTnu+ . . .+ λT1u+ T0u+ u, v)

= −λNBN(u, v)− . . .− λB1(u, v)−B0(u, v) + A(u, v),

which implies that (λ, u) satisfies (2.12.10).

Now assume that (λ, u) satisfies (2.12.10). Then for all v ∈ V2

0 = −λNBN(u, v)− . . .− λB1(u, v)−B0(u, v) + A(u, v)

= λNA(TNu, v) + . . .+ λA(T1u, v) + A(T0u, v) + A(u, v)

= A(λNTNu+ . . .+ λT1u+ T0u+ u, v),

which implies that (λ, u) satisfies (2.12.13) by (2.12.9).

We make the additional hypothesis that

There exists a ξ ∈ C such that T (ξ) : V1 → V1 has a bounded inverse. (2.12.14)
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Note that hypothesis (2.12.14) holds if and only if there exists a ξ ∈ C that is not

an eigenvalue of (2.12.10). Kolata (1976) makes the stronger hypothesis that T (0)

has a bounded inverse, which is true if and only if −1 is not an eigenvalue of T0.

Theorem 2.12.15 (Characterization of the Spectrum). Assume that (2.12.5)–

(2.12.7) and (2.12.14) hold. Then problem (2.12.10) has a countable set of eigen-

values with infinity as its only possible accumulation point. If hypothesis (2.12.14)

does not hold, then every point in the complex plane is an eigenvalue.

Proof. By Lemma (2.12.12) the set of eigenvalues of (2.12.10) equals the set of

eigenvalues of (2.12.13), which is characterized by Theorem (2.10.25). This proves

Theorem (2.12.15).

We give a second, longer proof. Instead of using Theorem (2.10.25) we will

go through the steps of its proof explicitly because we will need to refer to one of

these steps in the proof of Theorem (2.12.27). By hypothesis (2.12.14), there exists

a ξ ∈ C such that T (ξ) has a bounded inverse. Then

T (λ+ ξ) = (λ+ ξ)NTN + . . .+ (λ+ ξ)T1 + T0 + I = λNT ′N + . . .+ λT ′1 + T (ξ),

for some compact operators T ′1, . . . , T ′N . Lemma (2.12.12) implies that (λ, u) is an

eigenpair of (2.12.10) if and only if T (λ)u = 0. Define µ = λ− ξ. Then

T (λ)u = 0 ⇐⇒ T (µ+ ξ)u = 0

⇐⇒ (µNT ′N + . . .+ µT ′1 + T (ξ))u = 0

⇐⇒ (µNT (ξ)−1T ′N + . . .+ µT (ξ)−1T ′1 + I)u = 0.

(2.12.16)
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Define (u1, u2, . . . , uN) := (u, µu, . . . , µN−1u). Then (2.12.16) holds if and only if

Bu :=




−T (ξ)−1T ′1 · · · · · · −T (ξ)−1T ′N

I 0

. . .
...

I 0







u1

u2

...

uN




=
1

µ




u1

u2

...

uN




. (2.12.17)

The operator B on the left-hand side of equation (2.12.17) is not compact since the

identity operator is not compact on infinite dimensional spaces, but BN is compact,

and so B has a countable set of eigenvalues with zero as its only possible accu-

mulation point. See Dunford & Schwartz (1957, Section VII.4, Theorem 6). This

completes the proof.

Let V1,h and V2,h be finite-dimensional subspaces of V1 and V2 parametrized

by h > 0. We assume that A satisfies the discrete inf-sup conditions

inf

u ∈ V1,h

||u||V1 = 1

sup

v ∈ V2,h

||v||V2 = 1

|A(u, v)| = α(h) > 0, (2.12.18)

v = 0 if A(u, v) = 0 for all u ∈ V1,h. (2.12.19)

We make the approximability assumption that

lim
h→0

α(h)−1 inf
χ∈V1,h

||u− χ||V1 = 0 for all u ∈ V1. (2.12.20)

The Discrete Problem. Find λ ∈ C and 0 6= uh ∈ V1,h such that for all v ∈ V2,h

A(uh, v) = λNBN(uh, v)+λ
N−1BN−1(uh, v)+ . . .+λB1(uh, v)+B0(uh, v). (2.12.21)
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We approximate the eigenvalues of the continuous problem (2.12.10) by the

eigenvalues of the discrete problem (2.12.21).

The continuity and inf-sup conditions (2.12.5), (2.12.18), and (2.12.19) imply

that there exists unique bounded linear operators T0,h : V1 → V1,h, . . . , TN,h : V1 →

V1,h satisfying

A(Tj,hu, v) = −Bj(u, v) for all v ∈ V2,h, for j ∈ {0, . . . , N}.

Note that Tj,h are finite rank operators and so are compact. Let Ph : V1 → V1,h be

the projection defined by

A(Phu, v) = A(u, v) for all v ∈ V2,h.

(Ph is well-defined by Babuška-Brezzi Theorem.) Then for all j ∈ {0, . . . , N},

Tj,h = PhTj since

A(Tj,hu− PhTju, v) = −Bj(u, v)− A(Tju, v) = 0 (2.12.22)

for all u ∈ V1 and v ∈ V2,h. It is well-known that (2.12.5)1 and (2.12.18) imply the

quasi-optimality estimate

||u− Phu||V1 ≤
(

1 +
C

α(h)

)
inf

χ∈V1,h

||u− χ||V1 . (2.12.23)

(This is Céa’s Lemma. See Ern & Guermond (2004, Lemma 2.28).) Therefore

Ph → I pointwise by (2.12.20) and (2.12.23). Thus, for all j ∈ {0, . . . , N}, Tj,h =

PhTj → Tj in norm since Tj are compact.

For λ ∈ C define Th(λ) : V1 → V1 by

Th(λ) := λNTN,h + . . .+ λT1,h + T0,h + I. (2.12.24)
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Lemma 2.12.25 (An equivalent formulation of the discrete eigenvalue

problem). The pair (λ, uh) ∈ C × (V1 r 0) satisfies problem (2.12.21) if and only

if it is an eigenpair of the operator Th : V1 → V1,h, i.e.,

Th(λ)uh ≡ λNTN,huh + . . .+ λT1,huh + T0,huh + uh = 0. (2.12.26)

Proof. Note that if (λ, uh) is an eigenpair of Th, then uh ∈ V1,h since

uh = −λNTN,huh − . . .− λT1,huh − T0,huh.

The rest of the proof is analogous to the proof of Lemma (2.12.12).

Observe that Th(λ) → T (λ) in norm for all λ since Tj,h → Tj in norm for

j ∈ {0, . . . , N}. Therefore, for h sufficiently small, Th(ξ) has a bounded inverse

(because T (ξ) has a bounded inverse), and Th(ξ)
−1 → T (ξ)−1 in norm. See Kato

(1980, p. 196, Theorem 1.16).

Theorem 2.12.27 (Convergence of the Eigenvalues). Assume that (2.12.5)–

(2.12.7), (2.12.14), (2.12.18)–(2.12.20) hold. Then the eigenvalues of problem (2.12.21)

converge to the eigenvalues of problem (2.12.10) as h→ 0.

Proof. Recall from the proof of Theorem (2.12.15) that (λ, u) is an eigenpair of

(2.12.10) if and only if (1/µ, u) is an eigenpair of the operator B, where µ = λ− ξ.

The same method as in the proof of Theorem (2.12.15) shows that (λ, uh) is an
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eigenpair of (2.12.21) if and only if (1/µ, uh) is an eigenpair of the operator

Bh =




−Th(ξ)
−1T ′1,h · · · · · · −Th(ξ)

−1T ′N,h

I 0

. . .
...

I 0




. (2.12.28)

But Bh → B in norm and so the eigenvalues of Bh converge to the eigenvalues

of B. (Recall that if noncompact operators Lh → L in norm, then the isolated

points of the spectrum of Lh converge. See Descloux, Nassif, and Rappaz (1978).

In our case Lh = Bh are polynomially compact and so every point of the spectrum

is isolated.)

Rate of convergence estimates. Kolata (1976) applied the spectral theory for

compact operators from Osborn (1975) to obtain rate of convergence estimates for

polynomial eigenvalue problems. We do no repeat these estimates here, but will

specialize them to problem (2.11.51) in a remark following Theorem (2.12.69).

Finite Element Discretization and Discrete Inf-Sup Conditions

In this section we discretize the eigenvalue problem (2.11.51) using finite ele-

ments and prove discrete inf-sup conditions for the bilinear forms bk and ak
0.

Let a = r0 < r1 < . . . < rN = R be a uniform partition of [a,R] with

R − a = Nh, so that rn = a + nh, n ∈ {0, . . . , N}. Let V k
1,h, V

k
2,h, and Πk

h be the
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finite dimensional subspaces of V k
1 , V k

2 , and Πk defined by

V k
1,h :=

{
(vk, rk) ∈ V k

1 : for j ∈ {1, 2}, vj
k is continuous , vj

k|[rn,rn+1] is quadratic
}
,

V k
2,h :=

{
(wk,qk, tk) ∈ V k

2 : for j ∈ {1, 2}, wj
k is continuous , wj

k|[rn,rn+1] is quadratic
}
,

Πk
h :=

{
pk ∈ Πk : pk is continuous , pk|[rn,rn+1] is linear

}
,

(2.12.29)

for all k ∈ Z. We will approximate the eigenpairs (λ, (vk, rk, pk)) ∈ C× V k
1 ×Πk of

problem (2.11.51) by the eigenpairs (λ, (vh
k , r

h
k, p

h
k)) ∈ C× V k

1,h×Πk
h of the following

problem:

The discrete eigenvalue problem. For each k ∈ Z, find λ ∈ C and 0 6=

(vh
k , r

h
k, p

h
k) ∈ V k

1,h × Πk
h such that for all (wk,qk, tk) ∈ V k

2,h, qk ∈ Πk
h

λ2ak
2(r

h
k,qk) + λak

1((v
h
k , r

h
k), (wk,qk, tk)) + ak

0((v
h
k , r

h
k), (wk,qk, tk)) + bk(wk, p

h
k) = 0,

bk(vh
k , qk) = 0.

(2.12.30)

Define

Vh =
{
v ∈ [H1

0 ([a,R];C)]2 : for j ∈ {1, 2}, vj is continuous , vj|[rn,rn+1] is quadratic
}
.

(2.12.31)

We prove two discrete inf-sup theorems for bk, Theorems (2.12.32) and (2.12.47).

Theorem (2.12.32) is a weak version of Theorem (2.12.47) because it requires h to

be sufficiently small. We remove this condition in Theorem (2.12.47).

Discrete inf-sup conditions of the form (2.12.47) for the Fourier-finite ele-

ment discretization of the Stokes equations in axisymmetric domains have been

proved by Belhachmi et al. (2006a, 2006b), among others. In these papers general
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3-dimensional axisymmetric domains are considered. The Fourier decomposition re-

duces the problem to a PDE on a 2-dimensional domain, which is discretized using

finite elements. The discrete inf-sup condition is proved by Belhachmi et al. (2006a)

for the P1-iso-P2/P1 element for k = 0 and by Belhachmi et al. (2006b) for the

P2-bubble/P1-discontinuous element for all k. The inf-sup condition (2.12.47) for

the Taylor-Hood P2/P1 element can be proved using the same techniques. Since

we are only interested in a 2-dimensional annular domain, however, there is a more

elementary proof, which we present here and which does not require the use of

weighted Clément interpolant operators and other technical tools used by Belhachmi

et al. (2006a, 2006b), although the basic idea is the same. The proof for the case

k = 0 is analogous to the standard proof of the discrete inf-sup condition for the

Taylor-Hood element.

Theorem 2.12.32 (bk satisfies a discrete inf-sup condition). Let k ∈ Z, h > 0.

Let bk be the bilinear form defined in equation (2.11.55). Then for h sufficiently small

(h ≤ 1
2|k| suffices)

inf
pk∈Πk

h

sup
wk∈Vh

|bk(wk, pk)|
||pk||Πk ||wk||H1

= β > 0, (2.12.33)

where β is independent of k and h. If k = 0 there is no restriction on h.

We will need the following lemma.

Lemma 2.12.34. Let k ∈ Z and pk ∈ Πk
h. Then

sup
wk∈Vh

|bk(wk, pk)|
||wk||H1

≥ Ch||∂rpk||Πk , (2.12.35)

where C is independent of k and h.
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Proof. Let wk ∈ Vh. Since pk is continuous and piecewise linear we can integrate

by parts in the expression for bk to obtain

bk(wk, pk) = −ρ
∫ R

a

pk[
1
r
(rw1

k)r − ik
r
w2

k] rdr = ρ

∫ R

a

∂rpkw1
k rdr + ρik

∫ R

a

pkw2
k dr

= ρ

N−1∑
n=0

∫ rn+1

rn

∂rpkw1
k rdr + ρik

∫ R

a

pkw2
k dr.

(2.12.36)

We define a function vk ∈ Vh as follows. Let v2
k(r) ≡ 0 and let v1

k(r) be the

continuous piecewise quadratic function that is uniquely determined by

v1
k =





0 at vertices rn, for n ∈ {0, . . . , N}

h ∂rpk at midpoints rn+rn+1

2
, for n ∈ {0, . . . , N − 1}.

(2.12.37)

We can use Simpson’s quadrature rule, which is exact for cubic polynomials, to write

(2.12.36) as

bk(vk, pk) = ρ

N−1∑
n=0

4h

6
∂rpk

(
rn+rn+1

2

)
v1

k

(
rn+rn+1

2

)
rn+rn+1

2

= ρ

N−1∑
n=0

2h2

3

∣∣∂rpk

(
rn+rn+1

2

)∣∣2 rn+rn+1

2

(2.12.38)

by the definition of v1
k. Since pk is piecewise linear

∫ rn+1

rn

|∂rpk|2 rdr =
∣∣∂rpk

(
rn+rn+1

2

)∣∣2
∫ rn+1

rn

r dr = h
∣∣∂rpk

(
rn+rn+1

2

)∣∣2 rn+rn+1

2
.

(2.12.39)

Combining (2.12.38) and (2.12.39) we find that

bk(vk, pk) =
2ρh

3

∫ R

a

|∂rpk|2 rdr =
2ρh

3
||∂rpk||2Πk . (2.12.40)

It is easy but tedious to check that

||v1
k||H1(a,R) ≤ C ||∂rpk||Πk , (2.12.41)
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where C is independent of k and h. Therefore, by (2.12.40) and (2.12.41),

sup
wk∈Vh

|bk(wk, pk)|
||wk||H1

≥ |bk(vk, pk)|
||vk||H1

≥ 2ρh

3C
||∂rpk||Πk . (2.12.42)

Proof of Theorem (2.12.32). Recall that, given pk ∈ Πk, the proof of the con-

tinuous inf-sup condition (2.11.57) relied upon the construction of functions uk ∈

[H1
0 ([a,R];C)]2 satisfying

(ru1
k)r + iku2

k = pkr, ||uk||H1 ≤ C||pk||Πk . (2.12.43)

These functions are not piecewise quadratic, however, and so we cannot prove the

discrete inf-sup condition in the same way. Instead we approximate uk by its con-

tinuous piecewise linear Lagrange interpolant Ihuk. Let us recall some properties of

the Lagrange interpolant Ih. For all f ∈ H1(a,R)

||Ihf ||H1(a,R) ≤ C||f ||H1(a,R)

||Ihf − f ||L2(a,R) ≤ Ch||f ||H1(a,R).

(2.12.44)

See, for example, Ern & Guermond (2004, pp. 11-12, Propositions 1.11, 1.12). Then

for all pk ∈ Πk

sup
wk∈Vh

|bk(wk, pk)|
||wk||H1

≥ |bk(Ihuk, pk)|
||Ihuk||H1

≥ |bk(Ihuk, pk)|
C||uk||H1

(by (2.12.44))

=
|bk(uk, pk) + bk(Ihuk − uk, pk)|

C||uk||H1

≥ |bk(uk, pk)|
C||uk||H1

− |bk(Ihuk − uk, pk)|
C||uk||H1

≥ c ||pk||Πk − |bk(Ihuk − uk, pk)|
C||uk||H1

(by (2.12.43)).

(2.12.45)
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Now we bound the last term on the right-hand side of (2.12.45).

|bk(Ihuk − uk, pk)| =
∣∣∣∣ρ

∫ R

a

{
pk[r(Ihu1

k − u1
k)]r − ikpk(Ihu2

k − u2
k)

}
dr

∣∣∣∣

=

∣∣∣∣ρ
∫ R

a

{
−∂rpk[r(Ihu1

k − u1
k)]− ikpk(Ihu2

k − u2
k)

}
dr

∣∣∣∣

≤ ρR||∂rpk||L2||Ihu
1
k − u1

k||L2 + ρ|k| ||pk||L2||Ihu
2
k − u2

k||L2

≤ Ch||∂rpk||Πk ||u1
k||H1 + C ′|k|h ||pk||Πk ||u2

k||H1 (by (2.12.44))

≤ C

(
sup

wk∈Vh

|bk(wk, pk)|
||wk||H1

+ |k|h ||pk||Πk

)
||uk||H1

(2.12.46)

by Lemma (2.12.34). By substituting for |bk(Ihuk − uk, pk)| from (2.12.46) into

(2.12.45) we obtain

sup
wk∈Vh

|bk(wk, pk)|
||wk||H1

≥ C(1− |k|h)||pk||Πk for all pk ∈ Πk
h.

For h ≤ 1
2|k| , C(1− |k|h) ≥ C/2 =: β > 0. This completes the proof.

Theorem 2.12.47 (bk satisfies a discrete inf-sup condition). Let k ∈ Z, h > 0.

Let bk be the bilinear form defined in equation (2.11.55). Then

inf
pk∈Πk

h

sup
wk∈Vh

|bk(wk, pk)|
||pk||Πk ||wk||H1

= βk > 0, (2.12.48)

where βk is independent of h and is uniformly bounded from below by a positive

constant β.

Proof. For the case k = 0, Theorem (2.12.47) is equivalent to Theorem (2.12.32),

which we have already proved. Now we consider the case k 6= 0. Decompose the

bilinear form bk into two bilinear forms bk1 and bk2:

bk((w1
k, w

2
k), pk) = bk1(w

1
k, pk) + bk2(w

2
k, pk) = −ρ

∫ R

a

pk(rw1
k)r dr + ikρ

∫ R

a

pkw2
k dr.

(2.12.49)
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We will prove inf-sup conditions for the bilinear forms bk1 and bk2 and then combine

the results to obtain the inf-sup condition for the bilinear form bk. Define

Π̃ = {p̃ : [a,R] → C : p̃ is constant} . (2.12.50)

Each pk ∈ Πk
h can be decomposed as pk = p0 + p̃, where

p̃ =

∫ R

a
pk rdr∫ R

a
r dr

∈ Π̃, p0 = pk − p̃ ∈ Π0
h. (2.12.51)

Therefore Πk
h = Π0

h

⊕
Π̃. Moreover, Π0

h is orthogonal to Π̃ with respect to the

weighted inner product 〈·, ·〉L2([a,R],rdr).

Lemma 2.12.52 (bk1 satisfies an inf-sup condition). Let 0 6= k ∈ Z, h > 0. Let

bk1 be the bilinear form defined in equation (2.12.49). Then

inf
p0∈Π0

h

sup
(w1,0)∈Vh

|bk1(w1, p0)|
||p0||Π0||w1||H1

= β1 > 0, (2.12.53)

where β1 is independent of h and k.

Proof. This lemma is just a restatement of Theorem (2.12.47) for the case k = 0,

which we have already proved.

Lemma 2.12.54 (bk2 satisfies an inf-sup condition). Let 0 6= k ∈ Z, h > 0. Let

bk2 be the bilinear form defined in equation (2.12.49). Then

inf
p̃∈Π̃

sup
(0,w2)∈Vh

|bk2(w2, p̃)|
||p̃||Πk ||w2||H1

= |k|β2 > 0, (2.12.55)

where β2 is independent of h and k.

Proof. Let p̃ ∈ Π̃. Define v2
k(r) = − i

k
p̃ ψh(r), where ψh(r) is a continuous piecewise

linear function that equals 1 on a (more or less) fixed part of the interval [a,R]. To
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be precise, let bxc denote the largest integer that is less than or equal to x and let

dxe denote the smallest integer that is greater than or equal to x. Then we define

the continuous piecewise linear function ψh(r) by

ψh(r) :=





1 in the interval hbR−a
3h
c ≤ r ≤ hd2(R−a)

3h
e

0 at the endpoints r = a,R

is linear in the intervals a ≤ r ≤ hbR−a
3h
c, hd2(R−a)

3h
e ≤ r ≤ R.

Therefore

bk2(v
2
k, p̃) = ρ|p̃|2

∫ R

a

ψh(r) dr ≥ ρ|p̃|2(R− a)/3 =
2(R− a)ρ

3(R2 − a2)
||p̃||2Πk . (2.12.56)

It is easy to check that

||v2
k||H1 ≤ C

|k| ||p̃||Πk , (2.12.57)

where C is independent of k. By combining (2.12.56) and (2.12.57) we complete the

proof:

sup
(0,w2)∈Vh

|bk2(w2, p̃)|
||w2||H1

≥ |bk2(v2
k, p̃)|

||v2
k||H1

≥ |k|β2||p̃||Πk for all p̃ ∈ Π̃.

Final step of the proof of Theorem (2.12.47). Let pk ∈ Πk
h. Decompose

pk = p0 + p̃, where p0 ∈ Π0
h and p̃ ∈ Π̃ are defined in equation (2.12.51). By the

inf-sup conditions (2.12.52) and (2.12.54) there exists (v1, v2) ∈ Vh satisfying

bk1(v
1, p0) = ||p0||2Πk , ||v1||H1 ≤ 1

β1
||p0||Πk ,

bk2(v
2, p̃) = ||p̃||2Πk , ||v2||H1 ≤ 1

|k|β2
||p̃||Πk .

(2.12.58)
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(The existence of v1 is shown as follows. By Lemma (2.12.52)

sup

(w1, 0) ∈ Vh

||w1||H1 = 1

|bk1(w1, p0)| ≥ β1||p0||Πk .

The supremum is clearly obtained. Let (w, 0) ∈ Vh be a maximizing function. Then

v1 := w||p0||2Πk/b(w, p0) has the desired properties. The existence of v2 is shown

similarly.) Let η > 0 be a constant that is to be determined. Then

bk((ηv1, v2), pk) = bk1(ηv
1, pk) + bk2(v

2, pk)

= bk1(ηv
1, p0) + bk1(ηv

1, p̃) + bk2(v
2, p0) + bk2(v

2, p̃)

= η||p0||2Πk + bk2(v
2, p0) + ||p̃||2Πk .

(Note that bk1(ηv
1, p̃) = 0 since p̃ is constant and v1(a) = v1(R) = 0.) Therefore

|bk((ηv1, v2), pk)| ≥ η||p0||2Πk + ||p̃||2Πk − ρ|k|
a
||v2||H1||p0||Πk

≥ η||p0||2Πk + ||p̃||2Πk − ρ

aβ2

||p̃||Πk ||p0||Πk

≥ η||p0||2Πk + ||p̃||2Πk − ρ

aβ2

(
ε

2
||p̃||2Πk +

1

2ε
||p0||2Πk

)

=

(
η − ρ

2aβ2ε

)
||p0||2Πk +

(
1− ρε

2aβ2

)
||p̃||2Πk .

Choose ε = aβ2

ρ
and η = 1

2
+ ρ

2aβ2ε
= 1

2
+ ρ2

2a2β2
2
. Then we obtain the bound

|bk((ηv1, v2), pk)| ≥ 1

2
(||p0||2Πk + ||p̃||2Πk) = 1

2
||pk||2Πk (2.12.59)

since p0 is orthogonal to p̃ in Πk = L2([a,R]; rdr). Finally, we need to estimate

||(ηv1, v2)||H1 .

||(ηv1, v2)||2H1 = ||ηv1||2H1 + ||v2||2H1 ≤ η2

β2
1

||p0||2Πk +
1

|k|2β2
2

||p̃||2Πk

≤ max

{
η2

β2
1

,
1

|k|2β2
2

}
(||p0||2Πk + ||p̃||2Πk) = max

{
η2

β2
1

,
1

|k|2β2
2

}
||pk||2Πk .

(2.12.60)
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Define

βk =
1

2 max
{

η
β1
, 1
|k|β2

} . (2.12.61)

Combining (2.12.59)–(2.12.61) we obtain the desired result: for k 6= 0, for all pk ∈ Πk
h

sup
wk∈Vh

|bk(wk, pk)|
||wk||H1

≥ |bk((ηv1, v2), pk)|
||(ηv1, v2)||H1

= βk||pk||Πk .

Observe that for |k| large enough

βk =
β1

2η
=: β,

which is independent of k.

It follows immediately from Theorem (2.12.47) that

inf
pk∈Πk

h

sup
(wk,qk,tk)∈V k

2,h

|bk(wk, pk)|
||pk||Πk ||(wk,qk, tk)||V k

2,h

= βk > 0. (2.12.62)

For k ∈ Z, define

Zk
1,h := {(vk, rk) ∈ V k

1,h : bk(vk, pk) = 0 for all pk ∈ Πk
h},

Zk
2,h := {(wk,qk, tk) ∈ V k

2,h : bk(wk, pk) = 0 for all pk ∈ Πk
h}.

Theorem 2.12.63 (ak
0 satisfies a discrete G̊arding-type inf-sup condition).

Let k ∈ Z. The bilinear form âk
0 defined in Theorem (2.11.64) satisfies the discrete

inf-sup conditions

inf

(vk, rk) ∈ Zk
1,h

||(vk, rk)||V k
1

= 1

sup

(wk,qk, tk) ∈ Zk
2,h

||(wk,qk, tk)||V k
2

= 1

|âk
0((vk, rk), (wk,qk, tk))| = α > 0, (2.12.64)

(wk,qk, tk) = 0 if âk
0((vk, rk), (wk,qk, tk)) = 0 for all (vk, rk) ∈ Zk

1,h. (2.12.65)
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Proof. This is similar to the proof of Theorem (2.11.64) and is left as an exercise.

(In fact the proof is simpler. We just need to check uniqueness of solutions to the

finite-dimensional version of equation (2.11.70).)

Convergence of the Numerical Method

In this section we apply the abstract spectral approximation theory to eigen-

value problem (2.11.51) and its discretization (2.12.30). We prove another spectral

theorem of the form (2.10.23) and show that the finite element approximation of

the eigenvalues converges.

Define the bilinear form

ck((vk, rk, pk), (wk,qk, tk, qk)) := âk
0((vk, rk), (wk,qk, tk)) + bk(wk, pk) + bk(vk, qk),

(2.12.66)

where âk
0 and bk were defined in equations (2.11.65) and (2.11.55). Let Ck

g be the

constant introduced in Theorem (2.11.64). Then the weak formulations (2.11.51)

and (2.12.30) can be written in the form:

Equivalent formulation of the continuous eigenvalue problem (2.11.51).

For each k ∈ Z, find λ ∈ C and 0 6= (vk, rk, pk) ∈ V k
1 × Πk such that for all

(wk,qk, tk, qk) ∈ V k
2 × Πk

ck((vk, rk, pk), (wk,qk, tk, qk)) = −λ2ak
2(rk,qk)− λak

1((vk, rk), (wk,qk, tk))

+ Ck
g

(∫ R

a

{v1
kw

1
k + v2

kw
2
k} dr + r1

kq
1
k + r2

kq
2
k

)
. (2.12.67)
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Equivalent formulation of the discrete eigenvalue problem (2.12.30). For

each k ∈ Z, find λ ∈ C and 0 6= (vh
k , r

h
k, p

h
k) ∈ V k

1,h × Πk
h such that for all

(wk,qk, tk, qk) ∈ V k
2,h × Πk

h.

ck((vh
k , r

h
k, p

h
k), (wk,qk, tk, qk)) = −λ2ak

2(r
h
k,qk)− λak

1((v
h
k , r

h
k), (wk,qk, tk))

+ Ck
g

(∫ R

a

{v1,h
k w1

k + v2,h
k w2

k} dr + r1,h
k q1

k + r2,h
k q2

k

)
(2.12.68)

For each k ∈ Z, we will apply the abstract spectral approximation theory from

section (2.12) to the eigenvalue problem (2.12.67) and its discretization (2.12.68)

with

A = ck, B2 = −ak
2, B1 = −ak

1, B0 = Ck
g

(∫ R

a

{v1
kw

1
k + v2

kw
2
k} dr + r1

kq
1
k + r2

kq
2
k

)

It is well-known that the continuous and discrete inf-sup conditions for ck follow from

those for âk
0 and bk, which we proved in Theorems (2.11.56), (2.11.64), (2.12.47) and

(2.12.63). See Ern & Guermond (2004, p. 101, Proposition 2.36) or Brezzi & Fortin

(1991). It follows from Theorem (2.10.5) that not every complex number is an

eigenvalue of (2.12.67). Therefore hypotheses (2.12.6), (2.12.7), (2.12.14), (2.12.18),

and (2.12.19) of Theorem (2.12.27) are satisfied and we have proved

Theorem 2.12.69 (Characterization of the spectrum of (2.12.67) and con-

vergence of the finite element approximation of the eigenvalues.). The

problem (2.12.67) has a countable set of eigenvalues with infinity as its only possible

accumulation point. The eigenvalues of problem (2.12.68) converge to the eigenval-

ues of problem (2.12.67) as h→ 0.
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Characterization of the spectrum for viscoelastic strings. Theorem (2.12.69)

applies to both the elastic (N◦
ν̇ = 0) and viscoelastic (N◦

ν̇ 6= 0) cases. (Recall that

Theorem (2.10.23) applied onto to the elastic case.) In particular, for N◦
ν̇ 6= 0 and

each k, the spectrum of (2.12.67) is countable. It follows that for N◦
ν̇ 6= 0 the spec-

trum of the original problem (2.9.12) is the countable union of countable sets and

so is countable. This Fourier method does not, however, eliminate the possibility of

a finite accumulation point.

Rate of convergence estimates. Since the eigenfunctions of (2.12.67) are smooth

and we are using P2/P1 elements, applying the results of Osborn (1975) and Kolata

(1976) yields the rate of convergence estimate |λ−λh| ≤ Ch4 for simple eigenvalues.

2.13 Computation of the Spectrum

The eigenvalues of the discrete problem (2.12.30) were computed using MAT-

LAB. In this section we present our results and discuss some of the computational

issues.

Constitutive functions and material constants. Up until now we have been

working with a broad class of constitutive functions. To compute the spectrum we

must choose a constitutive function N̂ . We choose

N̂(ν) = E~(ν − 1), (2.13.1)

where E is the modulus of elasticity and ~ is the thickness the string. Note that N̂

is linear in the strain variable ν, but not in the displacement r . Equation (2.13.1)
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is sometimes referred to as the generalized Hooke’s law. This constitutive relation

does not penalize compression. Since we only consider the linearization of N̂ about

a stretched state ν = R, however, we do not need an accurate model of the tension

for materials under compression.

In addition to choosing a constitutive function we must also choose values

for all the numerical constants. These are listed in Table (2.13.1). We chose the

fluid to be water and the deformable body to be either steel or a soft, rubber-like

material. The ratio of the radius of the inner cylinder to the radius of the outer

cylinder is close to the value used by G.I. Taylor in his experiments on the classical

Taylor-Couette problem in the 1920s.

Radius of Rigid Cylinder a 0.75 m

Radius of Deformable Cylinder R 1.01 m

Density of Water ρ 1000 kg/m3

Dynamic Viscosity of Water µ̃ 1.002× 103 kg/ms

Thickness of Deformable Cylinder ~ 2π/1000 m

Density of Steel %s 7850 kg/m3

Density of Rubber %r 920 kg/m3

Modulus of Elasticity of Steel Es 207 GPa

Modulus of Elasticity of Rubber Er 0.01 GPa

Table 2.13.1: Values of the numerical constants used for the computation.

Recall that the constant (%A) is the mass density of the string per reference
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length. Since ~ is small we take (%A) := %~.

Results. Figures (2.13.1)–(2.13.3) show plots of the eigenvalues of (2.12.30) mov-

ing around the complex plane as ω is varied. In Section 2.10 we proved that all

the eigenvalues that cross the imaginary axis must cross through the origin, but

we did not prove anything about the way that they crossed. Our numerical results

show that, for the constitutive function and numerical constants given above, the

eigenvalues cross through the origin in complex conjugate pairs, signaling a Takens-

Bogdanov bifurcation. We exhibit convergence rates for the eigenvalues in Figure

(2.13.4).

Eigensolver. By introducing basis functions for the finite dimensional spaces ap-

pearing in equation (2.12.30) we obtain a matrix quadratic eigenvalue problem of the

form λ2C2x +λC1x +C0x = 0, which we solve using the MATLAB function polyeig.

Polyeig first reduces the quadratic eigenvalue problem to a generalized eigenvalue

problem of the form Ay = λBy , where the matrices A and B are twice the dimen-

sion of the matrices C0, C1, and C2. This reduction is done by introducing a new

variable w = λx and by defining yT = (wT ,x T ). Then the generalized eigenvalue

problem is solved using the direct QZ algorithm of Moler & Stewart (1973). The

number of operations is O(M3), where M is the dimension of the matrices A and B.

In our case M is of the order of 250 (for N = 25 mesh points) and the eigenvalues are

returned within less than half a second on a 2.80GHz Intel Pentium 4 with 512MB

of memory (this includes the time to build the matrices).

101



−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−6

−4

−2

0

2

4

6

Re(λ)

Im
(λ

)

Figure 2.13.1: Trajectories of the leading eigenvalues λ for a rubber string, Fourier

modes |k| ∈ {1, 2, 3, 4}, and angular velocities ω ∈ [0, 2.5]. The color of each trajec-

tory changes from blue to red as ω changes from 0 to 2.5. The eigenvalues cross the

imaginary axis in order of Fourier mode: If ωcrit(k) denotes the critical value of ω

for Fourier mode k, then 0 = ωcrit(±1) < ωcrit(±2) < ωcrit(±3) < · · · . The domain

[a,R] of the fluid velocity and pressure was partitioned with N = 25 equally spaced

mesh points.
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Figure 2.13.2: Trajectories of the top 4 eigenvalues λ (sorted by decreasing real part)

for a rubber string, Fourier modes |k| = 2, and angular velocities ω ∈ [0, 2]. The

color of each trajectory changes from blue to red as ω changes from 0 to 2. The blue

region in the 2nd quadrant shows that two eigenvalues start from the same point

when ω = 0. As ω is increased one of these eigenvalues moves toward the origin and

the other moves up and then left. N = 25 mesh points were used.
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Figure 2.13.3: Eigenvalue trajectories for Fourier modes |k| ∈ {1, 2, 3} and angular

velocities ω ∈ [0, 50]. The 10th eigenvalue of each Fourier mode is plotted (where

the eigenvalues are ordered by decreasing real part). The color of each trajectory

changes from blue to red as ω changes from 0 to 50. These results are for a rubber

string. N = 25 mesh points were used.
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Figure 2.13.4: This log-log plot exhibits the fourth order convergence rate of the

first three eigenvalues λ1, λ2, and λ3 for a rubber string, k = 1, and ω = 5. The

true value of each eigenvalue was approximated using N = 100 mesh points.
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The QZ algorithm returns all of the eigenvalues of a given matrix. For larger

problems, such as those arising from the discretization of partial differential equa-

tions on 2- or 3-dimensional domains, an iterative method is needed and not all

the eigenvalues can be computed. Popular iterative methods include the implicitly

restarted Arnoldi method (see Lehoucq et al. (1998)) and inexact inverse iteration

(the inverse power method with updated shifts and inexact linear solves). The

Arnoldi method returns just a few of the eigenvalues of largest magnitude. Thus

to solve stability problems we must first transform the eigenvalue problem so that

the eigenvalues of largest real part are mapped to eigenvalues of largest magnitude.

This can be achieved using the exponential map or a shift-and-invert transforma-

tion. Inexact inverse iteration returns just one eigenvalue, the eigenvalue closest

to a given point. In either case, whether we use the Arnoldi method or inexact

inverse iteration, a large sparse linear system must be solved. Solving the system

with a Krylov subspace method requires an effective preconditioner. The numerical

solution of large scale eigenvalue problems is an active area of research.

Basis for Π0
h. Recall that Π0

h is the space of continuous piecewise linear functions

p(r) on the uniform grid a = r0 < r1 < . . . < rN = R satisfying the zero mean

condition
∫ R

a
p(r)r dr = 0. See (2.11.50) and (2.12.29). Let {ϕ̂i}N

i=0 be the usual hat

functions, which satisfy ϕ̂i(rj) = δij. These do not satisfy the zero mean condition

and so do not form a basis for Π0
h. We modify them as follows. Define

ϕi := ϕ̂i −
∫ R

a
ϕ̂i rdr∫ R

a
rdr

=: ϕ̂i − ci.
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Then ϕi ∈ Π0
h. It is easy to check that {ϕi}N

i=0 is not linearly independent and so not

a basis for Π0
h, but that a basis can be obtained by dropping any one of the functions

ϕi. We drop ϕN to obtain the basis {ϕi}N−1
i=0 . Note that for all i ∈ {0, . . . , N} and

(w0,q0, t0) ∈ V 0
2

b0(w0, ϕi) = b0(w0, ϕ̂i)− cib
0(w0, 1)

= b0(w0, ϕ̂i) + ciρ

∫ R

a

(w1
0r)r dr

= b0(w0, ϕ̂i) + ciρ[w1
0(R)R− w1

0(a)a]

= b0(w0, ϕ̂i)

(2.13.2)

since w1
0(a) = w1

0(R) = 0. Similarly, for all i ∈ {0, . . . , N} and (v0, r0) ∈ V 0
1

b0(v0, ϕi) = b0(v0, ϕ̂i) + ciρ v1
0(R)R. (2.13.3)

Note that v1
0(R) is not necessarily equal to zero a priori. However, r1

0 = 0 and

the weak formulation (2.12.30) enforces the adherence condition v1
0(R) = λr1

0 = 0.

Therefore by (2.13.2) and (2.13.3) we see that the discretization matrices for grad

and div do not change if we use the modified basis {ϕi}N−1
i=0 instead of the original

hat functions {ϕ̂i}N
i=0 (except that we have one less basis function and so one less

column or row in the matrices).

Accuracy check. The accuracy of the code was verified using the following four

methods:

(i) We checked that the Laplacian, divergence, and gradient operators for the fluid

had been discretized correctly by using the discretization matrices to solve the
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eigenvalue problems

−divD(v) = λv in Ω = {x : a < |x | < R},

v = 0 on ∂Ω,

and

λv = −∇p+ ∆v in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

(Note that the second eigenvalue problem is Stokes eigenvalue problem.) We

compared our results to those produced by the commercial software COMSOL

Multiphysics. They were in good agreement.

(ii) Theorem (2.10.21) gives an exact formula for the critical values of ω, ωcrit,

which satisfy λ(ωcrit) = 0. The computed values of λ(ωcrit) are reported in

Table (2.13.2). We see that in the worst case the computed value of λ(ωcrit)

is of the order 10−8.

(iii) In Section 2.10 we showed that the Fourier mode k = 0 has eigenvalue λ = 0

for all ω. The MATLAB program exhibits this property. In fact, for k = 0,

the leading eigenvalue that is returned is exactly equal to zero (to machine

precision).

(iv) For the case k = 0 it is possible to use Bessel functions to reduce the quadratic

eigenvalue problem to a nonlinear scalar equation for λ. This algebraic equa-

tion can then be solved using the MATLAB function fsolve. Table (2.13.3) dis-

plays the eigenvalues computed with the finite element method with N = 100
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steel rubber

k ωcrit computed value of λ(ωcrit) ωcrit computed value of λ(ωcrit)

1 0 5.2828× 10−8 0 1.3604× 10−12

2 185.8218 (0.0009− 7.7706i)× 10−8 1.3450 (−0.0126 + 6.6488i)× 10−11

3 303.4312 (0.8547− 5.6934i)× 10−8 2.1964 (3.6084− 4.3216i)× 10−12

4 415.4623 (0.3408− 5.1650i)× 10−8 3.0075 (−3.9973− 8.1133i)× 10−12

Table 2.13.2: Accuracy check. Critical values of ω (computed using formula

(2.10.19)) tabulated against the computed values of λ(ωcrit). The exact value of

λ(ωcrit) is zero. The eigenvalues were computed with N = 50 mesh points. In fact,

the same order of accuracy can be achieved with only N = 2 mesh points since the

eigenvalue λ = 0 has corresponding eigenvector (vk, rk, pk) = (0, rk, 0) ∈ V k
1 × Πk,

which belongs to the finite-dimensional subspace V k
1,h × Πk

h for all h.
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mesh points against those computed using the Bessel method. We see that, ex-

cept in one case, the eigenvalues agree to six decimal places (using chopping).

Since it is highly unlikely that the two different numerical methods would agree

on unconverged digits, we conclude that the Fourier-finite element algorithm

with N = 100 mesh points and QZ eigensolver produces eigenvalues that are

(in general) accurate to six decimal places. This is the best accuracy that we

could hope for because the discretization matrices were constructed using a

quadrature rule with a tolerance of 10−6.

We briefly outline how to use Bessel functions to obtain the nonlinear equation

for λ. We return to the classical form of the eigenvalue problem in polar

coordinates, equations (2.9.3)–(2.9.9). Since k = 0, all the fluid variables

are independent of φ and all the string variables are independent of s. The

incompressibility condition (2.9.3)3 implies that ru is constant. But u(a) = 0

by (2.9.7). Therefore u = 0. Substituting u = 0 into the Navier-Stokes

equation (2.9.3)1 determines p in terms of v up to a constant. The Navier-

Stokes equation (2.9.3)2 reduces to an equation for v:

λv = γ
(
vrr +

vr

r
− v

r2

)
. (2.13.4)

This has general solution

v(r) = jJ1(βr) + yY1(βr), β2 = −λ
γ
, (2.13.5)

where j and y are constants, and J1 and Y1 are Bessel functions. See Jahnke

et al. (1960). Note that q = 0 by the area side condition (2.9.9). The pressure
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constant can then be found in terms of ψ and λ from the linear momentum

equation (2.9.5):

ρp(R) = −2ω%Aλψ. (2.13.6)

It follows that ψ 6= 0 else v = p = 0 and so λ is not an eigenvalue. Since ψ 6= 0

we can choose it to equal 1 (we are just choosing the eigenvector scaling).

Substituting ψ = 1 into the boundary conditions (2.9.7) and (2.9.8) gives a

pair of linear equations for the constants j and y in terms of β:

v(a) = jJ1(βa) + yY1(βa) = 0,

v(R) = jJ1(βR) + yY1(βR) = λR = −γβ2R.

(2.13.7)

Differentiating (2.13.5)1 with respect to r, setting r = R, and using (2.13.7)2

yields

vr(R) = β[jJ0(βR) + yY0(βR)] + γβ2. (2.13.8)

We have applied the standard differentiation formula for Bessel functions:

Z ′1(z) = Z0(z) − 1
z
Z1(z), where Z = J or Y . Finally, substitute (2.13.7)2,

(2.13.8), u = q = 0, ψ = 1, and λ = −γβ2 into the linear momentum equation

(2.9.6) to arrive at a nonlinear equation for β:

γ2β4%A = −2µ̃γβ2 − µ̃β[j(β)J0(βR) + y(β)Y0(βR)]. (2.13.9)

After solving this equation numerically for β we can recover λ = −γβ2. Notice

that ω does not appear in equation (2.13.9) (neither does the constitutive

function). Therefore the eigenvalues λ are independent of ω when k = 0.
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λ (steel) λ (rubber)

FEM Bessel FEM Bessel

−0.01701808 −0.01703582 −0.02361765 −0.02361795

−0.23705989 −0.23705961 −0.30262021 −0.30262018

−0.70478409 −0.70478465 −0.85894234 −0.85894250

−1.44478884 −1.44478838 −1.69386639 −1.69386600

Table 2.13.3: Accuracy check. The first few eigenvalues for Fourier mode k = 0 (the

eigenvalue λ = 0 is omitted). The eigenvalues were computed using both the finite

element method (FEM) and by using Bessel functions (Bessel) to obtain a nonlinear

equation for λ, which was solved using the MATLAB function fsolve. N = 100 mesh

points were used for the finite element method. As an initial guess for the function

fsolve we took the value returned by the finite element method, rounded to one

significant figure (except for in the last row of the steel column where, in order for

fsolve to find the correct zero, we took initial approximation -1.4). Since for k = 0

the eigenvalues are independent of ω, we chose ω = 0. Note that in practice the

eigenvalues vary with ω due to round-off error.
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Infinite eigenvalues. By introducing basis functions for the finite dimensional

spaces appearing in equation (2.12.30) we obtain a matrix quadratic eigenvalue

problem of the form

λ2Ck
2x + λCk

1x + Ck
0x = 0, (2.13.10)

where

Ck
0 =



Ak

0 Bk

Bk∗ 0


 , Ck

1 =



Ak

1 0

0 0


 , Ck

2 =



Ak

2 0

0 0


 . (2.13.11)

The matrices Ak
0, A

k
1, A

k
2, and Bk correspond to the bilinear forms ak

0, a
k
1, a

k
2, and

bk. Let N be the number of mesh points, which satisfies N = (R − a)/h. For

k 6= 0 the matrices Ak
i have dimensions (4N + 2) × (4N + 2). Bk has dimension

(4N + 2)× (N + 1). We do not present the case k = 0, which is similar. The vector

x has the form

x =



z

pk


 , where z =



vk

rk


 . (2.13.12)

We can rewrite equation (2.13.10) in the form

Ck
2x + λ−1Ck

1x + λ−2Ck
0x = 0. (2.13.13)

Setting z = 0 in (2.13.13) yields

λ−2Ck
0




0

pk


 =




0

0


 . (2.13.14)

But Ck
0 is nonsingular. Thus equation (2.13.14) can only be satisfied if λ = ∞.

We say that (2.13.10) has an infinite eigenvalue. Infinite eigenvalues occur for any

polynomial eigenvalue problem of the from λnCnx + · · · + λC1x + C0x provided
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that C0 is nonsingular and at least one of the Ci is singular, for i 6= 0. (Stewart &

Sun (1990) elegantly avoid the use of infinity: Instead of considering the generalized

eigenvalue problem Ax = λBx , they consider the problem βAx = αBx , where the

eigenvalues are defined to be the pairs [α, β] ∈ CP1. The case β = 0 corresponds to

λ = ∞.)

Counting the number of infinite eigenvalues (and therefore the number of finite

eigenvalues) is tricky. For example, consider the generalized eigenvalue problems

Ax = λBix with A upper triangular and

B1 =




0 1 0

0 0 1

0 0 0



, B2 =




0 0 0

0 0 1

0 0 0



, B3 =




0 0 0

0 0 0

0 0 0



. (2.13.15)

In each case the eigenvalue problem Ax = λBix has 3 infinite eigenvalues and no

finite eigenvalues. Note that dim(ker(B1)) = 1, dim(ker(B2)) = 2, dim(ker(B3)) =

3, so the dimension of the kernel of Bi does not determine the number of infinite

eigenvalues. Moreover, if A is not upper triangular, then all we can say is that the

number of infinite eigenvalues is greater than or equal to the dimension of the kernel

of Bi.

Cliffe et al. (1994) consider eigenvalue problems of the form

Cx = λDx (2.13.16)

with

C =



A0 B

B∗ 0


 , D =



A1 0

0 0


 (2.13.17)
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where A0 is nonsingular of dimension n × n, A1 is symmetric positive definite of

dimension n×n, and B has rank m and dimension n×m. Eigenvalues problems of

this form arise in the finite element discretization of Navier-Stokes equations. It is

shown that eigenvalue problem (2.13.16) has n−m finite eigenvalues and 2m infinite

eigenvalues (note that C and D have dimensions (n + m) × (n + m)). This result

can be extended to eigenvalue problem (2.13.10). Recall that Bk has dimension

(4N + 2)× (N + 1). Denote the QR factorization of Bk by

Bk = QR =

[
Q1 Q2

]


R1

0


 , (2.13.18)

where Q is orthogonal, R is upper triangular, R1 is upper triangle and nonsingular

of dimension (N + 1)× (N + 1), Q1 has dimension (4N + 2)× (N + 1), and Q2 has

dimension (4N + 2) × (3N + 1). Using the same methods as in Cliffe et al. (1994)

we can reduce equation (2.13.10) to the (3N + 1)× (3N + 1) system

λ2Q∗2A
k
2Q2 + λQ∗2A

k
1Q2 +Q∗2A

k
0Q2 = 0. (2.13.19)

The eigenvalues of (2.13.19) are eigenvalues of (2.13.10), and the finite eigenvalues

of (2.13.10) are eigenvalues of (2.13.19). We have eliminated 2(N+1) infinite eigen-

values by reducing (2.13.10) to (2.13.19). Since Ak
2 is singular, however, equation

(2.13.19) still has some infinite eigenvalues. The dimension of the kernel of Ak
2 equals

4N . Numerical results show that dim(ker(Q∗2A
k
2Q2)) = 3N − 1 and that equation

(2.13.19) has 3N + 1 infinite eigenvalues and so 3N + 1 finite eigenvalues (6N + 2

eigenvalues in total). Therefore eigenvalue problem (2.13.10) has 5N + 3 infinite

eigenvalues and 3N + 1 finite eigenvalues (8N + 4 eigenvalues in total).
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Why are we interested in infinite eigenvalues? It is well-known that the per-

turbation of infinite eigenvalues due to round-off errors can give rise to spurious

eigenvalues, which are values returned by the QZ algorithm that do not satisfy the

given eigenvalue problem. Moreover, spurious eigenvalues may not be large in mag-

nitude and so can be difficult to distinguish from finite eigenvalues. We describe

techniques for the stable computation of infinite eigenvalues.

Consider the generalized eigenvalue problem Ax = λBx , where A is non-

singular and B is singular. (Note that any polynomial eigenvalue problem can be

reduced to a generalized eigenvalue problem.) This problem has infinite eigenvalues

(the number being greater than or equal to dim(ker(B))). A stable way to compute

the infinite eigenvalues is so solve the equivalent system Bx = µAx , where µ = 1/λ.

The infinite eigenvalues λ = ∞ are mapped to zero eigenvalues µ = 0.

The reduction of eigenvalue problem (2.13.10) to (2.13.19) described above

eliminates some, but not all, of the infinite eigenvalues, and so reduces the likelihood

of spurious eigenvalues. This reduction technique, derived by Cliffe et al. (1994) for

eigenvalue problems of the form (2.13.16), was originally intended as an analytical

tool for counting the number of eigenvalues rather than as a computational tool (as

we use it). For larger matrices it is not practical to perform the QR decomposition

that is necessary to obtain reduced equations of the form (2.13.19). Instead Cliffe et

al. (1994) introduce a three-parameter family of shifted eigenvalue problems, which

allows the finite eigenvalues of (2.13.16) to be shifted and the infinite eigenvalues to

be mapped to any desired location. Thus if one is only interested in the eigenvalues

of largest real part, as for stability problems, then the infinite eigenvalues can be
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mapped far away from the origin so that their perturbations will not be mistaken for

finite eigenvalues. We are not able to apply this technique to our problem (2.13.10),

however, since the matrix Ak
2 is singular and so an additional source of infinite

eigenvalues (in addition to the infinite eigenvalues arising from the saddle-point

structure of the equations).
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Chapter 3

Cylindrical Motions of the Shell: The Ring Model

3.1 Introduction

In this chapter we continue our study of cylindrical motions of the deformable

shell. Instead of modelling a horizontal cross section of the shell as a deformable

string, which has only stretching stiffness, we model it as a deformable ring, which

has stretching, bending, and shearing stiffness. We do not repeat all the steps of the

previous chapter; we do not characterize the spectrum of the quadratic eigenvalue

problem, prove theorems about eigenvalue crossings, design a convergent numerical

scheme by proving inf-sup conditions, or compute the spectrum, but we do enough

to recover the same behavior observed in Chapter 2: We find that the rigid Couette

solution is unstable for all ω > 0.

We study the motion of a viscous incompressible liquid in the region between

a rigid circular disk of radius a < 1 rotating at a prescribed angular velocity ω and

a viscoelastic ring whose natural state is circle of radius 1. The motion of the ring

is not prescribed, but responds to the forces exerted on it by the moving liquid; the

rigid disk drives the liquid, which in turn drives the deformable ring. We find a

rigid Couette steady solution of this coupled system and analyze its stability with

respect to the bifurcation parmeter ω.
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3.2 Formulation of the Equations for the Ring

In this section we briefly specialize the planar rod theory from Antman (2005,

Chapter 4) to rings. This geometrically exact theory, known as the special Cosserat

theory for rods, accounts for flexure, extension, and shear.

Geometry of deformation

The reference configuration of the inner bounding curve of the ring, the part

in contact with the fluid, is a circle of radius 1, given parametrically by

r ◦(s) = e1(s). (3.2.1)

We refer to r ◦ as the base curve of the ring. The arc-length parameter s ∈ [0, 2π]

identifies material points of the ring, with the points 0 and 2π identified. The

position of material point s at time t is r(s, t). The curve r(·, t) is assumed to lie in

the {i , j }-plane for each t. Its parameter s need no longer be arc-length; we allow

the base curve to stretch.

The ring represents a thin 2-dimensional annulus. Consider the material fiber

(or cross section) of the annulus that is normal to the base curve at r ◦. This lies

on the line spanned by d ◦(s) := −e1(s). At time t the fiber will have deformed and

may no longer be straight. We introduce a unit vector d(s, t) to characterize some

average orientation of this material fiber at time t. Alternatively, we can think of

the rod theory as describing thin bodies undergoing motions in which the material

fibers are always straight, with the orientation given by −d(s, t). We call d the
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director. Define

a(s, t) = d(s, t)× k . (3.2.2)

The basis {a(s, t),d(s, t)}, since it corresponds to material properties, is the most

natural basis for our problems. (In Antman (2005, Chapter 4) this basis is denoted

by {a(s, t), b(s, t)}.) Since this basis is orthonormal we can introduce a function

θ(s, t) by

a(s, t) = cos θ(s, t)i + sin θ(s, t)j = e1(θ(s, t)),

d(s, t) = − sin θ(s, t)i + cos θ(s, t)j = e2(θ(s, t)).

(3.2.3)

The configuration of the rod at time t is the pair {r(·, t),d(·, t)}, or equivalently

{r(·, t), θ(·, t)}, a parametrized curve equipped with a unit vector at each point. The

advantage of using a rod theory rather than the 2-dimensional theory of continuum

mechanics is that there is only one spatial variable, s, rather than two. This is at

the cost of introducing the extra unknown function d .

All geometrical quantities in the reference configuration are denoted by the

superscript ◦. We choose s so that θ◦(s) = s+ π
2
.

The strains ν(s, t), η(s, t), µ(s, t) are defined by

rs =: νa + ηd , θs =: µ. (3.2.4)

In the reference configuration they take values

ν◦ = 1, η◦ = 0, µ◦ = 1. (3.2.5)

Although imprecise, it is useful to think of ν and µ as measuring stretching and

bending of the base curve, and η as measuring shearing of the material fibers. If
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there is no shearing, η = 0, then ν really does measure stretching: ν = |rs|. If the

material is not stretched or sheared, ν = 1 and η = 0, then µ = κ, the (signed)

curvature of r(·, t). If η = 0, then κ = µ/ν. The strains {ν, η, µ} are invariant

under rigid motions and determine the configuration of the ring {r ,d} up to a

rigid motion. The set of strains could be any set of functions satisfying these two

properties. The choice of {ν, η, µ} has proved convenient for analysis.

Let h be the thickness of the 2-dimensional annulus represented by the ring.

To ensure that distinct cross sections of the ring never intersect and that the local

ratio of deformed to reference length of the ring be everywhere positive, we stipulate

that

ν(s) > max{−hµ(s), 0} ≡





−hµ(s) for µ(s) ≤ 0,

0 for µ(s) ≥ 0.

(3.2.6)

This condition is derived from 2-dimensional continuum mechanics. See equation

(3.2.14).

We require that the configuration satisfy the periodicity conditions

r(2π, t) = r(0, t), θ(2π, t) = θ(0, t) + 2π. (3.2.7)

Sometimes it will be convenient to work in polar coordinates. We define functions

q(s, t) := |r(s, t)| and ψ(s, t) ∈ [0, 2π) by

r(s, t) =: q(s, t)e1(ψ(s, t) + ωt). (3.2.8)
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Mechanics

Let n(ξ, t) be the internal contact force exerted at time t by the material of

the ring with s ∈ (ξ, ξ + ε] on the material of the ring with s ∈ [ξ − ε, ξ] where ε is

a sufficiently small positive number and this interpretation is independent of ε. Let

f (s, t) be the force per unit reference length exerted by the fluid on material point

s of the ring at time t. We give an expression for the force f in Section 3.4. The

ring obeys the Balance of Linear Momentum Law

ns + f = %Artt + %Idtt, (3.2.9)

where (%A)(s) and (%I)(s) may be regarded as the mass and first moment of mass of

the ring per unit reference length. These along with the linear momentum terms on

the right-hand side of (3.2.9) require motivation from the theory of 2-dimensional

continuum mechanics and are derived below. The left-hand side of equation (3.2.9)

can be derived from a free-body diagram without relying on the 2-dimensional the-

ory.

We introduce the resultants N(s, t), H(s, t) by

n = Na +Hd . (3.2.10)

N and H may be thought of, somewhat imprecisely, as the tension and shear force

in the ring. Substituting (3.2.10) into (3.2.9) and taking the dot product with a

and d we obtain the componential form of the linear momentum law:

Ns − µH + f · a = %Artt · a + %Idtt · a ,

Hs + µN + f · d = %Artt · d + %Idtt · d .
(3.2.11)
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Let M(ξ, t) k be the internal contact couple exerted at time t by the material

of the ring with s ∈ (ξ, ξ + ε] on the material of the ring with s ∈ [ξ − ε, ξ] where

ε is a sufficiently small positive number and this interpretation is independent of ε.

The Balance of Angular Momentum Law for the ring is

Ms + νH − ηN = %Jθtt − %I rtt · a , (3.2.12)

where (%J)(s) may be regarded as the second moment of mass of the ring per unit

reference length.

Motivation from 2-Dimensional Continuum Mechanics

We consider a 2-dimensional body whose reference configuration is an annulus

of inner radius 1 and outer radius 1 + h, which consists of all material points of the

form p◦ = (1 − ξ)e1(s) with s ∈ [0, 2π], −h ≤ ξ ≤ 0. We consider motions of this

annulus in which the material point with coordinates (s, ξ) is constrained so that

its position at time t has the form

p(s, ξ, t) = r(s, t) + ξd(s, t). (3.2.13)

The Jacobian of the transformation p is

(ps × pξ) · k = {[(νa + ηd − ξµa)]× d} · k = ν − ξµ. (3.2.14)

The requirement that this be positive for all ξ in [−h, 0] gives (3.2.6).

The time-derivatives of the linear and angular momenta per unit of s for such

an annular body of constant reference mass density % undergoing a motion of the

123



form (3.2.13) are

d

dt

∫ 0

−h

%pt(s, ξ, t)(1− ξ) dξ (3.2.15)

=

∫ 0

−h

%[rtt(s, t) + ξdtt(s, t)](1− ξ) dξ

=: %Artt(s, t) + %Idtt(s, t),

d

dt

∫ 0

−h

%k · [p(s, ξ, t)× pt(s, ξ, t)](1− ξ) dξ (3.2.16)

=

∫ 0

−h

%k · [p(s, ξ, t)× ptt(s, ξ, t)](1− ξ) dξ

=

∫ 0

−h

%k · {[r(s, t) + ξd(s, t)]× [rtt(s, t) + ξdtt(s, t)]}(1− ξ) dξ

=: %Ak · [r(s, t)× rtt(s, t)] + %Ik · [r(s, t)× dtt(s, t)]

+ %Ik · [d(s, t)× rtt(s, t)] + %Jk · [d(s, t)× dtt(s, t)]

with

%A =

∫ 0

−h

%(1− ξ) dξ = %h(1 + 1
2
h),

%I =

∫ 0

−h

%ξ(1− ξ) dξ − 1
2
%h2(1 + 2

3
h),

%J =

∫ 0

−h

%ξ2(1− ξ) dξ = 1
3
%h3(1 + 3

4
h).

(3.2.17)

The factor 1− ξ in the integrals is the Jacobian of p◦. Note that d × dtt = θttk .

Let τ (s0, ξ, t) denote the force per unit reference length of the material line

{(1− ξ)e1(s0)} at (s0, ξ) exerted by the material with coordinates s ∈ (s0, s0 + ε+)

on the material with s ∈ (s0 − ε−, s0] for all small positive ε±. Then the internal

contact force exerted across this section is

n(s0, t) =

∫ 0

−h

τ (s0, ξ, t) (1− ξ) dξ, (3.2.18)
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and the resultant torque of this force about r(s0, t) is

M(s0, t)k =

∫ 0

−h

[p(s0, ξ, t)− r(s0, t)]× τ (s0, ξ, t) (1− ξ) dξ

≡ d(s0, t)×
∫ 0

−h

ξτ (s0, ξ, t) (1− ξ) dξ.

(3.2.19)

Suppose that the ring is subjected to an external force in the {i , j }-plane

acting on the base curve r(·, t) with intensity f per unit of s. Then its contribution

to the total force on the material segment {(1−ξ)e1(s) : s1 ≤ s ≤ s2, −h ≤ ξ ≤ 0} is

∫ s2

s1
f (s, t) ds and its contribution to the total torque about 0 is

∫ s2

s1
r(s, t)×f (s, t) ds.

We assume that there are no other external forces acting on the ring.

The requirement that the resultant force on any segment of the ring equal

the time-derivative of the linear momentum gives the integral version of (3.2.9).

The requirement that the resultant torque on the segment [s1, s2] equal the time-

derivative of the angular momentum gives

M(s2, t) + k · [r(s2, t)× n(s2, t)]−M(s1, t)− k · [r(s1, t)× n(s1, t)]

+ k ·
∫ s2

s1

r(s, t)× f (s, t) ds

=

∫ s2

s1

k · {%A[r × rtt(s, t)] + %I[r(s, t)× dtt(s, t)]

+ %I[d(s, t)× rtt(s, t)] + %J [d(s, t)× dtt(s, t)]} ds.

(3.2.20)

Differentiating this equation with respect to s2 and then using (3.2.9) yields (3.2.12).

Note that f makes no contribution to (3.2.12) because it is applied to the image

r(s, t) of the base curve.
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The Constitutive Equations

We assume that the ring is uniform in which case %A, %I and %J are indepen-

dent of s, and the constitutive functions are independent of s. The ring is said to

be viscoelastic of strain-rate type if there are functions

ν, η, µ, ν̇, η̇, µ̇ 7→ N̂(ν, η, µ, ν̇, η̇, µ̇), Ĥ(ν, η, µ, ν̇, η̇, µ̇), M̂(ν, η, µ, ν̇, η̇, µ̇) (3.2.21)

such that

N(s, t) = N̂(ν(s, t), η(s, t), µ(s, t), νt(s, t), ηt(s, t), µt(s, t)), etc. (3.2.22)

The superposed dots on the last three arguments of (3.2.21) have no operational

significance; they merely identify the arguments of the constitutive functions that

are to be occupied by the time derivatives of ν, η, µ. This form of the constitutive

functions can be derived by starting with constitutive functions of the form N =

N̂(r , rs, rt,d ,ds,dt, t) and applying the Principle of Frame-Indifference. We assume

that these constitutive functions are sufficiently smooth for our purposes.

We assume that the monotonicity conditions hold:

the matrices
∂(N̂ , Ĥ, M̂)

∂(ν, η, µ)
and

∂(N̂ , Ĥ, M̂)

∂(ν̇, η̇, µ̇)
are positive-definite. (3.2.23)

(These follow from the Strong Ellipticity Condition of 2-dimensional nonlinear elas-

ticity.) It is expected that an extreme strain be accompanied by an extreme stress.
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Therefore we stipulate that the constitutive functions satisfy the growth conditions

N̂(ν, η, µ, ν̇, η̇, µ̇) −→





+∞

−∞





as ν −→





+∞

max{−µh, 0}




,

Ĥ(ν, η, µ, ν̇, η̇, µ̇) −→ ±∞ as η −→ ±∞,

M̂(ν, η, µ, ν̇, η̇, µ̇) −→ ±∞ as µ −→





∞

−h−1ν





(3.2.24)

for fixed values of the arguments not entering the limit process. We require that the

effects of shearing in one sense be the same as in the opposite sense:

N̂(−η,−η̇) = N̂(η, η̇), Ĥ(−η,−η̇) = −Ĥ(η, η̇), M̂(−η,−η̇) = M̂(η, η̇).

(3.2.25)

Here we have suppressed the arguments ν, µ, ν̇, µ̇ of the constitutive functions.

Relations (3.2.25) imply that

Ĥ = Ĥν = Ĥµ = Ĥν̇ = Ĥµ̇ = N̂η = N̂η̇ = M̂η = M̂η̇ = 0 when (η, η̇) = (0, 0).

(3.2.26)

Finally, we make the assumption that the reference configuration of the ring is its

natural configuration, which implies that the resultants vanish when the body is at

rest in the reference configuration:

N̂(1, 0, 1, 0, 0, 0) = Ĥ(1, 0, 1, 0, 0, 0) = M̂(1, 0, 1, 0, 0, 0) = 0. (3.2.27)

3.3 Formulation of the Equations for the Fluid

At time t the fluid occupies the region between the disk of radius a < 1 and

the curve r(·, t). The equations for the fluid are identical to those given in Section
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2.3 and so we do not repeat them here.

3.4 The Coupling Between the Fluid and the Ring Equations

We adopt the standard requirement for viscous fluids that the fluid adhere to

solid surfaces with which it is in contact, which are here the disk and the ring. Thus

u(a, φ, t) = 0, v(a, φ, t) = aω ∀φ, (3.4.1)

v(r(s, t), t) = rt(s, t). (3.4.2)

The outward pointing unit normal to r(·, t) at r(s, t) is rs × k/|rs|. The

force per unit (actual) length exerted by the ring on the fluid at r(s, t) is thus

Σ · (rs × k)/|rs|. Therefore the force per unit reference length exerted by the fluid

on the ring at r(s, t) is

f = −Σ · (rs × k) = Σ · (k × rs) = Σ · (−ηa + νd)

= [−ρpI + 2µ̃D(v)] · (−ηa + νd)

= ρp(ηa − νd))

+ µ̃
[
2ure1e1 +

(
vr + 1

q
uφ − 1

q
v
)

(e1e2 + e2e1) + 2
q
(vφ + u)e2e2

]
· (−ηa + νd),

(3.4.3)

where we have used (2.3.3) and (2.3.15). The components u and v of the fluid

velocity are evaluated at (r, φ) = (q(s, t), ψ(s, t)), which are the polar coordinates

for r(s, t) (see equation (3.2.8)), and the argument of e1 and e2 is ψ(s, t) + ωt.

Since we are taking the base curve, given by r(·, t), to be in contact with the

fluid, the fluid exerts no body couple on the ring (see the discussion in Section 3.2).
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By using the expression for f given in (3.4.3), we may rewrite the a- and

d -components of the linear momentum equation (3.2.11) and rewrite the angular

momentum equation (3.2.12) as

Ns − µH + ρpη + µ̃(vr + 1
q
uφ − 1

q
v)[η sin 2(ψ − θ + ωt) + ν cos 2(ψ − θ + ωt)]

+ µ̃(ur − 1
q
vφ − 1

q
u)[−2η cos2(ψ − θ + ωt) + ν sin 2(ψ − θ + ωt)]

= %Artt · a − %Iθtt

≡ %A{[qtt − q(ψt + ω)2] cos(ψ − θ + ωt)

− [qψtt + 2qt(ψt + ω)] sin(ψ − θ + ωt)} − %Iθtt,

(3.4.4)

Hs + µN − ρpν + µ̃(vr + 1
q
uφ − 1

q
v)[ν sin 2(ψ − θ + ωt)− η cos 2(ψ − θ + ωt)]

− µ̃(ur − 1
q
vφ − 1

q
u)[2ν sin2(ψ − θ + ωt) + η sin 2(ψ − θ + ωt)] + µ̃ν(ur + 1

q
vφ + 1

q
u)

= %Artt · d − %Iθ2
t

≡ %A{[qtt − q(ψt + ω)2] sin(ψ − θ + ωt) + [qψtt + 2qt(ψt + ω)] cos(ψ − θ + ωt)}

− %Iθ2
t ,

(3.4.5)

Ms + νH − ηN = %Jθtt − %Irtt · a

≡ %Jθtt − %I{[qtt − q(ψt + ω)2] cos(ψ − θ + ωt)

− [qψtt + 2qt(ψt + ω)] sin(ψ − θ + ωt)}

(3.4.6)

where the arguments of u and v are (r, φ, t) = (q(s, t), ψ(s, t), t).
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3.5 The Area Side Condition

As for the string problem, we prescribe the area of the fluid to be π(R2 − a2)

for some R > 1. See Section 2.5. To ensure that the fluid occupies the entire region

between the rigid disk and the ring we specify that the area enclosed by the ring

equal πR2. Therefore

πR2 = 1
2
k ·

∫ 2π

0

r(s, t)× rs(s, t) ds (3.5.1)

by Green’s Theorem in the Plane.

3.6 The Couette Steady Solution

In this section we find a rigid Couette solution similar to the one found in

Chapter 2. The symmetry of our problem suggests that we seek steady solutions in

which the ring is circular and rotates rigidly with constant angular velocity Ω, and

the fluid streamlines are concentric circles. Thus we seek solutions of the form

u(r, φ, t) = 0, v(r, φ, t) = V (r), p(r, φ, t) = P (r), (3.6.1)

r(s, t) = Re1(s+Ωt), (3.6.2)

ν = const, η = const, µ = const. (3.6.3)

Thus, in the notation introduced in equation (3.2.8),

q = R, ψ(s, t) = s+ (Ω − ω)t. (3.6.4)

The constant R > 1 denotes the radius of the ring.

130



Equations (3.2.4), (3.6.2) and (3.6.3) imply that

ν = R cos β, η = −R sin β, θ = s+ β +Ωt+ π
2
, µ = 1, (3.6.5)

where the shear angle β is a constant to be determined. Since ν must be positive, β

must lie in (−π
2
, π

2
). The constancy of the strains ensure that the resultants N,H,M

are constants.

The substitution of (3.6.1) into the Navier-Stokes equations (2.3.16) yields

Pr =
V 2

r
, Vrr +

Vr

r
− V

r2
≡

[
Vr +

V

r

]

r

≡
[
1

r
(rV )r

]

r

= 0. (3.6.6)

Thus there are constants B, C, D such that

V (r) = Br +
C

r
. (3.6.7)

P (r) =
1

2
B2r2 + 2BC ln r − C2

2r2
+D. (3.6.8)

The adherence conditions (3.4.1)2, (3.4.2) imply that

aω = Ba+
C

a
, RΩ = BR+

C

R
⇐⇒ B =

R2Ω − a2ω

R2 − a2
, C =

R2a2(ω −Ω)

R2 − a2
.

(3.6.9)

We must determine the constants β, Ω, and D. Substituting (3.6.1), (3.6.2),

(3.6.5), (3.6.7) and (3.6.8) into (3.4.4), (3.4.5),(3.4.6), and using the symmetry con-
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dition (3.2.25) we obtain

Ĥ(R cos β,R sin β, 1, 0, 0, 0)− ρP (R)R sin β +
2Cµ̃ cos β

R
= %ARΩ2 sin β, (3.6.10)

N̂(R cos β,R sin β, 1, 0, 0, 0)− ρP (R)R cos β − 2Cµ̃ sin β

R
= %ARΩ2 cos β − %IΩ2,

(3.6.11)

−RĤ(R cos β,R sin β, 1, 0, 0, 0) cos β +RN̂(R cos β,R sin β, 1, 0, 0, 0) sin β

= −%IRΩ2 sin β. (3.6.12)

Multiplying equation (3.6.10) by −R cos β and equation (3.6.11) by R sin β, adding

the resulting equations together and then subtracting equation (3.6.12) we discover

that

C = 0 =⇒ Ω = ω, B = ω. (3.6.13)

Therefore the fluid and the elastic ring rotate rigidly with the same angular velocity

as the rigid disk. The system behaves like a rigid body. We call this the rigid

Couette solution.

By (3.6.13), formulas (3.6.7) and (3.6.8) for V and P reduce to the simple

forms

V = ωr, P (r) = 1
2
ω2r2 +D. (3.6.14)

Substituting (3.6.13) and (3.6.14) into (3.6.10), (3.6.11), (3.6.12) yields

Ĥ(R cos β,R sin β, 1, 0, 0, 0)− ρ(1
2
ω2R2 +D)R sin β = %ARω2 sin β, (3.6.15)

N̂(R cos β,R sin β, 1, 0, 0, 0)−ρ(1
2
ω2R2+D)R cos β = %ARω2 cos β−ρIω2, (3.6.16)

−Ĥ(R cos β,R sin β, 1, 0, 0, 0) cos β+N̂(R cos β,R sin β, 1, 0, 0, 0) sin β = −%Iω2 sin β.

(3.6.17)

132



Note that equation (3.6.17) is the sum of sin β times equation (3.6.16) minus cos β

times equation (3.6.15). The symmetry conditions (3.2.25) imply that if (β, ω)

satisfies (3.6.15)–(3.6.17), then so does (−β, ω). Thus the sign of the shear angle

β does not depend on the sign of ω. This indicates that a nonzero β represents a

shear instability induced by tension in the ring. The symmetry property (3.2.26)

Ĥ|η=η̇=0 = 0 (3.6.18)

implies that β = 0 satisfies equations (3.6.15) and (3.6.17). Substituting β = 0 into

(3.6.16) determines D:

D = 1
ρR

[N̂(R, 0, 1, 0, 0, 0)− %ARω2 + %Iω2]− 1
2
ω2R2. (3.6.19)

We shall not study steady solutions with β 6= 0.

3.7 Linearization

We linearize our equations of motion about the rigid Couette solution. Intro-

duce the small parameter ε and perturbation variables, decorated with a superscript
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1, in the following way:

u(r, φ, t, ε) = εu1(r, φ, t) +O(ε2),

v(r, φ, t, ε) = ωr + εv1(r, φ, t) +O(ε2),

p(r, φ, t, ε) = 1
2
ω2r2 +D + εp1(r, φ, t) +O(ε2),

q(s, t, ε) = R + εq1(s, t) +O(ε2),

ψ(s, t, ε) = s+ εψ1(s, t) +O(ε2),

θ(s, t, ε) = s+ ωt+ π
2

+ εθ1(s, t) +O(ε2),

ν(s, t, ε) = R + εν1(s, t) +O(ε2),

η(s, t, ε) = εη1(s, t) +O(ε2),

µ(s, t, ε) = 1 + εµ1(s, t) +O(ε2).

(3.7.1)

We linearize the evolution equations by substituting (3.7.1) into them, differentiating

the resulting equations with respect to ε, and then setting ε = 0. We obtain the

following perturbation equations.

The Navier-Stokes equations.

u1
t − 2ωv1 = −p1

r + γ

(
1

r
(ru1

r)r +
u1

φφ

r2
− 2

r2
v1

φ −
u1

r2

)
,

v1
t + 2ωu1 = −p

1
φ

r
+ γ

(
1

r
(rv1

r)r +
v2

φφ

r2
+

2u1
φ

r2
− v1

r2

)

(ru1)r + v1
φ = 0.

(3.7.2)

The angular momentum equation.

M◦
ν ν

1
s +M◦

µµ
1
s +M◦

ν̇ ν
1
st +M◦

µ̇µ
1
st +RH◦

ηη
1 +RH◦

η̇η
1
t −N◦η1

= %Jθ1
tt − %I(Rω2θ1 −Rω2ψ1 + 2ωq1

t +Rψ1
tt), (3.7.3)
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where M◦
ν := M̂ν(R, 0, 1, 0, 0, 0), M◦

µ := M̂µ(R, 0, 1, 0, 0, 0), etc.

The linear momentum equation (a- and d-components).

N◦
ν ν

1
s +N◦

µµ
1
s +N◦

ν̇ ν
1
st +N◦

µ̇µ
1
st−H◦

ηη
1−H◦

η̇η
1
t +ρ(1

2
ω2R2 +D)η1− µ̃(Rv1

r +u1
φ−v1)

= %A(Rω2θ1 −Rω2ψ1 + 2ωq1
t +Rψ1

tt)− %Iθ1
tt, (3.7.4)

H◦
ηη

1
s +H◦

η̇η
1
st +N◦

ν ν
1 +N◦

µµ
1 +N◦

ν̇ ν
1
t +N◦

µ̇µ
1
t +N◦µ1 − 2ρR2ω2r̂1 − ρRp1

− ρ(1
2
ω2R2 +D)ν1 + 2µ̃Ru1

r = %A(−q1
tt + ω2q1 + 2Rωψ1

t )− 2%Iωθ1
t , (3.7.5)

where the fluid variables are evaluated at (r, φ, t) = (R, s, t).

The adherence boundary conditions.

u1(R, s, t) = q1
t (s, t), v1(R, s, t) = Rψ1

t (s, t), (3.7.6)

u1(a, φ, t) = 0, v1(a, φ, t) = 0. (3.7.7)

The strain-configuration relations.

ν1 = q1 +Rψ1
s , η1 = −q1

s +Rψ1 −Rθ1, µ1 = θ1
s . (3.7.8)

The spatial periodicity conditions.

q1(2π, t) = q1(0, t), θ1(2π, t) = θ1(0, t). (3.7.9)

The area side condition.

∫ 2π

0

q1(s, t) ds = 0. (3.7.10)
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3.8 The Quadratic Eigenvalue Problem

We seek solutions of the linear perturbation equations with exponential time

dependence, u1(r, φ, t) = u(r, φ) exp(λt), v1(r, φ, t) = v(r, φ) exp(λt), etc. Substi-

tuting these expressions into the linearized equations yields a quadratic eigenvalue

problem:

The Navier-Stokes equations.

λu− 2ωv = −pr + γ

(
1

r
(rur)r +

uφφ

r2
− 2vφ

r2
− u

r2

)
,

λv + 2ωu = −pφ

r
+ γ

(
1

r
(rvr)r +

vφφ

r2
+

2uφ

r2
− v

r2

)
,

(ru)r + vφ = 0.

(3.8.1)

The angular momentum equation.

(M◦
ν + λM◦

ν̇ )νs + (M◦
µ + λM◦

µ̇)µs + (RH◦
η +RλH◦

η̇ −N◦)η

= (λ2%J − %IRω2)θ + %IR(ω2 − λ2)ψ − 2λω%Iq. (3.8.2)

The linear momentum equation (a- and d-components).

(N◦
ν + λN◦

ν̇ )νs + (N◦
µ + λN◦

µ̇)µs + (ρ(1
2
ω2R2 +D)−H◦

η − λH◦
η̇ )η− µ̃(Rvr + uφ− v)

= (%ARω2 − %Iλ2)θ + 2%Aλωq + %AR(λ2 − ω2)ψ, (3.8.3)

(H◦
η +λH◦

η̇ )ηs +(N◦
ν +λN◦

ν̇ −ρ(1
2
ω2R2 +D))ν+(N◦

µ +λN◦
µ̇ +N◦)µ−ρRp+2µ̃Rur

= (%Aω2 − %Aλ2 + 2ρR2ω2)q − 2%Iλωθ + 2%AλRωψ. (3.8.4)

The adherence boundary conditions.

u(R, s) = λq(s), v(R, s) = λRψ(s). (3.8.5)
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The strain-configuration relations.

ν = q +Rψs, η = −qs +Rψ −Rθ1, µ = θs. (3.8.6)

The area side condition.
∫ 2π

0

q(s) ds = 0. (3.8.7)

3.9 Analysis of the Spectrum

In Chapter 2 we found that the rigid Couette solution for the string problem

is unstable for all ω > 0. Is the same true for the ring problem?

Motivated by the results of Chapter 2 we seek solutions of the quadratic eigen-

value problem with

λ = ω = u = v = p = 0. (3.9.1)

Since the unstable mode found in Chapter 2 was a rigid translation of the Couette

solution, we also set the strain perturbations equal to zero:

ν = η = µ = 0. (3.9.2)

This leaves only three unknowns, q(s), ψ(s), and θ(s). Equation (3.8.6) implies that

θ is constant. We take θ = 0. Substituting θ = 0 and (3.9.1) and (3.9.2) into the

quadratic eigenvalue problem (3.8.1)–(3.8.6) yields

q +Rψs = 0, −qs +Rψ = 0, (3.9.3)

which has nontrivial solutions ψ(s) = A sin s+B cos s, q(s) = −RA cos s+RB sin s,

where A and B are constants. Therefore when ω = 0, λ = 0 is an eigenvalue of
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(3.8.1)–(3.8.7) of geometric multiplicity two with eigenvectors

(u, v, p, q, ψ, θ, ν, η, µ) = (0, 0, 0,−RA cos s+RB sin s, A sin s+B cos s, 0, 0, 0).

(3.9.4)

Since these eigenvectors correspond to a rigid motion of the Couette steady solution

(because the strain perturbations are zero) and have Fourier mode |k| = 1, like the

unstable modes found in Chapter 2, we expect that the corresponding eigenvalue

λ = 0 will move into the right half-plane as ω is increased from 0, which would

imply that the rigid Couette solution is unstable for all ω > 0. This could be

checked numerically. We do not stop to do so, however, but move on to a brief look

at a 2-dimensional model for ring before arriving at the most important chapter

of the thesis, concerning axisymmetric motions of the shell, in which the Couette

solution cannot suffer the instabilities found here.
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Chapter 4

Cylindrical Motions of the Shell: The 2-Dimensional Elasticity Model

4.1 Introduction

In Chapters 2 and 3 we studied cylindrical motions of the deformable shell,

using string and rod theories to model a horizontal cross section of the shell, and

found that the rigid Couette solution is unstable for all ω > 0. In this chapter we

show that the sting and rod theories were sufficient to capture the physics of the

problem; we model a cross section of the shell using the full theory of 2-dimensional

nonlinear elasticity and show that, once again, the rigid Couette solution is unstable

for all ω > 0.

We study the motion of a viscous incompressible liquid in the region between

a rigid circular disk of radius a < 1 rotating at a prescribed angular velocity ω and

a 2-dimensional elastic body whose natural state is an annulus of inner radius 1 and

outer radius 1 + h (for our analysis h need not be small). The motion of the elastic

body is not prescribed, but responds to the forces exerted on it by the moving liquid;

the rigid disk drives the liquid, which in turn drives the deformable body. We find

a rigid Couette steady solution of this coupled system and analyze its stability with

respect to the bifurcation parmeter ω.
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4.2 Formulation of the Equations for the 2-Dimensional Elastic Body

We summarize the theory of 2-dimensional nonlinear elasticity from Antman

(2005, Chapters 12 & 13).

Geometry of Deformation

Let the reference configuration of the deformable body be an annulus of inner

radius 1 and outer radius 1 + h, h > 0, which consists of material points of the

form x = (1 − ξ)e1(s) for (s, ξ) ∈ [0, 2π) × [−h, 0]. (These coordinates agree with

those introduced in Section 3.2 to derive the ring equations from 2-dimensional

continuum mechanics.) The position of material point x at time t is denoted by

p(x, t). Let F = ∂p/∂x be the deformation gradient and C = F ∗ · F be the

Cauchy-Green deformation tensor. We ask that the deformation p be orientation

preserving: detF > 0.

Mechanics

Let %(x ) denote the mass density of the deformable body and T (x , t) denote

the first Piola-Kirchhoff stress tensor. The vector T · n is the internal contact

force exerted across a material surface with unit outer normal n in the reference

configuration. The Linear Momentum Law for the deformable body states that

divT ∗ = %ptt. (4.2.1)

Observe that, unlike in Chapters 2 and 3, there is no body force term f for the force

of the fluid on the deformable body. The fluid only exerts a force on the boundary

140



of the deformable body. We derive these boundary conditions in Section 4.4.

The Angular Momentum Law for the deformable body implies that T · F ∗ is

symmetric. It follows that the second Piola-Kirchhoff stress tensor S := F−1 ·T is

also symmetric.

Constitutive Equations

We assume that the material is uniform and elastic so that % is constant and

there exists a function F 7→ T̂ (F ) such that T (x , t) = T̂ (F (x , t)). The Principle

of Frame-Indifference implies that there exists a function C 7→ Ŝ(C ) such that

S(x , t) = Ŝ(C (x , t)). We take the reference configuration of the deformable body

to be natural so that stresses T̂ and Ŝ vanish in the reference configuration. We let

T̂ and Ŝ be as smooth as necessary for our analysis to hold.

We also assume that the material is isotropic. Let

ι(C ) = (trC , 1
2
((trC )2 − tr(C 2)), detC ) (4.2.2)

denote the principal invariants of C . By the Representation Theorem for Isotropic

Materials there exists scalar-valued functions φ0, φ1, and φ2 of ι(C ) such that

Ŝ(C ) = φ0(ι(C ))I + φ1(ι(C ))C + φ2(ι(C ))C 2. (4.2.3)

Finally, we assume that the function T̂ satisfies the Strong Ellipticity Condi-

tion of nonlinear elasticity. Strong Ellipticity corresponds to rank-one convexity of

the stored energy potential for hyperelastic materials. See Antman (2005, Chapter

13) for more details. We will use the following consequence of the Strong Ellipticity
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Condition:

The map a · F · b 7→ a · T̂ (F ) · b is strictly increasing (4.2.4)

for all a , b ∈ R2 and F with detF > 0. This means that the ab-component of

the first Piola-Kirchhoff stress tensor is an increasing function of the corresponding

component of F .

4.3 Formulation of the Equations for the Fluid

We assume that the fluid is viscous, incompressible, and Newtonian so that it

is governed by the Navier-Stokes equations. These equations were given in Chapters

2 and 3. We use the same notation here.

4.4 The Coupling Between the Fluid and the Elasticity Equations

We require that the fluid adhere to any solid surfaces with which it is in

contact, which are here the elastic body and the rigid disk:

v(p(x , t), t) = pt(x , t), (4.4.1)

v(ae1(φ+ ωt), t) = aωe2(φ+ ωt). (4.4.2)

The inner boundary of the elastic body has outer normal −e1(s) in the reference

configuration and −∂sp(e1(s), t) × k at time t. We assume that the force exerted

by the elastic body on the fluid equals minus the force exerted by the fluid on the

elastic body (per reference length of the inner boundary of the elastic body):

Σ · (∂sp(e1(s), t)× k) = T · e1(s), (4.4.3)

142



where Σ has arguments (v , p) = (v(p(e1(s), t), t), p(p(e1(s), t), t)) and T has ar-

guments (x , t) = (e1(s), t). We also assume that there is no force on the outer

boundary of the elastic body:

T ((1 + h)e1(s), t) · e1(s) = 0. (4.4.4)

4.5 The Area Side Condition

As in Chapters 2 and 3 we prescribe the area of the fluid to be π(R2 − a2),

for some choice of R > 1. We enforce that the deformable body enclose an area of

πR2 at all times so that the fluid occupies the whole region between the disk and

the deformable body.

4.6 The Couette Steady Solution

Motivated by Chapters 2 and 3 we seek a rigid Couette steady solution of the

form

u = w = 0, v(r) = ωr, p(r) = 1
2
ω2r2 +D, (4.6.1)

p(x , t) = Q(ξ)e1(s+ ωt), (4.6.2)

where x = (1 − ξ)e1(s). The area side condition implies that Q(0) = R. The

constant D can be found by substituting (4.6.1) and (4.6.2) into the boundary

condition (4.4.3).

It is not possible to write down a formula for Q(ξ). Instead we will derive a

nonlinear two-point boundary-value problem for Q and prove that it has a solution.
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We introduce the shorthand notation ej := ej(s+ωt) and e◦j := ej(s) for j ∈ {1, 2}.

From equation (4.6.2) we can compute

F = −Qξe1e
◦
1 +

Q

1− ξ
e2e

◦
2 , (4.6.3)

C = Q2
ξe

◦
1e

◦
1 +

(
Q

1− ξ

)2

e◦2e
◦
2 , (4.6.4)

%ptt = −ω2Qe1. (4.6.5)

Decompose the Piola-Kirchhoff stress tensor with respect to the basis {eie
◦
j }i,j∈{1,2}:

T̂ = T̂ijeie
◦
j (using summation convention). Then

divT ∗ =

(
−e◦1

∂

∂ξ
+

1

1− ξ
e◦2

∂

∂s

)
· (T̂ije

◦
j ei)

=

[
−∂T̂11

∂ξ
+

1

1− ξ

(
∂T̂12

∂s
+ T̂11 − T̂22

)]
e1

+

[
−∂T̂21

∂ξ
+

1

1− ξ

(
∂T̂22

∂s
+ T̂21 + T̂12

)]
e2.

(4.6.6)

Substituting (4.6.5) and (4.6.6) into the linear momentum equation (4.2.1) yields

−∂T̂11

∂ξ
+

1

1− ξ

(
∂T̂12

∂s
+ T̂11 − T̂22

)
= −ω2Q (4.6.7)

−∂T̂21

∂ξ
+

1

1− ξ

(
∂T̂22

∂s
+ T̂21 + T̂12

)
= 0. (4.6.8)

We use the isotropy constitutive assumption to simplify these equations. By sub-

stituting the expression for C from (4.6.4) into the representation for Ŝ , equation

(4.2.3), we see that Ŝ has no e◦1e
◦
2 - or e◦2e

◦
1 -component. Then

T̂ = F · Ŝ

=

(
−Qξe1e

◦
1 +

Q

1− ξ
e2e

◦
2

)
· (Ŝ11e

◦
1e

◦
1 + Ŝ22e

◦
2e

◦
2 ),

(4.6.9)

and we can read off that

T̂11 = −QξŜ11, T̂22 =
Q

1− ξ
Ŝ22, T̂12 = T̂21 = 0. (4.6.10)
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Observe that Ŝ22 = Ŝ22(C ) ≡ Ŝ22(C11, C22) = Ŝ22(Q
2
ξ ,

Q2

(1−ξ)2
). Therefore ∂Ŝ22/∂s =

0 and so ∂T̂22/∂s = 0 by (4.6.10). Substituting T̂12 = T̂21 = ∂T̂22/∂s = 0 into the

linear momentum equations (4.6.7) and (4.6.8) gives

−[(1− ξ)T̂11]ξ − T̂22 = −(1− ξ)ω2Q for − h < ξ < 0. (4.6.11)

This differential equation for Q(ξ) is supplemented with boundary conditions

T̂11 = 0 for ξ = −h,

Q = R for ξ = 0.

(4.6.12)

where the first boundary condition is found by specializing equation (4.4.4). We wish

to prove that the quasilinear two-point boundary-value problem (4.6.11), (4.6.12) is

well-posed. By the monotonicity constitutive assumption (4.2.4) we see that T̂11 is

a strictly increasing function of its first argument, which is the position occupied by

−Qξ (to see this replace a and b by e1 and e◦1 in equation (4.2.4)). If we assume

certain growth rates on T̂11, then it may be possible to apply standard methods in

PDEs, such as the direct method of the calculus of variations or the monotonicity

method of Browder and Minty, to show that the boundary-value problem (4.6.11),

(4.6.12) has a unique weak solution. We use another approach, the Poincaré shooting

method, which yields classical solutions and does not require growth rates on T̂11,

but which gives well-posedness only for ω small and R close to 1.

Since the function (q′, q) 7→ T̂11(q
′, q) is strictly increasing in q′ we can define

an inverse function (T11, q) 7→ q̂′(T11, q) by

q̂′(T11, q) = q′ ⇐⇒ T̂11(q
′, q) = T11. (4.6.13)
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We can rewrite the second order equation for Q(ξ), equation (4.6.11), as a first order

system for Q(ξ) and the new variable T11(ξ):

−[(1− ξ)T11]ξ = T̂22 − (1− ξ)ω2Q,

Qξ = −q̂′(T11,
Q

1−ξ
),

(4.6.14)

for −h < ξ < 0, where T̂22 = T̂22(q̂
′(T11,

Q
1−ξ

), Q
1−ξ

). We equip (4.6.14) with the

boundary conditions

T11 = 0 for ξ = −h,

Q = R for ξ = 0.

(4.6.15)

Systems {(4.6.11), (4.6.12)} and {(4.6.14), (4.6.15)} are equivalent.

Let α ∈ R. Consider the initial-value problem obtained by supplementing

equation (4.6.14) with the initial conditions

T11(−h) = 0,

Q(−h) = 1 + h+ α.

(4.6.16)

For ω = α = 0 equations (4.6.14), (4.6.16) have a unique solution Q(ξ) = 1 − ξ,

T11 = T̂11(−Qξ,
Q

1−ξ
) = T̂11(1, 1) = 0 (since the stress variables vanish in the reference

configuration). If R = 1, then Q and T11 also satisfy the boundary-value problem

(4.6.14) and (4.6.15). By standard methods in ordinary differential equations, for

|α| and |ω| small, there exists unique functions Q(ξ;ω, α) and T11(ξ;ω, α) satisfying

(4.6.14) and (4.6.16). We wish to choose α so that Q(0;ω, α) = R. We have reduced

the differential equation (4.6.11), (4.6.12) to the algebraic equation

F (R,ω, α) ≡ Q(0;ω, α)−R = 0. (4.6.17)

We know that this equation has a solution (R,ω, α) = (1, 0, 0). If we can prove that

Fα(1, 0, 0) 6= 0, then by the Implicit Function Theorem there exists a neighborhood
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of (R,ω) = (1, 0) and a function (R,ω) 7→ α̂(R,ω) such that F (R,ω, α̂(R,ω)) = 0

and α̂(1, 0) = ω. Thus Q(ξ;ω, α̂(R,ω)) and T11(ξ;ω, α̂(R,ω)) satisfy (4.6.11) and

(4.6.12).

Now we prove that 0 6= Fα(1, 0, 0) ≡ Qα(0; 0, 0). For convenience we introduce

the notation T̂ 11 := T̂11 and T̂ 22 := T̂22. Differentiate (4.6.11) and (4.6.16)2 with

respect to α and then set (ω, α) = (0, 0) to find that Qα(ξ; 0, 0) satisfies the linear

elliptic equation

− (1− ξ)T̂ 11
q′ (1, 1) ∂ξξQα + [T̂ 11

q (1, 1) + T̂ 11
q′ (1, 1)− T̂ 22

q′ (1, 1)]∂ξQα +
T̂ 22

q (1, 1)

1− ξ
Qα

= 0 (4.6.18)

and the boundary condition

Qα(−h; 0, 0) = 1. (4.6.19)

The coefficients T̂ 11
q′ (1, 1) and T̂ 22

q (1, 1) are positive by the monotonicity condition

(4.2.4). Therefore the weak maximum principle and the boundary condition (4.6.19)

imply that

max
ξ∈[−h,0]

|Qα(ξ; 0, 0)| = max {|Qα(−h; 0, 0)|, |Qα(0; 0, 0)|}

= max {1, |Qα(0; 0, 0)|}.
(4.6.20)

We find a condition under which ∂ξQα(−h; 0, 0) > 0. In this case Qα is increasing at

the end point ξ = −h and so the maximum value of |Qα(ξ; 0, 0)| is greater than 1.

Therefore |Qα(0; 0, 0)| is greater than 1 by (4.6.20), and Fα(1, 0, 0) = Qα(0; 0, 0) 6= 0,

as desired.

To find out when ∂ξQα(−h; 0, 0) > 0, differentiate (4.6.16)1 with respect to α
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and set ω = α = 0 to obtain

− T̂ 11
q′ (1, 1)∂ξQα(−h; 0, 0) + T̂ 11

q (1, 1)
Qα(−h; 0, 0)

1 + h
= 0

⇐⇒ T̂ 11
q′ (1, 1)∂ξQα(−h; 0, 0) = T̂ 11

q (1, 1)
1

1 + h
. (4.6.21)

But T̂ 11
q′ (1, 1) > 0 and so ∂ξQα(−h; 0, 0) > 0 provided that T̂ 11

q (1, 1) > 0. We have

proved that under the constitutive assumption T̂ 11
q (1, 1) > 0, the boundary-value

problem (4.6.11), (4.6.12) has a classical solution for R close to 1 and ω close to 0.

(The regularity of this solution depends on the regularity of T̂11 and T̂22.) Therefore

there exists a rigid Couette solution of the form (4.6.1), (4.6.2) for R close to 1 and

ω close to 0.

4.7 Analysis of the Spectrum

In this section we analyze the stability of the rigid Couette steady solution

(4.6.1), (4.6.2) with respect to ω. The important observation is that when ω =

0 there is a branch of steady solutions bifurcating (or branching) from the rigid

Couette steady solution: When ω = 0 the functions

v = 0, p(x , t) = Q(ξ)e1(s) + d , p = D (4.7.1)

satisfy the coupled fluid-solid equations for all constant vectors d with |d | < R−a. It

follows from a standard theorem in bifurcation theory that ω = 0 is an eigenvalue of

the equations that are obtained by linearizing the steady state fluid-solid equations

about the Couette steady solution. See Antman (2005, Chapter 5, Theorem 4.1).

Therefore, when ω = 0, λ = 0 is an eigenvalue of the equations that are obtained
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by linearizing the time dependent fluid-solid equations about the Couette steady

solution. While we cannot prove it analytically, it is expected that this eigenvalue

will move into the right half-plane as ω is increased from 0, and so the rigid Couette

steady solution will be unstable for all ω > 0. This is the same behavior that we

observed in Chapters 2 and 3. This shows that the reduced string and ring models

are sufficient to capture the important physics of the problem.
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Chapter 5

Axisymmetric Motions of the Shell

5.1 Introduction

In Chapters 2–4 we considered cylindrical motions of the deformable shell.

We found that the rigid Couette solution is unstable for all ω > 0 via a drift

instability. This unstable mode can be stabilized by fixing the center of mass of

the deformable cylinder at the origin. Mathematically, this can be achieved by

seeking axisymmetric motions of the deformable cylinder, which is what we do in

this chapter. Axisymmetric motions were the starting point for studying the classical

Taylor-Couette problem.

We study the motion of a viscous incompressible liquid in the region between

a rigid circular cylinder of radius a < 1 rotating at a prescribed angular velocity ω

and a viscoelastic shell whose natural state is a circular cylinder of radius 1. Both

cylinders have infinite length. We limit our attention to motions in which the fluid

velocity and the shell are axisymmetric, and the meridian curves of the shell rotate

at angular velocity ω. Other than this, the motion of the shell is not prescribed, but

responds to the forces exerted on it by the moving liquid; the inner cylinder drives

the liquid, which in turn drives the deformable shell.

We find a rigid Couette steady solution of this coupled system, similar to the

steady solutions found in Chapters 2–4, and analyze its stability with respect to the
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bifurcation parameter ω and perturbations that are periodic in the axial direction.

We discover new phenomena not observed in Chapters 2–4 or in the classical Taylor-

Couette problem.

5.2 Formulation of the Equations for the Shell

In this section we summarize the theory of deformable axisymmetric shells

from Antman (2005, Chapter 10, Section 1; Chapter 17, Section 4). These shells

can suffer flexure, base surface extension, and shear.

Geometry of Deformation

The reference configuration of the inner bounding surface of the deformable

shell, the part in contact with the fluid, is a circular cylinder of radius of 1, given

parametrically by

r ◦(s, φ) = e1(φ) + sk , (5.2.1)

where (s, φ) ∈ (−∞,∞)× [0, 2π) identify material points of the shell. The position

of material point (s, φ) at time t is r(s, φ, t). We assume that the surface r(·, ·, t) is

axisymmetric and of the form

r(s, φ, t) = q(s, t)e1(φ+ ωt) + ζ(s, t)k . (5.2.2)

Unlike the string problem (Chapter 2), where the motion of the string in not pre-

scribed, here we partially prescribe the motion of the shell; we specify that it remains

axisymmetric and rotates with angular velocity ω.
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The configuration of the shell at time t is the pair {r(·, ·, t),d(·, ·, t)}, where

the unit vector d(s, φ, t) characterizes the deformed configuration of the material

fiber whose reference configuration is on the normal to the base surface r ◦(s, φ).

(The reference value of d is therefore d ◦ = r ◦s × r ◦φ = −e1.) We define

a(s, φ, t) = e2(φ+ ωt)× d(s, φ, t). (5.2.3)

We assume that d(s, φ, t) is confined to the plane spanned by {e1(φ + ωt), k} so

that the shell has O(2)-symmetry. Thus we can define a function θ(s, t) by

a(s, φ, t) = cos θ(s, t)e1(φ+ ωt) + sin θ(s, t)k ,

d(s, φ, t) = − sin θ(s, t)e1(φ+ ωt) + cos θ(s, t)k .

(5.2.4)

We have limited ourselves to motions in which there is no shearing in the e2-

direction, the direction of rotation, due to the unavailability at the time of writing

of a rotationally symmetric shell theory (for shells possessing SO(2)-symmetry).

Antman and Bourne (in preparation) are currently developing such a theory.

We introduce strains q = (τ, ν, η, σ, µ) by

rs(s, φ) =: ν(s)a(s, φ) + η(s)d(s, φ), (5.2.5)

τ := q, σ := sin θ, µ := θs. (5.2.6)

The geometric interpretations of these strains are given in Antman (2005, Chapter

10, Section 1). Roughly speaking, ν and τ measure stretching, η measures shearing,

and σ and µ measure bending. (The definitions of ν, η and µ given here are not to

be confused with those given in earlier chapters for the string and the ring.) The

set of strains {τ, ν, η, σ, µ} is sufficient to determine the configuration of the shell
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{r ,d} up to a rigid motion. In the reference configuration the strains equal

(τ ◦, ν◦, η◦, σ◦, µ◦) = (1, 1, 0, 1, 0). (5.2.7)

The requirement that distinct cross sections of the shell never intersect and that the

local ratio of deformed to reference area of the shell be everywhere positive leads

to restrictions on the strains, for example, ν > 0. See Antman (2005, Chapter 10,

Section 1).

Mechanics

Let n1(s, φ, t) and m1(s, φ, t) denote the internal contact force and contact

couple per unit reference length exerted across circles of latitude of the shell, and

n2(s, φ, t) and m2(s, φ, t) denote the internal contact force and contact couple per

unit reference length exerted across meridian curves of the shell. For more expla-

nation see Antman (2005, Chapter 10, Section 1). Since we seek axisymmetric

configurations of the shell, we require that these stresses have the form

n1(s, φ, t) = N(s, t)a(s, φ, t) +H(s, t)d(s, φ, t), n2(s, φ, t) = T (s, t)e2(φ+ ωt),

m1(s, φ, t) = −M(s)e2(φ+ ωt), m2(s, φ) = Σ(s, t)a(s, φ, t).

Let f (s, φ, t) be the force per unit reference area exerted by the fluid on material

point (s, φ) at time t. We give an expression for f in Section 5.4. The Linear and

Angular Momentum Laws for the shell are

(Na +Hd)s − Te1 + f + ge2 = 2%hrtt + %Idtt

Ms −Σ cos θ + νH − ηN = −(%Id × rtt + %Jd × dtt) · e2.

(5.2.8)
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(These equations are obtained by substituting h = ρJd × dtt, q = d , and r◦ = 1

into equations (17.4.15) and (17.4.16) of Antman (2005, Chapter 17, Section 4).)

Here e1 and e2 here have argument φ + ωt. The force terms on the left-hand side

of equation (5.2.8) can be derived from a free-body diagram by adding up all the

forces on the shell. The linear and angular momentum terms on the right-hand side

of (5.2.8) and the functions (%h)(s, φ), (%I)(s, φ), and (%J)(s, φ) require motivation

from the 3-dimensional theory of continuum mechanics. The derivation is similar to

that given for the ring in Section 3.2. We can think of 2%h, %I, and %J as being the

mass, first moment of mass, and second moment of mass of the shell per reference

area.

The term g(s)e2(φ+ωt) in (5.2.8) is the force required to keep the shell rotating

at angular velocity ω. Note that without this force the system of equations for the

shell is overdetermined: We have three functions describing the shell, q, ζ, and θ,

but four equations that they must satisfy, the angular momentum equation and

three components of the linear momentum equation. By including the force ge2 as

an unknown we obtain a square system, i.e., we have the same number of equations

as unknowns.

There is also a physical explanation for using the force ge2. From the form of

r , equation (5.2.2), we are asking that each generator of the cylinder lie in a vertical

plane rotating at angular velocity ω no matter what force is exerted on it by the

fluid. This cannot happen (for an unconstrained shell) unless we provide a force ge2

to maintain the motion. We can think of g as a feedback control.

It can be shown that the use of g is not artificial. Antman and Bourne (in
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preparation) formulate a general theory of shells that are rotationally symmetric,

but not necessarily axisymmetric: All components of the deformation and stress

resultants are independent of φ, and the shell is invariant under the group SO(2),

but not necessarily under the group O(2). If the deformations are constrained to

be axisymmetric, then such constraints are maintained by Lagrange multipliers.

These Lagrange multipliers intervene in the equation corresponding to (5.2.8), and

g accounts for their contribution.

In Section 5.6 we will see that the function g is not needed for the existence

of a steady solution, i.e., we can take g = 0 in this case.

The e1–, e2–, and k–components of equation (5.2.8)1 are

(Ns −H) cos θ − (N +Hs) sin θ − T + f · e1

= 2%h(qtt − ω2q + ζtt) + %I(sin θ θ2
t − cos θ θtt + sin θ ω2), (5.2.9)

f · e2 + g = 4%hωqt − 2%I cos θ θtω, (5.2.10)

(Ns −H) sin θ + (N +Hs) cos θ + f · k = 2%hζtt − %I(cos θ θ2
t + sin θ θtt). (5.2.11)

Constitutive Equations

We assume that the shell is uniform so that %h, %I, and %J are constants and

the constitutive functions (defined below) are independent of s and φ. Recall that

q = (τ, ν, η, σ, µ). The shell is said to be viscoelastic of strain-rate type if there are

functions

q, q̇ 7→ N̂(q, q̇), Ĥ(q, q̇), M̂(q, q̇), T̂ (q, q̇), Σ̂(q, q̇) (5.2.12)
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such that

N(s, t) = N̂(q(s, t),qt(s, t)), etc. (5.2.13)

The superposed dot on q has no operational significance; it merely identifies the

argument of the constitutive functions that is to be occupied by the time derivative

of q. This form of the constitutive functions follows from the Principle of Frame-

Indifference by starting with general constitutive functions of the form N(s, t) =

N̂(r , rs, rt,d ,ds,dt, s, t).

The Strong Ellipticity Condition from 3-dimensional nonlinear elasticity im-

plies that the following monotonicity conditions hold:

The matrices
∂(N̂ , Ĥ, M̂)

∂(ν, η, µ)
and

∂(T̂ , Σ̂)

∂(τ, σ)
are positive-definite. (5.2.14)

These ensure that an increase in tension accompanies an increase in strain. We

also require that an extreme tension accompanies an extreme strain. This leads

to blow-up conditions for T̂ , N̂ , Ĥ, Σ̂, and M̂ . See Antman (2005, Chapter 10,

Section 1).

We require that the effects of shearing in one sense be the same as in the

opposite sense:

N̂(−η,−η̇) = N̂(η, η̇), Ĥ(−η,−η̇) = −Ĥ(η, η̇), M̂(−η,−η̇) = M̂(η, η̇),

T̂ (−η,−η̇) = T̂ (η, η̇), Σ̂(−η,−η̇) = Σ̂(η, η̇).

Here we have suppressed the arguments τ , ν, σ, µ, τ̇ , ν̇, σ̇, µ̇ of the constitutive
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functions. It follows that if (η, η̇) = (0, 0), then

Ĥ = Ĥτ = Ĥν = Ĥσ = Ĥµ = Ĥτ̇ = Ĥν̇ = Ĥσ̇ = Ĥµ̇ = 0, (5.2.15)

N̂η = N̂η̇ = M̂η = M̂η̇ = T̂η = T̂η̇ = Σ̂η = Σ̂η̇ = 0. (5.2.16)

We also take the reference configuration of the shell to be natural so that the consti-

tutive functions vanish in the reference configuration: N̂((1, 1, 0, 1, 0), (0, 0, 0, 0, 0)) =

0, etc.

5.3 Formulation of the Equations for the Fluid

We use the same notation for the fluid variables as in Chapter 2 except that

the dynamic viscosity is now denoted by µ̃ instead of µ (in this chapter µ denotes

a strain variable). The fluid occupies the region between the rigid inner cylinder

of radius a < 1 and the deformable shell. We assume that the fluid velocity v is

axisymmetric. Therefore it has the following decomposition into rotating cylindrical

polar coordinates (u, v, w):

v(re1(φ+ωt)+zk , t) = u(r, z, t)e1(φ+ωt)+v(r, z, t)e2(φ+ωt)+w(r, z, t)k . (5.3.1)

The (transposed) gradient of v is

∂v

∂x
= (ure1 + vre2 + wrk)e1 + 1

r
(ue2 − ve1)e2 + (uze1 + vze2 + wzk)k . (5.3.2)
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It can be shown that the Navier-Stokes equations for axisymmetric flow in rotating

cylindrical polar coordinates are

ut + uur + wuz − v2

r
= −pr + γ

(
urr +

ur

r
+ uzz − u

r2

)
,

vt + uvr + wvz +
uv

r
= γ

(
vrr +

vr

r
+ vzz − v

r2

)
,

wt + uwr + wwz = −pz + γ
(
wrr +

wr

r
+ wzz

)
,

ur +
u

r
+ wz = 0.

(5.3.3)

5.4 The Coupling Between the Fluid and the Shell Equations

The equations for the fluid and the shell are coupled through the adherence

boundary condition and the body force term f in the linear momentum equation

for the shell. The adherence boundary condition states that

v(a, z, t) = aω, u(a, z, t) = w(a, z, t) = 0, (5.4.1)

v(r(s, φ, t), t) = rt(s, φ, t). (5.4.2)

Now we derive an expression for the body force f exerted by the fluid on the shell.

The outward pointing unit normal to the surface r(·, ·, t) is −(rs × rφ)/|rs × rφ|.

The force per unit (actual) area exerted by the shell on the fluid at r(s, φ, t) is thus

−Σ · (rs × rφ)/|rs × rφ|. Therefore the force per unit reference area exerted by the
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fluid on the shell at r(s, φ, t) is

f = Σ · (rs × rφ)

=

{
−ρpI + µ̃

[
∂v

∂x
+

(
∂v

∂x

)∗]}
· (rs × qe2)

= −ρp(rs × qe2)+

µ̃
[
2ure1e1 + (vr − 1

q
v)(e1e2 + e2e1) + (wr + uz)(e1k + ke1)

+vz(e2k + ke2) + 2
q
ue2e2 + 2wzkk

]
· (rs × qe2)

(5.4.3)

where u, v, and w have arguments (q, ζ, t) and e1 and e2 have argument φ+ ωt.

5.5 Axial Periodicity and the Volume Side Condition

We seek solutions with axial periodicity. Recall that the Taylor vortex flow in

the classical Taylor-Couette problem has this property. We assume that there exists

constants S and Z such that

q(s+ S, t) = q(s, t), ζ(s+ S, t) = ζ(s, t) + Z, θ(s+ S, t) = θ(s, t), (5.5.1)

v(x + Zk , t) = v(x , t), p(x + Zk , t) = p(x , t). (5.5.2)

For simplicity we choose S = Z. This permits the existence of a steady solution

that is unstretched in the vertical direction. See Section 5.6.

Since the fluid is incompressible, the volume of fluid in each period cell must

be constant. Call this constant V . In order to prohibit the formation of cavities

in the fluid we require that the volume of the period cell enclosed by the shell =

volume of fluid in the period cell + volume of the rigid inner cylinder in the period

cell = V + πa2Z. By applying the Divergence Theorem to the vector field zk , this
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volume-preserving condition can be written as

V + πa2Z = πq2Z − 2π

∫ Z

0

ζqqs ds. (5.5.3)

Equation (5.5.3) can also be derived from the compatibility condition

∫

Ω(t)

divv dx = 0, (5.5.4)

where Ω(t) is the domain occupied by the fluid at time t, although once again it is

necessary to assume that the fluid occupies the whole region between the deformable

and rigid cylinders.

5.6 The Couette Steady Solution

We seek a rigid Couette steady solution of the form

u = w = 0, v(r) = ωr, p(r) = P (r) (5.6.1)

r(s, φ, t) = Re1(φ+ ωt) + ζ(s)k , d = − sin θe1 + cos θk , (5.6.2)

where R and θ are constants. Therefore the strains are

ν = rs · a = ζs sin θ, η = rs · d = ζs cos θ, µ = 0, τ = R, σ = sin θ, (5.6.3)

and the force exerted by the fluid on the shell is

f = ρRP (R)ζs e1. (5.6.4)

Note that

4%hωqt − 2%I cos θ θtω − f · e2 = 0 (5.6.5)

160



and so g = 0 (see equation (5.2.10)). Substituting (5.6.2)–(5.6.4) and g = 0 into the

linear momentum equation (5.2.8)1 yields

ζss(N̂ν sin θ + N̂η cos θ)(cos θe1 + sin θk)

+ ζss(Ĥν sin θ + Ĥη cos θ)(− sin θe1 + cos θk)− T̂e1 + ρRP (R)ζse1

= −2%hRω2e1 + %I sin θω2e1,

(5.6.6)

where N̂ν , N̂η, Ĥν , Ĥη, and T̂ have arguments

(q, q̇) = ((R, ζs sin θ, ζs cos θ, sin θ, 0), (0, 0, 0, 0, 0)). (5.6.7)

Take the inner product of (5.6.6) with k to obtain

0 = ζss[sin θ(N̂ν sin θ + N̂η cos θ) + cos θ(Ĥν sin θ + Ĥη cos θ)]

= ζss[sin θ, cos θ]



N̂ν N̂η

Ĥν Ĥη







sin θ

cos θ


 .

(5.6.8)

The matrix on the right-hand side is positive definite by the monotonicity constitu-

tive assumption (5.2.14). Therefore

ζss = 0 ⇐⇒ ζ(s) = cs+ d (5.6.9)

for constants c and d. The periodicity condition (5.5.1)1 implies that c = 1. There-

fore the shell is unstretched in the vertical direction. The e1-component of the linear

momentum equation (5.6.6) and the angular momentum equation (5.2.8)2 simplify

to

−T̂ + ρRP (R) = −2%hRω2 + %I sin θω2,

−Σ̂ cos θ + sin θĤ − cos θN̂ = %IRω2 cos θ − %J sin θ cos θω2,

(5.6.10)
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where T̂ , Σ̂, Ĥ, N̂ have arguments (5.6.7). P (r) can be found from the Navier-Stokes

equation (5.3.3)1:

P (r) = 1
2
r2ω2 +D, (5.6.11)

where D is a constant. Now we have two algebraic equations (5.6.10) for four

constants: d, R, D, θ. This leaves us with some choice. Since the constant d just

corresponds to a rigid motion of the shell, we choose d = 0. Prescribing R or D can

be thought of as prescribing conditions at the ends of the cylinder z = ±∞. As in

the string problem, Chapter 2, we choose to prescribe R rather than D. Then we

can solve (5.6.10) for D and θ. Note that if θ = π/2 (no shearing), then (5.6.10)2

reduces to

Ĥ((R, 1, 0, 1, 0), (0, 0, 0, 0, 0)) = 0, (5.6.12)

which is an identity by constitutive assumption (5.2.15). Then D can be read off

from equations (5.6.10)1 and (5.6.11):

P (R) = P (R;ω) =
1

ρR
(T̂ − 2%hRω2 + %Iω2),

D =
1

ρR
(T̂ − 2%hRω2 + %Iω2)− 1

2
R2ω2.

(5.6.13)

Note that if we had chosen to prescribe D, rather than R, then (5.6.10)1

with θ = π/2 is a nonlinear equation for R, which may have no or many solutions

depending on the constitutive function T̂ . Note also that there may be nontrivial

solutions θ 6= π/2. We find these shear instabilities in Section 5.9.

When we refer to the Couette steady solution we mean the solution found in

this section with d = 0, θ = π/2, R a prescribed constant, and D given by (5.6.13)2.

We analyze the stability of this solution with respect to the angular velocity ω.
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5.7 Linearization

We linearize the equations of motion about the Couette steady solution using

the same procedure and notation as in Section 2.8.

The strain-configuration relations. Recall the geometry and strain-configuration

relations:

r = qe1 + ζk , d = − sin θe1 + cos θk , a = cos θe1 + sin θk , (5.7.1)

rs = νa + ηd , σ = sin θ, τ = q, µ = θs. (5.7.2)

Linearizing these equations yields

r 1 = q1e1 + ζ1k , d 1 = −θ1k , a1 = −θ1e1, (5.7.3)

r 1
s = −(θ1 + η1)e1 + ν1k , σ1 = 0, τ 1 = q1, µ1 = θ1

s . (5.7.4)

We can solve (5.7.3) and (5.7.4) for the strain perturbations in terms of q1, ζ1, and

θ1:

τ 1 = q1, ν1 = ζ1
s , η1 = −q1

s − θ1, σ1 = 0, µ1 = θ1
s . (5.7.5)

The linear momentum equation. Let a superscript ◦ on a constitutive function

denote the function value at the Couette steady solution, e.g.,

N◦ := N̂((R, 1, 0, 1, 0), (0, 0, 0, 0, 0)). (5.7.6)

Equations (5.3.2) and (5.6.1) imply that

∂v 0

∂x
(re1(φ+ ωt) + zk) = ω[e2(φ+ ωt)e1(φ+ ωt)− e1(φ+ ωt)e2(φ+ ωt)] ≡ ωk×,

(5.7.7)
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a skew-symmetric, constant tensor. Linearizing the force term in the linear momen-

tum equation (5.2.8)1 requires care:

d

dε

∣∣∣∣
ε=0

f =
d

dε

∣∣∣∣
ε=0

Σ · (rs × qe2)

=
d

dε

∣∣∣∣
ε=0

Σ(v(r(s, φ, t; ε), t; ε), p(r(s, φ, t; ε), t; ε)) · (rs(s, φ, t; ε)× q(s, t; ε)e2)

= ρR2ω2(e1 · r 1)e1 −RΣ(v 1, p1) · e1 − ρRP (R)(r 1
s × e2) + ρP (R)q1e1

= ρR2ω2q1e1 + ρRp1e1 −Rµ̃[2u1
re1 + (v1

r − 1
R
v1)e2 + (w1

r + u1
z)k ]

− ρRP (R)(q1
sk − ζ1

se1) + ρP (R)q1e1,

(5.7.8)

where the fluid variables u1
r, v

1
r , etc., are evaluated at (r, z, t) = (R, s, t). Therefore

by linearizing the linear momentum equation (5.2.8)1 we obtain

2%hr 1
tt + %Id 1

tt = N1
s k −H1

se1 − µ1N◦e1 − T 1e1 + ρR2ω2q1e1 + ρRp1e1

−Rµ̃[2u1
re1 + (v1

r − 1
R
v1)e2 + (w1

r + u1
z)k ]

− ρRP (R)(q1
sk − ζ1

se1) + ρP (R)q1e1 + g1e2, (5.7.9)

where

N1
s = N◦

τ τ
1
s +N◦

ν ν
1
s +N◦

µµ
1
s +N◦

τ̇ τ
1
st +N◦

ν̇ ν
1
st +N◦

µ̇µ
1
st,

H1
s = H◦

ηη
1
s +H◦

η̇η
1
st,

T 1 = T ◦τ τ
1 + T ◦ν ν

1 + T ◦µµ
1 + T ◦τ̇ τ

1
t + T ◦ν̇ ν

1
t + T ◦µ̇µ

1
t .

(5.7.10)

Note that we have used (5.7.5) to replace σ1 by 0 and the constitutive assumptions

(5.2.15) and (5.2.16) to identify many of the coefficients of N1
s , H1

s , and T 1 as 0.
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The e1–, e2–, and k–components of equation (5.7.9) are

2%h(q1
tt − ω2q1) = −H1

s − µ1N◦ − T 1 + ρR2ω2q1 + ρRp1 − 2Rµ̃u1
r

+ ρP (R)Rζ1
s + ρP (R)q1,

4%hωq1
t = −Rµ̃(v1

r − 1
R
v1) + g1,

2%hζ1
tt − %Iθ1

tt = N1
s −Rµ̃(w1

r + u1
z)− ρRP (R)q1

s .

(5.7.11)

Equation (5.7.11)2 can be solved for g1. Thus we can drop equation (5.7.11)2 along

with the variable g1.

The angular momentum equation. By linearizing equation (5.2.8)2 we find

M1
s +Σ◦θ1 +H1 − η1N◦ = −[%I(r 1

tt −Rω2d 1) + %J(d 1
tt + ω2d 1)] · k

= −%I(ζ1
tt +Rω2θ1) + %J(θ1

tt + ω2θ1),

(5.7.12)

where

M1
s = M◦

τ τ
1
s +M◦

ν ν
1
s +M◦

µµ
1
s +M◦

τ̇ τ
1
st +M◦

ν̇ ν
1
st +M◦

µ̇µ
1
st,

H1 = H◦
ηη

1 +H◦
η̇η

1
t .

(5.7.13)

Once again we have used (5.7.5) and constitutive assumptions (5.2.15) and (5.2.16).

The Navier-Stokes equations. Linearizing (5.3.3) about the Couette solution

gives

u1
t − 2ωv1 = −p1

r + γ

(
u1

rr +
u1

r

r
+ u1

zz −
u1

r2

)
,

v1
t + 2ωu1 = γ

(
v1

rr +
v1

r

r
+ v1

zz −
v1

r2

)
,

w1
t = −p1

z + γ

(
w1

rr +
w1

r

r
+ w1

zz

)
,

u1
r +

u1

r
+ w1

z = 0.

(5.7.14)
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The domain of the linearized equations (5.7.14) is constant and equals {(r, φ, Z) ∈

[a,R]× [0, 2π]× (−∞,∞)}.

The adherence boundary condition. Substitute (5.2.2) and (5.3.1) into (5.4.2)

to obtain

u(q, ζ, t)e1 + v(q, ζ, t)e2 + w(q, ζ, t)k = qte1 + ωqe2 + ζtk . (5.7.15)

Taking the inner product with e1, e2, and k , and then linearizing, we obtain

u1(R, s, t) = q1
t (s, t), v1(R, s, t) = 0, w1(R, s, t) = ζ1

t (s, t). (5.7.16)

Linearizing (5.4.1) gives

u1(a, z, t) = v1(a, z, t) = w1(a, z, t) = 0. (5.7.17)

The periodicity condition. Linearizing (5.5.1) yields

q1(s+ Z, t) = q1(s, t), ζ1(s+ Z, t) = ζ1(s, t), θ1(s+ Z, t) = θ1(s, t), (5.7.18)

v 1(x + Zk , t) = v 1(x , t), p1(x + Zk , t) = p1(x , t). (5.7.19)

The volume side condition. Equation (5.5.3) has linearization

∫ Z

0

q1 ds = 0. (5.7.20)
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5.8 The Quadratic Eigenvalue Problem

Polar Coordinates

We seek solutions of the linearized equations with exponential time-dependence:

u1(r, z, t) = u(r, z)eλt, v1(r, z, t) = v(r, z)eλt, w1(r, z, t) = w(r, z)eλt,

q1(s, t) = q(s)eλt, ζ1(s, t) = ζ(s)eλt, θ1(s, t) = θ(s)eλt,

τ 1(s, t) = τ 1(s)eλt, ν1(s, t) = ν1(s)eλt, η1(s, t) = η1(s)eλt, µ1(s, t) = µ1(s)eλt.

Note that the symbols u, v, w, q, ζ, θ, τ , ν, η, and µ have a different meaning

here than they did in the previous sections. Substituting these expressions into the

linearized equations yields the following:

The strain-configuration relations.

τ = q, ν = ζs, η = −qs − θ, µ = θs. (5.8.1)

The linear momentum equations.

2%h(λ2−ω2)q = −(H◦
η +λH◦

η̇ )ηs−N◦µ−(T ◦τ +λT ◦τ̇ )τ−(T ◦ν +λT ◦ν̇ )ν−(T ◦µ +λT ◦µ̇)µ

+ ρR2ω2q + ρRp− 2Rµ̃ur + ρP (R)Rζs + ρP (R)q, (5.8.2)

2%hλ2ζ − %Iλ2θ = (N◦
τ + λN◦

τ̇ )τs + (N◦
ν + λN◦

ν̇ )νs + (N◦
µ + λN◦

µ̇)µs

−Rµ̃(wr + uz)− ρRP (R)qs. (5.8.3)

The angular momentum equation.

−%I(λ2ζ+Rω2θ)+%J(λ2+ω2)θ = (M◦
τ +λM◦

τ̇ )τs+(M◦
ν +λM◦

ν̇ )νs+(M◦
µ +λM◦

µ̇)µs

+Σ◦θ + (H◦
η + λH◦

η̇ )η −N◦η. (5.8.4)
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The Navier-Stokes equations.

λu− 2ωv = −pr + γ
(
urr +

ur

r
+ uzz − u

r2

)
,

λv + 2ωu = γ
(
vrr +

vr

r
+ vzz − v

r2

)
,

λw = −pz + γ
(
wrr +

wr

r
+ wzz

)
,

ur +
u

r
+ wz = 0.

(5.8.5)

The adherence boundary condition.

u(R, s) = λq(s), v(R, s) = 0, w(R, s) = λζ(s), (5.8.6)

u(a, z) = v(a, z) = w(a, z) = 0. (5.8.7)

The periodicity condition.

q(s+ Z) = q(s), ζ(s+ Z) = ζ(s), θ(s+ Z) = θ(s), (5.8.8)

u(r, z + Z) = u(r, z), v(r, z + Z) = v(r, z), w(r, z + Z) = w(r, z), (5.8.9)

p(r, z + Z) = p(r, z). (5.8.10)

The volume side condition.

∫ Z

0

q ds = 0. (5.8.11)
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Coordinate-free Equations

In order to write the quadratic eigenvalue problem in coordinate-free form we

define

ṽ(re1(φ) + zk) := u(r, z)e1(φ) + v(r, z)e2(φ) + w(r, z)k ,

p̃(re1(φ) + zk) := p(r, z),

r̃(s, φ) := q(s)e1(φ) + ζ(s)k ,

d̃(s) := −θk .

(5.8.12)

Now we drop the tilde from these variables. The new variables v , p, r , and d satisfy

the quadratic eigenvalue problem (5.8.13)–(5.8.18) given below. This can be checked

by substituting (5.8.12) into (5.8.13)–(5.8.18) to obtain (5.8.2)–(5.8.11). Note that

we have eliminated the strain variables τ , ν, η, and µ in favor of r and d . The

vectors e1 and e2 in (5.8.13) and (5.8.14) have argument φ.

The linear momentum equation.

2%hλ2r − 2%hω2(r · e1)e1 + λ2%Id

= (N◦
τ +λN◦

τ̇ )(rs ·e1)k+(N◦
ν +λN◦

ν̇ )(rss ·k)k−(N◦
µ+λN◦

µ̇)dss+(H◦
η +λH◦

η̇ )(rss ·e1)e1

+(T ◦µ +λT ◦µ̇ +N◦−H◦
η −λH◦

η̇ )(e2×ds)− (T ◦τ +λT ◦τ̇ )(r ·e1)e1− (T ◦ν +λT ◦ν̇ )(rs ·k)e1

+ (ρR2ω2 + ρP (R))(r · e1)e1 + ρRP (R)e2 × rs −RΣ · e1 +Rµ̃(vr − 1
R
v)e2.

(5.8.13)
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The angular momentum equation.

− %Iλ2r · k − (%Jλ2 + %Jω2 − %IRω2)d · k

= (M◦
τ + λM◦

τ̇ )(rs × e2) · k + (M◦
ν + λM◦

ν̇ )rss · k − (M◦
µ + λM◦

µ̇)dss · k −Σ◦d · k

+ (H◦
η + λH◦

η̇ −N◦)[d · k − (rs × e2) · k ]. (5.8.14)

The Navier-Stokes equations.

λv = 1
ρ
divΣ(p, v)− 2ωk × v ,

∇ · v = 0.

(5.8.15)

The adherence boundary condition.

v = 0 for r = a, v(Re1(φ) + sk) = λr(s, φ). (5.8.16)

The periodicity condition.

v(x + Zk) = v(x ), p(x + Zk)= p(x ),

r(s+ Z, φ) = r(s, φ), d(s+ Z)= d(s).

(5.8.17)

The volume side condition.

∫ Z

0

r(s, φ) · e1(φ) ds = 0. (5.8.18)

5.9 Analysis of the Spectrum

Eigenvalue Crossings

For the string problem we were able to prove that the eigenvalues λ cross the

imaginary axis through the origin by using a simple energy estimate. See Section
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2.10. What information can we learn about the shell problem by performing a

similar estimate?

Let Ω denote the period cell

Ω = {x = re1(φ) + zk : a < r < R, 0 ≤ φ ≤ 2π, 0 < z < Z} (5.9.1)

and nΩ the unit outer normal to ∂Ω. Take the inner product of equation (5.8.15)1

with v̄ and integrate by parts over Ω to obtain

ρ λ||v ||2L2(Ω) =

∫

∂Ω

nΩ ·Σ · v̄ dx −
∫

Ω

Σ :
∂v̄

∂x
dx − 2ρω

∫

Ω

(k × v) · v̄ dx

=

∫ Z

0

∫ 2π

0

e1 ·Σ · v̄ Rdφds− 2µ̃||D(v)||2L2(Ω) − 2ρω

∫

Ω

(k × v) · v̄ dx ,

(5.9.2)

where we have used the adherence boundary condition v = 0 on {r = a}, the pe-

riodicity condition (5.8.17), the divergence free constraint I : ∂v̄/∂x ≡ div v̄ = 0,

and the identity D(v) : ∂v̄/∂x = |D(v)|2. In the boundary term in (5.9.2) sub-

stitute for RΣ · e1 from equation (5.8.13), substitute for v̄ from equation (5.8.16)2,

and integrate by parts to find that

∫ Z

0

∫ 2π

0

e1 ·Σ · v̄ Rdφ ds =

(ρR2ω2 + ρP (R))λ̄||r · e1||2L2 − (N◦
ν + λN◦

ν̇ )λ̄||rs · k ||2L2 − (H◦
η + λH◦

η̇ )λ̄||rs · e1||2L2

− (T ◦τ + λT ◦τ̇ )λ̄||r · e1||2L2 − 2%hλ|λ|2||r ||2L2 + 2%hω2λ̄||r · e1||2L2

+ ρRP (R)λ̄

∫ Z

0

∫ 2π

0

(e2 × rs) · r̄ dφ ds+ (N◦
τ + λN◦

τ̇ )λ̄

∫ Z

0

∫ 2π

0

(rs · e1)(r̄ · k) dφ ds

− (N◦
µ + λN◦

µ̇)λ̄

∫ Z

0

∫ 2π

0

dss · r̄ dφ ds

+ (T ◦µ + λT ◦µ̇ +N◦ −H◦
η − λH◦

η̇ )λ̄

∫ Z

0

∫ 2π

0

(e2 × ds) · r̄ dφ ds

− (T ◦ν + λT ◦ν̇ )λ̄

∫ Z

0

∫ 2π

0

(rs · k)(r̄ · e1) dφds− %Iλ|λ|2
∫ Z

0

∫ 2π

0

d · r̄ dφ ds. (5.9.3)
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We can eliminate some of the bad terms in this equation by combining it with

the angular momentum equation. Multiply (5.8.14) by λ̄θ̄, integrate by parts over

(s, φ) ∈ (0, Z)× (0, 2π), and use the identity d = −θk to obtain

%Iλ|λ|2
∫ Z

0

∫ 2π

0

r · d̄ dφ ds+ (%Jλ2 + %Jω2 − %IRω2)λ̄||d ||2L2 =

− (M◦
τ + λM◦

τ̇ )λ̄

∫ Z

0

∫ 2π

0

(rs × e2) · d̄ dφ ds− (M◦
ν + λM◦

ν̇ )λ̄

∫ Z

0

∫ 2π

0

rss · d̄ dφ ds

− (M◦
µ +λM◦

µ̇)λ̄||ds||2L2 + λ̄Σ◦||d ||2L2 +(H◦
η +λH◦

η̇ −N◦)λ̄
∫ Z

0

∫ 2π

0

(rs× e2) · d̄ dφ ds

− (H◦
η + λH◦

η̇ −N◦)λ̄||d ||2L2 . (5.9.4)

Finally, add (5.9.4) to (5.9.2) and substitute for the boundary term in (5.9.2) from

(5.9.3) to find

ρ λ||v ||2L2(Ω) = −2µ̃||D(v)||2L2(Ω) − 2ρω

∫

Ω

(k × v) · v̄ dx

+ (ρR2ω2 + ρP (R))λ̄||r · e1||2L2 − (N◦
ν + λN◦

ν̇ )λ̄||rs · k ||2L2 − (H◦
η + λH◦

η̇ )λ̄||rs · e1||2L2

− (T ◦τ + λT ◦τ̇ )λ̄||r · e1||2L2 − 2%hλ|λ|2||r ||2L2 + 2%hω2λ̄||r · e1||2L2

+ ρRP (R)λ̄

∫ Z

0

∫ 2π

0

(e2 × rs) · r̄ dφ ds+ (N◦
τ + λN◦

τ̇ )λ̄

∫ Z

0

∫ 2π

0

(rs · e1)(r̄ · k) dφ ds

− (N◦
µ + λN◦

µ̇)λ̄

∫ Z

0

∫ 2π

0

dss · r̄ dφ ds+ (T ◦µ + λT ◦µ̇)λ̄

∫ Z

0

∫ 2π

0

(e2 × ds) · r̄ dφ ds

− (T ◦ν + λT ◦ν̇ )λ̄

∫ Z

0

∫ 2π

0

(rs · k)(r̄ · e1) dφ ds− %Iλ|λ|2
∫ Z

0

∫ 2π

0

(r · d̄ + r̄ · d) dφ ds

− (M◦
τ + λM◦

τ̇ )λ̄

∫ Z

0

∫ 2π

0

(rs × e2) · d̄ dφ ds− (M◦
ν + λM◦

ν̇ )λ̄

∫ Z

0

∫ 2π

0

rss · d̄ dφ ds

− (M◦
µ +λM◦

µ̇)λ̄||ds||2L2− (H◦
η +λH◦

η̇ −N◦)λ̄||d ||2L2− (%Jλ2 +%Jω2−%IRω2)λ̄||d ||2L2

+ λ̄Σ◦||d ||2L2 + (H◦
η + λH◦

η̇ −N◦)λ̄
∫ Z

0

∫ 2π

0

[(r̄s × e2) · d + (rs × e2) · d̄ ] dφ ds.

(5.9.5)
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The term

−2ρω

∫

Ω

(k × v) · v̄ dx ,

is purely imaginary. The integrals

∫ Z

0

∫ 2π

0

(e2 × rs) · r̄ dφ ds,
∫ Z

0

∫ 2π

0

(r · d̄ + r̄ · d) dφ ds,

∫ Z

0

∫ 2π

0

[(r̄s × e2) · d + (rs × e2) · d̄ ] dφ ds.

are real. There are still many terms in equation (5.9.5) that cannot be immediately

identified as real or imaginary. To make further progress with the analysis we

must make some additional constitutive assumptions. We assume that the following

symmetry conditions hold:

N̂τ = T̂ν , T̂µ = M̂τ , N̂µ = M̂ν . (5.9.6)

We also require some monotonicity:

Ĥη̇ ≥ 0, the matrix




N̂ν̇ N̂τ̇ N̂µ̇

T̂ν̇ T̂τ̇ T̂µ̇

M̂ν̇ M̂τ̇ M̂µ̇




is positive-semidefinite. (5.9.7)

Conditions (5.9.6) and (5.9.7) are satisfied by hyperelastic materials, for example.

Recall that the shell is hyperelastic if there exists a stored energy potentital W (q)

such that

N̂ = Wν , Ĥ = Wη, M̂ = Wµ, T̂ = Wτ , Σ̂ = Wσ. (5.9.8)

The symmetry conditions (5.9.6) allow us to combine several of the terms of equation
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(5.9.5):

N◦
τ λ̄

∫ Z

0

∫ 2π

0

(rs · e1)(r̄ · k) dφ ds− T ◦ν λ̄
∫ Z

0

∫ 2π

0

(rs · k)(r̄ · e1) dφ ds (5.9.9)

= N◦
τ λ̄

∫ Z

0

∫ 2π

0

[(rs · e1)(r̄ · k) + (r̄s · e1)(r · k)] dφ ds,

T ◦µ λ̄
∫ Z

0

∫ 2π

0

(e2 × ds) · r̄ dφ ds−M◦
τ λ̄

∫ Z

0

∫ 2π

0

(rs × e2) · d̄ dφ ds

= T ◦µ λ̄
∫ Z

0

∫ 2π

0

[(e2 × ds) · r̄ + (e2 × d̄s) · r ] dφ ds,

−N◦
µλ̄

∫ Z

0

∫ 2π

0

dss · r̄ dφ ds−M◦
ν λ̄

∫ Z

0

∫ 2π

0

rss · d̄ dφ ds

= −N◦
µ λ̄

∫ Z

0

∫ 2π

0

[dss · r̄ + d̄ss · r ] dφ ds.

Recall that d = −θk . The terms in (5.9.5) containing the factor H◦
η̇ can be grouped

together:

−|λ|2H◦
η̇ ||rs ·e1||2L2−|λ|2H◦

η̇ ||d ||2L2 +|λ|2H◦
η̇

∫ Z

0

∫ 2π

0

[(r̄s×e2)·d+(rs×e2)·d̄ ] dφ ds

= −|λ|2H◦
η̇ ||rs · e1 + θ||2L2 . (5.9.10)

All the remaining viscoelastic terms in (5.9.5) can be written as a quadratic form:

− |λ|2N◦
ν̇ ||rs · k ||2L2 − |λ|2T ◦τ̇ ||r · e1||2L2 + |λ|2N◦

τ̇

∫ Z

0

∫ 2π

0

(rs · e1)(r̄ · k) dφ ds

− |λ|2N◦
µ̇

∫ Z

0

∫ 2π

0

dss · r̄ dφ ds+ |λ|2T ◦µ̇
∫ Z

0

∫ 2π

0

(e2 × ds) · r̄ dφ ds

− |λ|2T ◦ν̇
∫ Z

0

∫ 2π

0

(rs · k)(r̄ · e1) dφ ds− |λ|2M◦
τ̇

∫ Z

0

∫ 2π

0

(rs × e2) · d̄ dφ ds

− |λ|2M◦
ν̇

∫ Z

0

∫ 2π

0

rss · d̄ dφ ds− |λ|2M◦
µ̇||ds||2L2

= −|λ|2
∫ Z

0

∫ 2π

0

[
r̄s · k r̄ · e1 θ̄s

]




N◦
ν̇ N◦

τ̇ N◦
µ̇

T ◦ν̇ T ◦τ̇ T ◦µ̇

M◦
ν̇ M◦

τ̇ M◦
µ̇







rs · k

r · e1

θs



dφ ds. (5.9.11)
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By substituting (5.9.9), (5.9.10), and (5.9.11) into (5.9.5), taking the real part of

the resulting equation, and setting Re(λ) = 0 we discover that

0 = −2µ̃||D(v)||2L2(Ω) − |λ|2H◦
η̇ ||rs · e1 + θ||2L2

− |λ|2
∫ Z

0

∫ 2π

0

[
r̄s · k r̄ · e1 θ̄s

]




N◦
ν̇ N◦

τ̇ N◦
µ̇

T ◦ν̇ T ◦τ̇ T ◦µ̇

M◦
ν̇ M◦

τ̇ M◦
µ̇







rs · k

r · e1

θs



dφ ds. (5.9.12)

By the monotonicity assumption (5.9.7), all the terms on the right-hand side of

(5.9.12) are nonpositive. Therefore, if Re(λ) = 0, then ||D(v)||2L2(Ω) = 0 and so

v = 0 by Korn’s inequality and the boundary condition v = 0 on {r = a}. But v = 0

implies that λr = 0 by the adherence boundary condition (5.8.16). So either λ = 0

and eigenvalues cross the imaginary axis through the origin or r = 0 and eigenvalues

crossing the imaginary axis have eigenfunctions (v , p, r ,d) = (0, constant, 0,d).

We examine the second case. It is convenient to return to the equations in polar

coordinates. Since v = r = 0, then q = ζ = u = v = w = 0. Substituting these into

equations (5.8.2)–(5.8.4) yields

H◦
ηθs −N◦θs − T ◦µθs + ρRp = 0,

−%Iλ2θ = N◦
µθss,

−%IRω2θ + %J(λ2 + ω2)θ = M◦
µθss +Σ◦θ − (H◦

η −N◦)θ.

(5.9.13)

But p is constant. Therefore by differentiating (5.9.13)1 with respect to s we find

that

(H◦
η −N◦ − T ◦µ)θss = 0. (5.9.14)

So, unless we are in the non-generic case H◦
η − N◦ − T ◦µ = 0, then θss = 0. This
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and the periodicity condition (5.8.8) imply that θ = constant. By substituting θ =

constant back into (5.9.13)1 we see that the pressure constant p = 0. Substituting

θ = constant into (5.9.13)2 yields λ2θ = 0. Thus either λ = 0 and we are back in

the first case (eigenvalues crossing through the origin), or θ = 0 and λ is not an

eigenvalue since (v , p, r ,d) = (0, 0, 0, 0). Therefore all eigenvalues λ that cross the

imaginary axis must cross through the origin.

Observe that substituting λ = 0, θ = constant 6= 0 into (5.9.13)3 gives an

equation for the critical values of ω2:

(%J − %IR)ω2 = Σ◦ −H◦
η +N◦. (5.9.15)

The coefficient of ω2 is positive. Therefore (5.9.15) has real solutions if and only if

Σ◦ −H◦
η +N◦ > 0. (5.9.16)

Assume that (5.9.16) holds. Since the solution ω2 of (5.9.15) has odd algebraic mul-

tiplicity, standard theorems in bifurcation theory imply that there exists a branch

of steady solutions of the original nonlinear problem, which bifurcates from the

Couette steady solution when

ω2 =
Σ◦ −H◦

η +N◦

%J − %IR
. (5.9.17)

These solutions correspond to shear instabilities of the Couette steady solution. We

have proved the following:

Theorem 5.9.18 (Eigenvalue Crossings). Assume that the following additional

material properties hold:
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(i) The symmetry condition (5.9.6),

(ii) The monotonicity condition (5.9.7).

(These conditions are satisfied by hyperelastic materials, for example.) Furthermore,

assume the generic condition H◦
η − N◦ − T ◦µ 6= 0. (This condition can be dropped

if either one of the statements in (5.9.7) is strict.) Let (λ, (v , p, r ,d)) be a smooth

eigenpair of equations (5.8.13)–(5.8.18). If Re(λ) = 0, then λ = 0. Therefore any

eigenvalues λ that cross the imaginary axis must cross through the origin.

Theorem 5.9.19 (Shear Instabilities). Assume that the hypotheses of Theorem

(5.9.18) hold. Furthermore, assume that Σ◦−H◦
η +N◦ > 0. Then eigenvalue problem

(5.8.13)–(5.8.18) has an eigenpair (λ, (v , p, r ,d)) = (0, (0, 0, 0, k)) when

ω2 =
Σ◦ −H◦

η +N◦

%J − %IR
.

This steady state bifurcation corresponds to a shear instability of the Couette steady

solution.

Critical Values of ω

In this section we assume that the hypotheses of Theorem (5.9.18) hold so that

all the eigenvalues of (5.8.13)–(5.8.18) that cross the imaginary axis cross through

the origin. This means that we can set λ = 0 in the quadratic eigenvalue problem to

obtain an eigenvalue problem for the critical values of ω. Note that this is equivalent

to linearising the steady state problem about the Couette solution.

By substituting λ = 0 in (5.8.5) and (5.8.6) we find that u = v = w = 0

and p is constant. By integrating equation (5.8.2) over s ∈ [0, Z] and applying the
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periodicity conditions and the volume side condition we find that p = 0. Substituting

u = v = w = p = 0 into (5.8.2)–(5.8.4) and using (5.8.1) to write the strains in

terms of q, ζ, and θ yields

−2%hω2q = H◦
η (qss + θs)−N◦θs − T ◦τ q − T ◦ν ζs − T ◦µθs + ρR2ω2q

+ ρP (R)Rζs + ρP (R)q,

0 = N◦
τ qs +N◦

ν ζss +N◦
µθss − ρRP (R)qs,

−(%IRω2 + %Jω2)θ = M◦
τ qs +M◦

ν ζss +M◦
µθss +Σ◦θ + (H◦

η −N◦)(−qs − θ).

(5.9.20)

Recall that q, ζ, and θ have period Z. Decompose them into Fourier series:

q(s) =
∑

k∈Z
qke

2πiks/Z , ζ(s) =
∑

k∈Z
ζke

2πiks/Z , θ(s) =
∑

k∈Z
θke

2πiks/Z . (5.9.21)

By Parseval’s Theorem we can write (5.9.20) as a family of matrix equations indexed

by k ∈ Z: 


ak
11 ak

12 ak
13

ak
21 ak

22 ak
23

ak
31 ak

32 ak
33







qk

ζk

θk




=




0

0

0



, (5.9.22)
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where

ak
11 = 2%hω2 − 4π2k2Z−2H◦

η − T ◦τ + ρR2ω2 + ρP (R;ω),

ak
12 = 2πikZ−1(−T ◦ν + ρRP (R;ω)),

ak
13 = 2πikZ−1(H◦

η −N◦ − T ◦µ),

ak
21 = 2πikZ−1(N◦

τ − ρRP (R;ω)),

ak
22 = −4π2k2Z−2N◦

ν ,

ak
23 = −4π2k2Z−2N◦

µ,

ak
31 = 2πikZ−1(M◦

τ −H◦
η +N◦),

ak
32 = −4π2k2Z−2M◦

ν ,

ak
33 = %IRω2 − %Jω2 − 4π2k2Z−2M◦

µ +Σ◦ −H◦
η +N◦,

P (R;ω) =
1

ρR
(T ◦ − 2%hRω2 + %Iω2).

(5.9.23)

We wish to find ω ∈ R such that equation (5.9.22) has nontrivial solutions. Observe

that k is a factor of the middle row and column of the matrix above. Thus by setting

k = 0 we see that λ = 0 is an eigenvalue for all ω. As for the string problem, this

eigenvalue corresponds to a rigid motion of the Couette steady solution. In this case

the rigid motion is a vertical translation of the deformable cylinder.

In the previous section we found a shear instability of the Couette steady

solution. This also corresponds to the case k = 0 since the eigenfunction is

(u, v, w, p, q, ζ, θ) = (0, 0, 0, 0, 0, 0, constant).

Are there any other eigenfunctions for k = 0? Note that the volume side condition
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(5.8.11) implies that q0 = 0. Substituting q0 = k = 0 into (5.9.22) implies that

ζ0 is arbitrary, a33θ0 = 0. (5.9.24)

These are the two eigenfunctions that we have already found, the vertical translation

and the shear instability.

Denote the matrix on the left-hand side of (5.9.22) by A(k) ≡ A(k, ω2). Ob-

serve that A(−k) = A(k). For hyperelastic materials A is also self-adjoint.

Now we consider the case k 6= 0. By setting the determinant of A(k, ω2) equal

to zero we obtain a cubic equation for ω2:

detA(k, ω2) = 0. (5.9.25)

(Note that this equation would be quadratic in ω2 if we had modelled the deformable

body using a membrane theory rather than a shell theory.) It can be shown that the

cubic equation (5.9.25) has real coefficients and the coefficient of (ω2)3 is negative.

The constant term in the polynomial does not have a sign. For some materials and

some k and Z the constant term will be positive and so the cubic equation will

have at least one positive solution ω2
crit, which implies that λ = 0 is an eigenvalue of

(5.8.13)–(5.8.18) when ω = ωcrit. It can also be checked that the coefficients of the

cubic polynomial are functions of k2.

In this section we have proved that all the eigenvalues λ of (5.8.13)–(5.8.18)

that cross the imaginary axis cross through the origin, but have not proved any-

thing about the way that they cross. In Section 5.11 we compute the eigenvalues

numerically to find out if the bifurcation is steady state or Takens-Bogdanov (as for
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the string problem, see Section 2.13). We also solve equation (5.9.25) numerically

to find the critical values of ω.

5.10 Weak Formulation of the Quadratic Eigenvalue Problem

Derivation

The weak formulation of the quadratic eigenvalue problem (5.8.13)–(5.8.18) is

derived in a similar way to the weak formulation of the quadratic eigenvalue problem

for the string problem. See Section 2.11. So we just sketch the details. Recall that

Ω is the period cell for the fluid: Ω = {x = re1(φ) + zk : a < r < R, 0 ≤ φ <

2π, 0 ≤ z < Z}. Also recall that e3 ≡ k . Let ΓR and TZ be period cells for the

shell: ΓR := {(s, φ) ∈ [0, Z)× [0, 2π)}, TZ := {s ∈ [0, Z)}. Let

H1
a(Ω) := {v ∈ H1(Ω;C3) : v(ae1 + zk) = 0, v(Re1(φ) + zk) · e2(φ) = 0,

for j ∈ {1, 2, 3}, v(re1(φ) + zk) · ej(φ) is independent of φ},

H1
S (ΓR) :=

{
r(s, φ) ∈ H1(ΓR;C3) :

∫ Z

0

r(s, φ) · e1(φ) ds = 0, r(s, φ) · e2(φ) = 0,

for l ∈ {1, 3}, r(s, φ) · el(φ) is independent of φ

}
,

Π :=

{
p ∈ L2(Ω;C) :

∫

Ω

p dx = 0, p(re1(φ) + zk) is independent of φ

}
,

V1 := {(v , r , θ) ∈ H1
a(Ω)×H1

S (ΓR)×H1(TZ ;C)}

V2 := {(w , q , ψ, t) ∈ H1
a(Ω)×H1

S (ΓR)×H1(TZ ;C)×H1/2(ΓR;C3) :

w(Re1(φ) + sk) = q(s, φ), t(s, φ) · e2(φ) = 0,

for l ∈ {1, 3}, t(s, φ) · el(φ) is independent of φ}.
(5.10.1)
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Now we derive a weak formulation of the coupled equations (5.8.13)–(5.8.18). Re-

place d in (5.8.13) and (5.8.14) by −θk . Let (w , q , ψ, t) ∈ V2, q ∈ Π. Take the

L2-inner product of (5.8.15)1 with w , the L2-inner product of (5.8.15)2 with q, the

L2-inner product of (5.8.13) with q , the L2-inner product of (5.8.14) with ψ, the

H1/2-inner product of (5.8.16)2 with t , use integration by parts, and add all the

resulting equations together to obtain the

Weak formulation of the quadratic eigenvalue problem. Find λ ∈ C and

0 6= (v , r , θ, p) ∈ V1 × Π such that for all (w , q , ψ, t , q) ∈ V2 × Π

0 = λ2a2((r , θ), (q , ψ)) + λa1((v , r , θ), (w , q , ψ, t))

+ a0((v , r , θ), (w , q , ψ, t)) + b(w , p),

0 = b(v , q),

(5.10.2)

where

a0((v , r , θ), (w , q , ψ, t)) :=

∫

ΓR

{
− 2%hω2(r · e1)(q̄ · e1)−N◦

τ (rs · e1)(q̄ · k) +N◦
ν (rs · k)(q̄s · k) +N◦

µθsq̄s · k

+H◦
η (rs · e1)(q̄s · e1) + (T ◦µ +N◦ −H◦

η )θsq̄ · e1 + T ◦τ (r · e1)(q̄ · e1)

+ T ◦ν (rs · k)(q̄ · e1)− (ρR2ω2 + ρP (R))(r · e1)(q̄ · e1)

− ρRP (R)(e2 × rs) · q̄ + %Jω2θψ̄ − %IRω2θψ̄ −M◦
τ ψ̄rs · e1

+M◦
ν ψ̄srs · k +M◦

µθsψ̄s −Σ◦θψ̄ + (H◦
η −N◦)(θψ̄ + ψ̄rs · e1)

}
ds dφ

+ 2

∫

Ω

{µ̃D(v) : D(w̄) + ρω(k × v) · w̄} dx + 〈v , t〉H1/2(ΓR) (5.10.3)
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a1((v , r , θ), (w , q , ψ, t)) :=

∫

ΓR

{
N◦

ν̇ (rs · k)(q̄s · k)−N◦
τ̇ (rs · e1)(q̄ · k) +N◦

µ̇θsq̄s · k +H◦
η̇ (rs · e1)(q̄s · e1)

+ (T ◦µ̇ −H◦
η̇ )θsq̄ · e1 + T ◦τ̇ (r · e1)(q̄ · e1) + T ◦ν̇ (rs · k)(q̄ · e1)

−M◦
τ̇ ψ̄rs · e1 +M◦

ν̇ ψ̄srs · k +M◦
µ̇θsψ̄s +H◦

η̇θψ̄ +H◦
η̇ ψ̄rs · e1

}
ds dφ

+ ρ

∫

Ω

v · w̄ dx − 〈r , t〉H1/2(ΓR) (5.10.4)

a2((r , θ), (q , ψ)) :=

∫

ΓR

{2%hr · q̄ − %I(θ q̄ · k + ψ̄ r · k) + %Jθψ̄} ds dφ, (5.10.5)

b(w , p) := −ρ
∫

Ω

p divw̄ dx . (5.10.6)

The Weak Formulation in Polar Coordinates

In this section we write the weak equation (5.10.2) in polar coordinates. De-

compose the functions in V1 × Π as

v(re1(φ) + zk) = v1(r, z)e1(φ) + v2(r, z)e2(φ) + v3(r, z)k ,

r(s, φ) = r1(s)e1(φ) + r3(s)k ,

p(re1(φ) + zk) = p̃(r, z).

(5.10.7)

Observe that, in the notation of Section 5.8, v1 = u, v2 = v, v3 = w, r1 = q, r3 = ζ,

and p̃ = p. Decompose the functions in V2 × Π as

w(re1(φ) + zk) = w1(r, z)e1(φ) + w2(r, z)e2(φ) + w3(r, z)k ,

q(s, φ) = q1(s)e1(φ) + q3(s)k ,

t(s, φ) = t1(s)e1(φ) + t3(s)k ,

q(re1(φ) + zk) = q̃(r, z).

(5.10.8)
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Now drop the tilde from p̃ and q̃. Define

(v, r, θ) := (v1, v2, v3, r1, r3, θ), (w,q, ψ, t) := (w1, w2, w3, q1, q3, ψ, t1, t3).

(5.10.9)

Recall that TZ denotes the periodic domain R/ZZ. We obtain new function spaces

V1, V2, and Π̃ by substituting the polar coordinates for (v , r), (w , q , t), and p into

V1, V2, and Π:

V1 :=

{
(v, r, θ) ∈ [H1([a,R]× TZ ;C)]3 × [H1(TZ ;C)]2 ×H1(TZ ;C) :

vj(a, z) = 0 for j ∈ {1, 2, 3}, v2(R, z) = 0,

∫ Z

0

r1(s) ds = 0

}
,

V2 :=

{
(w,q, ψ, t) ∈ [H1([a,R]× TZ ;C)]3 × [H1(TZ ;C)]2 ×H1(TZ ;C)

× [H1/2(TZ ;C)]2 : wj(a, z) = 0 for j ∈ {1, 2, 3}, w2(R, z) = 0,

wl(R, s) = ql(s) for l ∈ {1, 3},
∫ Z

0

q1(s) ds = 0

}
,

Π̃ :=

{
p ∈ L2([a,R]× TZ ;C) :

∫ R

a

∫ Z

0

p rdr dz = 0

}
.

(5.10.10)

Now drop the tilde from Π̃. If we substitute (5.10.7) and (5.10.8) into (5.10.2) we

obtain a

Weak formulation of the quadratic eigenvalue problem in polar coordi-

nates. Find λ ∈ C and 0 6= (v, r, θ, p) ∈ V1 × Π such that for all (w,q, ψ, t, q) ∈

V2 × Π

0 = λ2ã2((r, θ), (q, ψ)) + λã1((v, r, θ), (w,q, ψ, t))

+ ã0((v, r, θ), (w,q, ψ, t)) + b̃(w, p),

0 = b̃(v, q),

(5.10.11)
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where

ã0((v, r, θ), (w,q, ψ, t)) = a0((v , r , θ), (w , q , ψ, t))

= 2π

∫ Z

0

{
− 2%hω2r1q1 −N◦

τ r
1
sq

3 +N◦
ν r

3
sq

3
s +N◦

µθsq3
s + (T ◦µ +N◦ −H◦

η )θsq1

+H◦
ηr

1
sq

1
s + T ◦τ r

1q1 + T ◦ν r
3
sq

1 − (ρR2ω2 + ρP (R))r1q1

− ρRP (R)(r3
sq

1 − r1
sq

3) + %Jω2θψ − %IRω2θψ −M◦
τ r

1
sψ

+M◦
ν r

3
sψs +M◦

µθsψs −Σ◦θψ + (H◦
η −N◦)(θψ + r1

sψ)
}
ds

+ 4π

∫ R

a

∫ Z

0

{
µ̃[v1

rw
1
r + 1

2
(v2

r − 1
r
v2)(w2

r − 1
r
w2) + 1

2
(v3

r + v1
z)(w

3
r + w1

z)

+ 1
2
v2

zw
2
z + 1

r2v
1w1 + v3

zw
3
z ] + ρω(v1w2 − v2w1)

}
rdr dz

+ 〈v1(R, s)e1 + v3(R, s)k , t1(s)e1 + t3(s)k〉H1/2(TZ), (5.10.12)

ã1((v, r, θ), (w,q, ψ, t)) = a1((v , r , θ), (w , q , ψ, t))

= 2π

∫ Z

0

{
N◦

ν̇ r
3
sq

3
s −N◦

τ̇ r
1
sq

3 +N◦
µ̇θsq3

s +H◦
η̇r

1
sq

1
s + (T ◦µ̇ −H◦

η̇ )θsq1 + T ◦τ̇ r
1q1

+ T ◦ν̇ r
3
sq

1 −M◦
τ̇ r

1
sψ +M◦

ν̇ r
3
sψs +M◦

µ̇θsψs +H◦
η̇θψ +H◦

η̇r
1
sψ

}
ds

+ 2πρ

∫ R

a

∫ Z

0

{v1w1 + v2w2 + v3w3} rdr dz − 〈r1e1 + r3k , t1e1 + t3e3〉H1/2(TZ),

(5.10.13)

ã2((r, θ), (q, ψ)) = a2((r , θ), (q , ψ))

= 2π

∫ Z

0

{2%h(r1q1 + r3q3)− %I(θq3 + r3ψ) + %Jθψ} ds,
(5.10.14)

b̃(w, p) = b(w , p) = −2πρ

∫ R

a

∫ Z

0

p(w1
r + 1

r
w1 + w3

z) rdr dz. (5.10.15)
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Fourier Decomposition and a Family of Weak Problems

In this section we expand the functions in V1, V2, and Π as Fourier series in the

axial variable (z or s) and use this to generate a family of weak problems indexed

by the Fourier wave number.

For j ∈ {1, 2, 3}, l ∈ {1, 3} decompose

vj(r, z) =
∞∑

k=−∞
vj

k(r)e
2πikz/Z , rl(s) =

∞∑

k=−∞
rl
ke

2πiks/Z , (5.10.16)

θ(s) =
∞∑

k=−∞
θke

2πiks/Z , p(r, z) =
∞∑

k=−∞
pk(r)e

2πikz/Z (5.10.17)

wj(r, z) =
∞∑

k=−∞
wj

k(r)e
2πikz/Z , ql(s) =

∞∑

k=−∞
ql
ke

2πiks/Z , (5.10.18)

tl(s) =
∞∑

k=−∞
tlke

2πiks/Z , ψ(s) =
∞∑

k=−∞
ψke

2πiks/Z . (5.10.19)

Define

(vk, rk, θk) := (v1
k, v

2
k, v

3
k, r

1
k, r

3
k, θk),

(wk,qk, ψk, tk) := (w1
k, w

2
k, w

3
k, q

1
k, q

3
k, ψk, t

1
k, t

3
k).

We define a family of spaces indexed by the Fourier wave number k ∈ Z. For k 6= 0

V k
1 := {(vk, rk, θk) ∈ [H1([a,R];C)]3 × C2 × C :

vj
k(a) = 0 for j ∈ {1, 2, 3}, v2

k(R) = 0},

V k
2 := {(wk,qk, ψk, tk) ∈ [H1([a,R];C)]3 × C2 × C× C2 :

wj
k(a) = 0 for j ∈ {1, 2, 3}, wl

k(R) = ql
k for l ∈ {1, 3}, w2

k(R) = 0},

Πk := L2([a,R];C).

(5.10.20)

186



(Note that these spaces are independent of k.) For k = 0

V 0
1 := {(v0, r0, θ0) ∈ [H1([a,R];C)]3 × C2 × C :

vj
0(a) = 0 for j ∈ {1, 2, 3}, v2

0(R) = 0, r1
0 = 0},

V 0
2 := {(w0,q0, ψ0, t0) ∈ [H1([a,R];C)]3 × C2 × C× C2 :

wj
0(a) = 0 for j ∈ {1, 2, 3}, wl

0(R) = ql
0 for l ∈ {1, 2}, w2

0(R) = 0, q1
0 = 0},

Π0 :=

{
p ∈ L2([a,R];C) :

∫ R

a

p(r) rdr = 0

}
.

Let k ∈ Z, (wk,qk, ψk, tk) ∈ V k
2 , qk ∈ Πk. Substitute into (5.10.11) the Fourier

decompositions (5.10.16) and (5.10.17) and

wj(r, z) = wj
k(r)e

2πikz/Z , ql(s) = ql
ke

2πiks/Z , ψ(s) = ψke
2πiks/Z , (5.10.21)

tl(s) = tlke
2πiks/Z , q(r, z) = qk(r)e

2πikz/Z (5.10.22)

to obtain the following family of weak problems:

A family of weak problems indexed by the Fourier wave number. For

each k ∈ Z, find λ ∈ C and 0 6= (vk, rk, θk, pk) ∈ V k
1 × Πk such that for all

(wk,qk, ψk, tk, qk) ∈ V k
2 × Πk

0 = λ2ak
2((rk, θk), (qk, ψk)) + λak

1((vk, rk, θk), (wk,qk, ψk, tk))

+ ak
0((vk, rk, θk), (wk,qk, ψk, tk)) + bk(wk, pk),

0 = bk(vk, qk),

(5.10.23)
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where

ak
0((vk, rk, θk), (wk,qk, ψk, tk))

= −2%hω2r1
kq

1
k − 2πikZ−1N◦

τ r
1
kq

3
k + 4π2k2Z−2N◦

ν r
3
kq

3
k + 4π2k2Z−2N◦

µθkq3
k

+ 4π2k2Z−2H◦
ηr

1
kq

1
k + 2πikZ−1(T ◦µ +N◦ −H◦

η )θkq1
k + T ◦τ r

1
kq

1
k

+ 2πikZ−1T ◦ν r
3
sq

1
k − (ρR2ω2 + ρP (R))r1

kq
1
k + %Jω2θkψk

− 2πikZ−1ρRP (R)(r3
kq

1
k − r1

kq
3
k)− %IRω2θkψk − 2πikZ−1M◦

τ r
1
kψk

+ 4π2k2Z−2M◦
ν r

3
kψk + 4π2k2Z−2M◦

µθkψk −Σ◦θkψk

+ (H◦
η −N◦)(θkψk + 2πikZ−1r1

kψk)

+ 2

∫ R

a

{
µ̃[(v1

k)r(w1
k)r + 1

2
((v2

k)r − 1
r
v2

k)((w
2
k)r − 1

r
w2

k)

+ 1
2
((v3

k)r + 2πikZ−1v1
k)((w

3
k)r − 2πikZ−1w1

k) + 2π2k2Z−2v2
kw

2
k

+ 1
r2v

1
kw

1
k + 4π2k2Z−2v3

kw
3
k] + ρω(v1

kw
2
k − v2

kw
1
k)

}
rdr

+ (1 + 2π|k|Z−1)(v1
k(R)t1k + v3

k(R)t3k), (5.10.24)

ak
1((vk, rk, θk), (wk,qk, ψk, tk))

= 4π2k2Z−2N◦
ν̇ r

3
kq

3
k − 2πikZ−1N◦

τ̇ r
1
kq

3
k + 4π2k2Z−2N◦

µ̇θkq3
k + 4π2k2Z−2H◦

η̇r
1
kq

1
k

+ 2πikZ−1(T ◦µ̇ −H◦
η̇ )θkq1

k + T ◦τ̇ r
1
kq

1
k + 2πikZ−1T ◦ν̇ r

3
kq

1
k − 2πikZ−1M◦

τ̇ r
1
kψk

+ 4π2k2Z−2M◦
ν̇ r

3
kψk + 4π2k2Z−2M◦

µ̇θkψk +H◦
η̇θkψk + 2πikZ−1H◦

η̇r
1
kψk

+ ρ

∫ R

a

{v1
kw

1
k + v2

kw
2
k + v3

kw
3
k} rdr − (1 + 2π|k|Z−1)(r1

kt
1
k + r3

kt
3
k), (5.10.25)

ak
2((rk, θk), (qk, ψk)) = 2%h(r1

kq
1
k + r3

kq
3
k) − %I(θkq3

k + r3
kψk) + %Jθkψk, (5.10.26)

bk(wk, pk) = −ρ
∫ R

a

pk((w1
k)r + 1

r
w1

k − 2πikZ−1w3
k) rdr. (5.10.27)
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In Chapter 2 we carefully characterized the spectrum of the quadratic eigenvalue

problem, proved continuous and discrete inf-sup conditions for the bilinear forms ap-

pearing in the weak formulation, and proved that the numerical method converged.

The same can be done the quadratic eigenvalue problem given in this chapter. We

do not pause to do it, however, but move quickly on to the computation of the

spectrum.

5.11 Computation of the Spectrum

Numerical Method. The quadratic eigenvalue problem (5.10.23) was discretized

using the finite element method with Taylor-Hood elements for the fluid. The result-

ing matrix quadratic eigenvalue problem was solved using the MATLAB function

polyeig. This is the same method that was used in Chapter 2 and the reader should

refer there for more details.

Constitutive Functions. Up until now we have been working with a broad class

of nonlinear constitutive functions. To compute the spectrum we must limit our

attention to one set of constitutive functions {T̂ , N̂ , Ĥ, Σ̂, M̂}. We use the following

recipe to derive constitutive functions for the shell from an energy for a 3-dimensional

hyperelastic body:

Step 1: We start by modelling the deformable cylinder as a 3-dimensional hyper-

elastic body rather than an axisymmetric shell. Let p(x , t) denote the position of

material point x at time t, F = ∂p/∂x be the deformation gradient, C = F ∗ ·F be
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the Cauchy-Green deformation tensor, E = 1
2
(C − I ) be the material strain tensor,

and Φ(C ,x ) be the stored energy potential (in place of the more usual notation

W ).

We must choose an energy Φ to make further progress. The function Φ cannot

be strictly convex in F else the Principle of Frame-Indifference is violated, the

convex function Φ blows up on the boundary of the nonconvex set {F : det(F ) > 0}

of orientation preserving deformations, and steady state problems in elasticity have

unique solutions, which prohibits buckling. On the other hand, the function Φ should

be rank-one convex so that the linear momentum equation for the 2-dimensional

elastic body is hyperbolic. We could require Φ to be quasiconvex in F so that

the energy functional for steady state problems has a minimizer. In practice the

definition of quasiconvexity is too difficult to verify. Instead we could choose a

polyconvex energy Φ, which implies quasiconvexity. Polyconvexity means that Φ is

a convex function of the minors of F , which are F , det(F ), and cof(F ).

If we assume that the material is uniform and isotropic, then Φ can only

depend on the principal invariants of C : tr(C ), det(C ), and 1
2
[(tr(C )2 − tr(C 2)].

If we make the further assumption that the second Piola-Kirchhoff stress tensor

S ≡ 2 ∂Φ/∂C is linear in C , then Φ must have the form

Φ(C ) = 1
2
Λ(trE )2 +GE : E (5.11.1)

for constants Λ and G. See Antman (2005, Chapters 12 & 13). We call Λ and G

the Lamé constants. G is also known as the shear modulus. From experimental

observations Λ and G have been related to the elastic modulus E > 0 and the
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Poisson Ratio 0 < υ < 1/2 by

Λ =
Eυ

(1 + υ)(1− 2υ)
, G =

E

2(1 + υ)
. (5.11.2)

For nearly incompressible materials υ is very close to 1/2.

For our computations we chose the energy given in equation (5.11.1). Note

that this energy does not penalize compression, but since we only consider the

linearization of the constitutive functions about a stretched state (τ, ν, η, σ, µ) =

(R, 1, 0, 1, 0) we do not need an accurate model of the energy for materials under

compression.

Step 2: Now we write the position p of the thin 3-dimensional hyperelastic cylinder

in terms of the configration {r ,d} of the axisymmetric shell introducted in Section

5.2. Let the 3-dimensional body consist of material points of the form

x = r ◦ + ξd ◦ = (e1(φ) + sk) + ξ(−e1(φ)) = (1− ξ)e1(φ) + sk (5.11.3)

for (s, φ, ξ) ∈ (−∞,∞)× [0, 2π)× [−2h, 0]. Thus the reference configuration of the

body is a circular cylinder or inner radius 1, thickness 2h, and infinite length. We

consider motions of the body in which the material point with coordinates (s, φ, ξ)

is constrained so that its position at time t has the form

p(x , t) = r(s, φ, t) + ξd(s, φ, t), (5.11.4)

where {r ,d} were introduced in Section 5.2. Thus

p(x , t) = (qe1+ζk)+ξ(− sin θe1+cos θk) = (q−ξ sin θ)e1+(ζ+ξ cos θ)k , (5.11.5)

where e1 has argument φ+ ωt.
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Step 3: Compute F , C , and E from equation (5.11.5). E can be written in terms

of the strains τ , ν, η, σ and µ and the thickness variable ξ. By substituting E into

equation (5.11.1) we obtain an expression for the stored energy potential Φ in terms

of the strains and the thickness variable.

Step 4: The terms of Φ contain powers of the thickness variable ξ. Since the

thickness is small, we neglect terms containing cubic and greater powers of ξ. We

intergrate Φ through the thickness to obtain a stored energy potential W̃ for the

shell:

W̃ (τ, ν, η, σ, µ) =

∫ 0

−2h

Φ(τ, ν, η, σ, µ, ξ) (1− ξ) dξ. (5.11.6)

The factor (1 − ξ) in the integral is the Jacobian of the map (s, φ, ξ) 7→ x =

(1− ξ)e1(φ) + sk . To simplify the integration we replace the expression (1− ξ) by

1 wherever it appears ((1− ξ) appears in the denominator of several terms).

Step 5: We modify a few of the terms of W̃ to ensure that W̃ ≥ 0 and W̃ = 0

in the reference configuration. (This ensures that the stresses T̂ , N̂ , Ĥ, Σ̂, and M̂

vanish in the reference configuration.) We also modify W̃ so that that energy is

isotropic, i.e., invariant under the transformation (τ, ν, η, σ, µ) 7→ (ν, τ, η, µ, σ). We
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arrive at the energy

W =1
2
Λ{1

2
h[(τ 2 − 1) + (ν2 − 1) + η2]2

+ 4
3
h3[η2(σ2 + µ2) + σ2(3(τ − 1)2 + (ν − 1)2) + µ2(3(ν − 1)2 + (τ − 1)2)]}

+G
{

1
2
h[(τ 2 − 1)2 + (ν2 − 1)2 + η4 + 2η2(τ 2 + ν2)]

+ 4
3
h3[η2(σ2 + µ2) + 3σ2(τ − 1)2 + 3µ2(ν − 1)2]

}
.

(5.11.7)

Step 6: Finally, we define constitutive functions

T̂ := Wτ , N̂ := Wν , Ĥ := Wη, Σ̂ := Wσ, M̂ := Wµ. (5.11.8)

These are the constitutive functions used in the computation.

Numerical Constants. In addition to choosing constitutive functions we must

also choose values for all the numerical constants. These are listed in Table (5.11.1).

We chose the fluid to be water and the deformable body to be a soft, nearly in-

compressible, rubber-like material. The ratio of the radius of the inner cylinder

to the radius of the outer cylinder is close to the value used by G.I. Taylor in his

experiments on the classical Taylor-Couette problem in the 1920s.

We must also assign values to %h, %I, and %J . This requires motivation from

3-dimensional elasticity and is similar to the way that the constitutive functions

were derived. (Also see Section 3.2.) As above, consider the deformable cylinder

to be a 3-dimensional elastic body whose motion has the restricted form (5.11.4).

Let the cylinder have mass density %. Then the time derivatives of the linear and
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angular momenta per unit of s and φ of the cylinder are

d

dt

∫ 0

−2h

%pt(s, φ, ξ, t)(1− ξ) dξ

=

∫ 0

−2h

%[rtt(s, φ, t) + ξdtt(s, φ, t)](1− ξ) dξ

=: 2%hrtt(s, φ, t) + %Idtt(s, φ, t),

d

dt

∫ 0

−2h

%p(s, φ, ξ, t)× pt(s, φ, ξ, t)](1− ξ) dξ

=

∫ 0

−2h

%[p(s, φ, ξ, t)× ptt(s, φ, ξ, t)](1− ξ) dξ

=

∫ 0

−2h

%[r(s, φ, t) + ξd(s, φ, t)]× [rtt(s, φ, t) + ξdtt(s, φ, t)](1− ξ) dξ

=: 2%h[r(s, φ, t)× rtt(s, φ, t)] + %I[r(s, φ, t)× dtt(s, φ, t)]

+ %I[d(s, φ, t)× rtt(s, φ, t)] + %J [d(s, φ, t)× dtt(s, φ, t)]

Radius of Rigid Cylinder a 0.75 m

Radius of Deformable Cylinder R 1.01 m

Density of Water ρ 1000 kg/m3

Dynamic Viscosity of Water µ̃ 1.002× 103 kg/ms

Thickness of Deformable Cylinder h 2π/1000 m

Density of Rubber % 920 kg/m3

Modulus of Elasticity of Rubber E 0.01 GPa

Poisson’s Ratio of Rubber υ 0.49

Table 5.11.1: Values of the numerical constants used for the computation.

194



with

%h = %

∫ 0

−2h

(1−ξ) dξ, %I = %

∫ 0

−2h

ξ(1−ξ) dξ, %J = %

∫ 0

−2h

ξ2(1−ξ) dξ. (5.11.9)

The factor (1 − ξ) in the integrals is the Jacobian of the map (s, φ, ξ) 7→ x =

(1 − ξ)e1(φ) + sk . When we derived the constitutive functions we replaced the

expression (1 − ξ) with 1 everywhere it appeared. If we do the same in equation

(5.11.9) we find that

%h = % h, %I = 0, %J = 8
3
%h3. (5.11.10)

These are the values that we use in the computation. Note that this technique for

deriving %h, %I, and %J is also used to derive the linear and angular momentum

terms in the shell equations. (The body force terms can be derived from a free-body

diagram without appealing to 3-dimensional elasticity.)

Results. In Section 5.9 we proved that all the eigenvalues λ that cross the imagi-

nary axis cross through the origin, but we could not prove anything about the way

that they crossed. By numerically solving equation (5.10.23) for a range of angular

velocities using the method and constitutive functions described above we discover

that the first eigenvalue to cross the imaginary axis is real. Therefore we have a

steady state bifurcation. See Figures (5.11.1) and (5.11.2). We proved in Section 5.9

that the eigenfunction v equals 0 when λ = 0. Thus as ω crosses its critical value

ωcrit the rigid Couette solution destabilizes into a new steady solution where the de-

formable shell is buckled, but the fluid steamlines are still concentric circles. This is

a new phenomenon not observed in Chapters 2–4 or in the classical Taylor-Couette
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probelm.

For the classical Taylor-Couette problem, rigid Couette flow (where both cylin-

ders have equal angular velocity) is linearly and nonlinearly stable for all angular

velocities. This can be proved using the energy method. See Joseph (1976). Numer-

ical observations suggest that increasing the elastic modulus E and shear modulus

G of the deformable cylinder increases the critical value of ω. Thus by making the

deformable cylinder rigid, by taking the limit E, G → ∞, we recover the global

linear stability of the classical rigid Couette flow.

In Section 5.9 we proved that a shear instability occurs if Σ◦ −H◦
η +N◦ > 0.

For the constitutive functions and numerical constants defined above, this condition

does not hold.

The first Fourier modes to become unstable are |k| = 1, and the Fourier modes

become unstable in order, i.e., ωcrit(|k2|) > ωcrit(|k1|) if k2 > k1. This can be seen

from Figure (5.11.3) by fixing Z. (Note that this graph is not valid for k = 0, in

which case λ = 0 is an eigenvalue for all ω, corresponding to a vertical translation

of the shell. See Section 5.9.) Observe that, while Figure (5.11.3) plots ωcrit against

k/Z, for our computations we fix Z = 10 and vary k.

By numerically solving equation (5.9.25), the bicubic equation for ωcrit, we

find that each Fourier mode k has only one eigenvalue λ that crosses the imaginary

axis. See Figure (5.11.4).

Finally, we remark that our results apply to the following finite length cylinder

problem. Start with a rigid cylinder of radius a < 1 and finite length Z. To each

end of the rigid cylinder weld a rigid disk of radius R > 1. Then attach to the edges
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of the rigid disks the ends of a deformable cylinder of natural radius 1 and natural

height Z. Fill the annular region that has been created with a viscous incompressible

fluid and rotate the rigid disks at angular velocity ω, which in turn cause the rigid

inner cylinder and the ends of the deformable cylinder to rotate at angular velocity

ω. This finite length cylinder problem can be described by the same equations of

motion as the periodic, infinite length cylinder problem discussed in this chapter,

except that the boundary conditions are slightly different. Both systems admit

the same rigid Couette steady solution. By linearising the finite length problem

about the rigid Couette solution, seeking normal modes, and writing in a weak

formulation, we arrive at same weak formulation (5.10.23) as the periodic, infinite

length problem, except that there is no constant Fourier mode k = 0. All our

analytical and numerical results except those concerning the Fourier mode k = 0

apply to the finite length cylinder problem.
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Figure 5.11.1: Trajectories of the top 11 eigenvalues λ (sorted by decreasing real

part) for angular velocities ω ∈ [0, 50], Fourier mode k = 1, and axial period Z = 10.

The color of each trajectory changes from blue to red as ω changes from 0 to 50

(in increments of 0.01). Observe that a steady state bifurcation takes place. The

domain [a,R] of the fluid velocity and pressure was partitioned with N = 25 equally

spaced mesh points.
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Figure 5.11.2: Trajectories of the top 11 eigenvalues λ (sorted by decreasing real

part) for angular velocities ω ∈ [0, 50], Fourier mode k = 2, and axial period Z = 10.

The color of each trajectory changes from blue to red as ω changes from 0 to 50.
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Figure 5.11.3: The critical value of ω, ωcrit, as a function of |k|/Z. We compute ωcrit

by numerically solving the bicubic equation (5.9.25). By fixing Z we see from this

graph that the Fourier modes become unstable in order. Also note that ωcrit → ∞

as k/Z →∞. This is to be expected since the bending of the shell increases and so

the stored energy of the shell increases as |k|/Z increases.
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Figure 5.11.4: The determinant of A, the matrix on the left-hand side of equation

(5.9.22), as a function of ω. The determinant of A is a bicubic polynomial in ω, i.e.,

a cubic polynomial in ω2. The roots of det(A) are the critical values of ω. Numerical

computation of the roots shows that the cubic equation for ω2 has only one positive

root and so each Fourier mode k has only one eigenvalue that crosses the imaginary

axis as ω is increased from 0.
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Chapter 6

Conclusions

Summary. In this thesis we studied the stability of Couette flow in a deformable

cylinder with respect to cylindrical perturbations (Chapters 2–4) and axisymmetric

perturbations (Chapter 5). We summarize our main results before discussing work

in progress and open problems. Four different fluid-solid interaction models were

developed, which have applications outside this thesis. For each model a rigid Cou-

ette steady solution was found. Understanding the stability of this solution with

respect to the bifurcation parameter ω, the angular velocity of the inner cylinder,

is the primary objective of this thesis. Linearizing the governing equations about

the Couette steady solution and seeking normal mode solutions yields a quadratic

eigenvalue problem. For the string problem (Chapter 2) we applied the spectral the-

orem for compact polynomial operator pencils to characterize the spectrum of the

quadratic eigenvalue problem. For the both the string problem and the shell problem

(Chapter 5) we proved that the only way for the eigenvalues to cross the imaginary

axis is through the origin, and we derived an algebraic equation (a quadratic equa-

tion in Chapter 2 and a cubic equation in Chapter 5) for the critical values of ω

at which the eigenvalues cross. Numerically computing the spectrum using a fast

direct Fourier-finite element method shows that the rigid Couette solution loses its

stability via a Takens-Bogdanov bifurcation for the string problem and a steady
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state bifurcation for the shell problem. In Chapter 2 the Galerkin approximation

theory for polynomial eigenvalue problems was applied to prove convergence of the

numerical method.

Work in progress and open problems. Up until now we have focused on

linear stability of the rigid Couette solution, but said nothing about its nonlinear

stability. It is expected that for small perturbations of the rigid Couette solution, the

behavior of the linearized equations dictates the behavior of the nonlinear equations;

if the rigid Couette solution is linearly stable for some ω, i.e., the spectrum of

the linearized operator lies in the left half-plane, then we expect the rigid Couette

solution to be asymptotically stable (in the sense of Lyapunov) for this ω. Similarly,

if the rigid Couette solution is linearly unstable for some ω, i.e., the linearized

operator has at least one eigenvalue in the right half-plane, then we expect the rigid

Couette solution to be unstable (not Lyapunov stable) for this ω. Koch and Antman

(2000) proved a stability theorem of this form for nonlinear parabolic-hyperbolic

partial differential equations with complicated nonlinear boundary conditions. Their

results, which extend those of Da Prato & Lunardi (1988) and Xu and Marsden

(1996), apply to the equations describing nonlinearly viscoelastic strings, rods, and

shells. It is not immediately clear that these results can be applied to the fluid-solid

interaction problem discussed here. For example, Koch and Antman (2000) consider

a scalar parabolic-hyperbolic partial differential equation with fixed domain, whereas

the Taylor-Couette problem in a deformable cylinder is described by a system of

partial differential equations, and the domain of the Navier-Stokes equations is time
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dependent. (Pulling back the Navier-Stokes equations to Lagrangian coordinates

may fix the latter problem.) Extending the results of Koch and Antman (2000) so

that they apply to the problem discussed here is work in progress.

We have not discussed the well-posedness of the coupled fluid-solid system.

While there has been much effort to prove existence theorems for fluid-solid interac-

tion problems in the last few years (see the references cited in Chapter 1), most of

the existing results are only valid for short time intervals and for a particular choice

of constitutive function.

In Chapter 5 we modelled the deformable shell using an axisymmetric shell the-

ory. Antman and Bourne (in preparation) are currently developing a geometrically

exact theory for rotationally symmetric shells, where the shell has SO(2)-symmetry

rather than O(2)-symmetry. For the problem discussed here, this would allow ma-

terial fibers of the deformable cylinder to shear in the direction of rotation. This

extra degree of freedom significantly complicates the governing equations.

Further open problems include:

(i) Analyzing the global (energy) stability of the rigid Couette solution (in the

sense of Joseph (1976) and Straughan (2004)).

(ii) Studying non-rigid Couette solutions, where the deformable cylinder rotates

at a different angular velocity to the rigid cylinder.

(iii) The thin gap problem where the ratio of the radii of the cylinders is to sent

to 1. (This method was employed by G.I. Taylor (1923).)

(iv) A full numerical simulation of the Taylor-Couette problem for flow in a de-
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formable cylinder.
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