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Tidal freshwater wetlands are key sites for carbon (C) sequestration and main 

component in the global C budget. The overall research objective of my dissertation was 

to examine the physical and biogeochemical processes that impact C cycling in tidal 

freshwater wetlands. One natural and one restored tidal freshwater wetland (salinity < 0.3 

ppt) were selected in Maryland, USA along the Patuxent River. Data logging water 

recorders were installed in wells at each habitat in February 2014 for monitoring water 

level at 10-minutes interval and for two years. Soil organic matter and C stocks were 

estimated and a novel soil C bioassay (CARBIO) was developed and tested to assess C 

stability (change of soil organic matter concentration over time) and decomposition rates 

in both sites. A total of 162 CARBIO units were deployed in the natural and restored 

sites, and 81 were retrieved after 1 year while the others were retrieved after 2 years. 

Static chambers were used to quantify methane (CH4) and carbon dioxide (CO2) flux 



 
 

rates during day and nighttime. My results indicated that the natural wetland had 

significantly higher soil C stocks than the restored site (14.8±0.50 and 8.9±0.99 kg C m-2, 

respectively, P <0.0001). The swamp habitat had the highest soil organic matter (36.8%), 

while restored mudflat has the lowest (2.8%). Higher soil organic matter was partially 

correlated with shallower groundwater level relative to soil surface. Soil redox data with 

soil pH indicated that the soil of the natural wetland habitats was more reducing than the 

soil at the restored habitats. Based on CARBIO index, the soils in CARBIO units that 

were deployed in the natural wetland was significantly higher in C sequestration rate than 

the restored wetland (535±291.5 and -1095±429.4 g C m-2 year-1, respectively, P 

site<0.05). Under the current hydrological conditions, the restored wetland habitats were 

not able to accumulate C inside the CARBIO units after 1 or 2 years from deployment. 

In-situ CARBIO units can be employed in the newly constructed wetlands as in-situ 

sensors that reflect the C biogeochemical processes in the ambient soil to help better 

understanding C stability. The restored wetland had significantly higher annual CH4 

emission rates than the natural wetland (1372.1±35.89 and 880.7±144.73 g CH4 m-2 y-1, 

respectively, P <0.05) and the log CH4 flux rate had a significant and strong negative 

correlation with the pore-water total available iron. Nighttime CH4 fluxes had very low 

concentration (<3650 µmole m-2 h-1). Future restoration efforts should focus on soil 

properties that will help increase C accumulation in newly constructed wetlands, but even 

more important every effort should be made to conserve the natural wetlands so that 

ecosystem function and services including wildlife habitat, water quality improvement, 

and offsetting the greenhouse gas emissions are maintained.    
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1 Introduction 

Wetlands are transitional systems that occur intermediately between terrestrial 

ecosystems and aquatic ones, and occur in areas where soils are artificially or naturally 

inundated or saturated with ground or surface water during part or all of the year (Mitsch 

and Gosselink, 2000; Mitsch and Gosselink, 2007). Wetlands deliver a variety of 

ecological services and functions including C sequestration, storm water storage, and 

waste water treatment (Mitsch and Gosselink, 2007). Wetlands have a unique 

geographical setting as transitional ecosystems between aquatic and terrestrial 

ecosystems, and have been described as the “kidneys of the landscape” because of their 

role in improving water quality. Five to seven % of the world surface area is covered with 

wetlands and thus wetlands are key sites for global C budget. In the last centuries, many 

wetlands have been lost as a result of human impacts including converting large areas 

from wetlands to agricultural lands and urban areas. Large portions of coastal wetlands 

have been lost due to sea level rise (Nicholls, 2004). Wetlands have been and are still 

being drained in some parts of the world, however, wetlands are increasingly being 

restored, conserved, and protected.  

At the upper end of the estuary, freshwater wetlands are located and they are less 

impacted with saltwater intrusion. Tidal freshwater wetlands are among the highest 

wetland ecosystems in plant productivity and plant species richness compared with 

brackish and saltmarshes (Baldwin et al., 2009). Horizontal vegetation zonation is a 

unique ecosystem characteristic for the tidal freshwater wetlands, which reflected in the 

existence of low and high marsh that are highly diverse in plant communities (Odum et 

al., 1984). Tidal fluctuations and the sedimentations are the two major physical processes 
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that control the development and the existence of the tidal freshwater wetlands (Baldwin 

et al., 2009; Barendregt et al., 2009; Odum et al., 1984).  

The optimal goal, with no doubt, for restoring a wetland ecosystem is to make it 

capable of providing ecosystem functions and services. Water quality improvement, C 

accumulation, and wildlife habitats are amongst the top priorities for wetland restoration. 

Wetland restoration involves vegetation establishment, hydrology, and hydric soils re-

enhancement. Construction approaches in newly constructed wetlands include soil 

surface excavation, adding dredged sediment, and re-establishment of the hydrology 

(Baldwin, 2009). Climate change makes the future of wetland restoration more complex 

and hence, wetland restoration faces many challenges (Erwin, 2009), as wetlands are 

vulnerable to change in their hydrological regime (Ferrati et al., 2005). Coastal wetlands 

will be significantly impacted by climate change (Poff and Hart, 2002), including 

changes in rainfall and major storms from hurricanes.  

Anaerobiosis in wetland soils is considered the fundamental factor slowing or 

resulting in incomplete decomposition of dead plant materials, resulting in accumulation 

of organic matter (Kayranli et al., 2010). According to the enzymatic latch hypothesis 

(Freeman et al., 2001; Romanowicz et al., 2015), soil organic matter accumulates in 

wetlands for two main reasons: 1) microbial anaerobic decomposition pathways yield less 

energy than aerobic pathways, and 2) extracellular enzyme activity is reduced when 

oxygen is lacking. Because wetlands have the ability to sequester C from the atmosphere 

(Han et al., 2010; Xiaonan et al., 2008), enhancing C sequestration through wetland 

protection and restoration may offset accumulation of greenhouse gases in the 
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atmosphere. Wetlands store more C per unit area than upland soils, meaning that wetland 

conservation and restoration may offset the accumulation of greenhouse gases.  

Globally, terrestrial and atmospheric C are stored inside the oceans in various 

forms of organic and inorganic C (IPCC, 2013). Soils store significantly more C than the 

atmosphere and plants combined (Schlesinger, 1991; Sommer and de Pauw, 2011). Soil 

C includes the C stored in forests, peatlands, permafrost, and wetlands. Soil C stocks 

represent a significant pool for the global C cycle. Those stocks result from the balance 

between the inputs and outputs of C. Soil C inputs are mainly from dead plant materials 

and other root detritus, while soil C outputs include gas fluxes (like carbon dioxide (CO2) 

and methane (CH4)) and leaching of the dissolved organic C into deep and shallow 

groundwater (Davidson and Janssens, 2006; Davidson et al., 2000). Wetlands store 975 

Pg C (Bridgham et al., 2006; Maltby and Immirzi, 1993). Thus, wetlands can be 

considered an important C sink.  Wetlands have been recognized for their capability to 

store C in their soils and they are high in productivity as well (Mitsch and Gosselink, 

2007). Globally, soil C pools for current wetlands are estimated at 513 Pg C, including 

215 Pg C for North American wetlands (Bridgham et al., 2006). The sequestered C inside 

wetland soils may be released back to the atmosphere quickly if these wetlands 

encountered disturbance in their hydrology regime or under high temperature scenarios 

(IPCC, 2007).  

Soil C sequestration is the net accumulation of plant-fixed C as soil organic 

matter  (Lal, 2004; Lal, 2008).  One of the environmental issues that has gathered 

attention recently is promoting new techniques to offset the emission of CO2 to the 

atmosphere that would otherwise contribute to global warming. Implementation of 
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measures to sequester atmospheric CO2 may contribute fundamentally to meet the Kyoto 

Protocol (Schlesinger, 1999), an international agreement to reduce greenhouse gas 

emissions. Recently, the term “blue C”, coined by the United Nations Environmental 

Program (UNEP) in 2009, has been widely used to describe CO2 sequestration in coastal 

systems.  Living organisms store C as biomass in oceans and coastal ecosystems 

including mangroves, salt marshes, coastal wetlands, and seagrass beds (Kuwae et al., 

2016; McLeod et al., 2011; Pendleton et al., 2012; Siikamaki et al., 2013). 

The overall research objective of my dissertation was to examine the physical and 

biogeochemical processes that impact C cycling in tidal freshwater wetlands. This was 

achieved through three related studies presented in chapters 2, 3, and 4. Chapter two was 

an observational study where I investigated the differences in the hydropattern (variation 

of surface and ground water level relative to soil surface over time) between different 

habitats in the natural and the restored wetland habitats. The natural site has five habitats 

(mudflat, low marsh, high marsh, swamp, and upland), while the restored site has similar 

habitats to the natural site but without the swamp habitat. Moreover, I quantified C stocks 

in both sites and investigated the correlation between the hydropattern and C stocks, 

where the impact of hydrology on soil organic matter was investigated. Chapter three 

describes an experimental study with an ultimate goal to develop a novel method to 

assess the C stability and decomposition rate between the natural and the restored 

wetland habitats.  In the study presented in Chapter three, I developed and tested a novel 

field C bioassay (CARBIO) to estimate C sequestration rate across different habitats in 

the natural and the restored site. Chapter four describes an observational study where I 

quantified the flux rate of CH4 and CO2 during day and nighttime from low marsh, high 
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marsh, and the swamp habitat in the natural site, while flux rates were estimated in low 

and high marsh for the restored site. Moreover, I examined the effect of pore-water iron 

on the flux rate of CH4 and CO2 for the natural and restored habitats. 
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2 Soil Redox and Hydropattern control Soil Carbon Stocks across 
different habitats in Tidal Freshwater Wetlands in a Sub-estuary of 
the Chesapeake Bay 

Abstract 

Wetlands contain spatial and temporal variations in hydrology that affect 

vegetation and soil processes. In this study different wetland habitats were identified in 

both a natural and restored wetland site that varied in hydropattern (level of surface or 

ground water over time), with the goal of understanding how inundation impacts redox 

conditions and soil organic matter. Tidal freshwater wetlands were selected in Maryland, 

USA along the Patuxent River, a Chesapeake Bay tributary. Five habitats (mudflat, low 

marsh, high marsh, swamp, and adjacent upland) were selected at Patuxent Wetland Park, 

a natural wetland, and four habitats (mudflat, low marsh, high marsh, and adjacent 

upland) were selected at Wootons Landing Wetland Park, a restored wetland. Within 

each habitat three randomly located plots were established, and a data logging water level 

recorders were installed at one plot per habitat in February 2014 to monitor water level at 

10-minute intervals. Water level depth was also measured manually in two additional 

observation wells within plots every two weeks for one year from February 2014 to 

March 2015. Soil cores to a depth of 50 cm were collected and soil C stocks were 

calculated based on soil bulk density and C percentage. Natural wetland habitats had 

shallower groundwater than their restored counterparts. Mudflats in both sites were most 

frequently flooded, followed by marsh and swamp habitats in the natural site. The 

restored high marsh that was dominated by Phragmites australis had the highest soil 

redox measurements at 12.5 and 40 cm soil depth (273±27 and 252±33 mv, respectively). 

Soil organic matter concentrations were significantly higher in the natural site compared 
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to the restored wetland. For example, the high marsh soils in the natural wetland had 31 

% soil organic matter, but the high marsh at the restored wetlands had 4% soil organic 

matter. Soil C stocks were also significantly higher in the natural compared to the 

restored wetland (14.8±0.50 and 8.9±0.99, respectively, P <0.0001). Restored mudflat 

and marsh habitats had similar hydrological regime compared to the natural counterparts, 

but they had lower soil C stocks. Monitoring of hydrology and vegetation in similar 

habitats in restored and reference sites may help improve restoration success in achieving 

specific structural or functional outcomes. Promoting the accumulation of soil organic 

matter in the restored wetland is not only controlled by the hydropattern, but also by the 

soil redox conditions that are impacted by the invasion of Phragmites australis. 

2.1 Introduction 

Coastal wetlands provide fundamental ecological services and functions including 

carbon (C) sequestration, storm water storage, and waste water treatment (Mitsch and 

Gosselink, 2007). Wetlands cover about 5 to 7 % of the world’s surface area and have 

high plant productivity and slow decomposition rates, and thus play a significant role in 

global C cycling (Neue et al., 1997a). Large wetland areas have been lost, however, and 

still more wetland loss is projected  due to land conversion and sea level rise (Nicholls, 

2004). Anaerobiosis in wetland soils is considered the fundamental factor in slowing 

rates and causing incomplete decomposition of dead plant materials, resulting in the 

accumulation of soil organic matter (SOM) (Kayranli et al., 2010). Because wetlands 

have the ability to sequester carbon dioxide (CO2) from the atmosphere (Han et al., 

2010), enhancing the C sequestration function through wetland protection and restoration 

could offset greenhouse gas (GHG) emissions.  



 

8 
 

Hydrology is considered the master variable for wetland ecosystems (Mitsch and 

Gosselink, 2007). First, flooding frequency and duration shapes plant communities by 

restricting plant growth to those species adapted for wet conditions. Secondly, hydrology 

shapes physical and chemical soil properties particularly bulk density, nutrient 

availability, and pH. Moreover, hydrology influences the soil biota including soil 

microbes which differ in composition compared to upland and aquatic ecosystems 

(Herbert et al., 2015).  

Soil organic matter generally increases with more frequent inundation (Tanner et 

al., 1998). Soil C pools are the result of the balance between C inputs and outputs. 

Variables that affect these pools include the ratio of above and belowground biomass and 

C sedimentation rates (Marchio et al., 2016). The vertical distribution of SOM is 

associated with vegetation types (Jobbagy and Jackson, 2000) which is affected largely 

by the hydrological regimes. Root distributions through soil impact the vertical placement 

of C in the soil and shoot to root ratio allocation controls the amount of C that stored in 

the soil. Perennial plant species like Phragmites australis have higher belowground 

biomass than annual plants like Polygonum arifolium and that impact the soil C pools. 

Often a goal in wetland creation and restoration is achieving the correct hydrology 

and vegetation. Wetland hydrology is achieved in one of three ways: 1) excavate the 

upland soils to make it at the level of nearby water level or reaching the groundwater 

level; 2) adding soils to elevate the soil surface to be at the same level of adjacent river or 

ditch; and 3) connecting the wetland to an existing source of water like a stream or a river 

(Baldwin, 2009).  Other hydrologic restoration techniques include plugging the drainage 

channels or scraping the surface of the wetland soil (Covington et al., 2003).  Removing 
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upper soil layers in particular can have negative impacts on the soil C stocks 

(Fenstermacher et al., 2016a; Stolt et al., 2000).  

Higher organic matter and successful plant species richness are good indicators 

for successful wetland restoration. Unfortunately, many research studies have reported 

low SOM in restored wetlands compared to their paired natural wetlands; for example: 

11.8% in restored vs 28.9 % in natural (Bruland and Richardson, 2006), 2.8% in restored 

vs 7.2% in natural (Campbell et al., 2002), and 5.8% in restored vs 9.8 % in natural 

(Shaffer and Ernst, 1999). Moreover, lower plant species biodiversity had been reported 

in restored wetlands compared to the reference wetlands (Sheldon et al., 2016) 

Located in the upstream end of the estuary, tidal freshwater wetlands have higher 

species richness and receive higher rates of sediments and nutrients than downstream salt 

marshes. They also exhibit distinct vegetation zonation due to differences in flooding 

frequencies and surface elevation (Baldwin et al., 2009). These unique characteristics are 

key factors in developing different habitats including mudflat, low marsh, high marsh, 

and swamps.  Unfortunately, due to their locations in the upper estuary many have been 

heavily impacted by human activities that lead into their degradation (Barendregt et al., 

2009), although there are also extensive efforts in locations such as Washington DC, 

USA to restore these types of wetlands. My research objectives were to: 1) assess 

differences in hydropatterns (the variation of surface and ground water level relative to 

soil surface over time) and soil C stocks between different habitats in a natural and 

restored wetland and 2) investigate the relationship between hydropattern, soil redox, and 

SOM accumulation across the different habitats with different hydrological regimes. I 

hypothesized that the percentage of SOM would be correlated with the hydropattern 
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across different habitats within the wetland. We also hypothesized that the natural 

wetland habitats would have lower soil redox, higher soil C stocks, and increased plant 

species diversity compared to habitats within the restored site.  

2.2 Methods 

2.2.1 Study site description 

The study sites were located along the Patuxent River, a sub-estuary of 

Chesapeake Bay that is located entirely in Maryland USA. The Patuxent River has a 

watershed of 2290 km2 plus 120 km2 for its estuarine tributary and is considered the sixth 

largest tributary of the Chesapeake Bay (Boynton et al., 2008; Seldomridge and 

Prestegaard, 2014; Williams et al., 2006). The watershed received 10.8±7.60 cm monthly 

average precipitation during 2015 and 8.7±4.66 cm during 2016 (MEAN±STD) 

according to Baltimore weather station (NOAA, 2017). For the time frame of 1951-1990, 

the mean freshwater flow in Patuxent River was 11 m3 s-1 according to the United States 

Geological Survey (USGS) gauging station located at Bowie, MD (Magnien et al., 1992). 

The Patuxent River classified as micro-tidal (tidal range of 0.5 m) (Monbet, 1992). 

Salinity in the study area ranges from 0.15 – 0.25 Practical Salinity Unit (PSU).  

Tidal freshwater wetlands were selected along the Patuxent River. Five habitats 

(mudflat, low marsh, high marsh, swamp, and upland) were selected at Patuxent Wetland 

Park, a natural wetland, and four habitats (mudflat, low marsh, high marsh, and upland) 

were selected at Wootons Landing Wetland Park, a restored wetland (Figure 2.1). The 

Wootons Landing restoration was completed at 1998, where their hydrology was restored 

by excavating or scraping (Siciliano, 2013). The soils series at the restored site prior to 
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restoration were classified as Udorthents (reclaimed gravel pits). The soils series at 

natural site were classified as Mispillion and Transquaking (Loamy, mixed, euic, mesic 

Terric Sulfihemists) in the mudflat, low marsh, and high marsh; and Evesboro-Galestown 

(Mesic, coated Lamellic Quartzipsamments) in the upland (Natural Resources 

Conservation Service, 2017). 

At each habitat, three random plots were selected resulting for a total of 27 plots. 

Selection criteria for plots were: 1) not to be located in a disturbed area; 2) not to be 

located in a middle of a creek or a ditch; 3) to be at least 15 meters from adjacent plots; 

and 4) to be randomly selected. High and low marshes in the restored wetlands were 

primarily monocultures, with Phragmites australis and Pontederia cordata, respectively. 

In the natural site, the first dominant species was Ceratophyllum demersum; Nuphar 

lutea; and Polygonum arifolium in the mudflat, low marsh and high marsh, respectively.  

To access the sites, permission was granted by private landowner for the swamp habitat, 

while the rest of the habitats were accessed by permission of the Jug Bay Wetlands 

Sanctuary. 

2.2.2 Hydrology 

In February 2015, at each habitat, a slotted and screened PVC well (SCHEDULE 

40: OD 8.9 cm diameter, 2.41 m length and 0.01 mm slot size) was installed 1 m below 

the soil surface. Each well had a water level data-logger (Odyssey Capacitance Water 

Level Logger, Dataflow Systems Limited, New Zealand) that took a measurement every 

10-minutes for two years, from February 2015 to February 2017. Water level data were 

downloaded frequently from the data loggers at the field sites using Odyssey data logging 

software and a field laptop. In addition, at each habitat, two additional observation wells 
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(SCHEDULE 40: OD 5.08 cm diameter, 1.5 m length and 0.01 mm slot size) were 

installed 0.75 m below the soil surface for measuring the water level manually every two 

weeks for 12 month, from February 2015 to March 2016. Manual sampling was 

conducted as follows: at the observation wells, a stainless steel solid messenger 

(WILDCO corporation, Yulee, Florida USA) attached to an electrical wire was dropped 

in the well. The electrical wire was connected to a multi-meter (Radioshack, Fort Worth, 

Texas) and the water level was recorded once the electric circuit was completed. Water 

levels relative to soil surface were combined with data logger values in a linear regression 

analysis (Appendix A.1). The cumulative percentage of water level relative to soil surface 

was calculated and four hydrological zones were identified: 1) mudflat; 2) low marsh; 3) 

high marsh and swamp; and 4) uplands. All the wells were covered with filter fabric to 

prevent the slots becoming clogged with soil, and were maintained for proper continuous 

performance.  

2.2.3 Soil 

In February 2016 at each habitat, three random 50-cm soil cores were collected 

using a peat sampler 52 mm in diameter and 50 cm long (Eijkelkamp Soil and Water 

Corporation, Netherlands). Soil samples were sectioned into 5 cm increments in plastic 

bags and stored under 4 C̊ to minimize microbial activity until analysis (Bernal and 

Mitsch, 2008).  

At each plot, a pilot hole was made using a stainless-steel rod and three platinum 

(Pt) electrodes were installed at 12.5 cm and three more at 40 cm. The soil oxidation 

reduction (Eh) measurement was recorded using a multi-meter modified with high 

resistance in conjunction with a calomel reference (Rabenhorst, 2009; Rabenhorst et al., 
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2009). Soil samples were dried at 40 ̊C to a constant weight to estimate the soil bulk 

density. Subsequently they were ground and total C analysis was performed (Marchio et 

al., 2016; Wilson et al., 2009). Soil bulk density was estimated for each 5 cm soil section 

(i) by the core method (Black and Hartge, 1986; Elliott et al., 1999; Wilke, 2005), 

dividing soil oven dry weight (g) by the volume of the 5 cm section (cm3) according to 

the following equation:  

௜ܦܤܵ ൌ
݉௜

௜ݒ
 

where SBDi: soil bulk density (g/cm3), mi: oven dry weight (g), and vi: volume (cm3) of 

soil section (i). The soil was tested for having inorganic C by treating the soil with 10 % 

HCl and looking for CO2 bubbles under a dissecting microscope (Balduff, 2007);  no 

bubbles were detected. The total C concentration % for each section (i) was determined 

by CHN method using a LECO CHN-2000 analyzer (LECO Corporation, St. Joseph, 

Michigan). Total C mass for each section (i) was determined by multiplying soil bulk 

density, total C concentration, and volume (Liu et al., 2014; Zabowski et al., 2011) 

according to the following equation,  

௜ܯܥܶ ൌ ௜ܦܤܵ ൈ	ܶܥܥ௜ ൈ ௜ܸ 

where TCMi: total C mass (g C), SBDi: soil bulk density (g/cm3), TCCi: total C 

concentration (% C g dry weight of soil), and Vi: volume (cm3) for section (i).  Total C 

Stock to a depth of 50 cm (TCS) (g C) was determined according to the following 

equation (Han et al., 2010; Liu et al., 2014), 

ܵܥܶ ൌ෍ܶܯܥ௜

௡

௜ୀଵ

 



 

14 
 

where TCS: total C stock (g C) of the soil to a depth of 50 cm, TCMi: and total C mass (g 

C) for section (i). 

2.2.4 Vegetation and above-ground biomass 

Nomenclature for plant species followed United States Department of Agriculture 

Plants Database and was accessed on August 16, 2015 (USDA, 2017). Plant herbarium 

sheets were prepared (Smith, 1971) for each plant species and placed in the laboratory 

herbarium of A.H. Baldwin at University of Maryland, College Park, USA. In August 

2015 at each habitat, three plots were randomly selected and six quadrats (0.25 m2), two 

per each plot, were established for aboveground biomass harvesting. All the plant 

vegetation biomass per quadrate was clipped at the ground level and separated by plant 

species. All the plant materials were oven-dried (40 – 60 ᵒC) to a constant weight so total 

biomass could be calculated (Little, 2013). In the swamp and upland, six burlap leaf litter 

traps were installed in each habitat to reflect the biomass influence from leaf fall. Leaves 

were collected from leaf litter traps biweekly from August 2015 to January 2016. 

2.2.5 Statistical analysis 

Repeated three-way analysis of variance (3-way ANOVA) was used to test the 

main effects and interactions of site, habitat, and depth on SOM and water level. Soil 

organic matter data were normally distributed and not transformed, but water level 

relative to soil surface data were log transformed. Arithmetic means and standard error 

(MEAN±SE) were used for presentation. Two-way ANOVA was used to examine the 

main effects and interactions of site and habitat on soil C stocks, followed by least 

significant difference between the means of soil C stocks according to Duncan test. 
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Linear regression was used for the relationship between automatic recorded and manually 

water level relative to the soil surface. Also, linear regression was applied to examine the 

relationship between observed and recorded water level. Pearson correlation coefficient 

analyses were conducted to examine the correlation between cumulative percentage of 

water level relative to soil surface and soil organic matter percentage. All statistical 

analyses were performed using SAS 9.4 (SAS Institute, Cary, North Carolina).  

2.3 Results 

2.3.1 Hydrology 

Linear regression analysis showed that a strong correlation between the observed 

and recorded water levels for natural (R2 = 0.917, P <0.0001) and restored wetlands (R2 = 

0.965, P <0.0001) (Appendix A.1). The different hydrological zones reflected surface 

elevation differences between habitats (Appendix A.2). In the natural wetland, swamp 

and high marsh were about the same ground surface elevation and they fell within the 

same hydrological zone 3 and they were 70 cm relatively higher than mudflat. In restored 

wetlands low marsh was 15 cm higher than mudflat. 

The natural wetland had a shallower ground water level compared to the restored 

wetland (Appendix A.3 & Figure 2.2). The highest water level was 140 cm above the soil 

surface of the mudflat, while the upland had the lowest (-75 cm for natural and -90 cm for 

restored wetland, Appendix A.3). Cumulative percentage for water level relative to soil 

surface indicated that the mudflats in the natural and restored sites were the most 

frequently flooded habitat, followed by the swamp and marsh habitats; upland habitats 

were never flooded (Figure 2.2). Ninety percent of the time, the swamp and high marsh 
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habitats in the natural wetland had water levels relative to soil surface of 5 cm or below, 

while mudflat had 90 cm or below in natural wetland and 40 cm or below in restored 

wetland (Figure 2.2). Two years of continuous water level data are presented in appendix 

A.4. There were significant differences between sites, habitats, and depth (Table 2.1). 

The swamp habitat and high marsh had less water level daily fluctuation compared with 

mudflat and low marsh in the natural wetland (Appendix A.5).  

2.3.2 Soil C stocks and redox measurements 

Statistical analyses for soil organic matter indicated significant differences among 

sites, habitats, and depth (Table 2.1). Soil organic matter was higher in natural compared 

to the restored counterparts (Appendix A.6). Soil organic matter in the natural site was 

highest in swamp and decreased in the order high marsh > low marsh > mudflat > upland 

(36.8, 30.8, 21.5, 17.8, and 5.6 % respectively). For restored wetland habitats soil organic 

matter was highest in low marsh and decreased in the order high marsh > upland > 

mudflat (9.0, 4.0, 2.9, and 2.8 % respectively). Total soil C decreased with depth for the 

majority of habitats, e.g. total soil C for swamp habitat had 19.9% in the top 5 cm and 

decreased to 11.4% at 50 cm soil depth (Figure 2.3). The high marsh at the restored 

wetland, dominated by Phragmites australis, had higher total soil C than low marsh, 

dominated by Pontederia cordata within the first 15-20 cm only (Figure 2.3).  Soil bulk 

density for natural wetland habitats was lower than soil bulk density in the restored 

counterparts (Appendix A.6). Soil bulk density for natural wetland habitats was highest in 

upland sites (1.053 g cm-3) and lowest in the swamp (0.202 g cm-3). At the restored 

wetland the upland was also greatest (1.215 g cm-3). Soil bulk density increased with 

depth for the majority of habitats (Appendix A.7).  
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Total C stocks were significantly higher in the natural wetland than in the restored 

wetland (14.8 and 8.9 kg C m-2, respectively, P site < 0.0001) (Figure 2.4). Total C stocks 

for low and high marsh in the natural wetland (16.0 and 16.1 kg C m-2, respectively) were 

significantly higher than their counterparts habitats in restored wetland (12.3 and 5.7 kg 

C m-2, respectively) (P habitat = 0.0474). Total C stocks varied by depth, with most C 

stocks increasing to a depth of 20-25 cm and then decreasing (Appendix A.8). Soil 

organic matter positively correlated with flooding percentage (r = 0.509 for natural 

wetland and r = 0.229 for restored wetland at P<0.05) according to Pearson correlation 

coefficient analyses.  

The natural wetland soils were more reducing than the restored wetland soils for 

both 12.5 and 40 cm soil depth (Figure 2.5). The high marsh at the restored wetland 

which was dominated by Phragmites australis had the highest soil redox measurements 

at both 12.5 and 40 cm soil depth (273±27 and 252±33, respectively). At the natural 

wetland, soils had lower redox measurements at 40 cm than 12.5 cm soil depth for low 

and high marsh, although for the swamp habitat and the restored low marsh soils had 

higher redox measurements at 40 cm than 12.5 cm soil depth. 

2.3.3 Above-ground biomass and vegetation composition 

Above-ground biomass for the restored wetland was significantly higher than the 

natural wetland (1002.3±421.33 and 288.3±79.85 g dry weight m-2, respectively, P < 

0.0001, figure 2.6). The restored high marsh which was dominated by Phragmites 

australis had the highest above-ground biomass (3099.1±925.80 g dry weight m-2), while 

the restored mudflat had the lowest (41.3±15.45 g dry weight m-2). The natural upland 

had higher leaf litter input than the restored upland (474.5±17.36 and 236.9±118.48 g dry 
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weight m-2, respectively). The natural wetland had more plant species diversity than the 

restored (30 and 14 plant species, respectively) (Figure 2.7), with a total of 33 plant 

species identified at both sites (Appendix A.9). High marsh in the natural wetland had the 

largest number of plant species (11, figure 2.7), while low and high marsh in the restored 

wetland had only one plant species each (Phragmites australis and Pontederia cordata, 

respectively), indicating that most of the restored wetland habitats were a monoculture 

plant community. Mudflats, for the natural and restored wetland, were closest to the creek 

and hence were 100% flooded, supporting the colonization of submerged aquatic 

vegetation. In the natural wetland, Ceratophyllum demersum was the dominant 

submerged species in the mudflat, while Hydrilla verticillata was the dominant for the 

mudflat at the restored wetland. 

2.4 Discussion 

The tidal freshwater wetland habitats, located along the Patuxent River, differed 

significantly in many basic variables like geographical settings, plant community 

structure, and spatial settings (e.g. distance from the tidal creek). Both of the study sites 

(natural and restored) were affected by daily tidal fluctuations. Due to different 

geographical setting, habitats had different hydropatterns. In the swamp habitat, hollows 

and hummocks were a characteristic topographic setting that had a significant effect on 

the hydropattern. The swamp habitat was at higher elevation than the mudflat (based on 

data presented in Appendix A.2), however it was flooded 70% of the time, a condition 

that likely played a role in high SOM accumulation (36.8 %). Moreover, the swamp 

habitat has no slope and very low hydraulic conductivity, implying very slow movement 
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of water. The swamp habitat, located farther from the creek, received less sediment than 

mudflat, likely contributing to soil being more organic rather than mineral.  

Soil redox at 12.5 cm at the natural site was the lowest in the swamp habitat 

compared to low and high marsh (118±35, 169±22, and 240±13, mV respectively). 

Increased flooding frequencies results in a lack of available oxygen diffused to the soils, 

slowing or resulting in incomplete decomposition of dead plant materials, resulting in 

accumulation of SOM (Kayranli et al., 2010). The swamp habitat was located 90 m from 

the creek and it was affected by daily tidal fluctuation (Appendix A.5). After the swamp 

habitat gets flooded, surface water travels back to the creek, while the subsurface water 

stays for a longer time captured in soil between hummocks as it takes a longer time to 

reach the creek by diffusion or flow-through (Jackson et al., 2014). 

Observed variations in soil C stocks between different habitats in the natural and 

the restored sites may be explained by spatial differences in habitats geomorphological 

setting affecting sedimentation. The quantity of sediment that a habitat receives is a key 

role in soil bulk density. Mudflats, for both natural and restored wetland, had the highest 

soil bulk density (0.364 and 0.865 g cm-3, respectively) after the uplands, while the 

swamp habitat had the lowest soil bulk density as it is the farthest from the creek for 

receiving sediment. Higher soil bulk density increases the chances for more soil particles 

to be readily available for coating with soil organic matter and forming more soil 

aggregates for storing more soil C stocks. Mudflats and marshes were higher in soil C 

stocks than the swamp habitat. Soil bulk density is negatively correlated with soil organic 

matter (r=-0.695, p<0.0001). Other research studies reported similar findings (Chaudhari 

et al., 2013; Curtis and Post, 1964; Sakin et al., 2011). 
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In general, the restored site had less soil C stocks than the natural site. Other 

research studies reported similar findings (Table 2.2). Restoration techniques and short 

time since restoration occurred are the main factors that lead into less C stocks in the 

restored site. Excavating the soil results in the loss of the rich C layer at the topsoil and 

exposing the subsoil that is very low in C content. Plant species diversity is another key 

factor for more soil C inputs with high quality litter characterized by low C/N ratio and 

high nitrogen concentration. Restored habitats were monoculture plant community, where 

the natural habitats were more diverse.  On average, the restored wetland had 

aboveground biomass higher than the natural wetland, and that was not promoting the 

SOM accumulation in the restored wetlands. Soil texture might explain the reason for 

lower SOM in the restored wetland. Soil texture in natural wetland was silty clay in most 

of the habitats (chapter 3), while the restored sites had a higher sand content. Sand grains 

have larger particle size than silt and clay particles, while clay has larger surface area and 

high electrostatic force for accommodating more C (Ding et al., 2013a) to be stored 

compared with sandy soil. Moreover, adding clay (2-5%) to an incubated soil of 

freshwater marsh significantly decreased CO2 production (Dodla, 2009), implying more 

C preserved within clay particles.  

At the restored site, the soil was excavated to increase the hydroperiod (Siciliano, 

2013). Many research studies report a negative impact on soil C stocks for restored 

wetlands where their hydrology was restored by excavation (Fenstermacher et al., 2016a; 

Stolt et al., 2000). Restoring the wetland hydrology by scraping or excavating the soil 

surface may not be recommended for future wetland restoration as the soil become 
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exposed to aerobic conditions that accelerate soil organic matter decomposition rate and 

hence, less soil C stocks. 

Current study results concluded that more flooding frequency may enhance soil 

organic matter accumulation in natural wetland but not necessarily in the restored 

wetland. My hypothesis was that the natural wetland habitats had higher SOM than the 

restored wetland habitats. In support of that hypothesis restored wetland habitat had 

significantly less SOM. Many variables impact the soil C stocks including sediment 

input, productivity, hydrology, and decomposition rate. Our results showed that both the 

natural and restored site has similar hydrology as they located very close in the same 

watershed, but hydrology alone is not the main driving force for SOM accumulation. Soil 

texture, redox conditions and vegetation compositions are confounding factors for 

promoting the SOM accumulation in our sites. The restored high marsh which was 

dominated by Phragmites australis had the highest above ground biomass, however it 

had significantly lower C stocks than the natural high marsh which had higher plant 

species diversity. So, higher saturation levels, plant species diversity, and clay content at 

the soil of the natural high marsh might be the reason for having higher C stocks at the 

natural high marsh than the restored high marsh. 

Freshwater marshes are among the highest ecosystems for net primary 

productivity (Keddy, 2010; Mitsch and Gosselink, 2007), as they are receiving higher 

rates of sediment than non-tidal wetlands, the main source of nutrients, and they have 

high rates of C use efficiency (Rocha and Goulden, 2009). At the natural wetland, low 

marsh are closer to the creek and receives more sediment than the swamp habitat, but the 

swamp habitat had a shallower groundwater compared to the marsh. That might partly 
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explain why the swamp habitat had higher SOM than low and high marsh. Moreover, the 

swamp habitat had lower soil redox measurement than the low marsh at 12.5 cm soil 

depth, and meaning that decomposition rates are slower at the swamp habitat. Previous 

research findings revealed valuable ecosystem services and functions for natural wetlands 

that include, but not limited to, plant species diversity, C sequestration, and higher soil C 

pools (Mitsch and Gosselink, 2007; Ricaurte et al., 2017). Not only do natural wetlands 

require conservation and protection, but also should be considered as a valuable model 

for more efforts for wetland restoration.  

Common reed or Phragmites australis was the only plant species at the high 

marsh at the restored site. It is a perennial grass that occur in brackish and freshwater 

wetlands, and it has a huge belowground biomass as rhizomes from which new sprouts 

comes out as new shoots at the beginning of the growing season. It has a significant 

amount of aerenchyma, plant tissue that is responsible for the gas exchange, in stems, 

rhizomes, and roots. Those plant tissues as a kind of structural adaptation and other 

mechanical adaptions that prevent or inhibit the growth of other plant species make the 

common reed a very powerful invasive plant species and able to colonize easily in new 

habitats. Plant species richness in habitats dominated by common reed is very low 

compared to their counterparts. The unique and extensive aerenchyma for the common 

reed play a significant role in driving more oxygen down to the roots zone and that make 

the oxygen available for soil microbes that can be used to oxidize SOM. It therefore, 

makes sense that I observed less SOM percentage. Also, that gas exchange system 

through the stems-roots-rhizome-leafs make the pathway for any gases like CO2 or CH4 
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to be released to the atmosphere (Bernal et al., 2016), and again makes sense given that 

the restored high marsh had lower soil C stocks. 

Wetland restoration is a key technique for wetland mitigations to secure potential 

wildlife habitats, wastewater treatment, and C sequestration. Future research should 

involve multiple restored sites that span different geohydrological settings and where 

hydrology has been restored with different restoration techniques. That will enable 

rigorously extrapolation of wetland hydrology restoration on soil C stocks. Moreover, 

invasion of common reed, Phragmites australis, to marshes should be addressed and 

taken in consideration as the common reed induces the soil organic matter priming by 

radial oxygen loss by roots and more aerobic condition and that will negatively impact 

the soil C stocks. 

2.5 Conclusion 

The natural wetland habitats had significantly higher SOM than their 

corresponding restored habitats. The swamp habitat had the highest soil organic matter 

(36.8%), while mudflat at the restored wetland had the lowest (2.8 %). Soil C stocks were 

significantly higher in natural wetland than the restored (14.8 and 8.9 kg C m-2, 

respectively, P site < 0.0001). The swamp habitat at the natural wetland had the lowest 

soil redox at 12.5 cm soil depth and shallower ground water level that makes it the 

highest in soil organic matter, however, it had lower C stocks compared to the natural 

marsh. The restored wetland had lower soil organic matter and C stocks than the natural 

wetland in all four habitats and that might be a result of the way that the hydrology was 

restored. The natural wetlands had soils with more reducing conditions than the restored 

wetland soils at both 12.5 and 40 cm soil depth, and that is a key factor for making the 
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restored wetland lose more C with higher decomposition rates. Moreover, the loss of rich 

C layer at the topsoil as a result of the excavation of the restored site and exposing the 

poor C subsoil to the surface had a significant impact on lower C stocks at the restored 

wetland. Wetland restoration practice should take into account vegetation diversity, 

above-ground biomass, and establishment of reducing conditions in the soil. 
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Table 2.1: Results of repeated three-factor ANOVAs summarizing the effects of Site 

(Natural vs. Restored), Habitat (mudflat, low marsh, high marsh, swamp, and upland), 

and Depth (5 cm increment up to 50 cm soil depth) on the (a) soil organic matter % and 

(b) log flooding %. 

Source Type 3 Tests of Fixed Effects 
a) Soil organic matter % Num DF Den DF F Value Pr > F 
Site 1 17.7 55.48 <.0001 
Habitat 6 17.8 67.11 <.0001 
Site*Habitat 1 17.7 26.45 <.0001 
Depth 9 8.76 8.2 0.0024 
Site*Depth 9 6.83 0.3 0.9507 
Habitat*Depth 54 11.2 3.54 0.0126 
Site*Habitat*Depth 9 6.83 0.22 0.979 
b) Log flooding percentage % Num DF Den DF F Value Pr > F 
Site 1 14 36.18 <.0001 
Habitat 6 12.9 44.53 <.0001 
Site*Habitat 1 14 35.63 <.0001 
Depth 9 137 8.63 <.0001 
Site*Depth 9 138 5.76 <.0001 
Habitat*Depth 54 137 5.2 <.0001 
Site*Habitat*Depth 9 138 6.13 <.0001 
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Table 2.2: Comparison of soil C stocks (kg C m-2) in wetlands around the world. 

Country/Region Nature of wetland1 Wetland1 
Soil C stocks 

(kg C m-2) 

Core 

depth 

(cm) 

Natural wetlands   

USA, Ohio Nature preserve Riverine - marsh 1.1 35e 

USA, Ohio Nature preserve Riverine - mudflat 1.3 30e 

Costa Rica National protected zone Riverine - flow through 6.8 24a 

Australia Undisturbed Mangrove 9.4 20b 

Mexico, Punta Gorda Biosphere reserve Coastal brackish marsh 9.5 30c 

Costa Rica Nature preserve Isolated - forested 9.9 6a 

Australia Undisturbed Saltmarsh 13.0 20b 

USA, Ohio Nature preserve Riverine - flow through 14.3 36a 

Costa Rica National protected zone Slow-flowing - slough 15.3 54a 

Belgium-Netherlands Nature preserve Freshwater - low marsh 16.4 60f 

Belgium-Netherlands Nature preserve Brackish - low marsh 18.6 60f 

Belgium-Netherlands Nature preserve Brackish - high marsh 19.6 60f 

China Lake - water reserve  Freshwater Swamp 19.7 30d 

USA, Ohio Nature preserve Isolated - forested 21.0 36a 

USA, Virginia Natural Depressional wetland 21.5 100g 

Belgium-Netherlands Nature preserve Freshwater - high marsh 21.7 60f 

Mexico, Vigia Chico Biosphere reserve Coastal brackish marsh 23.8 100c 

Other than natural wetlands 

USA, Delaware Restored by scraping2 Depressional wetland 2.7 100g 

Australia Disturbed Mangrove 5.7 20b 

Australia Disturbed Saltmarsh 6.0 20b 

USA, Maryland Restored by plugging3 Depressional wetland 6.1 100g 

USA, Delaware Prior converted cropland Depressional wetland 8.0 100g 

1: Nature of wetland, wetland type, and hydrology regime were quoted as it was described from the citation; 2: 

surface excavation; and 3: plug for the draining system. 

a: (Bernal and Mitsch, 2008), b: (Howe et al., 2009), c: (Adame et al., 2013), d: (Huang et al., 2012), e: (Bernal 

and Mitsch, 2012), f: (Van de Broek et al., 2016), and g: (Fenstermacher et al., 2016b) 
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Figure 2.1: Study sites map showing Patuxent Wetland Park (PWP), a natural wetland 

and Wootons Landing Wetland Park (WLWP), a restored wetland. Maryland counties, 

Chesapeake Bay, Patuxent river, and Patuxent watershed were generated by ArcGIS 10.4 

(Law and Collins, 2015), while site images were obtained from Google Earth (May 

2017). 
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Figure 2.2: Cumulative percentage for water level relative to soil surface (MEAN±SE) 

for natural (top) and restored (bottom) tidal fresh water wetlands for two years (February 

2015 to February 2017). MF: mudflat, LM: low marsh, HM: high marsh, S: swamp, U: 

upland. 
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Figure 2.3: Distribution of total soil C % (mean ± SE) over 50 cm soil depth in natural 

(A) and restored (B) tidal fresh water wetlands. MF: mudflat, LM: low marsh, HM: high 

marsh, S: swamp, U: upland. Each data point represents 3 samples. 
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Figure 2.4: Total C stocks (mean ± SE) kg C m-2 up to 50 cm soil depth for natural and 

restored tidal fresh water wetlands. Means with different letters are significantly different 

at P<0.05 after Duncan test. P values represent the results of two-factor ANOVAS 

summarizing the effects of Site (Natural vs. Restored) and Habitat (mudflat, low marsh, 

high marsh, swamp, and upland) on total C stocks. Each bar represents 30 samples. 
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Figure 2.5: Soil redox (mv) (mean ± SE) for 12.5 and 40 cm soil depth for natural and 

restored tidal fresh water wetlands. Each bar represents 9 samples. 
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Figure 2.6: Above-ground biomass and leaf litter input (g dry weight m-2) (mean ± SE) 

for the natural (Nat.) and restored (Res.) wetlands. Each bar represents 6 samples. 
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Figure 2.7: Number of plant species in each habitat for the natural and restored wetlands. 
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3 A Novel Method to Assess Soil Organic Matter Decomposition 

and Carbon Stability in Natural and Restored Wetlands 

Abstract 

One of the main objectives of wetland restoration is enhancing and promoting soil 

organic matter (SOM) accumulation, but it might take few decades for newly constructed 

or restored wetlands to build SOM as fast as the natural wetlands. The change of SOM 

concentration over time (referred to here as C stability) impacts soil C release, and 

consequently change Carbon dioxide (CO2) concentration in the atmosphere. My goal 

was to develop a novel method and test an in-situ field bioassay using soil C bioassay 

cores (hereafter, CARBIO) as an index for C stability in restored and natural wetlands. I 

first created three types of bags (3.5 cm x 50 cm) by filling them with native wetland soil 

materials that were well homogenized and sieved. The pore size was 3.5 mm for the first 

bag and 1 mm for the second and the third bag, while the third bag was inside a slotted 

(0.01 mm) PVC pipe to maintain a proper hydrology. Five habitats (mudflat, low marsh, 

high marsh, swamp and upland) were selected at Patuxent Wetland Park, a natural 

wetland, and four habitats (mudflat, low marsh, high marsh and upland) were selected at 

Wootons Landing Wetland Park, a restored wetland. Both study sites are tidal freshwater 

wetlands (salinity < 0.3 ppt) located at the Patuxent River, a Chesapeake Bay tributary in 

Maryland, USA. One hundred and sixty-two CARBIO units were deployed in the 

different habitats for natural and restored wetlands in December 2014, with 81 retrieved 

after one year and processed to evaluate C sequestration rate and the second set retrieved 

after two years (February 2017). CARBIO cores were sectioned into 5 cm increment then 
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soil bulk density and percent of soil C were estimated. Based on the CARBIO index, the 

soil inside the bags that were deployed in the natural wetland sequestered 535±291.5 g C 

m-2 year-1, while the soil inside the bags that were deployed in the  restored wetlands lost 

1095±429.4 g C m-2 year-1 (P site<0.05). According to CARBIO index, the SOM 

decomposition rates varied between wetland habitats and between the natural and 

restored site. The results also show the importance of conserving the natural wetlands that 

play an important role in offsetting GHGs emissions. Under the current environmental 

and hydrological regimes for both sites and according to the CARBIO index, the soils 

inside the CARBIO that were deployed in the natural wetlands were able to accumulate 

C, but the ones that were deployed in the restored wetlands did not accumulate C, instead 

C content decreased in the CARBIO units.   

3.1 Introduction 

  Wetlands have a significant role in global C cycle, but there are many challenges 

in C models: e.g. lack of the direct impact of the microbial activity on soil C pools 

(Allison et al., 2010; Treseder et al., 2012; Wieder et al., 2013), contradictory results 

between lab and field experiments (Conant et al., 2011), and uncertainty of the ability of 

current C models to predict responses of C pools to the warming climate (Friedlingstein 

et al., 2006). Integrating different aspects of C dynamics will help to better understand 

and model the global C cycle. Soil organic matter decomposition rate (Mueller et al., 

2016), C use efficiency (Rocha and Goulden, 2009), net primary productivity (Reddy and 

DeLaune, 2008), and C sequestration rates (Belyea and Malmer, 2004; Bernal and 

Mitsch, 2012) are crucial components for modeling the global C cycle. The change of 

SOM concentration overtime (hereafter soil C stability) has a significant role in global C 
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cycle. Many research studies had recognized the importance of wetlands in the global C 

budget (Bridgham et al., 2006; Keller, 2011; Meng et al., 2016); however, the long-term 

experimental studies that investigate the differences in the C stability between natural and 

restored wetlands have less attention from researchers.  

Wetlands have high primary productivity (Mitsch and Gosselink, 2007) and are 

key sites for C sequestration (Adame and Fry, 2016; Bernal and Mitsch, 2012; IPCC, 

2007; McKee et al., 2007). Carbon accumulation in wetlands is temporally and spatially 

variable, however. These variations are controlled by nutrient inputs (Morris and Bradley, 

1999), microbial biomass (Wooller et al., 2003), temperature (Kirwan and Mudd, 2012), 

sea level rise (Kirwan et al., 2013), rainfall (Adeolu et al., 2015), net primary productivity 

(Sjögersten et al., 2014), SOM decomposition rates (Malmer et al., 2005; Philippot et al., 

2009), vegetation composition (Thormann et al., 1999), and salinity (Baustian et al., 

2017; Morrissey et al., 2014; Neubauer et al., 2013). Tidal freshwater wetlands are 

located at the upperstream of the estuary with less impact from saltwater, but receive high 

amounts of nutrients and thus, play a key role in the global C cycle. Tidal freshwater 

wetlands have higher C pools than brackish and saltmarshes (Bridgham et al., 2006; 

Craft, 2007; Loomis and Craft, 2010; Reddy and DeLaune, 2008; Van de Broek et al., 

2016). Many research studies had investigated C sequestration rates in tidal freshwater 

wetlands (Adame et al., 2015; Bernal and Mitsch, 2012; Drexler et al., 2013; Reddy et al., 

1993), but the mechanism governing C stability in natural and restored wetlands are 

poorly understood.  

The majority of the methods in use for evaluating and assessing C sequestration 

rate in wetlands are based on 137Cs or 210Pb radionuclide dating (Bernal and Mitsch, 
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2013a; Craft and Casey, 2000; Marchio et al., 2016; Preston et al., 2013; Teasdale et al., 

2011; Ward et al., 2014; White et al., 2002).  Radionuclide dating using 137Cs is based on 

the assumption that there has been constant sedimentation rates since 1964, which might 

be problematic especially in coastal marshes. Other methods in use to evaluate C 

sequestration rate are based on assessing the soil C density and the sediment 

accumulation rate using surface elevation tables (Cahoon et al., 2002; Callaway et al., 

2013; Marion et al., 2009). This method requires the verification of no vertical motion in 

the benchmark itself, an assumption which usually made, and does not account for C 

concentration directly. Calculation C concentrations and mass balancing C inputs and 

outputs is another way to estimate C sequestration rate (Kayranli et al., 2010; Mander et 

al., 2008; Mander et al., 2005), while some other studies used chambers to report C 

sequestration rates based on CO2 exchange rate (Whiting and Chanton, 2001), which 

doesn’t sufficiently reflect major biochemical process that involved in the C budget. 

Leaf litter bags and decomposition strips are well known methods to assess 

relative decomposition rate (Ballantine and Schneider, 2009; Benfield, 1996; de Neiff et 

al., 2006; Hayes et al., 2017). They estimate the decomposition of labile C only (fresh 

litter inputs), which is not a sufficient representation for the wetland soils as the large 

proportion of C stored in the soil. A common C sequestration rate bioassay method uses 

leaf litter bags (Emery and Perry, 1996; Keuskamp et al., 2013; Lee and Bukaveckas, 

2002) or peat (Kirwan et al., 2013), so, there was a need to develop an in-situ field 

bioassay that better represent and reflect the C of native soil materials. The soil materials 

that were used to fill the soil cores were native wetland soils from the study sites which is 
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more realistic than leaf litters or peat for assessing the ability of stored C to be retained or 

lost from a location. 

There is a well-established relationship between mineral surface area and the soil 

organic matter (Mayer and Xing, 2001), and that is a crucial factor impacting the C 

accumulation rates. Mineral deposition can be important in C accretion rates (McCarty et 

al., 2009), where coating of the mineral surface areas might stabilize C compounds 

during SOM accumulation (Mayer and Xing, 2001; Sollins et al., 1996). The mesh size of 

decomposition bags is therefore important (Agoston-Szabo et al., 2016; Benfield, 1996; 

de Neiff et al., 2006; Gingerich et al., 2015), because some mesh will allow mineral 

deposits and others will not. Also important to consider for mesh size is the ability of 

roots to grow into cores. My research objective was to use a novel field bioassay to 

estimate C sequestration and decomposition rate for habitats within a natural and restored 

tidal freshwater wetland. My hypotheses were: 1) CARBIO units placed in mudflats, low 

and high marshes and swamp will accumulate C, but those in adjacent uplands will lose 

C; and 2) mesh bag size have a significant impact on C accumulation or loss in both 

natural and restored wetlands by excluding interactions with plant roots and excluding 

mineral inputs. 

3.2 Materials and methods 

3.2.1 Study site description and making CARBIO units 

Tidal freshwater wetlands were selected in Maryland, USA along the Patuxent 

River, a Chesapeake Bay tributary. For a detailed site description, please refer to chapter 

2 (Figure 2.1). For making the CARBIO units (Figure 3.1), soil samples were collected 
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from five tidal freshwater wetlands, one from Choptank River (A), four from Patuxent 

River (B, C, D, & E). Soil samples were collected using a peat sampler that is 52 mm in 

diameter and 50 cm long (Eijkelkamp Soil and Water Corporation, Netherlands). 

Preliminary analyses, including organic matter, particle size, and pH, were performed to 

select the most convenient starting soil that will be used to build the CARBIO units.   

Percentage of SOM was determined for the five wetland soils by combustion for two 

hours at 550 ̊C according to the loss-on-ignition method (Wilke, 2005) (Table 3.1). My 

criteria for selecting the most appropriate starting soil to make CARBIO units were: 1) to 

have soil C within this range (9-12 %), and 2) the SOM does not change significantly 

with grinding and sieving (Appendix B.1).  The main reason to estimate the soil organic 

matter for the five wetland soils after applying grinding and different sieving sizes was to 

assess the most constant soil organic matter: e.g., soil organic matter from site E did not 

change under the different grinding and sieving practices (Appendix B.1).  As a 

consequence, soil from site E has intermediate soil organic matter content (22.34 %) and 

did not significantly change with different estimation techniques, which lead us to decide 

that soil was the most convenient soil to start with. I collected 14 more 19 L buckets  

from site E and soils were stored at 4 ̊C to minimize microbial activity until analysis 

(Bernal and Mitsch, 2008). 

For soil C concentration, I removed living roots and rhizomes, and screened out 

dead plant parts.  I tested several different sieving sizes processes for soils from site E 

(wet sieving through 1, 5, and 12.5 mm) before I started particle-size analysis for the soil.  

Particle size analysis was conducted according to the hydrometer Bouyoucos method 

(Gee and Bauder, 1986).  The texture class (silty-clay) for E didn’t significantly change 
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under different sieving conditions (Appendix B.2).  Sieving the soil through 1 mm using 

tap water was not practical and resulted in a change in the pH of soils from site E from 

5.02 to 5.69 (P = 0.0049).  I prepared wet soils from site E by pressing it through a 5 mm 

sieve by hand to eliminate coarse roots and large dead parts (dead leaves and stems).  Soil 

from site E was then spread in a pan and remaining roots were picked by hand with the 

exception of very fine roots, which were difficult to remove. Soil was then homogenized 

using a cement mixer for 7 minutes (Sharpe and Baldwin, 2013).  For achieving soil 

homogeneity, I divided the soil into three main groups and for every group, half of a 

bucket was been selected randomly and placed to the mixer then the other half was added 

randomly then mixing with each other for 7 minutes and placed again to the empty ones 

randomly.  Then, the soil was divided into four groups and every group was blended as 

stated above.  The homogeneity of the blended soil was tested using a Carbon Hydrogen 

Nitrogen (CHN) analyzer and no significant differences were detected.  

Three types of mesh bags were in use to make the CARBIO units. Multiple 

measurements were taken for the mesh pores using a ruler with reporting the average 

mesh size for each bag type. The first mesh bag has large mesh size (average size 3.5 

mm) that allows roots to penetrate through.  The second has fine mesh size (1 mm) that 

does not allow root penetration, except for very fine roots.  The third has fine mesh (as 

the second bag), but was placed inside slotted (0.01 mm) PVC pipes that prevent any root 

penetration but allows water exchange and maintain hydrology regime. The mesh bags 

dimensions were 8.89 cm wide (flattened) and 50.80 cm in length. Each mesh bag was 

installed inside unslotted PVC pipes (except the third mesh bag type) to keep the mesh 

bag open and easy to fill with the soil, after that about 1.1 kg of wet soil has been added 
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to mesh bag.  For the filling process, first I started to add small amount of soil and 

tamped inside the mesh bag.  I used the same amount of wet soil (1.1 kg) for all the mesh 

bags.  

3.2.2 Total C Concentration, stocks, and sequestration rates 

In the natural and restored sites, three replicate plots were established in each of 

mudflat, low and high marsh, swamp and upland in a randomized block design. Criteria 

for selecting plots were: 1) randomly selected; 2) not to be located in a disturbed area or 

in a ditch; and 3) to be at least 15 meters from adjacent plots. A total of 162 CARBIO 

units were deployed in December 2014; 81 were retrieved in February 2016 and the other 

81 in February 2017. Before deploying the CARBIO units, I selected 9 CRABIO units 

randomly (3 for large mesh, 3 for fine mesh and 3 for fine mesh-SPVC) to test for the 

initial C concentration.  Each CARBIO unit was divided into 10 section (5 cm for each), 

then soil bulk density was determined for each 5 cm soil section (i) by the core method 

(Black and Hartge, 1986; Elliott et al., 1999; Wilke, 2005) by dividing soil oven dry 

weight (g) by volume (cm3) of the 5 cm section according to the following equation: 

௜ܦܤܵ ൌ
݉௜

௜ݒ
 

Where: SBDi: Soil bulk density (g/cm3) for each section (i) in the mesh bag, mi: oven dry 

weight (g), vi: volume (cm3). Soils were dried at 40 ̊C until constant weight to estimate 

the SBD and subsequently CHN analysis without any effect at C content (Wilson et al., 

2009).  

For Total C concentration (% C in dry weight of soil), soil first was tested for 

inorganic C by treating the soil with 10 % HCL and looking for CO2 bubbles under a 



 

42 
 

dissecting microscope (Balduff, 2007). No bubbles were detected, indicating no 

detectable inorganic C was present. Total C Concentration for each section of the 5 cm 

soil was determined by CHN method using LECO CHN-2000 analyzer, LECO 

Corporation, St. Joseph, Michigan. Total C mass (g C) for each section was determined 

by multiplying soil bulk density, total C concentration, and volume of the section (Liu et 

al., 2014; Zabowski et al., 2011) according to the following equation: 

௜ܯܥܶ ൌ ௜ܦܤܵ ൈ	ܶܥܥ௜ ൈ ௜ܸ 

Where: TCMi: Total C mass (g C) for each section (i), SBDi: Soil bulk density (g/cm3) for 

each section (i), TCCi: Total C concentration (% C g dry weight of soil) for each section 

(i), and Vi: Volume (cm3) for each section (i). Total C stock (g C bag-1) was determined 

according to the following equation (Han et al., 2010; Liu et al., 2014) 

ܵܥܶ ൌ෍ܶܯܥ௜

௡

௜ୀଵ

 

Where: TCS: Total C stock (g C bag-1) of the soil inside each mesh bag as initial C stock, 

and TCMi: Total C mass (g C) for each section (i). Total C stocks were estimated in the 

same manner for the CARBIO units that were retrieved after 15 and 26 month to be 

compared with the initial total C stocks and the difference in the C mass was used to 

estimate C sequestration rate. 

3.2.3 Below-ground biomass productivity 

Below-ground biomass productivity inside the CARBIO units was estimated to 

quantify live root production after one year from deployment. Each CARBIO core was 

sectioned to a 5 cm increment and live roots were handpicked. Live roots were 

categorized in three main categories based root diameter: 1) fine roots < 1mm; 2) lateral 
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roots 1-2 mm; and rhizome >2mm. The process of handpicking of the roots was time-

consuming (current study) and the root ingrowth method has a lot of limitations and 

shortcomings concerning accurate estimation of below-ground biomass productivity 

(Eissenstat and Yanai, 2002; Graham and Mendelssohn, 2016; Hendricks et al., 2006). 

However, the below-ground biomass productivity data were helpful to compare root 

production below the soil surface within the different wetland habitats and to assess the 

mesh bag size impact on the root production and C accumulation rates. To avoid thermal 

decomposition of plant root organic materials and reduction for dry weight (Campbell 

and Plank, 1992; Campbell and Plank, 1998; Jones Jr et al., 1991), plant roots materials 

were oven-dried at 60 ᵒC to remove moisture content until they reached a constant weight. 

Plant root materials were ground using a ceramic mortar and pestle to pass a 1mm screen 

and the C percentage on a dry basis was determined by the CHN method using LECO 

CHN-2000 analyzer, LECO Corporation, St. Joseph, Michigan. 

3.2.4 Statistical analyses 

Analysis of variance (ANOVA) was used to test the main effects and interactions 

of site, habitat, and mesh bag type on C stocks and sequestration rate. Carbon stocks and 

sequestration rates data were tested and found to be normally distributed with 

homogeneous variances.  One-way ANOVA was used to examine the main effect of 

mesh bag type on soil C stocks before deployment, then followed by examination of least 

significant difference between the means of soil C stocks according to Duncan test. Two-

way ANOVA was used to test the main effects of depth and mesh bag type on the initial 

C concentration inside the CARBIO units. Repeated measure ANOVA was used to test 

the main effects of site, habitat, and mesh bag type, and depth on the below-ground 
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biomass productivity. All statistical analyses were performed using SAS 9.4 (SAS 

Institute, Cary, NC). 

3.3 Results 

3.3.1 Total soil C concentration 

In the natural wetland, soil total C concentration percentage for mudflat and the 

swamp habitat increased largely, with regard to initial total soil C concentration, in the 

first 15 cm and continued to increase to the depth of 50 cm for all three types of the 

CARBIO units (Figure 3.2). In the restored mudflat, soil total C concentration decreased, 

with regard to initial total C concentration, largely in the first 10 cm and continued to 

decease to the deeper sections for large and fine mesh bags, while fine mesh-SPVC 

showed slight decrease over depth. Change in soil total C concentration percentage in 

natural and restored upland indicated that both fine and fine mesh-SPVC showed slight 

increase in soil total C concentration for most of the soil depths, while large mesh showed 

no change in soil total C concentration for the natural site with large decrease in the last 

15 cm. The initial (t0) total soil C concentration % was not significantly different per soil 

depth (P = 0.9667, Appendix B.3) and that indicated all soil sections had the same 

concentration for the initial soil C at the start of the experiment (t0). After 15 month (t15) 

from CARBIO units deployment, average total C concentration % increased for most of 

the natural wetland habitats and decreased for most of their counterparts in restored 

wetlands (Appendix B.4). For example, total C concentration for the swamp habitat soils 

had increased by 10% for large mesh, 8% for fine mesh, and 7% for fine mesh-SPVC 

(Appendix B.4). Conversely, CARBIO units deployed in the restored wetland lost soil C 
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with time. For example, total C concentration for restored mudflat soils had largely 

decreased by 28% for large mesh, 27 for fine mesh, and 9 for fine mesh-SPVC 

(Appendix B.4). More changes were noticed in the first 15-20 cm from the soil surface 

for most of the natural and restored habitats, while deeper soil sections didn’t change 

significantly (Figure 3.2).  

After 26 months (t26) from CARBIO units deployment and with regard to t0 soil 

total C concentration %, all the natural wetland habitats showed large increase in soil 

total C concentration % in the first 15 cm and continued to slightly increase to the end of 

the CARBIO cores for the three mesh bag types (Figure 3.3). Conversely, the three mesh 

bag types deployed in the restored mudflat showed large decrease in soil total C 

concentration % especially in the first 5-15 cm soil depth and continued to show slight 

decrease for the deeper soil sections. The restored low marsh showed large decrease in 

soil total C concentration % in the first 10 cm for all mesh bags, while both fine and fine 

mesh-SPVC showed slight increase in the deeper soil sections (20-50 cm). Restored high 

marsh was dominated by Phragmites autstalis where soil total C concentration % 

decreased within most of the soil sections for the large mesh bag, while fine mesh-SPVC 

showed increase in soil total C concentration % for all soil depths except the first 5 cm. 

Change in soil total C concentration % showed the same pattern in natural and restored 

upland where both fine and fine mesh-SPVC showed slight increase in soil total C 

concentration % for most of the soil depths, while large mesh showed large decrease in 

soil total C concentration % for most of the soil depths. 
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3.3.2 Change in soil C stocks after 15 and 26 month from deploying 

Total C stock  for CARBIO (g C bag-1) indicated no significant difference 

between the three types of mesh bags before deploying them (t0) (P = 0.3619) (Table 3.2), 

implying all the CARBIO units had the same amount of C to start with. After 15 month, 

total C stocks (g C bag -1) inside the fine mesh-SPVC increased in the top 30 cm for most 

of the natural wetland habitats, and decreased for the all restored wetland habitats (Figure 

3.4). Total C stocks estimated inside the large mesh decreased for all natural and restored 

habitats except the swamp habitat, which increased by 11%.  Total C stocks for the fine 

mesh deployed in natural wetlands increased by 23, 17, 14, and 7% for low marsh, high 

marsh, swamp, and upland respectively.  Total C stocks for the fine mesh deployed in the 

restored wetlands increased by 7, 1, 5, and 1% for mudflat, low marsh, high marsh, and 

upland respectively (Figure 3.4).  

After 26 month (t26) from CARBIO units deployment, total C stocks (g C bag -1) 

inside the fine mesh-SPVC largely increased for natural mudflat and swamp, and 

decreased for the all the restored wetland habitats (Figure 3.5). Total C stocks estimated 

inside the large mesh decreased for all natural and restored habitats including uplands.  

Total C stocks for the fine mesh deployed in natural wetlands increased by 35, 19, 12, 

and 3% for swamp, low marsh, high marsh, and mudflat respectively.  Total C stocks for 

fine mesh deployed in restored wetlands increased by 12 and 10% for high marsh and 

low marsh respectively (Figure 3.5), while decreased by 18% in the restored mudflat. 

3.3.3 Carbon sequestration rates 

Based on the CARBIO index and after one year from deployment, the soil inside 

the bags that were deployed in the natural wetland sequestered 535±291.5 g C m-2 year-1, 
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while the soil inside the bags that were deployed in the  restored wetlands lost 

1095±429.4 g C m-2 year-1 (P site<0.05) (Table 3.3).  In the natural wetland, the CARBIO 

units that deployed in the swamp had the highest CSR (1377±601.0 g C m-2 year-1) 

followed by the high marsh then the low marsh (1043±759.1 and 929±724.1 g C m-2 year-

1, respectively, P habitat<0.05). All the CARBIO units that were deployed in the restored 

wetland habitats lost C where mudflat was the highest followed by low marsh and then 

high marsh (1903±1474.4, 1573±799.4, and 780±558.5 g C m-2 year-1, respectively, P 

habitat<0.05) (Table 3).  

After two years form CARBIO units deployment, the soil in the CARBIO units 

that were deployed in the natural wetland continued to sequester C, while restored 

wetland continued to lose C but with lower rates compared with one year deploying. The 

soil in the CARBIO units that were deployed in the natural wetland sequestered 38±550.5 

g C m-2 2year-1, while restored wetlands lost 633±463.9 g C m-2 2year-1 (Table 3.3). In 

natural wetlands, the swamp and mudflat CARBIO units were the only habitats that were 

able to continuing the C accumulation (2504±1377.7 and 473±924.5 g C m-2 2year-1, 

respectively). Similar to what happened in the restored habitats after one year from 

CARBIO units deployment, the soil in the CARBIO that were deployed in the restored 

habitats continued to lose C after 2 year from deployment where mudflat was the highest 

followed low and high marsh (2119±1009.2, 846±974.1, and 209±859.7 g C m-2 2year-1, 

respectively) (Table 3.3). 

3.3.4 Below-ground biomass productivity 

The type of mesh bag of the CARBIO units had a significant effect on the below-

ground biomass productivity (P = 0.0064, figure 3.6). The restored and the natural upland 



 

48 
 

habitats had the highest below-ground biomass productivity inside the large mesh 

(1243.7±299.88 and 499.7±114.03 g dry weight m-3 y-1, respectively), while the restored 

mudflat had the lowest 22.8±4.56 g dry weight m-3 y-1. Inside the fine mesh bag, the 

restored high marsh which was dominated by Phragmites australis had higher below-

ground biomass productivity than the natural high marsh (592.1±173.45 and 

433.8±147.27 g dry weight m-3 y-1, respectively, P < 0.0001).  The productivity was 

significantly different between habitats and through depth, as well (P < 0.0001). 

3.4 Discussion 

C cycling in coastal wetlands is a key component in the global C cycle (Smith et 

al., 2005). Wetlands with different geographical setting can be sources or sinks for C 

(Mitsch and Gosselink, 2007) and that has implications for understanding and predicting 

global environmental change. Many factors can control the potential for a wetland to be 

considered either a C source or a C sink; these factors include hydrology, geographical 

setting, nutrient dynamics, vegetation composition, and soil biogeochemical processes. 

The balance between C inputs and outputs determines whether a wetland ecosystem is a 

C source or a sink. Since wetland soil is anaerobic, soil organic matter decomposition rate 

is very slow compared with upland and other terrestrial ecosystems. My results revealed 

that C turnover in CARBIO units is more stable in the natural site (535±291.5 g-C m-2 

year-1) than the restored site (-1095±429.4 g-C m-2 year-1).  The natural wetland can be 

considered a C sink, and this observation supports my first hypothesis. On the other hand, 

the C turnover rate is relatively high at the restored site under the current hydrological 

and soil redox conditions (Chapter 2). That might be due to differences in soil texture, 

vegetation composition, hydrology, soil redox, sediment dynamics, geographical setting, 
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and soil microbe community. Results from chapter two indicated that the natural site had 

a shallower water level relative to soil surface, while the water level at the restored site is 

at deeper soil depths. Saturation negatively impact the abundance of oxygen, and that is a 

key factor in lowering the decomposition rate of soil organic matter as oxygen diffusion 

in water is very slow. Moreover, soil redox at the natural site is lower than the restored 

site (Figure 2.5), implying more reducing condition for natural wetland soils than the 

restored. Having more reducing conditions at the natural site than the restored might 

explain the C accumulation at the natural site and higher C decomposition rate at the 

restored site. Other research studies reported similar results for lower C sequestration 

rates in restored than natural wetlands (Waddington and Warner, 2001). Other research 

studies reported that restored wetlands have less SOM (Ballantine and Schneider, 2009; 

Bernal and Mitsch, 2013b; Bruland and Richardson, 2006; Campbell et al., 2002; Shaffer 

and Ernst, 1999), and lower C pools compared to natural wetlands (Drexler et al., 2013; 

Fenstermacher et al., 2016a; Howe et al., 2009).   

Soil C sequestration rates are extremely variable as indicated in Table 3.4. Carbon 

sequestration could be as low as 21 g-C m-2 y-1 in tidal marine dominated marshes  (Craft, 

2007), or in restored tidal freshwater wetlands could be losing 1095 g C m-2 y-1 (current 

study). Other research studies reported higher rates in natural and impounded saltmarsh 

(Bryant and Chabreck, 1998; Chmura et al., 2003); and constructed wetland (Kayranli et 

al., 2010; Mander et al., 2008; Mander et al., 2005) (714, 1713, 1850 g C m-2 y-1, 

respectively). Based on the CARBIO index in the current study, C sequestration rates fall 

within the same range of the C sequestration rates reported from some constructed 

wetlands (Kayranli et al., 2010; Mander et al., 2008; Mander et al., 2005), but were 
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higher compared with other studies for natural and restored sites (Anderson and Mitsch, 

2006; Mitsch et al., 2012) (Table 3.3 and 3.4). While the natural habitats are 

accumulating C and restored are not maintain the same function, other research studies 

reported the opposite that is restored and created wetland ecosystems were accumulating 

higher C than their natural references wetlands: for example restored prairie potholes 

wetlands that had been restored for more than a decade (Euliss et al., 2006) were able to 

accumulate C that is 3.7 times faster than their natural wetland references; created 

riverine wetlands in Midwestern USA that were 15-years-old (Bernal and Mitsch, 2013b) 

were able to accumulate C that is 70% higher in a similar natural wetland within the same 

region; impounded tidal saltmarsh (Bryant and Chabreck, 1998; Chmura et al., 2003) 

were able to accumulate C that is 58% higher in natural tidal saltmarsh located in the 

same region. Extreme variations between those wetlands in sedimentation rates, primary 

productivity, hydrology inputs, soil redox conditions, and vegetation composition might 

explain their differences in C sequestration rates. Given that C sequestration is among 

priorities for wetland restoration, it is important to acknowledge that it might take years 

for a restored wetland to reach same level of C accumulation of a natural coastal marshes 

(Craft et al., 2002). 

This study, to my knowledge, is the first experimental study to investigate the 

impact of mesh size on C stability in natural and restored wetlands, and is also unique as 

native soil material from the site were used to make the CARBIO units. In my study, the 

mesh bag type of the CARBIO units had a significant effect (P < 0.05) on the below-

ground biomass productivity, and that might impact C accumulation rates in natural and 

restored wetland habitats. Mesh size of the leaf litter bags ranges from 1 mm and using 
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plant litters (Ballantine and Schneider, 2009) to 5 µm and using peat (Kirwan et al., 

2013) and that is a key factor for the interaction between inside materials and the 

surrounding soil. In my study, all CARBIO cores were filled with native soil material, 

where large mesh bags had an average pore size of 3.5 mm, while fine mesh bags had a 

pore size of 1 mm, similar to most of leaf litter bags in use. After 15 months from 

CARBIO units deployment, the large mesh bag inside the swamp habitat was the only 

bag that demonstrated 11 % increase of total C stocks. Hydrology and soil redox data 

presented in chapter 2 (Figures 2.2 and 2.5) might be key factors in those results. Seventy 

% from the time, water level relative to soil surface in the swamp habitat was either at 0 

cm or above soil surface, and that is a key factor for retarding the diffusion of oxygen to 

the soil, and hence lower soil organic matter decomposition rate. The swamp habitat had 

the lowest soil redox measurement at 12.5 cm soil depth, implying more reducing 

conditions. Moreover, the swamp habitat was the farthest from the stream and receiving 

less sediment compared to the marsh and mudflat, and this helps explain why the swamp 

has high levels of organic materials and less mineral sediments. Total C stocks for the 

fine mesh deployed in natural wetland habitats largely increased by 23, 17, and 14 % for 

low marsh, high marsh, and the swamp habitat respectively, while slightly increased in 

the restored wetland habitats by 7, 1, and 5% for mudflat, low marsh, and high marsh 

respectively (Figure 3.4). Those fine mesh bags had a pore size of 1 mm, and hence less 

impacted by the surrounding environmental and hydrological conditions. Soil C stocks 

for fine mesh-SPVC had increased in most of the natural wetland habitats, and decreased 

for all the restored wetland habitats. My second hypothesis was that mesh bag size have a 

significant impact on C stability in both natural and restored wetlands. In natural and 
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restored wetlands, C stocks for the three mesh bag types and the differences in their C 

stability are impacted by the mesh size, in support of the hypothesis. Restored wetland 

habitats are not able to accumulate or reserve C in the same level as natural wetland 

habitats, regardless the mesh bag size, and those results are similar to other research 

findings (Waddington and Warner, 2001). 

Soil texture at the natural site was silty-clay with 36.5% clay, while soil at the 

restored site classified as reclaimed gravel pits that is high in sand and glauconite. Clay is 

fine particles that has very light density, but higher surface area. More clay particles are a 

key component for higher exchange potential for different soil minerals and higher 

organic matter accumulation (Ding et al., 2013b). Dissolved oxygen is another key factor 

in regulating the decomposition rates for soil organic matter (Greenwood, 1961). Higher 

concentration of dissolved oxygen available in soil pores will lead into higher 

decomposition rates for soil organic matter. Wetlands are anaerobic systems and hence 

Oxygen diffusion is very slow and as a result of that decomposition rate for soil organic 

matter is very low (McLatchey and Reddy, 1998; Megonigal et al., 2004; Mitsch and 

Gosselink, 2007). Restored wetland habitats were dominant by vegetation that rich with 

aerenchyma tissue (Pontederia cordata for low marsh and Phragmites australis for the 

high marsh) and that promote the diffusion of oxygen through the plant stem-root 

pathway to deeper soil and hence, more aerobic condition. That might be the reason that 

makes the soil at the restored site was less anaerobic and soil organic matter 

decomposition rate was higher, and that might be explain why C accumulation is very 

low in the restored habitats.  
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Both natural and restored sites are tidal freshwater wetlands and the main 

hydrologic control was the Patuxent River. The hydrology at the restored site was 

restored by scraping the surface of the old marsh (Siciliano, 2013) and building a rim of 

rocks at the inlet of water to help trap the sediment from escaping back to the river during 

lower tides cycles. The natural site was located at a similar elevation, however spatial 

variation existed between mudflats, marshes, and swamps. In the natural site, high marsh 

and the swamp habitat were about the same elevation (appendix A.2) and both located at 

higher elevation from the low marsh. Based on my research findings, both marsh and the 

swamp habitat are accumulating C, while mudflat and uplands are not (Table 3.3). That 

might be due to difference in elevation, sediment dynamics, plant species richness, and 

spatial distance from the creek (source of nutrients and surface water). Since, marshes 

and swamp are receiving more silt and clay compared to the mudflat that is receiving 

more sand, and that might be the reason for making marshes and the swamp habitat are 

accumulating C as they have more clay content. Moreover, uplands at both natural and 

restored sites are not accumulating C (-210 and -212 g-C m-2 year-1, respectively table 

3.3) and that might be because they are receiving less sediment, have less primary 

productivity, and more aerobic soil conditions compared to wetlands. C sequestration is a 

key component in the global C cycle as it addresses how efficient an ecosystem is in 

terms of C cycling and can be estimated by variety of methods. Radionuclide dating is the 

most expensive and cannot be afforded by all the research facilities, while C 

sequestration rate can be calculated using the CARBIO (current study) which is 

inexpensive, based on field experiment, and according to long-term study.  
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 CARBIO index can be useful for comparing the SOM stability between different 

habitats and could be beneficial to use by wetland restoration practioners in monitoring 

the newly constructed and restored wetlands. Extrapolating the research finding from the 

current study should be carried out with considering the differences in the site, 

vegetation, and hydro-geomorphological settings. Further investigation and future 

research should be expanding to include multiple restored and newly constructed 

wetlands with different hydro-morphological settings to apply the CARBIO 

methodology. I recommend to conserve the natural wetland ecosystems and more 

restoration efforts for newly constructed and restored wetlands to have them building 

organic matter rather than losing their C. In-situ CARBIO units can be viewed as in-situ 

sensors that reflect the C biogeochemical processes in the ambient soil to help better 

understanding C stability and mineralization in the wetland soils  

3.5 Conclusion 

I conclude that CARBIO is an in-situ sensors that can be employed to compare C 

stability in natural and restored wetlands. Under the current environmental and 

hydrological conditions at both a natural and a restored site, marshes and the swamp 

habitat were able to accumulate C, while all other habitats at the restored site were neither 

able to accumulate C nor preserve the C that was inside the CARBIO units. My results 

recommend the necessity for improving hydrology restoration at the newly constructed or 

created wetlands. Moreover, I am not recommending the excavating techniques in 

restoring the hydrology of the coastal marshes. Since, natural wetland habitats have the 

capability of accumulating C, conserving them should be at the highest level of priority 
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for keeping their ecosystem functions and services including C sequestration, water 

quality improvement, and wildlife habitats.  
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Table 3.1: Mean ± standard error for soil moisture content (%) and organic matter (%) for 

the five wetland soils (n=3) from Choptank (A) and Patuxent Rivers (B, C, D, E). Each 

soil sample was a composite sample that was collected using a peat sampler (52 mm in 

diameter and 50 cm long).  

Site Moisture Content % Organic Matter % 

A 40.37B±0.13 35.70B±0.19 

B 20.43C±0.13 13.86D±0.07 

C 2.51D±0.04 2.83E±0.10 

D 45.39A±0.14 37.40A±0.04 

E 20.10C±0.14 22.34C±0.19 

 P <.0001 P <.0001 

P values represent analysis of variance 1- way (ANOVA) (n=3). Means in the same column 

followed by different letters are significantly different at P < 0.05 according to Duncan 

multiple range test. 

 

Table 3.2:  Mean ± standard error for the total C stock (g C bag-1) before deploying them 

(t0) for soils collected from site E for the three types mesh bag. P values represent 

analysis of variance 1- way (ANOVA) n=3.  

Mesh bag Total C stocks (g C bag-1) 

Large mesh 36.2±0.70 

Fine mesh 34.1±1.25 

Fine mesh inside PVC 36.0±1.22 

Total mean 35.4±1.06 

P mesh bag = 0.3619 
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Table 3.3: C sequestration rate (mean ± SE) after one year (g C m-2 year-1) and two years (g C m-2 2year-1) from soil CARBIO 

deployment for natural and restored wetlands. All rates are to a depth of 30 cm. Means in the last two rows represents average of all 

rates across all habitats per site. 

 Large mesh Fine mesh Fine mesh - SPVC Total average 

Site - habitat one year two years one year two years one year two years one year two years 

Natural - mudflat -286±689.3 -1117±900.2 -543±532.3 329±751.2 -562±1385.5 2209±2469.8 -464±474.5    473±924.5 

Restored - mudflat -5911±4591.5 -2395±. 743±1936.0 -2280±2042.2 -1877±810.7 -1867±1703.6 -1903±1474.4 -2119±1009.2 

Natural - low marsh -452±459.9 -3385±770.3 2491±1321.1 2411±1571.0 747±1464.7 -243±2456.5 929±724.1 -406±1208.1 

Restored - low marsh -4170±722.1 -2073±2323.6 140±1312.4 1252±904.4 -689±442.1 -1717±1355.1 -1573±799.4 -846±974.1 

Natural - high marsh -873±1290.9 -4464±1300.7 1851±1328.6 1522±3600.5 2151±841.6 -197±1279.1 1043±759.1 -1046±1466.1 

Restored - high marsh -2106±545.8 -1987±668.2 499±1219.4 1524±1702.0 -735±510.0 -165±1563.3 -780±558.5 -209±859.7 

Natural - swamp 1178±1566.8 -515±947.6 1564±1256.1 4420±1613.3 1388±513.5 3607±3503.3 1377±601.0 2504±1377.7 

Natural - upland -239±484.2 -2353±1176.7 767±920.2 849±834.9 -1158±1334.2 -2495±1927.0 -210±561.9 -1333±883.6 

Restored - upland -170±517.0 -1307±849.6 104±1040.9 805±1768.8 -569±932.7 1437±1637.7 -212±441.1 312±846.5 

Natural total average -134±422.4 -2367±550.1 1226±505.4 1906±836.0 513±548.8 576±1082.7 535±291.5 38±550.5 

Restored total average -2833±933.5 -1849±673.2 372±609.8 325±844.0 -967±339.9 -578±782.2 -1095±429.4 -633±463.9 
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Table 3.4: Comparison of C sequestration rates of different wetlands with different 

estimation methods 

*Wetland type 
Natural vs 
restored (y) 

CSR 
g C m-2 y-1 

Salinity** 
SBD  

g cm-3 
T. C % Dominant Vegetation*** 

Temperate regions 

Natural flow through wetlands 
Ohio, USA1 

Natural 142† NR NR NR 
Nelumbo lutea, Typha spp., Scirpus 

fluviatilis, and P. australis 
Created flow-through wetlands 
Ohio, USA1 

created (15) 243† NR NR NR macrophytes 

Created temperate marshes 
Ohio, USA2 

created (10) 187†††† NR 0.5 3.9 macrophytes 

Tidal freshwater wetlands 
Georgia, USA3 

natural 108† 0.15-16.5 0.3 10.2 
S alterniflora, S. cynosuroides, J. 

roemerianus, Zizaniopsis milaceae 
Tidal marine dominated marshes 
Georgia, USA4 

natural 21† 13.5-30 0.5 5.0 S. alterniflora, J. roemerianus 

Tidal marine dominated marshes 
Georgia, USA4 

natural 32† 13.5-30 0.6 4.2 Spartina alterniflora 

Marsh Ohio, USA5 natural 105† NR 0.8 2.7 
Phragmites australis, 

Scirpus fluviatilis 
Mudflat Ohio, USA5 natural 112† NR 0.8 3.5 Leersia oryzoides 
Floating bed  - Ohio, USA5 natural 160† NR 0.6 8.7 Nelumbo lutea 
marsh  - Virginia, USA6 natural 97†† NR NR NR Peltandra virginica 
marsh - Virginia, USA6 natural 75†† NR NR NR Typha latifolia 
Horizontal subsurface flow 
constructed wetlands, Estonia7 

constructed (7) 1850††† NR NR NR Typha latifolia 

Semitropical 

Tidal saltmarsh - Louisiana, USA8 natural 714† NR 0.5 35.0 NR 
Tidal saltmarsh - Louisiana, USA8 impounded 1713† NR 0.7 39.3 NR 

Tidal freshwater wetland - Natural site - Current study (Temperate) 

Mudflat - Maryland, USA natural -464  0.15-0.25 0.36 7.9 Hydrilla verticillata 
Low marsh - Maryland, USA natural 929 0.15-0.25 0.36 9.4 Nuphar lutea 
High marsh - Maryland, USA natural 1043 0.15-0.25 0.27 13.2 Polygonum arifolium 
Swamp - Maryland, USA natural 1377 0.15-0.25 0.20 15.6 P. arifolium, Fraxinus spp. 

Tidal freshwater wetland - Restored site - Current study (Temperate) 

Mudflat - Maryland, USA restored (17) -1903 0.15-0.25 0.86 1.8 Ceratophyllum demersum 
Low marsh - Maryland, USA restored (17) -1573 0.15-0.25 0.59 4.3 Pontederia cordata 
High marsh - Maryland, USA restored (17) -780 0.15-0.25 0.82 2.3 Phragmites australis 

*: due to different wetland classification system used, name and type of wetland was quoted as was described in the cited study, **: Salinity was 
either not reported or was based on adjacent river as quoted from each cited study, *** as quoted from each cited study, NR: not reported 
†: 137Cs - 210Pb, ††: CO2 exchange rate - chamber based  , †††: difference between C inputs and outputs, ††††: sediment rate and C content 
1(Mitsch et al., 2012), 2(Anderson and Mitsch, 2006), 3(Craft, 2007; Craft et al., 2009), 4(Craft, 2007), 5(Bernal and Mitsch, 2012), 6(Whiting and 
Chanton, 2001), 7(Kayranli et al., 2010; Mander et al., 2008; Mander et al., 2005), 8(Bryant and Chabreck, 1998; Chmura et al., 2003) 
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Figure 3.1: Field photo showing the three types of CARBIO. From left to right: large 

mesh, fine mesh, and fine mesh inside the slotted PVC. Photo credit: Andrew Baldwin. 
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Figure 3.2: Distribution of total C concentration % (mean) over 50 cm soil depth for the 
mesh bags soil after 15 month from deploying in natural (left) and restored (right) 
wetlands. t0: initial time; t15: 15 month after deploying. Plotted values are mean total C 
concentration (%) of n=3 in 5-cm long sections from the mesh bag cores; error bars were 
removed for clarity. 
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Figure 3.3: Distribution of total C concentration % (mean) over 50 cm soil depth for the 
mesh bags soil after 26 month from deploying in natural (left) and restored (right) 
wetlands. t0: initial time; t26: 26 month after deploying. Plotted values are mean total C 
concentration (%) of n=3 in 5-cm long sections from the mesh bag cores; error bars were 
removed for clarity. 
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Figure 3.4: total C stocks g C bag-1 (mean ± SE) within the first 30 cm for the mesh bags 
soil after 15 month from deploying in natural (A) and restored (B) wetlands. t0: initial 
time; t15: 15 month after deploying. Each bar represents 18 samples. 
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Figure 3.5: total C stocks g C bag-1 (mean ± SE) within the first 30 cm for the mesh bags 
soil after 26 month from deploying in natural (A) and restored (B) wetlands. t0: initial 
time; t26: 26 month after deploying. Each bar represents 18 samples. 
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Figure 3.6: Total below-ground biomass productivity g dry weight m-3 y-1 (mean ± SE) 
for the natural (Nat.) and the restored (Res.) wetland habitats after one year from 
CARBIO units deployment. Each bar represents 30 samples. 
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4 Diurnal Methane and Carbon Dioxide Fluxes from Natural and 

Restored Tidal Freshwater Wetlands in a Chesapeake Bay 

Tributary 

Abstract 

Most chamber-based studies of greenhouse gas emission in wetlands have 

measured methane (CH4) fluxes during daytime only. To simulate nighttime conditions, 

the static chamber is often covered with a black sheet of cloth to mimic what is 

happening during the night, but this has the confounding effect of increased temperatures 

inside the chamber and the effect of plant roots outside the chamber . My goal was to 

quantify flux rates of CH4 during day and night across different vegetation strata in 

natural and restored tidal freshwater wetlands. Three habitats (low marsh, high marsh, 

and swamp) were selected at Patuxent Wetland Park, a natural wetland, and two habitats 

(low and high marsh) were selected at Wootons Landing Wetland Park, a restored 

wetland. Both sites are tidal freshwater wetlands (salinity <0.3 ppt) located on the 

Patuxent River in Maryland, USA. Static chambers were used to quantify day and night 

variation in CH4 flux rates once a month during day and nighttime from May to August 

2016, soil pore-water CH4 and total iron concentrations were measured on the same days 

as the flux rates. Restored wetland habitats had significantly higher annual CH4 emission 

rates than the natural wetland habitats (1372.1±35.89 and 880.7±144.73 g CH4 m-2 y-1, 

respectively, P <0.05). Restored wetland habitats were dominated by monoculture plant 

species Phragmites australis and Typha latifloia, respectively. Low marsh at the restored 

site had the highest total available iron concentration at 40 cm soil depth (12.8±4.18 mg 



 

66 
 

L-1). There was a significant and strong negative correlation between total available iron 

concentration and the log CH4 flux rate (r = -0.64 for the natural wetland at 12.5 cm soil 

depth and r = -0.79 for the restored site at 40 cm soil depth, P<0.05). Pore-water CH4 

concentrations were higher at 12.5 than at 40 cm soil depth, and the low marsh habitat at 

the restored wetland had the highest pore-water CH4 in August 2016 (9178.6±4068.8 

µmole CH4 L-1). Since nighttime sampling detected a very low CH4 concentrations 

(<3650 µmole m-2 h-1), greenhouse gas models should take the daily variation of CH4 

fluxes and their differences between the natural and restored wetlands into consideration 

in order to better represent C budget in wetlands. 

4.1 Introduction 

Water vapor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are 

all greenhouse gases. The main human sources of greenhouse gas emissions are the 

excessive use of fossil fuel and deforestation, although some wetlands emit CH4 and CO2. 

Current atmospheric concentrations for greenhouse gases have reached unprecedented 

levels. Studies have shown that the globally averaged concentrations of CO2, CH4, and 

N2O have increased since 1750 (40%, 150%, and 20% respectively) (IPCC, 2014). Total 

USA greenhouse gas emissions increased by 7.4 % from 1990 to 2014 and by 1 % from 

2013 to 2014 (EPA, 2016), and that was related to increased usage of fossil fuels. 

Anthropogenic releases of these gases is predicted to result in atmospheric warming, 

which will have widespread impacts on human and natural systems (IPCC, 2014). CH4 is 

a potent greenhouse gas and has a shorter lifetime in the atmosphere than CO2, however 

CH4 has a global warming potential of 25 times higher than CO2 (IPCC, 2014).  Wetlands 

are considered the main natural source for CH4, while activities like leakage from natural 
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gas system and livestock are important anthropogenic sources of CH4 (IPCC, 2007). 

Wetlands emit, on average, 170.3 Tg CH4 year-1 (42.7 from northern bogs and 127.6 from 

tropical swamps), which constitutes 81.9 % of CH4 emissions from all natural sources 

(EPA, 2010). That makes the wetlands a significant natural CH4 source (Crawford et al., 

2014; Dlugokencky et al., 2011; Walter et al., 2001) among other sources like uplands, 

riparian areas, oceans, rivers, permafrost, and lakes. 

Environmental factors including temperature, water level relative to soil surface, 

organic matter content, and the C quality of litter (litter C and N concentrations) can all 

affect CH4 emissions from wetlands (Yu et al., 2013). Furthermore, relatively small 

changes in these factors will affect the balance between the consumption and production 

of CH4 by soil microbes. Soil microbes utilize available C and organic material as a C 

source under aerobic conditions. Under anaerobic conditions, as in wetland ecosystems, 

soil microbes seek alternative electron acceptors and a series of biogeochemical reactions 

are initiated. Those reactions are sequential and occur from aerobic (higher soil 

oxidation-reduction (Eh)) to anaerobic (low Eh). From high to low Eh, the main reactions 

are the reduction of nitrate NO3
-, manganese Mn (IV), iron Fe (III), sulfate SO4

2- and CO2 

(Ponnamperuma, 1972; Reddy et al., 1989; Yu and Patrick, 2004). The presence of iron-

reducing bacteria in the rhizosphere of aquatic macrophytes has a negative impact on the 

availability of the organic C for other heterotrophic micro-organisms including 

methanogens (King and Garey, 1999; Laanbroek, 2010), which has a biogeochemical 

implication that inhibit the CH4 production (Megonigal et al., 2004; Roden and Wetzel, 

2003; Van der Nat and Middelburg, 1998).  
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Assessments of global CH4 emissions are based on data collected from studies 

that are either bottom-up approaches (field scale) or top-down (atmospheric inverse 

technique). The global CH4 budget, especially based on bottom-up approaches, shows the 

potential of uncertainty of CH4 budget (Kirschke et al., 2013) and that might be due to 

unrealistic incorporation of ebullition from stream rivers (Crawford et al., 2014) as well 

as higher level of variability in field studies (Bridgham et al., 2013; Neubauer and 

Megonigal, 2015). Measurements of greenhouse gas emissions to the atmosphere have 

been based on either closed-chamber method (DeLaune et al., 2002; Krauss et al., 2016; 

Neubauer, 2013; Weston et al., 2014; Weston et al., 2011; Yu et al., 2013) or tower-based 

micrometeorological approaches (e.g. eddy covariance) (Baldocchi, 2003; Corbin et al., 

2010; Crosson, 2008; Glenn et al., 2006; Hargreaves et al., 2001; Hsu et al., 2010; Lund 

et al., 2010; Rinne et al., 2007; Syed et al., 2006). Many studies have reported that data 

for CH4 emissions based on either chambers or eddy covariance are typically highly 

variable temporally and spatially (Bridgham et al., 2013; Krauss et al., 2016; Neubauer 

and Megonigal, 2015). 

Most recent chamber-based studies of greenhouse gas emission in wetlands focus 

on CH4 fluxes during daytime only, or researchers would cover the static chamber with a 

black sheet of cloth to mimic what is happening during the night, neglecting the fact that 

covering the chamber with black cloth may create high temperatures inside the chamber, 

which in turn will impact the gas flux rate. Diurnal variations of CH4 fluxes are highly 

variable in literature where nighttime CH4 emission is higher than daytime fluxes 

(Godwin et al., 2013), while some other studies reported less CH4 emission during the 

nighttime where it is correlated with soil temperature (Butterbach-Bahl et al., 2016; Neue 
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et al., 1997b). Moreover, existing data available for predicting CH4 or CO2 emissions 

from wetlands may be limited because they do not incorporate data on the daily variation 

in fluxes, primarily due to the difficulty of sampling gas fluxes at night in wetlands. My 

overall research goals were to 1) quantify flux rate of CH4 and CO2 during day and night 

across different vegetation strata, geomorphology, soils, and hydrology in natural and 

restored tidal freshwater wetlands; 2) determine a range for soil oxidation-reduction 

potential (Eh) for wetland soil with minimal CH4 emissions; and 3) assess the role of 

pore-water iron (Fe) in controlling the flux rate of CH4. I hypothesized that: 1) pore-water 

iron would be negatively correlated with CH4 emissions and that differences in iron 

concentrations would help explain the variations in CH4 emissions between restored and 

natural wetland habitats; 2) CH4 concentration would be higher during the day than at 

nighttime; 3) CH4 concentrations would be higher at 12.5 cm from soil surface compared 

with deeper soil surface (40 cm in my study); and 4) habitats dominated by perennial 

plant species would emit more CH4 compared to those dominated by annual plant 

species.  

4.2 Materials and methods 

4.2.1 Site description 

The study sites were located at Patuxent River, a sub-estuary of Chesapeake Bay, 

Maryland USA. For more details about the study sites, refer to chapter 2. Both of the 

study sites are tidal freshwater wetlands of the Patuxent River, a Chesapeake Bay 

tributary. Three habitats (low marsh, high marsh and swamp) were selected at Patuxent 

Wetland Park, a natural wetland, while two habitats (low marsh and high marsh) were 
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selected at Wootons Landing Wetland Park, a restored wetland (Figure 4.1). Restored and 

natural mudflat were excluded from the study sites for difficulties during the sampling as 

the mudflat soil surface never exposed from the river water, while upland habitats were 

excluded as well from gas flux sampling as no emission rates were detected at all during 

the first two months of the study. At each habitat, five random plots were selected except 

for the low marsh at the restored site, where only three plots were selected due to site 

habitat topography restrictions, resulting in 23 total plots. Selection criteria for plots 

were: 1) not to be located in a disturbed area; 2) not to be in the middle of a creek or a 

ditch; 3) to be at least 15 meters far from adjacent plots; and 4) to be randomly selected.  

4.2.2 Gas sampling and analysis 

At each plot, an aluminum frame (50x50 cm) was inserted in the marsh ground 

and a 3 meter boardwalk installed as a permanent sampling platform (USGS. Department 

of the Interior, 2010)  in the front of the frame (Appendix C.1). The boardwalk and the 

frames were installed one month in advance and before the first sampling took place on 

May 2016 to prevent gas ebullition during the gas sampling. Gas sampling on the field 

was conducted using static chamber (Lovelock et al., 2014). For all habitats, only one 

chamber was mounted on the frame, with two exceptions: the low marsh at the restored 

site which was dominated by Typha latifolia, two chambers were mounted above each 

other to accommodate the plant height; in the restored high marsh three chambers were 

stacked to accommodate the Phragmites australis that was dominant (Appendix C.2). 

Gas sampling spanned three time intervals during the day: daytime or morning, “any time 

after 10 am until 2 pm;” evening time, “after 2 pm until sunset;” and nighttime, “from 4 

am and before sunrise”. The gas flux rate were measured on monthly basis from May – 
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August 2016 and gas samples were taken at 0, 30, 60, 90, 120, 150, and 180 minute time 

interval using a 20 mL syringe. I started the gas sampling on May and June 2016 until 

180 minutes, then reduced to 90 minutes in July and August 2016 as we did not see 

change in gas flux with tidal cycles. Therefore, only data for 90 minutes sampling are 

presented in the results.  During May and June 2016, the gas sampling were collected 

twice a day, and collected once during daytime in July and August 2016 as we did not 

observe change in the gas flux between the morning and evening. Nighttime gas flux 

sampling were conducted during July and August 2016 on the swamp and high marsh for 

the natural wetland. Gas samples were injected to flushed and evacuated exetainers that 

are 12 mL and made from borosilicate glass with double wadded caps separate with a 

silicone layer made specifically to avoid any gas leak under multiple injections. One day 

before the field sampling, exetainers were evacuated and flushed with ultra-purity helium 

to prevent any air contamination. The flushing and evacuation protocol was as follows: 

evacuate for 30 seconds followed by flushing for 1.5 minutes with helium at 25 PSI.  

Then evacuate for 1.5 minutes, flush for 1.5 minutes with helium at 25 PSI, and do a final 

evacuation for 2 minutes. By doing so, the exetainers were safe to be stored for up to 2 

weeks without being contaminated by the surrounding air (Ekeberg et al., 2004).  All gas 

samples were analyzed for CH4 and CO2 using Gas Chromatography Agilent Technology 

(Agilent HP 7890A) connected with a thermal conductivity detector (TCD) having the 

following parameters: (1) an injection temperature of 250 ºC; (2) a detector temperature 

of 250 ºC; (3) an oven temperature of 60 ºC; and (3) a carrier gas flow rate of 8.6 mL 

He/min. The column used was an HP-Plot Q capillary column (Agilent J&W; USA).  
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4.2.3 Gas flux rates 

Gas flux rates were calculated in two different ways: 1) by assessing the change 

of gas concentration over time to establish a linear relationship between time and the gas 

concentration (Lovelock et al., 2014); and 2) by dividing the final gas concentration at 90 

minutes over the total time to report the average gas emission. Gas composition was 

calculated according to the ideal gas law (Equation 1),   

݊ ൌ ௉௏

ோ்
                   (1) 

where n is the number of moles of total gas, P is the pressure of the air in the chamber 

(atm), v is the volume of the chamber (L), R is the gas constant (L atm mole-1 Kelvin-1; R 

= 0.0820), and T is the air temperature inside the chamber. HOBO temperature data-

loggers were installed inside the chambers to record air temperature inside the chambers 

every 5 minutes, and additional loggers were installed outside the chambers as well to 

compare the inside temperature with the ambient temperature surrounding the chamber. 

4.2.4 Pore-water, soil, and vegetation analysis 

At each plot, a sipper was used to collect pore-water samples at 12.5 and 40 cm 

soil depth. A tygon tube with holes at the end and connected with a syringe from the top 

was inserted to the specific depth, either 12.5 or 40 cm soil depth, and suction was 

applied to extract the pore-water. Five mL of pore-water were transferred immediately to 

12 mL evacuated and flushed exetainers and shaken vigorously for 2 minutes to reach 

equilibrium with the headspace. Gas samples were drawn from the headspace to be 

analyzed for CH4 and CO2 on the gas chromatography as described above immediately 

the day after field sampling. At each plot, two soil thermometers were installed at 12.5 

and 40 cm and soil temperature was recorded during the time of the gas sampling. In 
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addition, a pilot hole was made using a stainless-steel rod and 3 platinum (Pt) electrodes 

were installed at 12.5 cm and 3 others at 40 cm soil depth, and a soil oxidation reduction 

(Eh) measurement was recorded using a multi-meter adapted to be a high resistance in 

conjunction with a calomel reference (Rabenhorst et al., 2009). During each month of gas 

sampling and using a peat sampler (52 mm in diameter and 50 cm long, Eijkelkamp Soil 

and Water Corporation, Netherlands), soil cores to a depth of 50 cm were taken and soil 

was collected at a depth 12.5 and 40 cm for measuring soil pH in the field. Soil slurry 

was made into a 1:1 solution by adding distilled water to the soil and stirring the slurry 

for 2-3 minutes, then letting it settle for 10 more minutes before a pH meter was used to 

measure the soil pH at the site. Salinity at each plot was measured in the field using a 

portable meter (Model 30, YSI, Yellow Springs, OH) on the water filling the hole created 

by the soil core. Pore-water was analyzed for total available iron using inductively 

coupled plasma optic emission spectrometry (ICP-OES) after microwave digestion of the 

pore-water with Nitric acid according to EPA-3015 method. At each habitat, datalogging 

water level recorders were installed in wells to monitor water level relative to soil surface 

at 10-minute intervals. All the vegetation inside the frame was identified, plant vegetation 

cover in the field was estimated (Peet et al., 1998), and Shannon-Weaver diversity and 

evenness indices were calculated. Nomenclature for plant species were accessed from the 

United States Department of Agriculture Plants Database on August 17, 2015 (USDA, 

2017). To access the sites, permission was granted by private landowner for the swamp 

habitat, while the rest of the habitats were accessed by permission of the Jug Bay 

Wetlands Sanctuary.  
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4.2.5 Statistical analysis 

Repeated analysis of variance (ANOVA) was used to examine variation between 

habitats (low marsh, high marsh, and swamp for the natural wetland, and low and high 

marsh for the restored wetland) over time on the flux rate of CH4 and CO2.  Due to high 

variations in the gas flux data, CH4 flux rates were log-transformed in order to meet the 

criteria for ANOVA. Pearson correlation coefficient analyses were conducted to examine 

the correlation between the log CH4 flux rates and the total iron concentration in pore-

water for the whole dataset and for subset that represent only July and August 2016. 

Two-way ANOVA was used to test the effect of the site and habitat on plant species 

diversity, then followed by the investigation of least significant differences between the 

arithmetic means based on Duncan’s test. All statistical analyses were performed using 

SAS 9.4 (SAS Institute, Cary, North Carolina). 

4.3 Results 

4.3.1 Diurnal flux rates 

The restored wetland habitats had significantly higher annual average of CH4 flux 

rate compared to the natural wetland habitats (1372.1±35.89 and 880.7±144.73 g CH4 m-

2 y-1, respectively, P<0.05). Data for the morning cumulative CH4 flux rates show that the 

high marsh at the restored wetland had the highest rate in May 2016 (10296.9±6.8 µmole 

m-2 h-1); the low marsh at natural wetland had the highest rate in June and July 2016 

(20791.8±12258.4 and 19563.7±3551.8 µmole m-2 h-1, respectively); and the natural high 

marsh had the highest rate in August 2016 (11387.3±8043.2 µmole m-2 h-1, Figure 4.2). 
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The majority of CO2 concentrations were between 450 and 650 ppm, while the majority 

of CH4 concentrations were below 200 ppm (Appendix C.3).  

For the morning flux rate for CO2: the high marsh at the restored wetland had the 

highest rate during May (7404.4±3012.8 µmole m-2 h-1, appendix C.4); the high marsh at 

the natural wetland had the highest rate during June 2016 (2849.8±2760.4 µmole m-2 h-1); 

the high marsh at the restored wetland had the highest rate during July 2016 

(4388.2±3134.5 µmole m-2 h-1); and the high marsh at the natural wetland had the highest 

rate during August 2016 (15046.2±5000.23 µmole m-2 h-1) (Appendix C.4). In August 

2016, the morning average CO2 flux rate was highest at the high marsh of natural wetland 

(43234.4±13409.9 µmole m-2 h-1), followed by the high marsh at the restored wetland 

(33731.6±3279.6 µmole m-2 h-1). 

Night CH4 flux rates were significantly lower than the evening or morning CH4 

flux rate (Appendix C.4). For example, the swamp habitat at the natural wetland had a 

flux rate of -0.4±0.6 µmole m-2 h-1 in July 2017 during nighttime, while the high marsh 

for the natural wetland had a flux rate of -6.8±1.0 µmole m-2 h-1 in August 2016 during 

nighttime. In May 2016, the swamp habitat at the natural wetland had the highest CH4 

flux rate (34804.3±23672.8 µmole m-2 h-1) during the morning, while the high marsh for 

the restored wetland had the highest rate during the evening (302.4±41.7 µmole m-2 h-1). 

Moreover, the low marsh at the natural wetland had the highest morning flux rate for CH4 

emission during June and July 2016 (13644.6±10176.2 and 9498.3±2751.9 µmole m-2 h-1 

respectively).  
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4.3.2 Pore-water CO2 and CH4 

Pore-water CO2 and CH4 concentrations at 12.5 and 40 cm soil depth are 

presented in figure 4.3. About 45% of the CO2 pore-water concentrations were in the 

range of 1000-5000 μ mole CO2 Liter-1 (Appendix C.5). Pore-water CH4 concentrations 

at 12.5 cm were higher than the concentrations at 40 cm soil depth, and about 30% of the 

CH4 pore-water concentrations were in the range of 5-10 μ mole CH4 L-1 (Appendix C.5). 

In June, July and August 2016, pore-water CO2 at 40 cm was higher than at 12.5 cm soil 

depth in all natural habitats, although pore-water CO2 was higher at 12.5 than 40 cm soil 

depth in all restored habitats. Moreover, low marsh dominated by Typha latifolia at the 

restored wetlands had higher CO2 pore-water concentrations over the whole timeframe of 

the study. Pore-water CH4 concentrations were the highest in July 2016, and lowest in 

May 2016. Low marsh dominated by Typha latifolia at the restored wetlands had the 

highest CH4 pore-water concentrations over the entire timeframe of the study. 

4.3.3 Soil biogeochemistry 

Soil redox measurement (Eh) in conjugation with soil pH revealed that over a 

four-month period neither the soil of the low marsh nor the high marsh at the restored 

wetland was reduced relative to the technical standard line for the hydric soil (Figure 

4.4). On the other hand, the soils of all the habitats in the natural wetland were reduced 

during the 4-month period. Soil Eh at 40 cm soil depth was more reduced than soils at 

12.5 cm soil depth, except for the swamp habitat at the natural wetland which was exactly 

the opposite (Appendix C.6). Moreover, soil Eh was the lowest during June and increased 

again by the end of August 2016. Soil pH decreased slightly over time for all habitats 

(Appendix C.7). Soil pH for the low and high marsh at the restored wetland were near 
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neutral (7.1 to 7.7), while the natural wetland soils were all below pH 7. Salinity ranged 

from 0.1 to 0.25 ppt and changed slightly over the course of the study (Appendix C.8). 

Soil temperature was warmer at 12.5 cm than 40 cm soil depth for all habitats, and 

increased from 14-18 ˚C at 12.5 cm during May to 22-27 ˚C in August 2016 (Appendix 

C.9).  

Total available iron was higher at 40 cm soil depth than 12.5 cm for the restored 

habitats and the swamp habitat at the natural site, while its concentration at 12.5 cm was 

higher than 40 cm soil depth for both low and high marsh for the natural site (Figure 4.5). 

At 40 cm soil depth, low marsh at the restored site has the highest total available iron 

concentration, followed by the swamp habitat, then high marsh at the restored site 

(12.8±4.18, 11.0±6.68, and 7.6±3.50 mg L-1 respectively). No correlation were detected 

between total iron in pore-water and log CH4 flux rates (r <0.1 & P >0.05), however, a 

correlation analysis for a subset dataset that represents July and August revealed that total 

available iron concentration had a significant and a strong negative correlation with the 

log CH4 flux rate (r = -0.64 at the natural wetland at 12.5 cm soil depth and r = -0.79 for 

the restored site at 40 cm soil depth, P<0.05).  

4.3.4 Vegetation structure 

Vegetation composition analysis showed that high marsh at the natural wetland 

has the highest plant species diversity indices (Shannon-Weiner index H: 1.7±0.1 & 

Shannon evenness S: 0.8±0.0), indicating that the high marsh habitat was significantly (P 

site < 0.0001; P habitat< 0.0001) more diverse than the rest of the habitats in both the natural 

and restored sites (Tables 4.2 and 4.3). All the plant species identified in the study sites 
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are presented in appendix C.10. Plant vegetation at high marsh for the natural wetland has 

the highest plant species density (7.2±0.4) and total cover (98.2±9.3) (Appendix C.11).  

4.4 Discussion 

Both of the study sites are freshwater marshes (0.15-0.25 PSU), and they had 

annual CH4 emission rates on average of 1372.1±35.89 and 880.7±144.73 g CH4 m-2 y-1, 

for restored and natural, respectively. The annual flux rate of CH4 emission in the natural 

site in our study (880.7±144.73 g CH4 m-2 y-1) is higher than other annual rates reported 

from freshwater marshes (213.3 g CH4 m-2 y-1) dominated by Panisum hemitomon and 

brackish marshes (97.3 g CH4 m-2 y-1) dominated by Spartina patens (Delaune et al., 

1983), but similar to annual flux rates reported from saltmarshes (804.3 g CH4 m-2 y-1) 

that dominated by Carex rugulosa and Phragmites australis (Hirota et al., 2007). These 

higher rates at our study sites could be due to the nature of the study site of being 

freshwater marshes and having lower SO4
2- as both of the study sites had very low 

salinity. The negative correlation between salinity level and CH4 emission rates 

(Poffenbarger et al., 2011) is in support of our findings about CH4 emission rates from 

our tidal freshwater marshes and the presence of higher SO4
2- are reducing the emission 

of CH4 (Pennock et al., 2010). Our restored wetland site had significantly higher annual 

CH4 emission rate than the natural wetland (1372.1±35.89 and 880.7±144.73 g CH4 m-2 y-

1, respectively, P < 0.05). Other research studies reported similar findings of higher CH4 

emission rates in restored wetlands compared with natural wetlands (Badiou et al., 2011; 

Richards and Craft, 2015). At the restored site, Phragmites australis and Typha latifolia 

were the only plant species colonized at the high and low marsh, respectively. These 

plants are perennial vegetation and they have extensive arenchyma tissue that work as gas 
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exchange system through the stems-roots-rhizome-leaf and make the pathway for any 

gases like CO2 or CH4 to be released easily to the atmosphere, and hence higher methane 

emission.  

Iron is a microelement that is available in minerals of hematite, magnetite, pyrite, 

and taconite (Eaton et al., 2005). Ferrihydrite, hematite, and goethite are common in most 

hydric soils, typical wetland soil, where 30-60% of iron in the hydric soils is available in 

the form of ferrihydrite mineral (Richardson and Hole, 1979). The average iron 

abundance in streams is 0.7 mg/L, in groundwater ranges from 0.1 to 10 mg/L, and in 

soils ranges from 0.5 to 4.3% (Eaton et al., 2005). From high to low Eh, the reduction of 

nitrate NO3
-, manganese Mn (IV), iron Fe (III), sulfate SO4

2- and CO2 are mediated by 

soil microbes (Ponnamperuma, 1972; Reddy et al., 1989; Yu and Patrick, 2004). Total 

available pore water iron was higher at 40 cm soil depth at the restored site than the 

natural site. The occurrence of iron in wetland soils and within pore-water will reduce the 

potential reduction of CO2 to CH4 and hence less CH4 emission in the natural site, and 

that support my first hypothesis that pore-water iron was negatively correlated with CH4 

emissions. Moreover, my results indicated that pore-water iron had a significant and 

strong negative correlation with log CH4 flux rate for July and August dataset, which also 

might be the reason for having lower CH4 emission rates at the natural site. However, no 

correlation was detected between pore-water iron and log CH4 flux rates for the whole 

dataset, implying that time and temperature might also influence correlation between 

pore-water iron and log CH4 flux rates. 

Spatial variability in sedimentation patterns and hydrology (chapter 2) between 

different habitat of the restored and the natural wetlands likely contributed to variation in 



 

80 
 

pore-water iron concentrations. The geospatial and geo-morphological setting are crucial 

factors for controlling differences in iron abundance between habitats. Low marsh at the 

natural site has a lower elevation and close to the creek, main source of water and 

sediment, while high marsh and the swamp habitat are farther and about the same 

elevation but higher than the low marsh. For the restored site, low marsh is closer to the 

river and has lower elevation than the high marsh. At 40 cm soil depth in the restored 

site, pore-water iron in low marsh is largely higher than the high marsh and that could be 

due to low marsh is closer to the river and receiving more sediment compared to the high 

marsh. Moreover, tidal fluctuation in the restored site could be another reason for making 

the iron more abundant in the low marsh. In my study, all the pore-water sampling had 

occurred during low tide at which surface water had moved quickly to the river, while 

pore-water especially in the soil macrospores tends to discharge to the river as well but in 

slower rates compared to the surface water.  The natural low and high marsh where pore-

water iron concentrations are higher in low marsh settings, however the swamp habitat 

did not follow that pattern which could be because of the presence of hollow and 

hummocks settings. The swamp had the highest SOM (Chapter 2) and low minerals as 

the soil is more organic as a result of receiving less sediment from the river. The presence 

of the hummocks structure with the trees roots might impact the biogeochemistry of the 

soil and pore-water iron. 

Soil Eh data in conjunction with soil pH data revealed that soils of the natural 

wetland habitats were more reducing than the restored wetland habitats. Labile C, oxygen 

levels, and water level relative to soil surface are crucial factors in soil Eh. Near to the 

soil surface, 12.5 cm soil depth in my study, fresh and labile C is available with higher 
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concentration of oxygen and that result in higher soil Eh, which implies more aerobic 

conditions. Deeper in the soil surface, 40 cm soil depth in my study, labile C is less 

available with lower concentration of oxygen and that result in lower soil Eh, which 

implies more anaerobic conditions. That might be the reason for having higher soil Eh at 

12.5 cm soil depth in low and high marsh for both natural and restored sites (Appendix 

C.8). The swamp did not follow that pattern however, where soil Eh was lower at 12.5 

cm and higher at 40 cm. That is exactly the opposite findings in marsh settings. The 

swamp habitat has trees and shrubs whose roots have a higher respiration rates and hence 

more air in soil a result of root respiration and more oxygen flow down to the roots under 

anaerobic conditions. Having higher concentration of oxygen deeper in the swamp habitat 

soil may be the reason for having higher soil Eh compared to the soil surface.  

At the restored site, Phragmites australis is the only plant species colonized at the 

high marsh, which is generally the case of the newly restored wetland to be invaded by 

invasive plants. The natural wetlands did not have Phragmites australis in their 

vegetation composition. Common reed or Phragmites australis, is a perennial grass that 

occur in brackish and freshwater wetlands (e.g. was the only plant species at the high 

marsh at the restored site). It has a huge belowground biomass as rhizomes from which 

new sprout comes out as new shoots at the beginning of the growing season. It has a 

significant amount of aerenchyma, plant tissue that is responsible for the gas exchange, in 

stems, rhizomes, and roots. Those plant tissues as a kind of structural adaptation and 

other mechanical adaptions that prevent or inhibit the growth of other plant species make 

the common reed a very powerful invasive plant species and able to colonize easily in 

new habitats. The unique and extensive aerenchyma for the common reed play a 
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significant role in driving more oxygen down to the root zone and that make the oxygen 

available for soil microbes that can be used to oxidize soil organic matter, and hence less 

soil organic matter percentage. Also, that gas exchange system through the stems-roots-

rhizome-leaf make the pathway for any gases like CO2 or CH4 to be released easily to the 

atmosphere, and hence higher methane emission and that make the common reed primes 

soil organic matter as had been founded by other research studies (Bernal et al., 2016) 

At the natural site, low marsh was dominated by Nuphar lutea, while low and 

high marsh at the restored site was dominated by Typha latifolia and Phragmites 

australis, respectively. Not only are they perennial with huge underground root system, 

but also they are rich with arenchyma tissues in their stems and roots. My fourth 

hypothesis was habitats that are dominant by perennial plant species emit more CH4 

compared with their counterparts that are dominated by annual plant species. Habitats 

that were dominated by perennial plant species had the highest CH4 flux rate (2.9±0.08, 

3.0±0.00, and 3.2±0.00 Log g CH4 m-2 y-1, respectively), and that reject the null of the 

fourth hypothesis. That fact could be due to the presence of the air flow pathway through 

root-stem-leaf that made available by the aerenchyma tissues and as a result, any CH4 that 

had been produced could find its way for external atmosphere and result in higher CH4 

flux rates. Based on the soil Eh-pH chart presented at figure 4.4, low and high marsh for 

the restored site were dominant by aerobic soil conditions, which makes the oxygen more 

readily available for soil microbes to use as an electron acceptor for oxidizing more soil 

organic matter, and hence prime the soil C stocks. Those findings were similar to other 

studies (Bernal et al., 2016). 
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Many field-based research studies report considerable variations CH4 rates 

(Bridgham et al., 2013; Krauss et al., 2016; Neubauer and Megonigal, 2015). Those 

variations could be due to differences in soil microbe composition and quantity, 

geomorphological settings, vegetation, soil biogeochemistry, salinity, wetland types, 

water budget, and soil C stocks. My study reports both linear and average rates of CH4, to 

assist future scientists in modeling wetland C budgets. Based on my findings, I highly 

recommend that other studies also report both rate calculations or to be more explicit 

about their calculations for CH4 rates. Moreover, precautions should be taken during 

extrapolating CH4 emission rates from wetland ecosystems that were based on field and 

small scale to a global scale. My results indicated lower CH4 emission rates during the 

nighttime compared with daytime in support of my second hypothesis.  Real nighttime 

CH4 fluxes measurements should be substituted for methods that only mimic nighttime 

conditions. Perennial vegetarians like Phragmites australis and Typha latifolia that have 

aerenchyma tissues in their gas-exchange systems should be the focus of the future 

research as those plants might prime the soil C stocks by providing more oxygen flow 

down to the root zone through their stems. 

4.5 Conclusion 

Restored wetland habitats had significantly higher CH4 rates than the natural 

wetland habitats (1372.1±35.89 and 880.7±144.73 g CH4 m-2 y-1, respectively, P <0.05). 

The log CH4 flux rate had a significant and strong negative correlation with the total 

available iron in pore-water (r = -0.64 at the natural wetland at 12.5 cm soil depth and r = 

-0.79 for the restored site at 40 cm soil depth, P<0.05). The freshwater natural and 

restored wetland habitats had higher pore-water iron concentrations than the normal 
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abundance in other similar freshwater wetlands. Natural high marsh habitat had the 

highest plant species diversity indices (Shannon-Weiner index H: 1.7±0.1 & Shannon 

evenness S: 0.8±0.0, P<0.05), while low and high marsh at the restored wetland were 

monoculture plant communities (Typha latifolia and Phragmites australis, respectively). 

Data from soil Eh-pH chart indicated that all the natural wetland habitats had anaerobic 

soil conditions, while the restored wetland habitats demonstrated less anaerobic soil 

conditions.   
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Table 4.1: Results of repeated measures ANOVAs summarizing the effects of habitats 

(natural low marsh, natural high marsh, natural swamp, restored low marsh, and restored 

high marsh) and time (May, June, July, and August 2016) on the (a) log CH4 flux rate and 

(b) log average CH4 flux rate. 

 Source of variation Type 3 Tests of Fixed Effects 

a) CH4 flux rate Log µ mole CH4 m-2 h-1 Num DF Den DF F Value Pr > F 

Habitat 4 24.4 2.3 0.0876

Time 3 40.7 6.3 0.0013

Habitat*time 8 40 7.08 <.0001

b) average CH4 flux rate Log µ mole CH4 m-2 h-1 Num DF Den DF F Value Pr > F 

Habitat 4 25.5 22.04 <.0001

Time 3 80.5 7.28 0.0002

Habitat*time 10 80.5 6.56 <.0001

 

Table 4.2: the dominant plant species in each habitat for natural and the restored wetlands 

with their life duration indicated. 

Site Habitat species Duration 

Natural wetland 

Low marsh 
Nuphar lutea (L.) Sm.  Perennial

Peltandra virginica (L.) Schott  Perennial

High marsh 

Pilea pumila (L.) A. Gray  Annual 

Impatiens capensis Meerb.  Annual 

Polygonum arifolium L.  Annual 

Swamp 

Murdannia keisak (Hassk.) Hand.-Maz.  Perennial

Bidens laevis (L.) Britton, Sterns & Poggenb.  Annual 

Leersia oryzoides (L.) Sw.  Perennial

Restored wetland 
Low marsh Typha latifolia L.  Perennial

High marsh Phragmites australis (Cav.) Trin. ex Steud.  Perennial
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Table 4.3: Plant species diversity indices for vegetation in natural and restored wetlands. 

P values represent two way-ANOVAs. Values are significantly different when P<0.05.  

Site Habitat Shannon-Weiner index (H’) Shannon evenness index (S) 

Natural 

wetland 

Low marsh 0.1CB±0.1 0.2CB±0.2 

High marsh 1.7A±0.1 0.8A±0.0 

Swamp 0.4B±0.1 0.4B±0.1 

Restored 

wetland 

Low marsh 0.0C±0.0 0.0C±0.0 

High marsh 0.0C±0.0 0.0C±0.0 

ANOVA P site < 0.0001; P habitat< 0.0001 P site =0.0004; P habitat=0.0004 

 Means in the same column with different letters are significantly different at P<0.05. 

 

 

 

 

Figure 4.1: Google earth image showing site 
locations at the natural and the restored 
wetland located on the Patuxent River, a 
sub-estuary of Chesapeake Bay, Maryland, 
USA. The left side map was generated from 
National Wetlands Inventory Mapper 
(https://www.fws.gov/wetlands/data/Mapper
.html), while the right side map images were 
generated from Google Earth. 

The natural wetland 

The restored wetland 
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Figure 4.2: Monthly variation for diurnal average (MEAN±SE) CO2 and CH4 flux rate for 

the natural (Nat) and restored (Res) wetland habitats from May to August 2016. Each bar 

represents 5 samples. 
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Figure 4.3: Monthly variation (MEAN±SE) in pore-water CO2 and CH4 concentrations at 

12.5 and 40 cm soil depth for the natural (Nat) and restored (Res) wetland habitats from 

May to August 2016. Each bar represents 5 samples except the restored low marsh 

represents 3 samples. 
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Figure 4.4: Soil oxidation-reduction (Eh) measurements at 12.5 and 40 cm soil depth for 

natural (Nat) and restored (Res) wetlands. Each bar represents 15 samples except the 

restored low marsh represents 9 samples. 
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Figure 4.5: Total available iron in pore-water at 12.5 and 40 cm soil depth for natural 

(Nat.) and restored (Res.) wetlands. Each bar represents 20 samples except the restored 

low marsh represents 12 samples. 
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5 Conclusions 
Tidal freshwater wetlands provide a variety of wetland ecosystem services and 

functions including wildlife habitats, water quality improvement, storm water storage, 

and C sequestration. Wetlands cover 5 to 7% from the world surface area and they are 

key components of the global C budget. Accumulation of C in wetlands is controlled by 

many physical factors and biogeochemical processes that are mediated by soil microbes. 

Net primary productivity, hydrology, decomposition rates, soil redox condition, 

sedimentation, vegetation composition, rainfall, temperature, and soil microbial 

communities are crucial factors in C accumulation in wetland ecosystem. Hydrology is 

the master variable that control the development of soil substrate that enhance the 

colonization and the development of hydrophytic vegetation that able to handle very low 

concentrations of oxygen.  

In chapter 2, I assessed the differences in the hydropattern between the natural 

and the restored wetland habitats. I conclude that higher soil organic matter in the 

wetland habitats could be partially correlated with shallower groundwater level relative to 

soil surface. The habitats of the natural wetland had soil organic matter that is 

significantly higher than their restored counterparts (P<0.05). The highest soil organic 

matter content was at the swamp habitat (36.8%), while restored mudflat had the lowest 

(2.8%). The total soil C stock at the natural site was significantly higher than the restored 

site (14.8 and 8.9 kg C m-2, respectively, P site < 0.05). The hydrology at the restored site 

was restored by excavating the soil surface and that had a negative impact on soil C 

pools. Groundwater level relative to soil surface was at shallower depths in the natural 

site than the restored. The swamp habitat had the lowest soil redox measurement at 12.5 

cm soil depth, while the restored low and high marsh had higher values for soil redox, 
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implying less anaerobic conditions at the restored site. So, based on my data, I conclude 

that C accumulation might be very slow at the wetland sites that were restored by 

excavation.   

In chapter 3, the natural wetland habitats accumulated C, while the restored 

wetland habitats were neither able to accumulate C nor maintain the C inside the 

CARBIO. After one year from CARBIO units deployment, C sequestration rate for the 

soil inside the CARBIO deployed in the natural wetland was significantly higher than the 

restored wetlands (535±291.5 and -1095±429.4 g C m-2 year-1, respectively, P site<0.05). 

Mesh bag type had a significant effect (P < 0.05) on the below-ground biomass 

productivity, and that might affect C accumulation rates on the natural and the restored 

wetland habitats. However, no matter what was the CARBIO mesh bag size, the restored 

wetland habitats weren’t accumulating C at the same level as the natural site, implying 

the necessity for improving the wetland restoration technique and conserving the natural 

wetlands.  

In chapter 4, flux rates for CH4 were assessed during day and nighttime for the 

natural and the restored wetland habitats. Annual CH4 emission rates were significantly 

higher at the restored site than the natural (1372.1±35.89 and 880.7±144.73 g CH4 m-2 y-

1, respectively, P <0.05). The log CH4 flux rate had a significant and strong negative 

correlation with the pore-water total available iron (r = -0.64 at the natural wetland at 

12.5 cm soil depth and r = -0.79 for the restored site at 40 cm soil depth, P<0.05). 

Average of the total available iron in pore-water was higher than the normal abundance in 

similar freshwater wetlands, and pore water iron in the restored site was higher than the 

natural wetland, and that might be a key factor for having lower CH4 fluxes the natural 
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wetlands. Soil redox data with the soil pH revealed that the natural wetland soils have 

more reducing conditions than the restored which demonstrated aerobic condition in the 

Eh-pH chart (Figure 4.4). Vegetation composition analysis indicated that the natural 

wetland habitats had significantly higher plant species diversity indices than the restored 

site, and the high marsh for the natural wetland was the most diverse (Shannon-Weiner 

index H: 1.7±0.1 & Shannon evenness S: 0.8±0.0, P<0.05). Both low and high marsh at 

the restored site were monoculture plant communities dominated by Typha latifolia and 

Phragmites australis, respectively. CH4 nighttime fluxes had very low concentrations 

(<3650 µmole m-2 h-1), implying that greenhouse gas emission models should take the 

daily variation of CH4 fluxes into consideration in order to better represent global C 

budget in wetlands.  

 Future research should be extended by testing multiple restored, newly 

constructed, and disturbed wetlands along the salinity gradient. With applying CARBIO, 

C stability could be examined in fresh, brackish, and saltmarshes to study the effect of 

salinity on C decomposition rates. Future sampling sites should be more focused on 

habitats that are dominated by vegetation that are rich in the aerenchyma tissues in their 

stems and roots, as current results from chapter 4 indicating higher CH4 flux rates from 

the habitats that were dominated by such species Typha latifolia and Phragmites 

australis. With no doubt, studying microbial activities that control CH4 fluxes should be 

at top priority, as soil microbes mediate the biochemical processes that control the CH4 

emissions. Moreover, soil characterization for C and N should be investigated for the soil 

that in use for filling CARBIO before and after deployment as that will be deepening our 

understating for C accumulation in wetlands.  
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Appendices 
 

Appendix A 
 

 
Figure A.1: Linear regression analysis of recorded vs observed water level for natural and 

restored sites. 

 
 
 
 
 
 
 
 
 
 
 

y = 1.0343x - 5.2535
R² = 0.9173
P <0.0001

y = 0.8532x + 0.6061
R² = 0.9651
P <0.0001
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Figure A.2: Habitat soil surface elevation (mean ±SE) relative to mudflat during spring 

tide in natural (A) and restored (B) tidal fresh water wetlands.  
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Table A.3: Summary for hydrological parameters for natural and restored Wetlands. 

PWP: Patuxent Wetland Park; WLWP: Wootons Landing Wetland Park. MF: mudflat, 

LM: low marsh, HM: high marsh, S: swamp, and U: upland. 

Hydrological parameter 
Natural wetland PWP Restored wetland WLWP 

MF LM HM S U MF LM HM U 
Flood frequency (%) 100 46.5 62.5 75.5 0 100 68 60 0.1 

Highest water level (cm) 140 75 65 65 -5 120 140 55 15 

Lowest water level (cm) 15 -20 -20 -5 -75 5 -25 -100 -90 
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Figure A.4: Water level fluctuations (MEAN) for natural (top) and restored (bottom) tidal 

fresh water wetlands from April 2015 to March 2017. MF: mudflat, LM: low marsh, HM: 

high marsh, S: swamp, U: upland. Error bars were removed for clarity. 
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Figure A.5: Water level fluctuations for natural (top) and restored (bottom) tidal fresh 

water wetlands during June 6-20, 2016. MF: mudflat, LM: low marsh, HM: high marsh, 

S: swamp, U: upland. 
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Figure A.6: Average soil organic matter % (top) and Soil bulk density g cm-3 (bottom) 

(mean ± SE) over 50 cm soil depth in natural and restored tidal fresh water wetlands.  
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Table A.7: Distribution of soil bulk density (mean ± SE) g cm-3 for 50 cm soil depth in 

natural (left) and restored (right) tidal fresh water wetlands. MF: mudflat, LM: low 

marsh, HM: high marsh, S: swamp, U: upland. 

Habitat Mudflat low marsh High marsh Swamp Upland 

Soil depth 

(cm) 
Nat. Res. Nat. Res. Nat. Res. Nat. Nat. Res. 

00-05 0.20±0.06 0.15±0.07 0.21±0.04 0.23±0.11 0.12±0.02 0.11±. 0.08±0.01 0.40±0.04 0.56±0.11 

05-10 0.26±0.07 0.35±0.20 0.27±0.00 0.56±0.03 0.14±0.02 0.18±0.02 0.06±0.01 0.69±0.11 1.03±0.10 

10-15 0.30±0.07 0.56±0.30 0.25±0.02 0.77±0.06 0.15±0.02 0.26±0.16 0.17±0.04 0.96±0.31 1.49±0.22 

15-20 0.39±0.03 0.79±0.41 0.13±0.09 0.66±0.05 0.20±0.04 0.43±0.10 0.18±0.03 1.38±0.18 1.62±0.14 

20-25 0.37±0.02 0.84±0.34 0.28±0.08 0.72±0.03 0.31±0.10 0.71±0.03 0.18±0.06 1.12±0.04 1.15±0.22 

25-30 0.44±0.03 0.99±0.27 0.34±0.05 0.62±0.10 0.34±0.04 1.30±0.08 0.22±0.03 0.82±0.06 1.03±0.09 

30-35 0.43±0.01 1.21±0.14 0.60±0.10 0.61±0.02 0.36±0.05 1.24±0.13 0.28±0.01 0.87±0.27 1.39±0.15 

35-40 0.41±0.02 1.19±0.15 0.57±0.04 0.63±0.11 0.36±0.03 1.48±0.07 0.31±0.03 1.15±0.15 1.31±0.09 

40-45 0.46±0.02 1.33±0.07 0.50±0.05 0.50±0.19 0.37±0.07 1.35±0.06 0.29±0.05 1.45±0.20 1.33±0.12 

45-50 0.38±0.02 1.25±0.06 0.45±0.04 0.63±0.12 0.35±0.08 1.18±0.03 0.25±0.01 1.70±0.31 1.24±0.27 
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Figure A.8: Distribution of soil C stocks (mean ± SE) kg C m-2 over 50 cm soil depth in 

natural (left) and restored (right) tidal fresh water wetlands. MF: mudflat, LM: low 

marsh, HM: high marsh, S: swamp, U: upland. 
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Table A.9: List of plant species identified for the natural and restored wetlands. Habitats 

are MF: Mud Flat, LM: Low Marsh, HM: High Marsh, S: Swamp and U: Upland. 

Species 
Natural wetland Restored wetland 

MF LM HM S U MF LM HM U 
Ceratophyllum demersum L.  + +    +   
Hydrilla verticillata (L. f.) Royle  + +    +   
Pontederia cordata L.      +   
Phragmites australis (Cav.) Trin. ex 
Steud.  

        +   

Najas marina L.  +       
Nuphar lutea (L.) Sm. + +       
Sagittaria latifolia Willd.  + +       
Peltandra virginica (L.) Schott + +       
Polygonum punctatum Elliott +       
Polygonum arifolium L.  + +      
Polygonum hydropiperoides Michx. +      
Impatiens capensis Meerb.  +       
Pilea pumila (L.) A. Gray + +      
Mikania scandens (L.) Willd. +       
Cuscuta gronovii (Willd. ex Schult). +       
Bolboschoenus fluviatilis (Torr.) Soják  +       
Cicuta maculata L. +       
Bidens cernua L.  +       
Onoclea sensibilis L.   +    
Rubus flagellaris Willd.   +  + 
Campsis radicans (L.) Seem. ex Bureau   +    
Parthenocissus quinquefolia (L.) Planch.   +  + 
Hedera helix L.   +    
Celastrus orbiculatus Thunb.   +    
Ilex verticillata (L.) A. Gray  +    
Lespedeza cuneata (Dum. Cours.) G. 
Don  

         + 

Solidago sp.     + 
Dichanthelium sp.     + 
Ligustrum sp.     + 
Toxicodendron radicans (L.) Kuntze      + 
Geum canadense Jacq.      + 
Rosa multiflora Thunb.      + 
Solidago rugosa Mill.                  + 
Total species = 33 3 6 11 3 7 2 1 1 10 
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Appendix B 

Table B.1: Mean ± standard error for soil organic matter % determined under different 

approaches with loss-on-ignition for 2 hours at 550 ºC. 

Approaches for estimating soil organic matter 

Site 

Air dried 

Sieved 2 mm 

 

 

Air dried 

Grinded 

Sieved 2 mm 

 

Sieved 1 

mm 

Air dried 

Grinded 

 

Sieved 12.5 mm 

Air dried 

Grinded 

Sieved 2 mm 

A 35.70±0.19 34.16±0.05 31.33±0.05 -- 

B 13.86±0.07 14.17±0.02 -- -- 

C 2.83±0.10 6.48±0.16 -- -- 

D 37.40±0.04 36.34±0.08 30.61±0.02 -- 

E 22.34±0.19 22.23±0.08 21.29±0.18 22.58±0.05 

  

Table B.2:  Mean and standard error for the particle size analyses for site (E). P values represent analyses of 

variance 1- way (ANOVA) and n=3. Means in the same column followed by different letters are significantly 

different at P < 0.05, according to Duncan multiple range test. 

Soil from site E sand % silt % clay % Fine clay % *FC/TC Texture Class 

Sieved through 1mm 

while wet, then air 

dried, then grinded 

Mean 11.18A 52.34B 36.47A 12.77A 0.35A

Silty-Clay 
Std Error 0.37 0.70 0.82 0.43 0.00

Air dried, then 

grinded, then sieved 

through 2 mm 

Mean 8.99B 54.76A 36.25A 13.01A 0.36A

Silty-Clay 
Std Error 0.61 0.45 0.26 0.25 0.00

P - value 0.0377 0.0433 0.8050 0.6631 0.2451

* FC/TC: Fine clay/Total clay ratio.  
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Table B.3:  Mean ± standard error for the total C concentration (% C dry weight soil) for 

soils inside CARBIO before deploying (t0). P values represent analysis of variance 2- way 

(ANOVA) n=3. 

Soil depth Large mesh Fine mesh Fine mesh-SPVC 
0-5 9.05±0.05 9.01±0.03 9.11±0.09 
5-10 8.97±0.02 9.06±0.11 9.26±0.14 
10-15 9.01±0.04 9.06±0.06 9.19±0.09 
15-20 9.04±0.01 9.12±0.04 9.18±0.13 
20-25 9.08±0.04 9.08±0.03 9.19±0.06 
25-30 9.06±0.05 9.13±0.05 9.13±0.03 
30-35 9.00±0.01 9.02±0.04 9.13±0.07 
35-40 9.07±0.07 9.16±0.03 9.13±0.10 
40-45 9.29±0.24 9.02±0.05 9.04±0.07 
45-50 8.98±----- -- -- 

Total Mean 
9.06B

n=27 
9.07B

n=27 
9.15A

n=24 
= 0.4657  mesh bag* soil depth= 0.9667, P  soil depth= 0.0410, P  mesh bagP  

Means in the same row followed by different letters are significantly different at P < 0.05 

according to Duncan multiple range test. 
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Figure B.4: Variation in total C concentration % (mean ± SEM) for the mesh bags soil 

after 15 month from deployment in natural (A) and restored (B) wetlands. t0: initial time; 

t15: 15 month after deploying; LM: Large mesh; FM: fine mesh; FMSPVC: fine mesh 

inside the slotted PVC. Horizontal dashed line represent the total C concentration at t0. 
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Appendix C 

 

 

Figure C.1: Field photo showing the gas flux chamber setup. 
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Figure C.2: Field photos showing three chambers stacked above each other to 
accommodate Phragmites australis (A & B), two chambers stacked to accommodate 
Typha latifolia (C), and one chamber with 3 meters boardwalk (D & E). 
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Figure C.3: Histogram showing the distribution of CH4 and CO2 concentrations emitted 

from all natural and restored wetland habitats from May to August 2016.  
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Figure C.4: Variation of diurnal CO2 and CH4 flux rate for natural (Nat) and restored 

(Res) wetlands from May to August 2016. Lower values presented at the left axis, while 

the higher values present at the right axis for the bottom chart. 
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Figure C.5: Histogram showing distribution of pore-water CO2 and CH4 concentrations at 

12.5 and 40 cm soil depth at all the natural and restored wetland habitats from May to 

August 2016. 
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Figure C.6: Change of soil Eh over time at 12.5 and 40 cm soil depth for the natural (Nat) 

and restored (Res) wetlands from May to August 2016. 
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Figure C.7: Change in soil pH over time at 12.5 and 40 cm soil depth the natural (Nat) 

and restored (Res) wetland habitats from May to August 2016.  

 

Figure C.8: Change in salinity for the natural (Nat) and restored (Res) wetland habitats 

from May to August 2016.  
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Figure C.9: Change in soil temperature over time at 12.5 and 40 cm soil depth for the 

natural (Nat) and restored (Res) wetlands from May to August 2016.  
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Table C.10: Plant species identified in the natural and restored wetland habitats.  

Species 

Natural wetland Restored wetland 

low 

marsh 

high 

marsh 
Swamp 

low 

marsh 

high 

marsh 

Amaranthus cannabinus (L.) Sauer  +  

Biden sps. +  

Bidens laevis (L.) Britton, Sterns & 

Poggenb.  
 + +   

Carex lacustris Willd.  +  

Cicuta maculata L.  + +  

Cuscuta gronovii Willd. ex Schult.  +  

Impatiens capensis Meerb.  +  

Leersia oryzoides (L.) Sw.  + +  

Murdannia keisak (Hassk.) Hand.-Maz.  + +  

Nuphar lutea (L.) Sm.  + +  

Peltandra virginica (L.) Schott  + +  

Phragmites australis (Cav.) Trin. ex 

Steud.  
    + 

Pilea pumila (L.) A. Gray  +  

Polygonum arifolium L.  +  

Polygonum punctatum Elliott  +  

Polygonum sagittatum L.  +  

Schoenoplectus fluviatilis (Torr.) M.T. 

Strong 
 +    

Typha latifolia L.  + + 

Zizania aquatica L.      +     

Total = 19 2 15 7 1 1 
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Figure C.11: Plant species density and plant cover per 0.25 m2 plot for natural (Nat) and 

restored (Res) wetlands.  
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