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I discuss experimental and theoretical results on an LC filtered dc SQUID

phase qubit. This qubit is an asymmetric aluminum dc SQUID, with junction

critical currents 1.5 and 26.8 µA, on a sapphire substrate. The layout differs from

earlier designs by incorporating a superconducting ground plane and weakly coupled

coplanar waveguide microwave drive line to control microwave-qubit coupling.

I begin with a discussion of quantizing lumped element circuit models. I use

nodal analysis to construct a 2d model for the dc SQUID phase qubit that goes

beyond a single junction approximation. I then discuss an extension of this “normal

modes” SQUID model to include the on-chip LC filter with design frequency ≈ 180

MHz. I show that the filter plus SQUID model yields an effective Jaynes-Cummings

Hamiltonian for the filter-SQUID system with coupling g/2π ≈ 32 MHz.

I present the qubit design, including a noise model predicting a lifetime T1 =

1.2 µs for the qubit based on the design parameters. I characterized the qubit with

measurements of the current-flux characteristic, spectroscopy, and Rabi oscillations.



I measured T1 = 230 ns, close to the value 320 ns given by the noise model using the

measured parameters. Rabi oscillations show a pure dephasing time Tφ = 1100 ns.

The spectroscopic and Rabi data suggest two-level qubit dynamics are inadequate for

describing the system. I show that the effective Jaynes-Cummings model reproduces

some of the unusual features.
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Chapter 1

Introduction

The last twenty years have seen an immense amount of research in quantum

computing. The promise of devices with previously unattainable computing power,

along with the almost unlimited range of systems capable of being cast as two-level

systems, has made the field broadly attractive. My thesis work was on understanding

and improving the performance of a particular type of superconducting qubit. After

a brief general discussion of quantum computing, I give an overview of the thesis.

1.1 Quantum computing

Classical computing concerns itself with bits, the 0s and 1s that represent the

simplest possible unit of information. A bit can be set to either 0 or 1. Quantum

computing, by contrast, asks what you can do if you exploit the superposition prin-

ciple of quantum mechanics to get qubits that can be a mixture of |0〉 and |1〉. A talk

by Feynman on the limits of simulating quantum mechanics with classical computers

[1] is often considered the impetus for the idea, although there were earlier exam-

inations of some of the ideas of quantum information, such as Wiesner’s proposal

for quantum money [2]. Feynman’s point was that solving Schrödinger’s equation

required exponentially increasing resources as the system size increased. Trying to

perform direct simulation of quantum systems — similar to building analog circuits

with op-amps to solve particular differential equations — cannot be done classically,

as Bell’s inequality shows. By moving to quantum mechanical parts, a simulation

could be performed.
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In addition to this quantum simulation idea, people began to discover that

quantum information could be exploited to perform other tasks better than clas-

sically possible. One early example was the Deutsch-Jozsa algorithm [3], demon-

strating a quantum algorithm that outperformed any classical one, albeit on a very

artificial problem. A more natural seeming application was superdense coding [4],

where one spin 1/2 particle could be measured to extract two bits of classical infor-

mation. By far the most famous quantum algorithm, though, is Shor’s algorithm for

factoring numbers [5]. The best approaches known for factoring numbers classically

are exponential in the size of the number; Shor’s algorithm is polynomial. Given

that difficulty in factoring large numbers is the linchpin of the widely used public-

key cryptosystem RSA, Shor’s algorithm represents an amazing performance gain

in a technologically important problem. Its existence catalyzed the broad interest

in quantum computing.

A quantum computer would be of great practical interest, but they are still

largely theoretical constructions. To reap the benefit of quantum algorithms, the

qubits must behave quantum mechanically. Through coupling to an unmonitored

environment, quantum mechanical pure states eventually decay to states analogous

to classical mixtures, a process called decoherence [6]. Although it is possible to

correct for errors introduced by decoherence [7], a minimum coherence threshold is

still necessary for error correction to operate.

The coherence issue presents a dilemma. One may work with systems that

are very weakly coupled to the environment. This gives excellent coherence, but

leads to challenges in measurement and coupling multiple qubits. Alternatively,

one can work with devices that are easy to measure and couple, but the stronger

coupling that simplifies these tasks gives worse coherence. Many different physical

systems have been proposed as qubits. Some examples include: donor spins in

silicon [8]; polarization modes of photons, coupled using linear optics [9]; proton
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spins of molecules, controlled using liquid-state NMR [10]; braids of quantum Hall

quasiparticles [11]; electronic states of trapped ions, coupled to motional states [12].

Each provides a different set of benefits and challenges.

Superconducting circuits have been used to realize several different types of

qubit. The precursor to superconducting qubits was the observation of energy level

quantization in a Josephson junction [13]; this type of qubit, where the states cor-

respond to resonances in tilted washboard potential of the Josephson junction, is

called a phase qubit [14]. A different approach, and the first modern superconduct-

ing qubit, was the Cooper pair box of Nakamura et al [15]. In this charge qubit,

the states correspond to the presence or absence of an excess Cooper pair on the

box. Shortly after that experiment, a superposition of flux states of a SQUID was

demonstrated [16]. This is the approach of flux qubits.

These different qubit designs correspond to the differing proportions of the

charging energy EC of the Josephson junctions to the Josephson energy EJ associ-

ated with the tunneling current through the junction. At one extreme is the charge

qubit, where EC � EJ . This results in a Coulomb blockade, where charge enters

and leaves the box one Cooper pair at a time. At the other end is the phase qubit,

where EJ � EC and instead the current through the junction is the better defined

quantum number. Some modern designs like the transmon [17] operate in a hybrid

regime between these two poles.

The focus of our lab has been phase qubits. To examine the strengths and

weaknesses of the phase qubit, it is useful to consider what a qubit must do. To

be practical, a qubit must satisfy the DiVincenzo criteria [18]. How well do phase

qubits satisfy the criteria, quoted from that article?

• A scalable physical system with well-characterized qubits : One of the great

appeals of solid-state approaches like superconducting qubits is that scalability

seems very plausible. Lithographic and miniaturization techniques from the
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semiconductor industry seem well suited to eventually placing many qubits

on a chip. Phase qubits in particular seem well adapted to scaling up. A

key feature of the phase qubit is the tunability of ω01 by changing the qubit

bias. This would greatly improve yield for multi-qubit devices, as e.g. small

local parameter fluctuations in the fabrication process would not break qubit

coupling.

“Well-characterized” is used to indicate that the Hamiltonian of the qubits

themselves — including coupling between qubits and to external control fields

— is well understood. For simpler phase qubits, this holds, although as I will

discuss later in this thesis some circuits can become quite complicated in their

behavior.

• The ability to initialize the system to a simple fiducial state, such as 000 : Any

useful quantum computation will require the ability to prepare the qubits in

a given state. To do this efficiently, it is necessary to start in a known state

with high probability. The suggested state |000 . . .〉 is a natural one, as it

is the ground state of the system. Most superconducting qubit experiments

are performed in dilution refrigerators at temperatures kBT 10-20 times lower

than ~ω01. At these temperatures, barring excess noise specifically at ω01, the

Boltzmann factor leads to an overwhelming likelihood of being in the ground

state, provided the system has had time to relax thermally1.

• A “universal” set of quantum gates : The notion of universality comes from

classical computing [19]. If we say that a particular “logical function” returns

0 or 1 given any choice of input bits, then a set of gates is universal if all pos-

sible logical functions can be built using those gates. The quantum analogue

1In a system with many qubits, although the ground state is still more probable than any given
one qubit excited state, eventually a point will be reached where it is more probable that at least
one qubit is excited than not. Since for the parameters discussed this requires somewhere between
≈ 105 and 109 qubits, that would be a good problem to have.
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involves being able to prepare any state in the Hilbert space generated by the

qubits. A well-known result from quantum information theory [20] states that

one-qubit gates (i.e. arbitrary unitary operations on a single qubit) and the

two-qubit gate CNOT are universal. CNOT is short for “controlled NOT,”

where one qubit is the control and one is the target. A CNOT gate inverts

the target qubit if the control qubit is in the 1 state:

Input Output

|00〉 |00〉

|01〉 |01〉

|10〉 |11〉

|11〉 |10〉

There are other two-qubit gates that can be used in lieu of CNOT to yield

universality. The key point is the notion of a controlled gate. This is a

technique that often facilitates the creation of reversible gates. Reversibility is

important since quantum mechanics is itself a reversible theory, and thus any

prospective gate must be reversible. CNOT is logically reversible because the

output is sufficient to recreate the input. By contrast, the classical AND gate

is not reversible; knowing that AND on two inputs yields 0 is not sufficient to

determine the inputs.

The Rabi oscillation control system described is sufficient (provided one uses

both in-phase and quadrature fields) to perform arbitrary unitaries on a single

qubit. Gate designs such as a controlled phase gate [21] are workable on two

capacitively coupled phase qubits, allowing universal computation.

• A qubit-specific measurement capability : Quantum tunneling through the po-

tential barrier provides a method for phase qubit readout. A general result

from WKB theory is that the tunneling rate is exponentially sensitive to the
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height of the barrier, as the decay of the wavefunction under the barrier is set

by this energy. Thus, there is a great enhancement in the escape rate when the

qubit is in the |1〉 state. This tunneling leads to a measurable voltage across

the qubit that tunnels. If each qubit has its own set of leads, then each can

be measured individually.

While there are some advantages to this approach, a major shortcoming is

that tunneling based measurements are not projective. Tunneling may be a

strong indicator that the system was in |1〉, but following the tunneling event

the junction isn’t even superconducting, let alone in the original logical basis.

This type of measurement, then, can be quite useful for initial diagnostics,

but poses a severe hurdle for key quantum information tasks such as error

correction (which rely on projective measurement.)

• Long relevant decoherence times, much longer than the gate operation time:

At the moment, this is the great challenge of Josephson qubits, and phase

qubits in particular. The relative ease of coupling and measurement comes at

the expense of relatively strong decoherence, which is nothing more than rel-

atively easy coupling to other, unmeasured quantum systems. “Much longer”

is quantified by the threshold theorem [22], which roughly says that quantum

error correction can work well enough to allow computation provided the error

rate is sufficiently low per gate operation. The particular threshold depends

strongly on the choice of code and architecture. A coherence time 104 longer

than the gate time was an oft-used number, but some codes [23] can approach

102. This latter number is feasible in some modern superconducting qubit

setups.

Since decoherence is driven by coupling to an uncontrolled environment, build-

ing a better qubit is largely about controlling the qubit’s environment as rigorously

6



Figure 1.1: Schematic of the dc SQUID phase qubit, including bias line admittance
Y . I discuss dc SQUID phase qubit design in Section 2.5.
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as possible. This demands circuit designs more complicated than a single current

biased Josephson junction. Most of the research in our lab has focused on using

dc SQUIDs as phase qubits. A schematic is shown in Figure 1.1. Originally sug-

gested by Martinis et al. [24], the idea is to provide an inductive filtering network

that shields a qubit junction from noise on the bias line. To continue biasing the

junction as before, a flux coil is added to modulate the SQUID.

Our lab has produced several theses [25–29] devoted to the study of the dc

SQUID phase qubit. Over this time, the design has changed. We now employ

smaller junctions, especially for the intended qubit junction. These changes have

been for the better. Over the years, we have improved the coherence times by an

order of magnitude. Yet a consistent puzzle is why the improvement has not been

even better.

My work on dc SQUID phase qubits had two chief aspects. One aspect was

experimental. With Rangga Budoyo, I fabricated our most recent dc SQUID phase

qubit “BBC2.” I then performed measurements on it to characterize its behavior.

The lifetime T1 = 230 ns of the qubit was comparable to the most recent qubits

our lab has studied, and the phase coherence (which I characterize by the pure

dephasing time Tφ = 1100 ns) appears substantially better than any phase qubit we

had previously measured.

The BBC2 data showed features that were unexpected. This led into the

second aspect of my work, which was improving the theoretical models used to

describe these qubits. In the original model, the dc SQUID phase qubit behaved as

a single junction phase qubit with a filtering network attached to the front of it. For

some of the older devices we studied this was a good approximation, but as I show,

the move to smaller junctions makes the dynamics of the full circuit more important.

I developed models that incorporated more of the circuit into the analysis — first

the SQUID, and later the on-chip LC filter as well.
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1.2 Overview of thesis

Chapter 2 examines much of the basic physics underlying the dc SQUID phase

qubit. It begins with a derivation of the Josephson effect. Following this, I explain

how network theory can be applied to give the appropriate quantum mechanical

Hamiltonian for lumped element circuit designs. I apply this technique to several

systems of increasing complexity and show that it yields sensible results. This net-

work theory approach considers a lossless system, but to capture the all-important

decoherence phenomena it is essential to include dissipation. I give a brief overview

of loss in quantum systems and its application to our qubit.

The final section of Chapter 2 discusses the model I developed for the dc

SQUID phase qubit. The modern design featuring small, heavily asymmetric junc-

tions was arrived at after years of tinkering. Earlier models of the behavior of the

SQUID treated it as a single junction with a classical filtering network in front of

it. I explain the limitations of this approach and apply the nodal analysis formalism

to derive a model for the full SQUID. For many applications, the normal modes of

this model Hamiltonian — corresponding to a harmonic approximation to the qubit

behavior — are sufficient. This model was found to successfully describe similar

designs studied by previous students in our lab [28, 29].

Chapter 3 begins with an explanation of the Jaynes-Cummings model. Con-

sisting of a linear coupling between a two-level system and a harmonic oscillator, it

is a simple, exactly solvable model that has nevertheless proved highly successful in

describing the interaction of two-level systems with light. In particular, it is a good

descriptor of cavity QED experiments, where the field can be limited to a particular

relevant mode. One of the most influential ideas in superconducting quantum com-

puting has been the extension of this idea to Josephson junction circuits. In this

context, the techniques have come to be known as circuit QED [30].

In circuit QED, a cavity in a coplanar waveguide is coupled to the qubit. The

9



interplay between cavity and qubit is then exploited to make dispersive microwave

measurements of the qubit. The LC filtered dc SQUID phase qubit I studied does

not have this waveguide cavity. However, the LC filter is itself a lumped element

microwave resonator. Using the techniques of Chapter 2, I expand the SQUID model

to include the LC filter. I then extract an effective Jaynes-Cummings model for this

filter plus SQUID system.

Chapter 4 discusses the fabrication of BBC2. The initial design for BBC2

was done by Rangga Budoyo. I later made some modifications to the design, and

Rangga and I jointly did the fabrication. For several years all of the qubits our lab

has built have used aluminum deposited on sapphire substrates. Originally we only

used photolithographic processes, but a move toward smaller junctions compelled us

to begin using e-beam lithography as well. Sapphire presents a problem for e-beam

lithography, as it accumulates charge if nothing is done to prevent this. I discuss

how I modified an anti-charging e-beam process originally developed by Przybysz

[28] for BBC2 and mention some of the difficulties encountered.

Chapter 5 discusses the experimental setup. Since our qubits are supercon-

ducting devices it is obviously essential to cool them to the point where they su-

perconduct. Beyond that, we rely on thermal relaxation to prepare the system in

the |0〉 state. Thus, it is beneficial to work at the lowest temperature possible. Ac-

cordingly, I mounted the qubit in a dilution refrigerator with base temperature 20

mK. Although this refrigerator has been used for several generations of experiments,

repairs and wiring changes for BBC2 led to changes in the layout of the fridge. I

begin by reviewing these changes.

Chapter 5 also examines some techniques I used in the measurements. One big

issue in the initial BBC2 measurements was an apparent difficulty with grounding.

This was likely introduced after the measurement electronics were hooked up to a

set of recently installed electrical receptacles. I review the nature of the problem
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and the techniques I used to fix it.

Chapter 5 concludes with a discussion of two different ways of measuring the

state of the qubit. Both employ the dependence of the voltage switching rate Γ

on the state of the qubit. The two methods differ in their ways of achieving a

measurably high Γ. The first method (swept measurement) uses a linearly ramped

bias to increase Γ to the point where escapes are measurable. The second method

(pulsed measurement) uses fixed bias conditions and instead applies a short pulse

to increase Γ.

My experimental results on BBC2 are given in Chapters 6 and 7. Chapter 6

begins by discussing the BBC2 design. Like the generations immediately preceding

it, BBC2 is a dc SQUID with an on-chip LC filter. Where BBC2 differs is in

the handling of the microwave drive for the qubit. Previous samples used a short

microstrip running from a contact pad to a point near the qubit. The goal was to

create a weak capacitive coupling to the qubit. BBC2 instead places the qubit in

a gap in an aluminum ground plane. The microwave drive is now provided by a

nearby coplanar waveguide. This change was motivated by experiments suggesting

that the previous qubit had its lifetime limited by overcoupling to the microwave

line [28]. Figure 1.2 is a photograph of a BBC2 patterned qubit in its ground plane,

with the coplanar microwave line colored red. The ground plane and waveguide

design were adapted from experiments measuring dielectric loss in lumped element

microwave oscillators [31, 32].

Following the presentation of the design, I examine the expected lifetime of

the qubit. I assume a particular set of channels for dissipation that seem likely to

dominate the behavior of the qubit. I then consider how strong the loss to each

of these channels is. I arrive at a value for the expected qubit lifetime, given the

design parameters, of 1.2 µs. While this would still represent a short time compared

to other recent superconducting qubit architectures, it would be among the best
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Figure 1.2: Photo of the BBC2 qubit in its ground plane. The fabrication of BBC2
is described in Chapter 4; the design of BBC2 is discussed in Chapter 6.
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phase qubit lifetimes. Chapter 6 concludes with a discussion of some of the dc

measurements I used to measure device parameters in situ.

In Chapter 7 I present some of the microwave measurements I performed on

BBC2. These measurements represent coherent control of the state of the qubit. I

begin by looking at spectroscopic studies performed using the swept measurement

technique. While this technique allows for much more rapid data acquisition than

the pulsed technique, it was of limited use beyond initial characterization. I discuss

some of the shortcomings of this technique and how the pulsed measurement resolved

them.

Using the pulsed measurement technique, I performed three principal types of

measurements: spectroscopy, Rabi oscillations, and lifetime measurements. These

measurements exhibited some unexpected properties. Spectroscopically, I antici-

pated the usual Lorentzian structure for a driven two-level system, with the pos-

sibility of other lines corresponding to higher level transitions like |1〉 → |2〉, etc.

Instead, I measured a line with an asymmetric shape, steeper toward the red fre-

quencies. Further, there were unexpected sidebands present in the spectrum. The

asymmetry in the lineshape extended to the behavior of the Rabi oscillations, which

I found to be much longer lived when detuned to the blue side of the resonance.

We thought the sidebands were suggestive of a characteristic feature of the

Jaynes-Cummings model. That model predicts that as the photon occupancy of the

harmonic oscillator coupled to the qubit increases, the qubit frequency is shifted

a corresponding amount. The sidebands, then, might correspond to these photon

peaks. I developed the model of Chapter 3 — where the on-chip LC filter is consid-

ered as the oscillator in an effective Jaynes-Cummings model — to understand this

spectroscopic behavior. Because the LC filter is very low frequency, many photon

states are likely to be relevant, thus yielding a large Hilbert space making full sim-

ulation difficult. I consider how a simplified approximation to the predicted photon
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shifts reproduces the spectroscopic lineshape. The lineshape does appear generally

consistent with the model, although further tests are necessary to determine whether

this is the real source of the asymmetry. Many of the results of this chapter are

published in [33].

Chapter 8 concludes the thesis by considering what some of those tests may

entail. I lay out a theoretical and experimental program for addressing some of the

remaining questions concerning the significance of the filter plus SQUID Jaynes-

Cummings model. In addition, I also discuss one of the most mysterious aspects

of our recent dc SQUID qubits — the anomalous behavior of the tunneling mea-

surement. Since the thesis of Hyeokshin Kwon [34], all of the qubits our lab have

studied have shown a strange response to the pulsed measurement when placed in a

superposition state between 0 and 1. In BBC2, I also found that two voltage pulses,

well-separated in time, were seen to occur following a single measurement pulse. I

discuss approaches to a better model of pulsed measurement in dc SQUIDs.
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Chapter 2

Quantum Mechanical Treatment of Circuits

Although quantum information can in principle work with systems with more

than two states (qudits), most of the quantum circuit language used to describe al-

gorithms focuses on qubits [20]. Consequently, experimental research has focused on

two-level systems. In many of the architectures I mention in Section 1.1, the qubits

are intrinsically two-level systems such as spins. By contrast, the superconducting

circuits used as qubits admit many levels. The restriction to two levels requires the

non-linearity of Josephson junctions.

I begin this chapter by discussing the physics of Josephson junctions. In

particular, I discuss the “tilted washboard” potential that is the basis for the single

junction phase qubit. A single current biased Josephson junction is too strongly

coupled to its leads and makes a poor qubit. Improving the performance requires

more complicated circuits. I discuss my approach, based on a discussion by Devoret

[35], to deriving Hamiltonians for superconducting qubit designs. After discussing

the technique, I apply it to relatively simple circuits to give examples of the method.

The Hamiltonian derivation assumes lossless circuits. In practice, loss is one

of the most important aspects of a qubit. I discuss how loss is incorporated in

qubit models through master equations and derive the Bloch equations describing

the response of a damped two-level system to a microwave drive. The fluctuation-

dissipation theorem [36] says that with any source of dissipation there are associated

fluctuations. One of the major sources of dissipation in superconducting circuits is

radiation to the control lines, modeled as a resistance. I discuss how the Johnson
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noise associated with this resistance determines the lifetime T1 of the qubit, and

how filtering can reduce this Johnson noise and improve the lifetime.

Finally, with this background in place, I describe the design of the dc SQUID

phase qubit studied in our lab. First proposed by Martinis et al. [24], this design uses

an inductive current divider to protect a current biased Josephson junction from the

bias line. Placing a second junction on the divider arm keeps the qubit junction from

being shorted and allows flux bias of the resulting dc SQUID. A quantum model of

this design was proposed by Mitra et al. [37] to describe an earlier dc SQUID phase

qubit measured in our lab [25].

While Mitra’s model succeeded at describing this earlier qubit, it makes several

assumptions regarding parameters and bias conditions that are not accurate for

the more recent dc SQUID phase qubits. The key problem is that the Josephson

junctions we use now are much smaller than those we used then. As I discuss, this

makes the inductive coupling between the junctions more important. With increased

coupling, modeling the qubit as a single junction is no longer accurate. I present a

model I developed to instead describe the qubit as a normal mode of the SQUID.

In the large junction limit, this model reduces to the single junction approximation.

Measurements on the more recent dc SQUID phase qubits [28, 29] show this model

gives better agreement with the data.

Though I did give a public presentation of this model [38], I did not publish

it. Independently, Lecocq et al. [39] developed a similar model to describe their

“camelback” [40] dc SQUID phase qubits. These are operated in a different param-

eter regime, with more emphasis on interplay between the two modes [41]. Another

similar examination of these ideas is “black-box quantization” [42], where the modes

perturbed by the junction nonlinearities are generalized to consider numerical field

analysis instead of the lumped element approximation. These other works reinforce

the fruitfulness of this normal modes picture.
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2.1 Josephson junctions

2.1.1 Josephson relations

A Josephson junction is a weak link between two superconducting regions.

This is a broad definition. The various types of weak link correspond to different

types of junction. In this thesis I exclusively discuss superconducting-insulating-

superconducting (SIS) junctions. The most common junction insulator is an oxide

on the surface of one of the superconductors. Early experiments on Josephson junc-

tions often formed SIS junctions through point contacts between a superconducting

needle and another surface [43]. In modern experiments, junctions are more typi-

cally formed through lithographic processes and the oxide junction barrier explicitly

grown. (The fabrication techniques I used in building the BBC2 qubit are discussed

in Chapter 4.)

The ideal SIS Josephson element involves only the tunneling of Cooper pairs

through the insulating barrier. There are several derivations of the Josephson effect;

the one I discuss draws heavily from Devoret’s Les Houches lectures on quantum be-

havior in electrical circuits [35]. The earliest presentation of this derivation appears

to be Ferrell and Prange [44].

Consider a zero-temperature limit where only Cooper pairs are tunneling

through the junction. Define a number operator

N̂ =
∑
N

N |N〉 〈N | , (2.1)

where the eigenstates represent the total of all Cooper pairs that have tunneled from

the first electrode to the second electrode. To make the Hamiltonian Hermitian, the

tunneling processes can go in either direction, so a tunneling event can increase or
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decrease N̂ . The tunneling Hamiltonian is

ĤJ = −EJ
2

∑
N

(|N + 1〉 〈N |+ |N〉 〈N + 1|) , (2.2)

where the tunneling energy scale EJ is called the Josephson energy.

In analogy to tight-binding models where hopping terms like this are common,

I take the discrete Fourier transform of these number states. This leads to a phase

variable γ,

|N〉 =
1

2π

∫ 2π

0

dγ e−ıNγ |γ〉 , (2.3)

|γ〉 =
∑
N

eiNγ |N〉 . (2.4)

In this phase basis, the Hamiltonian (2.2) takes on a simple form. Looking at one

of the two outer products,

∑
N

|N + 1〉 〈N | = 1

2π

∫ 2π

0

dγ
∑
N

eıNγ |N + 1〉 〈γ| ,

=
1

2π

∫ 2π

0

dγ e−ıγ
∑
N

eı(N+1)γ |N + 1〉 〈γ| ,

=
1

2π

∫ 2π

0

dγ e−ıγ |γ〉 〈γ| .

(2.5)

Combining this term with its Hermitian conjugate, I rewrite the Hamiltonian as

ĤJ = −EJ
2π

∫ 2π

0

cos γ |γ〉 〈γ| . (2.6)

In an even more compact notation, remembering that functions of operators repre-

sent series expansions of the operator,

ĤJ = −EJ cos γ̂. (2.7)
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In this notation, Equation 2.5 shows that

e−ıγ̂ =
∑
N

|N + 1〉 〈N | (2.8)

behaves very similarly to a raising operator. N̂ and γ̂ are conjugate operators, with

the commutation relation
[
γ̂, N̂

]
= ı.

Since N̂ represents the net number of Cooper pairs that have tunneled through

the junction, the current through the junction depends on the time derivative of this

operator. Using the Heisenberg representation,

dN̂

dt
=

1

ı~

[
N̂ , ĤJ

]
,

=
1

ı~

[
N̂ ,−EJ

2

∑
N

(|N + 1〉 〈N |+ |N〉 〈N + 1|)

]
,

=
EJ
~

1

2ı

∑
N

|N〉 〈N + 1| − |N + 1〉 〈N | ,

=
EJ
~

1

2ı

∫ 2π

0

dγ eıγ − e−ıγ |γ〉 〈γ| ,

=
EJ
~

sin γ̂,

(2.9)

where I have used (2.5) between lines three and four. Multiplying by the 2e charge

per Cooper pair yields the current

I ≡ 2e
dN̂

dt
=

2eEJ
~

sin γ̂. (2.10)

This is the dc Josephson effect — we get a current across the junction depending

on the phase operator γ̂, limited by the critical current I0 ≡ 2eEJ/~.

Given these results, a less formal argument yields the voltage across the junc-

tion. The energy associated with the tunneling current for a given phase difference γ

is given by −EJ cos γ as in (2.7). If the phase difference across the junction changes,

then there is a corresponding change in the energy stored and thus work is done on
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the junction. Since this model includes no dissipation the dynamics are conservative

and thus path independent. Thus, we should be able to recover the change in energy

by finding the time integral of the power applied to the system:

−EJ (cos γ2 − cos γ1) =

∫ t(γ2)

t(γ1)

IV dt,

=

∫ t(γ2)

t(γ1)

2eEJ
~

sin γV dt.

(2.11)

This equation is clearly satisfied if V dt is proportional to dγ, yielding the ac Joseph-

son relation

V =
~
2e

dγ

dt
≡ Φ0

2π
γ̇, (2.12)

where Φ0 ≡ h/2e is the magnetic flux quantum.

This derivation is less intuitive than some; among other things, this approach

does not make evident that the phase variable γ is associated with the phase dif-

ference between the superconducting condensate in the two electrodes. Feynman’s

coupled Schrödinger equation approach [45] is clearer in this regard. I have chosen

Devoret’s method because the number operator form of the tunneling Hamiltonian

is fairly widely used with superconducting qubits, especially with charge qubits.

Thus some familiarity with this approach is useful in reading the literature.

2.1.2 Junction dynamics

The discussion of the previous section considered the ideal Josephson element.

A physical junction also includes other processes. The physics of SIS junctions are

well captured by the resistively and capacitively shunted junction (RCSJ) model

[46, 47]. The resistive shunt represents dissipative processes the junction is exposed

to. These include effects like the presence of thermal quasiparticles in the super-

conducting terminals, or coupling to bias leads. The capacitive shunt represents
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Figure 2.1: Schematic drawing of a Josephson junction in the RCSJ model. The X
in the center represents the ideal Josephson element.

displacement currents associated with the changing fields between the terminals as

the phase difference changes. In a typical tunnel junction the geometry is essen-

tially that of a parallel plate capacitor, so the source of the capacitance is physically

obvious. Figure 2.1 shows a schematic of a physical Josephson junction in this

model.

The RCSJ model presents the junction as a classical lumped element circuit.

The arguments of the previous section involving energy storage in the ideal junction

suggest that in a small-signal limit we could consider it as having some sort of

reactance. Given the flowing current, a logical guess is that the Josephson element

is inductive. Using equations (2.10) and (2.12), I get the Josephson inductance1

LJ
dI

dt
= V,

LJ(I0γ̇ cos γ) =
Φ0

2π
γ̇,

LJ =
Φ0

2πI0 cos γ
.

(2.13)

The nonlinearity in the Josephson relations results in a tunable inductance; as the

1A more rigorous derivation of this result is given in Section 2.5.1.
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current bias of the junction changes, so does LJ . As γ → π/2 and the junction is

biased near the critical current, the inductance diverges. From the simple argument

above, we see that this is because the current is insensitive to small changes in γ

near that point.

Applying Kirchhoff’s laws to the RCSJ model yields equations of motion for

a Josephson junction. Since this is a prelude to a quantum treatment, I ignore the

resistance R for now; I discuss how resistance is incorporated into the circuit models

in Section 2.4. The bias current Ib is split between the Josephson element and the

capacitor:

Ib = I0 sin γ + C
dV

dt
,

= I0 sin γ +
CΦ0

2π
γ̈.

(2.14)

In analogy with mechanical systems, the capacitive term corresponds to a kinetic

energy. This suggests describing the rest of the equation with a potential. The

potential

U = −Φ0

2π
(Ibγ + I0 cos γ) = −EJ

(
Ib
I0

γ + cos γ

)
(2.15)

yields the correct equation of motion; the flux quantum factor Φ0/2π gives the right

units to the potential.

Figure 2.2 shows plots of the tilted washboard potential. The x-axis is the

phase difference γ/2π across the junction. The y-axis is U/EJ , the potential (2.15)

normalized by the Josephson energy. Three different bias currents are shown. At

low bias current, the corrugations from the cos term are more prominent, yielding

periodically spaced wells. The critical points of the potential are located at γ that

satisfy (2.10). The minima correspond to locations with a positive second derivative,

and the maxima to the locations with negative second derivative. Defining the bias

factor b ≡ Ib/I0, the two solutions to sin γ = b are symmetrically located about π/2.
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Figure 2.2: Tilted washboard potential for three bias currents Ib.

The height of the potential well is given by

∆U

EJ
=

1

EJ
(Umax − Umin),

= −b
(
π − sin−1 b

)
+ I0 cos sin−1 b+ b sin−1 b+ I0 cos sin−1 b,

= 2
√

1− b2 + b(2 sin−1 b− π).

(2.16)

This function is plotted in Figure 2.3.

As the bias current increases, we see two significant effects. The second deriva-

tive at the potential minimum is proportional to I0 cos γ. As the bias increases,

γ → π/2 and this curvature vanishes. This corresponds to the increasing Josephson

inductance of Equation 2.13. Further, as seen in Figure 2.3, as b approaches 1 the

height of the well decreases to 0. When Ib > I0, there is no longer any stable so-

lution to the Josephson relations — this is why I0 is called the critical current. In

our mechanical analogy, there is always a positive force on the phase particle at all

points, leading to nonstop acceleration and a continuously changing γ.
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Figure 2.3: Plot of the well height ∆U/EJ as a function of bias factor b.

From (2.12), continuous change in γ creates a voltage across the junction.

The acceleration means that the voltage grows larger and larger with time. In

practice, what actually occurs is that when the voltage grows sufficiently large there

is enough energy to break some of the Cooper pairs tunneling through the junction.

When this happens, the newly formed quasiparticles increase the dissipation of the

junction. This loss behaves like friction and stops the acceleration of the phase,

leading to a steady dc component to the voltage. I refer to this process of going

from a superconducting state to a state with finite voltage as switching, and it is

essential for the operation of our qubits.

Depending on the damping already shunting the junction (i.e. the R in the

RCSJ model), there may be a unique voltage associated with a particular current or

the junction may be hysteretic [48]. Hysteresis occurs in the case of low damping.

With low damping, once the phase starts rolling downhill there is plenty of energy

to get over successive crests even when we turn the current back down and raise the

barrier height (2.16). Since low damping is very desirable for quantum computing,
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Figure 2.4: Schematic I-V curve for a strongly hysteretic current biased Josephson
junction.

superconducting qubits operate in this hysteretic regime.

Figure 2.4 shows a schematic representation of a typical I-V curve for a hys-

teretic junction. The x-axis is the dc voltage measured across the junction in a

four-wire measurement. The y-axis is the current running through the junction.

The vertical line at zero voltage is the supercurrent branch of the I-V curve, corre-

sponding to the zero voltage current (2.10). The supercurrent branch can support

current in either direction up to I0. Above I0, a nonzero voltage develops across the

junction. Because of the runaway phenomenon mentioned in the preceding para-

graph, for hysteretic junctions voltages below 2∆/e are not observed. For larger

currents, the junction behaves ohmically, with an ideal normal resistance given by

the Ambegaokar-Baratoff relation [49]:

I0RN =
π∆

2e
tanh

(
∆

2kBT

)
. (2.17)

At low temperatures, this yields the height of the I-V curve at V = 2∆/e as I =

4I0/π.
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2.1.3 Quantum mechanics of junctions: the phase qubit

Although the Josephson effect was derived quantum mechanically, my discus-

sion of its circuit dynamics was classical. The Josephson relations were used to define

a circuit element with specified I-V relations characterized by a definite phase γ and

classical I and V. In 1964, Anderson [50] suggested that the Hamiltonian associated

with (2.15) could itself be quantized, imposing the usual commutation relation be-

tween γ and its conjugate momentum. Although this is a confusing maneuver2, it

has been an excellent tool for understanding quantum effects in circuits based on

Josephson junctions.

A major motivation for the study of quantum effects in Josephson circuits

was Leggett’s proposal to use Josephson junctions to test quantum mechanics in

macroscopic systems [52] by looking for macroscopic quantum coherence. Other

researchers suggested macroscopic quantum tunneling (MQT) might be easier to

observe. Since (2.15) has a finite barrier defining the well, one can use WKB theory

to calculate a tunneling rate through the barrier [53]:

Γ = ω0

√
60

36∆U

10π~ω0

exp(−36∆U

5~ω0

), (2.18)

where ∆U is the height of the barrier (2.16) and ω0 ≡
√

(1/LjC) is the plasma

frequency of the junction. Classically, thermal activation over the barrier is also

possible [54]. However, by operating at sufficiently low temperatures the classical

contribution is minimal and quantum tunneling becomes dominant. Voss and Webb

[55] first unambiguously observed MQT in Josephson junctions.

Another major quantum signature is the presence of quantized energy levels

in Josephson junctions, first observed in 1985 [13]. Because of the tunneling, the

washboard potential wells do not admit true energy eigenstates. However, suffi-

2For a detailed discussion of many of the issues this raises, see Fred Strauch’s thesis [51].
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ciently deep wells can sustain long-lived resonances which function very similarly. A

simple approximation to the number of states the well can support at a given bias

is ∆U/~ω0. However, although the assumption of equal spacing is used in this esti-

mate, an important aspect of the washboard is that anharmonicity yields unequal

spacing between successive resonances.

This is the underlying idea of the phase qubit, a two-level system using the

lowest lying states of the washboard [14]. Qubit control is performed by applying

microwaves at the transition frequency between the two lowest states in a washboard

well (|0〉 and |1〉), using Rabi oscillations [56] to coherently change the qubit state.

Provided the control pulses are long enough to have minimal spectral weight at ω21

[57], the qubit will remain in the |0〉 and |1〉 subspace.

Measuring the phase qubit requires a measurable property of the qubit that

has a state dependence. The most common approach uses voltage switching. The

escape rate (2.18) is orders of magnitude higher for |1〉 than |0〉. When microwaves

are applied on resonance, the coherent oscillations between |0〉 and |1〉 provide en-

hancement in the measured escape rate. This enhancement allows reconstruction of

the state of the qubit. This measurement technique is described in greater detail in

Chapter 7.

2.2 Hamiltonians of lossless circuits: nodal analysis

To study the quantum mechanics of electrical circuits, the first step is to gen-

erate Hamiltonians corresponding to a particular circuit design. The simplest thing

to begin with is a lossless circuit, where the only elements I consider are induc-

tances, capacitors, and ideal Josephson elements. The approach I use is adapted

from Michel Devoret’s lectures on quantum fluctuations in electrical circuits [35],

which is itself a generalization of an article on quantum network theory by Yurke

and Denker [58].
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Each element of the circuit — capacitor, inductor, or Josephson junction —

is a two-terminal branch. Branches terminate at nodes. Each branch has associated

with it a current running through it and a voltage difference across it. I choose a

sign convention so that the voltage difference runs opposite the current. Given a

branch current Ib and a branch voltage Vb, the branch charge and branch flux are

the time integrals of these quantities:

Qb(t) =

∫ t

−∞
Ib(t

′)dt′, (2.19)

Φb(t) =

∫ t

−∞
Vb(t

′)dt′, (2.20)

To quote Devoret, “branch fluxes and charges do not directly constitute the

degrees of freedom of the circuit because they are not independent variables. They

must follow constraints imposed by the topology of the circuit” [35] These constraints

are Kirchhoff’s laws. The current law states all current entering a node must leave

the node if the node is remaining at fixed charge; the voltage law states all branch

voltages in a loop must sum to zero if the flux through the loop is constant. Using

these constraints, there are two complementary approaches to solving the circuit.

One can use mesh analysis, where the branch currents are the variables and the

voltage law generates the equations. Alternatively, one can use nodal analysis,

where the fluxes at each node are the variables and the current law generates the

equations. In both approaches, the choice of variable enforces one of Kirchhoff’s

constraints automatically and uses the other to generate equations of motion. I use

nodal analysis for my models.

Nodal analysis uses the flux at each node, but thus far I have only defined

branch fluxes. For each circuit, I can choose a particular node to represent ground,

a node always at zero voltage. In analogy with branch flux, which is the time integral

of branch voltage, this suggests that the nodal flux of ground is zero. This gives
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a convenient way of defining the nodal fluxes of the remaining nodes. Given any

other node, I define the flux of that node as the sum of the branch fluxes over a

path leading from ground to that node. However, a problem with this definition is

that it is potentially ambiguous. There might be many paths between ground and

a given node.

To assign node fluxes unambiguously, I consider a reduced version of the circuit

such that there is exactly one path from each node to ground. An equivalent way

of specifying such a network is that it is connected and contains no loops. To see

this, suppose there is a node in the network with two paths leading to ground. By

going from ground to the node along one path, and returning from the node to

ground on the other path, I have produced a loop. In graph theory, a connected

network without loops is called a tree, and since the network includes every node,

the reduced version of the circuit is called the spanning tree.

To construct the spanning tree, begin by choosing a node as ground, then

perform a depth-first search [59] of the nodes in the circuit. From whatever node

we are at now, we look for a neighboring node (i.e. a branch connects the node we

are at and the new node) that is not yet in the spanning tree. If we find one, we

incorporate the branch between the present node and the new node into the tree,

then go to the new node and repeat the process. When we run out of new nodes

connected to our present node, we work back to the previous node and continue

looking for new nodes. By only adding branches attached to nodes not yet in the

tree, we guarantee that we never introduce a loop. If the network is connected, then

every node will eventually be reached and the result is a spanning tree. While a

formulaic approach is useful for automatically generating spanning trees of a given

network, in practice it is pretty easy to construct a spanning tree by eye.

Given a choice of spanning tree, there is a unique path from ground to each

node in the circuit. A final detail is to impose a preferred direction on each branch.
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This allows me to define the node flux as the sum of branch fluxes over the connecting

path:

φn =
∑
b

SnbΦb, (2.21)

where the sum is over all branches in the tree, Snb is 0 if the branch is not in the path

connecting n to ground, 1 if the branch is in the path and is traversed in the correct

orientation, and -1 if it is in the path and traversed in the wrong direction. Given the

definition of branch fluxes, this amounts to just the time integral of the voltage at

node n. The arbitrariness of the spanning tree in this definition seems disconcerting.

Devoret comments that it is analogous to a choice of gauge in an electromagnetic

problem [35]. In Section 2.3 I show an example of different spanning trees generating

the same Hamiltonian.

After choosing the spanning tree, there remain branches in the circuit that

are not included in the spanning tree. These branches are called closure branches ;

I denote them with dashed lines in circuit schematics. Every closure branch corre-

sponds to a loop in the circuit. To see this, imagine a closure branch connects nodes

A and B. This corresponds to the loop

• ground → A along the spanning tree;

• A → B through the closure branch;

• B → ground along the spanning tree.

Since every closure branch defines a loop, this provides an excellent way of per-

forming bookkeeping on external flux applied to a loop. These external fluxes are

simply added to the branch flux of the closure branch defining the loop. With these

definitions, the flux version of the Kirchhoff voltage rule

∑
b∈loop

Φb = Φ̃l, (2.22)
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where Φl is the externally applied flux through the loop being summed over, is

automatically satisfied.

I now use Kirchhoff’s current law to give the equations of motion. For each

non-ground node, the current in equals the current out. One neat organization of

this that makes moving to the Lagrangian easier is to equate the currents moving

in on inductive branches (i.e. currents are positive when entering a node on an

inductive branch and negative when leaving it) and the currents moving out on

capacitive branches (currents are negative when entering a node on a capacitive

branch and positive when leaving it). I can write down the currents for inductors,

capacitors and Josephson elements in terms of branch fluxes, remembering that the

fluxes are just time integrals of voltage:

IC = CΦ̈b; (2.23)

IL =
Φb

L
; (2.24)

IJJ = I0 sin
2πΦb

Φ0

. (2.25)

For branches in the spanning tree,

Φb = φstart − φend, (2.26)

while closure branches must also include any applied external flux. The Josephson

phase looks unfamiliar expressed this way, but a quick check that it is correct is that

it produces the ac Josephson effect when you differentiate the node fluxes.

This discussion has been formal, abstract, and concerned largely with graph

theoretic considerations. However, this is the justification for a largely automatic

procedure. Establishing an algorithmic procedure for producing the equations of

motion ensures that many issues (e.g. sign issues in definitions, where to assign loop
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fluxes) are handled consistently. In practice, using this method is actually fairly

simple:

• Write down a schematic for a circuit you’d like to quantize.

• Identify the nodes — places where circuit elements are connected together.

• Pick one node to be ground and give the other nodes labels.

• Decide on a spanning tree. The practical importance of this is that the choice

of closure branches dictates where external flux shows up in the final model.

• For each node, write down an equation where the left hand side is the sum of

ingoing currents on inductive arms (junctions are inductive, outgoing currents

are subtracted) and the right hand side is the sum of outgoing currents on

capacitive arms. These are the Euler-Lagrange equations for each node.

• Junctions go to cos terms in the Lagrangian. The rest of the Lagrangian,

involving inductors and capacitors, will be a quadratic form in the φ and φ′.

Differentiating each Euler-Lagrange equation with respect to these variables

yields the second derivatives of the Lagrangian. This extracts the component

of φiφj or φ̇iφ̇j in the Lagrangian (with the proviso that factors of 2 must be

included if i = j.)

2.3 Hamiltonians of lossless circuits: examples

2.3.1 LC oscillator

The simplest interesting circuit to consider is the classic LC oscillator. There

are only two nodes in the circuit, and one of them is ground. I denote the flux of

the other node φ. With a network of only two nodes and two branches, one branch

will be the spanning tree and the other branch will be a closure branch. It is usually
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Figure 2.5: Schematic of the LC oscillator. The spanning tree is just one branch,
the inductance L.

convenient when possible to choose capacitive branches to be closure branches. This

is because capacitive branch currents involve second derivatives of the branch flux;

thus, any static external flux disappears from the problem. Figure 2.5 shows the

schematic given this choice of spanning tree.

Since there is only one relevant node, the current law yields only one equation

of motion:

ILin = ICout;

−φ
L

= Cφ̈,
(2.27)

where the simple form occurs because the branch flux associated with L Φb = φ−0 =

φ. Integrating the right side with respect to time and then with respect to φ′ yields

Cφ̇2

2
; integrating the left side with respect to φ gives −φ2

L
. Combining these yields

the Lagrangian

L =
Cφ̇2

2
− φ2

L
(2.28)

for our LC oscillator.
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Figure 2.6: Schematic of an rf SQUID. In this setup, the SQUID loop and the
capacitor are chosen to be closure branches.

2.3.2 rf SQUID

For a slightly more complicated example, I consider a Josephson junction

embedded in a superconducting loop. This type of circuit is known as an rf su-

perconducting quantum interference device, or rf SQUID. These devices exploit the

interaction between the Josephson relations and fluxoid quantization, first observed

in 1961 [60, 61]. Fluxoid quantization arises from the requirement that supercon-

ducting phase be single-valued around the loop. Since the Josephson current de-

pends on the phase difference across the junction, this leads to oscillatory behavior

in the current across the junction with changing flux. This quantum interference

was first observed in the more complicated dc SQUID [62], a two-junction circuit

that I discuss in Section 2.3.3. The single junction SQUID came later [63].

Figure 2.6 shows a schematic of the rf SQUID. Using the RCSJ model to cap-

ture the junction (but neglecting the effect of resistance), the inductive loop then

corresponds to an inductor shunting the junction. Equivalently, one can consider

the circuit as an LC oscillator shunted by a pure Josephson element. The addition

of the Josephson junction means that it is now possible to trace a closed supercon-

ducting loop around the circuit. This is what makes the dc flux effects discussed
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in the preceding paragraphs possible. Since there are three branches and only one

active node, two of the branches will be closure branches. Choosing the capacitive

branch as the spanning tree seems to cause ambiguity — which of the remaining

two branches do we assign loop closure to? This suggests that it is usually simpler

to choose inductive branches for the spanning tree.

I choose the Josephson branch to be the one in the spanning tree and let the

loop inductance be a closure branch. I have chosen branch directions such that the

loop inductor branch points into the node and the Josephson branch points out.

Forming the equation of motion for our one active node:

ILin = ICout;

−φ+ Φe

L
− I0 sin

2πφ

Φ0

= Cφ̈.
(2.29)

This is a good point to consider what would have happened had I chosen the

junction as the closure branch instead. The flux contained in the loop is the same

either way, but since I have chosen the branches to go in two different directions,

the sign of the external flux Φe must flip if I choose to include it with the junction

instead. This gives the alternative equation of motion

−φ∗
L
− I0 sin

2π(φ∗ − Φe)

Φ0

= Cφ̈∗, (2.30)

which is clearly equivalent to the original if I make the substitution φ∗ = φ + Φe.

This offers reassurance that the choice of spanning tree is not physically important.

As before, the right hand side gives a kinetic energy analogue and the left side

a potential. Performing the relevant integrations yields the Lagrangian:

L =
Cφ̇2

2
+
I0Φ0

2π
cos

2πφ

Φ0

− (φ+ Φe)
2

2L
. (2.31)
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Figure 2.7: Potential 4π2U/EL associated with an rf SQUID.

This corresponds to a potential

U =
(φ+ Φe)

2

2L
− I0Φ0

2π
cos

2πφ

Φ0

. (2.32)

Converting this to dimensionless units by multiplying by the loop inductance and

two factors of 2π/Φ0, and making the substitution for the Josephson phase γ ≡

2πφ/Φ0 we get

4π2U

EL
= (γ + γe)

2 − β cos γ, (2.33)

where EL = Φ2
0/2L and βL = 2πLI0/Φ0 is an important SQUID parameter. Intu-

itively, βL is 2π times the number of flux quanta that can enter the SQUID without

exceeding the critical current of the junction.

Figure 2.7 shows a plot of this potential for two different choices of β. The x-

axis is the Josephson phase γ/2π; the y-axis is the dimensionless potential 4π2U/EL.

βL controls the depth of the wells; this also determines the number of stable wells.

One can get deeper wells by increasing the critical current and making the absolute

scale of the cosine oscillations larger, or by increasing the inductance and making
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the magnetic contribution to the potential less significant. The wells are very similar

to those seen in the current biased Josephson junction potential (2.15), and indeed

rf SQUIDs represent one way of realizing phase qubits. One benefit of the rf SQUID

is that the parabolic contribution prevents the potential from running to negative

infinity on one side, making numerical calculations much more tractable. Physically,

this corresponds to the inability of the closed loop to tunnel to the voltage state.

2.3.3 dc SQUID

The last example I examine is the dc SQUID. First and foremost is the question

of how to handle the bias current in this picture. I do this by adding an extra circuit

element that functions as a current source. Since I want to model a steady state bias

current a capacitor is inappropriate — the current sourced by a capacitor depends

on the second derivative of fluxes on either side — so I use an inductor. An ideal

current source provides current Ib independent of the dynamics of the circuit. To

accomplish this, I consider an infinite inductor charged with infinite flux, with the

limit taken using a fixed ratio Φ/L = Ib.

The dc SQUID has 4 nodes, 3 of them active. I denote these φx, φi, and φq.

I orient all branches so that they go clockwise if you close a loop with the bias

inductor, including the capacitors. The arms containing the bias inductor and the

arm containing Lq are chosen as closure branches — Li and the two junctions are

the actual branches of the spanning tree. Since there are 3 active nodes, there are
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Figure 2.8: Schematic of the dc SQUID.

3 equations of motion for this system:

−φx + Φb

Lb
+
φi − φx
Li

+
φq − φx + Φe

Lq
= 0; (2.34)

−φi − φx
Li

− I0i sin
2πφi
Φ0

= Ciφ̈i; (2.35)

−φq − φx + Φe

Lq
− I0q sin

2πφq
Φ0

= Cqφ̈q. (2.36)

(2.37)

I take the Φb →∞, Lb →∞,Φb/Lb →∞ limit right away, sending the first term in

the first equation to Ib. This first equation is the other new feature of the method

demonstrated by the dc SQUID. The presence of a node that is only connected to

inductive branches gives a coordinate that doesn’t have a kinetic energy term in the

Lagrangian. I solve for φx in this equation and eliminate it elsewhere, thus using
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the first equation of motion as a constraint on the other variables. Doing this, I get:

φx(
1

Li
+

1

Lq
) = Ib +

φi
Li

+
φq + Φe

Lq
;

φx =
Lqφi + Li(φq + Φe) + LiLqIb

L
,

(2.38)

where L ≡ Li + Lq is the inductance of the full SQUID loop. Substituting for φx

gives two equations of motion (which I have simplified algebraically):

−φi − (φq + Φe)

L
+
Lq
L
Ib − I0i sin

2πφi
Φ0

= Ciφ̈i; (2.39)

φi − (φq + Φe)

L
+
Li
L
Ib − I0q sin

2πφq
Φ0

= Cqφ̈q. (2.40)

Before moving to the Lagrangian, it is worth showing that these equations

of motion impose sensible constraints for given bias conditions. In steady state,

there is no kinetic energy contribution and the right side of both equations vanish.

Summing both equations and moving negative terms to the right hand side I get

Ib = I0i sin
2πφi
Φ0

+ I0q sin
2πφq
Φ0

. (2.41)

This is the requirement that the bias current be divided between the two junctions.

If I then substitute this back into either equation of motion, I get a second condition

that must be satisfied:

φi − φq = Φe − LiI0i sin
2πφi
Φ0

+ LqI0q sin
2πφq
Φ0

. (2.42)

The LI terms on the right represent contributions to the flux in the loop from each

arm. This constraint represents the flux-phase relationship for the dc SQUID [64],

the source of the quantum interference of the SQUID.

Moving from the equations of motion in this case to the Lagrangian is slightly
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more complicated than before. The extra layer of complication stems from the

inductor giving cross terms in the equations of motion, where the equation of motion

for φi depends on φq. If the Lagrangian contains a term

−(φi − (φq + Φe))
2

2L
, (2.43)

the derivatives of this show up with the correct sign to give the inductive contribu-

tions to each equation of motion. For more involved circuits, however, identifying

nice separations of this sort is tricky.

A more mechanical process involves differentiating the inductive parts of the

equation of motion by each of the node variables again. Since these inductive parts

come from ∂L/∂φi, this second differentiation gives ∂2L/∂φi∂φj. This is a symmet-

ric matrix, and from it we can easily construct the dependence of L on all quadratic

pairings φiφj. Diagonal terms enter with a factor of 1/2, since the squared com-

ponent gives a 2 on its first differentiation. If we also include the expansion of the

junction terms, the matrix we get this way is actually −Uharm, the potential matrix

of the harmonic approximation around a local equilibrium. I use this in Section 2.5

in deriving approximations to the dc SQUID Hamiltonian.

The Lagrangian of the dc SQUID is:

L =
Ciφ̇

2
i

2
+
Cqφ̇

2
q

2
+ Ib

(
Lq
L
φi +

Li
L
φq

)
;

+
I0iΦ0

2π
cos

2πφi
Φ0

+
I0qΦ0

2π
cos

2πφq
Φ0

− (φi − (φq + Φe))
2

2L
.

(2.44)

Because our lab focused on using dc SQUID phase qubits, I examine this system

in more detail in Section 2.5. For quantum mechanical calculations, I want the

Hamiltonian, so I convert the Lagrangian to the Hamiltonian in the usual way

[65]. Choosing the φ variables as our canonical coordinates, the conjugate momenta
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associated with them are

pi =
∂L
∂φ̇i

= Ciφ̇i; (2.45)

pq =
∂L
∂φ̇q
− Cqφ̇q. (2.46)

So

H =
∑

pnφ̇n − L;

=
p2
i

2Ci
+

p2
q

2Cq
− Ib

(
Lq
L
φi +

Li
L
φq

)
− I0iΦ0

2π
cos

2πφi
Φ0

− I0qΦ0

2π
cos

2πφq
Φ0

+
(φi − (φq + Φe))

2

2L
.

(2.47)

In converting to junction phases γ instead of node fluxes φ, the momenta pick up a

factor of (Φ0/2π)2:

H =
p2
i

2
(

Φ0

2π

)2
Ci

+
p2
q

2
(

Φ0

2π

)2
Cq
− IbΦ0

2π

(
Lq
L
γi +

Li
L
γq

)

− I0iΦ0

2π
cos γi −

I0qΦ0

2π
cos γq +

(
Φ0

2π

)2 (γi − γq −
(

2πΦe
Φ0

)
)2

2L
.

(2.48)

2.4 Circuits with loss: decoherence and master equations

2.4.1 The Lindblad form

The study of open quantum systems is very interesting, although quite tech-

nical [66–69]. The challenge is that quantum mechanics, with its unitary time

development, is inherently non-dissipative. One must be careful with ad hoc ap-

proaches to including the dissipation. Louisell gives the example of creation and

annihilation operators in the Heisenberg picture. These pick up a time dependence

exp(−iEt/~). One could imagine including an imaginary part of the energy, but
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then the commutation relation for the creation and annihilation operators becomes

[â, â†] = e−Γt (2.49)

Physically, one must include not only dissipation but fluctuations as well, and these

fluctuations serve to enforce the uncertainty principle.

This is typically done by introducing the environment as a large reservoir of

modes that can couple to the system, usually linearly (in their influential paper,

Caldeira and Leggett argue that the linear coupling is extremely general [53].) This

provides a place for the energy of the system to move to; Louisell makes the analogy

to a classical system of coupled oscillators. Given long enough, this energy would

eventually return to the system of interest. However, as the number of oscillators

in the bath increases, the spacing of the modes grows smaller, leading to longer

recurrence timescales. In the limit of an infinite bath, the recurrence never occurs.

This is a very elegant solution to the dissipation issue. The price paid is that

the problem is now infinitely larger than its original form. However, almost all of

the information about the environment is extraneous. We have no way of measuring

most aspects of the environment and therefore don’t care about it. We can recover

the relevant dynamics of the system by averaging over the bath variables, subject

to assumptions about the correlations of the bath. In quantum information, this

process is described as tracing over the environment to yield the reduced density

matrix. Unlike the dynamics of the full system, the equation of motion for the

reduced density matrix can be non-unitary. This equation of motion is referred to

as the master equation.

The most important physical assumption made in deriving the master equa-

tion is the Markov approximation. A process is Markovian if its time evolution

depends only on the state at the present and not any earlier times. This is often
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colloquially summarized as the requirement that the system have no memory. Under

this assumption, it can be shown (again, consult [66–69] for more detail) that the

most general form for a master equation is the Lindblad form:

dρ(t)

dt
= − ı

~
[H, ρ(t)] +

∑(
L̂ρ(t)L̂† − 1

2
(ρ(t)L̂†L̂+ L̂†L̂ρ(t))

)
, (2.50)

where the sum is over all Lindblad operators L corresponding to dissipation.

2.4.2 Two-level master equation: the Bloch equation

As an application of this, I derive the Bloch equation in Appendix A. Orig-

inally developed in the context of NMR [70], it is now widely used to describe

resonance in all sorts of two-level systems. In particular, it is an equation of motion

for the density matrix of a driven qubit. In the derivation, I switch from ρ to a

different representation of the density matrix χ∗ which yields a simpler equation:

dχ∗

dt
=

 −ıΩ
2
(χ∗10 − χ∗01) + Γ1χ

∗
11 −ıΩ

2
(χ∗11 − χ∗00)− (Γ2 + ı∆)χ∗01

−ıΩ
2
(χ∗00 − χ∗11)− (Γ2 − ı∆)χ∗10 ıΩ

2
(χ∗10 − χ∗01)− Γ1χ

∗
11

 .

(2.51)

This form is useful because the time dependence has been eliminated on the right

hand side. This makes it possible to consider the spectroscopic limit, where t→∞

and dχ∗/dt = 0. The spectroscopic lineshape arises from solving for the popula-

tion in this steady state as a function of the detuning. Since the rotating frame

transformations leave the populations unchanged,

ρ11 = χ∗11 =
1

2

Ω2Γ2

Γ1(Γ2
2 + ∆2) + Ω2Γ2

(2.52)

Figure 2.9 shows the lineshape for several different drive powers. There are a

couple of important features. First, as the power increases, the maximum value of
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Figure 2.9: Spectral lineshape of Equation 2.52 for several different choices of Ω.
The coherence times are T1 = 220 ns, Tφ = 1100 ns.
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Figure 2.10: Rabi oscillations for a transition with the same parameters as Fig-
ure 2.9. At each detuning, Ω = 4× 107.

ρ11 on resonance approaches a saturation point of 1/2. This is because the transition

rate induced by the microwaves is equal for both excitation and relaxation. Even

in the regime where this transition rate dominates the T1 processes, it still can’t

lead to a population inversion. Also, as the power increases, the width of the peak

broadens. From (2.52), the full width at half maximum of the peak is

FWHM = 2

√
Γ2

2 + Ω2
Γ2

Γ1

. (2.53)

Using the same parameters as Figure 2.9, I examine the response of the system

immediately after the drive is turned on, assuming that the system begins in its

ground state. Figure 2.10 is a color plot of the population ρ11 versus detuning and

time. The Rabi oscillations are slowest on resonance, speeding up symmetrically as
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the detuning increases. The faster Rabi frequency off resonance leads to a greater

number of visible oscillations before they decay.

A common visualization for two-level systems is the Bloch sphere. An arbitrary

pure state of a two-level system can be expressed as

cos(
θ

2
) |0〉+ sin(

θ

2
)eıφ |1〉 , (2.54)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. These two angles describe the surface of a sphere.

|0〉 and |1〉 correspond to the north and south poles of the Bloch sphere, and the

equator represents all possible equal superpositions of the two. More generally, the

mixed states of the reduced density matrix correspond to points within the Bloch

sphere.

2.4.3 T1 in circuits: the role of filtering

The Bloch equations show how the qubit evolves given the coherence times

T1 and T2, but does not determine where those parameters come from. Given a

particular source of noise, perturbation theory and Fermi’s golden rule furnish an

estimate of the relaxation time T1. I work out the T1 calculation in the context of a

single junction to make the structure of the argument clear. This argument draws

substantially from presentations in [71, 72].

The potential for a single junction is

Using = −Φ0

2π
(I0 cos γ + Ibγ) . (2.55)

I consider the noise as a perturbation

Vsing(τ) = −Φ0

2π
In(τ)γ(τ), (2.56)
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where In(τ) is a time-dependent random current noise. I use time-dependent pertur-

bation theory to see how this noise affects the wavefunction. I work in the interaction

representation, where wavefunctions evolve in time according to the perturbation

and operators evolve in time according to the unperturbed Hamiltonian.

First order perturbation theory yields

|Ψ(t)〉 = |Ψ(0)〉 − i

~

∫ t

0

dτ V̂sing(τ)|Ψ(0)〉. (2.57)

For the relaxation rate, I assume |Ψ(0)〉 = |1〉 and find the rate of transition back

to |0〉. Taking the inner product of this wavefunction with the ground state yields

α0 = − i
~

∫ t

0

dτ 〈0|V̂sing(τ)|1〉

= − i

2e

∫ t

0

dτ 〈0|γ(τ)|1〉In(τ),

where I have used the definition of the flux quantum to simplify. In the interaction

representation

γ(τ) = e−iH0tγ̂eiH0t; (2.58)

this lets me rewrite (2.58) as

α0 = − i

2e
〈0|γ̂|1〉

∫ t

0

dτ e−iω01τIn(τ). (2.59)

Taking the absolute square of this yields the ground state probability:

P0(t) =
|〈0|γ̂|1〉|2

4e2

∫ t

0

∫ t

0

dτ1 dτ2 e
iω01(τ1−τ2)〈In(τ1)In(τ2)〉, (2.60)

where I have also taken an ensemble average of the noise currents.

The averaged product of the In’s is the autocorrelation function of the current

noise, and the overall form of our expression looks very similar to a Fourier trans-
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form of the autocorrelation function. The Wiener-Khinchin theorem [72] says that

this Fourier transform is just the noise spectral density. So, I use a trick to get the

resemblance to be more exact. The central argument is that we expect to be inter-

ested in time scales much longer than the correlation time of the noise. This is an

excellent approximation for thermal noise, which is white until very high frequencies

and is thus approximately delta correlated. I also assume that the noise source is

stationary, meaning that the correlation function depends on t1 and t2 only through

the time difference t2 − t1.

I make a change of variables. Let τ = τ1 − τ2, so dτ = −dτ2. Then

P0 = −|〈0|γ|1〉|
2

4e2

∫ t

0

∫ τ1−t

τ1

dτ1 dτ e
iω01τ 〈In(τ1)In(τ1 − τ)〉. (2.61)

I use the negative sign to flip the order of integration in the dτ integral. We can

also exploit the stationary noise to replace the autocorrelation with one shifted in

time by τ − τ1, yielding

P0 =
|〈0|γ|1〉|2

4e2

∫ t

0

∫ τ1

τ1−t
dτ1 dτ e

iω01τ 〈In(τ)In(0)〉. (2.62)

Now, since τ1 < t, the τ integral crosses 0. Since we expect noise with a very short

correlation time, the dτ integral only makes significant contributions near the origin.

Thus, it is an excellent approximation to extend the limits of integration to infinity:

P0 =
|〈0|γ|1〉|2

4e2

∫ t

0

∫ ∞
−∞

dτ1 dτ e
iω01τ 〈In(τ)In(0)〉. (2.63)

In this form, I can now apply the Wiener-Khinchin theorem

SII(ω01) =

∫ ∞
−∞

dτeiω01τ 〈In(τ)In(0)〉, (2.64)
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where SII(ω01) is the power spectral density of the current noise at frequency ω01.

With this simplification the probability (2.60) becomes

P0 =
|〈0|γ|1〉|2

4e2

∫ t

0

dτ1 SII(ω01)

=
t|〈0|γ|1〉|2

4e2
SII(ω01).

The time derivative of the probability yields the transition rate

Γstim =
|〈0|γ|1〉|2

4e2
SII(ω01). (2.65)

The transition rate (2.65) characterizes stimulated emission. T1 corresponds

to spontaneous emission. However, thermodynamics lets me calculate spontaneous

emission given the stimulated emission rate. The stimulated emission rate is equal

to the rate at which the noise stimulates transitions from 0 to 1. However, to achieve

thermal equilibrium, the rates must obey detailed balance; because of the population

disparity, the rate down must be larger than the rate up by a Boltzmann factor to

compensate. This determines the spontaneous emission rate Γ1 = 1/T1.

Since the energy difference between |0〉 and |1〉 is ~ω01,

Γ↑e
~ω01
kTq = Γ↓

Γstime
~ω01
kTq = Γstim + Γspon

Γstim

(
e

~ω01
kTq − 1

)
= Γspon,

where Tq denotes the temperature at the qubit. The current spectral density for a

thermal noise source is

SII(ω01) =
2~ω01

R

1

e
~ω01
kTn − 1

, (2.66)

where now Tn is the temperature of the noise source. This is usually written as

being larger by a factor of 2; this comes from using the symmetrized expression

49



where we also consider the contributions from the negative frequency. We’re left

with a general expression for the spontaneous emission rate:

Γspon =
2~ω01

R

|〈0|γ|1〉|2

4e2

e~ω01/kTq − 1

e~ω01/kTn − 1
. (2.67)

In the case where the noise source and the qubit are at the same temperature, the

last term reduces to 1; this is the case I consider for now. Quoting Xu [71], the

matrix element for the single junction case is 2e2/(~ω01C), yielding a T1 = RC for

the |1〉 to |0〉 transition.

This argument shows that reducing SII(ω01) can improve T1. The simplest way

to reduce this noise is through filtering. A filter diverts some fraction of the incoming

current, preventing it from reaching the qubit. The reduction in the noise spectral

density gives a smaller Γstim, and since Γ1 ∝ Γstim, this improves T1. Functionally,

reduced current noise density looks as if it is coming from a larger resistor. In

considering the loss, the correct quantity to use is not Re(Z), but 1 / Re (Y ); this

comes from the parallel topology.

This gives us a method for handling more complicated circuits. By considering

how additional circuit elements transform the admittance presented to the qubit, I

can examine the anticipated effect on T1.

2.5 The dc SQUID phase qubit

I now consider the design and analysis of the dc SQUID phase qubit. This

approach to phase qubits was originally proposed by Martinis et al. [24] in 2002.

Variations on the dc SQUID qubit have been the central focus of our lab for several

years, including the BBC2 qubit that I study in this thesis.

Figure 2.5 is a schematic of the dc SQUID. The labeling of the SQUID arms

as i and q, previously unexplained, arises from their intended role in this circuit. I
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Figure 2.11: Schematic of the dc SQUID phase qubit, including bias line admittance
Y . The isolation junction filters noise from Y from reaching the qubit junction.
Voltage tunneling events are measured at V.
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call I0q the qubit junction, as it represents an intended single junction phase qubit.

I0i is the isolation junction. As seen in Section 2.4.3, reducing current noise to the

qubit increases T1. The dc SQUID design is motivated by this idea of filtering. The

appeal of this approach is that it is broadband, capable of filtering noise both at low

frequencies (improving contributions to T2 from inhomogeneous broadening) and at

the transition frequency ω01 (improving T1.)

The filtering mechanism provided by the dc SQUID is an inductive current

divider. By attaching the bias leads to the SQUID asymmetrically, I make the

contributions of the loop inductance on the two arms very different. In particular,

connecting the bias leads very close to the isolation junction yields Li � Lq. Since

the impedance of an inductive element is linear in L and current divides between

the two arms in inverse proportion to their impedance, this means that current from

the bias leads will predominantly travel through the isolation arm (which is where

the name comes from.)

To see how much this improves T1, I consider a simpler version of the divider

that excludes the isolation junction3. I also assume Y = 1/R real. Then the

transformed impedance and admittance are

Zt = ıωLq +
ıωLiR

R + ıωLi
; (2.68)

Yt =
R + ıωLi

ıωLq(R + ıωLi) + ıωLiR
; (2.69)

ReYt =
Rω2L2

i

(ω2LiLq)2 + ω2R2(Li + Lq)2
; (2.70)

1

ReYt
=
ω2L2

q

R
+

(
Lq + Li
Li

)2

R. (2.71)

Given a typical 50 Ω line impedance, for frequencies at the qubit transition frequency

3The chief effect of the junction is to increase the impedance in the isolation arm near the
resonance of the isolation junction; thus, the performance of the divider is markedly worsened near
the isolation resonance.
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or lower the second term of (2.71) dominates. Thus the loss to the leads decreases

roughly quadratically with the ratio of the large inductance to the small induc-

tance. If the leads are one of the major sources of dissipation, then this improves

T1 dramatically.

The advantage to putting a junction in the isolation arm is that a pure in-

ductor would short circuit the qubit junction. We would have an rf SQUID, and as

mentioned in Section 2.3.2, voltage state tunneling does not occur in an rf SQUID.

This makes the voltage switch measurement technique impossible. With a junc-

tion in the isolation arm, the SQUID can support a non-zero voltage across the

qubit junction. The closed loop also gives us the option of applying flux bias to the

SQUID. This is a very helpful tool for biasing the qubit, since by design most of the

bias current ends up going through the isolation junction instead.

2.5.1 Modeling the dc SQUID phase qubit

The preceding discussion assumes that the qubit junction does indeed behave

like a single junction phase qubit. The current biased Josephson junction, while

presenting some subtleties, is a comparatively simple system. Much of its dynamics

are captured by a cubic approximation to the potential around the minimum of one

of the wells. The natural question is how well this sort of analysis translates to the

dc SQUID phase qubit.

As derived in Section 2.3.3, the Hamiltonian for the dc SQUID is given by

H =
p2
i

2
(

Φ0

2π

)2
Ci

+
p2
q

2
(

Φ0

2π

)2
Cq
− IbΦ0

2π

(
Lq
L
γi +

Li
L
γq

)

− I0i cos γi − I0q cos γq +

(
Φ0

2π

)3 (γi − γq −
(

2πΦe
Φ0

)
)2

2L
.

(2.72)

To simplify this Hamiltonian, I begin by making the cubic approximation to the cos
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terms, discarding all fourth order and higher terms in the Taylor expansion of cos:

cos γ = cos (γ∗ + δγ) ,

= cos γ∗ − (sin γ∗)δγ − (cos γ∗)
δγ2

2!
+ (sin γ∗)

δγ3

3!

(2.73)

I am interested in the potential near a well, and thus for small deviations from a

potential minimum. By definition, this occurs where all first order terms in the

potential vanish. Given a particular choice of (γi∗, γq∗), I assume that I have chosen

Ib and Φe such that (γi∗, γq∗) is in fact the minimum. This allows me to discard all

linear terms in the potential, not just those arising from the cos expansion. This

leads to the cubic expansion of the dc SQUID Hamiltonian

Hcub =
p2
q

2mq

+
p2
i

2mi

+

(
Φ0

2π

)2(
1

2Lqj
+

1

2L

)
δγ2

q

+

(
Φ0

2π

)2(
1

2Lij
+

1

2L

)
δγ2

i −
(

Φ0

2π

)2
1

L
δγqδγi

− 1

6

Φ0

2π

(
I0q sin γq∗ δγ

3
q − I0i sin γi∗ δγ

3
i

)
,

where Lij = Φ0/2π cos γi∗ is the Josephson inductance (2.13) of the isolation junc-

tion, arising from the linearization of the washboard potential

In 2008, Mitra et al. [37] considered this Hamiltonian as a starting point for

a description of a dc SQUID phase qubit. A particular set of qubit parameters

were chosen to match a then-recent device [73]. For this device, I0q = 17.75µA >

I0i = 6.40µA. The unbiased Josephson inductance is 330pHµA/I0; for these critical

currents the Josephson inductances are tens of picohenries. This is much smaller

than the loop inductance L ≡ Li + Lq ≈ 3.4nH.

Given these parameters, certain approximations are made to simplify the

Hamiltonian:

• The current and the flux are assumed to be simultaneously linearly ramped
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such that no net current is sent through the isolation junction. This mini-

mizes the Josephson inductance of the isolation junction, allowing the highest

possible isolation.

• Because the isolation junction is unbiased, sin γ∗i vanishes and so there is no

δγ3
i contribution to the potential. All of the relevant nonlinearity is assumed

to come from the qubit junction alone.

• This leaves two terms in the Hamiltonian that differ from two uncoupled har-

monic oscillators — the δγ3
q term and the δγiδγq term. These contributions are

both treated as perturbations to the Hamiltonian of two uncoupled harmonic

oscillators.

The resulting theory agreed well with observations on qubits like the one de-

scribed. However, the parameter regime of more recent dc SQUID phase qubits is

much different. In particular, while loop inductances are still large, the junction

areas and critical currents are much smaller. Early phase qubit designs used large

Josephson junctions for two reasons. First, the characteristic phase qubit behavior

requires EJ � EC . Large junctions have bigger capacitances (and thus smaller EC)

and bigger critical currents (thus larger EJ .) Second, it was thought that the dom-

inant decoherence mechanism in phase qubits would be fluctuations in the junction

critical current [74]. The relative importance of such fluctuations is less the larger

the critical current of the junction.

Subsequent work on phase qubits [75, 76] showed that dielectric loss was a more

important loss mechanism. Unexpected avoided crossings in the qubit spectroscopy

suggested a specific loss mechanism of coupling between the qubit and other two-

level systems, likely in the junction barrier. Such two-level systems are well-known

features in amorphous systems like the aluminum oxide junction dielectric layer

[77]. This work on phase qubits suggested that existing materials could be improved
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by using smaller junctions, decreasing the number of relevant two-level systems by

reducing the volume of dielectric. To recoup the necessary EJ/EC ratio, the junction

is shunted by a capacitor using a less lossy dielectric [78].

Following the move to smaller junctions, the assumptions of the model of Mitra

et al. are no longer valid. Because smaller critical currents correspond to larger

Josephson inductances, recent designs typically have I0i � I0q. In this regime, it

is no longer possible to perform voltage tunneling measurement while the isolation

junction remains unbiased; I discuss this in Section 6.3.2. Thus cubic contributions

in δγi reappear in the Hamiltonian.

More importantly, the perturbative approach previously adopted breaks down.

When both junctions are biased, there is usually a place where the resonances of

the two independent junctions are degenerate. Failing to account for this in the

perturbation theory leads to very poor numerical results, even relatively far away

from the degeneracy. Beyond that, with low critical currents the biased junctions

can have Josephson inductances comparable to the loop inductance. In this regime,

the coupling term δγqδγi becomes comparable in size to the individual junction

contributions. To call this a perturbation is inaccurate, and suggests many orders

of perturbation theory would be necessary for useful results.

The underlying idea of perturbative corrections to a harmonic basis is a good

one. The chief problem is that the choice of each junction as an independent har-

monic oscillator is the wrong harmonic basis for discussing the problem. A better

choice of basis includes the coupling exactly at the quadratic level and uses the

normal modes of the SQUID as the harmonic basis.

2.5.2 Coupled junctions: normal mode analysis

The normal modes of the SQUID represent solutions where all of the coordi-

nates have a common sinusoidal time dependence. A general result from classical
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mechanics [65] states that any homogeneous second-degree potential (i.e. contain-

ing only terms like qiqj) can be transformed to a coordinate system where all of the

coupling terms vanish.

To get the equations of motion from a Hamiltonian, I use Hamilton’s equa-

tions4:

q̇n =
∂H
∂pn

; (2.74)

−ṗn =
∂H
∂qn

. (2.75)

In the cubic Hamiltonian (2.74), the canonical coordinate qn is δγn. Plugging this

into Hamilton’s equations for the two coordinates,

˙δγq =
pq
mq

; (2.76)

˙δγi =
pi
mi

; (2.77)

−ṗq =

(
Φ0

2π

)2(
1

Lqj
+

1

L

)
δγq −

(
Φ0

2π

)2
1

L
δγi; (2.78)

−ṗi =

(
Φ0

2π

)2(
1

Lij
+

1

L

)
δγi −

(
Φ0

2π

)2
1

L
δγq, (2.79)

where mn = (Φ0/2π)2Cn. I use the first two equations to return to two coupled

second-order equations rather than four first-order:

−Cq δ̈γq =

(
1

L∗q

)
δγq −

1

L
δγi; (2.80)

−Ciδ̈γi =

(
1

L∗i

)
δγi −

1

L
δγq, (2.81)

4Where variables are subscripted as n, this denotes the choice of any appropriate coordinate
from the problem — for this Hamiltonian, the isolation or qubit coordinates.
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where I have defined the parallel inductances

1

L∗n
≡ 1

L
+

1

Lnj
. (2.82)

To get the normal modes, assume a sinusoidal time dependence:

δγq = αqe
iωt; (2.83)

δγi = αie
iωt, (2.84)

where the α’s are complex. Substituting this into equations (2.80) and (2.81) and

gathering terms, I get the matrix equation:

(
V − ω2T

)
~α = 0, (2.85)

where

V =

 1
L∗q
− 1
L

− 1
L

1
L∗i

 ; (2.86)

T =

Cq 0

0 Ci

 ; (2.87)

~α =

αq
αi

 . (2.88)

Equation 2.85 has nontrivial solutions only when det(V − ω2T) = 0. Let

λ = ω2. Then I get the quadratic equation in λ

λ2 −
(

1

L∗qCq
+

1

L∗iCi

)
λ+

(
1

L∗qCq

)(
1

L∗iCi

)
−
(

1

LCq

)(
1

LCi

)
= 0. (2.89)
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Rewriting this with the substitutions

λq =
1

L∗qCq
; (2.90)

λi =
1

L∗iCi
; (2.91)

λ2
L =

1

L2CiCq
; (2.92)

yields

λ2 − λ(λq + λi) + λqλi − λ2
L = 0. (2.93)

To gain insight, consider two possible limits: L→ 0 and L→∞. In the first

limit, the parallel inductances L∗i → L, so the constant term vanishes, yielding the

two solutions

λ = 0,

λ =
1

L

(
1

Cq
+

1

Ci

)
.

(2.94)

The first is a dc mode; the second has the frequency associated with the series

combination of the loop inductance and both junction capacitances. Physically

these modes make sense. Since in this limit the loop inductance looks like a short

relative to the junction inductances, the dc mode moves both capacitor voltages

together in phase, not driving any current through the loop inductance. The high

frequency mode corresponds to the capacitors moving out of phase and charge and

discharge each other through the loop inductance.

In the L → ∞ limit, the parallel inductances L∗i → Lij. Thus many of the

factors in (2.93) now look like the bare junction frequencies ω2
q , ω

2
i . And in fact,

solving the quadratic equation, we find that λ = ω2
q and λ = ω2

i are the acceptable

modes. Here, the huge impedance presented by the loop inductance relative to

the Josephson inductance means that the capacitors are completely decoupled and
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oscillate at their own natural frequencies. Since as mentioned in Section 2.5.1 this

was the parameter regime studied in the earlier paper by Mitra et al., we see that

the earlier theory is the independent junction limit of this one.

For intermediate L cases — and to make a more quantitative estimate of the

impact of the loop inductance — I can solve (2.93):

λ =
λq + λi

2
± 1

2

√
(λq + λi)2 − 4λqλi + 4λ2

L,

=
λq + λi

2
± 1

2

√
(λq − λi)2 + 4λ2

L.

(2.95)

If λ2
L � (λq − λi)2, then the square root can be expanded to give the approximate

eigenvalues:

λQ = λq +
λ2
L

λq − λi
; (2.96)

λI = λi −
λ2
L

λq − λi
. (2.97)

So far, those are just the frequencies associated with the normal modes. The

modes themselves are the vectors that solve the generalized eigenvalue problem

V~α = ω2T~α (2.98)

for the correct eigenvalues. These eigenvectors serve as column vectors in a basis

transformation matrix for moving from the normal modes to the junction coordi-

nates:

δγq = AqQηQ + AqIηI (2.99)

δγi = AiQηQ + AiIηI , (2.100)

where I have denoted the normal coordinates ηn. To emphasize the difference be-
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tween normal coordinates and junction coordinates, I will refer to the qubit and

isolation normal modes using capital letters in the subscripts.

The transformation matrix A is normalized such that

ATTA = 1, (2.101)

where 1 indicates the identity matrix. This normalization represents a rescaling of

the masses of the problem — which are the weights in the kinetic energy matrix T

— to 1. This is very convenient and is the most popular choice of normalization

convention for normal mode calculations. For asymmetrical junctions, it has the

counterintuitive property that the new normal coordinates do not appear orthogonal

when plotted in terms of δγi and δγq.

It is helpful to know the relative strength of the two junction coordinates in the

qubit mode in the weakly coupled approximation. Picking the qubit mode frequency

λQ from (2.96):

1

L∗q
AqQ −

1

L
AiQ =

(
λq +

λ2
L

λq − λi

)
CqAqQ,

λqAqQ −
1

LCq
AiQ =

(
λq +

1

L2CiCq(λq − λi)

)
AqQ,

AiQ =
1

LCi(λq − λi)
AqQ.

(2.102)

Substituting for λq and λi, this factor becomes

AiQ
AqQ

=
1

LCi

1
1

LCq
+ 1

LqjCq
− 1

LCi
− 1

LijCi

,

=
Lij

Ci
Cq

(
Lij +

Lij
LqjL

)
− Lij − L

.
(2.103)

Performing a similar calculation for the ratio of qubit and isolation associated with
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the new isolation junction mode, I get

AqI =
1

LCq(λq − λi)
AiI ,

AqI
AIi

=
Ci
Cq

AiQ
AqQ

.

(2.104)

In the units where the masses are 1, the conjugate momenta are now just the

time derivative of the phase, %I = η′I . The transformed normal mode Hamiltonian

is

Hnorm = %2
Q +

1

2
ω2
Qη

2
Q + %2

I +
1

2
ω2
Iη

2
I . (2.105)

The coupling has been absorbed into the coordinates so that now the Hamiltonian is

just that of two noninteracting harmonic oscillators. This is the correct approximate

basis for including the nonlinear perturbations.

To make the calculation of matrix elements easier, I convert to the ladder

operator formalism. Using the usual translation from position and momenta to

creation and annihilation operators,

ηQ =

√
~

2mQωQ

(
â†Q + âQ

)
(2.106)

%Q =

√
~mQωQ

2

(
â†Q − âQ

)
. (2.107)

Because of the normal coordinate transform, mQ = 1. The mass scaling is incorpo-

rated into the transform matrix A.

After applying these scalings to the system, we end up in what I will call the

“natural” normal coordinates for the system, which I will denote

ζQ ≡
ηQ
ηQ0

=
ηQ√

~
2mQωQ

. (2.108)
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If we define a transformation matrix

B =

ηQ0AqQ ηI0AqI

ηQ0AiQ ηI0AiI

 (2.109)

then ~δγ = B~ζ will be the final linear transform between the original junction coordi-

nates and the natural normal coordinates. The reason for using the natural normal

coordinates is that in the ζ system, the wavefunctions for the harmonic oscillator

states adopt the familiar form:

ΨQn =

√
1

2nn!
π−

1
4 e
−ζ2Q
2 Hn(ζ), (2.110)

where Hn(ζ) is the nth Hermite polynomial. Using B−1, I transform these back into

the δγ coordinate system and plot them superposed on the potential.

This is done in Figure 2.12. Observe how the lobes of the excited state are

stretched out along the long axis of the potential well. In a single junction approx-

imation, with the qubit junction on the vertical axis, the lobes of the excited state

would be oriented along the y-axis. This is an excellent visual way of demonstrating

the preferability of the normal modes for analyzing the system.

This construction of the normal mode basis provides the harmonic background

for perturbation theory. I now reincorporate the cubic terms as a perturbative shift.

Expressing the harmonic oscillator terms as number operators,

Hnat = ~ωQ
(
n̂Q +

1

2

)
+ ~ωI

(
n̂I +

1

2

)
− 1

6

Φ0

2π

(
I0q sin γqm δγ3

q + I0i sin γim δγ3
i

)
.

(2.111)

Before applying B to convert this to its final form, it is worth commenting on the

apparent scale of the perturbation. The cubic terms are each proportional to the

Josephson energies of the two junctions, Ejq and Eji. Since the normal modes are
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Figure 2.12: Plot of the probability density of the a) ground and b) first excited
states of the qubit normal mode. The white dashed lines are contour lines of the
SQUID potential.
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of basically the same order of frequency as the junction modes, we can use what

we know about phase qubits to estimate this scale difference quickly. The energy of

the unbiased plasma oscillations of a bare junction can be written as
√

8EJEC , so

dividing through by this factor suggests that the relative weight of the perturbation

terms goes like roughly
√

EJ
8EC

. For phase qubits, we expect the ratio of these energy

scales to be quite large — figures like 104 are not unreasonable — and so it seems

that our perturbation is much bigger than the quadratic it perturbs. However, it

turns out that for most bias conditions the phase scaling comes to the rescue again,

and in transforming from δγ to ζ we do indeed get a pretty small correction to the

original quadratic.

Converting to the final form for the perturbation involves quite a bit of algebra.

To clean up the notation a bit, I label the prefactors F :

Fq = −1

6

Φ0

2π
(I0q sin γqm) ; (2.112)

Fi = −1

6

Φ0

2π
(I0i sin γim) . (2.113)

Then from the definition (2.109) of B,

Hpert =
(
FqB

3
qQ + FiB

3
iQ

)
ζ3
Q + 3

(
FqB

2
qQBqI + FiB

2
iQBiI

)
ζ2
QζI

+ 3
(
FqBqQB

2
qI + FiBiQB

2
iI

)
ζQζ

2
I +

(
FqB

3
qI + FiB

3
iI

)
ζ3
I .

(2.114)
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Using the commutation properties of ladder operators, I expand the ζ terms:

ζ3
Q = (â†Q)3 + 3â†Q(n̂Q + 1) + 3âQn̂Q + (âQ)3; (2.115)

ζ2
QζI = (â†Q)2â†I + (âQ)2â†I + (2n̂Q + 1)â†I (2.116)

+ (â†Q)2âI + (âQ)2âI + (2n̂Q + 1)âI ; (2.117)

ζ2
I ζQ = (â†I)

2â†Q + (âI)
2â†Q + (2n̂I + 1)â†Q (2.118)

+ (â†I)
2âQ + (âI)

2âQ + (2n̂I + 1)âQ; (2.119)

ζ3
I = (â†I)

3 + 3â†I(n̂I + 1) + 3âI n̂I + (âI)
3. (2.120)

There is minimal simplification to be performed here. There are two terms linear in

â†Q and âQ (and their I mode analogues) but that appears to be it.

The perturbation theory is useful for calculations addressing specifically non-

linear effects. The most important of these for typical qubit operation is what is

generally referred to as the anharmonicity, the difference ω01− ω12, but two-photon

processes are another area where the perturbative wavefunctions are useful. While

the perturbation theory also imposes some corrections to the harmonic energies,

in practice these are usually fairly small. For many applications, the harmonic

approximation gives a good picture of where the qubit frequency will be.

2.5.3 Normal mode theory and the PB9 device

I originally developed the normal modes model in my work on applying Joseph-

son bifurcation amplification (JBA) [79, 80] to a capacitively shunted dc SQUID

phase qubit. The first practical application of the new model was to the PB9 qubit

measured by Tony Przybysz and Rangga Budoyo. The work surrounding this device

was the basis for Tony’s thesis [28]. I will discuss some of the particular highlights

and implications of the model that Tony touched upon.

Figure 2.13 shows two optical images of the PB9 device. The first image shows
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Figure 2.13: Optical images of the PB9 device. a) Image of the whole device; most
of what is seen is the LC filter. b) Close-up of the qubit region.
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the whole device. The leftmost features are the contact pads, which also form plates

for two series parallel-plate capacitors. From there, wirebonds (not photographed)

connect the plates to the contact pads inside of the spiral inductors. These spiral

inductors are then connected directly to the qubit. In the upper right, the flux

bias coil is visible. In the bottom right is the microwave bias line. This is weakly

capacitively coupled to a finger protruding from the dc SQUID, allowing microwaves

to enter the SQUID for qubit control.

The second image shows a close-up of the SQUID loop. At the bottom, the

leads from the spiral inductors can be seen joining up with the SQUID loop. The

short distance between where these leads join the SQUID gives the inductive imbal-

ance Li � Lq. This short section of SQUID loop is interrupted by a relatively large

area Josephson junction, formed by double angle evaporation5. On the other side

of the SQUID loop is a smaller Josephson junction I0q. This junction is shunted by

a large interdigitated capacitor, boosting EJ/EC ratio and using the very low loss

sapphire substrate as a dielectric.

One of the main signs of the failure of the independent junction approxima-

tion was difficulty in recovering plausible values for the junction capacitances given

the observed frequencies. According to Przybysz, the best choice of capacitance

for a single junction fit was 500 fF, a factor of 3 less than the anticipated design

value. Similar problems occurred in my earlier JBA samples. Intuitively, the issue

is that the relevant inductance for calculating the frequency of the qubit mode is

the parallel combination of the loop inductance Li + Lq with Ljq. For inductors of

comparable size, this parallel combination is a factor of two smaller than either com-

ponent. With small junctions and high bias, the reduction in effective inductance

can be even greater because the parallel combination will be dominated by the loop

inductance. This decreasing inductance leads to an increase in the frequency for

5Double angle evaporation is discussed in Chapter 4.
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Figure 2.14: Plot of experimental spectroscopy data from the PB9 device with a fit
to the normal mode model. The model is slightly adjusted to include parasitic induc-
tance from the interdigitated shunt capacitor. The plot is from Anthony Przybysz’s
thesis [28].

a given capacitance. If we do not account for the change in inductance, we must

postulate an excessively low capacitance to capture the frequency correctly.

Figure 2.14 shows spectroscopy data from PB9. Bias current is held fixed; the

x-axis represents change in the applied flux. The y-axis is the frequency of applied

microwaves. The colorbar measures the enhancement in measured probability of

tunneling to the voltage state at given bias conditions, our proxy for the qubit

state. Overlaid on the color plot as a magenta dashed line is the prediction from

a modified normal mode theory, given the relevant parameters from the SQUID.

Although the agreement of the unmodified theory was good, there were regions

where it was off a little bit. The modification consisted of incorporating parasitic

inductance from the interdigitated shunt capacitor6.

The spectroscopic data also shows regions where the frequency is extremized

6The techniques of Section 2.2 can handle such a corrected model directly at the cost of more
complexity. Przybysz’s approach basically amounts to tuning the qubit inductance slightly.
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and insensitive to small variations in the applied flux. This leads to a “sweet spot”

[81] where dephasing due to flux noise is suppressed. In flux and charge qubits,

sweet spots are a well-known and often exploited technique. In phase qubits, sweet

spots are novel. In the traditional single junction phase qubit, where

ωq =

√
1

LJC
∝ √cos γ =

(
1− sin2 γ

) 1
4 =

(
1−

(
Ib
I0

)2
) 1

4

, (2.121)

the only point where ∂ωq/∂Ib = 0 is at zero bias. However, at zero bias, low

anharmonicity and difficulty making voltage based measurements usually prevent

phase qubit use. rf SQUID phase qubits have the same behavior in this regard.

Thus, the appearance of sweet spots in a phase qubit was quite surprising. Chapter

10 of Przybysz’s thesis [28] examines the sweet spot behavior of the normal modes

model in more detail, including the surprising prediction that the normal modes

model exhibits a sweet spot for critical current noise.

2.6 Summary

In this chapter, I reviewed the process of quantizing superconducting circuits.

I began with a discussion of Josephson junctions, which provide the necessary non-

linearity to limit superconducting circuits to two levels. I then discussed how nodal

analysis is used to generate Hamiltonians of circuits. Using this technique, I derived

the Hamiltonian for the dc SQUID. I discussed how filtering improves lifetime T1

and how this suggested the idea of a dc SQUID phase qubit. Lastly, I discussed my

model for the dc SQUID phase qubit where the nonlinearity is a perturbation to the

normal modes of the SQUID, and mentioned the successes of this model with our

earlier qubit PB9.
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Chapter 3

Coupling resonators to qubits: the Jaynes-Cummings model

Recent years have seen extensive interplay between condensed matter and

AMO physics. Each field contributes both techniques and interesting problems to

the other, offering opportunities to study these problems in completely new ways.

In AMO, for example, classic solid-state ideas inspired photonic crystals [82], using

Bloch’s theorem and periodic structures to control light through local band gaps.

Considerable research effort has been spent on dilute gases of atoms in optical lat-

tices [83, 84]. Counter-propagating laser beams create periodic potentials that host

a small number of atoms. These systems are inherently very clean compared to

solid state systems and afford great control over interaction strengths. Thus optical

lattices are a fantastic testbed for exploring interesting limits of condensed matter

systems, such as superfluid-Mott insulator transitions or BEC-BCS crossover.

Superconducting quantum information has drawn heavily from the AMO play-

book. A superconducting qubit can be thought of as an artificial atom with prop-

erties that can be tailored for specific applications. As such, many tricks used to

manipulate conventional atoms find applications to superconducting qubits as well.

Sideband cooling — pumping to a third level with faster relaxation to the ground

state — allowed active cooling in a flux qubit [85]. A superconducting qubit was

used as the gain medium in a single atom maser [86]. Electromagnetically induced

transparency and coherent population trapping have been studied by several groups

[87–89]. There has recently been renewed interest in superconducting parametric

amplifiers [90–92] motivated by the goal of quantum limited measurement. These
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have been used to produce squeezed states [93, 94]. A more comprehensive recent

review of AMO ideas in superconducting QC is [95].

The most influential contribution of AMO physics to superconducting qubits

has been “circuit QED.” This is the superconducting analogue of cavity QED [96],

where atoms are sent through a high Q microwave cavity. While in the cavity, the

atoms interact with a single electromagnetic field mode. By limiting the field to a

single mode, one can describe the atom-light interaction using a surprisingly simple

model originally due to Jaynes and Cummings. I begin by discussing the Jaynes-

Cummings Hamiltonian and then describe circuit QED in more detail. Lastly, I

discuss an extension of the dc SQUID model developed in Section 2.5. This new

model includes an on-chip LC filter. The filter reduces high frequency noise on

the bias line to improve the qubit lifetime T1. After deriving the Hamiltonian for

the filter plus SQUID model, I show how to derive an approximation to the full

Hamiltonian with a Jaynes-Cummings Hamiltonian, with special attention paid to

extracting the filter-qubit coupling g.

3.1 Jaynes-Cummings model

The Jaynes-Cummings model was proposed 50 years ago in a discussion of

semiclassical vs. quantum theories of the maser [97]. It is a simple, exactly solvable

model of the interaction between a single mode of the electromagnetic field and a

two-level atom. Following the usual quantization of electromagnetic fields [98], the

field mode is represented as a harmonic oscillator. The coupling between the two

systems is electric dipole, further simplified by making a rotating wave approxima-

tion (RWA). As discussed in Section 2.4.2, the RWA discards high frequency terms.

For Jaynes-Cummings, this means discarding coupling terms where both the atom

and the field mode gain or lose quanta, since the time dependence of the creation

or annihilation operators leads to contributions at the sum of the two frequencies in
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that situation.

The Jaynes-Cummings Hamiltonian is

HJC = ~ωrâ†â+ ~ωqσ̂z + ı~g
(
â†σ̂−z − âσ̂+

z

)
. (3.1)

The subscript choices reflect the language I will use in referring to these two sub-

systems: the resonator and the qubit.

What makes this Hamiltonian tractable is a special property of the coupling

term. Since the coupling term creates excitations in one subsystem while destroying

them in the other, the total excitation number is conserved by the Hamiltonian.

Because the qubit has only two levels, this results in the total Hamiltonian being

a collection of 2x2 Hamiltonians corresponding to different numbers of excitations.

This structure is visually apparent when the first levels of HJC are written in matrix

form:

HJC =



|0g〉 |0e〉 |1g〉 |1e〉 |2g〉 . . .

|0g〉 0 0 0 0 0 . . .

|0e〉 0 ~ωq −ı~g 0 0 . . .

|1g〉 0 ı~g ~ωr 0 0 . . .

|1e〉 0 0 0 ~ωq + ~ωr −ı
√

2~g . . .

|2g〉 0 0 0 ı
√

2~g 2~ωr . . .

...
...

...
...

...
...

. . .


, (3.2)

where I have chosen the basis (|0g〉 , |0e〉 , |1g〉 , |1e〉 , . . .) . g and e denote the ground

or excited state of the qubit and the number is the number of photons in the res-

onator.

Equation 3.2 illustrates another important feature of HJC. The raising and

lowering operators â† and â pick up factors of
√
n when operating on states with n−1

(â†) or n (â) photons in the resonator. Thus, the effective coupling strength depends
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on the resonator photon number. This effect produces many of the characteristic

features of the Jaynes-Cummings model.

Because it breaks down into discrete blocks, one diagonalizes HJC by diago-

nalizing the individual blocks. The ground state |0g〉 is already diagonal, so all that

remains is diagonalizing the subspace with n > 0 total excitations. In this subspace,

Hn =

~ωq + (n− 1)~ωr −ı
√
n~g

ı
√
n~g n~ωr

 . (3.3)

I define the detuning ∆ ≡ ωq − ωr and rewrite Hn as

1

~
Hn − nωr =

 ∆ −ı
√
ng

ı
√
ng 0

 , (3.4)

where to simplify the form of the matrix I have adjusted the zero of energy. Finding

the eigenvalues of this matrix and adding the energy n~ωr back,

1

~
En± = nωr +

∆

2
± 1

2

√
∆2 + 4ng2. (3.5)

There are two important limits to consider. The first is when the qubit and

resonator are in resonance, ∆ → 0. The coupling g lifts the degeneracy, yielding

energies En = n~ωr ±
√
ng and eigenstates 1√

2
(|n, g〉 ± |n− 1, e〉). States with n

excitations form a ladder of paired states at harmonics of the resonator frequency.

The energy spacing of states in a pair increases as the square root of n.

The other important limit is the dispersive limit, where the detuning is large

relative to the coupling. Since the coupling depends on the excitation number n,

the quantitative description of the dispersive limit is 2
√
ng/∆ � 1. In this limit,
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one can perform a Taylor expansion of the radical in the eigenenergies:

1

~
En± = nωr +

∆

2
± 1

2

√
∆2 + 4ng2,

≈ nωr +
∆

2
± ∆

2

(
1 +

2ng2

∆2

)
.

(3.6)

Expanding the plus and minus cases,

En+ = n~ω + ~∆ + ~
ng2

∆
; (3.7)

En− = n~ω − ~
ng2

∆
. (3.8)

(Note that I assume ∆ > 0; a very similar analysis goes through for negative ∆ with

the role of the plus and minus states swapped.) The new eigenstates are of the form

a± |n− 1, e〉 + b± |n, g〉. With the Taylor expanded eigenenergies, the eigenstates

satisfy

b+ =

√
ng

∆
a+, (3.9)

a− = −
√
ng

∆
b− (3.10)

In words, in the dispersive limit the mixing of qubit states and resonator states is

weak. The eigenstates with energy En+ are approximately |n− 1, e〉; those with

energy En− are approximately |n, g〉.

This weak mixing suggests considering the Jaynes-Cummings Hamiltonian as

a perturbation on the original qubit-resonator basis. How does this perturbation

affect the qubit and resonator transitions? Since the coupling strength depends on

the number of photons in the resonator, I expect the qubit transition to depend on

this photon number. From the discussion following (3.10), the state with excited

qubit and n photons in the resonator has energy En+1,+. The ground state qubit
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with n photons in the resonator has energy En,−. Subtracting these yields

~ωqn = En+1,+ − En−,

=

(
n~ωr + ~ωq + ~

(n+ 1)g2

∆

)
−
(
n~ωr − ~

ng2

∆

)
,

= ~ωq + ~
(2n+ 1)g2

∆
.

(3.11)

Thus, the coupling between the resonator and the qubit leads to a shift in the

frequency of the qubit. Each photon in the resonator contributes an energy shift

2~g2/∆. Since the dispersive limit assumed that 2g/∆� 1, this is a small fraction

of the coupling ~g.

A similar calculation shows that the resonator frequency moves depending on

the state of the qubit. When the qubit is excited, adding one photon to the resonator

takes an energy

~ωre = En+1,+ − En+,

=

(
n~ωr + ~ωq + ~

(n+ 1)g2

∆

)
−
(

(n− 1)~ωr + ~ωq + ~
ng2

∆

)
,

= ~ωr +
~g2

∆
.

(3.12)

When the qubit is in the ground state, adding one photon to the resonator takes an

energy

~ωrg = En+1,− − En−,

=

(
(n+ 1)~ωr − ~

(n+ 1)g2

∆

)
−
(
n~ωr − ~

ng2

∆

)
,

= ~ωr −
~g2

∆
.

(3.13)

The difference between these two energies is the

~ωre − ~ωrg =
2~g2

∆
. (3.14)
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Thus the resonator frequency sees the same 2g2/∆ “photon shift” — since the qubit

is a two-level system, though, at most one photon can be in the qubit. Experimental

methods for exploiting both types of frequency shift have been highly fruitful in

superconducting qubits.

3.2 Circuit QED

Circuit QED (cQED) using superconducting qubits was first proposed by Blais

et al. [30] in 2004. Cavity QED requires atoms and cavities. In [30], the cQED

atom was a superconducting charge qubit. The cavity analogue is a 1-D microwave

coplanar waveguide resonator. The resonator is formed by interrupting the center

conductor of the waveguide in two places, giving a weak capacitive coupling. The

impedance mismatch at these breaks reflects incident microwaves. Like in a Fabry-

Perot etalon, the resonant frequencies are those at which standing waves can be

formed. By making the capacitance of the two breaks different, Blais et al. created

a preferred output direction for the resonator. The qubit and resonator are coupled

through the electric field. To give a strong coupling, the charge qubit was originally

placed between the center conductor and ground plane of the coplanar waveguide

at an anti-node of the resonator mode.

cQED offers some advantages over traditional cavity QED. Atomic cavity QED

experiments use a fixed microwave cavity that atoms travel through. This gives the

atoms only a limited amount of time for interaction with the cavity field. In cQED,

the qubit is permanently located in the cavity. This allows for much longer atom-

cavity interactions and thus more complicated manipulation of quantum states. By

working with a 1-D resonator with a small gap, cQED circuits can store the photonic

field energy over a small mode volume, therefore yielding strong fields. Further,

superconducting qubits can be engineered to have dipole moments much larger than

atoms. The combination of these two effects lets cQED realize the “strong-coupling
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Figure 3.1: Images of an early circuit QED setup, taken from Wallraff et al. [99]. a)
shows the chip; the major feature visible is the meandering coplanar waveguide. b)
shows the capacitive coupling at one end of the resonator. c) is a false-color image
showing the charge qubit, a Cooper pair box.

regime” where the qubit frequency shift (3.11) exceeds the linewidth. In this regime,

peaks corresponding to distinct photon numbers in the resonator are visible.

Shortly after the proposal, an experimental realization of circuit QED was

demonstrated by Wallraff et al. [99]. Figure 3.1 shows an image of their chip. To

achieve the desired resonator frequency, the coplanar waveguide meanders for extra

length. The capacitive couplings defining the cavity are formed by aluminum fingers

on the center conductor. The qubit used in the original experiment was a Cooper

pair box charge qubit. By adjusting the gate voltage applied to the box, the qubit

frequency could be tuned in and out of resonance with the resonator. When tuned to

resonance the coupling broke the degeneracy of the two states and led to a splitting

of the resonator line. This splitting was detected using homodyne detection of a
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microwave probe signal transmitted through the resonator.

While this was a notable accomplishment, more direct applicability to super-

conducting QC research was demonstrated in a pair of follow-up papers [100, 101].

These established the usefulness of circuit QED in the dispersive limit as a tool for

qubit readout. Since the state of the qubit changes the frequency of the resonator

as shown in (3.1), the phase of the transmitted microwave signal depends on the

qubit state. Measuring the qubit then consists of averaging the microwave signal

long enough to determine this phase.

This style of measurement is very attractive for several reasons. Unlike in the

switching measurement described in Section 2.1, the qubit always remains super-

conducting. This allows for much faster experimental repetition rates, as no cooling

period is necessary following each measurement. More significantly, at high mea-

surement powers the measurement can be made projective, an essential element for

quantum error correction. Low power measurements access the intriguing regime

of weak quantum measurement [102, 103]. Communicating with the qubit solely

through the resonator offers opportunities for frequency multiplexing. For example,

a single feedline could contain resonators at several different frequencies, each of

which contains qubits. This sort of reduction in wiring load is essential for operat-

ing significant numbers of qubits in a dilution refrigerator.

Another important result was the resolution of individual photon number

states in the resonator by Schuster et al. [104] The resonator was driven at a fixed

probe frequency. A second, spectroscopic tone was used to pump the qubit. From

(3.11), the qubit frequency depended on the photon occupancy of the resonator.

However, a classical microwave drive does not consist of a single photon number

(Fock) state, but instead a coherent state that superposes many different Fock states.

Each Fock state corresponded to a different resonant frequency for the qubit. Using

the state-dependent resonator frequency (3.1), the spectroscopic lines corresponding
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to each Fock state were visible in the response of the probe beam. By operating

the probe beam at different powers — thereby changing the relative population in

the Fock states — the height of the different Fock state peaks in the data changed,

confirming that they were due to the photon shifts.

Following this paper, the Fock states of the resonator were seen as a possibly

useful tool in their own right. Using the different coupling of each Fock state to the

qubit, Hofheinz et al. [105] demonstrated the formation of Schrödinger cat states in a

resonator coupled to a phase qubit. Since the resonators typically have no junctions

and weak coupling to the microwave line, they are often long-lived relative to the

qubits. This suggests an architecture where resonators are used both to store qubits

and to couple qubits, transferring information from resonator to qubit only when

necessary for operations [106].

One particularly influential trend in recent cQED experiment is the use of 3d

cavities instead of planar ones. Paik et al. [107] demonstrated an order of magnitude

enhancement in the lifetime of a transmon qubit by coupling it to a 3d microwave

cavity. The underlying idea was to decrease the relative importance of fields near

surfaces. By using a 3d cavity with greater mode volume, the fields were reduced and

loss to surface defects decreased. Using careful processing and improved materials,

it seems much of this performance gain can still be captured in planar systems [108].

3.3 Filtered dc SQUID

3.3.1 T1 improvement from filter

In Section 2.4.3, I discussed how a dc SQUID phase qubit can reduce qubit

loss by filtering high frequency current noise from the bias leads. Our dc SQUID

qubits have had short T1 times compared to competing superconducting approaches.

As the bias leads represent one of the major architectural differences, adding more
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Figure 3.2: Schematic of the LC filtered dc SQUID. The filter and SQUID are
indicated in the schematic.

filtering to the bias line was a logical change. Thus, we began working with dc

SQUID phase qubits featuring an on-chip LC low pass filter on the bias line.

Figure 3.2 shows a schematic of a dc SQUID with an additional low-pass LC

filter on the bias line. As discussed in Section 2.4.3, the loss to the bias leads

depends on the admittance Y (ω). The LC filter increases this admittance, reducing

loss to the bias leads and potentially improving T1. Modeling the admittance as

Y (ω) = 1/R, looking at the bias line from the SQUID we see a series combination

of Lf and the parallel combination of R and Cf :

Zline = ıωLf +
R

1 + ıωCfR
; (3.15)

Yline =
1 + ıωCfR

ıωLf +R(1− ω2LfCf )
. (3.16)

81



Denoting LfCf ≡ 1/ω2
f ,

ReYline =
R
(
1− ω2/ω2

f

)
+Rω2/ω2

f

R2
(
1− ω2/ω2

f

)2
+ ω2L2

;

1

ReYline

= R

(
1− ω2

ω2
f

)2

+
ω2L2

R
.

(3.17)

In the dc limit ω → 0, the line impedance remains R. This is sensible, as the

LC filter is low-pass and doesn’t block dc signal. More important is the behavior

for ω � ωf . In this regime, 1/ReYline ≈ (ω/ωf )
4R. A filter with ωQ = 10ωf leads to

a 104 improvement in T1; a filter with ωQ = 30ωf gets almost a 106 improvement.

An important note is that this is the admittance seen by the SQUID; thus, it leaves

out the filtering effects of the SQUID itself on the qubit. Stacking the admittance

transformations from both the filter and SQUID should basically eliminate loss to

the bias line.

Several qubits in our lab used these LC filters [28, 29]. These qubits were

much longer lived than their predecessors, with lifetimes improved by an order of

magnitude. Given the apparent effectiveness, we kept the filter in the design for

the BBC2 qubit I study in this thesis. The microwave measurements on BBC2 (the

subject of Chapter 7) suggested the LC filter might be interacting with the qubit as

more than just a filter. Given a microwave resonator (the filter) coupled to a qubit,

it is natural to ask whether the Jaynes-Cummings physics of cQED might apply to

our filter plus SQUID system.

In the rest of this chapter, I use the techniques of Chapter 2 to derive a

Hamiltonian for the full filter plus SQUID system. Since the Jaynes-Cummings

model is well understood, I show how to reduce the full Hamiltonian to an effective

Jaynes-Cummings model for the filter and SQUID. In Section 7.3 I examine the

consistency of this model with the measured microwave data from the BBC2 qubit.
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Figure 3.3: Decomposition of the LC filtered dc SQUID into spanning tree and
closure branches.

3.3.2 Filtered SQUID Hamiltonian

Figure 3.3 decomposes the filtered LC SQUID schematic into the appropriate

spanning tree. There are four active nodes, yielding four equations of motion:

−φx − φf
Lf

+
φi − φx
Li

+
φq − φx + Φe

Lq
= 0; (3.18)

−φf + Φb

Lb
+
φx − φf
Lf

= Cf φ̈f ; (3.19)

−φi − φx
Li

− I0i sin
2πφi
Φ0

= Ciφ̈i; (3.20)

−φq − φx + Φe

Lq
− I0q sin

2πφq
Φ0

= Cqφ̈q. (3.21)
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As with the dc SQUID calculation in Section 2.3.3, there is one extraneous node

with no capacitance. I eliminate this node:

φx(
1

Lf
+

1

Li
+

1

Lq
) =

φf
Lf

+
φi
Li

+
φq + Φe

Lq
; (3.22)

φx
L2

LfLiLq
=
φf
Lf

+
φi
Li

+
φq + Φe

Lq
; (3.23)

φx =
1

L2
(LiLqφf + LfLqφi + LfLi(φq + Φe)), (3.24)

where I have defined

L2 = LiLq + LfLq + LfLi. (3.25)

The other equations contain three terms that depend on φx:

φx − φf
Lf

=
1

LfL2
((LiLq − L2)φf + LfLqφi + LfLi(φq + Φe); (3.26)

φx − φi
Li

=
1

LiL2
(LiLqφf + (LfLq − L2)φi + LfLi(φq + Φe); (3.27)

φx − (φq + Φe)

Lq
=

1

LqL2
(LiLqφf + LfLqφi + (LfLi − L2)(φq + Φe)). (3.28)

In each term, the extra inductance out front divides through cleanly. Plugging these

back in and taking the infinite bias inductor limit, I get the reduced equations of

motion

Ib −
(Lq + Li)φf − Lqφi − Li(φq + Φe)

L2
= Cf φ̈f ; (3.29)

−−Lqφf + (Lf + Lq)φi − Lf (φq + Φe)

L2
− I0i sin

2πφi
Φ0

= Ciφ̈i; (3.30)

−−Liφf − Lqφi + (Lf + Li)(φq + Φe)

L2
− I0q sin

2πφq
Φ0

= Cqφ̈q. (3.31)

The filter should have no effect on dc signals. Since the current and flux-phase

constraints for the dc SQUID (described in Section 2.3.3) are based on dc behavior,

I expect the same constraints to hold in the filter plus SQUID model. This provides
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a powerful tool for checking the consistency of the two Hamiltonians. The current

constraint requires that the current through both junctions sum to the bias current.

At dc, the right hand side of the equations of motion vanish. Summing them shows

the current constraint (2.41) is satisfied.

Showing that the flux-phase constraint (2.42) also holds is more involved.

Again, in the dc limit,

φf =
L2

L
(Ib +

Lq
L2
φi +

Li
L2

(φq + Φe), (3.32)

where L ≡ Li + Lq. Plugging into the third reduced equation of motion,

I0q sin
2πφq
Φ0

+
Li + Lf

L
(φq + Φe)−

Li
L

(Ib +
Lq
L2
φi +

Li
L

(φq + Φe))−
Lf
L2
φi = 0; (3.33)

Li + Lf − L2
i

L

L2
(φq + Φe)−

LiLq
L

+ Lf

L2
φi =

Li
L
Ib − I0q sin

2πφq
Φ0

. (3.34)

I can make some useful simplifications:

Li + Lf −
L2
i

L
=

L2

L
; (3.35)

LiLq
L

+ Lf =
L2

L
. (3.36)

Substituting these in, I get

φi − φq = Φe + LqI0q sin
2πφq
Φ0

− LiI0i sin
2πφi
Φ0

. (3.37)

As expected, we have arrived at the dc SQUID phase flux condition. This consis-

tency check suggests the equations of motion for the filter plus SQUID model are

correct.

As in the dc SQUID, I extract the coefficients of the inductive parts of the
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Lagrangian by differentiating the equations of motion once more. Skipping ahead

to the construction of the Lagrangian,

L = Cf
φ̇2
f

2
+ Ci

φ̇2
i

2
+ Cq

φ̇2
q

2

+ Ibφf +
I0iΦ0

2π
cos

2πφi
Φ0

+
I0qΦ0

2π
cos

2πφq
Φ0

− Li + Lq
2L2

φ2
f −

Lf + Lq
2L2

φ2
i −

Lf + Li
2L2

(φq + Φe)
2

+
Lq
L2
φfφi +

Li
L2
φf (φq + Φe) +

Lf
L2
φi(φq + Φe).

(3.38)

The capacitive terms are kinetic energy; everything else is −U . As in Section 2.3.3,

I transform to the Hamiltonian for the filtered SQUID. Switching from junction

fluxes φn to junction phases γn ≡ 2πφn/Φ0
1, I find the full Hamiltonian

H =
p2
f

2mf

+
p2
i

2mi

+
p2
q

2mq

− IbΦ0

2π
γf −

I0iΦ0

2π
cos γi −

I0qΦ0

2π
cos γq

+

(
Φ0

2π

)2
[
Li + Lq

2L2
γ2
f +

Lf + Lq
2L2

γ2
i +

Lf + Li
2L2

(
γq +

2πΦe

Φ0

)2
]

−
(

Φ0

2π

)2 [
Lq
L2
γfγi −

Li
L2
γf

(
γq +

2πΦe

Φ0

)
− Lf

L2
γi

(
γq +

2πΦe

Φ0

)]
,

(3.39)

3.3.3 Reduction to Jaynes-Cummings model

The Hamiltonian (3.39) is unwieldy. Recasting it as an approximate Jaynes-

Cummings Hamiltonian (3.1) makes it easier to examine how the filter affects the

qubit quantum mechanically. Of particular interest is the effective coupling strength

g in such a model.

There are several steps in the reduction:

• The Hamiltonian (3.39) involves three coordinates, but the Jaynes-Cummings

Hamiltonian couples two one-dimensional systems. Eliminating one of the

coordinates is the first step. Following the analysis of the dc SQUID in Sec-

1Although φf does not correspond to a junction, it is convenient to make this switch anyway.
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tion 2.5, I find the normal modes of the SQUID degrees of freedom.

• For the parameters of the BBC2 qubit, the SQUID modes are very widely

separated (9 and 100 GHz). The 100 GHz mode is frozen out and unlikely

to be driven by any of the signals I used. To reflect this, I discard the high

frequency mode from the Hamiltonian.

• Following the previous step, the Hamiltonian is now in the form of two cou-

pled harmonic oscillators — the filter and the qubit mode of the SQUID. To

compare to the Jaynes-Cummings model, I assume that the harmonic approx-

imation is close to the qubit frequency and treat the qubit mode as a two-level

system. As in Section 2.5.2 cubic terms in the SQUID coordinates can be kept

for perturbative corrections to the harmonic qubit approximation.

• The coupling terms are of the form γiγf and γqγf . After replacing these coor-

dinates with normal coordinates, I discard the high frequency mode, leaving

a coupling term γQγf . I then replace the γ operators with their ladder oper-

ator equivalents and make the rotating wave approximation to discard terms

that create or destroy excitations in both subsystems. The coefficient of the

remaining terms is ~g.

The normal mode calculation proceeds as in Section 2.5.2. I begin by assuming

an equilibrium point (γ∗f , γ
∗
i , γ

∗
q ). I then make small expansions around that point.

Let δγn ≡ γn − γ∗n. Since ˙δγn = γ̇n, the momentum terms remain unchanged.

Leaving junctions unexpanded for now to simplify the bookkeeping, and discarding
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constant terms, I rewrite the Hamiltonian in terms of δγs as:

H =
p2
f

2mf

+
p2
i

2mi

+
p2
q

2mq

− IbΦ0

2π
δγf −

I0iΦ0

2π
cos γi −

I0qΦ0

2π
cos γq

+

(
Φ0

2π

)2 [
Li + Lq

2L2
δγ2

f +
Lf + Lq

2L2
δγ2

i +
Lf + Li

2L2
δγ2

q

]
+

(
Φ0

2π

)2 [
Li + Lq

2L2
2δγfγ

∗
f +

Lf + Lq
2L2

2δγiγ
∗
i +

Lf + Li
2L2

2δγq

(
γ∗q +

2πΦe

Φ0

)]
−
(

Φ0

2π

)2 [
Lq
L2
δγfδγi +

Li
L2
δγfδγq +

Lf
L2
δγiδγq

]
−
(

Φ0

2π

)2 [
Lq
L2

(γ∗i δγf + γ∗fδγi)−
Li
L2

((
γ∗q +

2πΦe

Φ0

)
δγf + γ∗fδγq

)
− Lf

L2

((
γ∗q +

2πΦe

Φ0

)
δγi + γ∗i δγq

)]
.

(3.40)

In preparation for expanding around the minimum of the SQUID, for the

moment I neglect all terms with any dependence on δγf . The terms linear in δγ

set the equilibrium point, but if I assume a particular equilibrium (γ∗i , γ
∗
q , γ

∗
f ), then

they may be discarded. The resulting Hamiltonian is:

HSQUID =
p2
i

2mi

+
p2
q

2mq

− I0iΦ0

2π
cos(γ∗i + δγi)−

I0qΦ0

2π
cos(γ∗q + δγq)

+

(
Φ0

2π

)2(
Lf + Lq

2L2
δγ2

i +
Lf + Li

2L2
δγ2

q −
Lf
L2
δγiδγq

)
,

(3.41)

I now make an expansion of the cosines, again discarding the linear terms:

cos(γ∗i + δγi) = (1− δγ2
i

2
) cos γ∗i − (δγi −

δγ3
i

6
) sin γ∗i . (3.42)

Keeping only the harmonic term from these expansions for now yields a “simple
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harmonic SQUID” model:

HSHS =
p2
i

2mi

+
p2
q

2mq

+

(
Φ0

2π

)2

(
δγ2

i

2Lji
+

δγ2
q

2Ljq
)

+

(
Φ0

2π

)2(
Lf + Lq

2L2
δγ2

i +
Lf + Li

2L2
δγ2

q −
Lf
L2
δγiδγq

)
.

(3.43)

From this Hamiltonian I build the kinetic energy matrix

T =

(
Φ0

2π

)2

Ci 0

0 Cq

 , (3.44)

and the potential energy matrix

V =

(
Φ0

2π

)2

Lf+Lq
L2 + 1

Lji
−Lf

L2

−Lf
L2

Lf+Li
L2 + 1

Ljq

 . (3.45)

Although the current constraint and flux-phase condition (3.37) were the same as

for an unfiltered dc SQUID, the filter is seen to affect the frequencies of the SQUID

normal modes. This is because the normal modes also consider the possibility of ac

signals, where the filter capacitance shunting the SQUID can come into play. This

allows Lf to combine with the SQUID inductances.

In practical calculations, I typically solve for the modes and basis transforms

numerically. Following that, the rest of the calculation of g is fairly straightforward.

After the normal mode transformation, the new approximate Hamiltonian near the
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equilibrium is

H =
p2
f

2mf

+

(
Φ0

2π

)2
Li + Lq

2L2
δγ2

f

+ p2
I + ω2

Iδγ
2
I + p2

Q + ω2
Qδγ

2
Q

−
(

Φ0

2π

)2 [
Lq
L2
δγfδγi +

Li
L2
δγfδγq

]
,

(3.46)

where the mass of the properly scaled normal coordinates is 1. The capital letters

denote normal coordinates, the lowercase ones the actual isolation and qubit phases.

Replacing the junction coordinates with the proper linear combinations of mode

coordinates, I get

H =
p2
f

2mf

+

(
Φ0

2π

)2
Li + Lq

2L2
δγ2

f

+ p2
I + ω2

Iδγ
2
I + p2

Q + ω2
Qδγ

2
Q

−
(

Φ0

2π

)2 [
Lq
L2
δγf (AiIδγI + AiQδγQ) +

Li
L2
δγf (AqIδγI + AqQδγQ)

]
.

(3.47)

Stripping all terms involving the isolation mode, this leaves me with

H =
p2
f

2mf

+

(
Φ0

2π

)2
Li + Lq

2L2
δγ2

f

+ p2
I + ω2

Iδγ
2
I + p2

Q + ω2
Qδγ

2
Q

−
(

Φ0

2π

)2 [
Lq
L2
δγf (AiIδγI + AiQδγQ) +

Li
L2
δγf (AqIδγI + AqQδγQ)

]
.

(3.48)

Finally, I can replace δγn with appropriate creation and annihilation operators:

δγf =

√
~

2mfωf
(â†r + âr); (3.49)

δγQ =

√
~

2ωQ
(â†Q + âQ), (3.50)
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where

ωf =

√
1

L∗fCf
; (3.51)

L∗f =
L2

Li + Lq
. (3.52)

In the limit where Lf � Li, Lq, L
∗
f reduces to Lf . δγQ has already been scaled to

have a mass of 1, so there is no mass term in the scaling factor for it. When I make

this substitution, the first two lines of (3.48) collapse into the usual number operator

representation of harmonic oscillators. I also make the rotating wave approxima-

tion, discarding the coupling terms â†râ
†
Q and ârâQ. These terms pick up frequency

contributions at the sum ωQ + ωf , whereas the other terms pick up frequencies at

|ωQ − ωf |. Following this approximation, I have arrived at the Jaynes-Cummings

form:

H = ~ωrâ†râr + ~ωQâ†QâQ + ~g
(
â†râQ + â†Qâr

)
, (3.53)

where

g = −

√
1

2mfωfωQ

(
Φ0

2π

)2 [
Lq
L2
AiQ +

Li
L2
AqQ

]
. (3.54)

There are some slight differences between (3.1) and (3.53). The coupling in

the SQUID Jaynes-Cummings model is bilinear in γ, whereas it is a momentum

coupling in the original Jaynes-Cummings Hamiltonian. This is unimportant, as

the absolute values of the off-diagonal matrix elements are the same, leaving the

eigenvalues unchanged. More significant is that I am using harmonic oscillator

states to describe the qubit rather than treating it as a true two-level system. When

the qubit has high anharmonicity, treating the two lowest lying states of the qubit

mode as a true two-level system is a good approximation and the mapping to the

Jaynes-Cummings model is sensible.

Instead of only considering the normal modes of the SQUID part of (3.39), I
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could instead find the normal modes of the entire Hamiltonian to approximate the

qubit dynamics. This sort of approach is sometimes used in circuit QED to avoid

issues with multi-mode Jaynes-Cummings models [42]. The advantage of the Jaynes-

Cummings approach is that it is a well-understood Hamiltonian with predictable

consequences parameterized by g. Further, for weak coupling the separation of the

filter and the qubit is a clearer, more physically transparent description of the system

than a single harmonic mode.

3.4 Summary

In this chapter, I reviewed the physics of the Jaynes-Cummings model and

discussed its relevance for superconducting quantum computing through the circuit

QED approach. I then discussed modifying the dc SQUID phase qubit of Section 2.5

by including an LC filter on the bias line. Using the techniques of Chapter 2, I found

the Hamiltonian for the lumped element circuit model of the filter plus SQUID. I

then reduced this Hamiltonian to an effective Jaynes-Cummings model, where the

SQUID is the qubit and the filter is the resonator.
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Chapter 4

Fabrication details for filtered dc SQUID qubit

One of the most important topics in superconducting quantum information

experiments is the effect of materials on coherence times. A series of influential

experiments suggested that dielectric loss from discrete two-level systems is an im-

portant contributor to dissipation effects [75, 76]. This contribution is especially

important in phase qubits with their larger Josephson junctions. This suggests a

natural road to T1 improvement. By working with as little dielectric as possible

— reducing junction size, limiting wiring crossover — and using low-loss substrates

like sapphire, we expect substantial gains in qubit lifetime.

Our lab’s earliest work in phase qubits used devices fabricated by the supercon-

ducting foundry Hypres. They use a multilayer niobium process with a great deal of

silicon oxide insulation between layers. Further, the smallest junction they can make

is roughly 2 µm by 2 µm. The Hypres qubits had very short lifetimes. Although

separating the dielectric loss from contributions due to the design is challenging, it

was clear that we could get much cleaner qubits by building them ourselves.

For several years, our lab has fabricated qubits using aluminum on sapphire

wafers. To reduce the presence of extraneous dielectric, as much of the qubit wiring

as possible is contained in a single layer of aluminum. To produce the junctions

themselves, we use thermal double angle evaporation. In this chapter, I describe the

double angle evaporation technique, since its requirements were a major element of

the design of BBC2. I then describe the fabrication of BBC2 which I performed

jointly with Rangga Budoyo.
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4.1 Double angle evaporation

Our lithography processes use the patterned resist as a negative. We remove

the exposed areas, leaving a stencil where aluminum is deposited. For the majority

of the wiring this is all that is needed. Josephson junctions, though, require two

layers of aluminum separated by a thin oxide layer. A second deposition directly

above the first does not help; this would result in a junction shaped like the entire

pattern.

The solution is to pattern the resist with a suspended bridge near where the

junction is desired. The resist bridge casts a shadow on the substrate and yields

a break in the deposited aluminum. The location of the shadow depends on the

angle of deposition of the aluminum. By rotating the substrate, this angle can be

changed between evaporations. Two evaporations are made at well-chosen angles.

Far away from the resist bridge, both layers are present. Near the resist bridge,

the two shadows of the bridge define regions where only one layer is present. In

between the shadows is a small region where both layers are present. This layer is

the desired Josephson junction. Images of this process for specific designs are shown

in Figures 4.1 and 4.2.

We use two layers of resist to achieve the suspended bridge. The bottom resist

develops at a different rate than the layer above it. With appropriate processing

we can use this to undercut the top layer. By developing long enough to dissolve

the bottom layer completely underneath a resist bridge in the top layer, we leave an

exposed region on the substrate where junctions will be formed.

4.1.1 Some technical details

Double angle evaporation is a general framework that allows for different spe-

cific ways of fabricating junctions. Translating the size of elements in the litho-
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graphic pattern to the actual junction size requires knowledge of the pattern. I

discuss the geometry of the two types of resist bridge used in the BBC2 design.

Perhaps the simplest junction is one that results from a bridge interrupting a

straight line, as seen in Fig. 4.1. The bridge is suspended above the desired junction

location on the substrate. Ideally the rotation axis would run through the bridge,

perpendicular to the patterned line. The two angles then project the shadow of the

bridge in opposite directions along the line. For certain choices of angle, there will

be a junction defined between the two shadows. The width of the junction is the

width of the patterned line. The length of the junction is given by

tb (tan θ1 + tan θ2)− w,

where tb is the thickness of the undercut layer, θi is the angle of the ith deposition

measured from the normal to the substrate, and w is the width of the resist bridge.

This bridge works well for the larger junction of BBC2. It is less reliable for

the small junction. Long stretches of thin line are delicate and prone to breakage.

Additionally, as (4.1.1) shows, the size of junctions formed this way are sensitive

to several parameters. In making junctions with dimensions less than the ≈ 1 µm

thickness of the undercut layer, small inaccuracies in θ1 and θ2 can lead to significant

relative changes in junction size or even a failure to form the junction.

For greater consistency in making BBC2’s small junction, we employed a dif-

ferent pattern featuring one straight finger and one L-shaped one, with contact being

made between the straight finger and the arm of the L perpendicular to that finger.

This L bridge approach is illustrated in Fig. 4.2. If θ1 is steep enough, the straight

finger is projected underneath where the L-shaped finger is patterned. The second

evaporation is performed at an angle θ2 near vertical1.

1In a sample using only L bridge junctions,vertical deposition would be fine. If the sample uses
both types of bridge, as BBC2 did, then deviating from vertical helps with the fabrication of the
other style of junction.
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Figure 4.1: a) SEM image of a straight line bridge taken following e-beam develop-
ment and aluminum deposition but before resist lift-off. b) Side view of the double
angle process. The yellow layer is the top layer resist, separated from the wafer by
the undercut resist thickness tb. The cyan layers are the deposited aluminum. The
bold line indicates the location of the Josephson junction.
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Figure 4.2: a) SEM image of an L bridge taken following e-beam development and
aluminum deposition but before resist lift-off. b) Side view of double angle on an L
bridge. Unlike in Fig. 4.1, resist is present in both layers on one side of the bridge.
This is a scale drawing with the correct angles of the process used for the BBC2
device.
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The advantage of this approach is that provided full overlap occurs, the depen-

dence of the junction size on the angles and resist parameters is much weaker. The

junction size is determined instead by the width of the lithographically patterned

fingers. One potential complication of the L bridge approach is the resist sidewall

on the L finger side. Since the L finger does not have a line continuing in the same

direction as the evaporation, the bottom layer of resist remains there. A sufficiently

steep angle can end up plating out on the sidewall of this resist and be removed

during the development process. This can lead to ragged edges on the leads around

the junction, or possibly the tearing of the junction itself during liftoff.

4.1.2 Evaporator setup

For junction depositions, we used the cryo-pumped thermal evaporator in the

thin-film deposition laboratory in CNAM. The evaporator has four water-cooled

electrodes in a cross formation at the bottom. For double angle evaporations, we

typically chose two opposing electrodes. Tungsten wire coil boats were then attached

to these electrodes and filled with aluminum shot.

We experienced occasional problems with these boats breaking during alu-

minum evaporation. To minimize boat burnout, we found that gradual heating of

the element at the beginning worked well. The potentiometer on the evaporator was

set to 2.3 (the threshold for turning on at all), at which point the current through

the boat would typically be 10 to 20 amperes. After one minute at this setting, the

pot was adjusted to 2.4 and held for another minute, then to 2.5 for 30 seconds.

Following this, the pot was adjusted until we achieved an acceptable deposition rate,

typically 9-10 Å per second.

The evaporator is a shared facility, used by many people for several different

processes. Specific capabilities are associated with particular lids for the evaporator.

For double angle evaporation, we used a lid that has an ion mill attachment and a
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rotatable sample stage. For whole wafer processing (e.g. the initial photolithographic

steps), we directly mounted the wafer to the stage using spring clips or vacuum

grease. The electron beam lithography for BBC2 was done after the wafer was

diced and reduced to individual chips ≈ 1 mm on a side. To do evaporations with

these chips, we attached two or three at a time with spring clips to a chip carrier

screwed to the rotating stage.

We oriented the evaporator lid so that the stage was almost directly above the

electrodes2. Both bridge designs discussed assume that the rotation axis is oriented

along the bridge. To make sure we accomplished this we used a consistent alignment

of the BBC2 chips relative to the sample carrier. The stage rotation was controlled

by a mechanical dial on the evaporator lid. After mounting the sample, the stage

was rotated to its first angle and the position of the dial noted. We then rotated

to the second angle and marked the dial position there as well. To reduce angle

inaccuracies from backlash in the dial, the dial measurement was always performed

at the end of a rotation before releasing the dial.

Between the two evaporation steps, we oxidized the bottom aluminum layer

to create the junction barrier. A valve on the ion mill controller adjusts the rate

at which oxygen enters the system, and a valve on the lid itself allows oxygen

into the vacuum chamber. Both pressure and time can be controlled to determine

total exposure E = P × t. Empirically, the critical current scales like E−0.4 [109].

Generalizing to a time dependent pressure, we integrated over the periods where

oxygen is being admitted to or pumped out of the vacuum chamber. Since the

pressure varied roughly linearly during these periods of changing pressure, a simple

approximation is to add half the time ramping up or pumping down.

2Displacements from vertical lead to corrections to the apparent angle of the stage.

99



4.2 Fabrication of BBC2

Experimentally my thesis focused on the BBC2 qubit. I discuss the design

of BBC2 in Chapter 6; here, I discuss the fabrication process in detail. BBC2 was

built jointly by Rangga Budoyo and myself. Although there was some flexibility in

the division of labor, typically I performed the preparation of the e-beam resist and

the e-beam lithography while Rangga performed most steps involving evaporation.

Vitaley Zaretskey provided extensive help with the operation of the JEOL SEM

at LPS as well as confocal imaging of earlier versions of the sample to diagnose

problems in the fabrication process.

The BBC2 device has on-chip LC filtering requiring a large capacitor using a

silicon nitride dielectric. The qubit sits in a cutout in the ground plane of a coplanar

waveguide. The ground plane has many small square holes to reduce vortex motion.

BBC2 also features an interdigitated capacitor shunting one of the junctions. The

capacitor fills much of a region several hundred microns on a side and has almost 100

fingers — it represented the bulk of the time spent during electron beam writing.

Our process for the fabrication of BBC2 was a modified version of a process

designed by Tony Przybysz for his PB9 sample [28]. The main difference is in the

choice of resists. Tony used MMA as his undercut layer; I chose LOR 10B. The

appeal of LOR is a more predictable undercut dynamic; the rate at which MMA

is removed by the developer is dosage dependent, whereas the rate for LOR is

determined by the time and temperature of the bake following spincasting. This

predictability simplified the process of determining useful e-beam dosages for the

lithography. Except where specified, the fabrication process was done using tools in

the UMD Fab Lab.

The process is as follows:

• We started with a 3 inch sapphire wafer purchased from Kyocera. The wafers
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were 430 µm thick and polished on one side in a c-plane orientation. The

wafer was given an initial cleaning in a series of solvent baths — first acetone,

then methanol, then isopropanol (IPA).

• Rangga performed an initial aluminum deposition. This aluminum layer pro-

vided the bottom plate of the filter capacitor Cf . No vias were provided to

this layer. Instead, Cf was designed as two capacitors in series with a shared

bottom plate. This allowed all electrical contacts to be made on the top level

of deposited aluminum. The typical thickness of the bottom layer was 50-60

nm. I do not have the thickness used for BBC2, but I did not expect any

dependence of the qubit performance on this thickness.

• We performed the first photolithographic step, patterning the capacitor back-

plate using the clean room’s mask aligner. All of our photolithography steps

use Shipley 1813 as the photoresist. S-1813 is a positive resist, meaning that

development removes exposed regions. To define the capacitor backplates, we

used a photomask with clear field and dark pattern, leaving the desired back-

plates as the only unexposed region. Most of the features we define through

photolithography are relatively gross, so extensive optimizing of the photo

steps was not necessary to get good results.

• We developed using a metal ion free developer such as MF-319 or MF-CD-26

(for BBC2 we used CD-26). After this step, all of the aluminum on the wafer

is exposed except at the capacitor backplates.

• We used a wet aluminum etchant to remove the uncovered aluminum on the

wafer. The MF developers can also etch aluminum, although considerably

more slowly. Following the etch the remaining resist was removed by soaking

in heated Remover PG. Any residue that remained following the Remover PG
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bath was removed with an oxygen plasma clean in the reactive ion etch (RIE)

tool.

• For the capacitor dielectric, we deposited a layer of silicon nitride. This step

was performed by our collaborators at LPS using a PE-CVD process developed

to optimize loss tangent [31]. Nitride is a popular choice for dielectric material

in the community because it is less lossy than aluminum or silicon oxides and is

not too difficult to grow. We deposited 120 nm of silicon nitride. Going much

thinner than this poses risks of pinholes and shorts; there is also a danger of

the film breaking on the aluminum backplates already deposited if it is too

thin.

• Rangga performed a second photolithography step to pattern the capacitor

dielectric. The mask for this step is very similar to the mask for the first step

but with the pattern extended by 15 µm in each direction. This pattern leaves

enough nitride to cover the capacitor backplates, with a safety margin on each

side to reduce shorts caused by misalignment of the top wiring layer.

• The remaining nitride was removed using RIE. The recipe is listed on the RIE

in the Fab Lab and uses SF6. 45 seconds was typically enough to remove the

nitride.

• Rangga performed a third photolithography step. In this layer are the ground

plane, flux lines for qubit bias, the microwave transmission line, the filter

inductors Lf , and the top layer of Cf . Unlike the previous lithography steps,

here we performed the lithography first and then deposited material afterward.

Thus, for this step we used a photomask with clear pattern and dark field.

• Following development, Rangga performed another aluminum deposition of

50-60 nm. Both aluminum depositions are single angle, since the wiring of
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these layers contains no junctions.

• Excess aluminum is lifted off in an acetone bath placed in a sonicator. The

sample is oriented at an angle facing down. We take this step because the

ground plane features many 10 µm by 10 µm holes where small squares of

aluminum are removed to reduce vortex motion in the ground plane. If these

squares redeposit on the wafer they pose a risk of shorts, especially in the region

where the interdigitated capacitor is placed. Doing liftoff in the sonicator was

very successful at preventing that.

• Rangga performed a fourth and final photolithography step. In this step gold

alignment marks are deposited. We used gold because the contrast between

aluminum features and the sapphire wafer is very poor when the electron

microscope is configured for lithography. A large cross located above the

microwave transmission line is the primary alignment mark. Four smaller

markers are placed in the corners of a box around the location where the

device is written.

• A thin (1-2 nm) chromium layer was deposited in the thermal evaporator to

provide an adhesion layer for the gold. The gold deposition followed after-

ward. Using two different electrodes in the evaporator, both evaporations

were performed without exposing the wafer to air. Following acetone liftoff of

the chromium and gold, the wafer was again cleaned in Remover PG. At this

point, the wafer was ready for the e-beam resist stack.

• Following a solvent cleaning, I spun a layer of LOR 10B on the wafer at

4000 rpm for 45 seconds. Since the LOR is quite viscous, I ran the spinner

manually at about 50 rpm for 3-4 seconds while pouring LOR on the wafer.

This dispersed the LOR evenly over the wafer. I then accelerated to 4000

rpm over the course of 3-4 more seconds. At this spin speed, the specified
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thickness of LOR 10B is just under 1 µm; I did no measurements to confirm

this thickness. The sample was baked in an oven at 180 ◦C for 10 minutes,

aiming for an undercut rate of about 35 nm / sec. LOR produces little whiskers

of resist on the edge of the wafer. Although these can be removed with edge

bead remover, since the outer edges of the wafer were generally unpatterned

or sacrificial I did not do this.

• I spun PMMA-950-A4 at 4000 rpm for 45 seconds on the wafer. Immediately

following the spinning, I put the wafer on a hot plate to bake at 150 ◦C for

3.5 hours. The specified thickness of the resist layer under these conditions is

about 200 nm. While baking, I covered the wafer with a Pyrex vessel to limit

accretion of particulates during the lengthy bake.

• I thermally evaporated a 20 nm layer of aluminum on the resist stack. This

aluminum anti-charging layer disperses the charge buildup on the sapphire

wafer during the e-beam write. Initially I brought the wafer back to the ther-

mal evaporator in CNAM for this step. However, I encountered difficulties

with this process. Further in the process, acetone was used to remove a pro-

tective layer of photoresist applied before dicing. This later step resulted in

craters in the anti-charging layer, shown in Fig. 4.3. The culprit was dust on

the wafer — accumulated after leaving the cleanroom environment — causing

breaks in the anti-charging layer. These breaks allowed acetone to penetrate

and remove the e-beam resist underneath the anti-charging layer. When I

switched to immediately transferring the wafer to the Kim building thermal

evaporator following the PMMA bake, I no longer observed the craters.

• I applied a protective layer of S-1813 resist to prepare the wafer for dicing.

The dicing saw uses a blade cooled by continuously spraying water on the

blade and wafer. The protective resist layer shielded the resist stack from the
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Figure 4.3: Photo of chip with cratered anti-charging layer.

water. After spinning the S-1813, I baked at 150 ◦C for 20 minutes.

• I diced the wafer into individual chips for the e-beam process. The mask

contained devices with differing amounts of on-chip LC filtering — half the

chips had one stage, and half had two. These two types of devices had two

different chip sizes: 650 µm by 750 µm, and 650 µm by 850 µm. Following

dicing, I dried the wafer and stored it in the clean room.

• For e-beam writing, I removed individual chips from the wafer. The protective

layer of S-1813 was removed with a 5 minute soak in acetone followed by an

IPA rinse. I then took the chips to LPS, where I used a JEOL 6500 system

equipped with the Nabity pattern generation system (NPGS) for doing e-beam

writes. The write was done in four steps, with a pause following the first three

to adjust the microscope magnification and beam current:

– In the first step I wrote the small Josephson junction. This was done at

a magnification of 900x with a typical beam current of 17 pA. I used an
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area dose of 450 µC/cm2. This step took 1 minute.

– In the second step I wrote the large Josephson junction. This was done

at a magnification of 90x, beam current of 17 pA, and area dose 450

µC/cm2. This step also took 1 minute.

– The third step wrote the inductor loop and interdigitated capacitor and

was the longest step in the process. The magnification was 90x, the

beam current ≈ 150 pA, and the area dose 600 µC/cm2. This step took

15 minutes.

– The final step wrote the contact pads and wires connecting them to the

SQUID loop. The magnification was 45x, the beam current 700 pA and

the area dose 450 µC/cm2. This step took 10 minutes.

• I developed the e-beam resist. First, I placed the chip in an MF-CD-26 bath

to remove the aluminum anti-charging layer. This took about 5 minutes; I

pulled the chip when visual inspection showed the aluminum to be removed.

After rinsing with water and drying, I placed the chip in a bath of MIBK/IPA

1:3, a PMMA developer recommended for high resolution. I gently agitated

in the MIBK/IPA bath for 75 seconds and then rinsed in an IPA bath briefly

before drying. To produce the undercut, I then put the chip in the MF-CD-26

bath with gentle agitation. The undercut rate depends on how the LOR 10B

was baked when first applied. This step required careful timing. There must

be sufficient undercut to clean the area under the junction bridges, but too

much undercut causes collapse of device features. This collapse was especially

common in the fingers of the interdigitated capacitor. With chips from the

BBC2 wafer I would typically develop for 20 or 21 seconds before rinsing

with water and then IPA. If visual inspection showed more development was

necessary I would develop for 1-2 seconds more and then rinse and check again.
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• Rangga performed double angle aluminum deposition in the CNAM thermal

evaporator using the ion mill lid. The first deposition used electrode 1, with

a background pressure of 1.6 × 10−6 torr. 55 nm of aluminum was deposited

according to the crystal monitor3 at θ1 = 50◦. We oxidized the first layer

for 10 minutes. The second deposition used electrode 3, with a background

pressure of 7 × 10−7 torr. 120 nm of aluminum was deposited at an angle of

θ2 = 7◦. Using a thin first layer and making the low-angle deposition second

resolved an issue with cracks forming near the junctions (see Fig. 4.4.)

• I lifted off the excess aluminum and remaining resist stack. I started with an

acetone bath to remove most of the aluminum, and then used Remover PG to

eliminate as much resist residue as possible. Following the Remover PG bath,

I rinsed the chip in IPA and dried with nitrogen.

• I mounted the chip in an aluminum sample box described further in Sec-

tion 5.1.1. I attached the chip to the box with a very small drop of GE

varnish. To spread the varnish under the chip, I pressed the chip down using

tweezers at the chip corners.

• After the varnish hardened and the chip was mechanically secure, I made

aluminum wirebonds between the circuit board and the chip using a Kulicke-

Soffa Model 4523 wedge bonder. To reduce the risk of shorting out the junction

with a static discharge, I attached an SMA shorting cap to the bias line. The

flux line and bias line were both grounded to the on-chip aluminum ground

plane. For good grounding, I made ≈ 20 wirebonds around the perimeter

of the chip connecting the on-chip ground plane to the ground plane of the

printed circuit board.

3The angle of the monitor does not change with the sample. The effective depth of the deposited
layer will be lower at high angles.
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Figure 4.4: SEM image of the big junction from an early attempt at the BBC2
design. To the right of the junction a large crack is visible.
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Figure 4.5: Photo of the BBC2 device following wirebonding. This is a composite
of several photos. The wirebonds at the bottom of the image lead to the top plates
of the filter capacitor and the contact pads where the system is grounded.
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Fig. 4.5 shows an image of the wirebonded BBC2 device, stitched together

from several different photographs. The visible bonds connect Cf to Lf and then

to the qubit.

4.3 Summary

In this chapter, I discussed the fabrication of the BBC2 qubit. After describing

double angle evaporation, I explained how it works for the geometry of the BBC2

junction patterns. I reviewed the PMMA/LOR process I used for the lithography.
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Chapter 5

Experimental setup

Superconducting qubit experiments are conducted at millikelvin (mK) tem-

peratures. There are several reasons for this. Most obviously, the reliance on super-

conducting circuits demands temperatures below Tc to achieve superconductivity.

Operating at T � Tc dramatically lowers the thermal quasiparticle background.

This reduces a major source of dissipation, possibly yielding longer-lived qubits.

Another important point is that most experiments rely on qubit initialization in

the ground state through thermal relaxation (although some consideration has been

given to supplementing this with active cooling in longer lived samples [85]).

The most common approach for achieving mK temperatures is the dilution

refrigerator. Our studies on the BBC2 device were performed in an Oxford Instru-

ments Model 200 wet fridge. This refrigerator was used for several generations of

experiments; descriptions of it can be found in earlier theses from the group [25–29,

71, 110]. Maintenance and changing experimental needs demanded some modifica-

tions to the refrigerator. I begin this chapter by describing the refrigerator setup for

the measurements I performed. I then describe the setup of the instrumentation,

followed by a section briefly describing some measurement techniques.

5.1 Refrigerator setup

Most of the dilution refrigerator is just infrastructure supporting the cooling of

a small mixing chamber (so called because the He-3/He-4 phase separation driving

the cooling process occurs there.) The dilution unit is separated from a cryogen
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bath (nitrogen during initial pre-cools, then helium) by a vacuum can, sealed with

an indium O-ring. At the top of the dilution unit is a reservoir known as the

“1K pot.” The pot is connected to the helium bath through a siphon, with a

flow regulated by two needle valves adjusted from above the refrigerator. The pot

fills continuously with liquid helium and cools to ≈ 1.5 K through pumping. This

temperature is sufficient to liquefy a refrigerant mixture (“the mix”) of He-3/He-4

that is circulated in a closed cycle through the refrigerator. The volume of mix is

set so that the liquid surface occurs in the still, another reservoir in the refrigerator.

Since He-3 can be cooled through pumping to 300 mK [111], pumping at the still

cools the mix through the phase separation temperature 700 mK. The mix separates

into He-3 rich and He-3 dilute (≈ 6% concentration at base temperature) phases.

Pumping at the still drives these phases out of equilibrium, and the movement of

He-3 across the phase barrier to restore it has a latent heat associated with it that

provides cooling down to millikelvin temperatures. A more in-depth explanation of

the process is available in Lounasmaa [112].

In our refrigerator, the base temperature as normally operated is around 20

mK. This limit is set by conduction through the wiring to the mixing chamber, as

well as the heat load of the continuously cycling mixture. This base temperature

is only achieved at the mixing chamber; other stages of the fridge have their own

characteristic temperatures. The qubit is mounted in an aluminum sample box

thermally anchored to the mixing chamber. The mixing chamber is surrounded by

a brass radiation shield anchored to the still flange. The Stefan-Boltzmann law states

that radiated blackbody power is proportional to T 4. Since the still temperature

300 mK is an order of magnitude less than the vacuum can temperature 4.2 K, this

represents four orders of magnitude less radiated thermal power.

Figure 5.1 is a photograph of the dilution unit. The long finger at the bottom

is bolted to the mixing chamber. The finger is made of OFHC copper for good
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Figure 5.1: Photo of the dilution unit. The IVC is mounted to the 4K flange; the
radiation shield is mounted to the still flange.
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thermal conductivity. The finger holds the sample box as well as two sets of SMA

connectorized filters, seen in the long boxes in Figure 5.1. These filters, described

in Sudeep Dutta’s thesis [25], consist of lumped element low-pass LC filters rolling

off at 10 MHz followed by copper powder filters to eliminate high frequency signal

bypassing the lumped element filters. By placing these at base temperature, right

before the sample, the filters simultaneously remove most of the high temperature

thermal radiation while also generating comparatively little of it themselves.

During a cooldown, the major maintenance associated with the refrigerator

was periodic transfers of liquid helium. During the BBC2 measurements, I observed

fluctuations in the flux offset of the SQUID following a transfer. This was observed

as a change in the bias conditions necessary to reach a particular frequency, or a

change in the location of histogram peaks if run with swept currents. The size of

the shift was typically of order ∼ 0.1Φ0. It is unclear what the source of this shift is.

At points in the helium transfer the blowoff becomes rather strong, so mechanical

disturbance of the refrigerator is possible. On the other hand, while there was some

warming according to the mixing chamber thermometry, it was quite modest.

One possible explanation is vortex movement from residual field. I strive to

minimize the background field as the sample and box go superconducting. A mu-

metal shield is raised around the dewar after reaching 4 K but before condensing

the mixture and moving to 1 K. The entire refrigerator is operated in a shielded

room to provide extra isolation. Typically the shielded room would be depowered

and closed during cooldowns. For the BBC2 experiments, an electrical heater ran

during the first two cooldowns. The heater mitigated a helium leak in the L ports

that showed up during transfers as the top of the fridge cooled1. It is possible this

led to a larger background field during the superconducting transition and led to

trapped vortices.

1The leak was caused by slightly mismatched O-rings installed to replace old ones that were no
longer resilient.
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Figure 5.2: Photo of sample box used for the BBC2 measurements.

5.1.1 Sample box

For the BBC2 measurements, I used an aluminum sample box provided by

Ben Palmer’s group at LPS. The sample box is photographed in Figure 5.2. The

box consisted of two square pieces: a lid, and the piece where the sample was

mounted. The mounting piece has a custom printed circuit board (PCB) featuring

four tapered coplanar waveguides (CPWs). On each edge of the box, an SMA

connector was soldered to couple signals to the CPWs. A hole was milled out of the

center of the CPB so the sample could be placed inside. In Section 4.2 I discuss the

process of mounting and wirebonding the sample.

The idea of the aluminum sample box was to provide additional magnetic

screening for the device using the Meissner effect. Surprisingly, though, recent ex-

periments [113] have obtained substantially better results by using copper sample
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boxes instead of aluminum. It is conjectured that this is because of the better ther-

malization afforded by using a normal metal instead of a superconductor. Similarly,

painting sample boxes with an absorbing material [114], or potting the sample in

absorbing epoxy [115], appear to improve T1 by absorbing thermal radiation.

5.1.2 Wiring setup

In the BBC2 device, I use three lines that pass through the filter bank for low

frequency applications. One line provides the bias current. A second line monitors

the voltage of the sample to measure switches. The third line flux biases the sample.

The bias and voltage lines are joined by a tee after the filter bank, entering the

sample box on a common line. This allows four-wire measurements of the qubit

voltage. So two of the ports of the sample box are used for low-frequency lines.

While the impetus for the BBC2 design was reducing the overcoupling of the

microwave line measured in earlier devices [28], another appeal of the coplanar mi-

crowave feedline was the prospect of extracting information about the qubit through

the microwave line. For example, the continuous feedline allowed me to measure the

dc inductive coupling of the microwave line to the sample. A longer term goal was

dispersive microwave readout of the qubit state a la circuit QED (see Section 3.2).

To accommodate this requires microwave lines in and out of the sample box. The

input and output lines are not symmetric. While both lines must prevent noise from

reaching the qubit, the output line uses directional attenuation to shield the qubit

without degrading the desired signal. The input line uses thinner stainless steel

coax and attenuators. The output line uses thicker coax to reduce dissipation and

cryogenic microwave isolators to provide ≈ 40 dB of directional attenuation.

The BBC2 experiment involved some rewiring of the fridge, along with repairs

to some of the older parts. What follows is a catalog of the final setup for the five

relevant lines pictured in Figure 5.3:
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Figure 5.3: Simplified schematic drawing of the experimental wiring in the refriger-
ator for the BBC2 experiment. The left hand side shows the low-frequency wiring;
the right hand side the microwave wiring. The microwave output line is left open
atop the refrigerator.

117



• The bias current line Ib entered the fridge through the junction box on the

top on the port 1B. This line goes continuously from the top of the fridge to

the bottom and has not been changed in years.

• The remaining four lines that I used all entered through four distinct ports

labeled L1 through L4 on the left side of the fridge. Each port has a threaded

steel feedthrough. Female SMA connectors are soldered to brass flanges for

rubber O-ring seals. All four of these lines are heat sunk to 4 K through a

copper foil mounted to the brass flange the vacuum can is mounted on.

• L1 was used as the flux line. A length of UT-85 stainless steel inner and outer

coax (abbreviated SS/SS) goes through the foil heatsink and is tied to the 1 K

pot exterior. There it is connected to UT-85 flexible cable made of silver plated

copper (“flexi”). This short link is attached to the outer edge of a copper

heatsink bolted to the 1 K pot. This heatsink has two SMA feedthroughs

soldered to it. On the other side of the heatsink, a UT-20 cable winds down

to the junction box at the still where it is heatsunk again. The heatsinking

in the still junction box consists of an enamel wire GE varnished to the wall

of the copper box. L1 enters the still junction box in the second port from

the top. Across the junction box is home-built superconducting coax, with

stainless steel tubing and copper-plated niobium respectively as the outer and

inner conductors, insulated with Teflon tubing. This coax continues down to

the copper powder filter setup, entering powder filter 1, and is finally attached

to the sample box through a short length of UT-85 flexi.

• L2 was used as the voltage line. UT-85 SS/SS extends from room temperature

to the copper heatsink at the 1 K pot. From the heatsink to the junction

box, UT-34 SS/SS coax is used, entering the junction box on the third port

from the top. An unknown UT-20 cable goes from the junction box down
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to copper powder filter 4, passing through a couple of other stages of non-

breakout heatsinking.

• L3 was used as the microwave input line. Since we desire high frequency signals

on this line, it is not run through the powder filters. The entire line is UT-34

SS/SS with two interruptions. There are connectors at the still, allowing for

the introduction of an attenuator at this point if one wishes. (During the BBC2

run, we did not use an attenuator at this location.) At the mixing chamber,

a 20 dB SMA attenuator was used. At 10 GHz, the cable is specified to have

a loss of 10 dB per foot at room temperature. At cryogenic temperatures the

loss will be less, but likely still sufficient at the qubit transition frequency.

• L4 was the microwave output line. UT-85 SS/SS runs from room temperature

through the foil heatsink. To attach to the isolator, a connector was introduced

to allow a simple right angle bend. Another length of UT-85 SS/SS runs to the

output port of a PAMtech cryogenic isolator. The isolator is in-band from 4-8

GHz and provides a minimum of 18 dB of directional isolation. The isolator

is mounted on a bracket anchored to the 1 K pot. From the input port of this

isolator, a length of UT-85 SS/SS runs to a second, identical isolator anchored

to the flange below the continuous heat exchanger. To facilitate mounting, a

short length of UT-85 flexi goes from the input port of this isolator to a length

of UT-85 SS/SS running down to the sample box.

As discussed in Chapter 7, the BBC2 experiment was performed over the

course of three cooldowns. The described setup for L4 — which is how the

fridge is presently configured — was inserted between the first and second

cooldown. On the first cooldown, the cable from the sample box all the way

up through both isolators was present, but instead of continuing to room

temperature, a 50 ohm termination was attached to the output of the higher
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temperature isolator.

Switching from a terminator to complete transmission through the fridge of-

fered some immediate advantages. It allowed me to measure the mutual induc-

tance between the microwave line and the qubit, as described in Section 6.3.2.

Surprisingly, it also greatly simplified the measurement pulse setup, allowing

“dc” pulses instead of pulses on a 1 GHz carrier as described in Section 5.3.3.

It is not clear why this would be; if anything, the opposite seems more likely

since L4 was left open during typical operation.

5.2 Electronics setup

5.2.1 Instrumentation

Figure 5.4 shows a block diagram of the measurement setup. I will first summa-

rize the flow and then discuss specific instrumentation details. A function generator

produces a clock signal that starts each individual measurement. This clock starts

programmed current and flux waveforms. These are sent respectively to the bias

and flux lines through low-pass filtered ports in the screen room wall. A sync pulse

from the current bias function generator starts a timer. The sync pulse also triggers

the digital delay generators used for measurement pulses and gating the microwave

sources. After some time, the sample switches to the voltage state, sending a pulse

to the voltage line. This pulse is amplified by a homemade amplifier chain and

then stops the timer. The time t recorded by the timer is the data point for this

repetition. An actual measurement consists of thousands of repetitions, building a

histogram of switching times.

Here is the instrumentation in further detail:

• The master clock is an Exact model 628 function generator mounted on the

refrigerator instrument rack. It puts out a 7.5 V inverted square wave with
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Figure 5.4: Block diagram of the measurement electronics setup. The fine dotted
line represents an optical fiber connecting the Schmitt trigger in the output chain
to an optical converter outside the screen room.

121



4.7 V offset at 400 Hz, the clock rate of the experiment. The output from

the function generator comes through a 6N137 optoisolator (labeled CLOCK)

powered by a 12 V lead acid cell.

• From the optoisolator, the clock signal triggers the Agilent 33220A bias and

Agilent 33120A flux function generators. The clock signal is split by a BNC

T junction located on the external trigger port of the bias function generator.

The output of the flux function generator is connected to a BNC port on the

screen room wall labeled “Data 1” or “Flux.” The bias function generator is

T’ed at the output port, with the waveform being monitored on a Tektronix

scope running on wall power. The other side connects to the BNC port la-

beled “Data 2” or “Bias.” These ports both contain fairly aggressive low-pass

filtering to smooth out the digitization in the waveform. The -3 dB point is

at a few kHz, although there is a resonant enhancement near 20 kHz.

• The sync port on the bias function generator is also T’ed. The two arms of

the T connect to two more battery powered optoisolators labeled “START”

and “PULSER.” For most experiments, “CLOCK” and ”PULSER” were run

off a shared 12 V cell, with “START” getting its own dedicated cell.

• The “START” optoisolator leads to the start trigger on a Stanford Research

Systems SR620 timer. The timer has adjustable trigger points for both the

start and stop ports. By choosing the trigger value where the pulse from the

optoisolator is at its steepest, I minimize the impact of voltage noise on the

uncertainty in the time of the waveform start. I set the start trigger to 2.09

V and the stop trigger to 1.25 V.

• The “PULSER” optoisolator leads to the external trigger port (set to 50 ohms)

on a Stanford Research Systems DG535 digital delay generator. The delay

generator was used to send the short measurement pulse down the microwave
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line and also to gate the microwave source. The DG535 has four separate

output channels. These can be turned on at specific times relative to the

initial trigger. Two special output ports, labeled “A Π B” and “C Π D”, will

put out pulses between the turn-on times for the two channels listed in the port

name. Only these ports — which I abbreviate AB and CD — gave control over

the start and stop time of the signal, so AB and CD are the channels I used for

sending pulses. Since both the measurement pulses and the microwave gate

require SMA connections, I used BNC-SMA adapters directly on the BNC

ports of the DG535.

The output ports can output at standard voltages such as TTL or ECL, but for

measurement pulses I used the adjustable voltage mode, which allowed volt-

ages between 0.10 V and 4.00 V in steps of 0.01 V. As I discuss in Section 7.2,

adjusting the pulse height is essential for measurement. I usually found the

0.01 V increment too large, since it led to large changes in the pulsed escape

rate. I addressed this problem by putting a 50 Ω SMA attenuator on the line.

For the BBC2 sample, I used a 5 dB Minicircuits attenuator.

Because only two outputs are useful for pulsing, I use two DG535 boxes. The

second one is triggered from the T0 output of the first (i.e. a sync signal turned

on when it is triggered.) The AB output from the first DG535 is used to gate

an Agilent E8257D microwave source. The second DG535 gates a second HP

microwave source from the CD output. The AB output of the second DG535

is used to source the measurement pulse; it is routed through a broadband

microwave splitter (called splitter 1) on the front of the HP microwave source.

• The Agilent E8257D source was the primary source I used for qubit control.

It is gated by the AB channel of the first DG535. Gating the source allowed

me to turn the microwaves on and off at set points in the bias waveforms. In
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particular, when ramping to a fixed bias plateau I could turn the microwaves

off to avoid exciting unintended transitions. In addition to the hardware gate,

I could turn the microwave output on or off through software. The RF output

of the E8257D goes through an inside-outside dc block to another broadband

microwave splitter (splitter 2). The measurement pulse and output from the

HP microwave source (used for two-photon experiments) are combined through

splitter 1. Splitter 2 combines the output of splitter 1 with the E8257D output

and sends to the refrigerator through an SMA bulkhead in the screen room

wall.

• The bias, flux and voltage lines all feature custom built electronics run off

batteries inside the screen room. To protect the sample from spikes in cur-

rent that may occur when devices are turned on or off, all three lines have a

grounding switch as the last element before entering the fridge. These switches

have BNC input and outputs. The center pins of the two BNC connectors are

soldered together. The throw on the switch is open when the switch is set to

allow measurements, and shorted to ground when the sample is grounded.

Before entering the fridge, the bias and flux lines go through custom-built

unity gain op amp buffers. These present a high input impedance to the

function generators. This keeps the wall filters from loading the generators

and breaks ground loops in the circuit. The buffers are built using an Analog

Devices AMP03 op amp powered by 15 V chip regulators in the box; each

buffer is powered with two series 12 V lead acid cells. To make the function

generators behave more like current sources, resistors are placed on the output

of the buffers. I used a 100 kΩ resistor for the bias line and a 1 kΩ resistor for

the flux line. The relatively weak inductive coupling of the flux coil requires

higher currents; mitigating possible heating by these currents is why much of

the flux line is superconducting coax.
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When the SQUID tunnels to the voltage state, the voltage increases until it

corresponds to the electrostatic energy necessary to break a Cooper pair. For

an aluminum device, this corresponds to about 400 µV. Substantial ampli-

fication is needed to bring this to the ∼ 1 V order of magnitude needed for

triggering. Following the voltage line switch, I use a two stage amplifier chain

built for our lab’s earliest qubit experiments [71, 110]. The first amplifier

is a low-noise amplifier using 16 JFETs as the active element. The second

stage amplifier is ac coupled and can be switched to run inverted. This allows

the amplifier chain to be used to measure voltage pulses of either sign, which

could arise by changing the sign of the bias current. The second stage am-

plifier outputs to a Schmitt trigger with both electrical and optical outputs.

The electrical output is only a debugging mechanism; during experiments, an

optical fiber carries the switching data out of the screen room. All three de-

vices in this chain are powered using low noise 15 V power supplies which are

in turn powered by lead acid batteries.

• The pulse on the optical fiber is converted back into an electrical signal by

a box outside of the screen room. This box is run off a custom built 12 V

wall-powered power supply. Finally, this signal is sent to the stop port on the

SR620 timer. Receipt of this pulse signals the collection of one data point.

The raw data for the experiment is the series of stop times on the timer,

typically collected in a histogram. With the next cycle of the master clock,

the measurement repeats.

In addition to the measurement electronics, there is also an instrument rack

with tools for operating the refrigerator. Resistance thermometers are mounted

at various stages in the fridge; the mixing chamber in particular uses a calibrated

ruthenium oxide thermometer. The resistances were measured using a Picowatt

AVS-47 active resistance bridge. A heater controller sourced specified power to
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wire-coil heaters at the mixing chamber and still. A separate circuit was available

to heat the 1K pot. All heaters were attached to a temperature controller, although

I did not use this in measuring BBC2. During cooldowns the resistance bridge

was attached to the computer through a special GPIB link to allow logging of the

temperature data.

5.2.2 Computer control

Most data collection was automated using LabView code on a Windows XP

machine. Communications to the various instruments were performed using GPIB.

The central program is named “OneSR.” OneSR sends the SR620 timer a request

to buffer a user-specified number of data points (typically 1000). After the switches

are recorded, the data is sent to the computer before the next set of events is taken.

OneSR has a flag that can be set by other code to pause the data gathering. This

is typically used to change measurement settings (e.g. microwave frequency, pulse

height.) It also has code to produce a live histogram of the data gathered so far, a

graph showing where the last 100 counts occurred, the tunneling rate inferred from

the histogram, and the average switch location of the data in each buffer.

Given the large amount of data (and concomitant amount of time) needed, the

data automation was necessary. However, the GPIB chain leads to a complicated

set of connections between all of the instruments and the relatively noisy computer.

The optoisolators and buffer amplifiers discussed in Section 5.2.1 break ground loops

on the signal ports. The GPIB connections do not employ any of these safeguards

(although some commercial solutions for optoisolated GPIB exist).

5.2.3 Grounding issues

My initial measurements on BBC2 suggested there were electrical issues with

the experimental setup. I will show the data suggesting the problem and discuss my
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approach to fixing it.

Figure 5.5 plots some of my first spectroscopic data from BBC2. This mea-

surement used the swept measurement technique discussed in Sections 5.3.2 and 7.1.

The x-axis is the applied bias current Ib. The y-axis is the frequency of the conti-

nously applied microwave drive. Higher frequencies were taken at higher powers to

counteract the extra dissipation in the microwave line at higher frequencies. The

color represents the number of counts measured in a particular time bin.

Whenever I measured microwave effects, I took several hundred counts with

the microwaves on (“microwave”) followed by several hundred counts with the mi-

crowaves off (“background”). Since the background rate can change with time due

to changes in the bias (intended or through drift), this ensured that I compared mi-

crowave data to the relevant background. Figure 5.5a) shows the microwave data,

Figure 5.5b) the background. In both plots, near 5700 MHz the character of the

histogram changes. Below 5700 MHz the histogram is broader and bimodal; above

5700 MHz, the histogram collapses down to the earlier of those two peaks. What is

striking is that this apparent frequency dependence occurs even in the background

data, where no microwaves are being applied.

The change from unimodal to bimodal histogram behavior also showed hys-

teresis. Once I crossed the threshold on the microwave source where the transition

occurred, the sample would continue to produce unimodal histograms until I re-

verted to a different setting on the microwave source. This held true even when

I grounded the sample for a couple hours before measuring again. Further test-

ing revealed that the shift was not a property of the applied frequency, but rather

the applied power. When the microwave source was operated at an output power

of −5dBm or higher, the histogram was in the unimodal state, regardless of the

microwave frequency. The appearance of a frequency dependence from Figure 5.5

arose because I had used high power to counteract the loss at high frequencies.
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Figure 5.5: a) Measured histograms at several microwave frequencies and powers.
b) Histograms taken during the same run with microwaves turned off.
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Figure 5.6: Calculated escape rates from histogram data. The two curves correspond
to two different electrical setups.

The persistence of the phenomenon when microwaves were turned off, along

with a lack of frequency dependence in the power at which the histogram transition

occurred, suggested the histogram transition did not depend on the properties of

the microwaves at the sample. The next thing to check for was a room temperature

problem. Unplugging the microwave input line, either at the input atop the fridge

or at the screen room wall, appeared to eliminate the problem. Introducing the in-

side/outside dc block to the microwave line appeared to give good results. However,

for these swept measurements the DG535 pulsers were not being used. Introducing

the pulsers to the measurement circuit caused the problem to return. At this point,

I removed the GPIB connection to the microwave source; this appeared to make the

issue go away.
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After considerable tinkering with the setup, I finally arrived at a configuration

that gave the quietest looking histograms. Figure 5.6 plots the tunneling rate cal-

culated from the measured histograms for two different wiring setups. The x-axis

is the applied bias current Ib, and the y-axis is now the tunneling rate in events

per second. An advantage of plotting escape rates instead of the histograms is that

modest changes in histogram shape are often more clear as features in the escape

rate.

The “old” data of Figure 5.6 shows the escape rate with no microwaves applied

in the original experimental setup. In this setup, most of the instruments were

plugged in through strips attached to two isolation transformers. The exceptions

were the computer and the thermometry rack, which were plugged into receptacles

on the screen room that had been recently installed for safety reasons. The old

escape rate contains a broad hump; this is how the bimodal histogram shows up in

the escape rate.

The new setup reorganized the electronics so that the computer was now

plugged in to one of the isolation transformers and the thermometry GPIB con-

nection removed altogether during measurement. In particular, the computer, the

microwave source, the timer and the pulser were all on the same power strip at-

tached to the isolation transformer. I also reordered the configuration of GPIB

cables. Compared with the old setup in Figure 5.6, the escape rate is much cleaner.

The most likely source of improvement was changing where the computer got its

power from; later measurements suggested the thermometry GPIB was not the pri-

mary source of trouble.

While these corrections were enough to perform interesting measurements on

the sample, the obvious question is whether I eliminated all of the problems. Indeed,

it is very likely that some issues remained. Two phenomena in particular suggested

trouble. In Section 5.1, I discussed the microwave output line entering the fridge
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through the port L4. During most measurements, this port was left open. When I

put a 50 Ω terminator at L4, the histograms became extremely noisy, suggesting a

coupling of noise from the fridge ground through the terminator to the center line

on the coax. I also observed occasional dark counts on the timer, where the stop

port on the timer would trigger despite the amplifier chain being turned off.

5.3 Measurement techniques

All of my data on BBC2 used the voltage switching readout. However, I used

two different approaches to generating switches. One method — “swept measure-

ment” — linearly ramped current and flux biases up to and through the critical

current of the SQUID. Near this critical point, the tunneling rate Γ to the voltage

state is very high and switches are easily visible. The second method — “pulsed mea-

surement” — instead ramped to lower values of current and flux and then plateaued.

To enhance the escape rate, I sent a short measurement pulse to the qubit. In this

section I will discuss aspects of these measurement techniques; further details are

available in Chapter 7. With both approaches, I began the flux ramp with a sinu-

soidal current to “flux shuffle” the SQUID, a technique for speeding data collection

[116, 117].

5.3.1 Flux shuffling

For values of the parameter β ≡ 2πLI0/Φ0 > 1, there are multiple possible

stable equilibria for the SQUID. Intuitively, trapped flux quanta in the SQUID pro-

duce loop currents. If the loop current added by introducing another flux quantum

does not exceed the critical currents, then the SQUID is stable there as well. Large

critical currents or big inductances (and thus small loop currents) make this type of

current rearrangement easier. I refer to these multiple equilibria as flux states. Since
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Figure 5.7: Flux shuffles at fixed amplitude but varying offset.

each of the flux states is at different bias conditions, an experiment set up assum-

ing one flux state will not typically work very well in the others. Without special

preparation, the qubit starts in a random flux state, leading to wasted counts.

Flux shuffling reduces the amount of data needed by preparing the system

in a chosen flux state. The flux states correspond to the wells remaining after

the magnetic energy associated with the inductance bends the washboard into a

parabola. Applying flux tilts these wells, deepening those on one side of the parabola

while destabilizing those on the other. As a flux state turns unstable and vanishes,

the SQUID retraps in a new flux well. By carefully choosing the amplitude and

offset of the sinusoidal flux shuffling signal, one can arrange so that only one flux

state is stable at all times during the waveform. As the flux cycles back and forth,

the other flux states empty out, but this one flux state continues to fill. After several

cycles of the shuffling signal, the probability of being in the chosen state approaches

1.

Figure 5.7 is a plot from a scan of flux shuffling parameters. All of the shuffles

in this plot were taken at a single amplitude of the shuffling waveform; the full
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scan consists of numerous plots like this. The x-axis is the offset of the flux shuffle

waveform. The y-axis is the applied bias current. The color is the fraction of all

switches for a given offset occurring in a particular bin. At most offsets, three distinct

flux states are visible. For offsets between 2 and 2.5 Φ0, the shuffle is effective and

the three flux states collapse to the central flux state.

5.3.2 Swept measurement

The key feature of swept measurement is that, for at least a portion of the

measurement, the bias and flux currents are both linearly ramped. As shown in

Equation 2.13, the Josephson inductances of the SQUID junctions are sensitive to

the current passing through them. Thus, adjusting the bias leads to changes in

the frequency of the qubit. This allows me to apply continuous wave microwaves2

through the whole ramp. When ω01 moves through the applied frequency ω with the

changing ramp, the escape rate is enhanced. By mapping where this enhancement

occurs for a series of drive frequencies ω, I establish the spectroscopy of the qubit.

Figure 5.8 shows a timing diagram for the various sources in a swept mea-

surement. Following the flux shuffle, both the flux and bias currents are linearly

ramped. The bias ramp has a small negative offset. Since the junctions are strongly

hysteretic, this helps ensure that the SQUID retraps to the zero-voltage state fol-

lowing each shot. The amplitude of the bias ramp is chosen to exceed the maximum

critical current of the SQUID. This guarantees that each waveform will eventually

produce a voltage pulse. The data is collected into a histogram of switching times.

This histogram is then used to calculate an escape rate following the technique of

Fulton and Dunkleberger [118]. That calculation is described in Section 7.1.

The ratio of the ramp currents in the flux line and the bias line is not chosen

arbitrarily. It is dictated by the current-flux characteristic of the SQUID, discussed

2As discussed in Section 5.2.3, half of the trials have the microwaves turned off to establish
background data.
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Figure 5.8: Timing diagram for a single shot of swept measurement. The bias
current Ib and flux are linearly ramped. Microwaves are applied continuously; no
measurement pulse is used. Voltage pulses are measured in the high-bias region near
the end of the ramp.
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in Section 6.3.2. The arms of the current-flux characteristic correspond to switches

associated with the two different junctions of the SQUID. Since our design tries to

emphasize the more well- isolated, smaller qubit junction, I am interested in switches

that occur on the correct arm of the characteristic. Ramping both the current and

the flux — a “double ramp” — avoids switching on the undesirable arm. For the

BBC2 device, the qubit arm was the one which switched with decreasing current as

flux was increased.

Earlier samples used double ramps where the flux and bias were linearly related

over the entire ramp region. As seen in Figure 5.8, I did not double ramp this way.

The critical current of the big SQUID junction was almost an order of magnitude

larger than most of the lab’s recent samples. This larger current on the bias ramp

means that a fixed linear relationship between flux and bias would require a flux

current peaking at around 6 mA. At this much current, dissipation on the flux line

leads to heating in the refrigerator.

Instead, I followed a more complicated trajectory on the current-flux charac-

teristic. This path is shown in Figure 5.9. The x-axis is the applied flux; the y-axis

is the applied bias current. The dashed line is a cartoon showing the path my chosen

ramps followed. I started applying only bias, moving upward on the characteristic

plot3. As I approached the region where switches are visible, I began the flux ramp.

This technique helps with heating in two ways. Since I ramped over a shorter re-

gion, the maximum current I applied on the flux line was considerably smaller. The

overall duty cycle of the flux waveform was also reduced by a factor of 5. This let

me measure switches on the qubit branch without heating.

The advantage of the swept measurement is that crossing the resonance any-

where in the measurable region (i.e. where the escape rate is high enough for the

qubit to switch) yields microwave enhancement in the escape rate. Figure 5.10

3The bias line includes some mutual inductance to the SQUID loop, meaning that any linear
bias ramp will also include some small flux contribution. I typically ignore this.
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Figure 5.9: Current-flux characteristic for the qubit. The dashed line is the path
traced in flux and bias by the ramps shown in Figure 5.8.

Figure 5.10: Example of resonant escape rate enhancement in the swept measure-
ment. This plot is taken from Figure 6.5b in Sudeep Dutta’s thesis [25].
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shows this microwave enhancement in data taken from Sudeep Dutta’s thesis [25].

The white circles are the microwave data; the black circles are the background data.

The microwave peak occurs at the bias Ib such that the qubit resonance ω01 matches

the applied microwave frequency ω. To map the system spectroscopically, only the

microwave frequency needs to be scanned. Compared to pulsed measurement, far

less data is required for the spectroscopy.

While this convenience is very nice, the swept measurement also has several

disadvantages. Since I can only measure the SQUID in places where it tunnels, I can

only perform swept measurements when the qubit is biased close to Ic. At high bias,

the Josephson inductance (2.13) changes rapidly with small fluctuations, yielding

large dω01/dIb. This sensitivity causes a substantial reduction in T2 as discussed in

Section 2.4.2 and manifests as “inhomogeneous broadening” [56, 119]. The swept

waveforms also mean that ω01 is continuously changing. For short times the effect is

minor, but long-lived coherent oscillations become complicated when the microwave

drive has a time-sensitive detuning. Lastly, as I discuss in Section 7.1, for BBC2 in

particular the microwave enhancement proved difficult to calculate because of the

shape and location of the peak.

5.3.3 Pulsed measurement

Pulsed measurement addresses all of those problems. The key difference with

pulsed measurement is that the current and flux bias are brought to some fixed level

and then held constant during the course of the experiment. To measure the qubit

state, I use a brief current pulse to quickly bring the system back to strong bias.

The pulse height is chosen so that during the pulse the SQUID tunnels with high

probability if and only if it is in the excited state.

Figure 5.11 shows the timing diagram for the pulsed readout. The waveforms

begin with a flux shuffle. On the bias and flux lines, the linear ramps begin some-
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Figure 5.11: Timing diagram for a single shot of pulsed measurement. The ramps
of Figure 5.8 are interrupted and stretched out to a long plateau. Microwave power
is applied only in a small region of the plateau. Using measurement pulses I can
measure the qubit state at any point in the plateau. Following the plateau, there is
a short ramp to force a switch.
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what earlier, allowing room for a long plateau. By waiting at the plateau value for

hundreds of microseconds, ringing introduced by filters on the bias and flux lines

can settle down to yield steady operating conditions. Near the end of the plateau,

microwave power is applied, typically for 2-3 µs. As I discuss in Section 7.2.1, by

adjusting the timing of the measurement pulse relative to the microwave turn-on

I can perform three different types of microwave measurement. The waveform fin-

ishes by ramping flux and current to force a switching event on every shot. This

effectively records the total number of repetitions in the data, which is necessary to

calculate the switch probability Psw in response to a pulse.

I used two different approaches to generate measurement pulses. The straight-

forward approach involves attaching the AB output of a DG535 directly to the

splitters on the microwave sources. Channel B is set to be 6-10 ns after Channel

A, and the voltage of the pulse is adjusted to control the pulse current. The pulse

is sent down the microwave line and transmitted to the qubit through the coplanar

waveguide feedline.

In the second approach, I used a 6 ns pulse from the DG535 to modulate a 1

GHz carrier signal from the second microwave source. The carrier signal was applied

to the local oscillator (LO) channel of an Eclipse Microwave 1020 doubly-balanced

ring mixer. The pulse from the DG535 was applied to the IF channel, and the

output on the RF channel of the mixer was sent to the splitter on the front of the

Agilent source. Since the mixer demands relatively high power, even with strong

isolation on the mixer an undesirable amount of LO power reaches the RF channel.

To combat this, I used another channel of the DG535 to gate the 1 GHz microwave

source in a small window surrounding the desired pulse. Figure 5.12 shows an oscil-

loscope trace of one of these pulses amplified by a MiniCircuits microwave amplifier.

The most significant part of the pulse is the 7-8 ns high amplitude region at the be-

ginning, which is followed by a small secondary pulse. Since the escape rates depend

139



Figure 5.12: Oscilloscope trace of the modulated 1 GHz pulse. The main pulse body
is 7-8 ns long.

exponentially on bias I do not expect the secondary pulse to produce switches.

I tried these two different pulse techniques because of the grounding problems

discussed in Section 5.2.3. For the earliest measurements on BBC2, the microwave

output line did not extend all the way to room temperature but stopped at the

isolator mounted at 1K. Using the initial setup with the grounding issues, direct

DG535 pulses were useful for measurement. However, after changing the setup to

fix the grounding issue, the DG535 pulses did not appear to produce escapes even at

very high voltages. I then tried the modulated 1 GHz pulses and found they worked.

Curiously, after the change to L4 described in Section 5.1.2 the situation reversed.

This stresses the need in future experiments to fully characterize the microwave lines

from dc to 10 or 20 GHz.

5.4 Summary

In this chapter I reviewed the experimental setup for my measurements on

BBC2. In the refrigerator, the important changes from earlier qubits were the sample
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box and the rewiring of the microwave lines L3 and L4. I reviewed the adjustments

I made to the electrical setup to eliminate the grounding issues demonstrated by

my initial measurements on BBC2. Finally, I discussed how I biased the qubit and

two different techniques for inducing switches.
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Chapter 6

BBC2 qubit: design and initial characterization

Our lab has studied many generations of dc SQUID phase qubits. We achieved

considerable improvement in the performance of our qubits by moving to designs

featuring small junctions with an external capacitive shunt, as previously studied by

the Martinis group [78]. While we first used parallel plate capacitors with a silicon

nitride dielectric to accomplish this [29], interdigitated capacitors are substantially

less lossy still.

This chapter focuses on the design and characterization of the BBC2 dc SQUID

phase qubit. To explain the design, it is helpful to review some features of PB9 [28],

an earlier dc SQUID phase qubit studied by our group. PB9 shunted the qubit

junction with a large interdigitated capacitor (IDC). At its best operating points,

PB9 offered the best T1 times we have observed. However, at 350 ns, T1 still fell well

short of the > 1 µs design goal. I show a key plot from [28] suggesting why PB9’s

T1 was so short and explain how the design of BBC2 accounts for this. Finally, I

show some of the initial measurements I performed to characterize the BBC2 qubit.

6.1 PB9 and redesign impetus

With improvement in T1 being the principal design goal, the most significant

question is where the energy stored in the qubit can go. Unfortunately, this question

is still not well understood. The most commonly considered possibilities are coupling

to individual microscopic local quantum systems, dissipation from quasiparticles, or

coupling to electromagnetic radiation. Two-level systems, manifesting as avoided
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level crossings in spectroscopic data [75], are certainly present in junction barriers.

The long lifetimes of qubits designed to minimize the importance of surface effects

[107, 108] suggest two-level systems at surfaces are also important.

Similarly, there are many different ways for the qubit to radiate that need to

be considered. Most (if not all) superconducting qubits are measured while in small

metal boxes, presumably limiting straightforward dipole radiation from the qubit.

However, recent work suggests that even though these sample boxes are operated

at dilution refrigerator temperatures, thermal radiation continues to be a problem

[114, 115, 120] through the generation of quasiparticles. This is an important insight,

suggesting that engineering better shielding around the qubit can lead to improved

performance.

On chip, we believe the dominant form of radiation is coupling to the leads

we use to measure and control the system. On the PB9 device, there were three

lines to couple to: the dc current bias lines, the flux bias line, and the microwave

line. The discussion of the filtered dc SQUID in Section 3.3 explained how filtering

reduced loss to the current bias line. For the flux and microwave lines, the goal was

to minimize dissipation by making the coupling to the lines sufficiently weak. Thus,

PB9’s flux line was made relatively short and far away from the SQUID loop. The

microwave was coupled with a short overlapping segment of two nearby striplines,

presenting a very small capacitance. Photos of PB9 are shown in Figure 2.13.

Given all these couplings, it is natural to ask which one was the limiting factor

for PB9’s T1. Figure 6.1 plots two separate measurements as a function of bias.

The blue points are measurements of T1 at the different bias conditions, with T1

on the left y-axis. The dashed line is the inverse of the coupling between the qubit

and the microwave line at the same bias points. This coupling is inferred through

Rabi measurements. Since the Rabi frequency depends on the detuning and power

of the drive signal, by operating at zero detuning one can use the Rabi frequency as
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Figure 6.1: Plots of T1 and inverse microwave couplings from the PB9 device as bias
conditions are varied. This plot is from Tony Przybysz’s thesis [28].

a power meter for the microwaves arriving at the qubit.

It is thus perhaps a misnomer to refer to this as the coupling. Since the

qubit frequency is changing with the bias conditions, it is entirely possible that the

coupling is roughly constant and the microwave line itself has wide variation in the

power transmitted from room temperature. Whether the issue is coupling or the

transmissivity of the line, in both cases the effect on the lifetime is the same. The

current noise power spectral density SII(ω01) transmitted from the microwave line to

the qubit varies with bias conditions. As shown in Section 2.4.3, more noise means

less T1.

The importance of Figure 6.1 is that T1 and the inverse of the coupling track

each other remarkably well as the bias is varied. This is especially notable at low

T1 where the microwave coupling is strongest. At very weak couplings, the T1 satu-

rates, suggesting that some other dissipation channel became more important. Still,

this plot was a very promising lead, suggesting that a more appropriately coupled
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microwave line would yield immediate T1 improvement at many bias conditions.

Since the intended coupling of the microwaves was already very small, we

believed it was likely that they were coupling to the qubit in some way other than

the intended capacitive coupling. To get a more controlled coupling, we decided

to use an on-chip coplanar waveguide (CPW). This approach is quite popular in

superconducting qubits. For us, particular inspiration came from the circuit QED

architecture [30] and the work our colleagues at LPS had done on coupling lumped-

element resonators to CPWs [31, 32, 121, 122] . Our goal for BBC2 was to make the

microwave coupling more predictable and well-controlled. Rangga Budoyo designed

the original version of this qubit [123], using Microwave Office to calculate the

intended coupling.

6.2 BBC2 design

Figure 6.2 is a photograph of the qubit and its immediate environs from an

early version of the BBC2 device. The CPW center conductor is highlighted in red.

The qubit sits in a cavity within one side of the ground plane of the CPW. With

this placement, the qubit should have limited exposure to microwaves entering in

places other than the CPW. Not all elements of the qubit are visible here; to see

elements of the circuit such as the LC filter and the flux lines, refer to Figure 4.5.

Given some of the complications introduced by the normal modes model dis-

cussed in Section 2.5.2, one of the goals for this qubit was to choose parameters

closer to the independent junction regime. A quick heuristic for this is to compare

the loop inductance L = Li +Lq to the Josephson inductance Lqj of the qubit junc-

tion; I choose the qubit junction since it, being smaller, has the larger Josephson

inductance of the two junctions. The ratio is

L

Lqj
=

2πLI0q

Φ0

≡ βL. (6.1)

145



Figure 6.2: Photo of the qubit region from a test fabrication of the BBC2 design.
Visible features include the meandering qubit inductor Lq and the IDC Cc (colored
green in the image). The LC filter and contact pads are to the left of the image.
The CPW center conductor is colored red.
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When βL is large compared to unity, then we expect the coupling to be relatively

unimportant and the independent junction picture is valid. With a qubit junction

critical current of 1 µA and a loop inductance L ≈ 2 nH, this leads to a ratio of

2π. This estimate is for the unbiased junction; at higher bias currents the coupling

becomes more significant. However, since the dependence is
√

(1− (Ib/I0)2), even

at a bias of 87 percent of the critical current L/Lqj = π. Thus the independent

junction approximation seems potentially reasonable for these parameters, although

we must still examine the impact of the normal modes model on the lifetime.

As discussed in Section 2.4.3, T1 can be considered the RC time constant of

our junction. That model considered a single junction and a single noise source.

Here I extend that analysis to include the SQUID and multiple sources of noise.

The analysis leading to Eq. (2.67) remains mostly intact. All that changes is I use

a more general perturbation operator instead of γ:

Γ =
2~ω01

R

∣∣∣〈0| X̂ |1〉∣∣∣2
~2

e~ω01/kTq − 1

e~ω01/kTn − 1
, (6.2)

where X̂ is the perturbation operator appropriate for the type of noise we’re con-

sidering. I will be assuming that Tq = Tn for the various types of noise sources for

now. Given that assumption, I separate Γ into two contributions

Γ = SII(ω01)κX , (6.3)

where

SII =
2~ω01

RX

; (6.4)

κX =

∣∣∣〈0| X̂ |1〉∣∣∣2
~2

. (6.5)
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This partition is helpful for physical intuition, as it distinguishes the contributions

from the relevant matrix elements from those arising from filtering effects that result

in less current (or flux) noise reaching the SQUID in the first place.

Further simplification results from considering the types of operators X̂ I am

interested in. From the normal mode analysis, these operators will be some com-

bination of γ̂i and γ̂q. All I care about are the qubit mode components of these

operators, which have matrix elements involving the harmonic oscillator rescaling

term
√
~/2ω01. The missing mass in this term is buried in the basis transform to the

normal coordinates given by AiQ and AqQ, as mentioned in the discussion following

Eq. (2.107). The harmonic oscillator rescaling cancels the frequency dependence

in SII ; the mass rescaling remaining in κX corresponds to an effective capacitance.

Thus filtering extends T1 by giving a larger RX ; smaller matrix elements correspond

to a larger effective CX .

Each noise source has its own characteristic dissipation rate. I assume the noise

sources are uncorrelated; this results in a total decay rate that is simply the sum of

the individual decay rates. While there are many plausible dissipation channels, the

ones I examined are dielectric loss in the junctions, radiation through the various

leads, and 1/f flux noise.

6.2.1 Dielectric loss

Dielectric loss in the junctions is expected to be one of the major sources of loss.

In the original model for this [76], the mechanism of loss was posited to be individual

two-level defects in the junction barrier. By making a smaller junction, fewer defects

would remain in the junction and the loss would be less significant. Martinis et al.

reported a loss tangent1 of 1.6 × 10−3 for AlOx2 tunnel barriers. Since individual

1The loss tangent is the ratio of the resistive part of the impedance to the reactive part; greater
loss tangent means more loss.

2Since the exact stoichiometry is unknown, AlOx is a customary notation for the junction
barrier oxide.
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discrete fluctuators were visible in the qubit spectrum, it is an interesting question

whether this loss tangent can be extrapolated to junctions sufficiently small so that

individual fluctuators are not visible in the spectroscopy. However, by assuming

that it can, I make a worst-case estimate of the loss associated with the junction

dielectric.

Making the junction smaller does reduce or eliminate defects, decreasing dis-

sipation (and thus increasing the shunt resistance R) linearly with junction area A.

However, since this also (neglecting edge effects) shrinks the junction capacitance

by a factor of 1/A, we do not expect a gain in T1. The only way to win is to use a

less lossy capacitor dielectric. One approach to this problem involves better junc-

tion barriers, epitaxially grown [124–126]. Some groups have achieved considerable

success this way. However, this style of device fabrication requires more involved

methods, equipment and expertise.

The approach we took followed Steffen et al. [78] by employing a low-loss shunt

capacitance. To achieve very low loss, we used an interdigitated capacitor (IDC)

design instead of a silicon nitride parallel plate shunt capacitor. Lumped element

resonator measurements using identical materials performed at LPS [32] suggested

we would achieve a loss tangent of 5 × 10−6, almost three orders of magnitude

better than amorphous AlOx. By making the IDC large relative to the junction

capacitance, we can improve the overall dissipation considerably.

The loss tangent of a capacitor is

tan δ ≡ ReY

ImY
=

1

ωRC
. (6.6)

With two capacitors Cc and Cj in parallel, I can get the effective loss tangent from

(6.6) using the parallel combination of the Rs and Cs. The combined resistances
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give

1

RC

=
1

RCj

+
1

RCc

;

= ω (Cj tan δj + Cc tan δc) .

(6.7)

Since the combined capacitance is just Cj + Cc, dividing both sides by ω(Cj + Cc)

yields the loss tangent:

tan δe =
Cj

Cj + Cc
tan δj +

Cc
Cj + Cc

tan δc. (6.8)

Thus, the loss tangent for the combined junction-IDC system is an average of the

loss tangent for the two separate capacitors, weighted by the capacitances Cc and

Cj. This calculation assumes there is insignificant parasitic inductance in the IDC,

as otherwise the admittances add in a more complicated fashion.

For a single junction, this RC picture is quite useful. For multiple junctions,

it is less clear to me how to account for this type of loss. In principle, it would seem

that any resistive noise associated with the isolation junction is transferred through

the loop inductance L to the qubit junction. I ignore effects of this kind; I expect

that noise generated from a lossy capacitor has a much more significant impact on

the junction directly shunted by that capacitor. So, I will consider the local loss

tangents to directly give an RC timescale a la the single junction worked out in

Section 2.4.3. The isolation junction still contributes to the loss in this picture,

since in the normal modes theory the normal coordinate of the qubit mode has a γi

component.

The qubit junction was designed to have an area of 0.175 µm2. For the sought

critical current density, a reasonable estimate for the specific capacitance of the

junction is 50 fF / µm2 [127]. Thus I expect Cqj = 7-10 fF. The IDC value can be
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estimated from a microstrip formula derived using conformal transformations

Cc =
ε× 10−3

18π

K(k)

K ′(k)
(n− 1)L pF. (6.9)

The formula is from [128], which explains the elliptic integral terms like K(k) which

depend on the aspect ratio of the fingers in a complicated way. More simply, Cc

also depends linearly on the number of interdigitated fingers and the length of those

fingers. The effective dielectric constant

ε ≈ εd + 1

2
+
εd − 1

2

1√
1 + 12h/W

(6.10)

depends on the ratio of the height h of the capacitor fingers above the ground plane

to the width W of those fingers. The closest conducting surface under the strips is

the sample box, thus h ≥ 430 µm, while the fingers themselves are 0.7 µm wide.

Thus the effective dielectric constant is just an average of the constants for vacuum

and sapphire = 10.8.

The design capacitance Cc ≈ 1pF , using around 90 fingers 350 µm long. To

get a low charging energy and the best effective loss tangent possible, the goal was to

make Cc as big as feasible. As seen in Figure 6.2, the IDC already takes up a great

deal of chip real estate. Equation 6.9 suggests that more fingers would increase Cc.

However, the undercut needed for double angle evaporation (see Section 4.1 limits

how tightly the fingers can be packed. If too much resist is cut away underneath the

resist spacers between fingers, the IDC pattern gets washed away in development.

For BBC2, I settled on fingers 0.7 µm wide separated by 2.3 µm for reliability.

Combining the design capacitances Cc and Cqj with their expected loss tangents

gives the effective loss tangent tan δc+tan δj/100 = 5×10−6+1.6×10−5 = 2.1×10−5.

Then

Rdq =
1

ω0(Cj + Cc) tan δe
. (6.11)
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Next is the filter capacitor. This is made with silicon nitride, expected to have

a loss tangent one to two orders of magnitude better than junction barriers [31]. In

addition, the matrix element entering into T1 calculations will be small. From (3.10),

the resonator component of the dispersive limit Jaynes-Cummings wavefunction is

proportional to (g/∆), a quantity I show is quite small in BBC2 in Chapter 7.

Thus the matrix element 〈0| γ̂f |1〉 will also have this g/∆ weighting, which is then

squared in calculating the transition probability needed for Γ. I expect loss to the

filter capacitor dielectric to be unimportant and I do not consider it further.

The isolation junction loss is also suppressed, but not as heavily as the filter.

From Equation (2.103) we see that when Ci � Cq the weight of 〈0| γi |1〉 is a factor of

approximately Lij/Lij +L less than 〈0| γ̂q |1〉3. Thus the decay rate associated with

dielectric loss to the isolation junction goes as (Lij/Lij +L)2. With no applied bias,

this contribution is quite small. However, as greater bias is applied, Lij increases.

Since the loss tangent for the big junction is just the bare loss tangent for a junction,

at high isolation bias the loss through the isolation junction can become significant.

6.2.2 Radiation to leads

The other source of loss considered in the original design was through radiation

to the various leads. There are three lines to consider: the current bias line, the dc

flux coil, and the coplanar microwave line. The Fermi’s golden rule analysis applied

to the bias line in Section 2.4.3 applies to the other lines as well. The most important

point in the analysis is the consideration of the current noise spectral density SII

presented by each line. Assuming 50 Ω noise sources, this is just a measure of the

coupling to the various lines. The other consideration is the appropriate matrix

element for each line. This can be determined from the Hamiltonian. The original

design document for BBC2 used the dc SQUID Hamiltonian (2.48), which I use here

3Numerically I do not make this approximation and instead weight the escape rate by
(AiQ/AqQ)2 explicitly.
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as well.

• For the bias line, the impedance transform arguments of Section 3.3.1 lead to

an increase in Rb from the LC filter (3.17):

Rb ≈
(
ωQ
ωf

)4

× 50Ω. (6.12)

Earlier estimates of T1 in the dc SQUID phase qubit considered the current

division coming from the SQUID as well. However, by using the full Hamilto-

nian I can handle this more carefully by looking at the relevant matrix element

arising from small fluctuations in the bias current. The bias current enters in

one term in (2.48):

−IbΦ0

2π

(
Lq
L
γi +

Li
L
γq

)
. (6.13)

The operator that Ib weights is therefore the desired perturbation operator for

the bias line X̂b:

X̂b = −Φ0

2π

(
Lq
L
γ̂i +

Li
L
γ̂q

)
. (6.14)

Replacing the γs with the appropriate normal mode ladder operators, including

the rescaling factor
√
~/2ωQ, makes the matrix element of X̂b easy to compute:

〈0| X̂b |1〉 = −

√
~

2ωQ

Φ0

2π

(
Lq
L
AiQ +

Li
L
AqQ

)
. (6.15)

Taking the absolute square of, I get:

κb ≡

∣∣∣〈0| X̂b |1〉
∣∣∣2

~2
,

=
1

2~ωQ

(
Φ0

2π

)2(
Lq
L
AiQ +

Li
L
AqQ

)2

.

(6.16)

• The flux line couples to the SQUID by introducing flux in the SQUID loop.
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The external flux Φe = MfIf , so that Sff = M2
fSII . The relevant term from

(2.48) is (
Φ0

2π

)2
(γi − γq − (2πΦe/Φ0))2

2L
. (6.17)

The term quadratic in Φe yields no matrix element between 0 and 1, so we’re

left with the operator

−Φ0

2π

Φe

L
(γ̂i − γ̂q) = −Φ0

2π

MfIf
L

(γ̂i − γ̂q) . (6.18)

To compare to the bias line, I keep the inductance terms with the current.

When I replace that with the equivalent expression in terms of SII , I get a

coupling (similar to the filter factor from the bias line) of (Mf/L)2. This

scaling is very intuitive. It comes from a current formed by the inductance L

to cancel out the flux induced by the flux line inductance M . While this type

of cancellation is not always possible without exceeding the critical currents

of one of the junctions and hopping to another flux well of the SQUID, for

the small signals associated with these noise calculations this analysis is valid.

Thus

Rf =

(
L

Mf

)2

× 50Ω. (6.19)

X̂f is given by

X̂f =
Φ0

2π
(γ̂i − γ̂q) . (6.20)

As in (6.2.2), the matrix element is given by replacing γ’s with appropriate

normal mode weights:

〈0| X̂b |1〉 =

√
~

2ωQ

Φ0

2π
(AiQ − AqQ) ; (6.21)
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this matrix element gives

κf ≡

∣∣∣〈0| X̂b |1〉
∣∣∣2

~2

=
1

2~ωQ

(
Φ0

2π

)2

(AiQ − AqQ)2 .

(6.22)

Unlike the bias line, the noise affects the qubit and bias junctions equally.

This makes sense physically, as the circulating current induced in the loop by

flux noise gives the same current in both junctions.

• The microwave line presents some challenges because the coupling mechanism

is not obvious. In the design process, the behavior at relevant microwave

frequencies was modeled using Microwave Office, a 2.5D field solver. Replacing

the junctions in the SQUID with inductances gives the SQUID a harmonic

resonance at the anticipated qubit frequency. The behavior of this resonance

in response to fields on the microwave line can be modeled and the total quality

factor Q of the resonance determined. The internal quality factor Qi can be

controlled in the model, leaving the external quality factor Qe from loss to

the microwave line as the unknown determining the total quality factor. This

inferred Qe can be used to get an estimate to the lifetime T1 that would arise

if all loss was through the microwave line.

While this is sufficient for design purposes, it does not make clear whether the

coupling is inductive, capacitive, or a mixture of both. Given the layout —

where the microwave line runs parallel to the SQUID loop, separated from it

by a ground plane — an inductive coupling seems physically reasonable. The

inductance of the microwave line to the sample can be modeled and easily

measured for dc currents. If we assume inductive coupling, κflux applies for

this line as well; the only variation from the flux line is that SII is now rescaled
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by (Mµ/L)2 instead of using the flux line mutual inductance. This is how I

approximate the dissipation from the microwave line.

6.2.3 1/f noise

Although it was not considered in the original design document, it is important

to consider the effect of 1/f noise in flux on dissipation. 1/f noise occurs in many

condensed matter systems, and while there are general arguments that suggest how

it might appear [129, 130], the specific cause is still not understood. In SQUIDs

this behavior has been observed for almost 30 years [131], and with the advent

of quantum computing research has become of interest once more. The prevailing

theories at the moment suggest that 1/f noise is coming from surface behavior, such

as local polarized spin fluctuations [132].

The low-frequency nature of 1/f noise makes it particularly important for

considerations of dephasing [133]. It is less clear if it is important for relaxation,

which concerns the presence of noise at the qubit frequency. Typical rms values of

1/f flux noise , extracted from measured spectral power densities, are of the order of

1-10 µΦ0/
√

Hz at 1 Hz. One of the findings in [131] was that this number is weakly

sensitive to most aspects of the SQUID. Some more recent work [134] suggests that

having a large inductance with small wires results in larger flux noise. This is

consistent with measurements I made of SQUIDs of similar size to BBC2. Thus, I

will assume 1/f flux noise at the higher end of this range.

I can compare this level of flux noise to the spectral density of flux noise from

the flux line, assuming that the noise on the flux line is Johnson noise from a 50

Ω resistor at the fridge base temperature of 20 mK. (In practice, the noise on the

flux line is likely to be substantially warmer than this, suggesting this calculation

overestimates the importance of 1/f noise.) Picking some representative numbers,
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Table 6.1: Design values of significant BBC2 parameters. Other than Cjq, which I
have given a larger estimate for, these are taken from the original design document
[123].

Parameter Value Units

qubit area .1 µm2

isolation area 2.5 µm2

I0q .4 µA
I0i 7 µA
Li .02 nH
Lq 2 nH
Lf 16 nH
Mf 1 pH
Mµ 2 pH
Cji 50 fF
Cjq 10 fF
Cidc 1 pF
Cf 50 pF

in a 1 Hz bandwidth at a frequency of 8 GHz I get:

1

f
(10µΦ0)2 <

4kBT

R
M2

φ,

1

8× 109
(2.06× 10−20)2 <

4(1.3× 10−23)(2× 10−2)

50
(5× 10−12)2,

5.3× 10−50 < 5.5× 10−49.

(6.23)

Thus, perhaps surprisingly, with small variations in the numbers it is possible that

flux noise could be a limiting factor to T1. A caveat to this analysis is that recent

measurements [135] suggest the 1/f flux noise may cut off over 1 GHz.

6.2.4 T1: putting it all together

Table 6.1 contains design values for the various parameters of BBC2. These

were chosen to achieve a design T1 > 1 µs. Rather than specific numbers, guidelines

were used to choose certain parameters. To minimize dielectric loss we wanted to
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make the qubit junction very small. We decided we could fabricate a junction with

area of 0.1-0.2 µm2 reliably. The critical current estimate I0q then comes from the

typical critical current densities we achieved using our double angle evaporation

fabrication process. Lq was chosen to use a loop size consistent with previous dc

SQUID phase qubits like PB9; given Lq, the area of I0i was chosen so βL (see

Equation 6.1) would be large. Li was chosen as small as possible to maximize the

isolating effect of the SQUID. Cc was made as large as possible to minimize the

effective loss tangent of the qubit junction. The mutual inductances Mf and Mµ

were chosen to be the smallest values that seemed practical.

My design value estimates include a somewhat larger value of Cjq than Rangga

originally considered, corresponding to estimates taken from [127] for the likely

capacitance given our critical current density. Since most of the capacitance is

dominated by the IDC anyway, this has little effect on the dynamics of the system.

But, compared to the original estimate of 3 fF, it does lead to a substantially higher

effective tan δe. This accounts for most of the difference in the T1 predictions of that

document and this thesis.

Budoyo’s discussion in [123] is modeled after Przybysz’s treatment in [28].

Both use the idea of characterizing all of the noise sources by the effective R they

provide when considered as Johnson noise sources. The total T1 is then obtained

by adding all of the resistances in parallel. This assumes that there is a single

correct capacitance to use for getting T1. The arguments involving κ presented

above suggest this is not quite right. Instead, I find the loss rate Γ associated with

each process and use the uncorrelated noise assumption to give the total loss rate

as the sum of all of the individual loss rates. T1 is then just the inverse of Γtot.

Table 6.2 shows the results of the calculations performed in this section given

the design parameters for BBC2. The exact numbers depend on the bias conditions,

with the frequencies and transformation weights AiQ and AqQ calculated numeri-
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Table 6.2: Estimated T1 from the considered noise channels, given the original design
parameters of Table 6.1.

Source of dissipation T1 (µ s)

Qubit dielectric 1.4
Isolation dielectric 10
Bias line 1.7× 104

Flux line 220
Microwave line 56
1/f flux noise 64

Total T1 1.2

cally. The values in the table were calculated with junction phases corresponding

to Ii/I0i = .85, Iq/I0q = .9, yielding fQ ≈ 5.5 GHz. These choices are arbitrary,

but represent substantial bias in both junctions, which was typically the way these

qubits were operated.

Of the noise sources, dielectric losses depend the most on the qubit frequency.

This is because tan δ sets a Q for the qubit. This means that if dielectric loss

dominates, we expect the oscillation to last for a fixed number of cycles instead of a

fixed time. At higher qubit frequency fQ, the same number of cycles occurs quicker

and thus the decay time T1 is shorter.

Probably the biggest questions regarding T1 are whether this list of noise

sources is sufficiently comprehensive and whether the dielectric loss in the small

junction is as significant as I assumed. The former concern would suggest this list

is too optimistic, the latter too pessimistic. Table 6.2 suggests dielectric loss in the

qubit junction is the chief limiting factor. Perhaps surprisingly, the second most

significant noise source is loss in the isolation junction, despite the low weight of γi

in the qubit normal mode.
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6.3 Initial characterization

Given this analysis, it seemed that BBC2 should be capable of hitting the goal

of 1 µs T1. Finding out whether we succeeded in this was the initial goal of the

experimental measurements; I discuss the T1 measurements in Chapter 7. Before

starting on those microwave measurements, I performed dc measurements of the

sample to get in-situ values for several of the important device parameters.

6.3.1 I-V diagram

While almost all of my measurements use the switching readout scheme dis-

cussed in Chapter 5, the exception is the initial I-V curve. In practice, I did not

use the I-V curve to extract much information about the sample. However, it is a

useful first measurement because the supercurrent branch is visible even at very low

current. Switching based measurements can’t be seen until Ib approaches the criti-

cal current of the SQUID. If this critical current is unknown, as with a new device,

starting with switching based characterization creates the possibility of blowing out

the junctions by sourcing too much current. Thus, I started measurements with an

I-V curve for safety reasons.

To perform the I-V measurement, I normally did a four wire measurement

using the bias and voltage lines. A sinusoidal current waveform is sourced using the

bias function generator, typically at a frequency between 1 and 100 Hz. To measure

the voltage, I attach a Stanford Research Systems amplifier to the voltage line.

Since the custom amplifier chain is ac-coupled and we are interested in looking at

I-V curves with low-frequency current drive, the normal amplifier setup is unhelpful

here. The current sourced is measured by monitoring the resistance across the

resistor following the unity gain buffer on the bias line. Since this resistor is usually

well over 99% of the resistance on the bias line, I often just measure the voltage on
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Figure 6.3: I-V curve from the BBC device.

the input of the resistor and use it as the voltage difference.

The current and voltage measurements are then sent to two channels on a

battery powered Tektronix oscilloscope. The oscilloscope takes some number of

samples (at higher source frequencies, 256; at lower source frequencies, usually fewer)

and averages them. I then stop the sampling and save the resulting waveforms.

Figure 6.3 shows the I-V diagram for BBC, the immediate precursor to the

BBC2 device. (BBC had a qubit junction that proved too small and flux coupling

that was too weak, leading to very weak flux modulation.) The I-V looks very similar

to the cartoon shown in Figure 2.4. There is still a supercurrent branch with zero

voltage and a resistive branch in either direction. The horizontal lines connecting

the supercurrent branch and the resistive branches show the critical current of the

SQUID and the retrapping current, where the voltage relaxes back to zero following

a switch. The ratio of the resistive branch height to the supercurrent branch height

is smaller than expected. There are also some curious distortions of the resistive

branches at low currents. The origin of these is likely heating of the small junctions.
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There is additional information that can be gleaned from the I-V diagram.

There appears to be some nonzero offset voltage on the voltage line typically. We

believe this is a thermoelectric effect associated with the joining of dissimilar metals

in the coaxial cables and connectors. By looking at the corners of the branches (i.e.

at the effective critical current, or at the retrapping currents on the voltage branch)

we could make some inferences about the noise in our system. In practice, I have

not explored this much, since coherent operation of the qubit gives an even better

measure of the noise.

6.3.2 I-Φ diagram: current-flux characteristic

The defining feature of SQUIDs that gives them their name is the quantum

interference displayed as the amount of flux in the loop is changed. From the dc

SQUID equations of motion I derived the condition (2.42):

φi − φq = Φe − LiI0i sin
2πφi
Φ0

+ LqI0q sin
2πφq
Φ0

. (6.24)

Converting from junction fluxes to junction phases by multiplying through by 2π/Φ0,

γi − γq =
2π

Φ0

(Φe − LiI0i sin γi + LqI0q sin γq) . (6.25)

This is known as the flux-phase condition for the dc SQUID.

Physically, the requirement of fluxoid quantization in the loop constrains the

phase difference between the two junctions, influencing how currents can divide

between them. By changing the amount of flux in the loop, we change the effective

critical current of the SQUID. Notice that by adding an extra flux quantum of

external flux we just shift the phase differences by 2π and the equation is still

satisfied. Thus, we expect the modulation of the SQUID currents by external flux

to occur with a periodicity of the flux quantum.
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This suggests that by measuring the critical current of the SQUID for many

fluxes, we can use the periodicity of the measurement to determine how much current

yields a particular flux at the SQUID, thereby establishing the mutual inductance

of various lines. In fact, this measurement of the current-flux characteristic —

henceforth referred to as the I-Φ measurement — can tell us quite a bit more. It

allows us to infer the critical currents of both junctions, as well as the parameters Li

and Lq. Thus, the I-Φ measurement produces many of the key parameters necessary

to characterize the SQUID.

I will show how this works by considering how the current constraint derived

in (2.41)

Ib = I0i sin γi + I0q sin γq (6.26)

and the flux-phase condition (6.25) interact. Specifically, suppoes that for Φe = Φ

the critical current is Ic = Ib. The question is how changes in these quantities are

related. A small change in the critical current leads to small changes in the junction

phases:

Ic + δIc = I0i(sin γi + δγi cos γi) + I0q(sin γq + δγq cos γq);

δIc = I0i cos γiδγi + I0q cos γq,

(6.27)

where I move from the first to the second step by subtracting the known previous

solution. Similarly,

δΦ =
Φ0

2π

(
δγi − δγq +

2πLiI0i

Φ0

cos γiδγi −
2πLqI0q

Φ0

cos γqδγq

)
. (6.28)
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I can combine these two results using the chain rule:

δIc
δΦ

=
δIc
δγi

δγi
δΦ

+
δIc
δγq

δγq
δΦ

,

=
2παi cos γi

Li
∗
(

Φ0

2π

)
1

1 + αi cos γi
− 2παq cos γq

Lq
∗
(

Φ0

2π

)
1

1 + αq cos γq
,

=
αi cos γi

Li(1 + αi cos γi)
− αq cos γq
Lq(1 + αq cos γq)

,

(6.29)

where

α ≡ 2πI0nLn
Φ0

(6.30)

is a coefficient representing how much flux is associated with phase changes in a

given junction.

To understand (6.29), it is helpful to consider the case where one junction is

heavily biased and the other is not. This amounts to saying that when the SQUID

switches, it is largely because the critical current of one junction was exceeded. With

this assumption, the junction responsible for the switching will have a phase very

close to π/2, leading to the vanishing of the relevant cos term. Then we need only

consider a single term of (6.29). For example, when the isolation junction is near

its critical current and γi ≈ π/2,

δIc
δΦ

= − αq cos γq
Lq(1 + αq cos γq)

. (6.31)

When γq is weakly biased, the cos changes very little with small changes in

phase. Thus for large stretches, the I-Φ measurement will yield critical currents that

vary linearly with changes in flux, with the slope being related to the inductance

of one arm of the SQUID. Because of the association with a particular junction, I

will refer to the two possibilities as the isolation branch and the qubit branch. The

difference in size between Li and Lq leads to marked difference in the steepness of
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the two branches; (6.29) also shows that we expect the branches to have slopes of

opposite sign. Given this argument about what the branches mean, we expect the

branches join at the place where both junctions are near switching. The critical

current at this joint is just the maximum critical current I0i + I0q that the SQUID

can support.

This picture is useful for building an intuitive feel for the I-Φ plot. For per-

forming fits to measured I-Φ characteristics, a more exact calculation is employed.

The critical current for a given flux represents the maximum bias current that can

run through the SQUID without switching. Since the bias current is just the sum

of the currents through the two junctions, we need only maximize that. The trick is

to use a Lagrange multiplier to incorporate the flux-phase condition; this was first

done in a paper by Tsang and van Duzer [136]. Denoting the Lagrange multiplier

λ, what we want to maximize is:

I0i sin γi + I0q sin γq + λ

(
γq − γi +

2πΦe

Φ0

+ αq sin γq − αisinγi
)
. (6.32)

.

Differentiating by the three variables yields

∂Ic
∂γi

= I0i cos γ∗i − λ (1 + αi cos γ∗i ) ; (6.33)

∂Ic
∂γq

= I0q cos γ∗q + λ
(
1 + αq cos γ∗q

)
; (6.34)

∂Ic
∂λ

= γq − γi +
2πΦe

Φ0

+ αq sin γq − αi sin γi. (6.35)

Equating these to zero, I can use the first two equations to eliminate two of the
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variables:

cos γ∗i =
λ

I0i − λαi
; (6.36)

λ = −
I0q cos γ∗q

1 + αq cos γ∗q
. (6.37)

This yields an expression for the critical current of the SQUID in terms of the phase

of a single junction:

Ic = I0q sin γ∗q + I0i sin arccos

(
1

I0i
I0q cos γ∗q

+ I0i
I0q
αq + αi

)
. (6.38)

A similar expression arises if we instead describe everything in terms of γi. As

γ∗q → π/2, the arccos term also goes to π/2.

The result of this is that the extrema of Ic correspond to choices where both

junctions carry maximal current. If the currents are in the same direction, this gives

I0i + I0q. If the currents oppose, then I0i − I0q is the result. Thus, by looking at

the highest and lowest currents where switches are visible, I extract both of these

quantities and thus the critical current of both junctions.

Figure 6.4 is the result of the simplest approach I took to measuring I-Φ

characteristics. I used the I-V measurement to pick a total current a few microamps

above the critical current of the SQUID. This guaranteed that a switch would occur

every time I applied the bias waveform, as discussed in Section 5.3.2. I would then

apply a fixed dc flux to the SQUID using the flux line and collect 5000 switching

events for that flux.

After doing this for a succession of fluxes, the results are plotted as seen here.

The y-axis is Ib, or the voltage across the bias resistor divided by its resistance. (This

quantity is actually measured during I-V measurements or current calibrations, but

not during qubit measurements.) The x-axis is the voltage applied at the flux
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Figure 6.4: I-Φ plot from the initial cooldown of BBC2. In this plot, only Ib is
ramped. The true value of the applied flux Φe is inferred from this plot.

function generator, which is linearly related to the current sourced and thus the

external flux Φe. The greyscale colormap corresponds to the number of voltage

switches recorded at each setting; darker points correspond to more switches.

The easiest quantity to extract from this plot is the mutual inductance Mf .

Since the I-Φ is periodic with a period of one flux quantum, the periodicity of the di-

agram immediately shows how much current is necessary to yield one flux quantum

at the SQUID. The same technique is used to measure Mµ by running a dc current

down the microwave line. Somewhat more care is necessary for the microwave mea-

surement, as the presence of attenuators in the microwave line means that sourcing

solely down the input microwave line would lead to much of the current running

to ground through an attenuator. This would lead to a considerable underestimate

of the microwave line inductance, as the current actually reaching the on-chip mi-

crowave line would be dramatically overstated. To avoid this shorting problem,

for the microwave measurement the BNC connection on the function generator is

broken out to connect directly to the two center pins.
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A curious feature of Figure 6.4 is that only one branch of the I-Φ characteristic

is visible. The previous discussion suggested that there should be a second branch

visible. Presumably what is happening is that ramping only the bias current leads

to transfer between various flux wells without switching to the voltage state. For a

given flux, the flux state with the greatest critical current Ic becomes unstable at

some lower bias and dumps into another flux state that I measure instead.

In order to extract the currents from the I-Φ characteristic, it is desirable to

see all the possible switches on both branches. At the high end, the two branches

of the I-Φ join, which would let me fix the sum of critical currents I0i + I0q. To find

the second branch and make sure that the joint between the branches is visible, I

perform a series of I-Φ measurements where both flux and bias current are ramped.

As illustrated in Figure 5.9, the usual choice of flux ramp corresponds to

simultaneous current and flux biases following a trajectory on the I-Φ characteristic

parallel to the isolation branch. In the independent switching picture where each

branch corresponds to a particular branch switching, this technique amounts to

using the current and flux simultaneously to bias one junction while leaving the other

unchanged. (This is an oversimplification; one could ramp flux and bias together in

the same ratio from zero bias, and the big junction must finish with considerable

bias to accomplish switching, so clearly it is picking up some current somewhere. It

is probably a good approximation in the narrow window near switching, though.)

For getting I-Φ fits, I used a series of different ramps, summed the switches

associated with each ramp, and plotted them all on one master plot. Each ramp

corresponded to a different peak-to-peak voltage of the flux waveform. An individual

dataset consisted of the switching histograms recorded for a particular ramp height

over a series of flux offsets.

Plotting this data is more complicated than the fixed-flux I-Φ. When only

the current is changing, only the y-axis depends on time. When both current and
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Figure 6.5: Master I-Φ plot from the initial cooldown of BBC2. This plot combines
data from many different current-flux ramp ratios onto a single plot.

flux are ramped, the flux gains a time dependence as well, meaning you cannot get

accurate results merely by plotting the offsets. The double ramp data is plotted by

calculating the flux as a function of time and then rounding to get the appropriate

bin. The master I-Φ is plotted in Figure 6.5. The x-axis is the applied flux Φe. The

y-axis is Ib. As before, darker points indicate more voltage switches.

The master I-Φ plot shows some broadening, particularly for some of the higher

flux switches associated with the later ramps. I am unclear on the origin of this

broadening, as it is not obvious in the individual component plots (see Figure 6.6 as

an example.) It showed up in the master I-Φ plots for each of the three cooldowns in

a similar fashion. It might be a numerical artifact where the rounding into different

bins affects lines with shallower slopes more strongly.

Figure 6.6 shows a fit of the critical currents predicted by (6.38) to an I-Φ

plot. This I-Φ was chosen from of the master I-Φ because it clearly shows the joint

of the two branches at high current, giving a useful target for fitting. The fit was

performed by calculating (6.38) for the desired fit parameters and visually inspecting
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Figure 6.6: Fit of I-Φ plot from the final cooldown of BBC2 to (6.38). This I-Φ used
the 1200 mVpp flux ramp dataset from a master I-Φ plot. The fit parameters are
I0i = 26.8 µA, I0q = 1.5 µA, Li = 220 pH, Lq = 1.4 nH, Mf = 15 nH.
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the agreement. The plotted fit parameters are I0i = 26.8µA, I0q = 1.5µA, Li = 220

pH, Lq = 1.4 nH, Mf = 15 nH.

I will make a few remarks about the fit. The true critical current Ic for a given

Φe is at least as high as the highest bias current at which switching is measured.

The majority of switching events occur before this current as the tunneling rate Γ

increases. Thus, on the isolation branch I tried to fit the predicted branches to the

highest measured Ib at each Φe. On the qubit branch, this was not possible. The

discretization of flux into coarse bins is more noticeable, leading to broadening of the

qubit branch in Ib. This results in some switches being associated at a higher flux

than they ordinarily would, thus landing above the theoretical green qubit branch.

The slope of the branch seems reasonable.

One thing that is unclear is the role of mutual inductance from the bias line.

In the equations of constraint used to fit the I-Φ, one can include such a mutual

inductance by adding it to one L and subtracting it from the other. This effect can

always be accommodated simply by changing the L and neglecting Mb altogether,

as I have done. However, I do not know if this is true in other applications. Thus it

is possible that fitting the inductances in this way may lead to inaccuracies for other

applications. Since Mb is likely pretty small, though, and the difference between Lq

and Li substantial, I expect the relative importance of such corrections to be small.

Even with such errors, the relative coupling of the junctions is unlikely to be heavily

affected.

Potentially more serious is the issue of establishing the current I0i−I0q. In the

measurements I took, there was no clear signpost that the low current maximum had

been reached. To try to estimate where this occurred, I roughly extrapolated the

branches to see where they would meet up, using this as a basis for the lower critical

current. Taking the smallest visible current from the I-Φ leads to an overestimate of

I0i and an underestimate of I0q of the same absolute scale. The relative importance
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of this error on I0q can be quite substantial because the qubit junction is so small. It

would be desirable to further refine the fitting process to get a more reliable method

for finding the bottom of the I-Φ. A suggestion from [137] is to look at the I-Φ curve

for the opposite bias sense; apparently the maximum is shifted somewhat in flux,

and this gives a good measure of SQUID asymmetry.

6.4 Summary

In this chapter, I discussed the design for the BBC2 sample. I examined the

likely sources of dissipation and estimated their contributions to T1 based on cal-

culations from the full SQUID model described in Chapter 2. I discussed the dc

measurements used to do initial characterization of BBC2, particularly measure-

ments of the I-Φ characteristic to extract critical currents and various inductances.

This was preparatory work for spectroscopic and coherent measurements on the

qubit, which I discuss in the following chapter.
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Chapter 7

BBC2 qubit: spectroscopy and lifetime measurements

One of the most obvious requirements for using a qubit is control over its state.

In superconducting qubits, this is accomplished by applying microwaves tuned to

the resonant frequency f01. To determine this frequency, I performed a series of

spectroscopic measurements on the qubit. These measurements examined the long-

time response of the qubit to continuous wave microwaves.

Spectroscopy generally serves as a prelude to further investigation of the qubit.

Once the transition was identified, to measure the coherence of the qubit I studied

Rabi oscillations. These correspond to the time-resolved dynamics of the qubit im-

mediately following microwave turn-on. Further details, like the relative importance

of low-frequency noise in dephasing, require more sophisticated pulse sequences.

Two common ones are Ramsey spectroscopy and spin echo sequences [81, 119]. I

did not pursue these techniques, as the spectroscopy and Rabi data exhibited sur-

prising features that were already quite complex.

I took the data in this chapter from measurements on the BBC2 sample over

the course of three different cooldowns. The first cooldown went from April to

early June, 2012; the second cooldown from late June to late July; and the third

cooldown from late November to early December 2012. Both the first and second

cooldowns were interrupted due to unavailability of helium. Between the first and

second cooldown, the fridge was opened for several days to complete the rewiring

discussed in Section 5.1, then immediately closed and recooled. To reduce aging

effects on the junction between the second and third cooldown, the sample was left
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in the refrigerator’s inner vacuum can, which remained closed and evacuated.

7.1 Initial spectroscopy data

As discussed in Chapter 5, there were two different approaches I used in per-

forming the spectroscopy measurements. The first approach sweeps both current

and flux biases of the qubit while applying continuous wave microwaves so that the

qubit resonance is tuned through the microwave frequency. This measurement is

done for a succession of microwave frequencies, mapping out the frequency of the

resonance as the bias changes. I refer to this approach as “swept spectroscopy.” The

second approach sets the current and flux biases to a fixed value. I would then vary

the microwave frequency until I found the qubit resonance. Repeating the measure-

ment with different biases maps the frequency response with changing biases. Since

this technique requires a current pulse in order to make the measurement, I will

refer to this approach as “pulsed spectroscopy.”

On the first cooldown (following the initial work correcting the grounding is-

sues discussed in Section 5.2.3) I performed swept spectroscopy. I chose this method

because it requires far less data for an initial exploration of the qubit resonance.

Since each individual measurement involves a sweep over biases, the microwave fre-

quency is the only variable that needs to be scanned. Compared to the pulsed

measurement, data can be gathered an order of magnitude faster.

Figure 7.1 shows escape rate data from a swept spectroscopy measurement

taken on the first cooldown at a frequency of 7450 MHz. One curve shows the

escape rate with no microwaves applied; I call this the background escape rate. The

other three curves correspond to different applied powers. The x-axis is the current

sourced on the bias line Ib; since I used the double ramp discussed in Section 5.3.2,

the x-axis is also a proxy for the applied flux. The y-axis is the escape rate, calculated

from raw histogram data and plotted on a logarithmic scale. The escape rate Γ is
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Figure 7.1: Plot of measured qubit escape rates vs. current bias. The background
escape rate is plotted, as well as the escape rate with 7450 MHz microwaves at
several powers.
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defined by

dP (t)

dt
= −Γ(t)P (t), (7.1)

where P is the probability that the qubit hasn’t escaped yet. dP and P can be

extracted from the histogram as follows. Let S(t) be the cumulative number of

switches measured up to a time t from the start of the current ramp. I denote the

total count of all switches measured as S∞. Since the swept ramp is designed to

exceed the SQUID critical current, a switch is guaranteed on each sweep and S∞ is

just the total number of repetitions. Given this notation,

P (t) =
S∞ − S(t)

S∞
;

dP (t) ≈ P (t+ dt)− P (t)

=
S(t)− S(t+ dt)

S∞
;

Γ(t) ≈ S(t+ dt)− S(t)

S∞ − S(t)

1

dt
.

(7.2)

Interpreting the final equation, Γ(t) is just the fraction of all future switches occur-

ring between times t and t+ dt, divided by the time interval dt.

For spectroscopic measurements, the escape rate is more meaningful than the

histograms. Comparing the background and microwave escape rates Γbg and Γµ, we

can find the microwave enhancement (Γµ − Γbg)/Γbg. Γ typically varies by several

orders of magnitude over a narrow bias window. The microwave enhancement nor-

malizes this out, whereas direct comparisons of histogram counts or escape rates

conceal the resonance at lower biases.

Figure 7.2 shows a color plot of the microwave enhancement for the complete

set of spectroscopy data at one power, -35 dBm1. The x-axis is the applied bias

current, the y-axis is the frequency of microwaves applied, and the color is the

base 10 logarithm of the enhancement. For this dataset, the enhancement varies

1Unless otherwise specified, powers listed are always the nominal power at the source.
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Figure 7.2: Plot of microwave enhancement from swept spectroscopy taken on the
first cooldown. Each row of this plot represents enhancements calculated from in-
dividual data sets like the one shown in Figure 7.1.
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tremendously with bias and frequency. The light green arc pointing toward the

upper left corner of the plot is the qubit resonance. Lower bias yields higher f01.

Beyond this broad description, this plot is difficult to use. Because the number

of counts in a bin are integers, the smallest nonzero Γ(t) that can be measured is

1/(S∞dt). This is where the low escape cutoff in Figure 7.1 comes from; similarly,

one cannot measure an escape rate higher than 1/dt, giving the high escape cutoff.

The low cutoff is problematic, because if at a given bias there are visible microwave

escapes but no background escapes, the effective enhancement is infinite. One can

“fix” this by pretending any unmeasured escape rate is 1 instead of 0, but as seen

in Figure 7.1 this would neglect the considerable variation in the background escape

rate, skewing the resulting data.

There are a few ways to improve the enhancement plot:

• One can perform more repetitions at each frequency, increasing S∞ and ex-

tending the low cutoff. This is usually not feasible; extending the escape rate

two decades would require 100 times as many counts, which would take days.

• One can work only with microwave peaks that occur entirely within regions

with a measured background escape rate. For earlier qubits studied in our lab

[25, 71] this worked quite well. However, the “peaks” I measured in swept

spectroscopy studies looked comparatively very broad. In Figure 7.1, a sharp

shoulder can be seen on the high-bias side where the escape rates collapse back

to the background. By contrast, microwave enhancement is present in a very

large region on the low-bias side. Limiting the measurement in this way would

leave very little spectrum to work with.

• One can extrapolate the background escape rate to lower bias on the basis

of the measured data. The method of doing this in the past assumed that Γ

had an exponential dependence on the bias current, thus forming a straight
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line on these plots. This is a good description of the predictions of the WKB

approximation for the tunneling of a single current biased junction. For a dc

SQUID, it is less clear that this is the case [37]. For example, in Figure 7.1

some rounding in the escape rate can be seen at high bias.

On top of these practical difficulties, measuring anything at all with the swept

approach requires that the system be biased close to the critical current. In these

regions, f01 is more sensitive to small fluctuations in bias, leading to increased

broadening of spectroscopic features. For all of these reasons, I did only a limited

amount of swept spectroscopy. However, it still proved useful for establishing a

microwave feature with the correct qualitative behavior of the resonance. It also

suggested a good frequency range to look at using pulsed spectroscopy.

7.2 Pulsed spectroscopy, Rabi, T1

Pulsed spectroscopy fixes the microwave enhancement problem. The key idea

is that using brief measurement pulses raises the qubit’s escape rate to a measurable

level. Figure 5.11 shows the timing diagram for a pulsed measurement. Instead of

a continuous linear ramp, the bias consists of an early flux shuffle followed by a

ramp of current and flux to a set plateau. Once the plateau is reached, I wait to

allow any ringing from the bias low-pass filters to settle. Qubit control microwaves

are then turned on. By waiting until I have reached the desired operating point to

turn on the microwaves, I avoid errors introduced by microwave excitation in the

swept region leading up to the bias plateau. Finally, I send a measurement pulse

at some time after the turn-on of the control microwaves. The timing of the pulse

determines what type of measurement I perform.
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Figure 7.3: Cartoon representation of three microwave measurements I performed.
The microwave frequency is much faster than suggested by this image. The arrows
correspond to different choices of when to send the measurement pulse.
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7.2.1 Preliminaries

Figure 7.3 illustrates the pulse timing of the three main measurements I took.

The top plot qualitatively shows the amplitude of the microwave signal versus time;

the actual microwave frequency is orders of magnitude faster than the Rabi frequency

of the qubit. The bottom plot sketches the expected excited state probability ρ11 as

a function of time. Before the microwaves are turned on, the qubit is in its ground

state. When the microwaves come on, the qubit begins coherent Rabi oscillations.

If the microwaves are left on for a time much longer than the Rabi coherence time

T ′, the qubit population reaches some steady state. After the microwaves are turned

off, this steady state population relaxes to the ground state.

By choosing when I send the pulse, I can monitor the qubit state in each

of these three regions. If I take a series of measurements where the measurement

pulse is just before or immediately following the microwave turn-on, I measure the

Rabi oscillations. By choosing a measurement pulse several microseconds after the

microwave turn-on but before the microwave turn-off, I can monitor the long-term

saturation behavior. This corresponds to a spectroscopic measurement. By making

a rapid series of measurements following microwave turn-off, I can time resolve the

decay of the population and extract T1. For each pulse location, I typically perform

thousands of repetitions to get a good estimate of the probability Psw of measuring

a switch.

In addition to the timing of the pulse, the amplitude and shape of the pulse

are also variable. This flexibility motivates the pulse technique. Stronger or longer

pulses lead to higher escape rates. This allows me to operate at bias plateaus

inaccessible to swept measurement, since I can enhance the escape rate by using a

bigger pulse. Typically, I only varied the amplitude of the pulse. Pulses that are

too short require impractical amplitudes given our equipment and also carry the

risk of exciting transitions between states. Pulses that are too long smear out the
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Figure 7.4: s-curve data taken from the first cooldown. With microwaves turned on
(green curve), smaller pulses are needed to switch the qubit.

measurement information over a long time interval, making it more complicated to

reconstruct the original state. I settled on a pulse time of 6 ns.

Figure 7.4 shows how the escape rate changes as the pulse height is adjusted.

Two curves are plotted. One corresponds to the background escape rate, and the

other to the escape rate at long time with microwaves on. The x-axis is the height

of the microwave pulse, measured as the nominal voltage on the DG535 sourcing the

pulse. The y-axis is the probability Psw that the qubit switches during the pulse;

this is measured by dividing the total number of counts occuring in the histogram

window surrounding the pulse by the total number of measured counts (typically

3000-10000). Given the shape of the resulting data, these sorts of pulse calibration

plots are called s-curves. When microwaves are turned on near resonance, the qubit
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is excited, leading to an enhancement in the escape rate. This yields an s-curve with

greater Psw for a given pulse size.

The s-curve shows that the discriminating power of the measurement depends

on the amplitude of the pulse. For sufficiently small or large amplitudes, there

is no difference in the escape probability between the microwave and background

data. The pulse is either too small to excite any escapes, or sufficiently strong

that even without microwaves the system always tunnels. The point of optimal

contrast is where the probability difference between the microwave escape rate and

the background escape rate is largest.

Ideally, s-curves would be performed for each possible bias condition in order

to optimize the measurement. In practice this imposes severe overhead on already

lengthy measurements. In addition to the time spent measuring the s-curves them-

selves, Psw must also be calibrated to recover the excited state probability ρ11 from

it. This requires assumptions about the state of the qubit at the pulse time where

the s-curve is taken. To make accurate estimates of the qubit state requires Rabi

oscillations and fits. The process is further complicated by the presence of any ex-

traneous population in higher states of the qubit. This higher state population also

shows up as switches but yields errors if treated as |1〉 state population.

Instead of performing these calibrated s-curves for every measurement, I in-

stead adjusted the pulse so that I achieved a fixed switching probability for the

background data. This technique was used by Tauno Palomaki [27] in his work

setting up this measurement technique for our qubits. Since the expected difference

in the escape rate between |0〉 and |1〉 at high bias is Γ1 ≈ 50Γ0, a background

switching probability of 2 percent suggests nearly guaranteed switching of the |1〉

state. Pulses at this height, therefore, give high contrast between |0〉 and |1〉. I

typically used a probability of about 4 percent, reasoning that the possible loss of

contrast was minor compared to the possible gain if the escape rate ratio Γ1/Γ0 fell
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short.

For spectroscopy experiments that scan qubit bias as well as the microwaves, I

established this measurement pulse amplitude for every second bias in the scan and

linearly interpolated to get an appropriate pulse amplitude for the remaining bias

points. Using this approach, I was able to measure spectroscopy, Rabi oscillations

and T1 decays in a reasonable amount of time. However, as I discuss in Chapter 8,

the measurement process in our recent dc SQUID phase qubits proved very strange.

Several measurements seem incompatible with a direct mapping of the measured

switching probabilities to the populations in |0〉 and |1〉. This makes some aspects

of the data — particularly the height of various lines — difficult to interpret. Other

features, such as the presence of multiple lines or the coherence timescales, are less

affected by this problem. To make clear that the measurement is uncalibrated, I

label plots with Psw or the microwave enhancement Pmic
sw − P bg

sw instead of ρ11.

7.2.2 Spectroscopy

Figure 7.5 shows two sets of spectroscopy data taken during the first cooldown.

In both plots, the x-axis represents the tuning of some bias parameter; in the top

plot, it is the applied flux, while in the bottom plot, it is the applied bias current.

The y-axis is the frequency of applied microwaves, and the color scale represents

Pmic
sw − P bg

sw. Thus, a vertical cut through the color plot represents the microwave

response of the qubit at one set of bias parameters and a single frequency.

In both plots, two distinct lines are visible. In Figure 7.5a), the lower frequency

line varies relatively strongly as the flux is varied. By contrast, in the current plot,

the dependence on the current bias is weak. This behavior is consistent with the

lower frequency line being the qubit resonance. Given our design, the qubit mode

is expected to be dominated by the behavior of the qubit junction. As discussed

in Section 2.5, the strong inductive isolation of the SQUID shunts off most of the
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Figure 7.5: Spectroscopic data from the first cooldown. a) Bias held constant while
flux varies on the x-axis. b) Flux held constant while bias varies on the x-axis.
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current from the bias line, leading to modest dependence of ω01 on the bias. Since

the flux line affects both junctions equally, we see a much stronger response there.

The higher line shows no noticeable response to either form of bias, suggesting

that this is something else. A likely candidate would be a physical resonance in

the microwave setup itself, such as a cavity mode of the sample box or a standing

wave in a section of microwave line. An argument against this interpretation is that

the location of this feature shifted slightly between cooldowns. Although there were

some deliberate changes to the microwave wiring, they were quite far removed from

the qubit and would have had to go through 40 dB of isolation to affect the qubit.

On the other hand, it is possible that thermal cycling of the system may have caused

physical changes in the immediate environment of the qubit.

An alternative interpretation of the flat line is that it represents the unbiased

frequency of the qubit mode. At first, this seems impossible — I am claiming the low

frequency line is the biased qubit mode, which would appear to preclude measuring

the unbiased mode at the same time. Because the SQUID supports multiple flux

wells, however, it is possible that the qubit might tunnel between flux wells without

going to the voltage state. If one well is relatively heavily biased, then the other

wells will usually be far from maximally biased. Thus, if the ramping process or

application of microwaves leads to occasional tunneling between wells, it may be

possible to see the resonance in those new wells. In doing fits later on, I use this

interpretation of the flat feature.

One notable feature of the spectral response in this qubit is pictured in Fig-

ure 7.6. The x-axis of this figure shows the nominal power of the qubit microwave

drive at the source. The y-axis shows the peak (extracted from spectroscopy data

at each power) of Pmic
sw − P bg

sw. As the applied power increases, the frequency of the

resonance decreases.

This sort of behavior is common in nonlinear oscillators. As an example, the
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Figure 7.6: Location of the resonance peak as a function of applied microwave power.

Duffing oscillator — which is a good approximation to a weakly biased Josephson

junction where the cubic term in the potential is small — has the same qualitative

frequency response to increasing power [138]. In fact, this was one of the key ideas

underlying the Josephson bifurcation amplifier [79]. What is unusual here is that,

by measures such as Rabi oscillations, we do not appear to be driving the system

especially hard. On-resonance Rabi frequencies seem comparable to the similar

qubits Kwon and Przybysz measured [28, 29], though they do not report observing

these power-induced frequency shifts. On the other hand, Dutta et al. [73] reported

measurements of the ac Stark effect in strongly driven phase qubits, so this term is

not unprecedented.

I repeated the spectroscopy measurements on all of the cooldowns to see if

anything had changed. Figure 7.7 shows representative spectroscopy data from

the second cooldown. The top plot consists of a full spectroscopy experiment over

multiple choices of bias, as in Figure 7.5. The bottom plot is a cut through the

indicated flux plateau to clarify what is going on. The spectrum now exhibits

smaller, secondary peaks to either side of the main resonance. As the qubit bias is
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Figure 7.7: Spectroscopy data with sidebands from the second cooldown. a) Flux
and bias varied according to the double-ramp extracted from I-Φ measurements. b)
A cut of plot a) through the indicated bias plateau.
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adjusted, these peaks move as well. Some splitting of the central resonance on one

side also appears.

The cause of these sidebands is unclear. One possibility is the natural anhar-

monicity of the qubit. The scale of this anharmonicity — represented by (ω01 −

ω12)/2π — can be calculated from the model presented in Chapter 3, either through

direct numerical calculation or by using perturbation theory to incorporate the non-

linearities. For many of the measurements on BBC2, the qubit junction was rela-

tively weakly biased. In this limit, a reasonable lower bound on the anharmonic-

ity can be set using a slightly modified single junction approximation. The qubit

junction is treated as unbiased and the quartic term in the potential treated as per-

turbation. To incorporate the SQUID, the loop inductance is added in parallel to

the Ljq to renormalize the frequency of the qubit. For BBC2, this gives a minimum

anharmonicity at zero bias of (ω01 − ω12)/2π ≈ 10 MHz. With stronger bias, this

anharmonicity should increase.

Given this estimate of the nonlinearity, the distance between the central peak

and the sidebands seems like it might plausibly be associated with the junction

nonlinearity. However, since we expect the population of higher levels to be low to

begin with, the 0 → 1 line should be most significant. This should be the highest

frequency line, not the one in the middle which we typically measure to be the

strongest.

Another possibility is Mollow sidebands [139]. These arise when a two-level

system is driven sufficiently hard. They appear symmetrically about the resonance,

occurring at frequencies ω01 ± Ω, where Ω is the Rabi frequency. Although we had

not observed these sidebands in earlier qubits, they have been observed in transmon

qubits [140].

Figure 7.8 shows another set of spectroscopic data taken from the second

cooldown. The different colors represent spectroscopy runs taken at different applied
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Figure 7.8: Spectroscopic data from the second cooldown at several powers, exam-
ining the effect of power changes on the sideband structure.

microwave powers. The x-axis is the applied frequency, and the y-axis is Pmic
sw −P bg

sw.

Note that while the height of the sidebands depends strongly on power, they do not

appear to spread relative to the center peak (in fact, they seem to move less than

the central peak itself does.) While the frequency separation of ≈ 20 MHz is on

par with measured Rabi frequencies, this lack of movement suggests these are not

Mollow sidebands.

Figure 7.9 shows that the sideband splitting and visibility (along with the

whole peak) can be suppressed by varying only the flux while leaving the bias current

constant. Here, the x-axis represents changes in the applied flux during the bias

plateau, while the y-axis is the applied frequency and the color is the enhancement

of the tunneling probability. This result appears related to some strange properties

of the tunneling measurement I observed. If the switches following the measurement

pulse are resolved finely enough, tunneling events can be seen at two well-separated

points. The sideband behavior appears largely associated with tunneling measured

190



Figure 7.9: Spectroscopic data where the bias is held fixed while the flux is varied.
This leads to suppression of the sidebands.
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Figure 7.10: Spectroscopic data from the final cooldown, taken in the region where
sidebands are suppressed. The three data sets correspond to nominal microwave
powers -28, -26 and -24 dBm.

at the second pulse. This aspect of the measurement will be discussed further in

Chapter 8.

A promising feature of Figure 7.9 is the sideband free region where a narrow

single line is observed. Figure 7.10 shows this line for three different powers at fixed

bias. Even with the sidebands eliminated, the shift in the resonance frequency and

broadening with power are visible. Since the spectroscopic linewidth is a measure

of the coherence of the qubit, in looking for good places to study the qubit I sought

the sharpest line possible.
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Figure 7.11: Rabi oscillations from the first cooldown. Several different powers are
shown.

7.2.3 Qubit coherence: Rabi and T1

As shown in Figure 7.3, I measured Rabi oscillations by sending the mea-

surement pulses immediately following the microwave turn-on. As mentioned in

Section 5.2, to get enough channels to do everything I want to do I use two DG535

sources. One of these gates the microwave source, turning it on for a short window

late in the bias plateau as shown in Figure 5.11. The other controls the timing of

the measurement pulse. There is usually a small delay between these two boxes;

accounting for that, I can scan the measurement pulse over a window surrounding

the turn-on of the microwaves.

Figure 7.11 shows some of the earliest Rabi data on BBC2, taken during the

first cooldown at a microwave frequency of 8422 MHz. The x-axis plots the time
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Figure 7.12: More data on Rabi oscillations at various powers. In this data, the
frequency corrections of Figure 7.6 are applied; each power is at the corresponding
peak frequency.

difference between the DG535 gating the microwave source and the DG535 sending

the measurement pulse. The y-axis plots Pmic
sw − P bg

sw. Four different powers are

shown, each separated by -3 dB.

Qualitatively, this data is somewhat surprising. The Rabi frequency does

increase as the power goes up, which is to be expected. What is more unusual is

that the apparent timescale over which the Rabi oscillations decay appears to be

longer for the higher power signal. One possible explanation for this would be a low

frequency noise source. For example, 1/f noise would be less at the higher Rabi

frequencies.

However, taking Rabi oscillations at the same drive frequency while adjusting

the power neglects the frequency shift pictured in Figure 7.6. Using the resonant
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frequencies vs. power extracted from that plot, Figure 7.12 shows Rabi oscillations

at different powers when the frequencies are adjusted to remain on resonance. Here

we still observe the increasing Rabi frequency as the power increases, although

the increase is not as large as expected — on resonance, the Rabi frequency is

proportional to applied power. However, the number of oscillations visible appears

independent of power. With the shorter periods at higher power, this corresponds

to reduced Rabi decay time T ′.

By contrast, Figure 7.13 shows the results of detuning the Rabi drive from res-

onance. Figure 7.13a) shows a spectrum taken from the first cooldown at a nominal

microwave power of -19 dBm. Using the same bias and power, I performed Rabi

oscillations at several frequencies around the resonance. Several of those frequencies

are highlighted and the corresponding Rabi oscillations are plotted in Figure 7.13b).

The visibility and lifetime of the Rabi oscillations are much longer if the applied

drive is blue detuned relative to the measured resonance. As seen in Figure 2.10, it

is not necessarily surprising to see more oscillations when detuned from resonance.

However, the asymmetry is noteworthy, as is the longer decay envelope and the

unusual shape. The unusual shape, like the sidebands, seems related to the mea-

surement complications of Chapter 8. This behavior occurred on both the first and

second cooldowns; this is significant because the method of applying pulses changed

between these two cooldowns, suggesting that this behavior was unlikely to be an

obvious artifact of the pulsing method. This behavior also occurred in regions where

the sidebands were suppressed, as in Figure 7.10.

What might be causing this behavior in the Rabi oscillations? A possible clue

is the asymmetry of the lineshape itself. Intuitively, any bias fluctuations leading

to small shifts in the resonance will be more significant on the sharper red side of

the resonance than the shallow blue side. However, this type of argument suggests

that the oscillations should be longest lived on resonance, where the sensitivity to
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Figure 7.13: a) Spectroscopy data at nominal microwave power -19 dBm. b) Rabi
oscillations at -19 dBm and several frequencies; this corresponds to changing the
detuning.
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fluctuations is weakest. Thus there is presumably something else going on. In the

following section, I will discuss another possible explanation.

Figure 7.14 shows some of the best Rabi and T1 data I measured for BBC2.

These were taken at the end of the second cooldown in a region where the side-

bands were suppressed. Although true fits of these functions rely on the |1〉 state

population and not just Pmic
sw − P bg

sw, barring the involvement of higher levels those

two quantities should be linearly related, since the total escape rate is a weighted

average of the escape rate for the 0 and 1 states. The two plots were taken at the

same bias conditions but at different applied microwave powers. For measuring T1

this is unimportant as no microwave power is applied.

I fit the T1 plot with an exponential decay, giving T1 = 230 ns. While substan-

tially shorter than the 1.2 µs estimated in Table 6.2, that estimate used anticipated

design values. The actual BBC2 device differed these design values; in particular,

the mutual inductances Mf and Mµ proved to be about an order of magnitude

bigger than the original design values. In the case of Mf , this was because the origi-

nal design’s Mf proved so low that flux biasing the qubit required excessive current.

With Mµ, the design value was based on assumptions needed to interpret microwave

simulations of the qubit. Using the measured values for all of the parameters (see

Table 7.1 in the next section), I find a revised estimate of T est1 = 320 ns. This

suggests the noise model of Chapter 6 is reasonable.

The Rabi plot is fitted to a numerical solution of the Bloch equations. Since

the measurement is of Pmic
sw −P bg

sw and not ρ11, I apply an overall scaling factor .26 to

the numerical solution. The other fitting parameters were the detuning ∆/2π = 8

MHz, Ω/2π = 10 MHz, T1 = 215 ns and Tφ = 1100 ns. Experimentally, I was

aiming for a detuning of 7 MHz, so that number is reasonable. The T1 is in line

with the T1 extracted directly from the decay measurement. The particularly long

Tφ is noteworthy; it is the best dephasing timescale that we have found for a qubit
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Figure 7.14: Rabi oscillation and T1 measurements from BBC2. a) Rabi oscillations,
fit to a numerical solution to the Bloch equations yielding T1 = 215 ns, Tφ = 1100
ns. b) Qubit relaxation after microwave turn-off, fit to an exponential decay with
timescale T1 = 230ns.
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in our lab. In Chapter 8 I present a table comparing these times to other dc SQUID

phase qubits.

7.3 Effective Jaynes-Cummings model

In Chapter 3, I discussed how the on-chip LC filter in the bias line could be

incorporated into an effective Jaynes-Cummings model for the qubit. The impetus

for this model was the spectroscopy data of the previous section. The spectroscopic

sidebands were suggestive of the photon splitting associated with the coupling to a

resonator. While many things could serve as a resonator, the most logical oscillatory

modes are the isolation mode of the SQUID and the filter. The isolation mode is at

very high frequency relative to the qubit mode and I expect it is frozen out.

Thus, I examined the filter plus SQUID model and sought to determine if

the coupling g was sufficient to produce photon splittings of that scale, as well as

whether g modulated enough with bias to account for the changing presence of the

sidebands. While the model does not yield enough g to account for the sidebands, it

does offer an explanation for the asymmetric spectroscopic lineshape. This lineshape

derives from the presence of multiple unresolved photon peaks. These photon peaks

appear at higher frequency than the qubit resonance because ωf < ωq. In this

section I will discuss my model for this behavior, followed by the construction of fits

to experimental spectroscopic data.

7.3.1 g and photon shifts

As discussed in (3.11), in the dispersive limit where g/∆ � 1, the qubit

frequency appears to be shifted by an amount proportional to the number of photons

in the resonator. Since ωf � ωq, it would take very large coupling to leave the

dispersive limit. This suggested redoing some of the spectroscopy to see if individual
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Figure 7.15: Variation of g with junction phases. Each curve represents a particular
choice of γi.

peaks corresponding to distinct photon numbers could be resolved. This effect, first

observed in superconducting qubits by Schuster et al. [104], is one of the hallmarks

of Jaynes-Cummings behavior.

Ultimately I was unsuccessful in resolving individual peaks. However, the

shape of the spectral lines — broadened on the blue side of the line — is consistent

with multiple unresolved photon peaks. The anticipated filter frequency was near

200 MHz, corresponding to a temperature of 10 mK. Given that even the nominal

base temperature of the fridge was 20 mK — and the electronic temperature could

have been considerably higher — I expected many photon states to be occupied.

To see if the broadening could be explained in this way, I developed the model of

Chapter 3 to calculate g.

As shown in (3.54), g can be derived from the qubit and filter model:

g = −

√
1

2mfωfωQ

(
Φ0

2π

)2 [
Lq
L2
AiQ +

Li
L2
AqQ

]
. (7.3)
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The various coefficients in this model are determined by the device parameters and

the applied flux and current biases. Figure 7.15 shows several plots of g/2π for the

parameters of BBC2 as the junction biases are varied. There is some dependence

on bias. At high biases, the Josephson inductances approach the larger inductances

of the problem, Lq and Lf . Since the coupling is determined mostly by the relative

importance of Lf , this increase in coupling with bias is unsurprising. However, the

effect is pretty small, and over a large range of biases g responds weakly to bias.

Using biases corresponding to the spectral peaks examined during the third

cooldown for the presence of photon peaks, Equation 7.3 predicts g/2π ≈ 32 MHz.

The size of the expected photon shift is g2/π∆ ≈ 200 kHz per photon in the res-

onator. Much of the final spectroscopy was resolved at 100 kHz, so with sufficiently

sharp lines this might have been observable. However, given the measured coherence

times, the expected width of spectral peaks is on the order of megahertz. Thus, the

model predicts individual photon peaks should not be visible.

Fitting this model to actual data is challenging. One can produce a master

equation for the full Jaynes-Cummings system, allowing transitions between both

qubit state and photon number in the resonator. The spectroscopic behavior could

then be recovered by looking at the long-time response of the system to microwave

drive at various frequencies. However, the low filter frequency ωf suggests that many

photon numbers will be relevant. Since the density matrix for an N -dimensional

Hilbert space has N2 elements, each time step would involve solving O(1000) equa-

tions. For spectroscopic behavior, we are interested in long-time solutions. Accurate

solutions will involve time steps small compared to the natural frequencies of the

system; this means that getting to the spectroscopic limit will take thousands or

tens of thousands of time steps. For doing spectroscopic fits, this task would be

repeated for each frequency and each choice of parameters. All of this represents an

infeasible computational task.
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Figure 7.16: Typical lineshape predicted by the effective Jaynes-Cummings model.
The blue curve is the sum of all photon peaks; the dotted black curves (blown up
for clarity) are the individual photon peaks at 0, 6, 12 and 18 photons.

In the face of this complexity, I opted for a simpler approximation. I mod-

eled the total spectroscopic response as a sum over discrete Lorentzians (see Equa-

tion 2.52). The location of the peaks, as well as the size of the photon shift, were

determined by the effective Jaynes-Cummings model for BBC2. To determine the

relative weights of each photon peak I assumed a thermal distribution of photon

states.

Figure 7.16 shows a representative spectral line predicted by this spectroscopic

model. The blue peak represents the output of the model; it is the sum of all the

discrete photon peaks. The dashed black curves are individual photon peaks. I

have increased the height of these peaks by a factor of 3 to make them more visible

for this plot. The pictured photon peaks correspond to 0, 6, 12 and 18 photons.
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Figure 7.17: Tunneling probability during pulse as low frequency part of two-photon
drive is tuned.

I truncate the model by including only photon states where the Boltzmann factor

e−βn~ω > .01. The particular cutoff is arbitrary.

7.3.2 The rest of the parameters

The I-Φ characteristic does a good job of establishing various inductances

associated with the SQUID and the junction critical currents. While this covers

most of the required parameters for the model, a few others must still be determined.

The normal modes — responsible for the A and ω terms in (7.3) — depend on γi

and γq. Since I know the current and flux being applied, I can use the I-Φ fits to

determine a classical solution to the SQUID potential and estimate the phases. I

also need to know the capacitance Cc of the IDC shunting the qubit junction, as

well as the filter parameters Lf and Cf .

Figure 7.17 shows results from two-photon spectroscopy performed during the

third cooldown. Two different frequency microwave drives are applied to the sys-
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tem: a low frequency (50-350 MHz) pump intended to excite the filter; and a high

frequency probe to drive qubit excitations. For this data, only the low frequency

pump is on. The x-axis shows the pump frequency. The y-axis shows the probability

of tunneling due to the pulse; note this is elevated compared to usual because this

measurement was performed at ≈ 150 mK. The significant feature of this plot is the

large region from 130-250 MHz where enhancement in the escape rate is seen. This

frequency range is consistent with the design frequency of the filter, suggesting that

the enhancement is due to resonant driving of the filter.

To further understand the behavior of the filter, I also studied the microwave

response using a network analyzer. To get rid of the complication associated with

transmission through the microwave line and most of the SQUID before reaching

the filter, I measured S11 on the bias line. However, the heavy low-pass filtering

on the bias line made attempts to measure this in the fridge impractical. Instead,

I performed this measurement by attaching the sample box directly to one port of

an Agilent vector network analyzer at room temperature. Ideally, this measurement

would have been conducted at low temperature in order to reduce or eliminate the

resistance of the various aluminum leads. However, since the geometry of the lines

is well specified by the mask, the resistance of the filter wiring can be pretty well

estimated using just the deposited thickness.

Figure 7.18 shows a schematic for the model I used to fit the S11 data, along

with the data itself. In addition to the resistances, the model also includes induc-

tance from the wiring leading up to Cf ; this is separate from the inductance Lf

following the filter that enters into the BBC2 circuit model. This extra inductance

arises from the wirebonds connecting the chip to the printed circuit board in the

sample box and from the relatively wide traces from the on-chip contact pads to Cf .

The filter inductor uses comparatively long, narrow lines, leading to a significantly

higher resistance that unfortunately makes this model not very sensitive to the pre-
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Figure 7.18: a) A schematic of the circuit model used for fitting the S11 data from
BBC2. The fitting parameters are Cf , t, and Ls. b) The S11 data, along with best
fit of the model with parameters t = 70 nm, Ls = 11 nH, Cf = 33 pH.
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cise value of Lf used. Thus, in performing the fits, I used a fixed value of Lf at 15

nH, leaving me with three parameters: the thickness of deposited aluminum t, the

stray inductance Ls, and the filter capacitance Cf .

The second plot in Figure 7.18 shows the S11 data along with the fit. This

is just the amplitude of the signal reflected from the sample, referenced to the

amplitude of the source. For an impedance ZL hooked up to a Z0 = 50 Ω source,

the reflection coefficient is [141]:

Γ =
ZL − Z0

ZL + Z0

(7.4)

I made a least squares fit of Γ vs. frequency for the expected ZL of the filter model

pictured above. The resulting parameters were t = 70 nm, Ls = 11 nH, and

Cf = 33 pF. The thickness and filter capacitance are both very plausible values.

Cf is somewhat smaller than the design value of 50 pF, but the design came from

a simple parallel plate estimate, and would also be sensitive to relatively small

deviations in the planned thickness of the SiN dielectric.

The last parameter I need to estimate is the IDC capacitance Cc. I get a value

for this by matching the predicted frequency of the qubit mode to the measured

spectroscopy. Since f01 also depends on the junction phases γi and γq, the capaci-

tance is harder to pin down. Given the estimates for the phases from the classical

solution, I find Cc ≈ 1.6pF. This is somewhat large compared to the design value of

1 pF. The discrepancy may come from stray capacitance to the surrounding ground

plane, which does not enter into the microstrip formula (6.9).

7.3.3 Fits to spectroscopic data

While I succeeded in measuring most of the parameters associated with my

Jaynes-Cummings spectroscopic model, a few free variables remained to fit:
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Figure 7.19: Data from Figure 7.10, along with temperature constrained fits to
approximate spectroscopy from the effective Jaynes-Cummings model.

• the filter inductance Lf ;

• the microwave power reaching the sample, expressed as the angular Rabi fre-

quency at zero detuning Ω;

• the effective temperature of the system T ;

• the linewidth of individual photon peaks.

The linewidth is the most complicated issue. A single spectrum can be fit with

individual photon peaks assigned some width. For comparing spectra at different

powers, it is desirable to have some way of accounting for power broadening of the

peaks. Thus, I treat each photon peak according to the spectrum Equation 2.52

predicted by the Bloch equations. To simplify, I assume each photon peak has the

same T1p and T2p. Since the Tφ I measured for BBC2 was so long, I make the further

simplifying assumption that T2p = 2T1p. I then use T1p as a fitting parameter.
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Figure 7.20: Similar to Figure 7.19, but now with temperature allowed to vary
between the curves.

Figure 7.19 shows fits of my spectroscopic model to the data of Figure 7.10.

The three data sets correspond to microwave powers of -28, -26 and -24 dBm at

identical bias conditions. In fitting, I am only concerned with the shape of the

spectral lines. The model I use does not capture the shift in frequency with power

— since it is only a harmonic approximation — nor does it capture the relative

heights of the three lines. I thus applied shifts of 0.7 and 1.4 MHz to the two higher

power fits to line up with the peaks, and scaled the fit curves to agree at the peaks.

The lowest power peak was fit using T = 95 mK, T1p = 300 ns, Ω/2π = 1.2

MHz. The higher power peaks were then fit using the same temperature and 2

dB increases in Ω. The agreement on the low frequency side of the resonance is

poor. The consistency of the shape of the low frequency side of the data with
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Figure 7.21: Fit to -24 dBm data from Figure 7.20. The blue curve is the sum of
the black dotted curves, which are all of the individual photon peaks.

increasing power suggests that power broadening is not yet significant. This makes

the increasing width of the peak difficult to capture at fixed temperature.

Increasing the microwave power might also cause heating of the sample. This

effect can be included in the fit by allowing different temperatures for the three fits.

Figure 7.20 shows the same data, but now with fits where the temperature is allowed

to differ. The agreement is much better, suggesting the broadening of the peak with

increasing power is primarily due to occupation of higher photon states. Again

using a fit temperature of 95 mK for the lowest power, I use temperatures of 115

and 140 mK for the two higher microwave powers. The other fitting parameters were

Lf = 14 nH, T1p = 100 ns, Ω/2π = 600 kHz. Compared to the fixed temperature

fit, T1p is relatively short, which reduces the significance of power broadening. The

plot used in Figure 7.16 was generated using the fit to the -28 dBm data and shows

scaled-up versions of the photon peaks at 0, 6, 12, and 18 photons to give a feel for

how these peaks affect the lineshape. In Figure 7.21, the -24 dBm data is shown
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Figure 7.22: Spectroscopic data using -27 dBm microwaves at nominal mixing cham-
ber temperatures 20 mK, 95 mK and 120 mK.

with all of its photon peaks.

As a plausibility check for these fit temperatures, I can look at spectroscopic

data taken at fixed power and several different mixing chamber temperatures. Fig-

ure 7.22 plots three sets of spectroscopic data taken at 20 mK, 95 mK and 120

mK. These temperatures are the temperature reported by the mixing chamber ther-

mometer. I took the data at elevated temperature by running a heater on the mixing

chamber until the temperature roughly stabilized at the new value. The spectra do

not appear to depend significantly on the temperature, arguing that an effective

temperature above 100 mK is quite plausible.

The photon peak picture also offers a qualitative argument why the Rabi

oscillations may be more visible on the blue detuned side of the resonance. Suppose

that I am driving the system on the red detuned side of the spectral peak. There I

am detuned from all of the individual photon peaks. The further from resonance, the

more significant detuning becomes as part of the Rabi frequency. Thus, fluctuations
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Parameter Design value Measured value

I0q (µA) .4 1.5
I0i (µA) 7 26.8
Lq (nH) 2 1.4
Li (nH) .02 .22
Lf (nH) 16 14
Cq (pF) 1 1.63
Ci (pF) .05 .1
Cf (pF) 50 33
Mf (pH) 1 15
Mµ (pH) 2 14

T1 (ns) 320 215-230
Tφ (ns) n/a 1100
g/2π (MHz) n/a 32

Table 7.1: Table of parameters for BBC2.

in the photon number can lead to relatively large shifts in the Rabi frequency. By

contrast, if we operate on the blue detuned side of the resonance, then we will be

very close to on resonance for one particular photon number. Small fluctuations

in the photon number around this point will not produce significant change in the

Rabi frequency. Thus, we might expect that the resulting Rabi oscillations would

be less washed out.

7.4 Summary

I examined spectroscopy data and measured the coherence times of the BBC2

phase qubit. While the lifetime of 230 ns fell short of the design goal, it was close to

the 320 ns estimate from the measured parameters. It is possible that uncertainty in

the measured parameters can account for the discrepancy. Other loss mechanisms

(e.g. coupling to modes of the sample box, thermal radiation) might also account

for the shortfall. Table 7.1 contains the design values, measured device parameters

and inferred coherence times of the qubit, as well as the estimated g coupling the
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filter and SQUID.

Anomalies in the spectral data suggested the possibility of Jaynes-Cummings

physics in BBC2. To address this, I developed the filter plus qubit model of Chapter

3 and applied it to our device. The expected coupling g/2π ≈ 32 MHz is not

sufficient to produce resolvable photon peaks at the level of the data I took. However,

it does seem capable of explaining the asymmetric lineshape, and offers some hints

to the strange dependence of the Rabi decay time T ′ on detuning.

The evidence for the significance of the effective Jaynes-Cummings model is

hardly ironclad. In the following chapter, I will discuss some experiments that could

assess the importance of the Jaynes-Cummings physics for these qubits. I will also

examine some of the issues surrounding the pulsed measurement, a mystery now in

several generations of dc SQUID phase qubits.
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Chapter 8

Conclusions and future work

Over the years, the quest for improved T1 in dc SQUID phase qubits has led

to the LC filtered, asymmetric, small junction dc SQUID as the best technique thus

far. Using these small junctions placed us in a regime where the dynamics of the

full SQUID are relevant. The model I developed in Section 2.5 was successful in

explaining the spectroscopic behavior of earlier dc SQUID phase qubits.

The goal for the BBC2 design was to reduce loss to the microwave line by pro-

viding a more controlled microwave architecture. Earlier qubit designs in our group

coupled microwaves to the qubit using a weakly capacitively coupled microstrip.

Another hope for BBC2 was to perform qubit measurements using the transmitted

microwave signal. Neither of these goals were well realized in BBC2. The induc-

tance of the microwave line was almost an order of magnitude larger than expected,

and the lack of a cryogenic amplifier made transmission measurements infeasible at

low microwave powers. Nevertheless, BBC2 did yield the longest Rabi oscillations

of any of the dc SQUID phase qubits that our lab has studied. Table 8.1 compares

BBC2 to several other dc SQUID qubits. T1 is comparable, and the Tφ is excellent.

Table 8.1: Comparison of T1 and Tφ to other dc SQUID phase qubits.

Qubit T1 (ns) Tφ (ns)

Kwon [29] 280 90
Przybysz [28] 350 140
Lecocq et al. [41] 200 240
BBC2 215-230 1100
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The BBC2 data showed that there is much about these dc SQUID qubits that

remains unclear. The various microwave measurements yielded confusing results,

containing features — frequency shifts with power, sidebands, coherence properties

depending on detuning — that appear inconsistent with a basic two-state model.

Given the previous success of the normal modes model, I developed a circuit model

for BBC2 that included the on-chip LC filter. This model, presented in Chapter 3

and compared with experimental data in Chapter 7, makes some predictions that

appear consistent with the data, but the agreement is not conclusive.

In this concluding chapter, I consider further work which might illumine the

most significant questions raised by BBC2: whether the effective Jaynes-Cummings

model is a good description of the qubit; and what is actually happening with the

pulsed tunneling measurement.

8.1 Is Jaynes-Cummings important for LC filtered qubits?

While the complex spectroscopic data indicate the need for a more detailed

model of the qubit, it is not clear that the Jaynes-Cummings model of Chapter 3 with

the LC filter acting as resonator solves these issues. The lumped element effective

Jaynes-Cummings model does suggest that, even if Jaynes-Cummings physics does

not explain my data, it is still a relevant consideration for the BBC2 design. The

coupling is significant enough, and the number of thermal photons expected large

enough, that effects on the spectroscopy and Rabi data are to be expected. Prior

to this work, our lab considered the filter to be a classical black box, improving

lifetimes just by reducing SII(ω01). A better understanding of when that is a good

approximation could be useful for the design of other quantum devices.

There are several possible avenues for answering this question, both theoretical

and experimental. One very natural approach is to consider replacing the lumped

element model with a field analysis of the full circuit. This approach was recently
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taken by the group at Yale with their “black box quantization” approach to studying

the dynamics of transmon qubits in 3-D cavities [42]. Ironically, the intent of that

paper was to move away from Jaynes-Cummings because of the complexities that

arise in a multi-mode Jaynes-Cummings calculation. The idea is to extract the

normal modes of the system by using a field solver to get the impedance of the

circuit design — the modes then correspond to zeroes in the imaginary part of

the admittance. Surprisingly, the frequency of the modes is not sensitive to which

two points one finds the admittance between. As in my models, junction physics are

included by making Taylor expansions of the cos(γ) term arising from the Josephson

potential. Since transmons are unbiased, the cubic term vanishes and a quartic term

remains.

There are advantages and disadvantages to the field analysis approach. It is a

more exact description of the system than the lumped element approximation that

I made. However, by comparison, it is far less physically transparent. The coupling

behavior is fairly easy to extract from the lumped element picture. In the field model,

it seems that we would have difficulties extracting g from the field model similar

to those extracting Lµ from the existing simulations. This seems like a beatable

problem, but it was one of the reasons that I chose to initially pursue the lumped

element picture. One thing the field analysis offers that the lumped element model

misses entirely is the possibility of things like λ/4 modes in the SQUID inductance

(considered as a long microstrip) itself.

An area where the analysis could clearly be improved is in considering the

response of the system to microwave drive. The model I used for comparisons with

the spectroscopy data was very limited. It ignored all possibilities of transitions

between photon number states. This seems like a severe omission, particularly in

the context of coherent oscillations. As mentioned in Chapter 7, though, the large

number of photon states needed renders direct calculation of the master equation
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impractical.

One technique for improving the numerical efficiency is the quantum Monte

Carlo trajectory approach [142]. Instead of tracking the entire density matrix, this

approach (also referred to as just the quantum trajectory method) uses the master

equation to get the probability of jumps between various states. At each time

step, random numbers are generated to see if the wavefunction will jump between

various states. By repeating this for many wavefunctions and averaging, the effective

solution to the master equation can be derived. Since tracking the wavefunction

in a dimension N Hilbert space only requires N variables rather than the N2 of

the density matrix, there can be considerable savings of time. This technique has

been used fruitfully in circuit QED systems [143]; intriguingly, a recent experiment

even suggests an experimental realization of such trajectories [144]. Implementing

quantum trajectory techniques would be a natural way to examine the model more

rigorously and study the microwave response.

Experimentally, the clearest way to demonstrate the correctness of the Jaynes-

Cummings approach would be to engineer the system to make the photon states

more apparent. I think there are two natural ways to increase the visibility of the

photon features. The first is to increase the coupling strength g. When Lf � Lq, Li,

I can approximate the scaling of g from (3.54) as

g ∝

√
1

ωf

1

L2
≈ L

1/4
f L−1

f = L
−3/4
f . (8.1)

Since the T1 enhancement of the filter depends on the frequency, I can keep the ωf

roughly constant while increasing g by increasing Cf while proportionally decreasing

Lf . Since the photon shift (3.11) is quadratic in g, relatively modest adjustments to

the filter parameters could result in substantial increases in photon peak visibility.

Extending the idea further, one possibility would be to design a filter that
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used Josephson junctions in the inductive section. Small SQUID loops (i.e. loops

small enough so that the self inductance is much smaller than the Josephson induc-

tance) can provide the effect of junctions with tunable critical current and therefore

Josephson inductance. By adjusting the inductance, g could be tuned over a wide

range without adjusting the qubit bias parameters. This would allow for a thorough,

convincing demonstration of the photon peaks, as they could be moved around in a

predictable fashion. This scheme does have serious drawbacks. To get good induc-

tance out of the junctions requires many junctions or small junctions. Using many

junctions introduces a greater chance of failure in the fabrication process; using

small junctions makes the current bias necessary for pulsed measurement difficult

to achieve.

While changing g is the most direct attack, another possibility is to increase

the filter frequency. The exponential nature of the Boltzmann factor would lead to

a big suppression in the number of significant photon states. This would certainly

lead to easier modeling problems, and might also simplify the problem of seeing

peaks at all. From Table 6.2, we see that the bias line is expected to be a very

weak contributor to T1. However, the dependence of T1 on the filter frequency is

quartic; with a tenfold increase in the filter frequency, loss to the bias line would

be one of the most significant expected sources of loss. Moving ωf up to 1 GHz

would dramatically reduce the number of photon states while still giving good loss

performance.

8.2 Anomalies in the tunneling measurement

One of the biggest shortcomings of our recent qubit studies is the challenge

imposed by the pulsed tunneling measurement. As mentioned earlier, it imposes

extra data taking, which hurts doubly because the experimental repetition rate is

limited by the need for cooling following the time spent in the voltage state. Yet I
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Figure 8.1: Plot of measured s-curves from Hyeokshin Kwon’s thesis [29]. The
measured s-curve in the superposition state differs from the expected behavior (solid
line) of a measurement of the qubit state.

think some of the most interesting questions remaining in these devices come from

the behavior of this measurement.

Figure 8.1 shows a plot of s-curves (for a refresher on these, see Section 7.2.1)

from Hyeokshin Kwon’s thesis [29]. The three collections of points are measured

data. The circles are the background, assumed to be the |0〉 state. From Rabi

oscillations, the point of maximum excitation is chosen and considered to be the best

estimate of the |1〉 state, plotted with squares. The triangles are data corresponding

to the microwaves being on half as long as needed to excite to the |1〉 state; this is

expected to be an equal superposition of |0〉 and |1〉.

The solid line drawn on the plot is the average of the |0〉 and |1〉 s-curves. The

tunneling measurement is supposed to be a measurement of the energy of the system,

since that is what the tunneling rate depends on. Given an equal superposition of
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Figure 8.2: Measured switch probability Psw versus time. When microwaves are
turned on, an “echo” pulse occurs ≈ 60 ns after the first one.

0 and 1, we expect that the energy measurement would yield 0 half of the time and

1 half of the time, giving the solid line as a result. In fact, this clearly disagrees

with the measured data. Despite using a tunneling measurement that seems like it

should be an energy measurement, we are measuring something else. This behavior

was found in the qubit designs following Kwon’s measurements, including in BBC2.

BBC2 produced its own measurement surprises as well. During the second

cooldown, there were occasionally some bizarre features in the Rabi and T1 data.

For most of the cooldown, I had been using 100 ns bins to collect the data into

histograms. When I switched to using 1 ns bins, I discovered something surprising.

Figure 8.2 shows some of this histogram data. The blue curve shows the background

response with no microwaves; these escapes were what I used to set the pulse height.

The green curve shows the tunneling events occurring when microwaves were on.

Not only are there escapes at the location of the pulse itself, there are also escapes

at a second time about 60 ns later. I will refer to these latter escapes as the echo

and the former as the pulse.
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Figure 8.3: Spectroscopic measurement on BBC2 from the second cooldown, broken
down into contributions from the pulse location and its echo. The data of Figure 8.2
was taken from this spectroscopy data at 8710 MHz.

Figure 8.3 shows spectroscopy data. The sum curve was what would have been

measured with the coarse binning. The other two curves come from considering tun-

neling events at the pulse and echo locations. Interestingly, much of the asymmetry

in the overall lineshape seems to arise from the behavior of the pulse data alone;

the echo is much more symmetrically shaped. The spectroscopy data of Figure 7.10

came from considering the response at the pulse location. The sidebands of Figure

7.7 generally appeared to be more visible at the echo location.

During the third cooldown, I noticed that the relative importance of the pulse

and echo locations could be adjusted by tuning the bias. Figure 8.4 shows some data

illustrating this. Adjusting the bias changed how easy it was to produce tunneling

events at both locations. To quantify this, I measured s-curves at many different

bias locations, looking for how much voltage was necessary to tunnel half of the time

at a given location. The color in these plots is that median value. The horizontal

axis is flux; the vertical axis is current. The units of both axes indicate the bin (out
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Figure 8.4: Color plots of pulse voltage required to tunnel half of the time vs.
current and flux at a) the pulse location, b) the echo location. The units on the
axes represent different bins in the current and flux waveforms where the plateau
occurs.
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of 16000 bins in the waveform) at which the flux or current stop ramping and start

to plateau.

The plots show very interesting qualitative behavior. For the pulse location,

increasing flux makes it harder to tunnel. Increasing bias current makes it easier to

tunnel. By contrast, at the echo location, the tunneling is largely insensitive to the

bias current while depending strongly on flux. At the echo, increasing flux makes

it easier to tunnel. This behavior is very reminiscent of the intended behavior of

the double ramp — applying flux to bias the qubit junction while counteracting the

increasing bias current on the isolation junction.

This suggests the idea that the two pulse locations somehow correspond to

tunneling dominated by one junction or the other. It is difficult to interpret the data

in light of this idea, though. Given that the mode I wished to study is dominated

by the qubit junction, one might think that the echo location is the proper one to

examine. But, possibly as an artifact of this delay, there are strange aspects to the

Rabi and T1 data corresponding to the echo location. There is also the question of

what the delay itself means.

Clearly there are many outstanding issues associated with the pulsed tunneling

measurement. Since these issues first became noticeable with Hyeokshin’s data —

corresponding to when the normal mode analysis of Chapter 2 first became signifi-

cant — I believe the dynamics of the full circuit are an important piece of the puzzle.

I can see some physical arguments for why this might be. The measurement pulse

can twist the orientation of the well in addition to tilting it. As Figure 2.12 shows,

the expected wavefunctions follow the contours of the well. Thus it is possible that

the energy “eigenbasis” (these are resonances, not eigenstates) differs considerably

from the original state at the point where the measurement is strongest. A paper by

Ashhab et al. [145] explored the implications of measurements that do not commute

with the Hamiltonian and found that in certain regimes the measurement result
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looked much more like our data. Since the pulse is sufficiently slow (i.e. it lasts

for several dozen cycles at the qubit frequency) a sudden approximation is likely

invalid; a more careful consideration of the dynamics of the SQUID through the

pulse seems worthwhile.

The development of the effective Jaynes-Cummings model raises another ques-

tion: is the tunneling measurement sensitive to the number of photons? The total

energy of the filter plus SQUID system increases as more photons are added. Since

the two parts are coupled, it is conceivable that having more photons in the filter

could lead to enhanced tunneling from the SQUID. The effect would likely be small

— it must depend on g, and dimensional analysis suggests that most likely g/ω01

would be the order of the scaling factor associated with extra energy coming from

the filter. Since each photon is already about 1/40 the energy of the |0〉 to |1〉

transition, this further scaling would lead to modest shifts in the escape rate. Still,

I believe this idea deserves more examination.

Given these arguments, I think developing a model of the pulsed measurement

in the full model of Chapter 3 would be worthwhile. However, this is a formidable

problem. The 1D approach to the measurement uses the tunneling rate extracted

from a WKB approximation. The relative simplicity of WKB in 1D arises from

having to match wavefunctions at points. In higher dimensions, this matching is

over a correspondingly higher dimensional object.

As such, generalizing WKB to multiple dimensions is non-trivial. Caldeira and

Leggett [53] use an “instanton” technique adapted from quantum field theory [146].

Schmid found an adaptation of the semiclassical approach [147] that he claimed

reproduced much of the instanton behavior; this was heavily influenced by a paper

of Banks, Bender and Wu [148] based on the idea of reducing the problem to 1D

through the use of a “most probable escape path” in configuration space.

While these approaches seem interesting, they are sufficiently theoretically
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involved that I was looking for something more straightforward. Further, since the

instantaneous pulse approximation seems poor, some sort of numerical technique

seems desirable to study how the SQUID responds during the pulse. The most

obvious thing to try is a direct time stepping of the Hamiltonian. However, this is

likely to be extremely expensive. Except at very high bias, the lifetime is very long

compared even to the period of the qubit. Higher energy states, which the qubit

must necessarily evolve into in order to escape, will require even finer timesteps. For

this reason, I have not pursued this strategy.

In his thesis [51] Fred Strauch explored the technique of complex scaling (re-

viewed in [149]). He found that it worked well in reproducing the results of other

methods in the case of the 1D washboard. The lifetime of a resonance can be

seen as an imaginary part of the energy. As the state evolves in time according

to exp(iEt/~), this imaginary part leads to a decay in the probability. In complex

scaling, the coordinates and their momenta are rotated into the complex plane in

such a way that the commutator is preserved. Surprisingly, the eigenvalues of the

Hamiltonian — including imaginary parts — remain unchanged by this operation.

Numerically solving this transformed Hamiltonian then gives the lifetime of each

resonance.

This approach sounds very concrete and attractive. In practice, it is still

quite complicated. Experimenting on a complex scaled simple harmonic oscillator

shows that a relatively large basis is needed to keep even the lowest eigenvalues

constant following the scaling procedure. The harmonic basis appears particularly

ill suited for capturing tunneling behavior; this makes sense, since it would take very

high harmonic levels to get reasonable occupation on the outside of the barrier. A

better approach might be to use a discretized position basis, corresponding to delta

function-like occupation of the various γ values. The potential operator is diagonal

in this basis, whereas the kinetic energy comes from discretizing ∂
∂γ

. This can be
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done to arbitrary order [150], although accuracy to the grid size dγ4 is probably

fine.

A deeper conceptual issue comes from the multi-well nature of the SQUID.

For a range of bias conditions, a state that is localized in a particular well could

escape through a barrier either to the voltage state or to a more stable flux well in

the SQUID. If the numerical analysis doesn’t measure this distinction, then it will

give misleading comparisons to our experimental data. While one can exploit flux-

state hopping for measurement (e.g. this is how rf SQUIDs are measured), it would

require a different set of techniques. Only tunneling to the voltage state registers as

a measurement event in our experiments.

8.3 Conclusion

The increasing complexity of both the operation and modeling of dc SQUID

phase qubits suggests a need for very broad characterization of prospective devices.

This is especially problematic given the limitations of the pulsed switching measure-

ment. Even if the measurement worked completely as expected, the cooling period

required following a voltage tunneling event typically limits experimental repetition

rates to several hundred Hz. This is orders of magnitude slower than what is possible

with dispersive microwave measurements. In practice, the pulsed measurement it-

self seems to be doing something more complicated than just measuring the state of

the qubit, requiring further characterization and better understanding. All of these

combine to make exploration of dc SQUID phase qubits a slow process. Unfortu-

nately, the reward for this exploration is also questionable since dc SQUID qubits

have coherence times which have not been competitive with other superconducting

qubit approaches. Transmons in particular now routinely achieve lifetimes in the

tens of nanoseconds. For these reasons, I feel that it is difficult for the dc SQUID

to compete with other superconducting qubits.
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Nevertheless, I think the questions raised in this chapter are interesting and

applicable beyond the context of dc SQUID phase qubits. To me the most interesting

aspect of quantum information is how it makes concrete ideas like measurement that

were once highly abstract. The advances in quantum control of superconducting

circuits during my tenure in this lab have been extremely impressive. Addressing

vagaries in the measurement process, the complexities inherent in real devices, and

figuring out how seemingly innocuous things like filters might affect the quantum

behavior, can only lead to a better sense of what quantum tricks are possible and

what is in store for the future.
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Appendix A

The Bloch equation

A.1 Two-level system

The Hamiltonian for a driven qubit is

H = H0 + V =

E0 0

0 E1

+

 0 ~Ω cos(ωt)

~Ω cos(ωt) 0

 . (A.1)

For a two-level system, the Lindblad operators are

L̂− =
√

Γ1(1 + n)σ−;

L̂+ =
√

Γ1nσ+,

(A.2)

where Γ1 = 1/T1, and n is the Boltzmann factor for the two-level system. This ther-

mal contribution comes from the trace over the bath and is required for the master

equation to produce a thermal equilibrium in the case with no drive. In practice,

experimental temperatures are usually far below the equivalent temperature of ω01,

so approximating the system as being at zero temperature and keeping only L̂− is

reasonable. After evaluating the Lindblad term, the master equation becomes

dρ

dt
= − ı

~
[H, ρ] + Γ1

 ρ11 −1
2
ρ01

−1
2
ρ10 −ρ11

 . (A.3)
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Interestingly, even though I have only added dissipation so far, the off diagonal

elements of the density matrix are seen to have a decay as well, although at half the

rate. One can include a pure dephasing term as well, leading to an overall dephasing

timescale

1

T2

=
1

2T1

+
1

Tφ
. (A.4)

Including this pure dephasing and rewriting with Γ2 = 1/T2, I get

dρ

dt
= − ı

~
[H, ρ] +

 Γ1ρ11 −Γ2ρ01

−Γ2ρ10 −Γ1ρ11

 . (A.5)

To simplify the equation, we can move to the interaction picture. Classically,

this is analogous to moving to a frame that rotates at ω01. I do this by applying the

transform

χ = e
ıH0t

~ ρe−
ıH0t

~ ; (A.6)

differentiating this yields

dχ

dt
= e

ıH0t
~
dρ

dt
e−

ıH0t
~ +

ı

~
e
ıH0t

~ [H0, ρ]e−
ıH0t

~ ,

= − ı
~
e
ıH0t

~ [V, ρ]e−
ıH0t

~ + e
ıH0t

~

 Γ1ρ11 −Γ2ρ01

−Γ2ρ10 −Γ1ρ11

 e−
ıH0t

~ ,

= − ı
~

[VI , χ] +DI ,

(A.7)

where VI is the interaction representation of the drive term:

VI =

 0 e−ıω01t~Ω cos(ωt)

eıω01t~Ω cos(ωt) 0

 , (A.8)
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and DI is the interaction representation of the dissipator:

DI =

 Γ1ρ11 −e−ıω01tΓ2ρ01

−eıω01tΓ2ρ10 −Γ1ρ11


=

 Γ1χ11 −Γ2χ01

−Γ2χ10 −Γ1χ11

 .

(A.9)

The next step is to make the rotating wave approximation (RWA):

e−ıω01t cos(ωt) =
1

2
(e−ı(ω01−ω)t + e−ı(ω01+ω)t) ≈ 1

2
e−ı(ω01−ω)t, (A.10)

where we assume that we are driving near resonance and can thus ignore the effects

associated with the part of cos that is counterrotating at very high frequency. This

amounts to replacing the cosine terms with exponentials at the drive frequency. If

I denote the detuning ∆ = ω − ω01 then evaluating the commutator yields

[VI , χ] =
~Ω

2

eı∆tχ10 − e−ı∆tχ01 eı∆t(χ11 − χ00)

e−ı∆t(χ00 − χ11) e−ı∆tχ01 − eı∆tχ10

 ; (A.11)

including the dissipator, the full equation becomes:

dχ

dt
=

−ıΩ
2
(eı∆tχ10 − e−ı∆tχ01) + Γ1χ11 −ıΩ

2
eı∆t(χ11 − χ00)− Γ2χ01

−ıΩ
2
e−ı∆t(χ00 − χ11)− Γ2χ10 −ıΩ

2
(e−ı∆tχ01 − eı∆tχ10)− Γ1χ11

 .

(A.12)

One final simplification amounts to moving to a frame rotating at the drive frequency
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instead of the qubit frequency:



χ∗00

χ∗01

χ∗10

χ∗11


=



χ00

e−ı∆tχ01

eı∆tχ10

χ11


. (A.13)

Then the master equation becomes:

dχ∗

dt
=

 −ıΩ
2
(χ∗10 − χ∗01) + Γ1χ

∗
11 −ıΩ

2
(χ∗11 − χ∗00)− (Γ2 + ı∆)χ∗01

−ıΩ
2
(χ∗00 − χ∗11)− (Γ2 − ı∆)χ∗10 ıΩ

2
(χ∗10 − χ∗01)− Γ1χ

∗
11

 .

(A.14)
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