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Latent class regression has been reported previously in the literature. Often,

however, data are collected from a survey that utilizes unequal selection probabilities
that result in complex sample survey data. Techniques for latent class logistic regression
utilizing complex survey data have not previously been reported. Additionally, no
software is available to perform these analyses. A model was chosen for investigation
based on an existing survey called the Indiana Y outh Tobacco Survey. A variety of
scenarios were investigated using systematically manipulated conditions to simulate
complex sample survey data. Specifically, the effect of ignoring sample weights was
investigated by comparing bias in parameter estimates from simulations both
incorporating and ignoring weights. Additionally, several competing approaches for

estimating standard errors were compared in terms of bias and confidence interval

coverage. The techniques that were investigated were the unadjusted approach



assuming simple random sampling, the jackknife, the bootstrap, and the design effect
adjustment. Two design effects were compared, one based on jackknife estimates and
one based on bootstrap estimates. The results indicated that weights must be
incorporated in the estimation via pseudo-maximum likelihood to ensure that parameter
estimates are not biased. These estimates were |ess biased than jackknife, bootstrap,
and unweighted parameter estimates. In terms of variance estimation, the bootstrap
estimates were preferred. Estimates arising from the assumption of simple random
sampling were consistently small and therefore undesirable. Jackknife and design effect
adjusted standard errors were better, but bootstrap standard errors were consistently
best. Finally, the best technique was applied to the Indiana Y outh Tobacco Survey data
to identify latent classes that differed in their susceptibility to initiate tobacco use and
abuse. Theresultsindicated that atwo class model was a better fit to the data than a
one class model. These classes differed in their susceptibility to peer pressure. Latent
class one comprised 82% of the population and was more susceptible to peer pressure

than was latent classtwo. Both classes were more at risk of initiating tobacco use as

they aged.
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CHAPTERI|
PURPOSE AND RATIONALE

Background

Logistic regression (LR) has been a common analytic tool in epidemiology and
socia science for many years. Infact, it has become the analysis of choice for relating
acategorical response or criterion variable to a set of predictor variables often referred
to as covariates. In other areas of study, for example, marketing, the technique has been
enhanced to incorporate unobservable or latent populations. Thistype of model is
called latent class regression and has been developed for various regression models
(Wedel & Desarbo, 2002). In these scenarios, the population may be characterized by
latent subgroups that are best represented by differing regression equations. If the
population is indeed heterogeneous, the mixture approach is preferred asit will identify
these unobserved subgroups and lend insight into their differences. Quite often, the
data analyzed by these and other similar methods arise from sampling techniques that
are more complex than simple random sampling (SRS). Complex samples are often
stratified with some segment/strata of the population being sampled at a
disproportionate rate. Additionally, complex surveys may involve clustering, for
example, schools within school districts, and school districts within states, and so on. If
these data are analyzed by a“model based” approach, that is, asif they arose from a
SRS, parameter estimates will ailmost certainly be biased and resulting standard errors
will be underestimated. Asaresult, hypothesis testing will be too liberal. Therefore, a
“design based” approach where clustering and stratification are taken into account

during variance estimation is desirable. Often, sampling weights reflecting the



probability of selection, post stratification, and non-response are used during parameter
estimation to reduce potential bias.

Logistic regression models with complex survey data have been developed and
are described elsewhere in detail by Korn & Graubard (1991), Roberts, Rao, & Kumar
(1987), Skinner, Holt, & Smith (1989), and Thomas & Rao (1987) among others. The
basic idea as devel oped by Roberts, Rao, and Kumar (1987) is to approximate the
likelihood function by incorporating the observed sample and the sampling weights to
create a pseudo-likelihood. At this time, methods that incorporate complex sampling
designsinto latent class regression have not been rigorously developed or empirically
validated.

The motivation for the research can be traced to the Indiana Y outh Tobacco
Survey (IYTS). Thissurvey isadministered annually to arepresentative sample of
middle and high school-aged children in public schoolsin the state of Indiana. The
specific problem of interest was trying to identify unobservable subgroups of studentsin
relation to their susceptibility to initiating tobacco use.

Purpose of Study

The goal of this study was to investigate the problems of obtaining valid
parameter estimates and standard errors for latent class logistic regression (LCLR)
when analyzing complex sample survey data. To that end, differing approaches to
parameter and variance estimation were investigated and results were based on samples
generated to represent a contrived population with known characteristics. Specificaly,

the study had the following aims:



a) To investigate the importance of incorporating the sampling design when
performing LCLR. That is, comparing “model based” parameters that ignore the
sampling weightsto “design based” results that incorporate weights.

b) To compare the performance of different variance estimators, specificaly,
the jackknife, bootstrap, and design effect adjustment. This was done by comparing
simulated variances to empirically derived “true” variances.

These goals were achieved by Monte Carlo methods that simulated a variety of
scenarios. two sample schemes (proportional and disproportionate over-sampling from
strata), two clustering schemes (low and moderate clustering effect), and three latent
class mixing proportions (ranging from moderate and extremely disparate). In each
scenario, samples were simulated from two strata that were characterized by different
latent class proportions.

Significance/Novelty of Study

While LR methods for complex survey data are widely accepted, techniques of
parameter and variance estimation for LCLR with complex survey data have not been
previously studied. It was hypothesized that ignoring sampling weights would have an
adverse effect on parameter estimates and ignoring clustering would result in poor
variance estimates. The original contributions of this study are:

(1) Methods for incorporating sampling weights and clustering into LCLR were
developed and tested.

(2) Estimates of standard errors for LCLR parameters stemming from complex

survey data were obtained through competing methods.



(3) SAS code written for the study makes these analyses more accessible to
researchersin various disciplines.
The best performing procedure(s) were then applied to alatent class logistic

regression analysis of the 2001 Indiana Y outh Tobacco Survey (IYTS).



CHAPTER I
REVIEW OF THE LITERATURE

Finite Mixture Models

Traditionally the evolution of finite mixture models can be traced back to
Pearson (1894) and Newcomb (1886). In finite mixture models, it is asumed that
sampl e observations arise from a number of unobservable, latent classes of unknown
proportion. The analysis of these models involves the fitting of mixtures (i.e. weighted
sums) of distributions. These latent classes are characterized by distributional
parameters that differ among classes. A variety of mixture models have appeared in the
literature including mixtures of normal (Hasseblad, 1966), Poisson (Hasselblad, 1969),
binomial (John, 1970), and exponentia (Everitt & Hand, 1981) distributions among
others. A comprehensive treatment of these and other mixture modelsis offered by
Titterington, Smith, and Makov (1985).

Mixtures of Regressions

There are many scenarios in social science, education, biomedical, and physica
science research when anaysis involves the estimation of alinear model. Therelation
of aset of predictor variablesto acriterion is one of the most widely practiced of al
statistical techniques (McCullagh & Nelder, 1989; Pedhauzer, 1997; Kleinbaum,
Kupper, & Muller, 1988). In many situations, it is likely that the estimation of one set
of regression coefficients across al observations will lead to spurious results (Wedel &
DeSarbo, 2002). Thisis particularly trueif the data arise from severa latent subgroups
with different population parameters. This has |lead to the development of latent class

regression models. Latent class regression models involve the estimation of differing



regression coefficients for each latent class. These models have been developed for
various types of dataincluding normal (Desarbo & Cron, 1988; Quandt & Ramsey,
1978), count (Wedel et. a., 1991; Ramaswamy, Anderson, & DeSarbo, 1994), and
binary (Follman & Lambert, 1989; Wedel & DeSarbo, 1992). The latter isthe focus of
thisinvestigation.

The binary logistic regression mode! is nonlinear. The outcome variable 7, isthe
probability of having one of the two possible outcomes of the dichotomous variable

y based on a nonlinear function of the best linear composite of predictors:

eq
1+¢€"

(2.1)

T

z; isthe model estimated probability of the ith case being in one of the categories and

gisthe familiar linear regression equation:
q= LB+ Xy B, X+t B Xy (2.2)

with constant (intercept) 4, , regression coefficients 3, and predictors X; for

predictors (j = 1,2,...,K). A transformation of 7;, known asthe logit (or log odds)

transformation enables the resulting model to have the desirable properties of the linear

regression model. Thistransformation is defined, intermsof r,, as:

|n(L] =po+t Z Bi X (2.3)

1' ﬂ’-i
The estimation procedure for coefficients is maximum likelihood, the goal of

which isto identify the best combination of predictors to maximize the likelihood of

obtaining the observed outcome frequencies. Maximizing the likelihood is tantamount



to maximizing the log-likelihood. Thelog-likelihood (LNL) is calculated by summing

the probabilities for the predicted and actual outcome for each case:

LNL = 3 Ty In(z,) + (- y)In- 7)) (2.4)

i=1
Sinceit is nonlinear, maximizing this function involves iterative computationa methods
such as Newton-Raphson.
The mixture of logistic regressions is aweighted sum of two or more

components. The proportion of the mixture is denoted as 8 and the sum of these
proportionsisequal toone. That is, z 6 =1. Ordinary logistic regression is a special

case where § = 1.0. Therefore, for atwo-component mixture, the resulting expression

for the transformation of 7, is:

m[%J = 9(ﬂo1 + z ﬂj1xij1)+ (1_ 9)(ﬂ02 + z ﬁjzxijz) (2.5)
And the resulting log likelihood is the same as (2.4) unless we introduce a vector
of weights to perform pseudo-likelihood estimation (Hosmer & Lemeshow, 2000;

Wedd & DeSarbo, 1992):

LNL = Zn:[(whyi )in(z) + (W (- y))In@ - 7,)] (2.6)

=
Thus, for traditional maximum likelihood estimation, the weight vectors (for
weights associated with each stratum h) wy, are simply a vector of ones. Follman and
Lambert (1989) presented a study in which the two components (logits) comprising the
mixture had the same slopes but different intercept constants. The current investigation

used varying slopes and intercepts for each latent class.



Complex Sample Survey Data (CSSD)

Finite Population Correction (FPC)

If asample of size nistaken from alarger population of size N, the sampling
fractionisn/N (Lohr, 1999 p. 33). The finite population correction (FPC) denoted as
1 —n/Nisrequired for variance estimators because the population is not infinite in size,
and sampling is done without replacement. This correction is made because, with
smaller populations, the sampling fraction is greater and thus more information is
available about the population. In this case, variances are smaller. Typically, the FPC
isignored if the sampling fraction is n/N < 0.05, thus the FPC is close to one.
Additionally, the FPC isignored if inferences are being made to a larger super-
population (Patterson, 1998). Therefore, the FPC was not utilized in the current
investigation.
Stratification

Often, in survey research, there is supplementary information availableto aid in
the design of the sample. For example, gender, race, region, or other non-overlapping
subgroups can aid in the creation of strata. In apopulation consisting of H strata (h = 1,
2, ...H), ny observations are sampled from each stratum. For this approach to sampling
to work, we assume that the summation of total observationsin each stratum is equal to
thetotal population. Thatis, Ny + N, + ...+ Ny = N. In proportional allocation, the
number of sampled units from each stratum is proportional to their natural occurrencein
the population. Thus, the probability of selection isny/ N, and isthe samefor all strata
(Lohr, 1999). If not, it isreferred to as disproportionate allocation (Cochran, 1977). If

done appropriately, stratified sampling will result in more precise parameter estimates



(i.e. smaller variances). For the greatest possible precision, observations within each
stratum should have very similar values and the stratum means should differ as much as
possible.

To illustrate a stratified sample, consider a SRS paradigm to estimate a

population mean of adichotomous variable y taking on the values [0, 1]. Thus, the

mean is a proportion and will be denoted P. The sample proportion, P = %z y.. A
ieS

proportion from a stratified sample is of the form:
- AN
Pstr = ZWh ph (27)

Thus, the estimated population proportion is a weighted average of the sample
stratum proportions. It isimperative that the size or relative size of the stratais known.

Thevarianceis:

5y Ny Y R@-R)
V(P,) -;[1 NJ( N J —nh_l (2.8)

(Cochran, 1977; Lohr, 1999). Thefpc for stratum his (1—;—:1] . Aspreviously noted,
the fpc was dropped for this investigation, the resulting expression can be evaluated as
if this quantity were equal to one.

Clustering

In cluster sampling, observations in the population are selected for inclusion in
the sampleif and only if they belong to a primary sampling unit (PSU). Observations
or elements within a PSU are sometimes referred to as secondary sampling units (SSU).

Typicaly, cluster samples are utilized for the sake of economy. The cost of sampling



SSUs s cheaper than that of each element in aSRS. Clusters, like strata, are a grouping
of elementsin apopulation. However, the selection of PSUsis quite different then
strata. In one-stage cluster sampling, each element of the population fallsinto exactly
one cluster, a SRS of clustersis selected and then all SSU in each cluster are sampled.
In two-stage cluster sampling, a SRS of clustersis selected and then a SRS of SSU is
taken from each PSU (Lohr, 1999). The current investigation utilized one-stage
sampling with clusters of equal sizes as the PSU.

Where the utilization of stratified sampling is known to increase precision,
cluster sasmpling leads to areduction in precision. Observations within a given cluster
tend to be more homogenous, thus reducing the effective sample size. For greatest
precision, SSUs within a cluster should be heterogeneous and cluster means should be

equivaent (Lohr, 1999, p. 133). Theintraclass correlation coefficient (ICC), p \isa

conventional measure of intra-cluster homogeneity. The ICC is described elsewherein
detail and interested readers are referred to Lohr (1999, p.139-143). Clustering leadsto
aloss of precision when the ICC is positive. Theloss of precision is effected by the

magnitude of the ICC and the size of the PSU. Assuming a constant cluster size,M , an

estimator of the population proportion P is:

= , 29
= (2.9
with V(P) =(1—2J s (2.9b)
¢ N /nM?
where t isthe estimator of the total in theith PSU,
f= ﬂZti (2.90)
n ieS

10



with sample variance s7,
1 Y
s = 1 (ti _ﬁj : (2.9d)

A comprehensive development of the unequal cluster size scenario is given by Lohr
(1999).
Weighting

Most large, nationally representative surveys such as NHANES (National Health
and Examination Survey) and NY TS (National Y outh Tobacco Survey) include
sampling weights in public distribution data sets. These weights must be integrated into
analyses so that parameter estimates are unbiased. When observations have the same
probability of being selected for inclusion in asample (such asin a SRS), they are not
essential to ensure valid parameters and test statistics (Korn & Graubard, 1991; Lohr,
1999). These weights, when applicable, can be easily incorporated into ratio, mean, and
total estimation (Cochran, 1977; Lohr, 1999).

Weights assign greater or less importance to some sampled observations over
others. Weights are necessary when there is an unequal probability of selection. For
example, in astratified sample the sampling weight can be expressed as the inverse of

the probability of selection:
w,, =— (2.10)

Thus, the sum of the sampling weightsis equal to the total sample size, and each

sampled observation is representative of a certain number of observationsin the

11



population (Lohr, 1999). Weightsin cluster samples are calculated in a different
manner.

NM
Weus = m (211)

The use of these sampling weights in would result in the analysis of N
observations. Therefore, relative weights are often used in the analysis of survey data,
so results are based on n observations, and significance tests are not affected. A relative
sampling weight is a sampling weight divided by the mean of the sampling weights and

is denoted as:

Wre'ij = —\JN (212)

n

Standard Error Estimation with CSSD

There are several techniques for estimating standard errors that take into account
the sampling design. Of these, three were chosen as candidates for simulation in the
current study. The first approach, the design effect adjustment is a post hoc adjustment
to normally calculated standard errors. The remaining two (the jackknife and bootstrap)
are resampling approaches that require an iterative processto arrive at standard error
estimates.

Design Effect (DEFF) Adjustment
The design effect (DEFF) is aratio of the design based standard error to the

same estimator asif it were from a SRS of the same size. For a sample proportion

estimator, P, based on n observationsit is denoted as;

12



V(P)

(1_nj'°(1—'°) '
N n

DEFF(P) = (2.13)

If al stratum proportions are equal, the DEFF under stratified sampling will
typically be less than one (Lohr, 1999). Thisisdueto the increasein precision
associated with stratification noted earlier.

In the case of cluster sampling, the ICC, p, istypically positive thus leading to a
loss of precision and a DEFF greater than one. The DEFF for a one-stage cluster
sample with PSUs of equal size, M, is approximately:

DEFF =1+(M -1)p (2.14)
(Kish, 1965; Lohr, 1999). Thus, the DEFF is dependent on both the ICC and M. Ina
design involving both stratification and clustering, it is not possible to know beforehand
whether the DEFF will be greater than or less than one. Thiswill depend on whether
more precision was gained by stratification or lost by clustering.

Kish (1965) suggested that an estimate of the effective sample size, n’, be
utilized in the calculation of standard errorsinstead of n:

n
DEFF

(2.15)

More often, estimated standard errors are adjusted by multiplication by the quantity

JDEFF .
Jackknife

The jackknife approach was proposed by Quenouille (1949; 1956) as a method
for reducing biasin statistical estimates. This procedure was later adopted to estimate

variances and associated confidence intervals (Tukey, 1958; Mosteller & Tukey, 1968).

13



The most common approach to estimating jackknife variances is a method known as the
delete-one jackknife method. Others forms of the jackknife have been proposed and are
explained in detail elsewhere (Shao & Tu, 1995). All subsequent referencesto the
jackknife in the current investigation are intended to refer to the delete-one approach.

In astratified cluster sample with H strata, n, PSU’ s are chosen to be sampled
from stratum h. To create ajackknife replicate, one PSU in stratum h is omitted and the
remaining PSU’ s in stratum h are reweighted to maintain the estimated population size
for that stratum. The weights of the remaining units are inflated by afactor of ny/( n,—1)
(Rust & Rao, 1996). The analysis of interest is performed on the reduced sample and
the resulting parameters are called “jackknife parameter estimates.” This procedureis
repeated for the entire sample of PSU’ s or often on arandom sample of PSU’s. The
variance estimates are then calculated from the jackknife parameter estimates.

A widely utilized jackknife variance estimator for a parameter 4 is:

Vi (é) = z i _12 (é(hj) -0)? (2.16)

where é(hj) is the estimator and the same form as @ but with PSU j of stratum h

omitted (Lohr, 1999; Skinner, Holt, & Smith, 1989, p. 53). This has been shown to bea
conservative variance estimate, that is, it produces relatively larger variance estimates
than other methods.

The number of jackknife replicates depends on the desired level of accuracy and
potentially on computational efficiency. Severa authors have discussed this choice
(e.0. Fay, 1985; Patterson, 1998; Wolther, 1985) without reaching a consensus.

However, Fay (1985) and Patterson et al. (2002) suggested 20 — 60 groups are

14



satisfactory based on Monte Carlo simulation results. Based on this suggestion the
current investigation utilized 25 jackknife replicates.
Bootstrap

The bootstrap resampling approach was developed by Efron (1979; 1981) and
was extended to complex survey samples by Rust and Rao (1996). In this approach,
resampling with replacement simulates the sampling distribution of the parameter of
interest. For example, a sample of size n, istaken from stratum h, with replacement. A
weight is calculated for this replicate and all parameters of interest are cal culated based
on this bootstrap sample. This process is repeated a specified number of times, and the
standard deviation of these bootstrap samples provides the bootstrap standard error. An
advantage of this approach is the avoidance of the normality assumption (Skinner, Holt,
& Smith, 1989, p. 54).

Mixtures of Logistic Regressions with CSSD

As noted above, latent class regression models have been developed for a
variety of datatypes, including logistic regression with binary outcome data (Wedel &
DeSarbo, 2002). However, the literature is lacking in the treatment of these models
with data from complex sample designs. The current investigation incorporated
sampling weights by means of the pseudo-likelihood approach and applied this
technique to the estimation of latent class regression models. Previous research on
latent class regression has shown that the Newton-Raphson procedure can be used to
maximize the likelihood across the entire parameter space (Lwin & Martin, 1989).
Monte Carlo simulation results support the performance of this algorithm under a

variety of data conditions (Weddl & DeSarbo, 1992).

15



Since LCLR models have not been rigorously developed for use with complex
sample survey data, methods for estimating variances are not reported in the literature.
While software is avail able to perform these calculations for standard logistic regression
(e.g. STATA, SUDAAN), no widely available software yields estimates of standard

errorsfor LCLR.
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CHAPTER 111

METHODS
Research Design

The purposes of this study were to (1) develop and test methods for
incorporating complex sample designsin LCLR and (2) to evaluate several competing
techniques for estimating variances for LCLR parameters (i.e. the bootstrap, jackknife,
DEFF adjustment). To addressthe first of these, the LCLR, likelihood function, and
associated SAS programs were written to incorporate complex sample designs.
Simulated parameter estimates incorporating stratification, clustering, and weights were
compared to empirically derived estimates. These survey-adjusted estimates were
compared to results from simulations where the sampling design isignored. The second
purpose was addressed by simulation where bootstrapped, jackknifed and DEFF
adjusted standard errors were compared with estimated “true” variances

Observations were simulated to represent alarge, simulated population of size
N, with K PSU’s each of equa size, M. The sample was designed with two strata of
egual sizeto ensure asimple, easy to understand design, though large surveys rarely
consist of only two strata. For example, the Indiana Y outh Tobacco Survey (IYTS)
sampled two PSU’ s from each of 21 stratafor atotal of 42 sampled PSU’s.
Additionally, the I'Y TS incorporated over-sampling of Hispanics, to allow for
meaningful subgroup analyses. As stated, the current investigation simulated two strata
of equal size. However, one was “weighted down in size” to reflect an over-sampling

of one strata.
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Fixed Factors

The sample size, number of latent classes and the number of coefficients
estimated were fixed. A sample size of 3000 was chosen, with two strata of equal size,
n; = ny = 1500. This sample size was chosen because it is similar to the sample size of
the IYTS (njyrs = 2860). Within each stratum, each PSU was of equal size, m = 20.
This size was chosen because it is large enough to demonstrate a clustering effect
(Patterson, 1998; 2002). It was assumed that each of the two strata and the two strata
combined could be partitioned into two latent classes (LC) (1 =1, 2). Within each
stratum and when combined, the proportionin LC1 and LC2 will be denoted as ¢, and
(1 - 6,) respectively. Finally, nine parameters were estimated. These include the most
important, the LC mixing proportion, 6,, the intercept constants (Bo1, Boz) and six
regression coefficients (B11, P21, Ps1, P12, B2z, P32), Thus, the number of variables
simulated and used in each model was fixed at four (one binary outcome and three
independent variables), resulting in the following model

Q=0 By + B+ o+ Bl + (1= O) oy + Prp + Brp + B (32)

Preliminary analyses on the I Y TS data identified candidate parameters to simulate
ensuring realistic disparity between latent classes. Table 1 displays the regression
coefficients that were simulated.

Table 1. Simulated Regression Coefficients
Latent Class1  Latent Class 2

BOl: 6.8 BOZZ -25
[311 =-25 B 12— -0.2
Bz]_ =-0.3 Bzz =05
[331: 0.2 [332: 1.2
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Manipulated Factors

The following aspects of the simulation were manipulated: the mixing proportion
parameter, 0 (3), clustering (2), and the sampling weights (2). The study investigated 3
scenarios for 6, and two for each of the sample aspectsyielding a3 x 2 x 2 design, with
twelve cells of interest. Within each of these cells, parameter estimates and standard
errors estimated under differing conditions were compared. Data for each of these
scenarios were simulated and analyzed. A conceptual representation of the study is
presented in Table 2.

In latent class analysesin genera, the parameter that is of most interest isthe
mixing proportion, #. For the current investigation, stratum-specific 6 ‘s were defined
asfollows: 61 isthe proportion in LC1 in thefirst stratum and 6, is the proportion in
LC1 in the second stratum. The population mixing parameter, 6y, is afunction of 6,
and 0, and is denoted as:

0 pop = PO, +(1— )0, (3.2
where p is the proportion of the total population in stratum 1. In the current
investigation p = 0.8, due to the fact that stratum 2 was weighted down, as will be
discussed in detail.

For the ssimulations, #1 and 9, were randomly generated for each cluster using a 3
distribution in amanner previously described by Patterson (1998, 2002). This approach
allowsfor the introduction of intra-class correlation to the simulated clusters. The 8
distribution has valuesthat liein the [0,1] interval making it useful for generating
probabilities and proportions. The distribution isidentified by two parameters, v and

that can be selected such that the mean is located at a desired point along the [0, 1] axis.
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Table2
Simulation Design Specifications
Number of strata= 2, 75 Sampled PSU’s of size 20 per stratum

Opop 0.8 0.66 0.48
9 0, 09 0.4 07 05 05 0.4
ICC=.01 B(90,10) B(40,60)  P(70,30) B(50,50)  B(50,50) B(40, 60)
SRS SRS SRS

Bootstrap — 100 reps  Bootstrap—100reps  Bootstrap — 100 reps
Jackknife — 25 reps Jackknife — 25 reps Jackknife — 25 reps

DEFF, sk DEFF, sk DEFF, sk
DEFFooot DEFFooot DEFFooot
ICC=1 B(9.1) B(4,6) B(7.3) B(5.5) B(5.5) B(4,6)
SRS SRS SRS

Bootstrap — 100 reps  Bootstrap—100reps  Bootstrap —100 reps
Jackknife — 25 reps Jackknife — 25 reps Jackknife — 25 reps
DEFFjac DEFFjack DEFFjac
DEFFpo0t DEFFpo0t DEFFpo0t

Note: The above design was applied to both weighted and unweighted analyses
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The B distribution is symmetric about 0.5 whenv = . Additionally, the
distribution is skewed to the right when v < ® and to the left whenv > ®. The
probability density function of the B(v, ®) distribution is:

1—‘(V + 0)) v-1

Olv,o)=———L 1-6)“* 3.3
fOlv. o) ror@ 40 (3.3)
. 1% .. VvV .
with mean and standard deviation 5 . TheICC for this

v+o v+w) (v+w+l)

distribution is (v + @ +1)™* (Brier, 1980; Patterson, 1998). The B distributions that were
used are summarized in Table 3.

The B distributions were selected to simulate three levels of Gpqp. The
simulations investigated population mixing parameters that varied from moderate (Gpop
=0.48) to more extreme values (Fpop=0.66 and 6,0, =0.80). Values of § were selected
such that there will be a varying amount of disparity between strata. Pilot study on the
I'Y TS indicated that 6,0, =0.80 for some of the models investigated. Table 4 displays
the values of 6,4, and the values of 6, for each stratum.

As noted above, clusters of size m= 20 were generated. Values of 0 were
randomly generated from one of the  distributions previously described, thus
introducing the intra-class correlation. That is, observations within a given cluster were
more alike than observations from other clusters. Thiswas done by using the
randomly generated value of 4 to generate the 20 observations for each cluster. The
process was repeated 75 times for each stratum, thus yielding ny = n, = 1500. The result

was cluster level variation of the proportion in LC1. This approach has been previously
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Table 3
B Distribution Summary

v ® Mean Standard ICC (p) DEFF
Deviation (v+@p+1)?* 1+(M-Dp

10 90 0.1 0.029 0.01 1.82
30 70 0.3 0.046 0.01 1.82
40 60 0.4 0.049 0.01 1.82
50 50 05 0.049 0.01 1.82

1 9 0.1 0.091 0.10 2.73

3 7 0.3 0.131 0.10 2.73

4 6 0.4 0.148 0.10 2.73

5 b5 0.5 0.151 0.10 2.73
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Table4
Strata and Population Vaues of ¢

Stratum16,; Stratum?26, Population Gpop
po, +(1-p)o,

9 4 0.80
4 S 0.66
5 4 0.48

Note: p= 0.8
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reported and verified through simulation (Patterson, 1998, 2002). Two levelsof ICC
were investigated, 0.01 and 0.1. These values were chosen asthey are reflective of the
|CC that has been reported for various items on the IYTS and are similar to those
reported in other large surveys. Asnoted in Table 1, with cluster sizes of m=20, these
ICCsof 0.01 and 0.1 result in DEFF = 1.18 and 2.73, respectively.

The final manipulated design feature was sample weighting. As previously
stated, the I'Y TS uses over-sampling of certain subgroups. The current investigation
also incorporated simulated over-sampling. Two scenarios of weighting were
investigated, one ignoring and one incorporating the weights. In the first scenario, data
were simulated for 1500 observations in each stratum, the models of interest fit to the
data, and standard errors estimated. In the second, weighted scenario, 1500
observations were al'so simulated in each stratum. However, to incorporate “over-
sampling” the second stratum was weighted down to a sample size of 375. Thus, in the
weighted scenario, the effective, weighted sample size was 1875. The weighted sample
sizeswere n,, =1500,n,, = 375,N,, =1875, for weighted stratum one, weighted stratum
two, and weighted combined sample respectively. Thus the proportion of observations
in thefirst stratum is 0.8. Ratios of this magnitude (4:1) are common in complex survey
designs and are large enough to alow for the investigation of bias introduced by
ignoring weights. Therefore, two sets of simulations were done, one incorporating the
weights and one ignoring them. The current investigation was weighting down to
account for over-sampling and not weighting up to a population, so relative weights
were not appropriate. The weights for stratum one and stratum two were 1.0 and 0.25

respectively.
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Variance Estimation

This study investigated the performance of several competing variance
estimation techniques. The estimated variances were compared to “true” variances
where true variances were empirically derived based on 10,000 replicates in a manner
similar to Patterson et a. (2002). The first variance estimation technique would be
appropriate if SRS had been used to select the sample. It was expected that this method
would yield variances that are consistently libera (i.e. too small).

Simulated variances for each experimental condition were estimated first, via
thejackknife. A jackknife replicate was generated by sequentially leaving out asingle
PSU, reweighting the data, and then estimating the LCLR parameters. The jackknife
weights (w) for stratah=1 and h =2 were calculated as follows:

w = = 2P g 0135y, = 375 _ 025338 (3.4a, 3.4b)
N, 1480 Nyyg 1480

The mean of the jackknife parameter estimates and their variances were calculated. As
previously indicated, 25 jackknife replicates have been shown to be adequate (Fay,
1985) and this number was performed to generate the simulated variances.

Variances were aso estimated via the bootstrap. Each replicate was created by
randomly sampling 75 PSU’ s from each stratum with replacement. Efron and
Tibshirani (1993, p. 52) state that for estimating standard errors, more than 100
replications are typically unnecessary. Therefore, bootstrap standard errors were the
standard deviation of a simulated sampling distribution based on 100 replications.

The final variance estimation technigue that was studied was the DEFF

adjustment. The DEFF swere calculated in two ways. Thefirst was the ratio of the
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jackknife variance estimate to the SRS variance estimate and the second was the ratio

(for each parameter) of the bootstrap variance to the SRS variance and are denoted as:

V- -
DEFF 0 = ¢ and DEFF,q = Yoot peqpectively. (3.5a, 3.5h)
VSRS VSRS

The square roots of DEFF s were then calculated and multiplied by the SRS
standard error asthe adjustments. That is, seyr =V DEFF * Seg .

Simulation Details

The simulation code was written in SAS version 8.2 (SAS Institute, 2001). The
Newton-Raphson method was used to maximize the non-linear likelihood functions.
Previous studies have indicated that this method is suitable for this type of analysis
(Wedel & DeSarbo, 1992). Proc NLP was the SAS procedure that was used for
optimization. The NLP procedure is available in the operation research (OR)
component of SAS. This procedure uses the gradient and Hessian matrix and thus
requires that the objective function have continuous first and second-order derivatives.
The algorithm uses a pure Newton step when the Hessian is positive definite, otherwise
a combination of ridging and line-search is done to compute successful steps. If the
Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian
to make it positive definite (SAS Institute, 1999).

The method proceeded in the following manner. (1) Data were randomly
generated and the model of interest was fit yielding parameter estimates and standard
errors. These were saved and will be referred to as the SRS estimates. (2) Jackknife
replicates were taken from these simulated data and the resulting jackknife estimates

were saved. (3) Bootstrap samples were taken from these same data and estimates were
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saved. The above design resulted in three sets of parameter estimates (SRS, jackknife,
and bootstrap) and five sets of variance estimates (SRS, jackknife, bootstrap, DEFF;a,
DEFFuot). Each simulation consisted of 1,000 replications with a convergence criterion
set to 10”°. Finally, the maximum number of iterations for convergence was set to 500.

Cases with solutions that did not converge in the specified number of iterations
were noted and handled as follows. A boundary can occur in the initial estimation,
during the jackknife, or during the bootstrap. If it occurred during the initial estimation,
the parameter was set to zero and its variance was not estimated. If this occurs during
the jackknife or bootstrap, estimates for that replicate were set to zero.
I'YTS and Simulation Origin

The IYTS was the first survey designed to provide comprehensive, baseline data
on the prevalence of tobacco use among Indiana youth and was designated to be used to
guide and evaluate youth tobacco-use prevention programs. It isthefirst survey to
provide Indiana with data that can be compared to other states or the national average.
The survey a'so measured knowledge and attitudes about tobacco, the impact of media
and advertising, minors' access to tobacco, tobacco-related school curricula, exposure
to environmental tobacco smoke, and cessation of tobacco use. The survey and
sampling method was devel oped by the Centers for Disease Control and Prevention
(CDC) to be ascientifically valid, random sampling of Indiana s youth. All public
high schools containing grades 9, 10, 11, or 12 and all public middle schools containing
grades 6, 7, or 8 were included in the sampling frame. A two-stage cluster sample

design was used to produce a representative sample of students in grades 6 through 12.

27



LCLR provides anovel approach to investigate unobserved subgroups of youth
that differ in terms of what effects their susceptibility to experiment with or initiate
tobacco use. Specifically, thereis a dichotomous survey item that asks if arespondent
thinks that he or she will try a cigarette in the near future. The covariates that were
identified as differing between latent class regressions were age and two Likert-type
attitude items. As noted above, some pilot analyses with these data dictated the design
of the ssimulations to ensure that they mimicked real world data (see Table 1).

Statistical Analysis

The anal yses focused on parameter bias, variance estimates, and confidence
interval coverage. Relative biaswas calculated as the ratio of the simulated parameter
values to the true values that were calculated beforehand. Unadjusted (SRYS), jackknife,
bootstrap, and DEFF adjusted variances were compared to the derived “true” variances.
The “true” variances were determined for each condition using the following equation

for each parameter:
1 10000 )
Ve =——— 6. -6 3.6
true 10'000 IZ:::‘ ( I ) ( )

Parameter estimates, unadjusted (SRS) , jackknife, bootstrap, and DEFF adjusted

variances were assessed in terms of their relative bias:

1000 pa)
|

pias, =3 1000

true

3.7)

where 6; is the parameter estimate from the 1™ simulation. Additionally, 95%

confidence intervals for parameter estimates were calculated as.

C.l.=0+1.96/v.

(3.8)
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These intervals were utilized to investigate the interval coverage of the “true”

parameters.
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CHAPTER IV
RESULTS

Parameter estimates and bias are discussed followed by a discussion of the
variance estimatorsin terms of bias and confidence interval coverage. Then, the results
for the example based on the Indiana Y outh Tobacco Survey based on the “best”
method are presented.

Parameter Estimates and Bias

The parameter estimates from the various simulations and associated biases are
presented in Appendix A where tables are appropriately prefixed. Each of the estimated
parameters is presented in the far left column, the estimated true values in the second
column, and the estimates from the various conditions are presented as denoted by the
other column headings.

The weighted estimates presented are nonlinear and obtained via pseudo-
maximum likelihood. Thus, they are consistent but may be biased (Roberts, Rao, and
Kumar, 1987). As noted above, in latent class analysisit is the mixing proportion Gpgp
that is of the most interest. Additionally, the results for the regression coefficients were
consistently similar to those for Gpp. Thus, for the sake of simplicity and brevity, the
following discussion of results are restricted to 6,0,. Complete results of all parameters
estimates are presented in the appendix.

When weights were used in estimation, the resulting values of 9, Were quite
similar to the estimated true values (Tables A1 through A6) with no weighted estimate

of Gpop Showing more than 4.96% bias. When the weights were ignored, bias was found
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to be much larger, exceeding 17% in severa cases. Figures 1 through 3 depict the
amount of parameter bias detected in each of the three parameter estimate scenarios.

In general, the amount of bias increased as the value of 6., became more
extreme (i.e. deviated from .5 closer to 1). Averaging over results, it is apparent that the
weighted SRS (mean bias -0.04%) was less biased than the weighted bootstrap (mean
bias 1.01%) which was less biased than the weighted jackknife (mean bias 3.97%)
estimates. Among the unweighted results, there does not appear to be a clearly superior
method in relation to parameter bias. That is, all three unweighted methods yielded
comparably biased estimates.

Variances

As noted above, the estimated “true” variances were calculated as the sample
variance of 10,000 replications of the model of interest fit to simulated data. Resulting
standard error estimates were evaluated first in terms of the ratio of a given estimate to
the derived true estimate. A complete summary of all standard error estimates can be
found in Appendix A (Tables A7 through A12).

As hypothesized, standard error estimates ignoring the complex sample design
and assuming SRS consistently resulted in standard errors of 0o that were smaller than
the true values. These are presented in Figure 4. These standard errors underestimated
the true values by values of 0.45 to 18.66%. Thus, inferential tests based on these
estimates may be undesirably liberal. Jackknife estimates overestimated standard errors
of Gpop 1N 66.66% of the scenarios by valuesof 0.66 to 13.25%. Bootstrap estimates
overestimated the true standard errors of G, in 83.33% of the scenarios investigated by

values of 2.17 to 21.95%. Thus, resulting tests would be more conservative.
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The impact of clustering was investigated via design effects (DEFF's). As
stated in Chapter 3, two design effects were calculated for each parameter based on the
jackknife and bootstrap standard errors. The design effects are presented for each
parameter in Appendix A (Tables A7 through A12). As expected, the scenarios
utilizing the values from the g distribution intended to result in larger ICCs (i.e.
0:~B[5,5] 6.~B[4,6]; 06:~B[7,3] 6.~B[5,5]; 61~B[9,1] 6~P[4,6] ) did resultinlarger
DEFF s than the scenarios intended to exhibit weaker clustering effects. However, the
design effects were consistently smaller than those suggested by equation (2.14). For
example, the observed design effects for Gy, from 6:~B[5,5] 6,~B[4,6] were 1.258 and
1.237 for the bootstrap and jackknife variances respectively but the expected value for
each was 2.73. Similarly, the observed design effect for 6y, from 6,~B[50,50]
0,~B[40,60] were 1.184 and 1.206 for the bootstrap and jackknife variances respectively
but the expected value for each was 1.82.

Confidence Interval Coverage

Standard error estimates were investigated in terms of coverage where coverage
was defined as the percentage of replicates in which a 95% confidence interval
constructed by equation (3.8) included the true parameter value. A complete list of
coverage for every parameter can be found in Tables A13 through A18.

For 6,0p,, the unweighted analyses resulted in coverage ranging from a
minimum of 75.00%, occurring in the DEFF,q; condition to a maximum coverage of
89.33% occurring in the bootstrap condition. Additionaly, the coverage observed in

the unweighted conditions varied as a function of both the clustering effect and the
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difference between 6, and 6,. That is, coverage was greatest in the condition with
01~B[50,50] 6,~B[40,60] and poorest in the condition with 6,~3[90,10] 6,~3[40,60].
The coverage for each of the weighted scenarios are presented in Figure 5.
When weights were incorporated into the analyses, the coverage improved considerably
with coverage ranging from 85.1% to 95.3%. Of the methods that were compared, the
bootstrap consistently resulted in the best coverage. In fact, in every weighted scenario
except one, the bootstrap coverage was largest. The DEFF adjustment to SRS standard
errors resulted in coverage that in some scenarios outperformed the jackknife.
However, other than the bootstrap appearing to be clearly the best choice no other
systematic pattern emerged.

Example Based on IYTS

The lYTS isaunique survey designed to allow for the quantification of various
Indiana youth attitudes, beliefs, and behaviors towards tobacco use. Pilot investigation
was undertaken to identify a candidate model that was used as the basis of the larger
simulation study already presented.

The dichotomous dependent variable that was used was the response to the
survey item “Do you think you'll try a cigarette anytime soon?” Possible responses
were either “no” or “yes/aready tried smoking.” Thisitem was intended to capture
intent to initiate tobacco use/abuse. The first of the covariates (X1) was afour category
Likert item that asked “If one of your friends offered you a cigarette, would you smoke

it?” Possible responses ranged from “Definitely Yes’ which was coded asal to
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“Definitely Not” coded as a4 with the middle responses of “Probably Yes’ and
“Probably Not” were coded as 2 and 3 respectively. Thisitem wasintended to capture
susceptibility to peer influence regarding tobacco. The second covariate (X2) was a
Likert item that asked if respondents believed that “People get addicted to tobacco just
like cocaine or heroin.” Again, responses ranged from 1 (“Definitely Yes’) to 4
(Definitely No”). Thefinal covariate (X3) was an ordinal variable representing age that
was coded as one for age twelve or younger up to eight for those aged nineteen or older.

Initially, aweighted, one class LR and athree class LCLR model werefit to
these data. The resulting one class model is contained in Table 5. The one class model
was then compared to the two and three class alternative to determine which fit the

Table5: Weighted IYTS LR Coefficients

Covariate Estimate
Constant Bo=3.97
Peer Influence B1=-1.63
Addiction B2=-0.01
Age B3=0.25

IYTS data better. Akaike (1974, 1981) proposed the Akaike' s information criteria
(AIC) as away to choose the best fitting among competing models. AIC isastatistic
commonly used to compare latent class models. For amodel consisting of g parameter
estimates AIC is denoted as:

AIC = —2LNL +2g (4.1)
The model with the minimum AIC is preferred. Table 6 contains the values of LNL and
AIC for the one, two, and three class models. The two class LCLR model was chosen,

indicating that the population in question was a heterogeneous one. That is, these data
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are better represented by a mixture of two LRs than one LR or a mixture of three. Other
model selection techniques such as the Bayesian information criteria (BIC) have been
suggested by Schwarz (1978), Box, Jenkins, and Reinsel (1994) among others. BIC is
of the form:

BIC = -2LNL +In(n)g (4.2
BIC was not utilized in the current investigation because it was unclear what quantity to
utilize for the sample size n. The choice is between the total sample size and the
number of PSUs. In order to avoid the nebul ous nature of this choice, AIC was chosen
over BIC for model selection.

Table 6: Log Likelihood and AIC

Model LNL AIC
One Class -212709.43 425426.86
Two Class -210185.03 420388.07

Three Class -210181.48 420390.96

Table 7 displays the regression coefficients resulting from the weighted two
class LCLR model fit to the 2001 1Y TS data. The mixing proportion for this model was
6 =0.82. Latent class one comprises 82% of the population. Thisfirst class appears to
be more susceptible to peer influence in that those that indicated that they would

Table 7: Weighted 1Y TS LCLR Regression Coefficients

Covariate Latent Class1 Latent Class?2

Constant Boi=6.81 Box=-2.49
Peer Influence B11=-2.47 B12=-0.14
Addiction Bz]_ =-0.33 B»»=0.51
Age B 31=0.15 Bs=1.21

Note: # =0.82
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accept afriend’ s offering of a cigarette were more likely to indicate that they either
intended to try or have already tried a cigarette. In both classes it appears that those that
are older are more likely to indicate that they would smoke. The classes differ in their
knowledge of the addictive nature of tobacco, however these coefficients are not of
significant magnitude. One interpretation would be to classify these groups as
“susceptibility classes.” That is, 82% of Indiana youth tend to be more susceptible to
the influence of their peer in terms of tobacco use. The other 18% tend to not be
affected by their peers, but become more likely to smoke as they age. Additional
variables would need to be investigated to further differentiate these latent subgroups.
Indiana has one of the highest youth smoking rates in the United States, which was one
of the motivations for fielding this survey. Based on these findings, future counter
marketing or public service announcements in Indiana should address the peer pressure
issue.

Based on the simulation results, it was determined that relying on weighted
parameter estimates would result in less bias and bootstrapped standard errors would
produce the most conservative variance estimates. However, unweighted parameter
estimates and standard errors were investigated as well for comparative purposes.

Table 6 displays the unweighted parameter estimates, a complete summary of
parameters and standard errors can be found in Table A19. Ignoring the weights
resulted in biased parameters, even resulting in the change of sign for ,; in latent class
one. Thisindicates again, that weights must be included for results to be appropriate.

Most importantly, the unweighted estimate of 6 was quite biased.
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Table 8: Unweighted 1Y TS LCLR Regression Coefficients

Latent Class1 Latent Class 2

B 01— 6.12 B 02— -3.46

B]_]_ =-1.59 B 12= -0.20

le =0.22 By = 0.63

B 3= 0.06 B32 =2.00
Note: 8 =0.62

The 1Y TS was the result of a sampling design that was quite different from the
simplified scenarios used in the simulations. In addition, the I'Y TS utilized much more
extreme weights for several subgroups. These two factors no doubt influenced the
amount of observed bias. However, the bootstrap approach once again produced

standard errors that consistently over-estimated their SRS anal ogs.
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CHAPTER YV
CONCLUSIONSAND DISCUSSION

Thisinvestigation was primarily concerned with two areas. Firgt, to investigate
potential bias introduced to parameter estimates when sampling weights are not
incorporated into the analysis. The second was to investigate competing strategies of
variance estimation in the face of varying amounts of intra-cluster correlation
introduced by complex survey data.

Parameter Estimates

Typicaly, when data are analyzed, parameter values obtained from analysis (i.e.
not from a replication methodology) are used. The results of the current investigation
are in agreement with this practice. However, when analyzing complex survey data,
valid parameters can only be obtained if weights are incorporated into the analysis.
Additionally, jackknife and bootstrap parameter estimates were more biased than their
SRS counterparts when using weights. While this bias was not in all cases extreme, the
SRS parameter estimates tended to be less biased. The parameter estimates obtained
when weights were ignored were consistently biased. This held true for all estimates
SRS, bootstrap, and jackknife.

These findings underscore the importance of incorporating weights. When
weights were ignored, the estimates of 6o, Were quite biased, in come cases over 17%.
Inthe IY TS example, ignoring the weights resulted in an estimate of G, that was

biased by 24%.
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Variance Estimates

As hypothesized, standard error estimates based on the assumption of SRS
consistently under estimated the true values by 0.4 to 18.6%. This approach should be
abandoned due to the overly liberal variance estimatesit produces. The replication
based estimates (i.e. jackknife and bootstrap) produced standard error estimates that
consistently over-estimated the true variances.

The jackknife standard errors resulted in estimates that were in general,
positively biased. That is, this approach tended to over-estimate true standard errors by
.06 to 13%. However, thiswas not the case in every condition. Specifically, in two of
six weighted scenarios the jackknife estimates underestimated the true variance by 3 to
20%. This underestimation can lead to spurious statistical tests. However, the jackknife
as implemented here, consisted of only 25 replicates. The jackknifeis easy to
implement in statistical packages such as SAS. It would be beneficial for future
research to investigate the impact of doubling or even tripling the number of jackknife
replicates in an attempt to arrive at a suggested number of replicates that would provide
more stable estimates of variability.

The bootstrap standard error estimates were also predominantly conservative. In
five of the six weighted scenarios, the bootstrap over-estimated the true standard error
by 2.1t0 21.9%. However, in one scenario, it underestimated the standard error by 8%.
Whilethisisonly dlightly better than the jackknife, as will be discussed, the bootstrap
consistently outperformed it in terms of coverage. It would be beneficial to investigate

the impact of increasing the number of bootstrap replicates as well.



The SRS standard error estimates were quite liberal, and the observed design
effects were much smaller than expected. The design effect adjustment resulted in
variance estimates that were also consistently smaller than were the true values. This
approach could be investigated again in simulated scenarios that exhibited larger design
effects, perhaps with values of DEFF larger than two.

Based on the current findings, the fina recommendation regarding variance or
error estimation must be the bootstrap. However, this recommendation is based on a
desireto “err on the side of caution.” That is, it is preferable to use variance estimates
that tend to be conservative (i.e. large) rather than liberal (i.e. small). Thisisespecialy
trueif rgecting the null hypothesis has severe consequences. Additional research could
provide a more concrete guide.

Coverage and Recommendations

Confidence interval coverage was greatest when bootstrap standard errors were
used to construct the confidence intervals. In fact, the bootstrap was the only method
that resulted in 90% coverage or better for 6,0 in every weighted scenario. Again, these
results may be bolstered by an increase in the number of bootstrap replicates.

Based on the findings for bias, variance estimation, and coverage, it is clear that
the preferred method is to fit the model and obtain parameter estimates then
approximate variance or standard errors through the bootstrap method. The smallest
parameter bias was observed with SRS (non-replicate) estimates, and the most

conservative error estimates were obtained via the bootstrap.
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Implications for Future Research

1 The number of replicates for both the bootstrap and jackknife approach
should be further investigated. Anincreasein either might significantly decrease the
observed biasin both parameter and variance estimate bias. Patterson (1998, 2000)
indicated that sixty jackknife replicates resulted in acceptable coverage and minimal
bias. Based on the current investigation, the number of jackknife or bootstrap replicates
should be increased, possibly doubled.

2. Systematic variation of the simulated sample design would indicate the
performance of these methods in other circumstances. For example, it would be useful
to simulate a survey sample consisting on more (possibly many more) than two strata
and few cluster per strata. Few real world surveys consist of only two strata.

3. It would be of interest to investigate the current methods both on much
larger and much smaller samples.

4, Other variance estimation techniques such as linearization should be

investigated.
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APPENDIX A: RESULTSTABLES

Table Al: Parameter Estimates and Relative Bias

6:~B[5,9]; 62~P[4,6]

Weighted Analyses
Parameter “True” Relative Relative Relative
Parameter SRS Bias(%)  Jackknife  Bias(%)  Bootstrap Bias (%)

Por 6.99 6.911 -1.05 7.03 0.65 7.00 0.14
Pu -2.57 -2.44 -4.96 -2.54 -1.35 -2.57 0.11
$231 -0.39 -0.37 -4.08 -0.40 2.47 -0.39 1.08
Ba1 0.17 0.16 -5.99 0.17 -2.32 0.17 -0.99
Boz 291 -3.09 6.45 -3.08 5.93 -2.85 -1.81
B -0.10 -0.09 -4.20 -0.09 -5.03 -0.09 -4.08
P22 0.64 0.64 -0.06 0.69 6.98 0.66 2.85
Ba2 1.46 1.48 0.91 1.54 5.52 1.49 213
0 0.48 0.49 1.65 0.50 3.64 0.500 3.56

Unweighted Analyses

Parameter “True” Relative Relative Relative

Parameter SRS Bias(%)  Jackknife  Bias(%)  Bootstrap Bias (%)

Bor 6.99 6.96 -0.39 8.10 15.92 7.49 7.14
Pu -2.57 -2.61 1.66 -2.94 14.33 -2.84 10.36
i231 -0.39 -0.39 -0.22 -0.49 24.65 -0.48 21.81
Ba1 0.17 0.20 17.18 0.24 35.56 0.18 6.42
Boz -2.9 -2.79 -4.08 -2.79 -4.00 -3.25 11.75
B -0.10 -0.12 18.14 -0.12 18.52 -0.10 3.33
P22 0.64 0.59 -7.61 0.59 -7.36 0.72 12.52
Ba 1.46 1.40 -4.10 1.40 -4.00 1.66 13.76
0 0.48 0.45 -5.03 0.45 -5.10 0.46 -3.71
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Table A2: Parameter Estimates and Relative Bias

0:~B[7,3]; 62~B[5,9]

Weighted Analyses
Parameter “True’ Relative Relative Relative
Parameter SRS Bias(%)  Jackknife  Bias(%) Bootstrap  Bias (%)
Boy 7.44 7.21 -3.14 7.58 1.78 7.45 0.06
B -2.78 -2.6 -4.15 -2.57 -7.45 -2.67 -3.75
B -0.35 -0.36 3.27 -0.36 4.09 -0.36 2.63
Pa1 0.20 0.19 -4.09 0.20 -1.43 0.20 0.48
Boz -3.18 -3.09 -2.72 -3.09 -2.82 -3.19 0.40
B -0.06 -0.06 -3.33 -0.06 1.82 -0.06 0.53
P22 0.69 0.67 -2.39 0.69 131 0.70 1.38
Ba2 1.60 153 -4.44 1.68 4.67 1.65 3.17
0 0.67 0.65 -2.39 0.69 245 0.68 1.60
Unweighted Analyses
Parameter “True’ Relative Relative Relative
Parameter SRS Bias(%)  Jackknife Bias(%) Bootstrap  Bias (%)
Bor 7.44 7.69 327 7.63 2.47 7.61 2.30
Bu -2.78 -2.56 -8.01 -3.05 9.93 -2.99 7.74
i231 -0.35 -0.38 10.49 -0.37 6.77 -0.36 4.18
Ba1 0.20 0.23 14.83 0.22 9.04 0.22 8.99
Boz -3.18 -2.83 -11.06 -2.88 -9.45 -3.54 11.38
B -0.06 -0.07 11.96 -0.07 9.31 -0.07 8.49
P22 0.69 0.66 -3.61 0.63 -8.44 0.62 -9.72
Ba2 1.60 1.49 -6.82 1.43 -10.92 1.44 -10.40
0 0.67 0.59 -12.16 0.61 -9.16 0.61 -9.71
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Table A3: Parameter Estimates and Relative Bias

6:~B[9,1]; 6.~P[4,6]

Weighted Analyses
Parameter “True” Relative Relative Relative
Parameter SRS Bias(%)  Jackknife  Bias(%) Bootstrap  Bias (%)

Bot 7.63 8.08 5.91 7.86 3.05 7.70 0.87
Bt -2.85 -2.99 4.96 -3.03 6.25 -2.98 4.83
Ba -0.35 -0.36 4.63 -0.34 -3.26 -0.34 -2.42
Pa1 0.21 0.21 -2.88 0.23 10.99 0.22 4,02
Boz -3.23 -3.17 -1.97 -3.14 -2.83 -3.24 0.26
B -0.06 -0.06 -2.54 -0.07 6.18 -0.07 473
P22 0.70 0.73 3.96 0.74 5.36 0.71 0.78
Ba2 1.63 1.71 4.59 1.74 6.81 1.69 3.85
0 0.79 0.79 -0.05 0.82 461 0.78 -0.34

Unweighted Analyses

Parameter “True” Relative Relative Relative

Parameter SRS Bias(%) Jackknife Bias(%) Bootstrap  Bias (%)

Bor 7.63 7.23 -5.20 7.86 2.99 7.86 3.05
Pu -2.85 -2.70 -5.24 -2.96 3.45 -2.95 3.59
i231 -0.35 -0.33 -5.28 -0.34 -1.13 -0.34 -1.15
Ba1 0.21 0.18 -14.56 0.24 13.55 0.22 4.46
Boz -3.23 -2.96 -8.52 -3.50 8.43 -3.23 -0.04
P -0.06 -0.09 37.84 -0.09 34.66 -0.08 23.15
P22 0.706 0.63 -10.33 0.74 5.74 0.72 3.09
Ba2 1.63 1.48 -9.51 1.75 7.01 1.69 3.58
0 0.79 0.67 -14.91 0.82 4.47 0.82 4.48
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Table A4: Parameter Estimates and Relative Bias

0,~B[50,50]; 6,~3[40,60]

Weighted Analyses
Parameter “True” Relative Relative Relative
Parameter SRS Bias(%)  Jackknife  Bias(%) Bootstrap  Bias (%)

Bot 6.94 6.71 -3.36 7.29 5.08 7.02 1.16
Bt -2.56 -2.43 -5.07 -2.37 -7.58 -2.49 -2.75
Ba -0.41 -0.38 -5.88 -0.429 5.94 -0.41 2.42
Ba1 0.18 0.16 -5.44 0.19 7.42 0.18 3.74
Boz 291 -2.91 0.15 -3.07 571 -2.99 3.17
P -0.09 -0.08 -3.80 -0.08 -6.16 -0.09 -1.06
P22 0.64 0.63 -1.73 0.67 4.89 0.66 4,08
Ba2 1.46 1.45 -0.67 1.57 7.06 1.52 4.14
0 0.49 0.49 0.99 0.51 4.96 0.50 217

Unweighted Analyses

Parameter “True” Relative Relative Relative

Parameter SRS Bias(%) Jackknife Bias(%) Bootstrap  Bias (%)

Bor 6.94 6.37 -8.27 7.08 2.07 7.02 1.16
Pu -2.56 -2.39 -6.83 -2.93 14.30 -2.81 9.69
i231 -0.41 -0.38 -5.89 -0.39 -2.51 -0.39 -2.51
Ba1 0.17 0.16 -7.65 0.21 14.72 0.19 9.36
Boz -2.91 -2.91 0.15 -3.41 17.29 -2.96 2.17
B -0.09 -0.08 -13.51 -0.04 -53.15 0.09 -203.86
P22 0.64 0.63 -1.73 0.73 14.83 0.65 151
Ba2 1.46 1.45 -0.67 1.77 20.68 1.56 6.89
0 0.49 0.46 -5.07 0.47 -4.61 0.48 -2.69
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Table A5: Parameter Estimates and Relative Bias

0,~B[70,30]; 6,~B[50,50]

Weighted Analyses
Parameter “True” Relative Relative Relative
Parameter SRS Bias(%)  Jackknife Bias(%) Bootstrap  Bias (%)

Bot 7.36 7.22 -1.88 7.24 -1.64 7.25 -1.50
Pu -2.73 -2.67 -2.28 -2.87 4.96 -2.87 4.86
i231 -0.34 -0.36 3.95 -0.34 -2.56 -0.34 -1.06
Ba1 0.21 0.19 -5.67 0.20 -4.59 0.20 -2.76
Boz -3.15 -3.01 -4.53 -3.08 -2.35 -3.09 -1.86
B -0.07 -0.07 6.51 -0.08 5.16 -0.07 2.82
P22 0.69 0.67 -2.25 0.72 4.76 0.72 3.23
Ba2 1.59 153 -3.66 1.55 -2.70 1.56 -2.14
0 0.66 0.65 -0.24 0.69 4.65 0.66 0.11

Unweighted Analyses

Parameter “True” Relative Relative Relative

Parameter SRS Bias(%)  Jackknife Bias(%) Bootstrap  Bias (%)

Bor 7.36 7.62 3.56 7.82 6.18 7.90 7.31
Pu -2.73 -2.75 0.52 -3.04 11.26 -2.99 9.29
i231 -0.34 -0.39 12.09 -0.39 13.04 -0.39 13.00
Ba1 0.21 0.22 5.37 0.24 16.36 0.24 17.10
Boz -3.15 -2.8 -9.24 -2.87 -8.69 -3.55 12.72
B -0.07 -0.08 11.90 -0.08 10.27 -0.08 9.02
P22 0.69 0.62 -9.97 0.62 -9.60 0.64 -8.01
Ba2 1.59 1.42 -10.75 1.43 -10.23 1.45 -9.23
0 0.66 0.60 -8.62 0.60 -8.65 0.61 -8.24
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Table A6: Parameter Estimates and Relative Bias

0,~B[90,10]; 6,~[40,60]

Weighted Analyses
Parameter “True” Relative Relative Relative
Parameter SRS Bias (%)  Jackknife  Bias(%) Bootstrap  Bias (%)

Boy 7.56 8.06 6.72 8.05 6.49 8.02 6.11
B -2.82 -3.05 8.02 -3.02 7.08 -3.02 71.27
B -0.35 -0.36 3.37 -0.35 -2.22 -0.35 -0.64
Ba 0.21 0.22 4.38 0.22 473 0.22 2.56
Boz -3.23 -3.19 -1.15 -3.17 -1.78 -3.19 -1.31
B -0.06 -0.06 1.59 -0.06 0.02 -0.06 0.03
P22 0.68 0.66 -4.18 0.66 -4.32 0.66 -2.96
Ba2 1.62 1.67 2.98 1.66 2.38 1.65 1.77
0 0.79 0.79 -0.22 0.82 3.52 0.78 -0.52

Unweighted Analyses

Parameter “True’ Relative Relative Relative

Parameter SRS Bias(%)  Jackknife Bias(%) Bootstrap  Bias (%)

Boy 7.56 8.07 6.82 8.07 6.71 8.03 6.25
Pu -2.82 272 -3.51 -2.93 3.74 -2.96 5.04
i231 -0.35 -0.34 -4.78 -0.35 0.39 -0.4 12.45
Pa1 0.21 0.20 -6.95 0.18 -13.33 0.20 -2.89
Boz -3.23 -2.98 -7.82 -3.16 -2.14 -3.67 13.62
B -0.06 -0.06 2.39 -0.06 10.67 -0.07 9.08
P22 0.68 0.62 -8.71 0.65 -3.98 0.67 -1.06
Ba2 1.62 1.49 -8.35 1.53 -5.53 1.53 -5.81
0 0.79 0.65 -17.43 0.65 -17.45 0.65 -17.24
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Table A7 “True” and Estimated Standard Errors and Design Effects

61~B[5,5] ; 62~B[4,6]

Weighted Analyses
Parameter  “True” Ratio Ratio Ratio
SE SRS SRS True Jackknife Jack:True DEFF.« Bootstrap Boot:Tru  DEFF
e
Bor 003  0.02 0.89 0.04 1.12 1.25 0.03 1.08 1.21
Bu 001 001 0.90 0.01 1.08 1.20 0.01 1.05 1.16
Pt 001 001 0.91 0.01 1.09 1.20 0.01 1.09 1.19
Ba 001 001 0.92 0.01 1.08 1.17 0.01 1.04 1.13
Boz 001 001 0.92 0.01 1.17 1.26 0.01 1.15 1.24
Bi 0.003 0.004 0.94 0.004 1.06 1.12 0.003 1.01 1.06
B 0.004 0.004 0.92 0.004 1.03 1.11 0.004 1.01 1.09
Ba 0.005 0.005 0.95 0.006 1.05 1.09 0.006 1.03 1.07

0 0.0004 .0003 0.81 0.0004 1.01 1.23 0.0004 1.02 1.25




Table A8 “True” and Estimated Standard Errors and Design Effects

6.~B[7.3]; 62~B[5,5]

Weighted Analyses
Parameter  “Trug” Ratio Ratio Ratio
SE SRS SRS:True  Jackknife  Jack:True DEFF« Bootstrap Boot:True DEFF,u

Bor 0.03 0.03 0.93 0.03 1.04 111 0.03 1.01 1.08
Bu 0.01 0.01 0.95 0.01 1.11 1.16 0.01 1.02 1.07
P21 0.01 0.01 0.92 0.01 112 121 0.01 1.06 1.14
Ba1 0.01 0.01 0.92 0.01 1.18 127 0.01 1.07 1.15
Boz 0.02 0.02 0.91 0.02 112 1.22 0.02 1.06 1.15
B 0.02 0.02 0.93 0.02 1.11 1.19 0.02 1.05 1.12
B2 0.01 0.01 0.94 0.01 1.20 1.27 0.01 1.21 1.29
Ba2 0.01 0.01 0.91 0.01 1.11 1.22 0.01 1.07 1.17

0 0.0004  0.0004 0.95 0.0004 1.03 1.08 0.0005 121 1.27




Table A9 “True” and Estimated Standard Errors and Design Effects

6:~B[9.1]; 62~B[4,6]

Weighted Analyses
Parameter  “Trug” Ratio Ratio Ratio
SE SRS SRS:True  Jackknife Jack:True DEFF.« Bootstrap Boot:True DEFF,u

Bor 0.03 0.02 0.94 0.03 111 117 0.03 1.05 1.11
Bu 0.01 0.01 0.86 0.01 1.07 1.25 0.01 1.04 1.21
i231 0.01 0.01 0.96 0.01 112 1.16 0.01 1.09 1.13
Ba1 0.01 0.01 0.91 0.01 115 1.26 0.01 1.09 1.18
Boz 0.02 0.02 0.94 0.02 111 1.18 0.02 1.03 1.09
B 0.02 0.02 0.95 0.02 1.09 1.15 0.02 1.05 1.09
B2 0.01 0.01 0.96 0.01 1.08 1.12 0.01 1.01 1.04
Ba2 0.02 0.02 0.93 0.02 1.10 1.19 0.02 1.01 1.08

0 0.0004  0.0003 0.86 0.0003 0.79 0.93 0.0004 1.05 1.22




Table A10 “True” and Estimated Standard Errors and Design Effects

0,~B[50,50]; 6,~p[40,60]

Weighted Analyses
Parameter  “True” Ratio Ratio Ratio
SE SRS SRS True  Jackknife  Jack:True DEFF« Bootstrap Boot:True  DEFFuq
Bo1 0.03 0.03 0.91 0.03 1.07 1.18 0.03 1.04 1.15
B11 0.01 0.01 0.91 0.01 1.03 114 0.01 1.03 1.13
B 0.01 0.01 0.93 0.01 1.08 1.16 0.01 1.07 1.15
Ba 0.01 0.01 0.98 0.01 1.04 1.06 0.01 1.02 1.04
Boz 0.01 0.01 0.97 0.01 1.08 111 0.01 1.03 1.04
B12 0.003 0.003 0.89 0.004 1.15 1.29 0.004 1.08 1.19
B2z 0.004 0.004 0.91 0.004 1.08 1.18 0.004 1.05 1.14
Ba2 0.006 0.005 0.94 0.006 1.04 1.10 0.006 1.05 112

0 0.0004  0.0003 0.86 0.0004 1.04 121 0.0004 1.02 1.18




Table A11 “True” and Estimated Standard Errors and Design Effects

0,~B[70,30]; 6,~B[50,50]

Weighted Analyses
Parameter  “True’ Ratio Ratio Ratio
SE SRS SRS:True  Jackknife  Jack:True DEFF.« Bootstrap Boot:True DEFF,u

Bor 0.03 0.03 0.97 0.03 1.08 111 0.03 1.04 1.07
Bu 0.01 0.01 0.94 0.01 1.08 1.16 0.01 1.04 1.11
P21 0.01 0.01 0.87 0.01 1.11 1.28 0.01 1.06 1.22
Ba1 0.01 0.01 0.97 0.01 1.09 117 0.01 1.04 1.08
Boz 0.02 0.02 0.96 0.02 1.06 1.10 0.02 1.03 1.07
B 0.02 0.02 0.94 0.02 1.10 1.18 0.02 1.05 1.12
B2 0.01 0.01 0.94 0.01 1.14 1.21 0.01 1.09 1.17
Ba2 0.02 0.02 0.98 0.02 1.05 1.08 0.02 1.02 1.04

0 0.0004  0.0004 0.99 0.0004 0.97 0.97 0.0004 1.07 1.07




Table A12 “True” and Estimated Standard Errors and Design Effects

0,~B[90,10]; 6,~[40,60]

Weighted Analyses
Parameter  “True” Ratio Ratio Ratio
SE SRS SRS:True  Jackknife  Jack:True DEFF.« Bootstrap Boot:True DEFF,u
Bor 0.03 0.02 0.97 0.03 1.10 113 0.03 1.02 1.05
Bu 0.01 0.01 0.98 0.01 1.09 1.10 0.01 1.05 1.06
i231 0.01 0.01 0.92 0.01 1.09 1.18 0.01 1.04 1.13
Ba1 0.01 0.01 0.99 0.01 1.08 1.08 0.01 1.05 1.05
Boz 0.02 0.02 0.95 0.02 1.04 1.09 0.02 1.03 1.07
B1o 0.02 0.02 0.96 0.02 1.07 1.11 0.02 1.05 1.08
B2 0.02 0.02 0.95 0.02 1.09 1.15 0.02 1.05 1.09
Bs 0.01 0.01 0.95 0.01 1.07 1.13 0.01 1.05 1.09

0 0.0005  0.0004 0.82 0.0005 1.13 1.36 0.0004 0.92 111




Table A13: 95% Confidence Interval Coverage

Weighted Analyses
Parameter SRS
Bo1 89.7
B11 87.3
B21 86.5
Ba1 85.4
Boz 85.0
B12 86.4
B2 91.1
Bso 88.4

0 91.5

Unweighted Analyses

Parameter SRS
Bo1 92.2
B11 89.7
B21 91.5
Ba1 75.4
Boz 85.6
B1o 76.5
B2 85.7
Bso 82.7

0 84.7

6:~B[5,5]; 62~B[4,6]

Jackknife Bootstrap DEFFja«

94.4
92.7
91.4
91.7
90.4
90.4
90.7
91.7
91.2

Jackknife Bootstrap DEFFja«

82.7
84.3
79.7
71.4
88.7
82.4
88.6
87.2
86.5

96.2
95.2
94.8
94.7
94.0
90.3
93.0
91.7
90.5

88.7
86.3
80.4
89.8
85.8
89.4
86.1
85.7
89.3

90.2
89.1
88.7
87.4
86.7
86.5
87.7
91.8
89.9

93.5
90.7
91.8
76.5
83.2
72.9
85.9
80.7
86.2

DEFFpoot

89.9
90.4
88.5
86.6
86.4
86.2
87.4
91.5
90.2

DEFFpoot

924
89.7
91.7
7.7
86.2
77.8
86.5
83.7
85.9
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Table A14: 95% Confidence Interval Coverage

Weighted Analyses
Parameter SRS
Bo1 85.4
B11 85.3
B21 85.5
Ba 84.9
Boz 86.7
B1o 86.3
B2 88.0
Baz 86.2

0 88.7

Unweighted Analyses

Parameter SRS
Boz 85.7
B11 83.2
Ba1 817
Ba 73.4
Boz 80.6
B1o 75.7
B2 76.4
Ba2 79.5

0 81.7

6.~B[7.3]; 62~B[5,5]

Jackknife Bootstrap DEFFja«

924
90.7
91.4
91.7
90.7
91.8
91.9
90.5
90.9

Jackknife Bootstrap DEFFjx«

85.1
82.6
83.5
81.4
80.1
4.7
77.8
4.7
82.0

93.5
925
93.7
93.7
94.8
93.9
92.8
91.8
925

86.5
84.3
88.4
87.2
82.7
86.9
86.7
80.5
83.5

87.2
87.0
87.5
85.6
87.0
87.4
86.9
88.5
87.5

86.1
84.3
83.1
73.8
75.1
70.7
4.7
75.1
81.7

DEFFpoot

86.5
86.7
86.6
85.1
86.8
86.8
87.1
88.2
88.4

DEFFpoot

85.9
83.7
84.6
73.6
82.4
7.7
78.4
80.9
82.0
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Table A15: 95% Confidence Interval Coverage

Weighted Analyses
Parameter SRS
Bo1 84.2
B11 84.7
B21 85.1
Ba1 86.9
Boz 86.9
B1o 86.7
B2 85.3
Baz 85.8
0 90.4
Unweighted Analyses
Parameter SRS
Boz 90.0
B11 875
Ba1 88.5
Ba 75.5
Boz 77.6
B1o 65.4
B2 74.3
Ba2 73.7
0 79.4

6,:~B[9.1]; 62~B[4,6]

Jackknife Bootstrap DEFFja«

89.3
88.3
89.7
87.2
90.7
88.3
89.5
88.0
85.1

Jackknife Bootstrap DEFFjx«

91.5
90.7
925
82.0
85.5
66.8
85.1
83.4
87.5

92.0
88.5
90.7
89.9
92.9
90.7
91.0
90.1
94.4

90.5
90.1
93.4
89.9
92.2
77.0
89.4
88.5
87.3

85.3
85.9
86.0
87.6
87.5
87.6
85.9
86.8
87.1

91.0
88.6
89.0
76.8
76.2
63.4
2.7
70.0
80.9

DEFFpoot

84.9
85.7
85.6
87.4
87.3
87.0
85.4
86.4
90.7

DEFFpoot

90.7
88.9
89.2
78.4
78.1
66.5
76.0
4.7
80.4
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Table A16: 95% Confidence Interval Coverage

0,~B[50,50]; 6,~3[40,60]

Weighted Analyses
Parameter SRS
Bo1 87.4
B11 87.8
B21 86.9
Ba1 86.4
Boz 92.8
B1o 88.4
B2 89.4
Baz 89.4

0 89.7

Unweighted Analyses

Parameter SRS
Bo 84.6
B11 83.5
Ba1 84.7
Ba1 83.7

Boz 89.4

B1o 79.4

B2 88.4

Ba2 91.4

0 87.9

Jackknife Bootstrap DEFFja«

89.7
89.0
88.3
87.5
86.9
86.9
87.6
86.4
90.3

Jackknife Bootstrap DEFFjx«

89.5
84.3
88.5
84.6
81.6
55.9
83.7
80.1
88.4

91.0
90.3
90.5
89.6
89.7
90.7
89.2
89.5
90.7

924
88.7
89.2
88.4
88.7
35.7
88.1
86.3
87.9

88.5
89.0
87.7
86.5
93.0
88.8
89.8
89.7
90.9

86.6
85.7
86.1
84.5
90.5
80.7
89.8
92.0
88.3

DEFFpoot

88.4
88.9
87.5
86.3
91.8
89.8
89.1
90.1
90.7

DEFFpoot

85.4
84.6
85.1
84.2
90.1
81.5
90.1
91.5
88.9
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Table A17: 95% Confidence Interval Coverage

0,~B[70,30]; 6,~B[50,50]

Weighted Analyses
Parameter SRS
Bo1 88.6
B11 88.1
B21 89.1
Ba 87.6
Boz 86.4
B1o 85.5
B2 89.4
Baz 88.6

0 92.1

Unweighted Analyses

Parameter SRS
Boz 85.2
B11 93.9
Ba1 81.6
Ba 84.6
Boz 80.5
B1o 77.6
B2 76.5
Ba2 77.6

0 80.5

Jackknife Bootstrap DEFFja«

91.4
921
91.6
90.5
91.0
921
90.4
90.7
90.6

Jackknife Bootstrap DEFFj«

86.5
81.6
824
83.2
79.5
74.6
75.8
69.5
79.2

91.6
924
92.0
91.7
93.8
924
91.7
90.5
95.3

85.6
83.6
83.5
82.6
86.5
72.6
88.6
754
84.5

89.2
88.8
89.6
88.4
87.2
86.4
90.5
89.9
91.5

85.9
94.5
83.5
85.7
79.6
73.5
74.6
74.9
78.9

DEFFpoot

88.8
88.5
89.2
87.9
86.8
85.8
89.3
89.5
92.4

DEFFpoot

85.6
94.0
83.8
85.1
81.6
75.6
77.3
76.1
80.8
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Table A18: 95% Confidence Interval Coverage

0,~B[90,10]; 6,~[40,60]

Jackknife Bootstrap DEFFja«

Jackknife Bootstrap DEFFjx«

Weighted Analyses
Paramete SRS
r
Bo1 86.5 88.5
B11 84.5 875
B21 85.4 88.2
Ba 87.5 88.3
Boz 87.2 89.6
B1o 88.9 93.7
B2 85.3 89.6
Ba2 88.5 90.1
0 91.2 89.7
Unweighted Analyses
Paramete SRS
r
Bo 90.4 88.6
B11 90.6 89.6
Ba1 88.5 93.2
Ba 89.4 82.4
Boz 78.4 86.7
B1o 74.6 78.9
B2 719 79.5
Ba2 75.9 81.3
0 75.8 77.6

88.4
87.9
92.0
89.6
89.4
95.7
90.1
89.9
93.5

89.5
88.6
87.1
90.6
84.6
88.3
89.6
89.4
76.5

87.9
85.9
86.6
88.2
88.1
89.4
86.4
90.1
92.2

921
91.8
88.9
90.1
775
73.2
69.5
73.8
754

DEFFpoot

87.1
85.2
86.9
88.0
87.8
89.0
85.9
89.5
914

DEFFpoot

91.5
90.8
89.5
91.7
80.0
75.5
70.6
76.9
75.0




A19: Summary of IYTS Analyses

Parameter  Weighted Unweighted Relative SRS Bootstrap Ratio
Parameter Parameter Bias (%) Standard Standard Boot:SRS
Estimate Estimate Error* Error* *

Bor 6.81 6.12 10.13 0.94 0.99 1.06
Pu -2.47 -1.59 35.16 0.27 0.31 1.12
B -0.33 0.22 167.97 0.18 0.21 1.20
Ba 0.15 0.06 64.28 0.07 0.09 1.30
Boz -2.49 -3.44 -38.94 1.71 1.90 111
Bi2 -0.14 -0.20 -38.78 0.33 0.54 1.04
B2 0.51 0.63 -22.09 0.36 0.38 1.04
B3z 122 2.00 -64.82 0.32 0.34 1.04
0 0.82 0.62 24.05 0.02 0.04 161

* Refersto weighted analysis
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APPENDI X B: SASPROGRAMS

/*Jack & Boot */
/*Thi s Program perforns nodel based, jackknifem and bootstrap*/
/*estimation*/
options nofnterr nprint spool
proc printto print = output
log =Ir.logs.log.log | abel = "1o0g"
run;

%racro wei ght ed
% et seed = 121;
%o i = 1 %o 1000;
/[*first data step sinmnulates observations for strata one*/
data stratal (drop = wi);
seed=&seed; /*seed for covariate generation*/
call stream nit(35131); /*seed for beta nunber generation*/
strata = 1; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w,
beta = rand(' BETA' ,5,5);/*beta distribution for cluster MEAN = .9 and
| CC = .0099*/
do i=1 to 20; /*NUMBER OF OBSERVATI ONS TO SI MULATE*/
wei ght =1; [*stratum 1 wei ght*/
x1l=rannor (seed); [/*1ST COVARI ATE*/
x2=rannor (seed); [/*SECOND COVARI ATE*/
x3=rannor (seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2=-2.5 + -.2*x1 + .5*x2 +
1. 2*x3; [*logits for 2 m xture conmponents*/
p=bet a*exp(-logitl)/(l+exp(-logitl))+(1-beta)*exp(-
| ogit2)/(1+exp(-logit2)); /*m xing proportion*/
i f ranuni (seed)>p then y=1; else y=0; / * CREATE DI CHOTOMOUS Dv*/
out put ;
end;
end;
run;
% et seed = &seed + 1;
/*second data step sinulates observations for strata two*/
data strata2 (drop = wi);
seed=&seed; /*seed for covariate generation*/
call streamnit(17111); /*seed for beta nunber generation*/
strata = 2; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w,
beta = rand(' BETA ,4,6); /*beta distribution for cluster MEAN = .4 and
| CC=. 0099 */
do i=1 to 20; /*NUMBER OF OBSERVATI ONS TO SI MULATE*/
wei ght = 0. 25; [*stratum 2 wei ght */
x1l=rannor (seed); [/*1ST COVARI ATE*/
x2=rannor (seed); [/*SECOND COVARI ATE*/
x3=rannor (seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2=-2.5 + -.2*x1 + .5*x2 +
1. 2*x3; [*logits for 2 mxture conmponents*/
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p=bet a*exp(-logitl)/(l+exp(-logitl))+(1-beta)*exp(-

| ogit2)/(1+exp(-logit2)); /*m xing proportion*/
i f ranuni (seed)>p then y=1; else y=0; / * CREATE DI CHOTOMOUS Dv*/
out put ;

end;

end;

run;
/*this datastep nerges the two strata into one 'superpopul ation' */
data di ssPSU (drop = seed);
set stratal strata2;
run;
/*this section does wei ghted pseudo likelihood estimation on tesT data
by Newt on- Raphson */
/*dissPSU is for nodel based estinmation (no jackknife or bootstrapp)*/
proc nlp data=di ssPSU cov=2 OUTEST = TEMP noprint;

max |1ik;

parnms al=6.5, bl=-2, b2=-1, b3=.5, a2=-2. 5, b4=-1, b5=. 5, b6=1, t het a=. 8;
/* initial values */

bounds 0 <= theta <=1

g=t heta*exp(al + bl*x1 + b2*x2 + b3*x3)/(1 + exp(al + bl*x1l + b2*x2 +
b3*x3)) +(1-theta) *exp(a2 + b4*x1l + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1l +
b5*x2 + b6*x3)); /* logit mxture */

Ili k=(weight*y)*log(q) + (weight*(1-y))*log(1l-q); /*weighted
l'i kel'i hood function*/
run;
f & = 1 % hen %o; /*this |l oop creates a dataset at
iteration 1 */

data weighted parns 5 5 4 6 (DROP = TECH NAME RHS _iter );
/*contains paraneters, SE, & teration*/

set tenp;
iter = & ;
if type_ = "PARMS" then output;
else if type = "STDERR' then output;
run;

proc append base=lr.weighted_parm5 5 4 6
dat a=wei ghted_parns_5 5 4 6;

run;
%end;

%! se %do; /*this | oop appends parnms, se, & iter
counter for all subsequent iterations*/
data weighted parns& (DROP = TECH NAME  RHS _iter );

set tenp;
iter = & ;
if _type_ = "PARMS" then output;
else if _type_ = "STDERR' then output;
run;

proc append base=lr.weighted parm5 5 4 6 data=wei ghted_parnmsé& ;
run;
%end;
proc datasets nolist; /*deletes tenp data to ninimze nenory usage*/
del ete wei ghted_parnms& ; run
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/**********************************************************************
*********************/

/*this section of code perforns the Jackknife repilcates*/
/**********************************************************************

*********************/

%racro jackknife
/*preform 25 jacknife replicates*/
%o j = 1 %o 25
* Create a data set with one obs per PSU for stratum 1;
proc freq data=stratal noprint;
tabl es psu / out=psulistl(drop=count percent);
run;
* Take a sinple random sanple of PSUs from stratum 1;
proc surveysel ect data=psuListl out=psu_jack_Sanpl el nmet hod=srs n=74
noprint;
run;

* Get all the obs for each sanpled PSU in stratum 1;
data stratalsanpl e;
nerge psu_j ack _sanpl el (in=sanple) stratal(in=all);
by psu;
if sanple and all;
run;
* Create a data set with one obs per PSU for stratum 2;
proc freq data=strata2 noprint;
tabl es psu / out=psulist2(drop=count percent);
run;
* Take a sinple random sanple of PSUs from stratum 2
proc surveysel ect data=psulList2 out=psu_jack_Sanpl e2 nmet hod=srs n=74
noprint;
run;

* Get all the obs for each sanpled PSU in stratum 2;
data strata2sanpl e;
nerge psu_j ack_sanpl e2(i n=sanpl e) strata2(in=all);
by psu;
if sanple and all;
run;

dat a j ack;

set stratalsanpl e strata2sanple

if strata = 1 then weight = 1.0135135;

else if strata = 2 then weight = 0.02533783783;
run;

/*this section does wei ghted pseudo likelihood estination on tesT data
by Newt on- Raphson */
/*jack is for design based estimation (jackknife)*/
proc nlp data=jack cov=2 OUTEST = TEMP noprint;

max |1ik;

parns al=6.5, bl=-2, b2=-1, b3=.5, a2=-2. 5, b4=-1, b5=. 5, b6=1, t het a=. 8;
/* initial values */

bounds 0 <= theta <=1

g=t heta*exp(al + bl*x1 + b2*x2 + b3*x3)/(1 + exp(al + bl*x1l + b2*x2 +

b3*x3)) +(1-theta) *exp(a2 + b4*x1l + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1l +
b5*x2 + b6*x3)); /* logit mxture */
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Ili k=(weight*y)*log(q) + (weight*(1-y))*log(1l-q); /*weighted
l'i kelihood function*/
run;

%f & = 1 % hen %o; /*this | oop creates a dataset at
iteration 1 */

data jackparns_5 5 4 6 (DROP = TECH _NAME_RHS _iter_);
/*contains paranmeters, SE, & teration*/

set tenp;
iter = & ;
| oop = &i;
if _type_ = "PARMS' then output;
run;

proc append base=lr.jackparm5 5 4 6 data=jackparnms_5 5 4 6;
run;
%end;

%l se %do;/*this | oop appends parns, se, & iter counter for al
subsequent iterations*/
data jackparns& (DROP = TECH _NAME_ _RHS _iter_ );
set tenp;
iter = & ;
| oop = &i;
if type_ = "PARMS" then output;

run;

proc append base=lr.jackparm5 5 4 6 data=jackparnségj;
run;
%end;
proc datasets nolist; /*deletes tenp data to ninimze nenory usage*/
del ete jackparnms& ; run;
%end;

%rend;
% ackkni f e;

/**********************************************************************
*********************/

/*this section of code perforns the Bootstrap repil cates*/
/**********************************************************************

*********************/

%racr o Boot st rap;
/*preform 200 Bootstrap replicates*/
%o j = 1 %o 100;

* Create a data set with one obs per PSU for stratum 1;
proc freq data=stratal noprint;
tabl es psu / out=psulistil(drop=count percent);
run;
* Take a sinple random sanple of PSUs fromstratum 1;
proc surveysel ect data=psuListl out=psu_Boot Sanpl el net hod=urs n=75
noprint outhits;
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run;

* Get all the obs for each sanpled PSU in stratum 1;
data stratalsanple (drop = nunberhits);
set psu_boot sanpl el;
Drop PSU2;
do k =1to N
set stratal (renanme=(PSU=PSU2)) point=k nobs=N,
i f PSU=PSU2 then out put;
end;
run;
* Create a data set with one obs per PSU for stratum 2;
proc freq data=strata2 noprint;
tabl es psu / out=psulist2(drop=count percent);
run;
* Take a sinple random sanple of PSUs from stratum 2;
proc surveysel ect data=psuLi st2 out=psu_Boot Sanpl e2 nmet hod=urs n=75
noprint outhits;
run;

* Get all the obs for each sanpled PSU in stratum 2;
data strata2sanple (drop = nunberhits);
set psu_boot _sanpl e2;
Drop PSU2;
do k =1to N
set strata2 (renane=(PSU=PSU2)) point=k nobs=N;
i f PSU=PSU2 then output;
end;
run;

dat a Boot;

set stratalsanpl e strata2sanple;

if strata = 1 then weight = 1;

else if strata = 2 then weight = 0. 25;
run;

/*this section does wei ghted pseudo likelihood estimation on tesT data
by Newt on- Raphson */
/*Boot is for design based estination (Bootstrap)*/
proc nlp data=Boot cov=2 QUTEST = TEMP noprint;
max |1ik;
parnms al=6.5, bl=-2, b2=-1, b3=.5, a2=-2. 5, b4=-1, b5=. 5, b6=1, t het a=. 8;
/* initial values */
bounds 0 <= theta <= 1;

g=t heta*exp(al + bl*x1 + b2*x2 + b3*x3)/(1 + exp(al + bl*x1l + b2*x2 +
b3*x3)) +(1-theta)*exp(a2 + b4*x1l + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1l +
b5*x2 + b6*x3)); /* logit mxture */

I1ik=(weight*y)*log(q) + (weight*(1-y))*log(1l-q); /*weighted
l'i kelihood function*/
run;

%f & = 1 % hen %o; /*this | oop creates a dataset at
iteration 1 */
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data Bootparns_ 5 5 4 6 (DROP = TECH _NAVE RHS _iter_ );
/*contains paraneters, SE, & teration*/

set tenp;
iter = & ;
| oop = &i;
if type_ = "PARMS" then output;
run;

proc append base=lr.Bootparm5 5 4 6 data=Bootparnms_5 5 4 6;
run;
%end;

%! se %do;/*this | oop appends parns, se, & iter counter for al
subsequent iterations*/
data Bootparns& (DROP = TECH NAME _RHS _iter );
set tenp;
iter = & ;
| oop = &i;
if type_ = "PARMS" then output;

run;
proc append base=lr.Bootparm5 5 4 6 data=Boot parnsgj ;
run;

%end;

proc datasets nolist; /*deletes tenp data to ninimze menory usage*/

del et e Boot parms&; run

%end;

%rend;

%Boot st r ap;

%end;

%rend;

Ywei ght ed
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/ *popul ati on generater*/
options nofnmterr nprint spool
proc printto print = output
log =Ir.logs.log.log | abel = "lo0g"
run;

%racro diss;
% et seed = 175751;
%o i = 1 %o 1000;

/*first data step sinulates observations for strata one*/
data stratal (drop = wi);
seed=&seed; /*seed for covariate generation*/
call streamnit(3131); /*seed for beta nunber generation*/
strata = 1; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w,
beta = rand(' BETA ,7,3);/*beta distribution for cluster MEAN = .7 and
| CC = .0099*/
do i=1 to 20; /*NUMBER OF OBSERVATI ONS TO SI MULATE*/
wei ght =1; [*stratum 1 wei ght*/
x1l=rannor (seed); [/*1ST COVARI ATE*/
x2=rannor (seed); /*SECOND COVARI ATE*/
x3=rannor (seed); /*third covariate*/

logitl=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2=-2.5 + -,2*x1 + .5*x2 +
1. 2*x3; [*logits for 2 mxture conmponents*/
p=bet a*exp(-logitl)/(l+exp(-logitl))+(1-beta)*exp(-
| ogit2)/(1+exp(-logit2)); /*mxing proportion*/
i f ranuni (seed)>p then y=1; else y=0; / * CREATE DI CHOTOMOUS DV*/
out put ;
end;
end;
run;
% et seed = &seed + 1;
/*second data step sinulates observations for strata two*/
data strata2 (drop = wi);
seed=&seed; /*seed for covariate generation*/
call stream nit(1372); /*seed for beta nunber generation*/
strata = 2; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w,
beta = rand(' BETA' ,5,5); /*beta distribution for cluster MEAN = .5 and
| CC=. 0099 */
do i=1 to 20; /*NUMBER OF OBSERVATI ONS TO SI MULATE*/
wei ght = 0. 25; [*stratum 2 wei ght*/
x1l=rannor (seed); [/*1ST COVARI ATE*/
x2=rannor (seed); /*SECOND COVARI ATE*/
x3=rannor (seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2=-2.5 + -.2*x1 + .5*x2 +
1. 2*x3; [*logits for 2 mxture conmponents*/

p=bet a*exp(-logitl)/(l+exp(-logitl))+(1-beta)*exp(-
| ogit2)/(1+exp(-logit2)); /*mxing proportion*/

i f ranuni (seed)>p then y=1; else y=0; / * CREATE DI CHOTOMOUS DV*/
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out put ;
end;
end;

run;
/*this datastep nerges the two strata into one 'superpopul ation' */
data di ssPSU (drop = seed);
set stratal strata2
run;
/*this section does wei ghted pseudo likelihood estimation on tesT data
by Newt on- Raphson */
proc nlp data=di ssPSU cov=2 QUTEST = TEMP nopri nt;

max |1ik;

parns al=6.5, bl=-2, b2=-1, b3=.5, a2=-2. 5, b4=-1, b5=. 5, b6=1, t het a=. 8;
/* initial values */

bounds 0 <= theta <=1

g=t heta*exp(al + bl*x1 + b2*x2 + b3*x3)/(1 + exp(al + bl*x1l + b2*x2 +
b3*x3)) +(1-theta) *exp(a2 + b4*x1l + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1l +
b5*x2 + b6*x3)); /* logit mxture */

I1i k=(weight*y)*log(q) + (weight*(1-y))*log(1l-q); /*weighted
l'ikelihood function*/
run;

%f & = 1 % hen %o; /*this |loop creates a dataset at
iteration 1 */

data weighted parnms_7 3 5 5 (DROP = TECH _NAME_ RHS _iter )
/*contains paraneters, SE, & teration*/

set tenp;
iter = &;
if _type_ = "PARMS' then output;
else if _type_ = "STDERR' then output;
run;

proc append base=lr.wei ght ed_parm dat a=wei ghted_parns_7_3 5 5;
run;
%end;

%l se %do; /*this | oop appends parns, se, & iter
counter for all subsequent iterations*/
data weighted parnms& (DROP = TECH _NAME_ RHS _iter_);

set tenp;
iter = & ;
if type_ = "PARMS" then output;
else if type = "STDERR' then output;
run;

proc append base=lr.weighted parm7 3 5 5 data=wei ghted_parnmsé& ;
run;
%end;
proc datasets nolist; /*deletes tenp data to ninimze menory usage*/
del ete wei ghted _parns& ; run
%end;
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%rend;

%di ss;
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