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Latent class regression has been reported previously in the literature.  Often, 

however, data are collected from a survey that utilizes unequal selection probabilities 

that result in complex sample survey data. Techniques for latent class logistic regression 

utilizing complex survey data have not previously been reported. Additionally, no 

software is available to perform these analyses.  A model was chosen for investigation 

based on an existing survey called the Indiana Youth Tobacco Survey.  A variety of 

scenarios were investigated using systematically manipulated conditions to simulate 

complex sample survey data.  Specifically, the effect of ignoring sample weights was 

investigated by comparing bias in parameter estimates from simulations both 

incorporating and ignoring weights.  Additionally, several competing approaches for 

estimating standard errors were compared in terms of bias and confidence interval 

coverage.  The techniques that were investigated were the unadjusted approach 



assuming simple random sampling, the jackknife, the bootstrap, and the design effect 

adjustment.  Two design effects were compared, one based on jackknife estimates and 

one based on bootstrap estimates.  The results indicated that weights must be 

incorporated in the estimation via pseudo-maximum likelihood to ensure that parameter 

estimates are not biased.  These estimates were less biased than jackknife, bootstrap, 

and unweighted parameter estimates.  In terms of variance estimation, the bootstrap

estimates were preferred.  Estimates arising from the assumption of simple random 

sampling were consistently small and therefore undesirable.  Jackknife and design effect 

adjusted standard errors were better, but bootstrap standard errors were consistently 

best.  Finally, the best technique was applied to the Indiana Youth Tobacco Survey data 

to identify latent classes that differed in their susceptibility to initiate tobacco use and 

abuse.  The results indicated that a two class model was a better fit to the data than a 

one class model.  These classes differed in their susceptibility to peer pressure.  Latent 

class one comprised 82% of the population and was more susceptible to peer pressure 

than was latent class two.  Both classes were more at risk of initiating tobacco use as 

they aged.    
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CHAPTER I
 PURPOSE AND RATIONALE

Background

Logistic regression (LR) has been a common analytic tool in epidemiology and 

social science for many years.  In fact, it has become the analysis of choice for relating 

a categorical response or criterion variable to a set of predictor variables often referred 

to as covariates.  In other areas of study, for example, marketing, the technique has been 

enhanced to incorporate unobservable or latent populations.  This type of model is 

called latent class regression and has been developed for various regression models 

(Wedel & Desarbo, 2002).  In these scenarios, the population may be characterized by 

latent subgroups that are best represented by differing regression equations. If the 

population is indeed heterogeneous, the mixture approach is preferred as it will identify 

these unobserved subgroups and lend insight into their differences.  Quite often, the 

data analyzed by these and other similar methods arise from sampling techniques that 

are more complex than simple random sampling (SRS).  Complex samples are often 

stratified with some segment/strata of the population being sampled at a 

disproportionate rate.  Additionally, complex surveys may involve clustering, for 

example, schools within school districts, and school districts within states, and so on.  If 

these data are analyzed by a “model based” approach, that is, as if they arose from a 

SRS, parameter estimates will almost certainly be biased and resulting standard errors 

will be underestimated.  As a result, hypothesis testing will be too liberal.  Therefore, a 

“design based” approach where clustering and stratification are taken into account 

during variance estimation is desirable.  Often, sampling weights reflecting the 
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probability of selection, post stratification, and non-response are used during parameter 

estimation to reduce potential bias.

Logistic regression models with complex survey data have been developed and 

are described elsewhere in detail by Korn & Graubard (1991), Roberts, Rao, & Kumar 

(1987), Skinner, Holt, & Smith (1989), and Thomas & Rao (1987) among others.  The 

basic idea as developed by Roberts, Rao, and Kumar (1987) is to approximate the 

likelihood function by incorporating the observed sample and the sampling weights to 

create a pseudo-likelihood.  At this time, methods that incorporate complex sampling 

designs into latent class regression have not been rigorously developed or empirically 

validated.       

The motivation for the research can be traced to the Indiana Youth Tobacco 

Survey (IYTS).  This survey is administered annually to a representative sample of 

middle and high school-aged children in public schools in the state of Indiana.  The 

specific problem of interest was trying to identify unobservable subgroups of students in 

relation to their susceptibility to initiating tobacco use. 

Purpose of Study

The goal of this study was to investigate the problems of obtaining valid 

parameter estimates and standard errors for latent class logistic regression (LCLR) 

when analyzing complex sample survey data.  To that end, differing approaches to 

parameter and variance estimation were investigated and results were based on samples 

generated to represent a contrived population with known characteristics.  Specifically, 

the study had the following aims:
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a) To investigate the importance of incorporating the sampling design when 

performing LCLR.  That is, comparing “model based” parameters that ignore the 

sampling weights to “design based” results that incorporate weights.   

b) To compare the performance of different variance estimators, specifically, 

the jackknife, bootstrap, and design effect adjustment.  This was done by comparing 

simulated variances to empirically derived “true” variances.     

These goals were achieved by Monte Carlo methods that simulated a variety of 

scenarios:  two sample schemes (proportional and disproportionate over-sampling from 

strata), two clustering schemes (low and moderate clustering effect), and three latent 

class mixing proportions (ranging from moderate and extremely disparate).  In each 

scenario, samples were simulated from two strata that were characterized by different 

latent class proportions.        

Significance/Novelty of Study

While LR methods for complex survey data are widely accepted, techniques of 

parameter and variance estimation for LCLR with complex survey data have not been 

previously studied.  It was hypothesized that ignoring sampling weights would have an 

adverse effect on parameter estimates and ignoring clustering would result in poor 

variance estimates.  The original contributions of this study are:

(1) Methods for incorporating sampling weights and clustering into LCLR were 

developed and tested.

(2) Estimates of standard errors for LCLR parameters stemming from complex 

survey data were obtained through competing methods.
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(3) SAS code written for the study makes these analyses more accessible to 

researchers in various disciplines.  

The best performing procedure(s) were then applied to a latent class logistic 

regression analysis of the 2001 Indiana Youth Tobacco Survey (IYTS).   
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CHAPTER II
 REVIEW OF THE LITERATURE

Finite Mixture Models

Traditionally the evolution of finite mixture models can be traced back to 

Pearson (1894) and Newcomb (1886).  In finite mixture models, it is asumed that 

sample observations arise from a number of unobservable, latent classes of unknown 

proportion.  The analysis of these models involves the fitting of mixtures (i.e. weighted 

sums) of distributions.  These latent classes are characterized by distributional 

parameters that differ among classes.  A variety of mixture models have appeared in the 

literature including mixtures of normal (Hasseblad, 1966), Poisson (Hasselblad, 1969), 

binomial (John, 1970), and exponential (Everitt & Hand, 1981) distributions among 

others.  A comprehensive treatment of these and other mixture models is offered by 

Titterington, Smith, and Makov (1985).  

Mixtures of Regressions

There are many scenarios in social science, education, biomedical, and physical 

science research when analysis involves the estimation of a linear model.  The relation 

of a set of predictor variables to a criterion is one of the most widely practiced of all 

statistical techniques (McCullagh & Nelder, 1989; Pedhauzer, 1997; Kleinbaum, 

Kupper, & Muller, 1988).  In many situations, it is likely that the estimation of one set 

of regression coefficients across all observations will lead to spurious results (Wedel & 

DeSarbo, 2002).  This is particularly true if the data arise from several latent subgroups 

with different population parameters.  This has lead to the development of latent class 

regression models.  Latent class regression models involve the estimation of differing 
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regression coefficients for each latent class.  These models have been developed for 

various types of data including normal (Desarbo & Cron, 1988; Quandt & Ramsey, 

1978), count (Wedel et. al., 1991;  Ramaswamy, Anderson, & DeSarbo, 1994), and 

binary (Follman & Lambert, 1989; Wedel & DeSarbo, 1992).  The latter is the focus of 

this investigation.       

The binary logistic regression model is nonlinear. The outcome variable iπ is the 

probability of having one of the two possible outcomes of the dichotomous variable 

y based on a nonlinear function of the best linear composite of predictors:

q

q

i
e

e

+
=

1
π                                                 (2.1)

iπ  is the model estimated probability of the ith case being in one of the categories and 

q is the  familiar linear regression equation:

kk XXXq ββββ ++++= ...22110                          (2.2)

with constant (intercept) 0β , regression coefficients jβ  and  predictors jX  for 

predictors (j = 1,2,…,k).  A transformation of iπ , known as the logit (or log odds) 

transformation enables the resulting model to have the desirable properties of the linear 

regression model.  This transformation is defined, in terms of iπ , as:

ijj
i Xββπ

π ∑+=





0
i-1

ln                                (2.3)

The estimation procedure for coefficients is maximum likelihood, the goal of 

which is to identify the best combination of predictors to maximize the likelihood of 

obtaining the observed outcome frequencies.  Maximizing the likelihood is tantamount 
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to maximizing the log-likelihood.  The log-likelihood (LNL) is calculated by summing 

the probabilities for the predicted and actual outcome for each case:

∑
=

−−+=
n

i
iiii yyLNL

1

)]1ln()1()ln([ ππ                             (2.4)

Since it is nonlinear, maximizing this function involves iterative computational methods 

such as Newton-Raphson.  

The mixture of logistic regressions is a weighted sum of two or more 

components.  The proportion of the mixture is denoted as θ and the sum of these 

proportions is equal to one.  That is,∑ = 1θ . Ordinary logistic regression is a special 

case where θ = 1.0.  Therefore, for a two-component mixture, the resulting expression 

for the transformation of  iπ  is:

( ) ( )( )22021101
i

1
-1

ln ijjijj
i XX ββθββθπ

π ∑∑ +−++=





              (2.5)

And the resulting log likelihood is the same as (2.4) unless we introduce a vector 

of weights to perform pseudo-likelihood estimation (Hosmer & Lemeshow, 2000; 

Wedel & DeSarbo, 1992):

( ) ( )∑
=

−−+=
n

i
iihiih ywywLNL

1

)]1ln()1()ln([ ππ                      (2.6)

Thus, for traditional maximum likelihood estimation, the weight vectors (for 

weights associated with each stratum h) wh are simply a vector of ones.  Follman and 

Lambert (1989) presented a study in which the two components (logits) comprising the 

mixture had the same slopes but different intercept constants.  The current investigation 

used varying slopes and intercepts for each latent class.  



8

Complex Sample Survey Data (CSSD)

Finite Population Correction (FPC)

If a sample of size n is taken from a larger population of size N, the sampling 

fraction is n/N (Lohr, 1999 p. 33).  The finite population correction (FPC) denoted as    

1 – n/N is required for variance estimators because the population is not infinite in size, 

and sampling is done without replacement.  This correction is made because, with 

smaller populations, the sampling fraction is greater and thus more information is 

available about the population.  In this case, variances are smaller.  Typically, the FPC 

is ignored if the sampling fraction is n/N < 0.05, thus the FPC is close to one.  

Additionally, the FPC is ignored if inferences are being made to a larger super-

population (Patterson, 1998).  Therefore, the FPC was not utilized in the current 

investigation.     

Stratification

Often, in survey research, there is supplementary information available to aid in 

the design of the sample.  For example, gender, race, region, or other non-overlapping 

subgroups can aid in the creation of strata.  In a population consisting of H strata (h = 1, 

2, …H), nh observations are sampled from each stratum.  For this approach to sampling 

to work, we assume that the summation of total observations in each stratum is equal to 

the total population.  That is, N1 + N2 + …+ NH = N.   In proportional allocation, the 

number of sampled units from each stratum is proportional to their natural occurrence in 

the population.  Thus, the probability of selection is nh/ Nh and is the same for all strata

(Lohr, 1999).  If not, it is referred to as disproportionate allocation (Cochran, 1977).   If 

done appropriately, stratified sampling will result in more precise parameter estimates 
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(i.e. smaller variances).  For the greatest possible precision, observations within each 

stratum should have very similar values and the stratum means should differ as much as 

possible.  

To illustrate a stratified sample, consider a SRS paradigm to estimate a 

population mean of a dichotomous variable y  taking on the values [0, 1].  Thus, the 

mean is a proportion and will be denoted P .  The sample proportion, ∑
∈

=
Si

iy
n

P
1ˆ .  A 

proportion from a stratified sample is of the form:

∑
=

=
H

h
h

h
str p

N

N
P

1

ˆ                                     (2.7)

Thus, the estimated population proportion is a weighted average of the sample 

stratum proportions.  It is imperative that the size or relative size of the strata is known.  

The variance is:

1

)1(
1)ˆ(ˆ

2

1 −
−






 −=∑

= h

hhh
H

h h

h
str n

PP

N

N

N

n
PV                    (2.8)

 (Cochran, 1977; Lohr, 1999).  The fpc for stratum h is 



 −

h

h

N

n
1 .  As previously noted, 

the fpc was dropped for this investigation, the resulting expression can be evaluated as 

if this quantity were equal to one.

Clustering

In cluster sampling, observations in the population are selected for inclusion in 

the sample if and only if they belong to a primary sampling unit (PSU).  Observations 

or elements within a PSU are sometimes referred to as secondary sampling units (SSU).  

Typically, cluster samples are utilized for the sake of economy.  The cost of sampling 
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SSUs is cheaper than that of each element in a SRS.  Clusters, like strata, are a grouping 

of elements in a population.  However, the selection of PSUs is quite different then 

strata.  In one-stage cluster sampling, each element of the population falls into exactly 

one cluster, a SRS of clusters is selected and then all SSU in each cluster are sampled. 

In two-stage cluster sampling, a SRS of clusters is selected and then a SRS of SSU is 

taken from each PSU (Lohr, 1999).  The current investigation utilized one-stage 

sampling with clusters of equal sizes as the PSU.  

Where the utilization of stratified sampling is known to increase precision, 

cluster sampling leads to a reduction in precision.  Observations within a given cluster 

tend to be more homogenous, thus reducing the effective sample size.  For greatest 

precision, SSUs within a cluster should be heterogeneous and cluster means should be 

equivalent (Lohr, 1999, p. 133). The intraclass correlation coefficient (ICC), ρ ,is a  

conventional measure of intra-cluster homogeneity.  The ICC is described elsewhere in 

detail and interested readers are referred to Lohr (1999, p.139-143).  Clustering leads to 

a loss of precision when the ICC is positive.  The loss of precision is effected by the 

magnitude of the ICC and the size of the PSU.  Assuming a constant cluster size, M , an 

estimator of the population proportion  P  is:

NM

t
Pc

ˆˆ = ,                                     (2.9a)

with
2

2

1)ˆ(
nM

s

N

n
PV t

c 


 −=                           (2.9b)

where t̂ is the estimator of the total in the ith PSU, 

∑
∈

=
Si

it
n

N
t̂                                       (2.9c)
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with sample variance 2
ts , 

∑
∈





 −−=

Si
it N

t
t

n
s

2

2
ˆ

1

1
.                   (2.9d)   

A comprehensive development of the unequal cluster size scenario is given by Lohr 

(1999).

Weighting

Most large, nationally representative surveys such as NHANES (National Health 

and Examination Survey) and NYTS (National Youth Tobacco Survey) include 

sampling weights in public distribution data sets.  These weights must be integrated into 

analyses so that parameter estimates are unbiased.  When observations have the same 

probability of being selected for inclusion in a sample (such as in a SRS), they are not 

essential to ensure valid parameters and test statistics (Korn & Graubard, 1991; Lohr, 

1999).  These weights, when applicable, can be easily incorporated into ratio, mean, and 

total estimation (Cochran, 1977; Lohr, 1999).  

Weights assign greater or less importance to some sampled observations over 

others.  Weights are necessary when there is an unequal probability of selection.   For 

example, in a stratified sample the sampling weight can be expressed as the inverse of 

the probability of selection:

h

h
str n

N
w =                                   (2.10)

Thus, the sum of the sampling weights is equal to the total sample size, and each 

sampled observation is representative of a certain number of observations in the 
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population (Lohr, 1999).  Weights in cluster samples are calculated in a different 

manner.      

nm

NM
wclus =                                 (2.11)

The use of these sampling weights in would result in the analysis of N

observations.  Therefore, relative weights are often used in the analysis of survey data, 

so results are based on n observations, and significance tests are not affected.  A relative 

sampling weight is a sampling weight divided by the mean of the sampling weights and 

is denoted as:

∑
=

j

j

j
rel

n

w

w
w

ij
                                  (2.12)

Standard Error Estimation with CSSD

There are several techniques for estimating standard errors that take into account 

the sampling design.  Of these, three were chosen as candidates for simulation in the 

current study.  The first approach, the design effect adjustment is a post hoc adjustment 

to normally calculated standard errors.  The remaining two (the jackknife and bootstrap) 

are resampling approaches that require an iterative process to arrive at standard error 

estimates.

Design Effect (DEFF) Adjustment

The design effect (DEFF) is a ratio of the design based standard error to the 

same estimator as if it were from a SRS of the same size.  For a sample proportion 

estimator, P̂ , based on n observations it is denoted as:
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n

PP

N

n

PV
PDEFF

)1(
1

)ˆ(
)ˆ( −


 −

= .                                (2.13)

If all stratum proportions are equal, the DEFF under stratified sampling will 

typically be less than one (Lohr, 1999).  This is due to the increase in precision 

associated with stratification noted earlier. 

In the case of cluster sampling, the ICC, ρ, is typically positive thus leading to a 

loss of precision and a DEFF greater than one.  The DEFF for a one-stage cluster 

sample with PSUs of equal size, M, is approximately:

ρ)1(1 −+= MDEFF                                      (2.14)

(Kish, 1965; Lohr, 1999).  Thus, the DEFF is dependent on both the ICC and M.  In a 

design involving both stratification and clustering, it is not possible to know beforehand 

whether the DEFF will be greater than or less than one.  This will depend on whether 

more precision was gained by stratification or lost by clustering.  

Kish (1965) suggested that an estimate of the effective sample size, n’, be 

utilized in the calculation of standard errors instead of n:

DEFF

n
n =' .                                         (2.15)

More often, estimated standard errors are adjusted by multiplication by the quantity 

DEFF .  

Jackknife

The jackknife approach was proposed by Quenouille (1949; 1956) as a method 

for reducing bias in statistical estimates.  This procedure was later adopted to estimate 

variances and associated confidence intervals (Tukey, 1958; Mosteller & Tukey, 1968).  
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The most common approach to estimating jackknife variances is a method known as the 

delete-one jackknife method. Others forms of the jackknife have been proposed and are 

explained in detail elsewhere (Shao & Tu, 1995).  All subsequent references to the 

jackknife in the current investigation are intended to refer to the delete-one approach.

In a stratified cluster sample with H strata, nh PSU’s are chosen to be sampled 

from stratum h.  To create a jackknife replicate, one PSU in stratum h is omitted and the 

remaining PSU’s in stratum h are reweighted to maintain the estimated population size 

for that stratum. The weights of the remaining units are inflated by a factor of nh/( nh –1) 

(Rust & Rao, 1996).  The analysis of interest is performed on the reduced sample and 

the resulting parameters are called “jackknife parameter estimates.”  This procedure is 

repeated for the entire sample of PSU’s or often on a random sample of PSU’s.  The 

variance estimates are then calculated from the jackknife parameter estimates.  

A widely utilized jackknife variance estimator for a parameter θ is:

∑∑
==

−−
=

hn

j
hj

H

h h

h
JK n

n
V

1

2
)(

1

)ˆˆ(
1

)ˆ(ˆ θθθ                         (2.16)

where )(
ˆ

hjθ  is the estimator and the same form as θ̂  but with  PSU j of stratum h

omitted (Lohr, 1999; Skinner, Holt, & Smith, 1989, p. 53).  This has been shown to be a 

conservative variance estimate, that is, it produces relatively larger variance estimates 

than other methods.  

The number of jackknife replicates depends on the desired level of accuracy and 

potentially on computational efficiency.  Several authors have discussed this choice 

(e.g. Fay, 1985; Patterson, 1998; Wolther, 1985) without reaching a consensus.  

However, Fay (1985) and Patterson et al. (2002) suggested 20 – 60 groups are 
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satisfactory based on Monte Carlo simulation results.  Based on this suggestion the 

current investigation utilized 25 jackknife replicates.   

Bootstrap

The bootstrap resampling approach was developed by Efron (1979; 1981) and 

was extended to complex survey samples by Rust and Rao (1996).  In this approach, 

resampling with replacement simulates the sampling distribution of the parameter of 

interest.  For example, a sample of size nh is taken from stratum h, with replacement.  A 

weight is calculated for this replicate and all parameters of interest are calculated based 

on this bootstrap sample.  This process is repeated a specified number of times, and the 

standard deviation of these bootstrap samples provides the bootstrap standard error.  An 

advantage of this approach is the avoidance of the normality assumption (Skinner, Holt, 

& Smith, 1989, p. 54).      

Mixtures of Logistic Regressions with CSSD    

 As noted above, latent class regression models have been developed for a 

variety of data types, including logistic regression with binary outcome data (Wedel & 

DeSarbo, 2002).  However, the literature is lacking in the treatment of these models 

with data from complex sample designs.  The current investigation incorporated 

sampling weights by means of the pseudo-likelihood approach and applied this 

technique to the estimation of latent class regression models.  Previous research on 

latent class regression has shown that the Newton-Raphson procedure can be used to 

maximize the likelihood across the entire parameter space (Lwin & Martin, 1989).  

Monte Carlo simulation results support the performance of this algorithm under a 

variety of data conditions (Wedel & DeSarbo, 1992). 
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Since LCLR models have not been rigorously developed for use with complex 

sample survey data, methods for estimating variances are not reported in the literature.  

While software is available to perform these calculations for standard logistic regression 

(e.g. STATA, SUDAAN), no widely available software yields estimates of standard 

errors for LCLR.
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CHAPTER III
 METHODS

Research Design

The purposes of this study were to (1) develop and test methods for 

incorporating complex sample designs in LCLR and (2) to evaluate several competing 

techniques for estimating variances for LCLR parameters (i.e. the bootstrap, jackknife, 

DEFF adjustment).  To address the first of these, the LCLR, likelihood function, and 

associated SAS programs were written to incorporate complex sample designs.  

Simulated parameter estimates incorporating stratification, clustering, and weights were 

compared to empirically derived estimates.  These survey-adjusted estimates were 

compared to results from simulations where the sampling design is ignored.  The second 

purpose was addressed by simulation where bootstrapped, jackknifed and DEFF 

adjusted standard errors were compared with estimated “true” variances

Observations were simulated to represent a large, simulated population of size 

N, with K PSU’s each of equal size, M.  The sample was designed with two strata of 

equal size to ensure a simple, easy to understand design, though large surveys rarely 

consist of only two strata.  For example, the Indiana Youth Tobacco Survey (IYTS) 

sampled two PSU’s from each of 21 strata for a total of 42 sampled PSU’s.  

Additionally, the IYTS incorporated over-sampling of Hispanics, to allow for 

meaningful subgroup analyses.  As stated, the current investigation simulated two strata 

of equal size.  However, one was “weighted down in size” to reflect an over-sampling 

of one strata.     
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Fixed Factors

The sample size, number of latent classes and the number of coefficients 

estimated were fixed.  A sample size of 3000 was chosen, with two strata of equal size, 

n1 = n2 = 1500.  This sample size was chosen because it is similar to the sample size of 

the IYTS (nIYTS = 2860). Within each stratum, each PSU was of equal size, m = 20.  

This size was chosen because it is large enough to demonstrate a clustering effect 

(Patterson, 1998; 2002). It was assumed that each of the two strata and the two strata 

combined could be partitioned into two latent classes (LC) (ι = 1, 2).  Within each 

stratum and when combined, the proportion in LC1 and LC2 will be denoted as θι and 

(1 - θι) respectively.  Finally, nine parameters were estimated.  These include the most 

important, the LC mixing proportion, θι, the intercept constants (β01, β02) and six 

regression coefficients (β11, β21, β31, β12, β22, β32), Thus, the number of variables 

simulated and used in each model was fixed at four (one binary outcome and three 

independent variables), resulting in the following model

])[1(][ 3222120231211101 ββββθββββθ +++−++++=q .                (3.1)

Preliminary analyses on the IYTS data identified candidate parameters to simulate 

ensuring realistic disparity between latent classes.  Table 1 displays the regression 

coefficients that were simulated.

Table 1: Simulated Regression Coefficients
Latent Class 1 Latent Class 2
β 01 = 6.8 β 02 = -2.5
β11 = -2.5 β 12 = -0.2
β21 = -0.3 β22 = 0.5
β 31 = 0.2 β32 = 1.2 
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Manipulated Factors

The following aspects of the simulation were manipulated:  the mixing proportion 

parameter, θ (3), clustering (2), and the sampling weights (2).  The study investigated 3 

scenarios for θ, and two for each of the sample aspects yielding a 3 x 2 x 2 design, with 

twelve cells of interest.  Within each of these cells, parameter estimates and standard 

errors estimated under differing conditions were compared.  Data for each of these 

scenarios were simulated and analyzed.  A conceptual representation of the study is 

presented in Table 2.    

In latent class analyses in general, the parameter that is of most interest is the 

mixing proportion, θ.  For the current investigation, stratum-specific θ ‘s were defined 

as follows: θ1 is the proportion in LC1 in the first stratum and θ2 is the proportion in 

LC1 in the second stratum.  The population mixing parameter, θpop, is a function of θ1

and θ2 and is denoted as:

21 )1( θθθ pppop −+=                                             (3.2)

where p is the proportion of the total population in stratum 1.  In the current 

investigation p = 0.8, due to the fact that stratum 2 was weighted down, as will be 

discussed in detail.

For the simulations, θ1 and θ2  were randomly generated for each cluster using a β

distribution in a manner previously described by Patterson (1998, 2002).  This approach 

allows for the introduction of intra-class correlation to the simulated clusters.  The β

distribution has values that lie in the [0,1] interval making it useful for generating 

probabilities and proportions.  The distribution is identified by two parameters, ν and ω

that can be selected such that the mean is located at a desired point along the [0, 1] axis. 
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Table 2
Simulation Design Specifications

Number of strata = 2, 75 Sampled PSU’s of size 20 per stratum

Θpop 0.8 0.66 0.48
Θ1   Θ2 0.9   0.4 0.7   0.5 0.5   0.4

ICC = .01 β(90, 10)  β(40, 60)
SRS 

Bootstrap – 100 reps
Jackknife – 25 reps

DEFFjack

DEFFboot

β(70, 30)  β(50, 50)
SRS 

Bootstrap – 100 reps
Jackknife – 25 reps

DEFFjack

DEFFboot

β(50, 50)  β(40, 60)
SRS 

Bootstrap – 100 reps
Jackknife – 25 reps

DEFFjack

DEFFboot

ICC = .1 β(9, 1)  β(4, 6)  
SRS 

Bootstrap – 100 reps
Jackknife – 25 reps

DEFFjack

DEFFboot

β(7, 3)  β(5, 5) 
SRS 

Bootstrap – 100 reps
Jackknife – 25 reps

DEFFjack

DEFFboot

β(5, 5)  β(4, 6)
SRS 

Bootstrap –100 reps
Jackknife – 25 reps

DEFFjack

DEFFboot

Note:  The above design was applied to both weighted and unweighted analyses 
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The β distribution is symmetric about 0.5 when ν = ω.  Additionally, the β

distribution is skewed to the right when ν < ω and to the left when ν > ω.  The 

probability density function of the β(ν, ω) distribution is:

( ) 11 )1(
)()(

)(
,|ƒ −− −ΓΓ

+Γ
= ων θθων

ωνωνθ                                  (3.3)

with mean ων
ν
+

 and standard deviation 
)1()( 2 +++ ωνων

νω
.  The ICC for this 

distribution is 1)1( −++ων  (Brier, 1980; Patterson, 1998).  The β distributions that were 

used are summarized in Table 3.

The β distributions were selected to simulate three levels of θpop.  The 

simulations investigated population mixing parameters that varied from moderate (θpop

=0.48) to more extreme values (θpop=0.66 and θpop =0.80).  Values of θ were selected 

such that there will be a varying amount of disparity between strata.  Pilot study on the 

IYTS indicated that θpop =0.80 for some of the models investigated.  Table 4 displays 

the values of θpop and the values of θι for each stratum.

As noted above, clusters of size m = 20 were generated.  Values of θ were 

randomly generated from one of the β distributions previously described, thus 

introducing the intra-class correlation.  That is, observations within a given cluster were 

more alike than observations from other clusters.  This was done by using the 

randomly generated value of θ to generate the 20 observations for each cluster.  The 

process was repeated 75 times for each stratum, thus yielding n1 = n2 = 1500.  The result 

was cluster level variation of the proportion in LC1.  This approach has been previously 
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Table 3
β Distribution Summary

ν ω Mean Standard
Deviation

ICC (ρ)
1)1( −++ων

DEFF
ρ)1(1 −+ M

10 90 0.1 0.029 0.01 1.82
30 70 0.3 0.046 0.01 1.82
40 60 0.4 0.049 0.01 1.82
50 50 0.5 0.049 0.01 1.82
1 9 0.1 0.091 0.10 2.73
3 7 0.3 0.131 0.10 2.73
4 6 0.4 0.148 0.10 2.73
5 5 0.5 0.151 0.10 2.73
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Table 4
 Strata and Population Values of θ

Note: p = 0.8

Stratum 1 θ1 Stratum 2 θ2 Population θpop

21 )1( θθ pp −+
.9 .4 0.80
.7 .5 0.66
.5 .4 0.48
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reported and verified through simulation (Patterson, 1998, 2002).  Two levels of ICC 

were investigated, 0.01 and 0.1.  These values were chosen as they are reflective of the 

ICC that has been reported for various items on the IYTS and are similar to those 

reported in other large surveys.  As noted in Table 1, with cluster sizes of mi=20, these 

ICCs of 0.01 and 0.1 result in DEFF = 1.18 and 2.73, respectively.  

The final manipulated design feature was sample weighting.  As previously 

stated, the IYTS uses over-sampling of certain subgroups.  The current investigation 

also incorporated simulated over-sampling.  Two scenarios of weighting were 

investigated, one ignoring and one incorporating the weights.  In the first scenario, data 

were simulated for 1500 observations in each stratum, the models of interest fit to the 

data, and standard errors estimated.  In the second, weighted scenario, 1500 

observations were also simulated in each stratum.  However, to incorporate “over-

sampling” the second stratum was weighted down to a sample size of 375.  Thus, in the 

weighted scenario, the effective, weighted sample size was 1875.  The weighted sample 

sizes were 1875,375,1500 21 === www Nnn , for weighted stratum one, weighted stratum 

two, and weighted combined sample respectively.  Thus the proportion of observations 

in the first stratum is 0.8.  Ratios of this magnitude (4:1) are common in complex survey 

designs and are large enough to allow for the investigation of bias introduced by 

ignoring weights.   Therefore, two sets of simulations were done, one incorporating the 

weights and one ignoring them. The current investigation was weighting down to 

account for over-sampling and not weighting up to a population, so relative weights 

were not appropriate.  The weights for stratum one and stratum two were 1.0 and 0.25 

respectively. 
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Variance Estimation

This study investigated the performance of several competing variance 

estimation techniques.  The estimated variances were compared to “true” variances 

where true variances were empirically derived based on 10,000 replicates in a manner 

similar to Patterson et al. (2002).  The first variance estimation technique would be 

appropriate if SRS had been used to select the sample.  It was expected that this method 

would yield variances that are consistently liberal (i.e. too small).      

Simulated variances for each experimental condition were estimated first, via 

the jackknife.  A jackknife replicate was generated by sequentially leaving out a single 

PSU, reweighting the data, and then estimating the LCLR parameters.  The jackknife 

weights (wh) for strata h=1 and h =2 were calculated as follows:

0.25338
1480

375
,0135.1

1480

1500

1
2

1
1 =====

−− hw

hw

hw

hw

n

n
w

n

n
w              (3.4a, 3.4b)

The mean of the jackknife parameter estimates and their variances were calculated.  As 

previously indicated, 25 jackknife replicates have been shown to be adequate (Fay, 

1985) and this number was performed to generate the simulated variances.  

Variances were also estimated via the bootstrap.  Each replicate was created by 

randomly sampling 75 PSU’s from each stratum with replacement.  Efron and 

Tibshirani (1993, p. 52) state that for estimating standard errors, more than 100 

replications are typically unnecessary.  Therefore, bootstrap standard errors were the 

standard deviation of a simulated sampling distribution based on 100 replications.

The final variance estimation technique that was studied was the DEFF 

adjustment.  The DEFF’s were calculated in two ways.   The first was the ratio of the 
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jackknife variance estimate to the SRS variance estimate and the second was the ratio 

(for each parameter) of the bootstrap variance to the SRS variance and are denoted as:

SRS

jack
jack V

V
DEFF =  and  

SRS

boot
boot V

V
DEFF =  respectively.          (3.5a, 3.5b)

 The square roots of DEFF’s were then calculated and multiplied by the SRS 

standard error as the adjustments.  That is, SRSDEFF seDEFFse *= .  

Simulation Details

The simulation code was written in SAS version 8.2 (SAS Institute, 2001).  The 

Newton-Raphson method was used to maximize the non-linear likelihood functions.  

Previous studies have indicated that this method is suitable for this type of analysis 

(Wedel & DeSarbo, 1992). Proc NLP was the SAS procedure that was used for 

optimization.  The NLP procedure is available in the operation research (OR) 

component of SAS.  This procedure uses the gradient and Hessian matrix and thus 

requires that the objective function have continuous first and second-order derivatives.  

The algorithm uses a pure Newton step when the Hessian is positive definite, otherwise 

a combination of ridging and line-search is done to compute successful steps.  If the 

Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian 

to make it positive definite (SAS Institute, 1999).  

The method proceeded in the following manner.  (1) Data were randomly 

generated and the model of interest was fit yielding parameter estimates and standard 

errors.  These were saved and will be referred to as the SRS estimates.  (2) Jackknife 

replicates were taken from these simulated data and the resulting jackknife estimates 

were saved.  (3) Bootstrap samples were taken from these same data and estimates were 
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saved.  The above design resulted in three sets of parameter estimates (SRS, jackknife, 

and bootstrap) and five sets of variance estimates (SRS, jackknife, bootstrap, DEFFjack, 

DEFFboot).  Each simulation consisted of 1,000 replications with a convergence criterion 

set to 10-5.  Finally, the maximum number of iterations for convergence was set to 500.  

Cases with solutions that did not converge in the specified number of iterations 

were noted and handled as follows.  A boundary can occur in the initial estimation, 

during the jackknife, or during the bootstrap.  If it occurred during the initial estimation, 

the parameter was set to zero and its variance was not estimated.  If this occurs during 

the jackknife or bootstrap, estimates for that replicate were set to zero.

IYTS and Simulation Origin

The IYTS was the first survey designed to provide comprehensive, baseline data 

on the prevalence of tobacco use among Indiana youth and was designated to be used to 

guide and evaluate youth tobacco-use prevention programs.  It is the first survey to 

provide Indiana with data that can be compared to other states or the national average.  

The survey also measured knowledge and attitudes about tobacco, the impact of media 

and advertising, minors’ access to tobacco, tobacco-related school curricula, exposure 

to environmental tobacco smoke, and cessation of tobacco use.  The survey and 

sampling method was developed by the Centers for Disease Control and Prevention 

(CDC) to be a scientifically valid, random sampling of Indiana’s youth.  All public  

high schools containing grades 9, 10, 11, or 12 and all public middle schools containing 

grades 6, 7, or 8 were included in the sampling frame.  A two-stage cluster sample 

design was used to produce a representative sample of students in grades 6 through 12.  
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LCLR provides a novel approach to investigate unobserved subgroups of youth 

that differ in terms of what effects their susceptibility to experiment with or initiate 

tobacco use.  Specifically, there is a dichotomous survey item that asks if a respondent 

thinks that he or she will try a cigarette in the near future.  The covariates that were 

identified as differing between latent class regressions were age and two Likert-type 

attitude items.  As noted above, some pilot analyses with these data dictated the design 

of the simulations to ensure that they mimicked real world data (see Table 1).   

Statistical Analysis

The analyses focused on parameter bias, variance estimates, and confidence 

interval coverage.  Relative bias was calculated as the ratio of the simulated parameter 

values to the true values that were calculated beforehand.   Unadjusted (SRS), jackknife, 

bootstrap, and DEFF adjusted variances were compared to the derived “true” variances.  

The “true” variances were determined for each condition using the following equation 

for each parameter:

∑
=

−=
000,10

1

2)ˆ(
000,10

1

i
itrueV θθ                            (3.6)

Parameter estimates, unadjusted (SRS) , jackknife, bootstrap, and DEFF adjusted 

variances were assessed in terms of their relative bias:

true

i

i

relBias θ

θ∑
==

1000

1 1000
                                   (3.7)

where θi is the parameter estimate from the Ith simulation.  Additionally, 95% 

confidence intervals for parameter estimates were calculated as:

ivIC 96.1ˆ.. ±=θ                                     (3.8)
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These intervals were utilized to investigate the interval coverage of the “true” 

parameters.  
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CHAPTER IV
 RESULTS

Parameter estimates and bias are discussed followed by a discussion of the 

variance estimators in terms of bias and confidence interval coverage.  Then, the results 

for the example based on the Indiana Youth Tobacco Survey based on the “best” 

method are presented. 

Parameter Estimates and Bias

The parameter estimates from the various simulations and associated biases are 

presented in Appendix A where tables are appropriately prefixed.  Each of the estimated 

parameters is presented in the far left column, the estimated true values in the second 

column, and the estimates from the various conditions are presented as denoted by the 

other column headings.  

The weighted estimates presented are nonlinear and obtained via pseudo-

maximum likelihood.  Thus, they are consistent but may be biased (Roberts, Rao, and 

Kumar, 1987).  As noted above, in latent class analysis it is the mixing proportion θpop

that is of the most interest.  Additionally, the results for the regression coefficients were 

consistently similar to those for θpop. Thus, for the sake of simplicity and brevity, the 

following discussion of results are restricted to θpop. Complete results of all parameters 

estimates are presented in the appendix.  

When weights were used in estimation, the resulting values of θpop were quite 

similar to the estimated true values (Tables A1 through A6) with no weighted estimate 

of θpop showing more than 4.96% bias.  When the weights were ignored, bias was found 
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to be much larger, exceeding 17% in several cases.  Figures 1 through 3 depict the 

amount of parameter bias detected in each of the three parameter estimate scenarios.  

In general, the amount of bias increased as the value of θpop became more 

extreme (i.e. deviated from .5 closer to 1).  Averaging over results, it is apparent that the 

weighted SRS (mean bias -0.04%) was less biased than the weighted bootstrap (mean 

bias 1.01%) which was less biased than the weighted jackknife (mean bias 3.97%) 

estimates.  Among the unweighted results, there does not appear to be a clearly superior 

method in relation to parameter bias.  That is, all three unweighted methods yielded 

comparably biased estimates.  

Variances

As noted above, the estimated “true” variances were calculated as the sample 

variance of 10,000 replications of the model of interest fit to simulated data.  Resulting 

standard error estimates were evaluated first in terms of the ratio of a given estimate to 

the derived true estimate.  A complete summary of all standard error estimates can be 

found in Appendix A (Tables A7 through A12).  

As hypothesized, standard error estimates ignoring the complex sample design 

and assuming SRS consistently resulted in standard errors of θpop that were smaller than 

the true values.  These are presented in Figure 4.  These standard errors underestimated 

the true values by values of 0.45 to 18.66%.  Thus, inferential tests based on these 

estimates may be undesirably liberal.  Jackknife estimates overestimated standard errors 

of θpop in 66.66% of the scenarios by values of   0.66 to 13.25%.  Bootstrap estimates 

overestimated the true standard errors of θpop in 83.33% of the scenarios investigated by 

values of 2.17 to 21.95%.  Thus, resulting tests would be more conservative.   
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The impact of clustering was investigated via design effects (DEFF’s).  As 

stated in Chapter 3, two design effects were calculated for each parameter based on the 

jackknife and bootstrap standard errors.  The design effects are presented for each 

parameter in Appendix A (Tables A7 through A12).  As expected, the scenarios 

utilizing the values from the β distribution intended to result in larger ICCs (i.e. 

θ1~β[5,5] θ2~β[4,6];  θ1~β[7,3] θ2~β[5,5]; θ1~β[9,1] θ2~β[4,6] )  did result in larger 

DEFF’s than the scenarios intended to exhibit weaker clustering effects.  However, the 

design effects were consistently smaller than those suggested by equation (2.14).  For 

example, the observed design effects for θpop from θ1~β[5,5] θ2~β[4,6] were 1.258 and 

1.237 for the bootstrap and jackknife variances respectively but the expected value for 

each was 2.73.  Similarly, the observed design effect for θpop from θ1~β[50,50] 

θ2~β[40,60] were 1.184 and 1.206 for the bootstrap and jackknife variances respectively 

but the expected value for each was 1.82.   

Confidence Interval Coverage

Standard error estimates were investigated in terms of coverage where coverage 

was defined as the percentage of replicates in which a 95% confidence interval 

constructed by equation (3.8) included the true parameter value.  A complete list of 

coverage for every parameter can be found in Tables A13 through A18.  

For θpop,, the unweighted analyses resulted in coverage ranging from  a 

minimum of 75.00%, occurring in the DEFFboot condition to a maximum coverage of 

89.33% occurring in the bootstrap condition.  Additionally, the coverage observed in 

the unweighted conditions varied as a function of both the clustering effect and the 
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difference between θ1 and θ2.  That is, coverage was greatest in the condition with 

θ1~β[50,50] θ2~β[40,60]  and poorest in the condition with θ1~β[90,10] θ2~β[40,60].  

The coverage for each of the weighted scenarios are presented in Figure 5.  

When weights were incorporated into the analyses, the coverage improved considerably 

with coverage ranging from 85.1% to 95.3%.  Of the methods that were compared, the 

bootstrap consistently resulted in the best coverage.  In fact, in every weighted scenario 

except one, the bootstrap coverage was largest.  The DEFF adjustment to SRS standard 

errors resulted in coverage that in some scenarios outperformed the jackknife.  

However, other than the bootstrap appearing to be clearly the best choice no other 

systematic pattern emerged.    

Example Based on IYTS

The IYTS is a unique survey designed to allow for the quantification of various 

Indiana youth attitudes, beliefs, and behaviors towards tobacco use.  Pilot investigation 

was undertaken to identify a candidate model that was used as the basis of the larger 

simulation study already presented.  

The dichotomous dependent variable that was used was the response to the 

survey item “Do you think you’ll try a cigarette anytime soon?”  Possible responses 

were either “no” or “yes/already tried smoking.”  This item was intended to capture 

intent to initiate tobacco use/abuse.  The first of the covariates (X1) was a four category 

Likert item that asked “If one of your friends offered you a cigarette, would you smoke 

it?”  Possible responses ranged from “Definitely Yes” which was coded as a 1 to 
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“Definitely Not” coded as a 4 with the middle responses of “Probably Yes” and 

“Probably Not” were coded as 2 and 3 respectively.  This item was intended to capture 

susceptibility to peer influence regarding tobacco.  The second covariate (X2) was a 

Likert item that asked if respondents believed that “People get addicted to tobacco just 

like cocaine or heroin.”  Again, responses ranged from 1 (“Definitely Yes”) to 4 

(Definitely No”).  The final covariate (X3) was an ordinal variable representing age that 

was coded as one for age twelve or younger up to eight for those aged nineteen or older.

Initially, a weighted, one class LR and a three class LCLR model were fit to 

these data.  The resulting one class model is contained in Table 5.  The one class model 

was then compared to the two and three class alternative to determine which fit the 

Table 5:  Weighted IYTS LR Coefficients

Covariate Estimate
Constant β 0 = 3.97

Peer Influence β1 = -1.63
Addiction β2 = -0.01

Age β 3 = 0.25

IYTS data better.  Akaike (1974, 1981) proposed the Akaike’s information criteria 

(AIC) as a way to choose the best fitting among competing models.  AIC is a statistic 

commonly used to compare latent class models. For a model consisting of g parameter 

estimates AIC is denoted as:

gLNLAIC 22 +−=                                         (4.1)

The model with the minimum AIC is preferred.  Table 6 contains the values of LNL and 

AIC for the one, two, and three class models.  The two class LCLR model was chosen, 

indicating that the population in question was a heterogeneous one. That is, these data 
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are better represented by a mixture of two LRs than one LR or a mixture of three.  Other 

model selection techniques such as the Bayesian information criteria (BIC) have been 

suggested by Schwarz (1978), Box, Jenkins, and Reinsel (1994) among others.  BIC is 

of the form:

gnLNLBIC )ln(2 +−=                                       (4.2)                              

BIC was not utilized in the current investigation because it was unclear what quantity to 

utilize for the sample size n.  The choice is between the total sample size and the 

number of PSUs.  In order to avoid the nebulous nature of this choice, AIC was chosen 

over BIC for model selection.   

Table 6: Log Likelihood and AIC 

Model LNL AIC
One Class -212709.43 425426.86
Two Class
Three Class

-210185.03
-210181.48

420388.07
420390.96

Table 7 displays the regression coefficients resulting from the weighted two 

class LCLR model fit to the 2001 IYTS data.  The mixing proportion for this model was

θ = 0.82.  Latent class one comprises 82% of the population. This first class appears to 

be more susceptible to peer influence in that those that indicated that they would

Table 7: Weighted IYTS LCLR Regression Coefficients

Covariate Latent Class 1 Latent Class 2
Constant β 01 = 6.81 β 02 = -2.49

Peer Influence β11 = -2.47 β 12 = -0.14
Addiction β21 = -0.33 Β22 = 0.51

Age β 31 = 0.15 Β32 = 1.21
Note: θ =0.82          
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accept a friend’s offering of a cigarette were more likely to indicate that they either 

intended to try or have already tried a cigarette.  In both classes it appears that those that 

are older are more likely to indicate that they would smoke.  The classes differ in their 

knowledge of the addictive nature of tobacco, however these coefficients are not of 

significant magnitude.  One interpretation would be to classify these groups as 

“susceptibility classes.”  That is, 82% of Indiana youth tend to be more susceptible to  

the influence of their peer in terms of tobacco use.  The other 18% tend to not be 

affected by their peers, but become more likely to smoke as they age.  Additional 

variables would need to be investigated to further differentiate these latent subgroups.  

Indiana has one of the highest youth smoking rates in the United States, which was one 

of the motivations for fielding this survey.  Based on these findings, future counter 

marketing or public service announcements in Indiana should address the peer pressure 

issue.   

Based on the simulation results, it was determined that relying on weighted 

parameter estimates would result in less bias and bootstrapped standard errors would 

produce the most conservative variance estimates.  However, unweighted parameter 

estimates and standard errors were investigated as well for comparative purposes.

Table 6 displays the unweighted parameter estimates, a complete summary of 

parameters and standard errors can be found in Table A19.  Ignoring the weights 

resulted in biased parameters, even resulting in the change of sign for β21 in latent class 

one.  This indicates again, that weights must be included for results to be appropriate.  

Most importantly, the unweighted estimate of θ was quite biased.  
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Table 8: Unweighted IYTS LCLR Regression Coefficients

Latent Class 1 Latent Class 2
β 01 = 6.12 β 02 = -3.46
β11 = -1.59 β 12 = -0.20
β21 = 0.22 Β22 = 0.63
β 31 = 0.06 Β32 = 2.00 

Note: θ =0.62

The IYTS was the result of a sampling design that was quite different from the 

simplified scenarios used in the simulations.  In addition, the IYTS utilized much more 

extreme weights for several subgroups.  These two factors no doubt influenced the 

amount of observed bias.  However, the bootstrap approach once again produced 

standard errors that consistently over-estimated their SRS analogs.  
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CHAPTER V
CONCLUSIONS AND DISCUSSION

This investigation was primarily concerned with two areas.  First, to investigate 

potential bias introduced to parameter estimates when sampling weights are not 

incorporated into the analysis.  The second was to investigate competing strategies of 

variance estimation in the face of varying amounts of intra-cluster correlation 

introduced by complex survey data.

Parameter Estimates

Typically, when data are analyzed, parameter values obtained from analysis (i.e. 

not from a replication methodology) are used.  The results of the current investigation 

are in agreement with this practice.  However, when analyzing complex survey data, 

valid parameters can only be obtained if weights are incorporated into the analysis.  

Additionally, jackknife and bootstrap parameter estimates were more biased than their 

SRS counterparts when using weights.  While this bias was not in all cases extreme, the 

SRS parameter estimates tended to be less biased.  The parameter estimates obtained 

when weights were ignored were consistently biased.  This held true for all estimates 

SRS, bootstrap, and jackknife.

These findings underscore the importance of incorporating weights.  When 

weights were ignored, the estimates of θpop were quite biased, in come cases over 17%.  

In the IYTS example, ignoring the weights resulted in an estimate of   θpop that was 

biased by 24%.    
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Variance Estimates

As hypothesized, standard error estimates based on the assumption of SRS 

consistently under estimated the true values by 0.4 to 18.6%.  This approach should be 

abandoned due to the overly liberal variance estimates it produces.  The replication 

based estimates (i.e. jackknife and bootstrap) produced standard error estimates that 

consistently over-estimated the true variances.  

The jackknife standard errors resulted in estimates that were in general, 

positively biased.  That is, this approach tended to over-estimate true standard errors by 

.06 to 13%.  However, this was not the case in every condition.  Specifically, in two of 

six weighted scenarios the jackknife estimates underestimated the true variance by 3 to 

20%. This underestimation can lead to spurious statistical tests.  However, the jackknife 

as implemented here, consisted of only 25 replicates.  The jackknife is easy to 

implement in statistical packages such as SAS.  It would be beneficial for future 

research to investigate the impact of doubling or even tripling the number of jackknife 

replicates in an attempt to arrive at a suggested number of replicates that would provide 

more stable estimates of variability.  

The bootstrap standard error estimates were also predominantly conservative.  In 

five of the six weighted scenarios, the bootstrap over-estimated the true standard error 

by 2.1 to 21.9%.  However, in one scenario, it underestimated the standard error by 8%.  

While this is only slightly better than the jackknife, as will be discussed, the bootstrap 

consistently outperformed it in terms of coverage.  It would be beneficial to investigate 

the impact of increasing the number of bootstrap replicates as well.  
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The SRS standard error estimates were quite liberal, and the observed design 

effects were much smaller than expected.  The design effect adjustment resulted in 

variance estimates that were also consistently smaller than were the true values.  This 

approach could be investigated again in simulated scenarios that exhibited larger design 

effects, perhaps with values of DEFF larger than two.

Based on the current findings, the final recommendation regarding variance or 

error estimation must be the bootstrap.  However, this recommendation is based on a 

desire to “err on the side of caution.”  That is, it is preferable to use variance estimates 

that tend to be conservative (i.e. large) rather than liberal (i.e. small).  This is especially 

true if rejecting the null hypothesis has severe consequences.  Additional research could 

provide a more concrete guide.  

Coverage and Recommendations

Confidence interval coverage was greatest when bootstrap standard errors were 

used to construct the confidence intervals.  In fact, the bootstrap was the only method 

that resulted in 90% coverage or better for θpop in every weighted scenario.  Again, these 

results may be bolstered by an increase in the number of bootstrap replicates.   

Based on the findings for bias, variance estimation, and coverage, it is clear that 

the preferred method is to fit the model and obtain parameter estimates then 

approximate variance or standard errors through the bootstrap method.  The smallest 

parameter bias was observed with SRS (non-replicate) estimates, and the most 

conservative error estimates were obtained via the bootstrap.  
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Implications for Future Research

1. The number of replicates for both the bootstrap and jackknife approach 

should be further investigated.  An increase in either might significantly decrease the 

observed bias in both parameter and variance estimate bias.  Patterson (1998, 2000) 

indicated that sixty jackknife replicates resulted in acceptable coverage and minimal 

bias.  Based on the current investigation, the number of jackknife or bootstrap replicates 

should be increased, possibly doubled.  

2. Systematic variation of the simulated sample design would indicate the 

performance of these methods in other circumstances.  For example, it would be useful 

to simulate a survey sample consisting on more (possibly many more) than two strata 

and few cluster per strata.  Few real world surveys consist of only two strata.

3. It would be of interest to investigate the current methods both on much 

larger and much smaller samples.  

4. Other variance estimation techniques such as linearization should be 

investigated.   
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APPENDIX A: RESULTS TABLES

Table A1: Parameter Estimates and Relative Bias
θ1~β[5,5]; θ2~β[4,6]

Weighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 6.99 6.911 -1.05 7.03 0.65 7.00 0.14
β11 -2.57 -2.44 -4.96 -2.54 -1.35 -2.57 0.11
β21 -0.39 -0.37 -4.08 -0.40 2.47 -0.39 1.08
β31 0.17 0.16 -5.99 0.17 -2.32 0.17 -0.99
β02 -2.91 -3.09 6.45 -3.08 5.93 -2.85 -1.81
β12 -0.10 -0.09 -4.20 -0.09 -5.03 -0.09 -4.08
β22 0.64 0.64 -0.06 0.69 6.98 0.66 2.85
β32 1.46 1.48 0.91 1.54 5.52 1.49 2.13
θ 0.48 0.49 1.65 0.50 3.64 0.500 3.56

Unweighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 6.99 6.96 -0.39 8.10 15.92 7.49 7.14
β11 -2.57 -2.61 1.66 -2.94 14.33 -2.84 10.36
β21 -0.39 -0.39 -0.22 -0.49 24.65 -0.48 21.81
β31 0.17 0.20 17.18 0.24 35.56 0.18 6.42
β02 -2.9 -2.79 -4.08 -2.79 -4.00 -3.25 11.75
β12 -0.10 -0.12 18.14 -0.12 18.52 -0.10 3.33
β22 0.64 0.59 -7.61 0.59 -7.36 0.72 12.52
β32 1.46 1.40 -4.10 1.40 -4.00 1.66 13.76
θ 0.48 0.45 -5.03 0.45 -5.10 0.46 -3.71
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Table A2: Parameter Estimates and Relative Bias
θ1~β[7,3]; θ2~β[5,5]

Weighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.44 7.21 -3.14 7.58 1.78 7.45 0.06
β11 -2.78 -2.6 -4.15 -2.57 -7.45 -2.67 -3.75
β21 -0.35 -0.36 3.27 -0.36 4.09 -0.36 2.63
β31 0.20 0.19 -4.09 0.20 -1.43 0.20 0.48
β02 -3.18 -3.09 -2.72 -3.09 -2.82 -3.19 0.40
β12 -0.06 -0.06 -3.33 -0.06 1.82 -0.06 0.53
β22 0.69 0.67 -2.39 0.69 1.31 0.70 1.38
β32 1.60 1.53 -4.44 1.68 4.67 1.65 3.17
θ 0.67 0.65 -2.39 0.69 2.45 0.68 1.60

Unweighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.44 7.69 3.27 7.63 2.47 7.61 2.30
β11 -2.78 -2.56 -8.01 -3.05 9.93 -2.99 7.74
β21 -0.35 -0.38 10.49 -0.37 6.77 -0.36 4.18
β31 0.20 0.23 14.83 0.22 9.04 0.22 8.99
β02 -3.18 -2.83 -11.06 -2.88 -9.45 -3.54 11.38
β12 -0.06 -0.07 11.96 -0.07 9.31 -0.07 8.49
β22 0.69 0.66 -3.61 0.63 -8.44 0.62 -9.72
β32 1.60 1.49 -6.82 1.43 -10.92 1.44 -10.40
θ 0.67 0.59 -12.16 0.61 -9.16 0.61 -9.71
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Table A3: Parameter Estimates and Relative Bias
θ1~β[9,1]; θ2~β[4,6]

Weighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.63 8.08 5.91 7.86 3.05 7.70 0.87
β11 -2.85 -2.99 4.96 -3.03 6.25 -2.98 4.83
β21 -0.35 -0.36 4.63 -0.34 -3.26 -0.34 -2.42
β31 0.21 0.21 -2.88 0.23 10.99 0.22 4.02
β02 -3.23 -3.17 -1.97 -3.14 -2.83 -3.24 0.26
β12 -0.06 -0.06 -2.54 -0.07 6.18 -0.07 4.73
β22 0.70 0.73 3.96 0.74 5.36 0.71 0.78
β32 1.63 1.71 4.59 1.74 6.81 1.69 3.85
θ 0.79 0.79 -0.05 0.82 4.61 0.78 -0.34

Unweighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.63 7.23 -5.20 7.86 2.99 7.86 3.05
β11 -2.85 -2.70 -5.24 -2.96 3.45 -2.95 3.59
β21 -0.35 -0.33 -5.28 -0.34 -1.13 -0.34 -1.15
β31 0.21 0.18 -14.56 0.24 13.55 0.22 4.46
β02 -3.23 -2.96 -8.52 -3.50 8.43 -3.23 -0.04
β12 -0.06 -0.09 37.84 -0.09 34.66 -0.08 23.15
β22 0.706 0.63 -10.33 0.74 5.74 0.72 3.09
β32 1.63 1.48 -9.51 1.75 7.01 1.69 3.58
θ 0.79 0.67 -14.91 0.82 4.47 0.82 4.48
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Table A4: Parameter Estimates and Relative Bias
θ1~β[50,50]; θ2~β[40,60]

Weighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 6.94 6.71 -3.36 7.29 5.08 7.02 1.16
β11 -2.56 -2.43 -5.07 -2.37 -7.58 -2.49 -2.75
β21 -0.41 -0.38 -5.88 -0.429 5.94 -0.41 2.42
β31 0.18 0.16 -5.44 0.19 7.42 0.18 3.74
β02 -2.91 -2.91 0.15 -3.07 5.71 -2.99 3.17
β12 -0.09 -0.08 -3.80 -0.08 -6.16 -0.09 -1.06
β22 0.64 0.63 -1.73 0.67 4.89 0.66 4.08
β32 1.46 1.45 -0.67 1.57 7.06 1.52 4.14
θ 0.49 0.49 0.99 0.51 4.96 0.50 2.17

Unweighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 6.94 6.37 -8.27 7.08 2.07 7.02 1.16
β11 -2.56 -2.39 -6.83 -2.93 14.30 -2.81 9.69
β21 -0.41 -0.38 -5.89 -0.39 -2.51 -0.39 -2.51
β31 0.17 0.16 -7.65 0.21 14.72 0.19 9.36
β02 -2.91 -2.91 0.15 -3.41 17.29 -2.96 2.17
β12 -0.09 -0.08 -13.51 -0.04 -53.15 0.09 -203.86
β22 0.64 0.63 -1.73 0.73 14.83 0.65 1.51
β32 1.46 1.45 -0.67 1.77 20.68 1.56 6.89
θ 0.49 0.46 -5.07 0.47 -4.61 0.48 -2.69

.
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Table A5: Parameter Estimates and Relative Bias
θ1~β[70,30]; θ2~β[50,50]

Weighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.36 7.22 -1.88 7.24 -1.64 7.25 -1.50
β11 -2.73 -2.67 -2.28 -2.87 4.96 -2.87 4.86
β21 -0.34 -0.36 3.95 -0.34 -2.56 -0.34 -1.06
β31 0.21 0.19 -5.67 0.20 -4.59 0.20 -2.76
β02 -3.15 -3.01 -4.53 -3.08 -2.35 -3.09 -1.86
β12 -0.07 -0.07 6.51 -0.08 5.16 -0.07 2.82
β22 0.69 0.67 -2.25 0.72 4.76 0.72 3.23
β32 1.59 1.53 -3.66 1.55 -2.70 1.56 -2.14
θ 0.66 0.65 -0.24 0.69 4.65 0.66 0.11

Unweighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.36 7.62 3.56 7.82 6.18 7.90 7.31
β11 -2.73 -2.75 0.52 -3.04 11.26 -2.99 9.29
β21 -0.34 -0.39 12.09 -0.39 13.04 -0.39 13.00
β31 0.21 0.22 5.37 0.24 16.36 0.24 17.10
β02 -3.15 -2.8 -9.24 -2.87 -8.69 -3.55 12.72
β12 -0.07 -0.08 11.90 -0.08 10.27 -0.08 9.02
β22 0.69 0.62 -9.97 0.62 -9.60 0.64 -8.01
β32 1.59 1.42 -10.75 1.43 -10.23 1.45 -9.23
θ 0.66 0.60 -8.62 0.60 -8.65 0.61 -8.24
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Table A6: Parameter Estimates and Relative Bias
θ1~β[90,10]; θ2~β[40,60]

Weighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.56 8.06 6.72 8.05 6.49 8.02 6.11
β11 -2.82 -3.05 8.02 -3.02 7.08 -3.02 7.27
β21 -0.35 -0.36 3.37 -0.35 -2.22 -0.35 -0.64
β31 0.21 0.22 4.38 0.22 4.73 0.22 2.56
β02 -3.23 -3.19 -1.15 -3.17 -1.78 -3.19 -1.31
β12 -0.06 -0.06 1.59 -0.06 0.02 -0.06 0.03
β22 0.68 0.66 -4.18 0.66 -4.32 0.66 -2.96
β32 1.62 1.67 2.98 1.66 2.38 1.65 1.77
θ 0.79 0.79 -0.22 0.82 3.52 0.78 -0.52

Unweighted Analyses
Parameter “True”

Parameter SRS
Relative
Bias (%) Jackknife

Relative
Bias (%) Bootstrap

Relative
Bias (%)

β01 7.56 8.07 6.82 8.07 6.71 8.03 6.25
β11 -2.82 -2.72 -3.51 -2.93 3.74 -2.96 5.04
β21 -0.35 -0.34 -4.78 -0.35 0.39 -0.4 12.45
β31 0.21 0.20 -6.95 0.18 -13.33 0.20 -2.89
β02 -3.23 -2.98 -7.82 -3.16 -2.14 -3.67 13.62
β12 -0.06 -0.06 2.39 -0.06 10.67 -0.07 9.08
β22 0.68 0.62 -8.71 0.65 -3.98 0.67 -1.06
β32 1.62 1.49 -8.35 1.53 -5.53 1.53 -5.81
θ 0.79 0.65 -17.43 0.65 -17.45 0.65 -17.24



Table A7 “True” and Estimated Standard Errors and Design Effects
θ1~β[5,5]; θ2~β[4,6]

Weighted Analyses
Parameter “True”

SE SRS
Ratio

SRS:True Jackknife
Ratio

Jack:True DEFFjack Bootstrap
Ratio

Boot:Tru
e

DEFFboot

β01 0.03 0.02 0.89 0.04 1.12 1.25 0.03 1.08 1.21
β11 0.01 0.01 0.90 0.01 1.08 1.20 0.01 1.05 1.16
β21 0.01 0.01 0.91 0.01 1.09 1.20 0.01 1.09 1.19
β31 0.01 0.01 0.92 0.01 1.08 1.17 0.01 1.04 1.13
β02 0.01 0.01 0.92 0.01 1.17 1.26 0.01 1.15 1.24
β12 0.003 0.004 0.94 0.004 1.06 1.12 0.003 1.01 1.06
β22 0.004 0.004 0.92 0.004 1.03 1.11 0.004 1.01 1.09
β32 0.005 0.005 0.95 0.006 1.05 1.09 0.006 1.03 1.07
θ 0.0004 .0003 0.81 0.0004 1.01 1.23 0.0004 1.02 1.25



Table A8 “True” and Estimated Standard Errors and Design Effects
θ1~β[7,3]; θ2~β[5,5]

Weighted Analyses
Parameter “True” 

SE SRS
Ratio

SRS:True Jackknife
Ratio

Jack:True DEFFjack Bootstrap
Ratio

Boot:True DEFFboot

β01 0.03 0.03 0.93 0.03 1.04 1.11 0.03 1.01 1.08
β11 0.01 0.01 0.95 0.01 1.11 1.16 0.01 1.02 1.07
β21 0.01 0.01 0.92 0.01 1.12 1.21 0.01 1.06 1.14
β31 0.01 0.01 0.92 0.01 1.18 1.27 0.01 1.07 1.15
β02 0.02 0.02 0.91 0.02 1.12 1.22 0.02 1.06 1.15
β12 0.02 0.02 0.93 0.02 1.11 1.19 0.02 1.05 1.12
β22 0.01 0.01 0.94 0.01 1.20 1.27 0.01 1.21 1.29
β32 0.01 0.01 0.91 0.01 1.11 1.22 0.01 1.07 1.17
θ 0.0004 0.0004 0.95 0.0004 1.03 1.08 0.0005 1.21 1.27



Table A9 “True” and Estimated Standard Errors and Design Effects
θ1~β[9,1]; θ2~β[4,6]

Weighted Analyses
Parameter “True” 

SE SRS
Ratio

SRS:True Jackknife
Ratio

Jack:True DEFFjack Bootstrap
Ratio

Boot:True DEFFboot

β01 0.03 0.02 0.94 0.03 1.11 1.17 0.03 1.05 1.11
β11 0.01 0.01 0.86 0.01 1.07 1.25 0.01 1.04 1.21
β21 0.01 0.01 0.96 0.01 1.12 1.16 0.01 1.09 1.13
β31 0.01 0.01 0.91 0.01 1.15 1.26 0.01 1.09 1.18
β02 0.02 0.02 0.94 0.02 1.11 1.18 0.02 1.03 1.09
β12 0.02 0.02 0.95 0.02 1.09 1.15 0.02 1.05 1.09
β22 0.01 0.01 0.96 0.01 1.08 1.12 0.01 1.01 1.04
β32 0.02 0.02 0.93 0.02 1.10 1.19 0.02 1.01 1.08
θ 0.0004 0.0003 0.86 0.0003 0.79 0.93 0.0004 1.05 1.22



Table A10 “True” and Estimated Standard Errors and Design Effects
θ1~β[50,50]; θ2~β[40,60]

Weighted Analyses
Parameter “True” 

SE SRS
Ratio

SRS:True Jackknife
Ratio

Jack:True DEFFjack Bootstrap
Ratio

Boot:True DEFFboot

β01 0.03 0.03 0.91 0.03 1.07 1.18 0.03 1.04 1.15
β11 0.01 0.01 0.91 0.01 1.03 1.14 0.01 1.03 1.13
β21 0.01 0.01 0.93 0.01 1.08 1.16 0.01 1.07 1.15
β31 0.01 0.01 0.98 0.01 1.04 1.06 0.01 1.02 1.04
β02 0.01 0.01 0.97 0.01 1.08 1.11 0.01 1.03 1.04
β12 0.003 0.003 0.89 0.004 1.15 1.29 0.004 1.08 1.19
β22 0.004 0.004 0.91 0.004 1.08 1.18 0.004 1.05 1.14
β32 0.006 0.005 0.94 0.006 1.04 1.10 0.006 1.05 1.12
θ 0.0004 0.0003 0.86 0.0004 1.04 1.21 0.0004 1.02 1.18



Table A11 “True” and Estimated Standard Errors and Design Effects
θ1~β[70,30]; θ2~β[50,50]

Weighted Analyses
Parameter “True” 

SE SRS
Ratio

SRS:True Jackknife
Ratio

Jack:True DEFFjack Bootstrap
Ratio

Boot:True DEFFboot

β01 0.03 0.03 0.97 0.03 1.08 1.11 0.03 1.04 1.07
β11 0.01 0.01 0.94 0.01 1.08 1.16 0.01 1.04 1.11
β21 0.01 0.01 0.87 0.01 1.11 1.28 0.01 1.06 1.22
β31 0.01 0.01 0.97 0.01 1.09 1.17 0.01 1.04 1.08
β02 0.02 0.02 0.96 0.02 1.06 1.10 0.02 1.03 1.07
β12 0.02 0.02 0.94 0.02 1.10 1.18 0.02 1.05 1.12
β22 0.01 0.01 0.94 0.01 1.14 1.21 0.01 1.09 1.17
β32 0.02 0.02 0.98 0.02 1.05 1.08 0.02 1.02 1.04
θ 0.0004 0.0004 0.99 0.0004 0.97 0.97 0.0004 1.07 1.07



Table A12 “True” and Estimated Standard Errors and Design Effects
θ1~β[90,10]; θ2~β[40,60]

Weighted Analyses
Parameter “True” 

SE SRS
Ratio

SRS:True Jackknife
Ratio

Jack:True DEFFjack Bootstrap
Ratio

Boot:True DEFFboot

β01 0.03 0.02 0.97 0.03 1.10 1.13 0.03 1.02 1.05
β11 0.01 0.01 0.98 0.01 1.09 1.10 0.01 1.05 1.06
β21 0.01 0.01 0.92 0.01 1.09 1.18 0.01 1.04 1.13
β31 0.01 0.01 0.99 0.01 1.08 1.08 0.01 1.05 1.05
β02 0.02 0.02 0.95 0.02 1.04 1.09 0.02 1.03 1.07
β12 0.02 0.02 0.96 0.02 1.07 1.11 0.02 1.05 1.08
β22 0.02 0.02 0.95 0.02 1.09 1.15 0.02 1.05 1.09
β32 0.01 0.01 0.95 0.01 1.07 1.13 0.01 1.05 1.09
θ 0.0005 0.0004 0.82 0.0005 1.13 1.36 0.0004 0.92 1.11
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Table A13: 95% Confidence Interval Coverage
θ1~β[5,5]; θ2~β[4,6]

Weighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 89.7 94.4 96.2 90.2 89.9
β11 87.3 92.7 95.2 89.1 90.4
β21 86.5 91.4 94.8 88.7 88.5
β31 85.4 91.7 94.7 87.4 86.6
β02 85.0 90.4 94.0 86.7 86.4
β12 86.4 90.4 90.3 86.5 86.2
β22 91.1 90.7 93.0 87.7 87.4
β32 88.4 91.7 91.7 91.8 91.5
θ 91.5 91.2 90.5 89.9 90.2

Unweighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 92.2 82.7 88.7 93.5 92.4
β11 89.7 84.3 86.3 90.7 89.7
β21 91.5 79.7 80.4 91.8 91.7
β31 75.4 71.4 89.8 76.5 77.7
β02 85.6 88.7 85.8 83.2 86.2
β12 76.5 82.4 89.4 72.9 77.8
β22 85.7 88.6 86.1 85.9 86.5
β32 82.7 87.2 85.7 80.7 83.7
θ 84.7 86.5 89.3 86.2 85.9
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Table A14: 95% Confidence Interval Coverage
θ1~β[7,3]; θ2~β[5,5]

Weighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 85.4 92.4 93.5 87.2 86.5
β11 85.3 90.7 92.5 87.0 86.7
β21 85.5 91.4 93.7 87.5 86.6
β31 84.9 91.7 93.7 85.6 85.1
β02 86.7 90.7 94.8 87.0 86.8
β12 86.3 91.8 93.9 87.4 86.8
β22 88.0 91.9 92.8 86.9 87.1
β32 86.2 90.5 91.8 88.5 88.2
θ 88.7 90.9 92.5 87.5 88.4

Unweighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 85.7 85.1 86.5 86.1 85.9
β11 83.2 82.6 84.3 84.3 83.7
β21 81.7 83.5 88.4 83.1 84.6
β31 73.4 81.4 87.2 73.8 73.6
β02 80.6 80.1 82.7 75.1 82.4
β12 75.7 74.7 86.9 70.7 77.7
β22 76.4 77.8 86.7 74.7 78.4
β32 79.5 74.7 80.5 75.1 80.9
θ 81.7 82.0 83.5 81.7 82.0
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Table A15: 95% Confidence Interval Coverage
θ1~β[9,1]; θ2~β[4,6]

Weighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 84.2 89.3 92.0 85.3 84.9
β11 84.7 88.3 88.5 85.9 85.7
β21 85.1 89.7 90.7 86.0 85.6
β31 86.9 87.2 89.9 87.6 87.4
β02 86.9 90.7 92.9 87.5 87.3
β12 86.7 88.3 90.7 87.6 87.0
β22 85.3 89.5 91.0 85.9 85.4
β32 85.8 88.0 90.1 86.8 86.4
θ 90.4 85.1 94.4 87.1 90.7

Unweighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 90.0 91.5 90.5 91.0 90.7
β11 87.5 90.7 90.1 88.6 88.9
β21 88.5 92.5 93.4 89.0 89.2
β31 75.5 82.0 89.9 76.8 78.4
β02 77.6 85.5 92.2 76.2 78.1
β12 65.4 66.8 77.0 63.4 66.5
β22 74.3 85.1 89.4 72.7 76.0
β32 73.7 83.4 88.5 70.0 74.7
θ 79.4 87.5 87.3 80.9 80.4
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Table A16: 95% Confidence Interval Coverage
θ1~β[50,50]; θ2~β[40,60]

Weighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 87.4 89.7 91.0 88.5 88.4
β11 87.8 89.0 90.3 89.0 88.9
β21 86.9 88.3 90.5 87.7 87.5
β31 86.4 87.5 89.6 86.5 86.3
β02 92.8 86.9 89.7 93.0 91.8
β12 88.4 86.9 90.7 88.8 89.8
β22 89.4 87.6 89.2 89.8 89.1
β32 89.4 86.4 89.5 89.7 90.1
θ 89.7 90.3 90.7 90.9 90.7

Unweighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 84.6 89.5 92.4 86.6 85.4
β11 83.5 84.3 88.7 85.7 84.6
β21 84.7 88.5 89.2 86.1 85.1
β31 83.7 84.6 88.4 84.5 84.2
β02 89.4 81.6 88.7 90.5 90.1
β12 79.4 55.9 35.7 80.7 81.5
β22 88.4 83.7 88.1 89.8 90.1
β32 91.4 80.1 86.3 92.0 91.5
θ 87.9 88.4 87.9 88.3 88.9
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Table A17: 95% Confidence Interval Coverage
θ1~β[70,30]; θ2~β[50,50]

Weighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 88.6 91.4 91.6 89.2 88.8
β11 88.1 92.1 92.4 88.8 88.5
β21 89.1 91.6 92.0 89.6 89.2
β31 87.6 90.5 91.7 88.4 87.9
β02 86.4 91.0 93.8 87.2 86.8
β12 85.5 92.1 92.4 86.4 85.8
β22 89.4 90.4 91.7 90.5 89.3
β32 88.6 90.7 90.5 89.9 89.5
θ 92.1 90.6 95.3 91.5 92.4

Unweighted Analyses
Parameter SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 85.2 86.5 85.6 85.9 85.6
β11 93.9 81.6 83.6 94.5 94.0
β21 81.6 82.4 83.5 83.5 83.8
β31 84.6 83.2 82.6 85.7 85.1
β02 80.5 79.5 86.5 79.6 81.6
β12 77.6 74.6 72.6 73.5 75.6
β22 76.5 75.8 88.6 74.6 77.3
β32 77.6 69.5 75.4 74.9 76.1
θ 80.5 79.2 84.5 78.9 80.8
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Table A18: 95% Confidence Interval Coverage
θ1~β[90,10]; θ2~β[40,60]

Weighted Analyses
Paramete

r
SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 86.5 88.5 88.4 87.9 87.1
β11 84.5 87.5 87.9 85.9 85.2
β21 85.4 88.2 92.0 86.6 86.9
β31 87.5 88.3 89.6 88.2 88.0
β02 87.2 89.6 89.4 88.1 87.8
β12 88.9 93.7 95.7 89.4 89.0
β22 85.3 89.6 90.1 86.4 85.9
β32 88.5 90.1 89.9 90.1 89.5
θ 91.2 89.7 93.5 92.2 91.4

Unweighted Analyses
Paramete

r
SRS Jackknife Bootstrap DEFFjack DEFFboot

β01 90.4 88.6 89.5 92.1 91.5
β11 90.6 89.6 88.6 91.8 90.8
β21 88.5 93.2 87.1 88.9 89.5
β31 89.4 82.4 90.6 90.1 91.7
β02 78.4 86.7 84.6 77.5 80.0
β12 74.6 78.9 88.3 73.2 75.5
β22 71.9 79.5 89.6 69.5 70.6
β32 75.9 81.3 89.4 73.8 76.9
θ 75.8 77.6 76.5 75.4 75.0
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A19: Summary of IYTS Analyses
Parameter Weighted

Parameter
Estimate

Unweighted
Parameter 
Estimate

Relative
Bias (%)

SRS 
Standard
Error*

Bootstrap
Standard
Error*

Ratio
Boot:SRS

*
β01 6.81 6.12 10.13 0.94 0.99 1.06
β11 -2.47 -1.59 35.16 0.27 0.31 1.12
β21 -0.33 0.22 167.97 0.18 0.21 1.20
β31 0.15 0.06 64.28 0.07 0.09 1.30
β02 -2.49 -3.44 -38.94 1.71 1.90 1.11
β12 -0.14 -0.20 -38.78 0.33 0.54 1.04
β22 0.51 0.63 -22.09 0.36 0.38 1.04
β32 1.22 2.00 -64.82 0.32 0.34 1.04
θ 0.82 0.62 24.05 0.02 0.04 1.61

* Refers to weighted analysis
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APPENDIX B: SAS PROGRAMS

/*Jack & Boot*/
/*This Program performs model based, jackknifem, and bootstrap*/
/*estimation*/
options nofmterr mprint spool;
proc printto print = output

log =lr.logs.log.log label = "log";
run;

%macro weighted;
%let seed = 121; 
%do i = 1 %to 1000; 
/*first data step simulates observations for strata one*/
data strata1 (drop = w i);
   seed=&seed;  /*seed for covariate generation*/
call streaminit(35131); /*seed for beta number generation*/ 
strata = 1; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w;
 beta = rand('BETA',5,5);/*beta distribution for cluster MEAN = .9 and 
ICC = .0099*/
do i=1 to 20;  /*NUMBER OF OBSERVATIONS TO SIMULATE*/
    weight=1;         /*stratum 1 weight*/

x1=rannor(seed);  /*1ST COVARIATE*/
x2=rannor(seed);  /*SECOND COVARIATE*/
x3=rannor(seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2= -2.5 + -.2*x1 + .5*x2 + 
1.2*x3;    /*logits for 2 mixture components*/
      p=beta*exp(-logit1)/(1+exp(-logit1))+(1-beta)*exp(-
logit2)/(1+exp(-logit2)); /*mixing proportion*/
      if ranuni(seed)>p then y=1; else y=0;   /*CREATE DICHOTOMOUS DV*/

  output;
end;
end;
run;
%let seed = &seed + 1; 
/*second data step simulates observations for strata two*/
data strata2 (drop = w i);
   seed=&seed;  /*seed for covariate generation*/
call streaminit(17111); /*seed for beta number generation*/ 
strata = 2; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w;
beta = rand('BETA',4,6); /*beta distribution for cluster MEAN = .4 and 
ICC=.0099 */
do i=1 to 20;  /*NUMBER OF OBSERVATIONS TO SIMULATE*/
    weight = 0.25;     /*stratum 2 weight*/
   x1=rannor(seed);  /*1ST COVARIATE*/

x2=rannor(seed);  /*SECOND COVARIATE*/
x3=rannor(seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2= -2.5 + -.2*x1 + .5*x2 + 
1.2*x3;    /*logits for 2 mixture components*/
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      p=beta*exp(-logit1)/(1+exp(-logit1))+(1-beta)*exp(-
logit2)/(1+exp(-logit2)); /*mixing proportion*/
      if ranuni(seed)>p then y=1; else y=0;   /*CREATE DICHOTOMOUS DV*/
      output;
end;
end;

run;
/*this datastep merges the two strata into one 'superpopulation'*/
data dissPSU (drop = seed);
set strata1 strata2;
run;
/*this section does weighted pseudo likelihood estimation on tesT data 
by Newton-Raphson */
/*dissPSU is for model based estimation (no jackknife or bootstrapp)*/
proc nlp data=dissPSU cov=2 OUTEST = TEMP noprint;
   max llik;
   parms a1=6.5,b1=-2,b2=-1,b3=.5,a2=-2.5,b4=-1,b5=.5,b6=1,theta=.8;  
/* initial values */
   bounds 0 <= theta <= 1;

q=theta*exp(a1 + b1*x1 + b2*x2 + b3*x3)/(1 + exp(a1 + b1*x1 + b2*x2 + 
b3*x3))+(1-theta)*exp(a2 + b4*x1 + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1 + 
b5*x2 + b6*x3)); /* logit mixture */
   llik=(weight*y)*log(q) + (weight*(1-y))*log(1-q); /*weighted 
likelihood function*/
run;
%if &i = 1 %then %do;           /*this loop creates a dataset at 
iteration 1 */                  
  data weighted_parms_5_5_4_6 (DROP = _TECH_ _NAME_ _RHS_ _iter_); 
/*contains parameters, SE, & teration*/     
    set temp;                                                  
    iter = &i; 

if _type_ = "PARMS" then output;                 
  else if _type_ =  "STDERR" then output;    
run;                                                         
  proc append base=lr.weighted_parm_5_5_4_6 
data=weighted_parms_5_5_4_6;                   
  run;                                                         
%end;                                                          

%else %do;                       /*this loop appends parms, se, & iter 
counter for all subsequent iterations*/                              
  data weighted_parms&i (DROP = _TECH_ _NAME_ _RHS_ _iter_);   
    set temp;                                                  
    iter = &i; 

if _type_ = "PARMS" then output;                                                                                           
  else if _type_ =  "STDERR" then output;    
run;                                                         

  proc append base=lr.weighted_parm_5_5_4_6 data=weighted_parms&i;                 
  run;                                                         
%end; 
proc datasets nolist; /*deletes temp data to minimize memory usage*/
delete weighted_parms&i; run;
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/**********************************************************************
*********************/
/*this section of code performs the Jackknife repilcates*/
/**********************************************************************
*********************/
%macro jackknife;
/*preform 25 jacknife replicates*/
%do j = 1 %to 25;
* Create a data set with one obs per PSU for stratum 1;
proc freq data=strata1 noprint;
  tables psu / out=psulist1(drop=count percent);
run;
* Take a simple random sample of PSUs from stratum 1;
proc surveyselect data=psuList1 out=psu_jack_Sample1 method=srs n=74
noprint;
run;

* Get all the obs for each sampled PSU in stratum 1;
data strata1sample;
  merge psu_jack_sample1 (in=sample) strata1(in=all);
  by psu;
  if sample and all;
run;
* Create a data set with one obs per PSU for stratum 2;
proc freq data=strata2 noprint;
  tables psu / out=psulist2(drop=count percent);
run;
* Take a simple random sample of PSUs from stratum 2;
proc surveyselect data=psuList2 out=psu_jack_Sample2 method=srs n=74
noprint;
run;

* Get all the obs for each sampled PSU in stratum 2;
data strata2sample;
  merge psu_jack_sample2(in=sample) strata2(in=all);
  by psu;
  if sample and all;
run;

data jack;
set strata1sample strata2sample;
if strata = 1 then weight = 1.0135135;
else if strata = 2 then weight = 0.02533783783;
run;

/*this section does weighted pseudo likelihood estimation on tesT data 
by Newton-Raphson */
/*jack is for design based estimation (jackknife)*/
proc nlp data=jack cov=2 OUTEST = TEMP noprint;
   max llik;
   parms a1=6.5,b1=-2,b2=-1,b3=.5,a2=-2.5,b4=-1,b5=.5,b6=1,theta=.8;  
/* initial values */
   bounds 0 <= theta <= 1;

q=theta*exp(a1 + b1*x1 + b2*x2 + b3*x3)/(1 + exp(a1 + b1*x1 + b2*x2 + 
b3*x3))+(1-theta)*exp(a2 + b4*x1 + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1 + 
b5*x2 + b6*x3)); /* logit mixture */
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   llik=(weight*y)*log(q) + (weight*(1-y))*log(1-q); /*weighted 
likelihood function*/
run;

%if &j = 1 %then %do;           /*this loop creates a dataset at 
iteration 1 */      
  data jackparms_5_5_4_6 (DROP = _TECH_ _NAME_ _RHS_ _iter_); 
/*contains parameters, SE, & teration*/     
    set temp;                                                  
    iter = &j; 
    loop = &i;

if _type_ = "PARMS" then output;                           

  run;                                                         
  proc append base=lr.jackparm_5_5_4_6 data=jackparms_5_5_4_6;                   
  run;
%end;                                                          

%else %do;/*this loop appends parms, se, & iter counter for all 
subsequent iterations*/                              
  data jackparms&j (DROP = _TECH_ _NAME_ _RHS_ _iter_);   
    set temp;                                                  
    iter = &j; 

loop = &i;
if _type_ = "PARMS" then output;                        

  run;                                                         

  proc append base=lr.jackparm_5_5_4_6 data=jackparms&j;                 
  run;                                                         
%end; 
proc datasets nolist; /*deletes temp data to minimize memory usage*/
delete jackparms&j; run;
%end;

%mend;
%jackknife;

/**********************************************************************
*********************/
/*this section of code performs the Bootstrap repilcates*/
/**********************************************************************
*********************/
%macro Bootstrap;
/*preform 200 Bootstrap replicates*/
%do j = 1 %to 100;

* Create a data set with one obs per PSU for stratum 1;
proc freq data=strata1 noprint;
  tables psu / out=psulist1(drop=count percent);
run;
* Take a simple random sample of PSUs from stratum 1;
proc surveyselect data=psuList1 out=psu_Boot_Sample1 method=urs n=75
noprint outhits;
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run;

* Get all the obs for each sampled PSU in stratum 1;
data strata1sample (drop = numberhits);
  set psu_boot_sample1;
  Drop PSU2;
  do k = 1 to N;
    set strata1 (rename=(PSU=PSU2)) point=k nobs=N;
   if PSU=PSU2 then output;

    end;
run;
* Create a data set with one obs per PSU for stratum 2;
proc freq data=strata2 noprint;
  tables psu / out=psulist2(drop=count percent);
run;
* Take a simple random sample of PSUs from stratum 2;
proc surveyselect data=psuList2 out=psu_Boot_Sample2 method=urs n=75
noprint outhits;
run;

* Get all the obs for each sampled PSU in stratum 2;
data strata2sample (drop = numberhits);
  set psu_boot_sample2;
  Drop PSU2;
  do k = 1 to N;
    set strata2 (rename=(PSU=PSU2)) point=k nobs=N;
    if PSU=PSU2 then output;
    end;
run;

data Boot;
set strata1sample strata2sample;
if strata = 1 then weight = 1;
else if strata = 2 then weight = 0.25;
run;

/*this section does weighted pseudo likelihood estimation on tesT data 
by Newton-Raphson */
/*Boot is for design based estimation (Bootstrap)*/
proc nlp data=Boot cov=2 OUTEST = TEMP noprint;
   max llik;
   parms a1=6.5,b1=-2,b2=-1,b3=.5,a2=-2.5,b4=-1,b5=.5,b6=1,theta=.8;  
/* initial values */
   bounds 0 <= theta <= 1;

q=theta*exp(a1 + b1*x1 + b2*x2 + b3*x3)/(1 + exp(a1 + b1*x1 + b2*x2 + 
b3*x3))+(1-theta)*exp(a2 + b4*x1 + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1 + 
b5*x2 + b6*x3)); /* logit mixture */
   llik=(weight*y)*log(q) + (weight*(1-y))*log(1-q); /*weighted 
likelihood function*/
run;

%if &j = 1 %then %do;           /*this loop creates a dataset at 
iteration 1 */                               
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  data Bootparms_5_5_4_6 (DROP = _TECH_ _NAME_ _RHS_ _iter_); 
/*contains parameters, SE, & teration*/     
    set temp;               
    iter = &j; 
    loop = &i;

if _type_ = "PARMS" then output;                           

  run;                                                   
  proc append base=lr.Bootparm_5_5_4_6 data=Bootparms_5_5_4_6;                   
  run;                                                         
%end;                                                          

%else %do;/*this loop appends parms, se, & iter counter for all 
subsequent iterations*/                              
  data Bootparms&j (DROP = _TECH_ _NAME_ _RHS_ _iter_);   
    set temp;                                         
    iter = &j; 

loop = &i;
if _type_ = "PARMS" then output;                           

  run;                                                         

  proc append base=lr.Bootparm_5_5_4_6 data=Bootparms&j;                 
  run;                                                         
%end; 
proc datasets nolist; /*deletes temp data to minimize memory usage*/
delete Bootparms&j; run;
%end;

%mend;
%Bootstrap;

%end;

%mend;

%weighted;
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/*population generater*/
options nofmterr mprint spool;
proc printto print = output

log =lr.logs.log.log label = "log";
run;

%macro diss;
%let seed = 175751;
%do i = 1 %to 1000;

/*first data step simulates observations for strata one*/
data strata1 (drop = w i);
   seed=&seed;  /*seed for covariate generation*/
call streaminit(3131); /*seed for beta number generation*/ 
strata = 1; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w;
 beta = rand('BETA',7,3);/*beta distribution for cluster MEAN = .7 and 
ICC = .0099*/
do i=1 to 20;  /*NUMBER OF OBSERVATIONS TO SIMULATE*/
    weight=1;         /*stratum 1 weight*/

x1=rannor(seed);  /*1ST COVARIATE*/
x2=rannor(seed);  /*SECOND COVARIATE*/
x3=rannor(seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2= -2.5 + -.2*x1 + .5*x2 + 
1.2*x3;    /*logits for 2 mixture components*/
      p=beta*exp(-logit1)/(1+exp(-logit1))+(1-beta)*exp(-
logit2)/(1+exp(-logit2)); /*mixing proportion*/
      if ranuni(seed)>p then y=1; else y=0;   /*CREATE DICHOTOMOUS DV*/
      output;
end;
end;
run;
%let seed = &seed + 1; 
/*second data step simulates observations for strata two*/
data strata2 (drop = w i);
   seed=&seed;  /*seed for covariate generation*/
call streaminit(1372); /*seed for beta number generation*/ 
strata = 2; /*identifies which stratum observation are in*/
do w=1 to 75;
psu = w;
beta = rand('BETA',5,5); /*beta distribution for cluster MEAN = .5 and 
ICC=.0099 */
do i=1 to 20;  /*NUMBER OF OBSERVATIONS TO SIMULATE*/
    weight = 0.25;     /*stratum 2 weight*/
    x1=rannor(seed);  /*1ST COVARIATE*/

x2=rannor(seed);  /*SECOND COVARIATE*/
x3=rannor(seed); /*third covariate*/

logit1=6.81 -2.5*x1 - .3*x2 + .2*x3; logit2= -2.5 + -.2*x1 + .5*x2 + 
1.2*x3;    /*logits for 2 mixture components*/
      p=beta*exp(-logit1)/(1+exp(-logit1))+(1-beta)*exp(-
logit2)/(1+exp(-logit2)); /*mixing proportion*/
      if ranuni(seed)>p then y=1; else y=0;   /*CREATE DICHOTOMOUS DV*/
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      output;
end;
end;

run;
/*this datastep merges the two strata into one 'superpopulation'*/
data dissPSU (drop = seed);
set strata1 strata2;
run;
/*this section does weighted pseudo likelihood estimation on tesT data 
by Newton-Raphson */
proc nlp data=dissPSU cov=2 OUTEST = TEMP noprint;
   max llik;
   parms a1=6.5,b1=-2,b2=-1,b3=.5,a2=-2.5,b4=-1,b5=.5,b6=1,theta=.8;  
/* initial values */
   bounds 0 <= theta <= 1;

q=theta*exp(a1 + b1*x1 + b2*x2 + b3*x3)/(1 + exp(a1 + b1*x1 + b2*x2 + 
b3*x3))+(1-theta)*exp(a2 + b4*x1 + b5*x2 + b6*x3)/(1 + exp(a2 + b4*x1 + 
b5*x2 + b6*x3)); /* logit mixture */
   llik=(weight*y)*log(q) + (weight*(1-y))*log(1-q); /*weighted 
likelihood function*/
run;

%if &i = 1 %then %do;           /*this loop creates a dataset at 
iteration 1 */                               
  data weighted_parms_7_3_5_5 (DROP = _TECH_ _NAME_ _RHS_ _iter_); 
/*contains parameters, SE, & teration*/     
    set temp;                                                  

  iter = &i; 
if _type_ = "PARMS" then output;                           

    else if _type_ =  "STDERR" then output;                    

  run;                                                         
  proc append base=lr.weighted_parm data=weighted_parms_7_3_5_5;                   
  run;                                                         
%end;                                                          

%else %do;                       /*this loop appends parms, se, & iter 
counter for all subsequent iterations*/                              
  data weighted_parms&i (DROP = _TECH_ _NAME_ _RHS_ _iter_);   
    set temp;                  
    iter = &i; 

if _type_ = "PARMS" then output;                           
    else if _type_ =  "STDERR" then output;                    

  run;                       

  proc append base=lr.weighted_parm_7_3_5_5 data=weighted_parms&i;                 
  run;                                                         
%end; 
proc datasets nolist; /*deletes temp data to minimize memory usage*/
delete weighted_parms&i; run;
%end;
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%mend;

%diss;
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