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Optimal A&S Policy for Three Bernoulli Distributed Alternatives

We show how to optimally allocate three replications among three designs following
independent Bernoulli distributions. We assume the unknown parameters θi, i = 1, . . . , k,
follow the conjugate priors introduced in Section III.B in the main body of the paper. The
hyper-parameters for the priors are set as α

(0)
i = β

(0)
i = 1/2, i = 1, 2, 3. Because of the

symmetry in the prior information for different designs, the calculation for many states can
be saved.

Figure 1 shows some of the possible states after allocating three replications. We only
need to consider three possible sampling allocation combination: T1 = 3, T2 = 0, T3 = 0;
T1 = 2, T2 = 1, T3 = 0; T1 = 1, T2 = 1, T3 = 1, since other sampling allocation combinations
lead to equivalent states because of the symmetric prior information. For each combination,
arbitrarily choosing three nodes with each one from the roots of different trees constitutes a
state. For example, for T1 = 3, T2 = 0, T3 = 0, there are four possible states: (3, 0, 0, 3, 0, 0),
(2, 0, 0, 3, 0, 0), (1, 0, 0, 3, 0, 0). (0, 0, 0, 3, 0, 0). The optimal selection policy for EOC can be
calculated analytically, and the optimal selection policy for PCS is estimated by simulation.
By conjugacy, the posterior distributions of θi, i = 1, . . . , k, are beta distributions. Expected
value functions VT (ET ; i) = E [V (θ; i)|ET ], i = 1, . . . , k, which do not have analytical form, are
estimated by running 107 macro-experiments, which leads to a precision of up to 10−3. We do
not differentiate selection and allocation decisions leading to rewards that are statistically
non-differentiable, based on the precision level of numerical experiments. The numerical
results are provided as follows:

D∗P (3, 0, 0, 3, 0, 0) = D∗E(3, 0, 0, 3, 0, 0) = 1,

VP (3, 0, 0, 3, 0, 0) = 0.670, VE(3, 0, 0, 3, 0, 0) = −0.049,

D∗P (2, 0, 0, 3, 0, 0) = D∗E(2, 0, 0, 3, 0, 0) = 1,

VP (2, 0, 0, 3, 0, 0) = 0.372, VE(2, 0, 0, 3, 0, 0) = −0.190,

D∗P (1, 0, 0, 3, 0, 0) = D∗E(1, 0, 0, 3, 0, 0) = 2,

VP (1, 0, 0, 3, 0, 0) = 0.404, VE(1, 0, 0, 3, 0, 0) = −0.248,
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Figure 1: State space for T = 3.

D∗P (0, 0, 0, 3, 0, 0) = D∗E(0, 0, 0, 3, 0, 0) = 2,

VP (0, 0, 0, 3, 0, 0) = 0.471, VE(0, 0, 0, 3, 0, 0) = −0.211,

D∗P (2, 1, 0, 2, 1, 0) = D∗E(2, 1, 0, 2, 1, 0) = 1,

VP (2, 1, 0, 2, 1, 0) = 0.495, VE(2, 1, 0, 2, 1, 0) = −0.097,

D∗P (1, 1, 0, 2, 1, 0) = D∗E(1, 1, 0, 2, 1, 0) = 2,

VP (1, 1, 0, 2, 1, 0) = 0.595, VE(1, 1, 0, 2, 1, 0) = −0.107,

D∗P (0, 1, 0, 2, 1, 0) = D∗E(0, 1, 0, 2, 1, 0) = 2,

VP (0, 1, 0, 2, 1, 0) = 0.685, VE(0, 1, 0, 2, 1, 0) = −0.081,

D∗P (2, 0, 0, 2, 1, 0) = D∗E(2, 0, 0, 2, 1, 0) = 1,

VP (2, 0, 0, 2, 1, 0) = 0.744, VE(2, 0, 0, 2, 1, 0) = −0.048,
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Figure 2: State space for t = 2.

D∗P (1, 0, 0, 2, 1, 0) = D∗E(1, 0, 0, 2, 1, 0) = 1,

VP (1, 0, 0, 2, 1, 0) = 0.418, VE(1, 0, 0, 2, 1, 0) = −0.206,

D∗P (0, 0, 0, 2, 1, 0) = D∗E(0, 0, 0, 2, 1, 0) = 3,

VP (0, 0, 0, 2, 1, 0) = 0.629, VE(0, 0, 0, 2, 1, 0) = −0.103,

D∗P (1, 1, 1, 1, 1, 1) = D∗E(1, 1, 1, 1, 1, 1) ∈ {1, 2, 3},
VP (1, 1, 1, 1, 1, 1) = 1/3, VE(1, 1, 1, 1, 1, 1) = −0.184,

D∗P (1, 1, 0, 1, 1, 1) = D∗E(1, 1, 0, 1, 1, 1) ∈ {1, 2},
VP (1, 1, 0, 1, 1, 1) = 0.485, VE(1, 1, 0, 1, 1, 1) = −0.139,

D∗P (1, 0, 0, 1, 1, 1) = D∗E(1, 0, 0, 1, 1, 1) = 1,

VP (1, 0, 0, 1, 1, 1) = 0.840, VE(1, 0, 0, 1, 1, 1) = −0.036,

D∗P (0, 0, 0, 1, 1, 1) = D∗E(0, 0, 0, 1, 1, 1) ∈ {1, 2, 3},
VP (1, 1, 0, 1, 1, 1) = 1/3, VE(1, 1, 0, 1, 1, 1) = −0.222 .

For T1 = 1, T2 = 1, T3 = 1, the decision and value function evaluated at other states can
be obtained by a symmetry argument. The optimal selection policy is consistent with the
selection policy of choosing the design with the largest posterior (sample) mean.
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Figure 2 shows some of the possible states after allocating two replications. Other states
are equivalent to the states in the figure by a symmetry argument. The allocation decision
and value function for each state can be calculated by backward induction as follows:

V (2, 0, 0, 2, 0, 0; 1) = q(1|2, 2) V (3, 0, 0, 3, 0, 0) + q(0|2, 2) V (2, 0, 0, 3, 0, 0),

VP (2, 0, 0, 2, 0, 0; 1) =
5

6
× 0.670 +

1

6
× 0.372 = 0.620,

VE(2, 0, 0, 2, 0, 0; 1) =
5

6
× (−0.049) +

1

6
× (−0.190) = −0.072,

V (2, 0, 0, 2, 0, 0; 2) = q(1|0, 0) V (2, 1, 0, 2, 1, 0) + q(0|0, 0) V (2, 0, 0, 2, 1, 0),

VP (2, 0, 0, 2, 0, 0; 2) =
1

2
× 0.496 +

1

2
× 0.744 = 0.620,

VE(2, 0, 0, 2, 0, 0; 2) =
1

2
× (−0.097) +

1

2
× (−0.048) = −0.073,

where i in the subscript of the predictive probability mass function of Xi,t can be dropped
due to symmetry, so

a∗P (2, 0, 0, 2, 0, 0) = a∗E(2, 0, 0, 2, 0, 0) ∈ {1, 2, 3},
VP (2, 0, 0, 2, 0, 0) = 0.620, VE(2, 0, 0, 2, 0, 0) = −0.072;

V (1, 0, 0, 2, 0, 0; 1) = q(1|1, 2) V (2, 0, 0, 3, 0, 0) + q(0|1, 2) V (1, 0, 0, 3, 0, 0),

VP (1, 0, 0, 2, 0, 0; 1) =
1

2
× 0.372 +

1

2
× 0.404 = 0.388,

VE(1, 0, 0, 2, 0, 0; 1) =
1

2
× (−0.190) +

1

2
× (−0.248) = −0.219,

V (1, 0, 0, 2, 0, 0; 2) = q(1|0, 0) V (1, 1, 0, 2, 1, 0) + q(0|0, 0) V (1, 0, 0, 2, 1, 0),

VP (1, 0, 0, 2, 0, 0; 2) =
1

2
× 0.595 +

1

2
× 0.418 = 0.506,

VE(1, 0, 0, 2, 0, 0; 2) =
1

2
× (−0.107) +

1

2
× (−0.206) = −0.156,

so
a∗P (1, 0, 0, 2, 0, 0) = a∗E(1, 0, 0, 2, 0, 0) ∈ {2, 3},
VP (1, 0, 0, 2, 0, 0) = 0.506, VE(1, 0, 0, 2, 0, 0) = −0.156;

V (0, 0, 0, 2, 0, 0; 1) = q(1|0, 2) V (1, 0, 0, 3, 0, 0) + q(0|0, 2) V (0, 0, 0, 3, 0, 0),

VP (0, 0, 0, 2, 0, 0; 1) =
1

6
× 0.404 +

5

6
× 0.471 = 0.460,

VE(0, 0, 0, 2, 0, 0; 1) =
1

6
× (−0.248) +

5

6
× (−0.211) = −0.217,
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V (0, 0, 0, 2, 0, 0; 2) = q(1|0, 0) V (0, 1, 0, 2, 1, 0) + q(0|0, 0) V (0, 0, 0, 2, 1, 0),

VP (0, 0, 0, 2, 0, 0; 2) =
1

2
× 0.685 +

1

2
× 0.629 = 0.657,

VE(0, 0, 0, 2, 0, 0; 2) =
1

2
× (−0.081) +

1

2
× (−0.103) = −0.092,

so

a∗P (0, 0, 0, 2, 0, 0) = a∗E(0, 0, 0, 2, 0, 0) ∈ {2, 3},
VP (0, 0, 0, 2, 0, 0) = 0.657, VE(0, 0, 0, 2, 0, 0) = −0.092;

V (1, 1, 0, 1, 1, 0; 1) = q(1|1, 1) V (0, 1, 0, 2, 1, 0) + q(0|1, 1) V (0, 0, 0, 2, 1, 0),

VP (1, 1, 0, 1, 1, 0; 1) =
3

4
× 0.496 +

1

2
× 0.595 = 0.521,

VE(1, 1, 0, 1, 1, 0; 1) =
3

4
× (−0.097) +

1

4
× (−0.107) = −0.099,

V (1, 1, 0, 1, 1, 0; 3) = q(1|0, 0) V (1, 1, 1, 1, 1, 1) + q(0|0, 0) V (1, 1, 0, 1, 1, 1),

VP (1, 1, 0, 1, 1, 0; 3) =
1

2
× 1

3
+

1

2
× 0.485 = 0.409,

VE(1, 1, 0, 1, 1, 0; 3) =
1

2
× (−0.184) +

1

2
× (−0.139) = −0.162,

so
a∗P (1, 1, 0, 1, 1, 0) = a∗E(1, 1, 0, 1, 1, 0) ∈ {1, 2},
VP (1, 1, 0, 1, 1, 0) = 0.521, VE(1, 1, 0, 1, 1, 0) = −0.099;

V (1, 0, 0, 1, 1, 0; 1) = q(1|1, 1) V (2, 0, 0, 2, 1, 0) + q(0|1, 1) V (1, 0, 0, 2, 1, 0),

VP (1, 0, 0, 1, 1, 0; 1) =
3

4
× 0.744 +

1

4
× 0.418 = 0.662,

VE(1, 0, 0, 1, 1, 0; 1) =
3

4
× (−0.048) +

1

2
× (−0.206) = −0.088,

V (1, 0, 0, 1, 1, 0; 2) = q(1|0, 1) V (1, 1, 0, 1, 2, 0) + q(0|0, 1) V (1, 0, 0, 1, 2, 0),

VP (1, 0, 0, 1, 1, 0; 2) =
1

4
× 0.595 +

3

4
× 0.685 = 0.663,

VE(1, 0, 0, 1, 1, 0; 2) =
1

4
× (−0.107) +

3

4
× (−0.081) = −0.088,

V (1, 0, 0, 1, 1, 0; 3) = q(1|0, 0) V (1, 0, 1, 1, 1, 1) + q(0|0, 0) V (1, 0, 0, 1, 1, 1),

VP (1, 0, 0, 1, 1, 0; 3) =
1

2
× 0.485 +

1

2
× 0.840 = 0.663,

VE(1, 0, 0, 1, 1, 0; 1) =
1

2
× (−0.139) +

1

2
× (−0.036) = −0.088,
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Figure 3: State space for t = 1.

so
a∗P (1, 0, 0, 1, 1, 0) = a∗E(1, 0, 0, 1, 1, 0) ∈ {1, 2, 3},
VP (1, 0, 0, 1, 1, 0) = 0.663, VE(1, 0, 0, 1, 1, 0) = −0.088;

V (0, 0, 0, 1, 1, 0; 1) = q(1|0, 1) V (1, 0, 0, 2, 1, 0) + q(0|0, 1) V (0, 0, 0, 2, 1, 0),

VP (0, 0, 0, 1, 1, 0; 1) =
1

4
× 0.418 +

3

4
× 0.629 = 0.576,

VE(0, 0, 0, 1, 1, 0; 1) =
1

4
× (−0.206) +

1

2
× (−0.103) = −0.129,

V (0, 0, 0, 1, 1, 0; 3) = q(1|0, 0) V (0, 0, 1, 1, 1, 1) + q(0|0, 0) V (0, 0, 0, 1, 1, 1),

VP (0, 0, 0, 1, 1, 0; 3) =
1

2
× 0.840 +

1

2
× 1

3
= 0.587,

VE(0, 0, 0, 1, 1, 0; 1) =
1

2
× (−0.139) +

1

2
× (−0.036) = −0.129,

so
a∗P (0, 0, 0, 1, 1, 0) = 3, a∗E(0, 0, 0, 1, 1, 0) ∈ {1, 2, 3},
VP (0, 0, 0, 1, 1, 0) = 0.587, VE(0, 0, 0, 2, 0, 0) = −0.129 .

Figure 3 shows some of the possible states after allocating one replication. Other states
are equivalent to the states in the figure by a symmetry argument. The allocation decision
and value function for each state can be calculated by backward induction as follows:

V (1, 0, 0, 1, 0, 0; 1) = q(1|1, 1) V (2, 0, 0, 2, 0, 0) + q(0|1, 1) V (1, 0, 0, 2, 0, 0),

VP (1, 0, 0, 1, 0, 0; 1) =
3

4
× 0.620 +

1

4
× 0.506 = 0.592,

VE(1, 0, 0, 1, 0, 0; 1) =
3

4
× (−0.072) +

1

4
× (−0.156) = −0.093,

V (1, 0, 0, 1, 0, 0; 1) = q(1|0, 0) V (1, 1, 0, 1, 1, 0) + q(0|0, 0) V (1, 0, 0, 1, 1, 0),

VP (1, 0, 0, 1, 0, 0; 1) =
1

2
× 0.521 +

1

2
× 0.663 = 0.592,

VE(1, 0, 0, 1, 0, 0; 1) =
1

2
× (−0.099) +

1

2
× (−0.088) = −0.093,
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so

a∗P (1, 0, 0, 1, 0, 0) = a∗E(1, 0, 0, 1, 0, 0) ∈ {1, 2, 3},
VP (1, 0, 0, 1, 0, 0) = 0.592, VE(1, 0, 0, 1, 0, 0) = −0.093;

V (0, 0, 0, 1, 0, 0; 1) = q(1|0, 1) V (1, 0, 0, 2, 0, 0) + q(0|0, 1) V (0, 0, 0, 2, 0, 0),

VP (0, 0, 0, 1, 0, 0; 1) =
1

4
× 0.506 +

3

4
× 0.657 = 0.619,

VE(0, 0, 0, 1, 0, 0; 1) =
1

4
× (−0.156) +

3

4
× (−0.092) = −0.108,

V (0, 0, 0, 1, 0, 0; 2) = q(1|0, 0) V (0, 1, 0, 1, 1, 0) + q(0|0, 0) V (0, 0, 0, 1, 1, 0),

VP (0, 0, 0, 1, 0, 0; 2) =
1

2
× 0.663 +

1

2
× 0.587 = 0.625,

VE(0, 0, 0, 1, 0, 0; 2) =
1

2
× (−0.088) +

1

2
× (−0.129) = −0.108,

so
a∗P (0, 0, 0, 1, 0, 0) ∈ {2, 3}, a∗E(0, 0, 0, 1, 0, 0) ∈ {1, 2, 3},
VP (0, 0, 0, 1, 0, 0) = 0.625, VE(0, 0, 0, 1, 0, 0) = −0.108 .

Therefore, the expected rewards for allocating three replications following the optimal
allocation policy are

VP (0, 0, 0, 0, 0, 0) = 0.609, VE(0, 0, 0, 0, 0, 0) = −0.101,

contrasted with the expected rewards for allocating three replications following equal allo-
cation:

ṼP (0, 0, 0, 0, 0, 0) = 0.498, ṼE(0, 0, 0, 0, 0, 0) = −0.145 .

We can see that even for allocating only three replications, the difference between the opti-
mal A&S policy and equal allocation is significant.

Numerical Results in the Presence of Correlation

In this example, we test the performance of AOAP, OCBA, KG, and EA in the setting as
Example 1 in the main body of the paper except that we assume the sampling distribution
between different alternatives have correlations 0.5. In Figure 4, we can see the performance
comparison between different sampling procedure is similar to that in Example 1 of the main
body of the paper.

Fitting Weights of Two-Factor Linear VFA in Example 2
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Figure 4: The prior distribution is the normal conjugate prior, with parameters µ
(0)
i = 0,

and σ
(0)
i = 1, i = 1, . . . , 10. The true variances and correlations are σ2

i = 1, ρj,j′ = 0.5,
i = 1, . . . , 10, j, j′ = 1, . . . , 10, j 6= j′. The number of initial replications is n0 = 10 for each
alternative. The IPCSs are estimated by 105 independent macro replications.

Figure 5 shows the trajectory of SA for fitting the weights of a two-factor Linear VFA in
Example 2 of the main body of the paper.

Numerical Results for An AOAP with A Nonlinear VFA

Figure 6 shows the trajectory of G-MCL for a nonlinear VFA with activation function
K(z) = 1− exp(−z) in the same setting as the first scenario in Example 2. The initial point

is chosen as (w
(0)
1 , w

(0)
2 ) = (1.8, 1), and the rest initialization of the algorithm is set the same

as that in Example 2. The final fitting results are w∗1 ≈ 1.77 and w∗2 ≈ 0.48.
In Figure 7, we can see the performances of the AOAPs using the linear VFA (AOAP-L)

and the nonlinear VFA (AOAP-NL) have comparable performances, and the former has a
slight edge over the latter. Similar observations can be seen in Figure 8 that shows the
numerical performances of AOAP-L and AOAP-NL in the second scenario of Example 2.
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Figure 5: Fitting parameters of a two-factors linear VFA by G-MCL.
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Figure 6: Fitting parameters of a two-factor nonlinear VFA by G-MCL.
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Figure 7: The prior distribution is the normal conjugate prior, with parameters µ
(0)
i = 0,

i = 1, . . . , 10, σ
(0)
1 = 0.02, and σ

(0)
i = 0.01, i = 2, . . . , 10. The true variances are σi = 1,

i = 1, . . . , 10. The number of initial replications is n0 = 10 for each alternative. IPCSs are
estimated by 105 independent macro replications.
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Figure 8: The prior distribution is the normal conjugate prior, with parameters µ
(0)
i = 0,

i = 1, . . . , 10, σ
(0)
1 = 0.08, and σ

(0)
i = 0.04, i = 2, . . . , 10. The true variances are σi = 1,

i = 1, . . . , 10. The number of initial replications is n0 = 10 for each alternative. IPCSs are
estimated by 105 independent macro replications.
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