
Anywhere, Anytime Code Inspections:Using the Web to Remove Inspection Bottlenecksin Large-Scale Software DevelopmentJ. M. Perpich D. E. Perry A. A. Porter�Line Access SW Development Software Production Research Computer Science DeptLucent Technologies Inc Bell Laboratories University of MarylandNaperville, IL 60566 Murray Hill NJ 07974 College Park, MD 20742perpich@lucent.com dep@bell-labs.com aporter@cs.umd.eduL. G. Votta M. W. WadeSoftware Production Research Quality Management GroupBell Laboratories Lucent Technologies IncNaperville, IL 60566 Naperville, IL 60566votta@bell-labs.com michaelwwade@lucent.comMarch 6, 19971 ABSTRACTThe dissemination of critical information and the synchronization of coordinated activities are critical problemsin geographically separated, large-scale, software development. While these problems are not insurmountable,their solutions have varying trade-o�s in terms of time, cost and e�ectiveness. Our previous studies have shownthat the inspection interval is typically lengthened because of schedule con
icts among inspectors which delaythe (usually) required inspection collection meeting.We present and justify a solution using an intranet web that is both timely in its dissemination of informationand e�ective in its coordination of distributed inspectors. First, exploiting a naturally occurring experiment(reported here), we conclude that the asynchronous collection of inspection results is at least as e�ective asthe synchronous collection of those results. Second, exploiting the information dissemination qualities and theon-demand nature of information retrieval of the web, and the platform independence of browsers, we builtan inexpensive tool that integrates seamlessly into the current development process. By seamless we mean anidentical paper
ow that results in an almost identical inspection process.The acceptance of the inspection tool has been excellent. The cost savings just from the reduction in paperwork and the time savings from the reduction in distribution interval of the inspection package (sometimesinvolving international mailings) have been substantial. These savings together with the seamless integrationinto the existing environment are the major factors for this acceptance. From our viewpoint as experimentalists,the acceptance came too readily. Therefore we lost our opportunity to explore this tool using a series of controlledexperiments to isolate the underlying factors or its e�ectiveness. Nevertheless, by using historical data we canshow that the new process is less expensive in terms of cost and at least as e�ective in terms of quality (defectdetection e�ectiveness).�This work is supported in part by a National Science Foundation Faculty Early Career Development Award, CCR-9501354.1

1.1 KeywordsCode inspections: web-based, meetingless, asynchronous; Natural occurring inspection experiment; Automatedsupport for inspections.2 INTRODUCTION AND BACKGROUNDAn increasingly popular trend in large-scale software development is the use of development teams that aregeographically separated. Instances of this trend range from groups that are contained in multiple buildingsto groups that are located in multiple continents. The former tend to be separated only geographically; thelatter tend to be separated temporally as well. Where geographical separation tends to encourage asynchronousactivities because of cost factors, temporal separation often prohibits synchronous activities because of non-overlapping work hours.It is in this context that the dissemination of critical information and the synchronization of coordinatedactivities are critical problems. While these problems are not insurmountable, their solutions have varying trade-o�s in terms of time, cost and e�ectiveness. These solutions range from the simple form of using speaker-phonesto multimedia supported and technologically intensive computer-supported cooperative work | that is, fromrelatively inexpensive (but primitive) solutions to expensive and sophisticated (but as yet experimental) solutions.Note, however, that temporal separation tends to make these synchronized solutions usable only for short periodsduring the workday at best and completely impractical at worst. For example, at Lucent technologies, the workhours of developers in Chicago overlap with their partners in Hilversum, Netherlands. However, work hours inDenver are disjoint from those in Sydney, Australia.Because of these two forms of separation there are often bottlenecks introduced into the project schedules. Forexample, our previous studies [2] have shown that inspection interval is typically lengthened because of schedulecon
icts among inspectors which delay the (usually) required inspection collection meeting. The problems ofgeographical and temporal separation exacerbate the scheduling problems and result in even greater bottlenecks.A typical approach to process improvement is to introduce a process change (often incorporating a new toolas part of the change), and then to evaluate the e�ect of that change. While it is certainly necessary to assessthe impact of any process change, these improvements are most often done without understanding thoroughlythe existing process, where the important problems are, and what the tradeo�s are among the various alternativesolutions. Perry, Staudenmeyer and Votta [7] point out the importance of understanding the existing processbefore making improvements and discuss a set of related studies aimed at gaining that understanding. Bradac,Perry and Votta [5] report a study to �nd out how developers spend their time | that is, what they actually doas opposed to what they are thought to do. Only by understanding the current process can one �nd out wherethe problems are and which of those are important.Critical to making well-founded improvements is understanding the range of alternative changes and assessingtheir various strengths and weaknesses. Empirical studies are fundamental to determining the characteristics ofthese changes. For example, Ballman and Votta [11] report that scheduling bottlenecks caused by inspectionmeetings lengthen the development interval and that meetingless inspections avoid this problem without loss ofthe important characteristics associated with inspection meetings. To deepen our understanding of inspections,Porter, Votta and Basili [9] empirically (and replicatably) compare and evaluate detection methods for soft-ware requirements' inspections. Siy's thesis [10] has the seminal result of showing that the structural changescommonly-proposed to inspection processes do not alter the e�ectiveness of those processes.We present and justify a solution using an intranet web that is both timely in its dissemination of informationand e�ective in its coordination of distributed inspectors. First, exploiting a naturally occurring experiment(reported here), we conclude that the asynchronous collection of inspection results is at least as e�ective asthe synchronous collection of those results. Second, exploiting the information dissemination qualities and theon-demand nature of information retrieval of the web, and the platform independence of browsers, we builtan inexpensive tool that integrates seamlessly into the current development process. By seamless we meanan identical paper
ow that results in an almost identical inspection process. Additionally the new process isconsistent with ISO certi�cation.We provide the context for inspections in general, discuss the inspection process as it was before and after theintroduction of the web-based support tool, and describe the technical details of the inspection tool. We thenintroduce and discuss the empirical basis and justi�cation for the improved process and consider the various costelements in the new inspection process. Finally, we report the overall results of using the tool in the last section.2

Initial Preparation Initial Preparation

Manual Process

.

Collection &
Resolution

Repair

Resolution
& Repair

TIME

Inspector
Preparation

Inspector
Preparation

& Collection
Preparation
Inspector

& Collection
Preparation
Inspector

hyperCode Process

Figure 1: Comparison of Inspection Processes.3 THE INSPECTION PROCESSESThe inspection process is divided into three basic phases: preparation, collection and repair. The preparationphases includes such things as initiating the inspection process, disseminating the inspection package, and theinspectors preparing (that is, inspecting the artifact) for the collection phase. The collection phase includes thecollection, assessment and resolution of defects. The agreed upon defects are then �xed in the repair phase.3.1 The Manual Inspection ProcessIn the initial preparation phase (see Figure 1) the author selects a moderator and inspectors, creates the appro-priate versions of the code to be inspected, determines with project management the inspection schedule, andprepares the scenarios to be used during the inspection meeting. The inspection package is then generated anddistributed.The inspectors prepare for the collection meeting by walking through the code following the scenarios providedby the author.At the collection meeting the moderator coordinates the defect collection process and controls the
ow ofthe meeting to guarantee both thoroughness and completeness. The recorder compiles a written record of thedefects and issues. The inspection team completes the process by achieving consensus on resolving the defectsand issues.During the repair phase the author resolves the defects and issues raised in the collection meeting and doesthe basic bookwork to complete the inspection process which is veri�ed by the moderator.3.2 The hyperCode Inspection ProcessThe initial preparation phase is essentially identical, with a few changes in details: the inspection package whendelivered is available on-line rather than as paper with e-mail noti�cation of availability.The primary di�erence is in the inspector preparation, collection and repair phases. Here the inspectorpreparation and collection are done concurrently, with hyperCode providing the automatic collection of the3

annotations, and the resolution of the annotations is done by the moderator and author as part of the repairphase.4 THE hyperCode SYSTEMWe discuss two basic views of hyperCode: the process view and the implementation view. In the �rst, we discussthe observable characteristics of the tool and how they a�ect the authors, moderators and inspectors. In thesecond, we discuss various details of how we make things happen, either directly or indirectly.4.1 Process ViewhyperCode is a web-based code inspection system. During a designated inspection interval, inspectors use thea web browser at their desktop computers to view and annotate the code under inspection (see Figure 2 foran example of the user interface). All annotations are viewable by all participants. This inspection processdoes not require the simultaneous participation of the inspectors, nor do inspectors need to be geographicallyco-located. All that is required for participation is access to the intranet via a web browser. At the end of theinspection interval, the author and moderator resolve inspector annotations and the author makes code changesas appropriate. All aspects of the code inspection are performed via web pages. E-mail noti�cation replacespaper meeting notices, status reports, etc.hyperCode makes use of an already existing tool that generates code inspection packages (see Figure 3). Theessential part of the code inspection package is a di�-marked code listing that highlights new and modi�ed linesof source code. Traditionally, this code inspection package is printed on paper and distributed to the inspectors.A hyperCode web-based inspection package is generated by running the output of the already existing inspectionpackage generation tool through a �lter that generates an HTML version of the package (line numbers becomehyperlinks that provide the ability to annotate, page numbers in the table of contents become hyperlinks to thecorresponding pages, etc.).The hyperCode inspection package has the same layout as the paper version - experienced developers aretherefore immediately familiar with hyperCode inspection packages. The ability to create and view inspectionpackages, create and manage annotations, send e-mail noti�cations, etc. are provided by a set of CGI scriptsmaintained at the webserver. No special purpose software is needed by users of hyperCode - the only software re-quired of users is the Netscape Navigator web browser (since hyperCodemakes use of frames, Netscape Navigatorversion 2.0 or later is required).An author creates a hyperCode inspection package by bringing up the package creation web form and enteringinformation about the package, including the usernames of those who are to be inspectors. The author alsodesignates one of the inspectors to be the moderator of the inspection. Standard WWW username/passwordauthentication is used to identify users and control access. The author then submits the form, which causes thewebserver to invoke the standard inspection generation tool and feed the results to the HTML �lter, the outputof which is the hyperCode inspection package which is deposited in a node managed by the webserver.A hyperCode inspection package goes through a lifetime consisting of 4 states: pending, in progress, resolution,and done. Packages can be viewed in any state, but annotations can only be made by the inspectors when thepackage is in the in-progress state. A package is initially created by the author in the pending state. The authorthen moves the package to the in-progress state, which causes e-mail noti�cation to be sent to the inspectors andother interested par- ties (project management, quality team, etc.). The designated inspectors may now inspectthe code and make annotations.At the end of the designated inspection interval, the author moves the package to the resolution state. Thisstate transition again generates e-mail noti�cation to the inspectors and other interested parties. The authorthen determines the disposition of each annotation and records (via hyperCode web page) whether any codechanges will be required. After the disposition of all annotations has been determined, the author then informsthe moderator via e-mail that the package is ready for moderator sign-o�. The moderator then veri�es thedisposition of the annotations.The moderator then moves the package to the done state. This state transition generates a �nal e-mailnoti�cation to inspectors and other interested parties. 4

Figure 2: Example of the User's View of hyperCode.5

Traditional Inspection
Process

Web Browser Web Browser

WebServer

inspector

HTML
filter

HTML inspection
package

annotations

have a meeting

Distribute paper,

printing tool

inspection package

sinspect

MR list

Web-baesd Inspection

Figure 3: Generating the Inspection Packages.4.2 Implementation ViewSource code line numbers are hyperlinked to a form that allows inspectors to enter annotations. That is, when aninspector clicks on a source code line number, a web form containing a text input area is presented. The inspectorenters the annotation and submits the form, which causes the webserver to make a record of the annotation. Therecord contains the username of the inspector, the line number and source code �le name, along with the text ofthe annotation.For each inspection package, hyperCode provides a page that lists all annotations that have been made todate by the package inspectors. This contains hyperlinks to the annotation text and to the relevant source codepage, and is ordered by source �le and line number. The annotation list page is generated via a CGI script, sothe page is up to date each time it is reloaded by a web browser.If a source code line has been annotated by an inspector, a graphical element appears in the left hand marginof the source code display page as a visual cue to inspectors or other viewers of the package. The graphicalelement is hyperlinked to the text of the corresponding annotations.In addition to source �le-speci�c annotations, inspectors may also make general annotations that do not referto any particular line of source code in the package. These type of annotations may be used to record generalconcerns or issues that are global to the source code under inspection. At the top of each source code displaypage is a hyperlink to a web form that enables these types of annotations to be made. General annotations alsoappear on the annotation list page.5 EMPIRICAL ASSESSMENTGiven the geographical and temporal separation of many of our projects, it is immediately obvious that electronicdistribution saves both delivery time and distribution costs, especially when several continents are involved.If on-line inspections are better than manual inspections, then it must be possible to eliminate meetingswithout decreasing e�ectiveness. Previous work [9, 8, 10] suggests that this is indeed the case, but until now therehas been no direct evidence from an industrial environment.One of the advantages of conducting software engineering research in the context of a number of very large6

Desk Meeting Both Signi�canceNumber of Inspections 202 441 643 NAAverage Faults/Inspection 10.1 8.8 9.2 .20(Faults)Average Code Size/Inspection 427 327 358 .02(NCSL)Average Fault Density/Inspection .030 .029 .030 .92(Faults/NCSL)Average Repair Interval 7.1 8.0 7.7 .10(Days)Table 1: Comparison of Desk and Meeting Inspection Detection E�ectiveness for New Code.Desk Meeting Both Signi�canceNumber of Inspections 2152 197 2152 NAAverage Faults/Inspection .163 .432 .185 < .01(Faults)Average Code Size/Inspection 26.0 59.4 28.8 < .01(NCSL)Average Fault Density/Inspection .0031 .0037 .0031 .03(Faults/NCSL)Average Repair Interval 1.2 3.3 1.3 < .01(Days)Table 2: Comparison of Desk and Meeting Inspection Detection E�ectiveness for Repaired Code.software developments at Lucent Technologies is the possibility of gathering important data and insights viaretrospective studies and naturally running experiments. Thus we are fortunate to have data available fromone of these existing experiments that enables us to compare the e�ectiveness of synchronous vs. asynchronousinspections (see [12] for a similar example). The advantage of this approach is that the empirical infrastructureis already in place { that is, the software development organization was already measuring the e�ects of twodi�erent inspection processes (desk-based collection versus meeting-based collection) and recording critical datafor the two processes. Hence, there was no intrusion on the part of the experimenters and our role was that ofinterpretation.We compare the results from these two classes of inspections: new code (Table 1 1) and repaired code (Table2). The signi�cance is calculated using the Wilcoxon-Mann and Whitney Rank Order Test [3] , a two-sided testassessing whether the fault densities observed for each inspection when taken from a desk or meeting are drawnfrom the same distribution. The smaller the value, the more signi�cant. For this article, we consider valuesbetween 0.1 and 0.05 to indicate a mild signi�cance and values less than 0.05 indicate signi�cance.For example, in Table 1 the row labelled \Average Faults/Inspection" indicates that desk-based inspections(10.1 faults/inspection) and meeting-based inspections (8.8 faults/inspection) are not signi�cantly di�erent sincethe \signi�cance" is 0.2. Conversely, the di�erence in the \Average Code Size/ Inspection" between desk- andmeeting-based inspections is signi�cant because 0.02 is less than 0.05. Finally, the\Average Repair Interval" ismildly signi�cant (0.1).To determine whether the asynchronous desk inspections are as e�ective as the meeting collections, we lookat inspection statistics taken from almost 3000 inspections conducted in this environment. Table 1 and Table 2show these statistics for new and modi�ed code respectively.The Tables show that there is no di�erence in the average fault density1 measures of defects of new codeinspections found by desk inspections or meeting-based inspections. There is a signi�cant di�erence for modi�edcode, but the di�erence is e�ectively 0 (.0031 vs. .0037). Since this is and order of magnitude smaller thanthe densities for new code we conclude that meetingless inspections are no less e�ective than inspection withmeetings.1Porter et al. [2] describes several approaches for measuring and estimating defect detection ratio. We use the observed defectdensity estimate they recommended. 7

Moreover, there is very little di�erence in the time needed to repair new code, though the slightly less timetake might be due to overlapping repair with collection.6 RELATED WORKWhile there has been much work on inspections structures, inspection techniques and automated inspectionsupport, we believe we are the �rst to report on the use of an intranet-based tool to support asynchronous (thatis, meetingless) code inspections. The primary e�ort in prior automation is in the application of CSCW supportfor inspection collection meetings | that is, in the support for synchronous meetings (see for example [4, 1]). Butas we have shown above, asynchronous code inspections are more cost e�ective and at least as quality e�ectiveas synchronous inspections. Moreover, the cost of asynchronous automated support is signi�cantly less than thatof synchronous.The empirical data we report here is the �rst such data showing speci�cally that asynchronous code defectcollection is as e�ective as the synchronous code defect collection.What has not been taken advantage of is the possibility of further concurrency in the inspection process| namely, that the resolution and repair phase can proceed concurrently with the inspector preparation andcollection phase (probably because work patterns are hard to change). While there are undoubtedly cases wheredefects interact and the expense of coordinated changes is less than separate changes, in most cases the changesare independent and hence concurrent repair would be cost e�ective2.7 RESULTSThe acceptance of the inspection tool has been excellent. We attribute this to four basic facts. First, the costsavings just from the reduction in paper work and the time savings from the reduction in distribution intervalof the inspection package (sometimes involving international mailings) have been substantial. Second, the newintra-net tool-based process integrates seamlessly into the existing environment and work
ow. This point isboth a subtle and a critical one. The disruption of existing work
ow almost always causes both resistance andunexpected side-e�ects. Third, the new process opens up new possibilities for concurrency and inherent speedupsof the elapse time interval. Fourth, the ubiquity of the web with its distribution and random accessibility as wellas its browser platform independence makes it a natural platform for such an approach as ours.From our viewpoint as experimentalists, the acceptance has come too readily and easily: we have lost ouropportunity to control the important empirical variables and adequately assess the impact of the tool experi-mentally (see [6] for a description of our desired experimental structure). Because of its immediate acceptanceat the grass roots level, the prototype has become a de facto product.What, then, do we do about this situation? How do we evaluate the e�ects of a new process when we cannotdo the controlled experiments we had originally wanted to do? While not without its drawbacks, the use ofhistorical data (which we do have for a large number of products and their numerous releases) can show thatthe new process is at least as good as the existing one if there is no drop in cost, interval and quality measures.The primary drawback of course is that we do not have control over the experimental variables which limits thevalidity of our results.References[1] R. M. Baecker. Readings in Groupware and Computer-Supported Cooperative Work. Morgan Kaufmann,San Mateo, CA, 1993.[2] K. Ballman and L. G. Votta. Organizational congestion in large scale software development. In ThirdInternational Conference on Software Process, pages 123{134, October 1994.[3] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. John Wiley & Sons, New York,1978.[4] R. E. Kraut and L. A. Streeter. Coordination in software development. Communications of the ACM,38:3:69{81, March 1995.2In software developments where the fault density is higher before inspections, this may not be a good assumption.8

[5] P. McCarthy, A. Porter, H. Siy, and L. G. Votta. An experiment to assess cost-bene�ts of inspection meetingsand their alternatives. In Proceedings of the International Metrics Symposium, Berlin, March 1996.[6] D. E. Perry, A. A. Porter, L. G. Votta, and M. M. Wade. Evaluating work
ow and process automation inwide-area software development. In Software Process Technology, Fifth European Workshop { EWSPT'96.Springer Verlag, October 1996.[7] D. E. Perry, N. Staudenmayer, and L. G. Votta. People, organizations, and process improvement. IEEESoftware, pages 36{45, July 1994.[8] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. Understanding and improving time usage in softwaredevelopment. In A. Wolf and A. Fuggetta, editors, Software Process, volume 5 of Trends in Software:Software Process. John Wiley & Sons., 1995.[9] A. Porter, L. G. Votta, and V. Basili. Comparing detection methods for software requirement inspections:A replicated experiment. IEEE Transactions on Software Engineering, 21(6):563{575, June 1995.[10] H. P. Siy. Identifying the Mechanisms Driving Code Inspection Costs and Bene�ts. PhD thesis, Universityof Maryland, College Park, MD, June 1996.[11] L. G. Votta. Does every inspection need a meeting? In ACM SIGSOFT Software Engineering Notes,volume 18, pages 107{114, December 1993.[12] L. G. Votta and M. L. Zajac. Design process improvement case study using process waiver data. InProceedings of the Fifth European Conference in Software Engineering, volume 989 of Lecture Notes inComputer Science, pages 44{58. Springer-Verlag, September 1995.

9

