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In this thesis a systematic, functional matrix field theory is developed to de-

scribe both clean and disordered s-wave and d-wave superconductors and the quan-

tum phase transitions associated with them. The thesis can be divided into three

parts.

The first part includes chapters 1 to 3. In chapter one a general physical intro-

duction is given. In chapters two and three the theory is developed and used to com-

pute the equation of state as well as the number-density susceptibility, spin-density

susceptibility, the sound attenuation coefficient, and the electrical conductivity in

both clean and disordered s-wave superconductors.

The second part includes chapter four. In this chapter we use the theory to de-

scribe the disorder-induced metal - superconductor quantum phase transition. The

key physical idea here is that in addition to the superconducting order-parameter

fluctuations, there are also additional soft fermionic fluctuations that are important

at the transition. We develop a local field theory for the coupled fields describing su-

perconducting and soft fermionic fluctuations. Using simple renormalization group



and scaling ideas, we exactly determine the critical behavior at this quantum phase

transition. Our theory justifies previous approaches.

The third part includes chapter five. In this chapter we study the analogous

quantum phase transition in disordered d-wave superconductors. This theory should

be related to high Tc superconductors. Surprisingly, we show that in both the

underdoped and overdoped regions, the coupling of superconducting fluctuations to

the soft disordered fermionic fluctuations is much weaker than that in the s-wave

case. The net result is that the disordered quantum phase transition in this case

is a strong coupling, or described by an infinite disordered fixed point, transition

and cannot be described by the perturbative RG description that works so well in

the s-wave case. The transition appears to be related to the one that occurs in

disordered quantum antiferromagnets.
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Chapter 1

Introduction

1.1 Background

For many reasons there is an intense interest in many-electron systems, espe-

cially at low or zero temperature. Such systems, with or without quenched disorder,

include both high–Tc and conventional superconductors, amorphous alloys, doped

semiconductors, itinerant magnetic systems, heavy fermions systems, and quantum

Hall systems. The description of the many-electron systems is a difficult problem in

modern theoretical physics. The many-particle Schrödinger equation is used to de-

scribe the behavior of such systems. In principle, solving the Schrödinger equations

leads to the many-body wave functions which contain all the possible information,

but this approach is usually unrealistic to implement. Therefore, other techniques

are developed to study these problems.

A phenomenological Fermi-liquid theory was introduced by Landau in 1956

[1]. It argues that even in the presence of interactions the low-energy excitations of

the many-electron systems can be described in terms of free fermionic quasiparticles

with charge e, spin 1
2

and effective mass m∗. In principle Landau theory has been

extended to include the effects of quenched disorder. This theory, though, is diffi-

cult to apply to superconducting systems. The use of the microscopic many-body
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perturbation theory began in the early 1950s [2, 3]. The theory uses ideas from

quantum field theory. Feynman diagram techniques are adopted to calculate phys-

ical quantities in perturbation theory. Some approximations are always used. The

ladder-diagram approximation can be used to describe the system of a dilute Fermi

gas with strong short-range repulsive potentials. The random phase approximation

has been developed to describe the Fermi liquid phase for real electronic systems, and

similar theories have been used to describe magnetic and superconducting phases.

The inclusion of disorder, however, has proven to be extremely awkward because

a large number of diagrams cancel against each other in perturbation theory. The

disorder corrections to Fermi-liquid theory known as “weak-localization effects” [4]

were not obtained until the work in the late 1970s and early 1980s [5].

Recently [6, 7], functional Feynman path integral methods have been applied

to the many-electron problem, which have certain advantages over the traditional

canonical quantization techniques. Coherent state functional integrals provide an

economical and physically intuitive formalism which can not only derive the tradi-

tional perturbation expansions results but also lead to new insight into nonpertur-

bative problems like quantum phase transitions. One interesting aspect is that it

allows for a straightforward application of the renormalization group (RG), imple-

menting an old program of describing the various phases of many-body systems in

terms of stable RG fixed points [8]. Corrections to scaling near the disordered Fermi

liquid fixed point have been related to the weak localization effects [9].

In this thesis we develop a comprehensive field-theoretical method which can

treat both clean and disordered superconducting systems. The theory allows for
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explicit computations of physical properties such as thermodynamic and transport

properties in the superconducting phase, as well as the description of the disorder-

induced quantum phase transitions between metal and superconductor phases. Pe-

viously this field theory, or matrix field theory, has been used to describe clean and

disordered Fermi liquids, disordered ferromagnetic metals, as well as various other

quantum phase transitions [9]. It is the purpose of this thesis to develop the matrix

field theory for both clean and disordered s-wave and d-wave spin-singlet supercon-

ductors. One can then apply this theory to study transport properties and quantum

phase transitions in disordered superconductors.
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1.2 Physical picture of disordered electron system

To study transport properties of electrons in solids, the homogeneous electron

gas model, or the jellium model, is often introduced [10]. The basic assumption is to

treat the atoms or ions of solids as a uniform distributed positive background with

a charge density ensuring the overall charge neutrality of the system. The band

structure is not important for universal phenomena and is usually neglected. The

total energy includes the kinetic energy of electrons, the interactions between elec-

trons including the effective attraction close to the Fermi surface between electrons

in case of superconductivity, and the interaction between electrons and impurities.

For simplicity, we only consider uncorrelated non-magnetic random impurities

in the system. There are two simple limits of disorder: annealed disorder and

quenched disorder [11]. Annealed disorder means the impurities can move randomly

from site to site on time-scales short compared with experimental times. Then the

partition function will be

Z̃A ≡ Tr {pi}P ({pi})Z({pi})

= TrP ({pi})e−βH({pi}), (1.1)

and the free energy is simply given by

F̃A = − 1

β
ln Z̃A. (1.2)

P ({pi}) is the distribution function which represents the probability of a particular

set {pi} of random variables. pi assumes the value 1 if the ith site is occupied by an

impurity ion, or 0 if otherwise. The random variables {pi} are been treated the same
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as other system variables such as spin. The system is therefore not different from

the one without impurities in the view of symmetry. For example, the translational

invariance will not be destroyed.

In this thesis we consider quenched disorder, which is more complicated but

also more physically interesting. It means that impurities are frozen rigidly over

experimental times. The partition function has the form, for a fixed set of {pi},

Z({pi}) ≡ Tr e−βH({pi}), (1.3)

and the free energy will be

F ({pi}) = − 1

β
lnZ({pi}). (1.4)

Correlation functions of the systems are then related to the random variables {pi}

and will be very difficult to obtain due to the lack of translational invariance in this

quenched disorder. However, we imagine that there are m identical systems, except

that each system has a different set of {pi} from any other and all of the systems

consists of the complete sets of {pi}. It is generally believed that the impurity-

averaged free energy of one system will give the physical result [12]. That is,

F ({pi}) → F̃Q ≡
∑

{pi}
P ({pi})F ({pi})

= − 1

β

∑

{pi}
P ({pi}) lnZ({pi}). (1.5)

We notice that we average over not the partition function but instead the logarithm

of the partition function in quenched disorder. Correlation functions are similarly

equivalent to their impurity-averaged counterparts. After the impurity averaging
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the translational invariance is restored and the calculation will be no difference in

principle from pure systems. In the present thesis only quenched disorder will be

considered.

Now we give the explicit form of the Hamiltonian

H =
∑

k

T (xk) +
1

2

∑

k 6=l
v(xk − xl) +

∑

k

u(xk) (1.6)

where T is the kinetic energy, v is the effective interaction between electrons and

u is the impurity-scattering potential from the quenched disorder. The quantity

xk means the coordinates of the kth electron. To compute disorder averages of

observables, we imagine a system where the average is over the positions of the N

impurity scatters in the system of volume V [13],

{(. . .)}dis =
1

V N

∫
dR1 . . . dRN (. . .) , (1.7)

As far as universal properties go, an equivalent problem is one where sites have an

impurity with possibility P ({pi}). In this case the possibility distribution therefore

is

P ({pi}) =
∏

i

(pδpi,1 + (1 − p)δpi,0) (1.8)

with p the overall impurity concentration. For our case the impurity-scattering

potential u is then given by

u(x) = v(x) − {v(x)}dis (1.9a)

where

v(x) =
N∑

j=1

v(x − Rj) (1.9b)
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with, for example,

v(x − Rj) =
4πa

m
δ(x − Rj). (1.9c)

Here a is the s-wave scattering length. We find that

{u(x)}dis = 0 (1.10a)

and

{u(x)u(y)}dis =
1

πNF τe
δ(x − y) , (1.10b)

NF is the density of states at the Fermi level including both spins, and τe is the

elastic scattering time.
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1.3 Some Properties of Superconductors

Kammerlingh Onnes first discovered the phenomenon of superconductivity in

1911. Bardeen, Cooper and Schrieffer proposed the successful microscopic theory

(BCS theory) for s-wave superconductors in 1957. The most familiar property of a

superconductor is the complete disappearance of the resistance to the flow of elec-

tric current. In many respects, the theoretically most important phenomenon is

the Meissner effect, or the perfect diamagnetism in superconductors. The normal

state of s-wave superconductors is the well-known Fermi liquid state. Other im-

portant properties in the superconducting state include the spin susceptibility and

the ultrasonic attenuation. As shown in Fig. 1.1, BCS theory predicts that the

spin susceptibility of the electron decreases as the temperature is lowered, being

zero at T = 0. The behavior of the ultrasonic attenuation is similar to the spin

susceptibility, i.e., it decreases to zero as the temperature is lowered to zero.

For weak nonmagnetic disorder, the critical temperature Tc is independent

of the disorder, and so are all thermodynamic properties of the superconductors.

This result is known as Anderson’s theorem [14]. For strong non-magnetic disorder,

however, numerous experiments [15] have shown that the disorder suppresses su-

perconductivity. At high enough disorder the superconducting critical temperature

goes to zero. From Ref. [16], as shown in Fig. 1.2 and Fig. 1.3, the degradation

process can be described by

Tc = ωD exp

[
− h

Z|Kc| − δkc

]
, (1.11)

where Kc is the bare Cooperon (Cooper pair) interaction amplitude, ωD is the
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Figure 1.1: Temperature dependence of the paramagnetic spin susceptibility in a

BCS superconductor.
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Figure 1.2: Temperature dependence of the nonmagnetic disorder in a BCS super-

conductor with d=3. The experimental data is from Ref. [17].

upper cutoff frequency on the order of Debye frequency, h and Z are renormaliza-

tion constants, and δkc is the (repulsive) Cooperon interaction resulting from the

disorder-induced repulsive electron-electron interaction.

Both theory and experiments therefore imply there is a critical disorder where

the disorder-induced metal - superconductor phase transition happens at zero tem-

perature. This means we need to treat it as a quantum phase transition. Phase

transitions occurring at a nonzero critical temperature can be normally treated

10



Figure 1.3: Temperature dependence of the nonmagnetic disorder in a BCS super-

conductor with d=2. The experimental data is from Ref. [18].
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within classical statistical mechanics. For a general classical Hamiltonian

H(p, q) = Hkin(p) +Hpot(q) , (1.12a)

where p and q are the generalized momenta and positions, and Hkin and Hpot are

the kinetic and potential energy, respectively. The partition function can then be

divided into two parts:

Z =

∫
dp dq e−H/kBT

=

∫
dp e−Hkin/kBT

∫
dq e−Hpot/kBT , (1.12b)

with one part that depends only on Hkin and the other only on Hpot. As a result,

one can study the system’s static (thermodynamic) critical behaviors independently

from its dynamical ones. In quantum mechanics, however, the partition function

has the form of

Z = Tr e−β(Ĥ−µN̂)

= Tr e−β(Ĥkin+Ĥpot−µN̂)

=

∫
D[ψ̄, ψ] eS[ψ̄,ψ] , . (1.13a)

where

S[ψ̄, ψ] =

∫
dx

∫ 1/kBT

0

dτ ψ̄(x, τ)

[
− ∂

∂τ
+ µ

]
ψ(x, τ)

−
∫ 1/kBT

0

dτ H
(
ψ̄(x, τ), ψ(x, τ)

)
. (1.13b)

with τ the imaginary time. Since the Hamiltonian taken at some imaginary time

does not commute with the Hamiltonian taken at another imaginary time, we see
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that the statics and the dynamics in quantum systems are intrinsically coupled and

need to be treated together and simultaneously. We need to describe the disorder-

induced metal - superconductor phase transition at T = 0 with quantum mechanics

since at T = 0 the time dimension is infinite in extent and is therefore similar to

the spatial dimensions. Physically there is a strong intrinsic coupling between the

statics and the dynamics at zero temperature, and this greatly influences the critical

behaviors.

Until quite recently the subject of superconductivity was a low-temperature

phenomenon. But in 1986 Bednorz and Müller discovered the high Tc superconduct-

ing cuprates [19]. It is now believed that high Tc cuprates are d-wave superconduc-

tors [20]. The phase diagram is shown in Fig. 1.4. The carrier doping concentration

δ is defined as δ = 1 − n with n being the carrier number per copper site. The

system is the anti-ferromagnetic Mott insulator at half-filling (δ = 0). With a slight

amount of hole doping (δ > 0), the AF state is destroyed and an abnormal metallic

phase appears. When the amount continues increasing, the superconducting state

appears, with the maximum transition temperature Tc ∼ 100K in the optimally

doped region. Finally the normal metal state will appear in the over-doped region.

In contrast to s-wave superconductors, there are many anomalous behaviors

in the underdoped region of cuprates [21]. These deviations from the properties

of Fermi liquid theory have been one of the central issues in the understanding

of high Tc superconductors. It has been proposed that the abnormal state can

be described by some kind of non-Fermi-liquid ground state. But another way is

to start from the robust Fermi-liquid state and take into account the additional

13



Figure 1.4: The phase diagram of high-Tc superconductors. The horizontal and

vertical axes indicate the doping concentration and the temperature, respectively.

“AF”, “SC”, and “PG” denote anti-ferromagnetic, superconducting, and pseudogap

state, respectively. The onset curve for the spin fluctuation (T=T0) and that for the

pseudogap formation (T=T ∗) show the typical cross-over temperatures [21].
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fluctuations that might cause the non-Fermi-liquid behaviors. Fluctuations include

the anti-ferromagnetic spin fluctuations and the superconducting fluctuations. The

effect of the later ones is believed closely connected to the pseudogap phenomenon.

In any case, it is clear that there are very strong antiferromagnetic spin fluctuations

and the concept of a pseudogap in the normal state is an important ingredient in the

understanding of the underdoped region of the high Tc materials. As in the s-wave

case, the disorder-induced metal - superconductor transition at zero temperature is

also a quantum phase transition.
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1.4 Outline of Thesis

In Chap. 2, the functional matrix field theory is developed for both clean and

disordered spin-singlet superconductors. A Feynman path integral formulation of

the physical model is given in terms of composite variables that are closely related to

the order parameter describing the superconducting phase. The theory is then solved

in the saddle point approximation and an explicit equation of state describing the

superconducting phase is obtained. Expansion about the saddle point in principle

gives the various physical correlation functions.

In Chap. 3, the resulting theory is used to explicitly calculate the physical

correlation functions. In particular, the number and spin density susceptibilities,

the sound attenuation coefficients, and the electrical conductivity for both clean

and disordered s-wave superconductors are obtained. Previously, similar techniques

were used to describe spin-triplet, even-parity superconductors [22]. But explicit

quantitative expressions for the Gaussian propagators were not obtained. Here we

will explicitly determine the correlation functions for the S = 0, spin-singlet case.

The method can be generalized to evaluate the physical correlation functions in

other, more exotic, superconducting states.

In Chap. 4, the field theoretic method is generalized to exactly describe the

disorder-induced quantum metal - superconductor phase transitions. A symmetry

analysis is performed on the model in order to identify and separate massive modes

and massless, or soft ones. By integrating out the massive modes and keep all

other soft modes, besides the order parameter fluctuations of the phase transition,

16



one obtains an effective local field action. It can then be analyzed by conventional

renormalization methods. We obtain the exact critical behavior at the transition.

In Chap. 5, the local field theory is applied to d-wave superconducting quan-

tum phase transitions. Pseudogap phenomena in the normal metal side are con-

sidered. We show that the disorder-induced quantum phase transition from metal

to superconductor in this system is a strong coupling (or infinite disorder fixed

point) transition and cannot be described with the techniques that exactly solved

the transition in the s-wave case.

In Chap. 6, we review the conclusions of the thesis.

In the Appendices, some technical details that are used in the thesis are given.
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Chapter 2

Matrix field theory

In the present chapter we will develop a functional matrix field theory for

both clean and disordered spin-singlet superconductors. Similar techniques have

been applied to describe spin-triplet, even-parity superconductors [22]. But explicit

quantitative expressions for the Gaussian propagators had not been obtained. Here

we will completely determine the correlation functions for the S = 0, spin-singlet

case. The method can be generalized to evaluate other physical systems, like spin-

triplet superconductors. Our results for the spin-singlet case coincide with earlier

ones obtained by conventional methods. Our functional methods, however, have

the advantage that they can be easily generalized to describe quantum phase tran-

sitions. For example, in later chapters we will use these results to describe a metal

- superconductor transition in a dirty metal. The problem will provide new insight

and allow us to see if soft modes, other than order parameter fluctuations of the

phase transition, will influence the critical behavior. These modes are diffusive in

disordered systems or ballistic in clean ones. In a previous treatment the diffusions

were integrated out and a non-local field theory for the superconducting order pa-

rameter was obtained. This non-local field theory was then used to describe the

quantum phase transition. Here we justify that treatment with a local field theory

approach.
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2.1 Grassmannian field theory

Now we use the functional Feynman path integral formalism to describe a

system of interacting, quenched-disordered fermions. The partition function of the

system is [23]

Z = Tr e−β(H−µN) =

∫
D[ψ̄, ψ] eS[ψ̄,ψ] . (2.1)

Here the ψ̄ and ψ are (anticommuting) Grassmann fields. S is the action which

includes three parts:

S = S0 + Sint + Sdis , (2.2a)

S0 describes free electrons with electron mass m and chemical potential µ,

S0 =

∫
dx
∑

σ

ψ̄σ(x)

(
−∂τ +

∇2

2m
+ µ

)
ψσ(x) , (2.2b)

where, with a (d + 1)-vector notation x = (x, τ) and
∫
dx =

∫
V
dx
∫ β

0
dτ . Sint

describes a spin-independent two-electron interaction,

Sint = −1

2

∫
dx1 dx2

∑

σ1,σ2

v(x1 − x2) ψ̄σ1(x1) ψ̄σ2(x2)ψσ2(x2)ψσ1(x1) , (2.2c)

and Sdis describes the random potential u(x) coupling to the electronic number

density,

Sdis = −
∫
dx
∑

σ

u(x) ψ̄σ(x)ψσ(x) . (2.2d)

For the calculation of physical quantities, we need to average over the disorder

distribution. The average is modeled as

{. . .}dis =

∫
D[u] P [u] (. . .) , (2.3a)
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with the Gaussian distribution P [u(x)]

P [u(x)] =
exp (−πNF τe

2

∫
dx(u(x))2)∫

D[u] exp (−πNF τe
2

∫
dx(u(x))2)

. (2.3b)

As we discussed in the Sec. 1.3, the quenched-disorder averaging has to be

done with the free energy or lnZ. To this end we use the replica trick [11]. By the

identity

lnZ = lim
N→0

(ZN − 1)/N , (2.4)

we can average lnZ in terms of ZN . With N identical replicas of the system (with

N an integer), labeled by the index α, the disorder average of ZN becomes

Z̃ ≡ {ZN}dis

=

∫
D[u] P [u]

∫ N∏

α=1

D
[
ψ̄α, ψα

]
exp

[
N∑

α=1

Sα[ψ̄α, ψα]

]

=

∫ N∏

α=1

D
[
ψ̄α, ψα

]
exp[S̃ ] , (2.5)

where the corresponding action S̃ equals to

S̃ =
N∑

α=1

(
S̃ α

0 + S̃ α
int + S̃ α

dis

)
. (2.6)

Then we can obtain the disorder-averaged correlation functions as follows,

{< ψ̄σ1(x1)ψσ2(x2) >Z}dis = lim
N→0

< ψ̄α1
σ1

(x1)ψ
α2
σ2

(x2) > eZ (2.7)

Here we use a two-point correlation function as an example.

In order to calculate correlation functions, we follow the usual procedure by

adding a source to the action,

S → S +

∫
dx1dx2

∑

σ1,σ2

J (2)
σ1,σ2

(x1, x2)ψ̄σ1(x1)ψσ2(x2)

Sα → Sα +

∫
dx1dx2

∑

σ1,σ2

J (2)
σ1,σ2

(x1, x2)ψ̄
α
σ1

(x1)ψ
α
σ2

(x2) . (2.8)
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We can then differentiate with respect to the source field J (2) and have

< ψ̄σ1(x1)ψσ2(x2) >Z=
δ

δJ
(2)
σ1,σ2(x1, x2)

lnZ|J(2)=0 (2.9)

and

{< ψ̄σ1(x1)ψσ2(x2) >Z}dis =
δ

δJ
(2)
σ1,σ2(x1, x2)

(∫
D[u]D[p] lnZ

)
|J(2)=0

=
δ

δJ
(2)
σ1,σ2(x1, x2)

(∫
D[u]D[p] lim

N→0

ZN − 1

N

)
|J(2)=0

=
δ

δJ
(2)
σ1,σ2(x1, x2)

lim
N→0

1

N

(∫
D[u]D[p]ZN − 1

)
|J(2)=0

=
δ

δJ
(2)
σ1,σ2(x1, x2)

lim
N→0

1

N

(
Z̃ − 1

)
|J(2)=0

=
δ

δJ
(2)
σ1,σ2(x1, x2)

lim
N→0

1

N
ln Z̃|J(2)=0

= lim
N→0

1

N

1

NZ̃

∫ N∏

β=1

D
[
ψ̄β, ψβ

]

[
N∑

α=1

ψ̄ασ1
(x1)ψ

α
σ2

(x2)

]
exp [S̃]

= lim
N→0

< ψ̄α1
σ1

(x1)ψ
α2
σ2

(x2) > eZ (2.10)

Note that here we make use of

ln Z̃ ≈ Z̃ − 1 for N → 0 , (2.11)

which comes from the approximation of Z̃ → 1 when N → 0.

It is also useful to go to a Fourier representation with wave vectors k and

fermionic Matsubara frequencies ωn = 2πT (n + 1/2) by the following transforma-

tions: [9]

ψnσ(x) =
√
T

∫ β

0

dτ eiωnτ ψσ(x) ,

ψ̄nσ(x) =
√
T

∫ β

0

dτ e−iωnτ ψ̄σ(x) , (2.12a)
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and

ψnσ(k) =
1√
V

∫
dx e−ik·x ψnσ(x) ,

ψ̄nσ(k) =
1√
V

∫
dx eik·x ψ̄nσ(x) . (2.12b)

We will have the forms, with a (d+ 1)-vector notation, k = (k, ωn),

S̃ α
0 =

∑

k,σ

ψ̄ασ (k)
[
iωn − k2/2m+ µ

]
ψασ (k) , (2.13a)

S̃ α
dis =

1

2πNF τe

m∑

β=1

∑

{ki}

∑

n,m

∑

σ,σ′

δk1+k3,k2+k4

× ψ̄αnσ(k1)ψ
α
nσ(k2) ψ̄

β
mσ′(k3)ψ

β
mσ′(k4) , (2.13b)

and,

S̃ α
int = −T

2

∑

σ1,σ2

∑

{ki}
δk1+k2,k3+k4 v(k2 − k3)

×ψ̄ασ1
(k1) ψ̄

α
σ2

(k2)ψ
α
σ2

(k3)ψ
α
σ1

(k4) . (2.13c)

2.2 Composite variables: Q-matrix

Now we integrate out the Grassmann fields and rewrite the theory in terms of

complex-number fields. The resulting model can then be approximately solved by

using saddle-point techniques. Physically this step is a mapping from Grassmann

variable to physical number density, spin density and Cooperon density variables.

In particular, the Cooper density degrees of freedom are directly related to the

superconducting order parameters. All of these variables are related to the slow soft

modes in the system.
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For the reasons that will become clear later, it would be convenient to first

define a bispinor [24]

ηαn(x) =
1√
2




ψ̄αn(x)

s2 ψ
α
n(x)


 =

1√
2




ψ̄αn↑(x)

ψ̄αn↓(x)

ψαn↓(x)

−ψαn↑(x)




, (2.14a)

and an adjoint bispinor [25]

(η+)αn(x) = icηαn(x) =
i√
2




−ψαn↑(x)

−ψαn↓(x)

ψ̄αn↓(x)

−ψ̄αn↑(x)




, (2.14b)

with c the charge-conjugation matrix

c =




0 s2

s2 0


 = iτ1 ⊗ s2 . (2.14c)

Here we have defined a basis in spin-quaternion space as τr ⊗ si (r, i = 0, 1, 2, 3),

with τ0 = s0 the 2 × 2 identity matrix, and τj = −sj = −iσj (j = 1, 2, 3), with σj

the Pauli matrices.

In terms of the bispinors, the terms on the action S̃ can be rewritten as follows,

S̃0 = −i
∑

α,k

(
ηα(k), [iωn − k2/2m+ µ] ηα(k)

)
, (2.15a)

S̃dis =
−1

πNF τe

∑

α,β

∑

n,m

∑

k,p

∑

q

′ (
ηαn(k), ηαn(p)

)

×
(
ηβm(p + q), ηβm(k + q)

)
, (2.15b)
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and

S̃int = S̃
(s)
int + S̃

(t)
int + S̃

(c)
int , (2.15c)

S̃
(s)
int =

TΓ(s)

2

∑

α

∑

k,p

∑

q

′ ∑

r=0,3

(−1)r

×
(
ηα(k), (τr ⊗ s0)η

α(k + q)
)

×
(
ηα(p+ q), (τr ⊗ s0)η

α(p)
)

, (2.15d)

S̃
(t)
int =

TΓ(t)

2

∑

α

∑

k,p

∑

q

′ ∑

r=0,3

(−1)r
3∑

i=1

×
(
ηα(k), (τr ⊗ si)η

α(k + q)
)

×
(
(ηα(p+ q), (τr ⊗ si)η

α(p)
)

, (2.15e)

S̃
(c)
int =

TΓ(c)

2

∑

α

∑

k,p

∑

q

′ ∑

n1,n2,m

∑

r=1,2

×
(
ηαn1

(−k), (τr ⊗ s0) η
α
−n1+m(−k + q)

)

×
(
ηα−n2

(−p), (τr ⊗ s0) η
α
n2+m(−p − q)

)
.

(2.15f)

τe is the single-particle relaxation time. There is another irrelevant term of the

disordered action S̃dis which has been neglected for the purpose of the manuscript

[26]. The decomposition of the interacting action S̃int into three parts comes from

the idea that, in long-wavelength low-frequency processes, the possible scattering

processes can be divided into three classes: (1) small-angle scattering, (2) large-angle
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S
(1)

int

k

p

S
int

(2)

k

p

k
-p

p
-k

S
int

(3)

Figure 2.1: Typical small-angle (1), large-angle (2), and 2kF -scattering processes

(3) near the Fermi surface in d = 2.

scattering, and (3) 2kF -scattering. These classes are also referred to as the particle-

hole channel for classes (1) and (2), and the particle-particle or Cooper channel

for class (3), respectively. The corresponding scattering processes are schematically

depicted in Fig. 2.1.

In the above equations the prime on the q-summation indicates that only

momenta up to some momentum cutoff, λc, are integrated over. This restriction is

needed to avoid double counting, since each of the three expressions, Eqs. (2.15d) -

(2.15f), represent all of S̃ α
int if all wave vectors are summed over. λc generally has
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no effect on the long-wavelength low-frequency physics we consider here.

Now we introduce a matrix of bilinear products of the fermion fields,

B12(x) = η+
1 (x) ⊗ η2(x)

=
i

2




−ψ1↑ψ̄2↑ −ψ1↑ψ̄2↓ −ψ1↑ψ2↓ ψ1↑ψ2↑

−ψ1↓ψ̄2↑ −ψ1↓ψ̄2↓ −ψ1↓ψ2↓ ψ1↓ψ2↑

ψ̄1↓ψ̄2↑ ψ̄1↓ψ̄2↓ ψ̄1↓ψ2↓ −ψ̄1↓ψ2↑

−ψ̄1↑ψ̄2↑ −ψ̄1↑ψ̄2↓ −ψ̄1↑ψ2↓ ψ̄1↑ψ2↑




∼= Q12 , (2.16)

where all fields are understood to be taken at position x, and 1 ≡ (n1, α1) with n1

denoting a Matsubara frequency and α a replica index, etc. The matrix elements of

B commute with one another, and are therefore isomorphic to classical or complex

number-valued fields that we denote by Q. We use the notation a ∼= b for “a

is isomorphic to b”. This isomorphism maps the adjoint operation on products of

fermionic fields, which is denoted above by an overbar, onto the complex conjugation

of the classical fields. We use the isomorphism to constrain B to the classical field

Q by means of a functional δ function, and exactly rewrite the partition function [9]

Z̃ =

∫
D[ψ̄, ψ] eS̃[ψ̄,ψ]

∫
D[Q] δ[Q−B]

=

∫
D[ψ̄, ψ] eS̃[η]

∫
D[Q]D[Λ̃] eTr [eΛ(Q−B)]

≡
∫
D[Q]D[Λ̃] eA[Q,eΛ] . (2.17)

Here Λ̃ is an auxiliary bosonic matrix field that plays the role of a Lagrange multi-

plier, and integrates out the fermionic fields.
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It is useful to expand the 4 × 4 matrix in Eq. (4.14) in the spin-quaternion

basis,

Q12(x) =
3∑

r,i=0

(τr ⊗ si)
i
rQ12(x) (2.18)

and analogously for Λ̃. In this basis, i = 0 and i = 1, 2, 3 describe the spin singlet

and the spin triplet, respectively. An explicit calculation reveals that r = 0, 3

corresponds to the particle-hole channel (i.e., products ψ̄ψ), while r = 1, 2 describes

the particle-particle channel (i.e., products ψ̄ψ̄ or ψψ). From the structure of Eq.

(4.14) one obtains the following formal symmetry properties of the Q matrices [9],

0
rQ12 = (−)r 0

rQ21 , (r = 0, 3) , (2.19a)

i
rQ12 = (−)r+1 i

rQ21 , (r = 0, 3; i = 1, 2, 3) , (2.19b)

0
rQ12 = 0

rQ21 , (r = 1, 2) , (2.19c)

i
rQ12 = −i

rQ21 , (r = 1, 2; i = 1, 2, 3) , (2.19d)

i
rQ

∗
12 = −i

rQ
α1α2

−n1−1,−n2−1 . (2.19e)

Here the star in Eq. (2.19e) denotes complex conjugation.

Now by using the delta constraint in Eq. (2.17) to rewrite all terms that are

quadratic in the fermionic field in terms of Q, we can achieve an integrand that is

bilinear in ψ and ψ̄. With the help of the following operator identity

∫
D[η]e

R
dx(η(x)|Oη(x)) = (detQ)1/2 = e

R
dxtr (ln (O(x)))/2 , (2.20)

which comes from [23]

∫
dψ exp

[
∑

α,β

ψαmαβψβ

]
= [det (2m)]1/2 (2.21)
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with m being a complex skew-symmetric matrix, the Grassmannian integral can

then be performed exactly, and we obtain for the effective action A

A[Q, Λ̃] = Aint[Q]+Adis[Q]+
1

2
Tr ln

(
G−1

0 − iΛ̃
)
+

∫
dx tr

(
Λ̃(x)Q(x)

)
. (2.22)

Here Tr denotes a trace over all degrees of freedom, including the continuous position

variable, while tr is a trace over all those discrete indices that are not explicitly

shown. And

G−1
0 = −∂τ + ∂2

x/2m+ µ (2.23)

is the inverse free electron Green operator, with ∂τ and ∂x derivatives with respect

to imaginary time and position, respectively. We can see from the structure of the

Tr ln-term in Eq. (4.19) that the physical meaning of the auxiliary field Λ̃ is that of a

self-energy. The electron-electron interaction Aint is conveniently decomposed into

four pieces that describe the interaction in the particle-hole and particle-particle

spin-singlet and spin-triplet channels [9]. For the purposes of the present paper,

we need only the particle-particle spin-singlet channel interaction explicitly to de-

scribe superconductivity. Similar to the BCS model we ignore the normal Coulomb

repulsion in the particle-hole channels, and we also ignore the possibility of triplet

superconductivity. Then

Aint[Q] = A (c)
int

=
TΓ(c)

2

∫
dx
∑

r=1,2

∑

n1,n2,m

∑

α

[
tr
(
(τr ⊗ s0)Q

αα
n1,−n1+m(x)

)]

×
[
tr
(
(τr ⊗ s0)Q

αα
−n2,n2+m(x)

)]
, (2.24)

with Γ(c) the particle-particle spin-singlet channel interaction amplitude, with Γ(c) <
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0 leading to superconductivity. For the disorder part of the effective action one finds

[9]

Adis[Q] =
1

πNF τe

∫
dx tr

(
Q(x)

)2
, (2.25)

with NF the density of states at the Fermi level in saddle-point approximation (see

Ref. [9] and Sec. 2.3 below), and τe the single-particle scattering or relaxation time.

We will focus on the matrix elements 0
0Q and 0

1Q in disordered superconduc-

tivity states. From Eqs. (4.14) and (2.18) we find

0
0Q12(x) ∼= i

8

[
−ψ1↑(x)ψ̄2↑(x) − ψ1↓(x)ψ̄2↓(x) + ψ̄1↓(x)ψ2↓(x) + ψ̄1↑(x)ψ2↑(x)

]
,

(2.26a)

0
1Q12(x) ∼= −1

8

[
−ψ1↑(x)ψ2↓(x) + ψ1↓(x)ψ2↑(x) + ψ̄1↓(x)ψ̄2↑(x) − ψ̄1↑(x)ψ̄2↓(x)

]
.

(2.26b)

Note that 0
2Q12 has a similar structure with 0

1Q12. So it is also correct if we use 0
2Q12

instead of 0
1Q12. Physically, 0

0Q12 is related to the single particle density of states,

while 0
1Q12 is basically the superconducting order parameter.

2.3 The saddle-point method

We now look for a saddle-point solution of the field theory derived in the

previous section. The saddle-point condition is [9, 27]

δA
δQ

∣∣∣∣
Qsp,eΛsp

=
δA
δΛ̃

∣∣∣∣
Qsp,eΛsp

= 0 . (2.27)
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According to Eqs. (2.26), the saddle point values of both Q and Λ̃ in singlet

superconductivity-like phases have the structures

i
rQ12(x)

∣∣∣
sp

= δα1α2 δi0 [δn1,−n2 δr1Qn1 + δn1,n2 δr0 Λn1 ] , (2.28a)

i
rΛ̃12(x)

∣∣∣
sp

= δα1α2 δi0 [δn1,−n2 δr1 (iqn1) + δn1,n2 δr0 (−iλn1)] , (2.28b)

where we assume Λn = −Λ−n, λn = −λ−n which is equivalent to a redefinition of the

chemical potential [27], and set Qn = Q−n, qn = q−n which follows from Eqs. (4.28)

and (2.19c). Substituting this into Eqs. (4.19) - (2.25), and using the saddle-point

condition Eq. (2.27), we obtain the saddle-point equations

Λn =
i

2V

∑

k

Gn(k) , (2.29a)

Qn =
−i
2V

∑

k

Fn(k) , (2.29b)

λn =
−2i

πNFτe
Λn , (2.29c)

qn =
2i

πNFτe
Qn − 4iΓ(c) T

∑

m

Qm . (2.29d)

Here

Gn(k) =
−(iωn − λn) − ξk

−(iωn − λn)2 + ξ2
k + q2

n

, (2.30a)

Fn(k) =
qn

−(iωn − λn)2 + ξ2
k + q2

n

, (2.30b)

are Green functions with ξk = k2/2m− µ.

From Eqs. (4.29), it is easy to find

λn =
1

πNFτe

1

V

∑

k

Gn(k) , (2.31a)

qn =
1

πNFτe

1

V

∑

k

Fn(k) − 2 Γ(c) T
1

V

∑

k

∑

m

Fm(k) . (2.31b)
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We now define a gap function ∆ by [28]

qn = q̄n + ∆ ≡ ηn∆ , (2.32a)

with

q̄n =
1

πNFτe

1

V

∑

k

Fn(k) , (2.32b)

and it can be shown that

ηnωn = iλn + ωn . (2.32c)

We then obtain the gap equation,

∆ = −2 Γ(c) T
1

V

∑

k

∑

n

ηn∆

(ηnωn)2 + ξ2
k + (ηn∆)2

= −2 Γ(c) T
∑

n

N(0)

∫
dξk

∆

ω2
n + ξ2

k + ∆2
(2.33)

with N(0) = NF

2
the density of states per spin at the Fermi surface. A remarkable

aspect of this gap equation is that in this approximation the gap ∆ and the crit-

ical temperature Tc are independent of the (nonmagnetic) disorder, and so are all

thermodynamic properties in superconductivity. This result is known as Anderson’s

theorem [14].

We next obtain the density of states. From Eq. (4.25a) it follows,

N(ǫF + ω) =
4

π
Re
〈

0
0Qnn(x)

〉∣∣∣
iωn→ω+i0

. (2.34)

In the saddle point approximation, we have for the density of states

N(ǫF + ω) =
−2

π

1

V

∑

k

ImGn(k, iωn → ω + i0)

= NF
ω√

ω2 − ∆2
for ω > ∆

= 0 for ω < ∆ . (2.35)
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For later reference we also define a matrix saddle-point Green function

Gsp =
(
G−1

0 − iΛ̃
)−1
∣∣∣∣
sp

, (2.36a)

whose matrix elements are given by

(Gsp)nm(k) = δnm Gn(k) (τ0 ⊗ s0) − δn,−mFn(k) (τ1 ⊗ s0) . (2.36b)

Note that the above results are the standard ones.

2.4 Gaussian approximation

We next set up the calculation of the Gaussian fluctuations about the saddle

point discussed above. In the following section these results will be used to com-

pute the physical correlation functions in the disordered superconducting phase. To

obtain this, we write Q and Λ̃ in Eqs. (4.19) - (2.25) as,

Q = Qsp + δQ , (2.37a)

Λ̃ = Λ̃sp + δΛ̃ , (2.37b)

and then expand to second or Gaussian order in the fluctuations δQ and δΛ̃. De-

noting the constant saddle point contribution to the effective action by Asp, and the

Gaussian action by AG, we have, to the Gaussian order, that

A[Q, Λ̃] = Asp + AG[Q, Λ̃] , (2.38)

with

AG[Q, Λ̃] = Aint[δQ]+Adis[δQ]+
1

4
Tr
(
GspδΛ̃Gsp δΛ̃

)
+

∫
dx tr

(
δΛ̃(x) δQ(x)

)
,

(2.39)
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For the quadratic part we find

1

4
Tr
(
Gsp δΛ̃Gsp δΛ̃

)
=

1

V

∑

k

∑

1,2,3,4

∑

r,s

∑

i,j

i
r(δΛ̃)12(k) ij

rsA12,34(k) js(δΛ̃)34(−k) .

(2.40a)

Here

ij
rsA12,34(k) = δ13 δ24 ϕ

00
12(k)N00

rs δij
i
rI12

+δ13 δ2,−4 ϕ
01
12(k)N01

rs δij
i
rI12

+δ1,−3 δ24 ϕ
10
12(k)N10

rs δij
i
rI12

+δ1,−3 δ2,−4 ϕ
11
12(k)N11

rs δij
i
rI12,

≡ ij
rsA

(0)

12,34(k) irI12 , (2.40b)

with 4 × 4 matrices

N00 =




iτ3 0

0 −iτ3


 , N01 =




−iτ1 0

0 −iτ1


 ,

N10 =




−iτ1 0

0 iτ1


 , N11 =




−iτ3 0

0 −iτ3


 ,

(2.40c)

and

i
rI12 = 1 + δ12

[
−1 +

(
+
+
+
−

)

r

(
+
−
−
−

)

i

]
, (2.40d)

where

(
+
+
+
−

)

r

= δr0 + δr1 + δr2 − δr3, etc. and

ϕ00
nm(k) =

1

V

∑

p

Gn(p)Gm(p + k) , (2.40e)

and ϕ01, ϕ10, and ϕ11 defined similarly with GG in Eq. (2.40e) replaced by (−1)GF ,

(−1)FG, and FF , respectively.
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In a similar way, the term that couples δΛ̃ and δQ can be written

Tr
(
δΛ̃ δQ

)
= 4

∑

1,2,3,4

1

V

∑

k

∑

r,i

i
r(δΛ̃)12(k) irB12(k) ir(δQ)12(−k) , (2.41a)

where

i
rB12(k) = i

rI12

(
+
−
−
+

)

r

. (2.41b)

Q and Λ̃ can now be decoupled by shifting and scaling the Λ̃ field. If we define

a new field Λ̄ by

i
r(δΛ̃)12(k) = 2 ijrs(A

−1)12,34(k)
(
j
s(δΛ̄)34(k) − j

s(δQ)34(k)
)
j
sB34 , (2.42)

with A−1 being the inverse of the matrix A defined in Eq. (2.40b), then Λ̄ and Q

decouple. Integrating out δΛ̄ and the Gaussian action is remained completely in

terms of Q,

AG[Q] = − 4

V

∑

k

∑

1234

∑

rs

∑

ij

i
r(δQ)12(k) ijrs(A

−1)12,34(k) irB12
j
sB34

j
s(δQ)34(−k)

+Aint[δQ] + Adis[δQ] , (2.43)

It is convenient to rewrite this result as

AG[Q] =
−4

V

∑

k

∑

1234

∑

rs

∑

ij

i
r(δQ)12(k) ijrsM12,34(k) j

s(δQ)34(−k) , (2.44a)

where

ij
rsM12,34(k) = ij

rs(A
−1)12,34(k) irB12

j
sB34

−2TΓ(c) δijδrsδ1+2,3+4

(
0
+
+
0

)

r

(
+
0
0
0

)

i

− 1

πNF τe
i
rB12 δijδrsδ13δ24 .

(2.44b)
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Chapter 3

Physical correlation functions

3.1 Ultrasonic attenuation by saddle-point approximation

We now use the results of the preceding sections to calculate transverse ul-

trasonic attenuation in both clean and disordered superconductors. The ultrasonic

attenuation is defined by the power dissipated per unit energy flux, as

α =
P

1
2
ρionυ2cs

(3.1)

where P is the power dissipated by the sound wave per unit volume and time, ρion the

mass density of the material, υ the phonon velocity amplitude, and cs the velocity

of sound. The dissipated power comes from the electron-phonon interaction:

P = − 1

2V

δ〈Hep〉
δt

(3.2)

where the electron-phonon interaction has the form of

Hep =
∑

i,j

∫
drτij(r)∇iuj(r) (3.3)

with the stress tensor of the electronic system τij

τij(r) =
1

4me

∑

σ

(∇−∇′)i(∇−∇′)jψ̄σ(r)ψσ(r
′)|r=r′ . (3.4)

Here uj(r) is the phonon displacement field and υ =
∂uj

∂t
.
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As shown in Ref. [29], the sound attenuation coefficient has the expression,

with the help of linear-response theory, that

α(ω) = lim
k→0

ω

ρionc3s
Imχ(k, iωn → ω + i0) , (3.5)

where the stress-stress spectral function, with Dx ≡ ∂x1∂x2 ,

χ(k, iωn) =
1

m2
e

1

V

∫
dxdx′dydy′ exp (−ik · (x − y))

∑

σ1,σ2

δ(x − x′)δ(y − y′)DxDy

× 1

β

∑

ω1,ω2

〈ψ̄αω1,σ1
(x)ψαω1−ωn,σ1

(x′)ψ̄αω2,σ2
(y)ψαω2+ωn,σ2

(y′)〉 . (3.6)

By introducing a source term of the form

δS̃ α =

∫
dx
∑

ωn

h(ωn,k)e−ik·x
∑

ω,σ

ψ̄αω,σ(x)Dx ψ
α
ω+ωn,σ(x), (3.7)

we can obtain

χ(k = 0, iωn) =
1

m2
eβV

∂2Z̃

∂h(ωn,k)∂h(ω−n,−k)

∣∣∣∣
h=0

(3.8)

with the third term of the right side of the Eq. (4.19) becoming

A3 =
1

2
Tr ln

(
G−1

0 − iΛ̃ +D
)

=
1

2
Tr ln

(
G−1

0 − i(Λ̃sp + δΛ̃) +D
)

=
1

2
Tr ln

(
1 +DGsp − iδΛ̃Gsp

)
+

1

2
Tr ln

(
G−1
sp

)
(3.9)

and D ≡∑ωn
δ(ω1 − ω2 + ωn)h exp (−ik · x)Dx.

In the saddle-point approximation, we neglect the δΛ̃ item and have

A3 =
−1

4
Tr (DGspDGsp) + const. (3.10)

We then obtain the ultrasonic attenuation coefficient, for small frequency,

αs(ω) = αn
2

1 + exp (β∆)
(3.11)
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for both clean and disordered superconductors. Here αn is the attenuation coefficient

of the normal metal [30]. In the clean metal it has

αn,clean =
k4
fω

2

30πqρionc3s
(3.12a)

with the usual conditions ω < qvf < ∆ satisfied. In the disordered case

αn,disordered =
2N(0)k4

fω
2τ

15m2ρionc3s
, (3.12b)

where the approximation of τe∆ ≪ 1 is assumed, which is called the dirty limit [31].

The above result confirms Levy’s prediction which was obtained by Boltzmann’s

transport equation [32]. It should be noted that no Greens function method has

been used to obtain this result before.

The above method can be used to obtain other physical properties, like longitu-

dinal electrical conductivity. In that case, higher-order corrections must be included

due to the gauge invariance problem [33]. Below we show how to correctly obtain

the conductivity by using the Gaussian fluctuations about the saddle point [34].

3.2 Gaussian propagators

We now use the results of the preceding sections to calculate some correlation

functions of physical interest. We find in Appendix A that the number density

susceptibility, χn, and the spin density susceptibility, χs, can be expressed in terms

of the Q-correlation functions,

χ(i)(k, ωn) =
16T

V

∑

1,2

∑

r=0,3

〈
i
r(δQ)1+n,1(k) ir(δQ)2+n,2(−k)

〉
, (3.13)
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with χ(0) = χn and χ(1,2,3) = χs. Here the Gaussian propagators in the Eq. (3.13)

are given in terms of the inverse of the matrix M defined in Eq. (2.44b) by

〈
i
r(δQ)12(k1)

j
s(δQ)34(k2)

〉
G

=
V

8
δk1,−k2

ij
rsM

−1

12,34(k1) , (3.14)

where 〈. . .〉G denotes an average with the Gaussian action AG. We find from Eqs.

(3.13) and (3.14) that M−1 determines the correlation functions within Gaussian

approximation.

In the following section we will be interested in the number density suscep-

tibility χn. Other correlation functions can be obtained similarly by applying the

technique introduced below. From the expression of Q in terms of the fermionic

fields, Eq. (4.14), it is easy to see that the contributions to Eq. (3.13) from r = 0

and r = 3 are identical for ωn 6= 0. We can therefore write

χn(k, ωn) = 4T
∑

1,2

00
33M

−1

1+n,1;2+n,2(k) , (3.15)

To find
∑

1,2
00
33M

−1
1+n,1;2+n,2, we rewrite M as

ij
rsM12,34(k) ≡ ij

rs(A
−1)12,34(k) irB12

j
sB34 − ij

rsD12,34

≡ ij
rs(C

−1)12,34(k) − ij
rsD12,34 . (3.16)

Then we find

M−1 =
(
C−1 −D

)−1
. (3.17)

It is convenient to write the inverse of the matrix M as an integral equation,

M−1 = C + C DM−1 , (3.18)
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with

ij
rsC12,34 = ij

rsA
(0)

12,34

(
+
−
−
+

)

r

j
sB34 . (3.19)

For further simplicity, we set Γ = 2TΓ(c), τ 0 = πNF τe and i
rI12 = 1 for ωn 6= 0.

Expanding Eq. (3.18) we have

00
33M

−1

12,34 = 00
33C12,34 − Γ

∑

56,78

00
32A

(0)

12,56 δ5+6,7+8
00
23M

−1

78,34 +
1

τ 0

∑

js

∑

56

0j
3sA

(0)

12,56
j0
s3M

−1

56,34

= 00
33A

(0)

12,34 − Γ

(
−ϕ01

12

∑
78 δ1−2,7+8

00
23M

−1
78,34

+ϕ10
12

∑
78 δ−1+2,7+8

00
23M

−1
78,34

)

+
1

τ 0




+ϕ00
12

00
33M

−1
1,2;3,4

−ϕ01
12

00
23M

−1
1,−2;3,4

+ϕ10
12

00
23M

−1
−1,2;3,4

+ϕ11
12

00
33M

−1
−1,−2;3,4


 , (3.20)

where we have used the structures of B, Eq. (2.41b) and A(0), Eq. (2.40b). 10
23M

−1

in turn obeys the integral equation

00
23M

−1

12,34 = −00
23A

(0)

12,34 + Γ

(
−ϕ00

12

∑
78 δ1+2,7+8

00
23M

−1
78,34

−ϕ11
12

∑
78 δ−1−2,7+8

00
23M

−1
78,34

)

− 1

τ 0




−ϕ00
12

00
23M

−1
1,2;3,4

−ϕ01
12

00
33M

−1
1,−2;3,4

+ϕ10
12

00
33M

−1
−1,2;3,4

−ϕ11
12

00
23M

−1
−1,−2;3,4


 . (3.21)

Similar results can be obtained for 00
33M

−1
−1,−2;3,4 and 00

23M
−1
−1,−2;3,4. By using these

four matrix elements of M−1, one finds

00
23M

−1

12,34 = X
(2)
12,34 + Y

(2)
12

∑

78

δ1+2,7+8
00
23M

−1

78,34 + Z
(2)
12

∑

78

δ−1−2,7+8
00
23M

−1

78,34, (3.22a)

00
23M

−1

−1,−2;3,4 = X
(2)
−1,−2;3,4 + Y

(2)
−1,−2

∑

78

δ−1−2,7+8
00
23M

−1

78,34

+Z
(2)
−1,−2

∑

78

δ1+2,7+8
00
23M

−1

78,34 (3.22b)

and

00
33M

−1

12,34 = X
(3)
12,34 + Y

(3)
12

∑

78

δ1−2,7+8
00
23M

−1

78,34 + Z
(3)
12

∑

78

δ−1+2,7+8
00
23M

−1

78,34 (3.22c)
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The parameters X
(2)
12,34, Y

(2)
12 , Z

(2)
12 , X

(3)
12,34, Y

(3)
12 and Z

(3)
12 will be specified in Appendix

B.

We are now ready to calculate the
∑

1,2
00
33M

−1
1+n,1;2+n,2. We first need to obtain

∑
1,2

00
23M

−1
1+n,−1;2+n,2 and

∑
1,2

00
23M

−1
−1−n,1;2+n,2 from Eq. (3.22c). Summing both sides

of Eqs. (3.22a) and (3.22b) with
∑

1,2, we can get

∑

1,2

00
23M

−1

1+n,−1;2+n,2 =

(1 −∑1 Y
(2)
−1−n,1)

∑
12X

(2)
1+n,−1;2+n,2 +

∑
1 Z

(2)
1+n,−1

∑
12X

(2)
−1−n,1;2+n,2

(1 −∑1 Y
(2)
1+n,−1)(1 −∑1 Y

(2)
−1−n,1) −

∑
1 Z

(2)
1+n,−1

∑
1 Z

(2)
−1−n,1

, (3.23a)

∑

1,2

00
23M

−1

−1−n,1;2+n,2 =

(1 −∑1 Y
(2)
1+n,−1)

∑
12X

(2)
−1−n,1;2+n,2 +

∑
1 Z

(2)
−1−n,1

∑
12X

(2)
1+n,−1;2+n,2

(1 −
∑

1 Y
(2)
1+n,−1)(1 −

∑
1 Y

(2)
−1−n,1) −

∑
1 Z

(2)
1+n,−1

∑
1 Z

(2)
−1−n,1

. (3.23b)

Then it is easily shown that

∑

1,2

00
33M

−1

1+n,1;2+n,2 =
∑

12

X
(3)
1+n,1;2+n,2 +

∑

1

Y
(3)
1+n,1

∑

12

00
23M

−1

1+n,−1;2+n,2

+
∑

1

Z
(3)
1+n,1

∑

12

00
23M

−1

−1−n,1;2+n,2 (3.24)

We can now obtain the number density susceptibility χn. Note that by substituting

Eqs. (3.23) into Eqs. (3.22) we can also obtain the explicit forms of 00
23M

−1
12,34 and

00
33M

−1
12,34. This technique can then be generalized to obtain all elements of M−1,

which in turn gives the Gaussian propagators completely.

3.3 The clean limit

In this section we discuss the clean limit, or the non-impurity electron gas. Let

us perform the clean limit, τe → ∞. Adis then vanishes. That also means λn → 0,
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Λn → 0 and qn = ∆. It is easy to show that

∑

1,2

00
23M

−1

1+n,−1;2+n,2 =

(1 + Γ
∑

1 ϕ
00
−1−n,1)(

∑
1 ϕ

01
1+n,−1) + Γ

∑
1 ϕ

11
1+n,−1(

∑
1 ϕ

10
−1−n,1)

(1 + Γ
∑

1 ϕ
00
1+n,−1)(1 + Γ

∑
1 ϕ

00
−1−n,1) − Γ

∑
1 ϕ

11
1+n,−1 Γ

∑
1 ϕ

11
−1−n,1

, (3.25a)

∑

1,2

00
23M

−1

−1−n,1;2+n,2 =

(1 + Γ
∑

1 ϕ
00
1+n,−1)(−

∑
1 ϕ

10
−1−n,1) − Γ

∑
1 ϕ

11
−1−n,1(

∑
1 ϕ

01
1+n,−1)

(1 + Γ
∑

1 ϕ
00
1+n,−1)(1 + Γ

∑
1 ϕ

00
−1−n,1) − Γ

∑
1 ϕ

11
1+n,−1 Γ

∑
1 ϕ

11
−1−n,1

(3.25b)

and

∑

1,2

00
33M

−1

1+n,1;2+n,2 =
∑

1

ϕ00
1+n,1 + Γ

∑

1

ϕ01
1+n,1

∑

12

00
23M

−1

1+n,−1;2+n,2

−Γ
∑

1

ϕ10
1+n,1

∑

12

00
23M

−1

−1−n,1;2+n,2. (3.25c)

Using the results in Appendix C, we obtain the number density susceptibility

of clean superconductor, for small |k| and ωn,

χn(k, ωn) = −NF

v2f
3
k2

ω2
n +

v2f
3
k2

. (3.26)

The electrical conductivity σ is determined by χn via [35]

σ(k, ω) = ie2 ω

k2
χn(k, iωn → ω + i0) . (3.27)

In particular, the real part of the conductivity as a function of real frequencies has

a delta-function contribution, for small ω,

Re σ(ω) = − lim
k→0

e2
ω

k2
Imχn(k, iωn → ω + i0)

=
e2NF π v

2
f

3
δ(ω)

=
nπ e2

m
δ(ω) , (3.28)
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with n =
k3

f

3π2 the particle number density. This coincides with the known result

[36, 37, 38].

Similar procedure can be applied to obtain the spin density susceptibility, by

noting that

χs(k, ωn = 0) =
16T

V

∑

1,2

〈
1
3(δQ)1,1(k) 1

3(δQ)2,2(−k)
〉

= 2T
∑

1,2

11
33M

−1

1,1;2,2 (3.29a)

and

∑

1,2

11
33M

−1

1+n,1;2+n,2 =
∑

1,2

11
33A

(0)

1+n,1;2+n,2

=
∑

1

ϕ00
1+n,1 + δn,0

∑

1

ϕ11
1+n,1

=
−NF

2T

nn
n

for ωn = 0, |k| → 0, (3.29b)

where n = ns+nn, with ns the density of superconducting electrons, nn the density

of normal electrons [39],

nn = n

∫ ∞

−∞
dξp

exp (

√
ξp

2+∆2

T
)

T (1 + exp (

√
ξp

2+∆2

T
))2

. (3.29c)

The result χs(k → 0, ωn = 0) = −NF
nn

n
is consistent with Yosida’s [40].

The above result means χs = 0 at zero temperature. This is because a BCS

superconductor is a perfect diamagnet at T = 0 [40]. The non-zero part comes from

the contribution of normal electrons at finite temperature [41], since some Cooper

pairs are broken into normal electrons at T 6= 0.
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3.4 The disordered case

Now we turn to the disordered case. The approximation of τe∆ ≪ 1 is as-

sumed. This is called the dirty limit [31]. Calculations in Appendix D show that in

the limit of long wavelength and low frequency,

χn(k, ωn) = −NF

π∆τev2f
3

k2

ω2
n +

π∆τev2f
3

k2
, (3.30)

and the real part of the conductivity as a function of real frequencies has also a

delta-function contribution

Re σ(ω) = − lim
k→0

e2
ω

k2
Imχn(k, iωn → ω + i0)

=
e2NF ∆ τe π

2 v2
f

3
δ(ω) . (3.31)

This coincides with the result already known, too [38].

Again, a similar procedure can be applied to obtain the spin density suscepti-

bility. We find in Appendix D that, at T = 0

χs = 0 for ωn = 0, |k| → 0 , (3.32)

That means the spin response in the nonmagnetic disordered case is the same as

that in the clean limit. This is consistent with Devereaux and Belitz’s argument

[42], which has shown that the nonmagnetic disorder has no effect on the spin-flip

pair breaking rate.
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Chapter 4

Quantum Metal - Superconductor Transition: A Local Field Theory

Approach

As we showed in Chapter 2, small amounts of nonmagnetic disorder has a

vanishing effect on the superconducting transition temperature, Tc. Historically

this is known as Anderson’s theorem. At large amounts of disorder, however, the

superconducting critical temperature vanishes, Tc → 0. At Tc = 0, therefore, there

is a disorder-induced metal - superconductor transition. Physically, the long range

behavior of the non-order-parameter fluctuations leads to an effective long range

interaction between the order parameter fluctuations. The net result is that the

long range interactions suppress fluctuation effect and makes the theory exactly

soluble.

In this chapter this quantum phase transition is studied. An effective local

field theory is developed that keeps all soft modes or fluctuations explicitly. Renor-

malization group analysis on the resulting local field theory is then used to exactly

determine the quantum critical behavior at this transition.

44



4.1 Introduction

Recently there has been much interest in quantum phase transitions. Oc-

curring at T = 0, these transitions provide new insight into the possible physical

phases of systems at low temperature [43]. The first quantum phase transition stud-

ied in detail was the ferromagnetic transition in an itinerant electron system at zero

temperature. Hertz argued in 1976 that the transition was mean-field-like in the

physically interesting dimension d = 3 [44]. This simple mean-field description was

later shown to be incorrect [45, 46, 47]. The reason for this breakdown is the exis-

tence of soft or massless modes other than the order parameter fluctuations. These

modes were neglected in Hertz’s theory. In both clean and disordered systems these

modes are coupled to the order parameter fluctuations and modify the critical be-

havior [46]. Technically, if these additional soft modes are integrated out, they lead

to a long-ranged interaction and a nonlocal field theory. For the disordered case it

was argued that once this effect is taken into account, all other fluctuation effects

are suppressed by the long-range nature of the interactions and that the critical be-

havior is governed by a fixed point that is Gaussian, but does not yield mean-field

exponents [47].

A similar argument was used to describe the normal metal to superconductor

quantum phase transition at T = 0 [48]. In this case the usual finite temperature

superconducting phase transition is driven to zero temperature by nonmagnetic

disorder [49], where the additional soft modes come from particle-hole excitations.

Again, it was argued that the critical behavior found at this quantum phase transi-
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tion [48] could be exactly determined using the same technique as in Refs. [46, 47].

The theory developed in Refs. [46, 47, 48], however, suffered from one major

drawback: Since the additional soft modes were integrated out in order to obtain

a description entirely in terms of the order parameter fluctuations, the effective

field theory that was derived was nonlocal [50] and not suitable for conventional

perturbative renormalization group treatment. The analysis in Refs. [46, 47, 48]

was therefore restricted to power counting arguments at tree level to show that

all non-Gaussian terms are irrelevant in a RG sense. However, relying entirely on

tree-level power counting can be dangerous. Later on, logarithmic corrections were

found in the description of the disordered quantum ferromagnetic transition [51].

It is the purpose of this chapter to keep all the relevant soft modes and to

construct an effective local field theory for the metal - superconductor transition so

that the exact behavior at this quantum phase transition can be determined using

conventional renormalization group methods. Unlike the quantum ferromagnetic

transition discussed above, we will show that the previous results for the metal -

superconductor transition, though from a nonlocal field theory, are still valid. The

reason for this is explained in detail.

This chapter is organized as follows. In Sec. 4.2 we use methods developed

in Refs. [9, 34] to derive an effective local theory for disordered electron systems

that explicitly separates massive modes from soft ones, and keeps all of the latter.

In Sec. 4.3 we give a renormalization group analysis of this model. In Sec. 4.4 we

discuss our results.
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4.2 Effective Local Field Theory

A local field theory will be developed in this section to describe the normal

metal to superconductor quantum phase transition at T = 0. All relevant soft modes

will be contained in this field theory. We start from a general model of interacting

electrons with quenched disorder and an attractive Cooperon interaction amplitude.

We then introduce the superconducting order parameter and separate massive and

soft modes. After integrating out the massive modes, we obtain a effective local field

theory that describe the coupling between the superconducting fluctuations and the

soft or massless diffusive modes.

4.2.1 Composite field theory

The general partition function of the interacting, disordered electrons has been

given in the form of Grassmann fields ψ̄ and ψ chapter 2:

Z =

∫
D[ψ̄, ψ] eS[ψ̄,ψ] . (4.1a)

with the action S being

S = −
∫ β

0

dτ

∫
dx
∑

σ

ψ̄σ(x, τ)
∂

∂τ
ψσ(x, τ)

−
∫ β

0

dτ H(τ) . (4.1b)

We denote the spatial position by x, and the imaginary time by τ . H(τ) is the

Hamiltonian in imaginary time representation, β = 1/T is the inverse temperature,

σ =↑, ↓ denotes spin labels, and units such that ~ = kB = 1 are assumed as before.
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The Hamiltonian H includes three parts:

H = H0 +Hint +Hdis . (4.2)

Here H0 describes a free electron fluid with chemical potential µ. Hint describes

a spin-independent two-electron interaction with potential v(x1 − x2), which as in

Refs. [9] can be conveniently divided into three parts: particle- hole spin-singlet

channel with interaction amplitude Γ(s), particle- hole spin-triplet channel with Γ(t),

and particle-particle spin- singlet channel (or the Cooper channel) with Γ(c). Γ(c) < 0

leads to superconductivity. The particle-particle spin-triplet channel (or the triplet

superconductivity channel) is neglected here [52]. Hdis describes a static random

potential u(x) coupling to the electronic number density, with the assumption of this

potential u(x) being delta-correlated and Gaussian distributed. Since the system

contains quenched disorder, the replica trick [11] is then introduced to perform the

disorder average.

As what we have done in previous chapters and papers [9, 34], we next integrate

out the Grassmann fields and rewrite the theory in terms of complex-number fields

Q and Λ̃. With the help of the following isomorphism,

B12 =
i

2




−ψ1↑ψ̄2↑ −ψ1↑ψ̄2↓ −ψ1↑ψ2↓ ψ1↑ψ2↑

−ψ1↓ψ̄2↑ −ψ1↓ψ̄2↓ −ψ1↓ψ2↓ ψ1↓ψ2↑

ψ̄1↓ψ̄2↑ ψ̄1↓ψ̄2↓ ψ̄1↓ψ2↓ −ψ̄1↓ψ2↑

−ψ̄1↑ψ̄2↑ −ψ̄1↑ψ̄2↓ −ψ̄1↑ψ2↓ ψ̄1↑ψ2↑




∼= Q12 , (4.3)

where all fields are understood to be taken at position x, and 1 ≡ (n1, α1) with n1
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denoting a Matsubara frequency and α a replica index, etc, we exactly rewrite the

partition function as

Z =

∫
D[ψ̄, ψ] eS[ψ̄,ψ]

∫
D[Q] δ[Q−B]

=

∫
D[ψ̄, ψ] eS[ψ̄,ψ]

∫
D[Q]D[Λ̃] eTr [eΛ(Q−B)]

≡
∫
D[Q]D[Λ̃] e

eA[Q,eΛ] . (4.4)

Here Λ̃ is an auxiliary bosonic matrix field that plays the role of a Lagrange multi-

plier. The reason to do so is that the rewritten action is particularly suited for the

separation of massive and soft modes. It is helpful to expand the 4 × 4 matrix in

Eq. (4.3) in a spin-quaternion basis, as in Chap. 2,

Q12(x) =
3∑

r,i=0

(τr ⊗ si)
i
rQ12(x) (4.5)

and analogously for Λ̃. Here τ0 = s0 is the 2× 2 unit matrix, and τj = −sj = −iσj,

(j = 1, 2, 3), with σ1,2,3 the Pauli matrices. In this basis, i = 0 and i = 1, 2, 3

describe the spin singlet and the spin triplet, respectively. An explicit calculation

reveals that r = 0, 3 corresponds to the particle-hole channel (i.e., products ψ̄ψ),

while r = 1, 2 describes the particle-particle channel (i.e., products ψ̄ψ̄ or ψψ).

We then decouple the particle-particle spin-singlet interaction by means of a

standard Hubbard-Stratonovich transformation. Denoting the Hubbard-Stratonovich

field by Ψ, the partition function becomes

Z =

∫
D[Q, Λ̃,Ψ] e

eA[Q,eΛ,Ψ] , (4.6a)
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where the action

Ã[Q, Λ̃,Ψ] = Adis[Q] + A(s)
int[Q] + A(t)

int[Q]

+
1

2
Tr ln

(
G−1

0 − iΛ̃
)

+ Tr
(
Λ̃Q
)

−
∫
dx
∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(x) 0
rΨ

α

n(x)

+i
√

2T |Γ(c)|
∫
dx
∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(x)

×
∑

m

tr
[
(τr ⊗ s0) Q

αα
m,−m+n(x)

]
.

(4.6b)

with Tr denoting a trace over all degrees of freedom, including the continuous real

space position, and tr a trace over all discrete degrees of freedom that are not

summed over explicitly. Γ(c) is the attractive Cooperon interaction amplitude. The

first three terms in Eq. (4.6b) have the following forms,

Adis[Q] =
1

πNFτe

∫
dx tr (Q(x))2 , (4.6c)

A (s)
int =

TΓ(s)

2

∫
dx
∑

r=0,3

(−1)r
∑

n1,n2,m

∑

α

×
[
tr
(
(τr ⊗ s0)Q

αα
n1,n1+m(x)

)]

×
[
tr
(
(τr ⊗ s0)Q

αα
n2+m,n2

(x)
)]

, (4.6d)

A (t)
int =

TΓ(t)

2

∫
dx
∑

r=0,3

(−1)r
∑

n1,n2,m

∑

α

3∑

i=1

×
[
tr
(
(τr ⊗ si)Q

αα
n1,n1+m(x)

)]

×
[
tr
(
(τr ⊗ si)Q

αα
n2+m,n2

(x)
)]

, (4.6e)

Finally,

G−1
0 = −∂τ + ∇2/2m+ µ , (4.6f)
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is the inverse bare Green operator.

Physically, the Hubbard-Stratonovich field Ψ can be related to the supercon-

ducting, or Cooper pair, order parameter, Ψ ∼ ψψ.

4.2.2 Soft modes

Now we are ready to separate the massive and soft modes. The separation

follows the similar procedure in previous papers [9]. As in Eq. (4.3) the matrix ele-

ments of Q are bilinear in the fermionic fields, so Q-Q correlation functions describe

two-fermion excitations. Symmetry analysis shows that the Qnm-fluctuations in a

Fermi liquid are massive or soft, respectively, depending on whether nm > 0 or

nm < 0. Group theory is then used to argue that Q can be generally written as

Q = S P S−1 , (4.7)

where P is block-diagonal in Matsubara frequency space,

P =




P> 0

0 P<


 , (4.8)

with P> and P< matrices with elements Pnm where n,m > 0 and n,m < 0, respec-

tively. The matrices S are elements of USp(8Nn, C)/USp(4Nn, C)×USp(4Nn, C), a

homogeneous space with N replicas and n Matsubara frequencies in a system. This

achieves the desired separation of soft and massive modes. The massive modes are

represented by the matrix P , while the soft ones are represented by the transforma-

tions S. The same procedure can be applied to Λ̃ as follows

Λ̃(x) = S(x) Λ(x)S−1(x) . (4.9)
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Λ can also be shown to be massive.

The next step is to integrate out the massive modes. We expand the massive

modes about their saddle-point values,

P = 〈P 〉 + ∆P , Λ = 〈Λ〉 + ∆Λ . (4.10)

A new matrix field is then introduced as

Q̂(x) =
4

πNF

S(x) 〈P 〉 S−1(x) . (4.11a)

Since Q̂ is subject to the following constraints

Q̂2(x) ≡ τ0 ⊗ τ0 , Q̂† = Q̂ , tr Q̂(x) = 0 , (4.11b)

it can be written in a block matrix form analogous to that used in Eq. (4.8) as

Q̂ =




√
1 − qq† q

q† −
√

1 − q†q


 (4.11c)

with the matrix q having elements qnm whose frequency labels are restricted to

n ≥ 0, m < 0. Symmetry analysis with Ward identities ensures that the matrix q

are massless or soft, which are diffusive in disordered systems.

Following the procedure used to derive the generalized nonlinear sigma model

[53] and also considering the leading corrections to the model, we obtain the effective
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action

Ã[q,Ψ,∆P,∆Λ] = ANLσM[q] + δA[∆P,∆Λ, q]

−
∫
dx
∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(x) 0
rΨ

α

n(x)

+i
√
πT |K(c)|

∫
dx
∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(x)

×
∑

m

tr (τr ⊗ s0)
[
Q̂αα
m,−m+n(x)

+
4

πNF

(
S∆PS−1

)αα
m,−m+n

(x)

]
.

(4.12)

Here K(c) = πN2
FΓ(c)/8. ANLσM is the known action of the nonlinear sigma model,

ANLσM = A(s)
int[π NFQ̂/4] + A(t)

int[π NFQ̂/4]

+
−1

2G

∫
dx tr

(
∇Q̂(x)

)2

+2H

∫
dx tr

(
Ω Q̂(x)

)
, (4.13a)

with A(s)
int from Eq. (4.6d), A(t)

int from Eq. (4.6e), and Ω a frequency matrix with

elements

Ω12 = (τ0 ⊗ s0) δ12 ωn1 . (4.13b)

The coupling constants G and H are proportional to the inverse conductivity, G ∝

1/σ, and the specific heat coefficient, H ∝ γ ≡ limT→0 CV /T , respectively [27, 54].

δA contains the corrections to the nonlinear sigma model that were given in

Ref. [9]. We list explicitly the terms that are bilinear in the massive fluctuations

∆P and ∆Λ, but do not contain couplings between the massive modes and q which

are irrelevant from the view of the renormalization group analysis. The terms of
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higher order in ∆P are also neglected, which would produce terms of higher order

in Ψ. For our purposes it will suffice to keep the terms of order Ψ2.

δA(2) = Adis[∆P ] +

∫
dx tr (∆Λ(x)∆P (x))

+
1

4

∫
dxdy tr

(
Gsp(x − y) ∆Λ(y)Gsp(y − x) ∆Λ(x)

)

(4.14)

with A(s)
dis from Eq. (4.6c) and the saddle-point Green function Gsp

Gsp(k, ωn) =
[
G−1

0 − i〈Λ〉
]−1

≈
[
iωn −

k2

2m
+ µ+

i

2τel
sgnωn

]−1

. (4.15)

Note that for our purposes it suffices to keep only the disorder contribution to

the self energy in self-consistent Born approximation, and neglect the Hartree-Fock

interaction contribution.

The remaining task is to integrate out ∆P and ∆Λ. The matrix S can be

treated as S = 1 when we neglect the coupling between massless modes q and those

massive fluctuations ∆P and ∆Λ, which would produce another term of O(Ψ4) irrel-

evant for the purpose of the current paper [51]. An additional quadratic contribution

in terms of the order parameter field Ψ will obtained from Eq. (4.14) and the last

term in Eq. (4.12). Combining it with the Ψ2 term in Eq. (4.12) yields a term

AG[Ψ] = −
∑

k

∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(k)

×
[
1 + 2Γ(c)χ̃(k,Ωn)

]
0
rΨ

α

n(−k) (4.16a)

where

χ̃(k,Ωn) = T
∑

n1,n2

Θ(n1n2) δn1+n2,nDn1n2(k) , (4.16b)
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is given in terms of

Dnm(k) = ϕnm(k)

[
1 − 1

2πNFτel
ϕnm(k)

]−1

(4.16c)

with

ϕnm(k) =
1

V

∑

p

Gsp(p, ωn)Gsp(p + k, ωm) . (4.16d)

The Theta-function in Eq. (4.16b), which restricts the frequency sum to frequen-

cies that both have the same sign. For small frequencies and wavenumbers, the

calculation shows that

AG[Ψ] = −
∑

k

∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(k)u2
0
rΨ

α

n(−k) , (4.17a)

with

u2 = 1 +O(k2,Ωn) . (4.17b)

Below we will see the wavenumber and frequency corrections indicated in Eq. (4.17b)

are irrelevant for the critical behavior. Note that the standard BCS or Cooper

logarithmic item actually arises from the coupling term, Ac, given below. The

vertex in Eq. (4.16a) is simply a number in the long wavelength, low frequency

limit, as is indicated by Eq. (4.17b).

Now we can write an effective local action including only soft modes and the

superconducting order-parameter fluctuations. The action has the form of

Ãeff [Ψ, q] = AG[Ψ] + ANLσM[q] + Ac[Ψ, q] . (4.18a)

Here the nonlinear sigma model part of the action, ANLσM, has been given in Eqs.

55



(4.13), and Ac represents the coupling between Ψ and q,

Ac[Ψ, q] = i
√
πT |K(c)|

∫
dx
∑

α

∑

n

∑

r=1,2

0
rΨ

α

n(x)

×
∑

m

tr
[
(τr ⊗ s0) Q̂

αα
m,−m+n(x)

]
.

(4.18b)

For the simplicity, we rewrite the coupling action as

Ac[Ψ, q] = i
√
πT |K(c)|

∫
dx tr

(
b(x) Q̂(x)

)
. (4.19)

Here we define a field

b12(x) =
∑

r=1,2

(τr ⊗ s0)
0
rb12(x) , (4.20a)

with components

0
rb12(k) = δα1α2

∑

n

δn,n1+n2

0
rΨ

α1

n (k) . (4.20b)

Using Eq. (4.11b) in Eq. (4.19), it leads to a series of terms coupling Ψ and q, Ψ

and q2, etc. We thus obtain Ac[Ψ, q] in form of a series

Ac[Ψ, q] = AΨ−q + AΨ−q2 + . . . (4.21a)

The first term in this series is obtained by just replacing Q by q in Eq. (4.19),

AΨ−q = ic1T
1/2

∫
dx tr (b(x) q(x)) (4.21b)

with c1 =
√
π|K(c)|. The next term in this expansion yields

AΨ−q2 = ic2
√
T

∫
dx tr

(
b(x) q(x) q†(x)

)
(4.21c)

with c2 = c1/16. Higher order terms in q in this expansion will turn out to be

irrelevant for determining the critical behavior at the quantum phase transition.
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4.3 Renormalization group analysis

In this section, we explore the effective local action obtained in the above

section and examine the critical behavior by renormalization group analysis. We

first determine the Gaussian, or second order, action. The moment-shell technique is

then employed to find possible corrections to the previous treatment for the quantum

metal - superconductor transition.

4.3.1 Gaussian Action

For the purpose of the following renormalization group analysis, we first need

to determine the Gaussian or second-order action. It can be obtained from the

effective local action Ãeff [Ψ, q] as follows,

A(2)[Ψ, q] = −
∑

k

∑

n

∑

α

∑

r=1,2

0
rΨ

α

n(k)u2(k) 0
rΨ

α

n(−k)

− 4

G

∑

k

∑

1,2,3,4

∑

i,r

i
rq12(k) irΓ

(2)

12,34(k) irq34(−k)

−8i
√
πT |K(c)|

∑

k

∑

12

∑

r=1,2

0
rq12(k) 0

rb12(−k),

(4.22a)
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where the bare two-point q vertexes come from the nonlinear sigma model ANLσM

and have the forms of

0
1,2Γ

(2)

12,34
(k) = −δ13δ24

(
k2 +GHΩn1−n2

)
+ δ1+2,3+4

×δα1α2δα1α3 4πTGδkc, (4.22b)

0
0,3Γ

(2)

12,34
(k) = δ13δ24

(
k2 +GHΩn1−n2

)
+ δ1−2,3−4

×δα1α2δα1α3 4πTGKs, (4.22c)

1,2,3
0,3 Γ

(2)

12,34
(k) = δ13δ24

(
k2 +GHΩn1−n2

)
+ δ1−2,3−4

×δα1α2δα1α3 4πTGKt, (4.22d)

with Ks = −π N2
F Γ(s)/8 and Kt = −π N2

F Γ(t)/8. Note that there is an additional

repulsive interaction, δkc, in Eq. (5.22b), which comes from the one-loop disorder

renormalization of the action [49]. We choose to take this effect into account at

Gaussian order. Alternately, it would arise as a higher-order disorder effect. For a

complete discussion of this term we refer elsewhere [27]. Here we note that it is this

term that drives the superconducting transition temperature to zero, and leads to

a quantum metal - superconductor phase transition.

As an aside, we note that if the fermionic q fields are integrated out, an effective

action containing only the superconducting order parameter can be derived. In the
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long wavelength and low frequency limit that action is,

A(2)[Ψ] = −
∑

k

∑

n

∑

α

∑

r=1,2

0
rΨ

α

n(k)


u2(k) +

−|K(c)|
H

ln Ω0

|Ωn|+k2/GH

1 + δkc

H
ln Ω0

|Ωn|+k2/GH


 0

rΨ
α

n(−k)

≃ −
∑

k

∑

n

∑

α

∑

r=1,2

0
rΨ

α

n(k)

(
t+

|K(c)|
δkc

2

1

ln Ω0

|Ωn|+k2/GH

)
0
rΨ

α

n(−k) .

(4.23)

Here Ω0 is a frequency cutoff on the order of the Debye frequency, and t = u2− |K(c)|
δkc

denotes the distance from the mean field or Gaussian critical point. Note the crucial

point, it is the disorder (δkc) that allows t to change signs and therefore leads to

a metal - superconductor quantum phase transition. A(2)[Ψ] is the Gaussian order

parameter field theory that was considered in Ref. [48].

It must be stressed, however, that the whole point at our procedure is to not

integrate out the fermionic degrees of freedom. Only then, will the starting action

be local in space and time and be amendable to the standard renormalization group

treatment.

For the coupled field theory it is straightforward to calculate the two-point cor-

relation functions. For the superconducting order parameter correlations we obtain

〈0rΨ
α

n(k) 0
sΨ

β

m(p)〉 = δk,−p δn,m δrs δαβ
1

2
Mn(k) ,

(4.24a)

59



with

Mn(k) =
1

t+ |K(c)|
δkc

2
1

ln
Ω0

|Ωn|+k2/GH

. (4.24b)

Similarly, we find the fermionic propagators

〈irq12(k) jsq34(p)〉 = δk,−p δij
G

8
i
rΓ

(2)−1

12,34 (k) , (4.25a)

where

i
0,3Γ

(2)−1

12,34
(k) = δ13δ24Dn1−n2(k) − δ1−2,3−4δα1α2δα1α3

×2πTGK(i) Dn1−n2(k)D(i)
n1−n2

(k) ,

(4.25b)

and

0
1,2Γ

(2)−1

12,34
(k) = −δ13δ24Dn1−n2(k) + δ1+2,3+4δα1α2δα1α3

×4πTGK(c) Dn1−n2(k)Dn3−n4(k)

1 + 4πTGK(c) ln Ω0

|Ωn|+k2/GH

.

(4.25c)

Here D(i) is the spin-singlet propagator, which in the limit of long wavelengths and

small frequencies reads [27]

D(i)
n (k) =

1

k2 +G(H +K(i))Ωn

. (4.25d)

In writing Eq. (4.25c), we have for simplicity put the additional repulsive interaction,

δkc to zero.
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4.3.2 Momentum-shell renormalization group analysis

From the discussion above, the following effective local action with all the

relevant soft modes can be used to exactly determine the behavior of quantum

metal - superconductor transition,

Ãeff = A(2)[Ψ] + AΨ−q + AΨ−q2

− 4

G

∑

k

∑

1,2,3,4

∑

i,r

i
rq12(k) irΓ

(2)

12,34(k) irq34(−k). (4.26)

The standard momentum-shell renormalization group (RG) technique [8, 55, 56] on

this local field theory is employed here. The parameters t, G, H, c1, c2 as well

as the fields Ψ and q in the theory defined above will be renormalized. We use b

as the RG length rescaling factor, and we rescale the wavenumber and two fields

straightforwardly via

k → k′/b , (4.27a)

Ψn(k) → b(2−ηΨ)/2Ψ′
n(k

′) , (4.27b)

qnm(k) → b(2−ηq)/2q′nm(k′) . (4.27c)

The rescaling of imaginary time, frequency, or temperature is less straightforward.

In general, there are two different time scales in the problem, namely, one that is

associated with the critical order-parameter fluctuations, and one that is associated

with the soft fermionic fluctuations. Therefore, we allow for two different dynamical

exponents, zΨ and zq. The temperature may then get rescaled via

T → b−zΨT ′ , (4.27d)
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or via

T → b−zqT ′ , (4.27e)

How these various exponents should be chosen is discussed below.

In the tree, or zero-loop, approximation the RG equations for the parameters

in our field theory are determined as

t′ = b2−ηΨt , (4.28a)

1

G′H ′T ′
Ψ

=
b−2

GHTΨ

, (4.28b)

1

G′ =
b−ηq

G
, (4.28c)

H ′T ′
q = b2−ηqHTq , (4.28d)

c′1T
′1/2 = c1T

1/2b
4−ηΨ−ηq

2 , (4.28e)

c′2T
′1/2 = c2T

1/2b
−d+6−ηΨ−2ηq

2 , (4.28f)

Note that in giving Eqs. (4.28e) and (4.28f), the particular choice of T was not yet

specified because it is not obvious if a zq or a zΨ should be used for these terms that

describe a coupling between q and Ψ fields.

If we assume the Fermi-liquid degrees of freedom to be at a stable Fermi-liquid

fixed point, we must choose G and H to be marginal, which implies

ηq = 0 , (4.29a)

zΨ = 2 , (4.29b)

zq = 2 . (4.29c)

Here we find that two dynamical exponents, zΨ and zq, have the same value, which
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is different from the ferromagnetic systems [51]. We further choose

ηΨ = 2 , (4.29d)

which is implied by the logarithmic structure of Eq. (4.24b). With these choices, we

find that

c′2 = b
−d+2

2 c2 , (4.29e)

As in the ferromagnetic case, there is a critical fixed point where c1 is marginal,

and the fermions are diffusive, with exponents given by Eqs. (4.29). However, in

contrast to the magnetic case, the coupling constant c2 of the term AΨ−q2 is RG

irrelevant for all d > 2, and so are all higher order terms in the expansion in

powers of q. We therefore conclude that the Gaussian critical behavior is exact [48].

No additional logarithmic corrections exist here. The most important technical

difference that leads to the irrelevance of c2 for this quantum phase transition, while

for the quantum ferromagnetic transition it was marginal, is that the time scales for

the order-parameter fluctuations and the fermions, respectively, are the same [57].

This renders inoperative the mechanism that led the possibility of c2 being marginal

as in the ferromagnetic case. Physically, the very long range interaction between

the order-parameter fluctuations stabilizes the Gaussian critical behavior. This is in

agreement with the fact that long-ranged order parameter correlations in classical

systems stabilize mean-field critical behavior [58].

As noted above, Eq. (4.29e) implies that the Gaussian theory gave the exact

critical behavior. For completeness, the critical exponents, including logarithmic
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terms, are

ηΨ = 2 − ln ln b2

ln b
, (4.30a)

ν =
ln b

ln ln b2
, (4.30b)

γ = 1 . (4.30c)

Formally, when b → ∞ we have ηΨ = 2 and ν = ∞. Physically, for example, Eq.

(4.30b) implies the wavelength length behaves as

ξ ≃ ξ0e
1/2t (4.31)

with ξ0 the microscopic coherence length.

4.4 Conclusion

We have investigated the quantum metal - superconductor phase transition

in the present paper on the basis of an effective local field theory [59]. With a

simple renormalization group analysis, we have determined the critical behavior at

the quantum metal - superconductor phase transition. In contrast to the disordered

ferromagnetic case studied earlier, we showed that the previous results obtained with

a nonlocal field theory are correct. The reason is that the two dynamical exponents,

zΨ and zq, are exactly the same for the disordered metal - superconductor quantum

phase transition. This point is further discussed in Refs. [60].
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Chapter 5

Pseudogap Effect on d-wave Superconducting Quantum Phase

Transition

In this chapter we study the disorder-induced quantum phase transition from

metal to d-wave superconductor phase transition. An effective local field theory

is developed that keeps all soft modes or fluctuations explicitly. Renormalization

group analysis is then used to study the quantum critical behavior at this transition.

We reach the surprising conclusion that the quantum phase transition is a strong

coupling (or infinite disorder fixed point) transition independent of the hole doping,

that is, pseudogap effects in the normal state do not seem to have any effect.

5.1 Introduction

In the last chapter an effective local field theory for the metal to s-wave su-

perconductor transition was developed by keeping all the relevant soft modes. The

exact behavior at this quantum phase transition was determined. We found that

the coupling to non-order-parameter soft fluctuations was so strong that once these

fluctuations were taken into account all others could be (exactly) ignored. The

net result was that a Gaussian field theory exactly described the quantum critical

behavior.
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The situation in d-wave superconductors, however, may be different from that

of conventional superconductors. Indeed, we show that the d-wave symmetry of the

superconducting state makes the coupling between the order parameter fluctuations

and additional soft modes weaker than in the s-wave case. Because of this, the extra

soft modes have a much weaker effect on the metal - superconductor transition.

The net result of this weaker coupling is that higher order fluctuation effects are

not suppressed. We conclude that for the d-wave case, the metal - superconductor

transition is likely described by an infinite disorder fixed point, similar to the case

of disordered quantum antiferromagnets.

In this chapter we study the quantum d-wave superconducting phase transition

with an effective local field theory. We divide our study into two parts: the case of

overdoped region where the normal state can be treated as a normal Fermi liquid

and the case of underdoped region where the normal state is believed as a pseudogap

state.

5.2 Effective Local Field Theory

A local field theory will be developed in this section to describe the metal to

d-wave superconductor quantum phase transition at T = 0. All relevant soft modes

will be contained in this field theory. We start from a general model of interacting

electrons with quenched disorder and attractive d-wave symmetry Cooperon inter-

action amplitude. We then introduce the d-wave superconducting order parameter

and separate massive and soft modes. After integrating out the massive modes,
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we obtain an effective local field theory that describes the coupling between the

superconducting fluctuations and the soft or massless diffusive modes.

5.2.1 Composite field theory

Similar to the last chapter, the general partition function of the interacting,

disordered electrons can be given in the form of Grassmann fields ψ̄ and ψ [23]

Z̃ =

∫
D[ψ̄, ψ] eS̃[ψ̄,ψ] . (5.1a)

with the action S̃ being

S̃ = −
∫ β

0

dτ

∫
dx
∑

σ

ψ̄ασ (x, τ)
∂

∂τ
ψασ (x, τ)

−
∫ β

0

dτ H(τ) . (5.1b)

The Hamiltonian H includes three parts:

H = H0 +Hdis +Hint . (5.2)

Hint includes the d-wave particle-particle spin-singlet channel (or the Cooper chan-

nel). The part of d-wave Cooper channel can be transformed into the action S̃ and

has the form of

S̃
(d)
int [ψ̄, ψ] = −

∫ β

0

dτ H
(d)
int (τ)

= T
∑

ω,ν,ν′

∑

~k,~k′,~p,α,σ

V~k,~k′

2
ψ̄ασ (~k + ~p, ν + ω)

×ψ̄α−σ(−~k,−ν)ψα−σ(−~k′,−ν ′)ψασ (~k′ + ~p, ν ′ + ω), (5.3)

with index α denoting replicas and σ spin. Because of the d-wave symmetry we

assume V~k,~k′ = V0 cos 2θ~k cos 2θ~k′ , with V0 > 0 (attraction), and θ~k, θ~k′ the angle of
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the two momenta.

We can exactly rewrite the partition as function as

Z̃ =

∫
D[ψ̄, ψ] eS̃[ψ̄,ψ]

∫
D[Q] δ[Q−B]

=

∫
D[ψ̄, ψ] eS̃[ψ̄,ψ]

∫
D[Q]D[Λ̃] eTr [eΛ(Q−B)]

≡
∫
D[ψ̄, ψ]D[Q]D[Λ̃] e

eA[Q,eΛ,ψ̄,ψ] . (5.4a)

Here

Ã[Q, Λ̃, ψ̄, ψ] = Adis[Q] + A(s)
int[Q] + A(t)

int[Q]

+S̃0[ψ̄, ψ] + S̃
(d)
int [ψ̄, ψ] + Tr [Λ̃(Q−B)] (5.4b)

with

S̃0 =

∫ β

0

dτ

∫
dx
∑

ασ

ψ̄ασ (x, τ) (− ∂

∂τ
+

∇2

2m
+ µ)ψασ (x, τ), (5.4c)

and

Adis[Q] =
1

πNFτe

∫
dx tr (Q(x))2 , (5.4d)

A (s)
int =

TΓ(s)

2

∫
dx
∑

r=0,3

(−1)r
∑

n1,n2,m

∑

α

×
[
tr
(
(τr ⊗ s0)Q

αα
n1,n1+m(x)

)]

×
[
tr
(
(τr ⊗ s0)Q

αα
n2+m,n2

(x)
)]

, (5.4e)

A (t)
int =

TΓ(t)

2

∫
dx
∑

r=0,3

(−1)r
∑

n1,n2,m

∑

α

3∑

i=1

×
[
tr
(
(τr ⊗ si)Q

αα
n1,n1+m(x)

)]

×
[
tr
(
(τr ⊗ si)Q

αα
n2+m,n2

(x)
)]

, (5.4f)
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We then decouple the d-wave particle-particle spin-singlet interaction by means

of a standard Hubbard-Stratonovich transformation. Denoting the Hubbard-Stratonovich

field by ∆α
nσ(~p), we obtain

eS̃
(d)
int =

∫
D[∆̄,∆] exp


−

∑

n,~p,σ,α

∆̄α
nσ(~p)∆

α
nσ( ~−p)

−
√
TV0

2

∑

n,~p,σ,α

∆̄α
nσ(~p)

×
∑

m,~k

ψα−σ(−~k,−m)ψασ (~k + ~p,m+ n) cos 2θ~k

−
√
TV0

2

∑

n,~p,σ,α

∆α
nσ(~p)

×
∑

m,~k

ψ̄ασ (~k + ~p,m+ n)ψ̄α−σ(−~k,−m) cos 2θ~k


 (5.5)

The partition function becomes

Z̃ =

∫
D[Q, Λ̃,Ψ] e

eA[Q,eΛ,Ψ] , (5.6a)

where the action

Ã[Q, Λ̃,Ψ] = Adis[Q] + A(s)
int[Q] + A(t)

int[Q]

+Tr
(
Λ̃Q
)
−
∑

n,~p,σ,α

∆̄α
nσ(~p)∆

α
nσ( ~−p)

+
1

2
Tr ln

(
G−1

0 − iΛ̃ − iM
)
.

(5.6b)

with

G−1
0 = −∂τ + ∇2/2m+ µ , (5.6c)

being the inverse bare Green operator, and

M =

√
2TV0

k2
F

δn1+n2,n∆
α
n(∂

2
x − ∂2

y)(τ2 ⊗ s0) (5.6d)
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Here Tr denotes a trace over all degrees of freedom, including the continuous real

space position, and tr a trace over all discrete degrees of freedom that are not

summed over explicitly.

Physically, the Hubbard-Stratonovich field ∆ can be related to the supercon-

ducting, or Cooperon, order parameter.

5.2.2 Soft modes

Now we are ready to separate the massive and soft modes. The separation will

need to take advantage of two different procedures in previous papers [9, 27]. First,

it was argued that Q can be generally written as

Q = S P S−1 , (5.7)

and Λ̃ as

Λ̃(x) = S(x) Λ(x)S−1(x) . (5.8)

Λ can also be shown to be massive.

The next step is to integrate out the massive modes. We expand the massive

modes about their saddle-point values,

P = 〈P 〉 + ∆P , Λ = 〈Λ〉 + ∆Λ . (5.9a)

with

〈Λ〉 =
−2

πNF τe
〈P 〉 (5.9b)
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A matrix field is introduced as

Q̂(x) =
4

πNF

S(x) 〈P 〉 S−1(x)

=




√
1 − qq† q

q† −
√

1 − q†q


 . (5.10)

with the matrix q having elements qnm whose frequency labels are restricted to

n ≥ 0, m < 0. Symmetry analysis with Ward identities ensures that the matrices q

are massless or soft, which are diffusive in disordered systems.

Note that the corrections from ∆P and ∆Λ are irrelevant in superconducting

case, we first have

Λ̃(x) = S(x) 〈Λ〉(x)S−1(x) =
−1

2τe
Q̂ . (5.11)

By defining

Q̂ = Q̂sp + Q̃+ 2τeΩ (5.12)

with

Ω12 = (τ0 ⊗ s0)δ12ω, (5.13)

we then obtain

1

2
Tr ln

(
G−1

0 − iΛ̃ − iM
)

=
1

2
Tr ln (G−1

sp )

− 1

4τe
Tr [M(G−1

sp )Q̃(G−1
sp )]

+
1

4τe
Tr (Ω(G−1

sp )Q̃(G−1
sp ))

+
1

16τ 2
e

Tr (Q̃(G−1
sp )Q̃(G−1

sp ))

+
1

4
Tr (M(G−1

sp )M(G−1
sp ))

+
i

8τ 2
e

Tr [M(G−1
sp )Q̃(G−1

sp )Q̃(G−1
sp )] + ... (5.14a)
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and

Adis[Q] + Tr
(
Λ̃Q
)

=
πNF

16τe
Tr (Q̃Q̃) +

−πNF

8τe
Tr (Q̃Q̃) + ...

=
−πNF

16τe
Tr (Q̃Q̃) + ... (5.14b)

Combining the fourth item of Eq. (5.14a) and Eq. (5.14b) we now have

1

16τ 2
e

Tr (Q̃(G−1
sp )Q̃(G−1

sp )) +
−πNF

16τe
Tr (Q̃Q̃) =

−πNF

16τe

∑

~p

tr (Q̃(~p)Q̃)(−~p)

×(1 − 1

πNF τe

∑

~k

Gsp(~k)Gsp)(~k + ~p)

=
−πNF

16τe

∑

~p

tr (Q̃(~p)Q̃)(−~p)τeDk2

=
−πNFD

16
Tr (~∇Q̃)2 (5.14c)

Finally, with the help of Eqs. (2.5) and Eqs. (5.14), we obtain the following

effective local action

Ã[q,Ψ,∆P,∆Λ] = ANLσM[Q̃] + AG[∆] + Ac[∆, Q̃] (5.15)

Here ANLσM is the known action of the nonlinear sigma model

ANLσM[Q̃] = A(s)
int[

πNF

4
Q̃] + A(t)

int[
πNF

4
Q̃]

+
−1

2G

∫
dx tr

(
∇Q̃(x)

)2

+ 2H

∫
dx tr

(
Ω Q̃(x)

)
(5.16)

with G = 8
πNFD

and H = πNF

8
,

AG[∆] = −
∑

n,~p,σ,α

∆̄α
nσ(~p)∆

α
nσ( ~−p) +

1

4
Tr (M(G−1

sp )M(G−1
sp )) + A(4)

G [∆] (5.17)
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with A(4)
G being the normal term of order ∆4 including the off-diagonal element, and

Ac[∆, Q̃] = − 1

4τe
Tr (M(G−1

sp )Q̃(G−1
sp ))

+
i

8τ 2
e

Tr (M(G−1
sp )Q̃(G−1

sp )Q̃(G−1
sp )) (5.18)

The saddle-point Green function in the overdoped region is given by Gsp

Gsp(k, ωn) =
[
G−1

0 − i〈Λ〉
]−1

≈
[
iωn −

k2

2m
+ µ+

i

2τel
sgnωn

]−1

. (5.19)

Note that for our purposes it suffices to keep only the disorder contribution to

the self energy in self-consistent Born approximation, and neglect the Hartree-Fock

interaction contribution.

5.2.3 d-wave symmetry

The d-wave symmetry automatically affects the form of the local field action.

For the action, AG[∆], we have

AG[∆] = −
∑

n,~p,σ,α

∆̄α
nσ(~p)

(
1 − V0NF

2
ln (2ǫF τe)

+a1p
2 + a2ω +O(ω2, q4)

)
∆α
nσ( ~−p) . (5.20)

The standard ultraviolet divergence in the second item of Eq. (5.17) is regularized

here by employing a high-energy cutoff Ω ≈ ǫF ≫ 1/τe.

The main effect from d-wave symmetry appears in the part of the action,
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Ac[∆, Q̃]. We have

Ac[∆, Q̃] = c1
√
T

∑

n1,n2,~p,α

0
2q
α

n1n2(~p) p
2
∑

n

δn1+n2,n∆
α
n(~p)

+c2
√
T

∑

n1,n2,m,~p,~k,α

0
2q
α

n1m(−~p)0
0q
α

n2m(−~p− ~k)

×p2
∑

n

δn1+n2,n∆
α
n(~p) (5.21)

with c1, c2 two nonzero constants. Here Eq. (4.11c) has been used. The critical

point is the extra ( compared to the s-wave case) factor of p2 on the right side of

Eq. (5.21), which is due to integrations over the angles of the momenta. It greatly

weakens the effects of the extra soft modes on the quantum phase transition.

To make our point clearer, we need the q form of the the nonlinear sigma

model ANLσM

ANLσM[q] = − 4

G

∑

k

∑

1,2,3,4

∑

i,r

i
rq12(k) irΓ

(2)

12,34(k) irq34(−k) (5.22a)

with

0
1,2Γ

(2)

12,34
(k) = −δ13δ24

(
k2 +GHΩn1−n2

)
+ δ1+2,3+4

×δα1α2δα1α3 4πTGδkc, (5.22b)

0
0,3Γ

(2)

12,34
(k) = δ13δ24

(
k2 +GHΩn1−n2

)
+ δ1−2,3−4

×δα1α2δα1α3 4πTGKs, (5.22c)

1,2,3
0,3 Γ

(2)

12,34
(k) = δ13δ24

(
k2 +GHΩn1−n2

)
+ δ1−2,3−4

×δα1α2δα1α3 4πTGKt, (5.22d)

with Ks = −π N2
F Γ(s)/8 and Kt = −π N2

F Γ(t)/8. Note that there is an additional

repulsive interaction, δkc = δk0
c+δk

1
ck

d−2 with d the dimension, in Eq. (5.22b), which
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comes from the one-loop renormalization of the action [49]. We choose to take this

effect into account at Gaussian order. Alternately, it would arise as a higher order

disorder effect. For a complete discussion of this term we refer elsewhere [27]. Here

we note that it is this term that drives the superconducting transition temperature

to zero, and leads to a quantum metal - superconductor phase transition.

Now if the fermionic q fields are integrated out, an effective action containing

only the superconducting order parameter can be derived. In the long wavelength

and low frequency limit,

A(2)[∆] = −
∑

n,~p,σ,α

∆̄α
nσ(~p)

(
t+ a1p

2 + a2ω +O(ω2, p4 ln (p))
)
∆α
nσ( ~−p) , (5.23)

with t = 1 − V0NF

2
ln (2ǫF τe).

The procedure in this chapter is similar to that in the s-wave case. The effective

local action we obtained under the d-wave symmetry, given by Eq. (5.15), has the

same structure as in s-wave case which was given by Eq. (4.18a). The difference is

that the Cooperon potential is now in the d-wave symmetry, given by Eq. (5.3). It

will greatly change the effective action, as shown in Eq. (5.21). Therefore it will

greatly affect the behavior of the system. Our above result shows that the s-wave

logarithmic singularity at Eq. (4.23) has been demoted to irrelevant term p4 ln (p)

due to the d-wave symmetry.
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5.3 Renormalization group analysis in the overdoped region

Since there are no relevant logarithmic Cooper channel singularities as in s-

wave superconductors or q2−d term as in ferromagnets here, the critical behavior

will be similar to that in the disordered iterant anti-ferromagnets. In particular,

perturbation around the Gaussian fixed points shows that there are RG relevant

nonlinear terms. If one examines these nonlinearities with an ǫ-expansion then one

finds that no perturbative fixed points exist. That means there is no critical fixed

point in the perturbative renormalization analysis. The result is consistent with the

previous work [61].

5.4 Properties in the underdoped region

The difference in the underdoped region is the anomalous normal state, in

which pseudogap phenomena have prevented a simple Fermi-liquid description. We

here adopted the idea of pre-formed Cooper pairs. Then the normal state can be

described by a Fermi liquid with strong d-wave superconducting fluctuations. From

ref. [21], we assume the self-energy

ΣR(k, ω) =
∆2φ2

k

ω + ǫ(k) + iδ
(5.24)

with

φk = cos 2θk. (5.25)

Then the Greens function has the form,

GR(k, ω) =
ω + ǫ(k)

(ω + ǫ(k))(ω − ǫ(k)) − ∆2φ2
k

(5.26)
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Following the same procedure as in the overdoped region by using the above expres-

sions, our calculation shows the same result as in the overdoped region. That means

that the quantum critical behavior is independent on the pseudogap phenomena.

5.5 Conclusion

We have investigated the quantum d-wave superconducting phase transition

on the basis of an effective local field theory in this chapter. With a simple renormal-

ization group analysis, we have determined that the critical behavior at the quantum

d-wave metal - superconductor phase transition is similar to the case in the anti-

ferromagnets and appears to be the same in both the underdoped and overdoped

regions. In both cases the quantum critical points are related to an infinite disorder

fixed point. Further investigation is still needed.
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Chapter 6

Conclusion

In this thesis we have given a systematic, functional field theory approach

to describe both clean and disordered s-wave and d-wave superconductors and the

quantum phase transitions from metal to superconducting states. In chapters two

and three the theory was developed and used to compute the equation of state

as well as the number density susceptibility, spin density susceptibility, the sound

attenuation coefficient, and the electrical conductivity in both clean and disordered

s-wave superconductors. In the appropriate limits, we recover all of the known

previous results, but now within a single formalism.

In chapter four we considered the disorder-induced metal - superconductor

quantum phase transition in s-wave superconductors. The key physical idea here is

that in addition to the superconducting order parameter fluctuations, there are also

soft fermionic fluctuations that are important at this transition. In a previous theory

for this quantum phase transition these additional soft modes were integrated out so

that the resulting order parameter field theory was nonlocal. We instead demanded

a local field theory that involved a coupled field theory describing both supercon-

ducting and soft fermionic fluctuations. Using simple renormalization group and

scaling ideas, we exactly determined the critical behavior at this quantum phase

transition. Our theory justifies the previous approach.
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In chapter five we studied the analogous quantum phase transition in disor-

dered d-wave superconductors. This work should be relevant for high Tc materials.

Surprisingly, we showed that in both the underdoped and overdoped regions, the

coupling of superconducting fluctuations to the soft disordered fermionic fluctuations

is much weaker than that in the s-wave case. The net result is that the disordered

quantum phase transition in this case is a strong coupling, or described by an infi-

nite disordered fixed point, transition and cannot be described by the perturbative

RG description that works so well in the s-wave case. In fact, this quantum phase

transition appears to be related to the one that occurs in O(2) disordered quantum

antiferromagnets [61].
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Appendix A

Correlation functions in terms of Q matrices

The real number density susceptibility has the following form[2]

XR(x1t1,x2t2) = −iθ(t1 − t2)〈[ñ(x1t1), ñ(x2t2)]〉 (A.1)

where

ñ = n− 〈n〉 (A.2)

with n the number density operator. It is inconvenient to calculate it directly.

Instead, we introduce a corresponding temperature function that depends on the

imaginary–time variables

χn(x1τ1,x2τ2) = −〈Tτ [ñ(x1τ1)ñ(x2τ2)]〉 (A.3)

where we have the following relation between Eqs. (A.1) and (A.3) with the Lehmann

representation

XR(k, ω) = χn(k, iωn → ω + i0). (A.4)

The time–order indication Tτ of Eq. (A.3) will disappear in the functional integral

form,[23] which is the case in the present paper.

Next we notice that

0
0Qn1n2

∼= i

8

∑

σ

(
ψ̄n1,σψn2,σ + ψ̄n2,σψn1,σ

)
, (A.5a)

0
3Qn1n2

∼= 1

8

∑

σ

(
ψ̄n1,σψn2,σ − ψ̄n2,σψn1,σ

)
. (A.5b)
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By using Eqs. (A.3) and (A.5) we can then obtain

χn(k, ωn) = 16T
∑

1,2

∑

r=0,3

〈
0
r(δQ)1+n,1(k) 0

r(δQ)2+n,2(−k)
〉
. (A.6)

Similar analysis can be applied to find the spin density susceptibility. With

the spin density

ns(k, ωn) =

√
T

V

∑

p,ω

(
ψ(p, ω), σ ψ(p + k, ω + ωn)

)
(A.7)

we can obtain Eq. (3.13).
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Appendix B

Useful coefficients for the matrix M

In Sec. 3.2, we have introduced some parameters, including X
(2)
12,34, Y

(2)
12 , Z

(2)
12 ,

X
(3)
12,34, Y

(3)
12 and Z

(3)
12 . Here we give their definitions respectively as follows,

X
(2)
12,34 =

(1 − J
(1)
−1,−2)X

(1)
12,34 +K

(1)
12 X

(1)
−1,−2;3,4

(1 − J
(1)
12 )(1 − J

(1)
−1,−2) −K

(1)
12 K

(1)
−1,−2

, (B.1a)

Y
(2)
12 =

(1 − J
(1)
−1,−2)Y

(1)
12 +K

(1)
12 Z

(1)
−1,−2

(1 − J
(1)
12 )(1 − J

(1)
−1,−2) −K

(1)
12 K

(1)
−1,−2

, (B.1b)

Z
(2)
12 =

(1 − J
(1)
−1,−2)Z

(1)
12 +K

(1)
12 Y

(1)
−1,−2

(1 − J
(1)
12 )(1 − J

(1)
−1,−2) −K

(1)
12 K

(1)
−1,−2

, (B.1c)

where

X
(1)
12,34 = −00

23A
(0)

12,34 +
1

τ 0
ϕ01

12X1,−2;3,4 −
1

τ 0
ϕ10

12X−1,2;3,4 , (B.2a)

J
(1)
12 =

1

τ 0
ϕ00

12 +
1

τ 0
ϕ01

12 J1,−2 −
1

τ 0
ϕ10

12K−1,2 , (B.2b)

K
(1)
12 =

1

τ 0
ϕ11

12 +
1

τ 0
ϕ01

12K1,−2 −
1

τ 0
ϕ10

12 J−1,2 , (B.2c)

Y
(1)
12 = −Γϕ00

12 +
1

τ 0
ϕ01

12 Y1,−2 −
1

τ 0
ϕ10

12 Z−1,2 , (B.2d)

Z
(1)
12 = −Γϕ11

12 +
1

τ 0
ϕ01

12 Z1,−2 −
1

τ 0
ϕ10

12 Y−1,2 , (B.2e)

with

X12,34 =
(1 − 1

τ0ϕ
00
−1,−2)

00
33A

(0)
12,34 + 1

τ0ϕ
11
12

00
33A

(0)
−1,−2;3,4

(1 − 1
τ0ϕ00

12)(1 − 1
τ0ϕ00

−1,−2) − 1
τ0ϕ11

12
1
τ0ϕ11

−1,−2

, (B.3a)

J12 =
(1 − 1

τ0ϕ
00
−1,−2)(− 1

τ0ϕ
01
12) + 1

τ0ϕ
11
12(

1
τ0ϕ

10
−1,−2)

(1 − 1
τ0ϕ00

12)(1 − 1
τ0ϕ00

−1,−2) − 1
τ0ϕ11

12
1
τ0ϕ11

−1,−2

, (B.3b)
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K12 =
(1 − 1

τ0ϕ
00
−1,−2)(

1
τ0ϕ

10
12) + 1

τ0ϕ
11
12(− 1

τ0ϕ
01
−1,−2)

(1 − 1
τ0ϕ00

12)(1 − 1
τ0ϕ00

−1,−2) − 1
τ0ϕ11

12
1
τ0ϕ11

−1,−2

, (B.3c)

Y12 =
(1 − 1

τ0ϕ
00
−1,−2)(Γϕ

01
12) + 1

τ0ϕ
11
12(−Γϕ10

−1,−2)

(1 − 1
τ0ϕ00

12)(1 − 1
τ0ϕ00

−1,−2) − 1
τ0ϕ11

12
1
τ0ϕ11

−1,−2

, (B.3d)

Z12 =
(1 − 1

τ0ϕ
00
−1,−2)(−Γϕ10

12) + 1
τ0ϕ

11
12(Γϕ

01
−1,−2)

(1 − 1
τ0ϕ00

12)(1 − 1
τ0ϕ00

−1,−2) − 1
τ0ϕ11

12
1
τ0ϕ11

−1,−2

. (B.3e)

We also have

X
(3)
12,34 = X12,34 + J12X

(2)
1,−2;3,4 +K12X

(2)
−1,2;3,4 , (B.4a)

Y
(3)
12 = Y12 + J12 Y

(2)
1,−2 +K12 Z

(2)
−1,2 , (B.4b)

Z
(3)
12 = Z12 + J12 Z

(2)
1,−2 +K12 Y

(2)
−1,2 . (B.4c)

For ωn 6= 0 the following equations are useful:

∑

2

00
23A

(0)

1+n,−1;2+n,2 = −ϕ01
1+n,−1 , (B.5a)

∑

2

00
23A

(0)

−1−n,1;2+n,2 = ϕ10
−1−n,1 , (B.5b)

∑

2

00
33A

(0)

1+n,1;2+n,2 = ϕ00
1+n,1 , (B.5c)

∑

2

00
33A

(0)

−1−n,−1;2+n,2 = ϕ11
−1−n,−1 . (B.5d)
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Appendix C

Detailed calculations in the clean limit

We will show in this appendix that, in the limit of long wavelength and low

frequency,

∑

1

ϕ00
1+n,1 = m0 +m1 k2 +m2 ω

2
n, (C.1a)

∑

1

ϕ01
1+n,±1 = im3 ωn, (C.1b)

∑

1

ϕ10
1+n,1 =

∑

1

ϕ01
1−n,1, (C.1c)

∑

1

ϕ10
1+n,−1 =

∑

1

ϕ01
1+n,−1, (C.1d)

Γ
∑

1

ϕ00
1+n,−1 = −(1 + a+ 2bk2 + 2c ω2

n) (C.1e)

and

Γ
∑

1

ϕ11
1+n,−1 = a− bk2 − c ω2

n (C.1f)

where m0 = −N(0)
2T

, m1 = −N(0)v2f
36T∆2 , m2 = N(0)

12T∆2 , m3 = N(0)
4T∆

, a = Γ(c)N(0), b =

Γ(c)N(0)v2f
18∆2 and c = Γ(c)N(0)

6∆2 with N(0) = NF

2
the density of states per spin at the

Fermi surface and vf =
kf

m
the Fermi velocity.

C.1 Method I

Now we demonstrate how to obtain the results of Eqs. (C.1). First we show

how to get Eq. (C.1a). Similar to the calculations in the section 52 of Ref. [2], we

84



find, with Eq. (2.40e), that

∑

1

ϕ00
1+n,1(k) =

1

2T

∫
dp

(2π)3

((tanh
E+

2T
+ tanh

E−
2T

)

× (
−1

2
(1 − ξ+ξ−

E+E−
)

E+ + E−
ω2
n + (E+ + E−)2

+
−1

2
(
ξ+
E+

− ξ−
E−

)
iωn

ω2
n + (E+ + E−)2

)

− (tanh
E+

2T
− tanh

E−
2T

)

× (
1

2
(1 +

ξ+ξ−
E+E−

)
E+ − E−

ω2
n + (E+ − E−)2

+
1

2
(
ξ+
E+

+
ξ−
E−

)
iωn

ω2
n + (E+ − E−)2

)). (C.2)

Here E± =
√
ξ2
± + ∆2 with ξ± = ξp ± a/2 and a = |k|vfz. For simplicity, we set

ω = 0 first. Then

∑

1

ϕ00
1,1(k) =

−N(0)

4T

∫ 1

−1

dz

∫ ωD

−ωD

dξp ((
tanh E+

2T

E+

− tanh E−

2T

E−
)

∆2

E2
+ − E2

−

+(
ξ+ tanh E+

2T

E+

− ξ− tanh E−

2T

E−
)

1

ξ+ − ξ−
) (C.3)

with the Debye frequency ωD ≫ ∆. An examination of the case in the normal state,

which means ∆ = 0, shows that

∑

1

ϕ00
1,1(k,∆ = 0) =

−N(0)

4T

∫ 1

−1

dz

∫ ∞

−∞
dξp

tanh ξ+
2T

− tanh ξ−
2T

ξ+ − ξ−

=
−N(0)

T
, (C.4)

where we set ωD equal to ∞, since the integral converges. The evaluation of the

superconducting case may be simplified by considering the difference between Eqs.
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(C.3) and (C.4)

∑

1

ϕ00
1,1 =

−N(0)

T
+ (
∑

1

ϕ00
1,1 −

∑

1

ϕ00
1,1(∆ = 0))

=
−N(0)

2T
− N(0)

4T

∫ 1

−1

dz

∫ ∞

−∞
dξp (

tanh E+

2T

E+

− tanh E−

2T

E−
)

∆2

E2
+ − E2

−

=
−N(0)

2T
−
N(0)v2

f

36T∆2
k2 (C.5)

Here |k|vf ≪ π∆ and tanh ∆
2T

= 1 have been assumed. The latter assumption

means T → 0. And the difference between Eqs. (C.2) and (C.3) can be obtained by

setting |k| = 0

∑

1

ϕ00
1+n,1 −

∑

1

ϕ00
1,1 =

N(0)ω2
n

4T

∫ ∞

−∞
dξp (

1 − ξ2
p/E

2

4E3
tanh

E

2T
)

=
N(0)

12T∆2
ω2
n. (C.6)

Finally, by Eqs. (C.5) and (C.6), we get the result of Eq. (C.1a).

To get Eq. (C.1e), we use the same procedure as above, with somewhat differ-

ent techniques.

∑

1

ϕ00
1+n,−1(k) =

1

2T

∫
dp

(2π)3

((tanh
E+

2T
+ tanh

E−
2T

)

× (
1

2
(1 +

ξ+ξ−
E+E−

)
E+ + E−

ω2
n + (E+ + E−)2

+
1

2
(
ξ+
E+

+
ξ−
E−

)
iωn

ω2
n + (E+ + E−)2

)

+ (tanh
E+

2T
− tanh

E−
2T

)

× (
1

2
(1 − ξ+ξ−

E+E−
)

E+ − E−
ω2
n + (E+ − E−)2

+
1

2
(
ξ+
E+

− ξ−
E−

)
iωn

ω2
n + (E+ − E−)2

)). (C.7)
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Again, we set ω = 0 first. We find

∑

1

ϕ00
1,−1(k) =

N(0)

4T

∫ 1

−1

dz

∫ ωD

−ωD

dξp ((
tanh E+

2T

E+

− tanh E−

2T

E−
)

∆2

E2
+ − E2

−

+(
ξ+ tanh E+

2T

E+

+
ξ− tanh E−

2T

E−
)

1

ξ+ + ξ−
)

=
N(0)

4T

∫ 1

−1

dz

∫ ∞

−∞
dξp ((

tanh E+

2T

E+

− tanh E−

2T

E−
)

∆2

E2
+ − E2

−
)

+
N(0)

4T

∫ 1

−1

dz

∫ ∞

−∞
dξp (

a

4ξp
(
tanh E+

2T

E+

− tanh E−

2T

E−
))

+
N(0)

4T

∫ 1

−1

dz

∫ ωD

−ωD

dξp (
1

2
(
tanh E+

2T

E+

+
tanh E−

2T

E−
))

= (
−N(0)

2T
+
N(0)v2

f

36T∆2
k2) + (

−N(0)v2
f

12T∆2
k2) + (

−1

2TΓ(c)
)

=
−1

2TΓ(c)
+

−N(0)

2T
+

−N(0)v2
f

18T∆2
k2, (C.8)

where the gap equation Eq. (2.33) has been used to obtain the first item of the last

equation.[2] Similarly, the difference between Eqs. (C.7) and (C.8) can be obtained

by setting |k| = 0

∑

1

ϕ00
1+n,−1 −

∑

1

ϕ00
1,−1 =

−N(0)ω2
n

4T

∫ ∞

−∞
dξp (

1 + ξ2
p/E

2

4E3
tanh

E

2T
)

=
−N(0)

6T∆2
ω2
n. (C.9)

Combining Eqs. (C.8) and (C.9), we get the result of Eq. (C.1e). Other results of

Eqs. (C.1) can be analogously obtained by the methods used here for Eqs. (C.1a)

and (C.1e).

C.2 Method II

The same results for Eqs. (C.1) can also be obtained by first calculating the

integration over ξ and then summing over the frequency. Here we only show how
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to calculate the zero frequency and zero momentum parts of
∑

m ϕ
00
m+n,m(k) and

∑
m ϕ

00
m+n,−m(k). The additional parts for small |k| and ωn, like

∑
m ϕ

00
m+n,−m(k) −

∑
m ϕ

00
m,−m(k = 0), are relatively easier to evaluate. In Appendix D we will show

the complete calculations in the disordered case. With T → 0,

∑

m

ϕ00
m,m(k = 0) = N(0)

∑

m

∫ ωD

−ωD

dξp (
−iωm − ξp

ω2
m + ξ2

p + ∆2

−iωm − ξp
ω2
m + ξ2

p + ∆2
)

= N(0)

∫ ∞

−∞

dωm
2πT

(
−ωD(2ω2

m + ∆2)

(ω2
m + ∆2)(ω2

D + ω2
m + ∆2)

+
∆2

(ω2
m + ∆2)3/2

arctan
ωD√

ω2
m + ∆2

)

=
N(0)

2πT
((−2π) + (π))

=
−N(0)

2T
. (C.10)

Note that we cannot set ωD equal to ∞ before the summation over the frequency,

otherwise a wrong result of N(0)
2T

will be obtained. And

∑

m

ϕ00
m,−m(k = 0) = N(0)

∑

m

∫ ωD

−ωD

dξp (
−iωm − ξp

ω2
m + ξ2

p + ∆2

iωm − ξp
ω2
m + ξ2

p + ∆2
)

= N(0)

∫ ∞

−∞

dωm
2πT

(
−ωD∆2

(ω2
m + ∆2)(ω2

D + ω2
m + ∆2)

− ∆2

(ω2
m + ∆2)3/2

arctan
ωD√

ω2
m + ∆2

+
2√

ω2
m + ∆2

arctan
ωD√

ω2
m + ∆2

)

=
N(0)

2πT
((0) + (−π) + (

∫ ωD
∆

−ωD
∆

dωm
π√

ω2
m + 1

))

=
−N(0)

2T
+
N(0)

T
ln

2ωD

∆

=
−1

2TΓ(c)
− N(0)

2T
, (C.11)

where the equality

∫ ∞

−∞
dω (

1√
ω2 + 1

arctan
D√
ω2 + 1

) ≡
∫ D

−D
dω (

π

2

1√
ω2 + 1

), (C.12a)
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has been adopted, which can be proven by using the general expansion[62]

arctanx =
x

1 + x2
(1 +

2

3

x2

1 + x2
+

2 × 4

3 × 5
(

x2

1 + x2
)2 +

2 × 4 × 6

3 × 5 × 7
(

x2

1 + x2
)3 + . . .).

(C.12b)

The last equation of Eq. (C.11) is obtained by using some results from the section

51 of Ref. [2].

We also find in the calculation of χn that only the zero frequency and zero

momentum part of Eq. (C.1a) will contribute to it, which means we just need to

obtain m0. This gives us another way to find Eq. (C.1a), or m0. By using the

compressibility sum rule of free electrons (i.e. Γ(c) = 0), we have[27, 63]

lim
k→0

lim
ωn→0

χn = −NF , (C.13)

which in turn gives m0 = −N(0)
2T

.

C.3 Exact expressions at finite temperature

To get Eq. (3.29b), we need to obtain the exact solution at T 6= 0. Setting

ωn = 0 first and then k → 0, we find that, by using Eq. (C.2),

∑

1

ϕ00
1,1(k → 0) =

N(0)

2T

∫
dξp(

−∆2

2E3
tanh

E

2T
− 1

2
(1 +

ξ2
p

E2
)
∂(tanh E

2T
)

∂E
)

=
−N(0)

2T

∫
dξp(

−∆2

2E

∂
tanh E

2T

E

∂E
+
∂(tanh E

2T
)

∂E
). (C.14a)

Similar calculations can be used to obtain the following expressions:

∑

1

ϕ11
1,1(k → 0) =

N(0)

2T

∫
dξp(

−∆2

2E

∂
tanh E

2T

E

∂E
), (C.14b)
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∑

1

ϕ00
1,−1(k → 0) =

−1

2TΓ(c)
+

−N(0)

2T

∫
dξp(

−∆2

2E

∂
tanh E

2T

E

∂E
), (C.14c)

∑

1

ϕ01
1,−1(k → 0) = 0, (C.14d)
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Appendix D

Detailed calculations in the disordered case

In this appendix we demonstrate how to obtain the result of Eq. (3.30). First

we deal with ϕ00
m+n,m(k). For ωn = 0, we find

ϕ00
m,m(k) =

N(0)

2

∫ 1

−1

dz

∫ ωD

−ωD

dξp(
−iηmωm − ξ+

(ηmωm)2 + ξ2
+ + (ηm∆)2

−iηmωm − ξ−
(ηmωm)2 + ξ2

− + (ηm∆)2
)

= N(0)

∫ 1

−1

dz(
(ηm∆)2

√
(ηmωm)2 + (ηm∆)2

arctan
ωD−a

2√
(ηmωm)2+(ηm∆)2

+ arctan
ωD+a

2√
(ηmωm)2+(ηm∆)2

a2 + 4((ηmωm)2 + (ηm∆)2)

+
ln (4((ηmωm)2 + (ηm∆)2) + (2ωD − a)2) − ln (4((ηmωm)2 + (ηm∆)2) + (2ωD + a)2)

2a

× a2 + 4(ηmωm)2 + 2(ηm∆)2

a2 + 4((ηmωm)2 + (ηm∆)2)
)

= N(0)

∫ 1

−1

dz((
(ηm∆)2 arctan ωD√

(ηmωm)2+(ηm∆)2

2((ηmωm)2 + (ηm∆)2)3/2

− ωD

(ηmωm)2 + (ηm∆)2 + ω2
D

2(ηmωm)2 + (ηm∆)2

2((ηmωm)2 + (ηm∆)2)
)

+
a2

2
(

−π(ηm∆)2

8((ηmωm)2 + (ηm∆)2)5/2
))

= N(0)(
(ηm∆)2 arctan ωD√

(ηmωm)2+(ηm∆)2

((ηmωm)2 + (ηm∆)2)3/2

− ωD

(ηmωm)2 + (ηm∆)2 + ω2
D

2(ηmωm)2 + (ηm∆)2

(ηmωm)2 + (ηm∆)2
)

+
N(0)v2k2

3
(

−π(ηm∆)2

8((ηmωm)2 + (ηm∆)2)5/2
). (D.1)

Here

ηm = 1 +
1

2τe
√
ω2
m + ∆2

, (D.2)
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which is given by Eqs. (2.32). The last item of the result in Eq. (D.1), i.e., for the

expansion on small |k|, has been obtained by using the fact that ωD ≫ ∆. Now if

we set |k| = 0 instead, it yields analogously

ϕ00
m+n,m =

2N(0)

((ηm+nωm+n)2 + (ηm+n∆)2) − ((ηmωm)2 + (ηm∆)2)
(

(
√

(ηm+nωm+n)2 + (ηm+n∆)2 arctan
ωD√

(ηm+nωm+n)2 + (ηm+n∆)2

−
√

(ηmωm)2 + (ηm∆)2 arctan
ωD√

(ηmωm)2 + (ηm∆)2
)

+ ηm+nωm+nηmωm(

1√
(ηm+nωm+n)2 + (ηm+n∆)2

arctan
ωD√

(ηm+nωm+n)2 + (ηm+n∆)2

− 1√
(ηmωm)2 + (ηm∆)2

arctan
ωD√

(ηmωm)2 + (ηm∆)2
))

= ϕ00
m,m + ωn

−πτe∆2ωm(1 + 3τe
√
ω2
m + ∆2)

(ω2
m + ∆2)2 (1 + 2τe

√
ω2
m + ∆2)2

+
ω2
n

2

πτe∆
2 (3ω2

m + τe
√
ω2
m + ∆2(−∆2 + 14ω2

m) + τ 2
e (−2∆4 + 16∆2ω2

m + 18ω4
m))

(ω2
m + ∆2)3 (1 + 2τe

√
ω2
m + ∆2)3

.

(D.3)

Therefore a combination of Eqs. (D.1) and (D.3) gives ϕ00
m+n,m(k) up to the second-

order expansions on small |k| and ωn. Other items, including ϕ00
m+n,−m(k), ϕ01

m+n,m(k),

ϕ10
m+n,m(k) and ϕ11

m+n,m(k), can be evaluated by the same techniques. Through

lengthy but not difficult calculations, we obtain

∑

1

Y
(2)
1+n,−1 =

∑

1

Y
(2)
−1−n,1 = 1 +N(0)Γ(c) +

Γ(c)τ 0v2
f

16∆
k2 +

Γ(c)NF

6∆2
ω2
n, (D.4a)

∑

1

Z
(2)
1+n,−1 =

∑

1

Z
(2)
−1−n,1 = −N(0)Γ(c) +

Γ(c)τ 0v2
f

48∆
k2 +

Γ(c)NF

12∆2
ω2
n, (D.4b)

∑

12

X
(2)
1+n,−1;2+n,2 =

∑

12

X
(2)
−1−n,1;2+n,2 =

iNF

8T∆
ωn, (D.4c)
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∑

1

Y
(3)
1+n,1 =

∑

1

Z
(3)
1+n,1 =

iΓNF

8T∆
ωn (D.4d)

and

∑

12

X
(3)
1,1;2,2 =

τ 0

2πT

∫ ∞

−∞
dω

(
−2τeωD(2ω2 + ∆2)

(ω2 + ∆2)(π(1 + 2τe
√
ω2 + ∆2)2 + 4τeωD(1 + πτeωD))

+
∆2 arctan 2τeωD

1+2τe
√
ω2+∆2

(ω2 + ∆2)(π(1 + 2τe
√
ω2 + ∆2) − 2 arctan 2τeωD

1+2τe
√
ω2+∆2 )

)

=
τ 0

2πT

∫ ∞

−∞
dω (

−2τeωD(2ω2 + ∆2)

(ω2 + ∆2)(π(2τe
√
ω2 + ∆2)2 + 4τeωD(πτeωD))

+
π

2

∆2

(ω2 + ∆2)(π(2τe
√
ω2 + ∆2))

)

=
−NF

4T
. (D.4e)

Now by using Eqs. (3.15) and (3.24) we obtain the number density susceptibility.

For the spin density susceptibility, we find

11
33M

−1

12,34 =
L

(1)
12,34 + E

(1)
12 L

(1)
−1,−2;3,4

1 − E
(1)
12 E

(1)
−1,−2

, (D.5a)

where

L
(1)
12,34 =

11
33A

(0)
12,34 − 1

τ0ϕ
01
12L1,−2;3,4 + 1

τ0ϕ
10
12L−1,2;3,4

1 − 1
τ0ϕ00

12 + 1
τ0ϕ01

12E1,−2 − 1
τ0ϕ10

12F−1,2

, (D.5b)

E
(1)
12 =

1
τ0ϕ

11
12 − 1

τ0ϕ
01
12F1,−2 + 1

τ0ϕ
10
12E−1,2

1 − 1
τ0ϕ00

12 + 1
τ0ϕ01

12E1,−2 − 1
τ0ϕ10

12F−1,2

, (D.5c)

with

L1,−2;3,4 =
−(1 − 1

τ0ϕ
00
−1,2)

11
23A

(0)
1,−2;3,4 − 1

τ0ϕ
11
1,−2

11
23A

(0)
−1,2;3,4

(1 − 1
τ0ϕ00

1,−2)(1 − 1
τ0ϕ00

−1,2) − 1
τ0ϕ11

1,−2
1
τ0ϕ11

−1,2

, (D.5d)
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(1 − 1

τ0ϕ
00
−1,2)

1
τ0ϕ

01
1,−2 − 1

τ0ϕ
11
1,−2

1
τ0ϕ
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(1 − 1
τ0ϕ00

1,−2)(1 − 1
τ0ϕ00

−1,2) − 1
τ0ϕ11
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1
τ0ϕ11
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, (D.5e)

and

F1,−2 =
−(1 − 1

τ0ϕ
00
−1,2)

1
τ0ϕ

10
1,−2 + 1

τ0ϕ
11
1,−2

1
τ0ϕ

01
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τ0ϕ00

1,−2)(1 − 1
τ0ϕ00

−1,2) − 1
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1
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. (D.5f)
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We find in the Eqs. (D.5) that there is no diffusive structure in the form of 11
33M

−1
12,34.

That means the spin density susceptibility in the limit of ωn = 0 and |k| = 0 will

be the focus of attention. The expansions on small |k| and ωn are not so important.

Similar to the calculations in the Eqs. (D.4), we obtain

∑

1,2

11
33M

−1

1,1;2,2 = 0. (D.6)
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