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In this thesis, a model-based closed-loop fluid resuscitation controller using 

mean arterial pressure (MAP) feedback is designed and later evaluated on an in-silico 

testbed. The controller is based on a subject specific model of blood volume and MAP 

response to fluid infusion. This simple hemodynamic model is described using five 

parameters only. The model was able to reproduce blood volume and blood pressure 

response to fluid infusion using an experimental dataset collected from 23 sheep and is 

therefore suitable to use for control design purposes. A model-reference adaptive 

control scheme was chosen to account for inter-subject variability captured in the 

parametric uncertainties of the underlying physiological model. Three versions of the 

control algorithm were studied under different measurement availability scenarios. In-

silico evaluation of the three controllers was done using a comprehensive 

cardiovascular physiology model on a cohort of 100 virtually generated patients. 

Results clearly show that a tradeoff exists between tracking and estimation performance 

depending on measurement availability. 
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Chapter 1: Introduction 

1.1 Fluid Resuscitation 

Fluid resuscitation is the process of replenishing bodily fluids lost by vomiting, 

diarrhea, hemorrhage, burn injuries or during combat. If not treated rapidly, the patient 

experience hypovolemic shock [1]–[5]. Currently, clinicians perform fluid 

resuscitation through titration of fluids like crystalloids, colloids, normal saline and 

blood plasma while monitoring one or more physiologic endpoints (blood pressure, 

urinary output, cardiac output…etc.) [6]. This process is time consuming and is 

susceptible to human errors such as not providing optimal infusion dose or inadequate 

resuscitation. Delayed fluid resuscitation was shown to be a major cause of increased 

mortality and morbidity [7] while in other cases, excess administration of fluids results 

in edema and lack of oxygen delivery to tissues [8]. Moreover, inter-subject variability 

as well as how severely hypovolemic a patient is calls for continuous monitoring of 

patients’ hemodynamics while undergoing fluid resuscitation to effectively perform 

titration and admission of fluids with the least amount of fluid [9]. Therefore, it is 

desired to automate fluid resuscitation to help increase the quality of care and reduce 

the workload of clinicians.  

1.2 Autonomous Fluid Resuscitation and Current Physiological Mathematical Models 

 The goal of an autonomous fluid resuscitation system is similar to the current 

clinical resuscitation procedure: infusing fluid until a physiologic endpoint restores to 

a target value set by the clinician. Attempts to develop and evaluate such systems are 
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not common. Most existing closed-loop resuscitation controllers are built on decision 

trees and gain tuning [10]–[13]. Realizing that there is much room for improving the 

efficacy and robustness of such systems, we ought to make use of credible 

mathematical models that can reproduce hemodynamic responses to fluid infusion for 

controller design. The design of a model-based controller for a physiological 

phenomenon is as complex as the underlying mathematical model. Therefore, a simple 

yet accurate model is sought to allow for relatively simple design procedures. 

Mathematical models that can reproduce hemodynamic responses to blood volume 

perturbations do exist. However, they suffer from one, or more, of the following 

disadvantages: (i) they are very complex involving hard nonlinearities and large 

number of parameters, which makes the design process of a model-based controller 

very difficult [14]–[19], or (ii) they are described using average values over a 

population, which no longer makes the model an individualized one that can capture 

intersubject variability [20], [21], and finally (iii) a class of these models are “black-

box” models that do not offer deep physiological interpretation [22]–[25]. 

Recently, a control-theoretic model of blood volume response to fluid infusion was 

shown to be able to reproduce results from experimental data [26]. This model captures 

the fluid shift between the intravascular and interstitial blood compartments, a primary 

mechanism in hemostasis. Described using four parameters only, this model is simple, 

accurate and can be used for model-based controller design very efficiently. Since 

absolute blood volume is not easily measured even in a lab setting, we propose an 

extension to the blood volume model to include mean arterial pressure response to fluid 

infusion by means of a time varying gain that describes the relationship between blood 
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pressure and blood volume perturbations. This model was able to reproduce blood 

volume and blood pressure perturbations to fluid infusion in a set of experimental data 

collected from 23 sheep. Now, we have a simple, five-parameter model with 

physiological plausibility that enables the design of a closed-loop fluid resuscitation 

controller with mean arterial pressure as therapeutic endpoint using design approaches 

that are well established in the field of control theory [27]–[30]. Such controllers can 

be easier to implement clinically since blood pressure measurements are easily obtained 

and good approximation of mean arterial pressure (MAP) is calculated using [31] 

 𝑀𝐴𝑃 = 𝑃𝑑𝑖𝑎 +
1

3
 [𝑃𝑠𝑦𝑠 − 𝑃𝑑𝑖𝑎] (1) 

1.3 Controller Design Methodology and Evaluation 

 There are many sources of uncertainty when dealing with physiological 

systems, most importantly the inter-subject variability in both BV and MAP dynamics 

[32], [33]. Therefore, the choice of adaptive control theory was made to account for 

inter-subject variability that presents itself as uncertainty in the parameters of the 

underlying physiological model [27]. 

The extended model was used to design a closed-loop fluid resuscitation control 

algorithm that operates in two steps: (i) the hemodynamic model is individualized using 

the measurements collected from an initial fluid bolus infusion via system identification 

and (ii) a model reference adaptive controller (MRAC) is built using the model just 

individualized. This two-step control architecture was chosen to address persistent 

excitation condition in online parameter estimation. 
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Three different versions of the proposed controller are investigated under different 

measurement availability scenarios. To assess the performance of the three versions, 

rigorous tests were done on an in-silico testbed using a well-known model of human 

cardiovascular physiology developed by Arthur Guyton [34]. The tests were done on a 

cohort of 100 subjects that were virtually generated by randomly perturbing key 

parameters in Guyton’s model within a plausible range. Results were statistically 

analyzed to examine the performance of the control algorithm in an in-silico scenario. 

1.4 Goals and Outline 

In this thesis, an adaptive model-based closed-loop fluid resuscitation control 

algorithm is designed and tested, in the goal of achieving an autonomous fluid 

resuscitation system. The underlying physiological model used for controller design is 

an extension to an existing blood volume response to fluid infusion and hemorrhage 

model. The model is first investigated from a physiological standpoint, then examined 

for its ability to reproduce hemodynamic responses using experimental data from 23 

sheep. Later, a two-step control architecture using blood pressure feedback was later 

designed and tested on an in-silico testbed using a well-established model of human 

cardiovascular physiology on a cohort of 100 virtually generated patients. Finally, the 

tracking and estimation performance of the controller was evaluated under different 

measurement availability scenarios. 

The thesis is organized as follows. In chapter 2, we cover the details of the 

physiological model used for control design and its validation with experimental data. 

In chapter 3, we present the design procedure of the control algorithm and analyze its 
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stability properties. In chapter 4, we present the in-silico testing procedure of the 

proposed controllers. In chapter 5, we present the results of this study and investigate 

them from a statistical standpoint and finally conclude this work by summarizing the 

main results and outlining future work.  
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Chapter 2: Blood Volume-Blood Pressure Response to Fluid 

Infusion 

 In this chapter, we will present the structure of the physiological model that 

describes blood volume and mean arterial pressure response to fluid infusion and 

hemorrhage. We begin by giving a brief physiological background on the key 

mechanisms relating blood volume and mean arterial pressure changes to fluid 

infusion. Then, we describe the structure of the mathematical model in two parts: (i) 

blood volume response to fluid infusion and (ii) blood pressure response to blood 

volume perturbations. Finally, we examine the model’s validity by its ability to 

reproduce experimental data collected from 23 sheep. 

2.1 Physiological Background: Fluid Shift Mechanism 

 Perturbations in blood volume are caused by fluid infusion or hemorrhage (fluid 

loss). Bodily fluids are distributed between two main compartments: intracellular and 

extracellular [31], [35]. As the names suggest, intracellular fluid exists within the cell 

body while extracellular fluid exists outside the cells (figure 1). Extracellular fluid is 

further split into two compartments: interstitial fluid, which is the fluid between the 

cells in the tissue, and intravascular fluid which is the blood and plasma that flow in 

the arteries and veins. When fluid is gained or lost, fluid shifts between these 

compartments to maintain hemostasis. The shift mechanism and net fluid shift are 

determined by the permeability of vessels, the hydrostatic and oncotic pressure 

gradients. 
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Figure 1: Body fluids compartments 

Fluid shift occurs naturally depending on the body’s state. For example, during burn 

injury fluid shifts from intravascular to interstitial fluid to compensate for fluids lost in 

affected tissues. This causes intravascular fluid to decrease, lowering blood volume and 

blood pressure. Low blood volume can lead to hypovolemia which is treated with fluid 

infusion (fluid resuscitation) using isotonic fluids such as crystalloids or colloids [4]. 

Similarly, excessive fluid shift from intravascular to interstitial compartment can lead 

to hypervolemia or edema. This is treated using diuretics that decrease blood volume 

and cause fluid to shift back to intravascular compartment from interstitial one [36]. 

2.2 Modeling of Blood Volume Response to Fluid Infusion and Hemorrhage 

Given the complexity of the fluid shift mechanism, it is not easy to represent it 

mathematically in individual subjects. Current mathematical models that reproduce 

intravascular and interstitial volume changes in response to fluid infusion or loss are 

either black box models that lack physiological transparency and interpretability, or 

physiology-based first principle models that are complex and described by a large 

number of parameters. For such models, average values for parameters that are hard to 
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measure or estimate individually are used, which then makes the model not 

individualized but population-based [14]–[25].  

Recent work [26] presents a lumped-parameter model that is described using only four 

parameters, physiologically plausible and can be individualized for each subject. This 

model leverages the physiological principle that fluid shift between intravascular and 

interstitial compartments, can be regarded as the output of a hypothetical feedback 

controller (figure 2). The net fluid gain (or loss) act on the blood volume compartment 

to alter the blood volume which in turn alters the interstitial fluid volume. The complex 

physiological processes that cause the fluid shift are summarized by the two-way valve 

action. The valve action determines the amount of fluid flow between the two 

compartments 𝑞(𝑡) based the discrepancy between the target 𝑟𝐵(𝑡) versus actual blood 

volume change Δ𝑉𝐵(𝑡). The objective of the controller is to regulate the volume 

changes in intravascular and interstitial compartments at a target ratio of 1:𝛼 by 

retaining 1/(1 + 𝛼) fraction of the infused fluid in the intravascular compartment and 

shifting 𝛼/(1 + 𝛼) to the interstitial compartment. 

Infused fluids usually consist of electrolytes (crystalloids) such as Lactated Ringer’s 

solution or starch (colloids) such as Hextend, while lost fluids are usually plasma and 

red blood cells. Due to the difference in composition between infused and lost fluids, 

we denote the ratio between intravascular and interstitial volumetric changes in the 

steady state as 𝛼𝑢 in the case of fluid gain (infusion) and 𝛼𝑣 in the case of fluid loss 

(hemorrhage and urine). The block diagram of the model is shown in figure (3). 
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Figure 2: Control-theoretic blood volume response to fluid infusion model 

 

Figure 3: Block diagram of blood volume response to fluid infusion model 

The desired steady-state change in BV 𝑟𝐵(𝑡), is written as 

 𝑟𝐵(𝑡) =
1

1 + 𝛼𝑢
∫ 𝑢(𝜏)𝑑𝜏

𝑡

0

+
1

1 + 𝛼𝑣
∫ 𝑣(𝜏)𝑑𝜏

𝑡

0

 (2) 

where 𝑢(𝑡) is the rate of fluid infusion and 𝑣(𝑡) is the rate of fluid loss due to 

hemorrhage and urine. The inter-compartmental fluid shift is abstracted into the action 
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of a simple P-controller as a function of the discrepancy between the desired and actual 

changes in BV: 

 𝑞(𝑡) = 𝑞(𝑒𝐵(𝑡)) = 𝐾(𝑟𝐵(𝑡) − Δ𝑉𝐵(𝑡)) (3) 

where 𝐾 is the feedback gain specifying the speed of fluid shift. Finally, by 

conservation of volume in the intravascular compartment we find that the rate of change 

in Δ𝑉𝐵(𝑡) is given by: 

 Δ𝑉̇𝐵(𝑡) = 𝑢(𝑡) − 𝑣(𝑡) − 𝑞(𝑡) (4) 

Combining equations (2)-(4) gives the complete differential equation describing blood 

volume changes in response to infusion and hemorrhage: 

 Δ𝑉̈𝐵(𝑡) + 𝐾Δ𝑉̇𝐵(𝑡) = 𝑢̇(𝑡) − 𝑣̇(𝑡) + 𝐾 (
1

1 + 𝛼𝑢
𝑢(𝑡) −

1

1 + 𝛼𝑣
𝑣(𝑡)) (5) 

2.3 Modeling of Blood Pressure Response to Blood Volume Perturbations 

Perturbations in blood volume (BV) caused by fluid shift entail perturbations in 

stroke volume and cardiac output. Stroke volume (SV) is the amount of blood pumped 

by the left ventricle per heartbeat while cardiac output (CO) is the amount of blood 

pumped by the left ventricle per minute [37]. These two can be related through: 

 𝐶𝑂(𝑡) = 𝑆𝑉(𝑡) ∗ 𝐻𝑅(𝑡) (6) 

Moreover, venous return (VR) is defined as the amount of blood that returns to the right 

atrium per minute, which should be equal to cardiac output at steady state [31]. The 

effects of BV on SV and MAP are described from two complementary standpoints: (i) 

Arthur Guyton and his proposed cardiac output-venous return theory that relates 

changes in SV and CO, and hence BV, to blood pressure (specifically mean arterial 
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pressure MAP) through the total resistance of the veins and arteries (total peripheral 

resistance or TPR) [38] using the following equation: 

 𝐶𝑂(𝑡) =
𝑀𝐴𝑃(𝑡)

𝑇𝑃𝑅(𝑡)
 (7) 

From equation (7) we can express mean arterial pressure as: 

 𝑀𝐴𝑃(𝑡) = 𝐶𝑂(𝑡) ∗ 𝑇𝑃𝑅(𝑡) = 𝑆𝑉(𝑡) ∗ 𝐻𝑅(𝑡) ∗ 𝑇𝑃𝑅(𝑡) (8) 

Arterial elastance (𝐸𝑎) is defined as the product of heart rate and total peripheral 

resistance [31], [39]. Equation (8) then becomes: 

 𝑀𝐴𝑃(𝑡) = 𝐸𝑎(𝑡) ∗ 𝑆𝑉(𝑡) (9) 

(ii) The Frank-Starling mechanism with the left-ventricle pressure-volume loop theory 

dictates that changes in BV result in changes in SV and CO by altering the left ventricle 

end diastolic volume (LVEDV). This is described graphically in figure (4). 

 

Figure 4: Left-ventricular pressure-volume curve. Increased preload causes an increase in stroke volume, while 

increased afterload causes a decrease in stroke volume. 

Available data ([40], and figure(5)) suggests that a relationship exists between changes 

in stroke volume and changes in left ventricle volume, which in turn are affected by 

changes in blood volume. We propose to model this relationship between changes in 

SV and BV as: 
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 Δ𝑆𝑉(𝑡) = 𝐾𝑆𝑉(𝑡)Δ𝑉𝐵(𝑡) (10) 

where 𝐾𝑆𝑉 describes the sensitivity of SV to changes in BV. 

 

Figure 5: Sheep data shows a direct relationship between SV and BV 

Using equations (9-10), we can write: 

 

𝑀𝐴𝑃(𝑡) − 𝑀𝐴𝑃(0) = Δ𝑀𝐴𝑃(𝑡) = 𝐸𝑎(𝑡)𝑆𝑉(𝑡) − 𝐸𝑎(0)𝑆𝑉0 

Δ𝑀𝐴𝑃(𝑡) = (Δ𝑆𝑉(𝑡) + 𝑆𝑉0)𝐸𝑎(𝑡) − 𝑆𝑉0𝐸𝑎(0) 

Δ𝑀𝐴𝑃(𝑡) = Δ𝑆𝑉(𝑡)𝐸𝑎(𝑡) + 𝑆𝑉0𝐸𝑎(𝑡) − 𝑆𝑉0𝐸𝑎(0) 

Δ𝑀𝐴𝑃(𝑡) = 𝐾𝑆𝑉(𝑡)Δ𝑉𝐵(𝑡)𝐸𝑎(𝑡) + 𝑆𝑉0Δ𝐸𝑎(𝑡) 

Δ𝑀𝐴𝑃(𝑡) = 𝐾𝑆𝑉(𝑡)𝐸𝑎(𝑡)Δ𝑉𝐵(𝑡) + 𝑆𝑉0

Δ𝐸𝑎(𝑡)

Δ𝑉𝐵(𝑡)
Δ𝑉𝐵(𝑡) 

Δ𝑀𝐴𝑃(𝑡) = [𝐾𝑆𝑉(𝑡)𝐸𝑎(𝑡) + 𝑆𝑉0𝐾𝐸𝑎
(𝑡)]Δ𝑉𝐵(𝑡) 

(11) 
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where 𝐾𝐸𝑎
 is the sensitivity of changes in arterial elastance 𝐸𝑎(𝑡) to changes in blood 

volume (see figure (6)). 

 

Figure 6: Sheep data shows opposite relationship between Ea and BV 

The relationship between MAP and BV is now simply expressed as: 

 Δ𝑀𝐴𝑃(𝑡) = 𝐾𝑚𝑎𝑝(𝑡)Δ𝑉𝐵(𝑡) (12) 

where 𝐾𝑚𝑎𝑝(𝑡) = 𝐾𝑆𝑉(𝑡)𝐸𝑎(𝑡) + 𝑆𝑉0𝐾𝐸𝑎
(𝑡) is a time-varying gain that captures the 

relationship between changes in MAP and BV. Finally, the full mathematical model 

describing blood pressure response to fluid perturbations can be described using the 

following differential equation 

 
𝑑2

𝑑𝑡
(Δ𝑀𝐴𝑃(𝑡)) + 𝐾

𝑑

𝑑𝑡
(Δ𝑀𝐴𝑃(𝑡)) = 𝐾𝑚𝑎𝑝(𝑡) {[𝑢̇(𝑡) − 𝑣̇(𝑡)] + 𝐾 (

1

1 + 𝛼𝑢

𝑢(𝑡) −
1

1 + 𝛼𝑣

𝑣(𝑡))} (13) 
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2.4 Validation with Experimental Data 

 In the previous two sections, we provided the structure of the mathematical 

model of blood volume and blood pressure response to fluid infusion and hemorrhage. 

In this section, we validate the efficacy of this simple model and its ability to reproduce 

a set of experimental data collected from 23 sheep animals. Although model validation 

was done using sheep data, great similarities exist between human and sheep 

cardiovascular system which allow for control design for fluid infusion to human 

subjects. This section shows that a simple model with four parameters that can 

reproduce experimental data, is a valid choice for model-based control design. 

2.4.1 Experimental Data 

 The experimental data were collected from 23 sheep undergoing controlled 

intravenous blood volume perturbations caused by hemorrhage and fluid infusion. 

Measurements included rates of infusion and hemorrhage, urinary output (UO), blood 

volume (BV), cardiac output (CO), blood pressure (mean arterial pressure MAP) and 

heart rate (HR). The protocol followed in conducting the experiment was approved by 

the Institutional Animal Care and Use Committee (IACUC) at the University of Texas 

Medical Branch [40]. The duration of study for each animal was 180 min. After 

recording baseline data, initial hemorrhage of 25 mL/kg was performed over 15 

minutes. Fluid infusion was initiated 30 min after the start of the hemorrhage and 

continued for 150 minutes. Second and third hemorrhage of 5 mL/kg were performed 

50 and 70 min after the start of the initial hemorrhage respectively, and each continued 

for 5 min. Fluid infusion was done with a rule-based closed-loop controller [41], [42]. 
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Baseline BV (𝑉𝐵0) was measured via indocyanine green dye (ICG) [43]. Moreover, 

Hematocrit (Hct), which is defined as the ratio between red blood cell volume and BV, 

was measured before and through the experiment at 5 to 10 min intervals. Hct 

measurements were used to calculate 𝑉𝐵(𝑡) for each subject as follows: 

 

𝑉𝐵(𝑡) =
𝑉𝑅𝐵𝐶(𝑡)

𝐻𝑐𝑡(𝑡)
 

𝑉̇𝑅𝐵𝐶(𝑡) = −ℎ(𝑡)
𝑉𝑅𝐵𝐶(𝑡)

𝑉𝐵(𝑡)
 

(14) 

where ℎ(𝑡) is the rate of fluid loss, 𝑉𝐵(𝑡) = Δ𝑉𝐵(𝑡) + 𝑉𝐵0 and 𝑉𝑅𝐵𝐶(0) = 𝐻𝑐𝑡(0)𝑉𝐵0. 

Other hemodynamic responses were measured at same time instants. 

2.4.2 System identification 

 A fully individualized system identification of the proposed hemodynamic 

model is performed. The model described by equation (13) is a time-varying linear 

model. Identification of time varying models is not a trivial task, in fact most literature 

that exists in this domain [44], [45] use a method of sliding time windows of certain 

width T and perform GLS (general least squares) then average the values over all time. 

Other methods include variations of Kalman filter where the time varying parameters 

are assumed to be driven by white noise [46]. We propose an alternative “two-layer” 

method for recursively estimating the model parameters (see figure (7)). 
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Figure 7: Two-level identification scheme for the hemodynamic linear time-varying model 

The two-layer optimization problem was set up using MATLAB© (Natick, MA) 

optimization toolbox. In each loop of MATLAB’s “fmincon” solver, a guess for BV 

model parameters (𝛼𝑣, 𝛼𝑢, 𝐾) is given to solve for Δ𝑉̂𝐵(𝑡). This drives a recursive least 

squares estimator that solves for 𝐾̂𝑚𝑎𝑝(𝑡) using 

 𝐾̇̂𝑚𝑎𝑝(𝑡) = 𝛾Δ𝑉̂𝐵(𝑡|Θ){Δ𝑀𝐴𝑃(𝑡) − Δ𝑀𝐴𝑃̂(𝑡|Θ)} (15) 

From equation (15) we evaluate Δ𝑀𝐴𝑃̂(𝑡) as the product of 𝐾̂𝑚𝑎𝑝(𝑡) and Δ𝑉̂𝐵(𝑡). The 

optimization problem is solved for the optimal model parameters Θ∗ by minimizing the 

discrepancy between predicted and actual measurements: 

 Θ∗ = {𝛼𝑢
∗ , 𝛼𝑣

∗, 𝐾∗, 𝐾𝑚𝑎𝑝
∗ (𝑡)} = arg min

Θ
(‖

Δ𝑉𝐵(𝑡) − Δ𝑉̂𝐵(𝑡|𝜃)

Δ𝑉̅𝐵(𝑡)
‖

2

+ ‖
Δ𝑀𝐴𝑃(𝑡) − Δ𝑀𝐴𝑃̂(𝑡|𝜃)

Δ𝑀𝐴𝑃̅̅ ̅̅ ̅̅ ̅(𝑡)
‖

2

) (16) 

Note that Δ𝑉𝐵(𝑡) = 𝑉𝐵(𝑡) − 𝑉𝐵0 and Δ𝑀𝐴𝑃(𝑡) = 𝑀𝐴𝑃(𝑡) − 𝑀𝐴𝑃0 are the true values 

obtained from experimental data, Δ𝑉̅𝐵(𝑡) and Δ𝑀𝐴𝑃̅̅ ̅̅ ̅̅ ̅(𝑡) are the average values of the 
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true BV and MAP for all time respectively and finally, Δ𝑉̂𝐵(𝑡|Θ) and Δ𝑀𝐴𝑃̂(𝑡|Θ) are 

the model predicted values at each time 𝑡 and parameter estimates Θ. 

2.4.3 Results 

 Results of the proposed system identification procedure are shown in figure (8) 

and table (1). Figure (8) shows the true vs model-predicted BV, MAP and 𝐾𝑚𝑎𝑝(𝑡) for 

sheep (2,4,7,10,12,21). True values of 𝐾𝑚𝑎𝑝(𝑡) were obtained by dividing Δ𝑀𝐴𝑃/Δ𝑉𝐵. 

We can see that the model was able to reproduce the experimental data to high accuracy 

in sheep (2,4,10,21). However, for some sheep (like 7, 12), we can see that lack of 

excitation of the recursive LSE (i.e: Δ𝑉̂𝐵(𝑡) ≈ 0) caused inaccurate estimate for 

𝐾𝑚𝑎𝑝(𝑡) and hence Δ𝑀𝐴𝑃(𝑡). One way to correct this is to increase the adaptation gain 

𝛾 to higher values but risk fitting the noise in MAP data. Table (1) shows the results of 

model parameters (𝛼𝑢
∗ , 𝛼𝑣

∗ , 𝐾∗) for all 23 sheep as well as the RMSE for 𝐾𝑚𝑎𝑝(𝑡) 

estimation, MAP, and BV model predictions. When calculating RMSE for 𝐾𝑚𝑎𝑝(𝑡), 

numerical artifacts had to be taken care of when “true” 𝐾𝑚𝑎𝑝(𝑡) values goes to near 

infinite values. 
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Figure 8: System identification results on sheep #2, 4, 7, 10, 12, 21 
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Table 1: System identification results 

Sheep # 𝜶𝒖 𝜶𝒗 𝑲 
RMSE(𝑲𝒎𝒂𝒑) 

[mmHg/L] 
𝜸 

RMSE(𝑴𝑨𝑷(𝒕)) 

[mmHg] 

RMSE(𝑽𝑩(𝒕)) 

[L] 

1 1.129371 0.736503 0.499937 6.425082 1 2.014615 0.064235 

2 2.189056 0.350914 0.490442 0.267033 1 1.650505 0.035538 

3 3.91598 2.999968 0.083817 1.6172 50 0.662869 0.060583 

4 1.284306 0.405203 0.499873 0.403862 1 2.541623 0.037102 

5 3.167091 0.78169 0.499951 0.830554 1 2.042132 0.033807 

6 2.087496 1.277491 0.093277 6.0877 10 2.99855 0.03753 

7 2.744221 2.798947 0.248002 16.3350 100 5.786654 0.038327 

8 4.815708 0.92952 0.076127 5.9939 5 2.184243 0.06438 

9 2.975871 0.949318 0.04115 1.302951 2 1.077198 0.091531 

10 1.000036 0.319161 0.499991 0.584892 1 0.941307 0.044453 

11 1.281386 1.192153 0.499917 3.400212 2 2.217937 0.032405 

12 3.394052 1.027561 0.221095 2.3485 10 2.296417 0.028135 

13 4.998773 1.075419 0.497458 3.6221 10 5.064654 0.036192 

14 4.999959 0.113891 0.382841 0.447262 1 0.866377 0.061169 

15 4.999802 0.755961 0.499986 0.413542 2 1.306922 0.033568 

16 4.99991 0.435235 0.499956 13.49035 2 2.159152 0.069577 

17 4.994477 1.067425 0.265812 0.416419 1 1.421104 0.041934 

18 1.000029 2.332503 0.10981 4.236475 5 1.045553 0.033631 

19 3.91019 2.36292 0.14011 1.454657 1000 1.84302 0.025485 

20 2.144853 2.381776 0.152031 12.84891 1 4.483123 0.04187 

21 4.314586 1.508877 0.343047 0.436498 1 2.373437 0.023738 

22 3.470183 1.144868 0.499761 0.59534 1 2.317259 0.020845 

23 1.745179 1.443239 0.447935 0.365676 1 1.863951 0.026929 

mean 3.111414 1.234371 0.330101 3.648875 

 

2.224287 0.042738 

SD 1.445251 0.797916 0.175089 4.666218 

 

1.303912 0.017609 
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Chapter 3: Development of Control Algorithm 

 In this chapter, we will highlight the control design steps and analyze its 

stability properties. We begin by explaining the motivation behind our choice of 

adaptive control methodology, followed by a set of assumptions to accommodate the 

application of adaptive control theory to the hemodynamic model described in chapter 

2. Finally, details of the two-step control architecture are given, and its stability 

properties are analyzed. 

3.1 Why adaptive control? 

As shown in table (1), model parameters for 23 sheep are uncertain and lie 

within some range. This inter-subject (subject-to-subject) variability presented by 

parametric uncertainty in physiological models [32] can be addressed with the use of 

adaptive control theory. In adaptive control, an estimate of the uncertain plant 

parameters (or controller parameters) is obtained online from input-output data [27], 

[30], [47], [48]. These estimates are used in the control input to achieve a desired 

tracking performance despite the presence of disturbances, parameter uncertainty or 

unknown variations in plant parameters. 

Although robust control design techniques also account for uncertainty, the choice of 

adaptive control over robust control lies in the learning behavior of adaptive control 

systems through online estimation, especially for systems with constant or slowly 

varying parameters. This gives superior performance since adaptive control systems 

improve performance as adaptation goes on, while robust controllers try to keep 

consistent performance over time. Moreover, adaptive control does not require a-priori 
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information in contrast to robust control which requires some knowledge of parameter 

bounds. The control design followed below is a modification of a semi-adaptive model 

reference adaptive control (MRAC) scheme, where the change in MAP follows a first 

order reference model trajectory. 

3.2 Assumptions 

 To accommodate the application of control theory to the model described by 

equation (13), several assumptions must be made. First, the time-varying parameter 

𝐾𝑚𝑎𝑝(𝑡) is assumed to be constant or slowly varying parameter (𝐾𝑚𝑎𝑝(𝑡) ≈ 𝐾𝑚𝑎𝑝). 

Second, in the resuscitation scenario described later in section (4.1), the hemorrhage 

(typically unknown) is assumed to have taken place and was stopped before the 

resuscitation process takes place. Therefore 𝛼𝑣 and 𝑣(𝑡) will be omitted from equation 

(13). Moreover, the relationship between MAP and BV due to infusion is passive [49], 

which suggests that the sign of 𝐾𝑚𝑎𝑝(𝑡) is usually positive. That is, for patients that 

respond to fluid infusion by increasing blood volume, the result is an increase in blood 

pressure. If we consider the 23 sheep data from section (2.4), figure (9) clearly show 

that (𝐾𝑚𝑎𝑝) is positive during the resuscitation phase for most subjects that responded 

to fluid infusion. Sheep #4,9 and 10 are example of such non-responsive subjects that 

did not effectively respond to fluid infusion. 
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Figure 9: Sign (𝐾𝑚𝑎𝑝) during fluid resuscitation 

The mathematical model used for control design is now described by: 

 
𝑑2

𝑑𝑡
(Δ𝑀𝐴𝑃(𝑡)) + 𝐾

𝑑

𝑑𝑡
(Δ𝑀𝐴𝑃(𝑡)) = 𝐾𝑚𝑎𝑝 {𝑢̇(𝑡) +

𝐾

1 + 𝛼
𝑢(𝑡)} (17) 

where 𝛼 replaces 𝛼𝑢 in equation (13). Equation (17) is a linear time-invariant version 

of equation (13) and can be represented by a transfer function of the form 

 𝐺𝑝(𝑠) =
Δ𝑀𝐴𝑃(𝑠)

𝑢(𝑠)
= 𝐾𝑚𝑎𝑝

𝑠 +
𝐾

1 + 𝛼
𝑠2 + 𝐾𝑠

 (18) 

This plant transfer function meets all the assumptions (P1-P4) for MRAC control 

methodology [27] which are: 

- P1: Transfer function numerator 𝑍𝑝(𝑠) is a monic Hurwitz polynomial of 

degree 𝑚𝑝. 
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- P2: An upper bound 𝑛 on the degree 𝑛𝑝 of the transfer function denominator 

polynomial 𝑅𝑝(𝑠). 

- P3: The relative degree 𝑛∗ = 𝑛𝑝 − 𝑚𝑝 of 𝐺𝑝(𝑠) is known. 

- P4: The sign of the high frequency gain (𝐾𝑝 = 𝐾𝑚𝑎𝑝 in this case) is known. 

3.3 Two-Step Control Architecture 

 Inspired by previous work [50], the patient is assumed to have suffered 

hemorrhage which has been stopped and treated. After that, the resuscitation algorithm 

is initiated and it operates in two steps: (i) an initial bolus infusion is administered to 

the patient and Hct and MAP measurements are recorded and used to estimate the 

hemodynamic model parameters in equation (17). (ii) a model-reference adaptive 

controller (MRAC) built on the individualized model regulates the blood pressure of 

the patient while estimating 𝐾𝑚𝑎𝑝(𝑡) online. Although an adaptive control algorithm 

should individualize the hemodynamic model and estimate its parameters on its own, 

safe fluid infusion profiles prevents the algorithm from fulfilling persistent excitation 

(rich input signals) conditions. The proposed two-step architecture is intended to 

overcome such challenges by providing an accurate estimate of the model parameters 

through batch system identification in step (1), for the online parameter estimator to 

initialize from. Moreover, this simulation scenario only involves resuscitation only 

(i.e.: not RBC are lost). This allows for the approximation of Hct measurements by the 

following equation [51], preserving the linearity of the system: 

 
Δ𝑉𝐵(𝑡)

𝑉𝐵0
=

𝐻𝑐𝑡(0) − 𝐻𝑐𝑡(𝑡)

𝐻𝑐𝑡(𝑡)
 (19) 
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Figure (10) below shows how the two-step architecture of the control algorithm in 

further detail. 

 

Figure 10: Two-step control architecture 

3.3.1 Step (1): Batch System Identification 

 In step (1) described above, the patient receives a bolus infusion while the 

Hematocrit (equivalently 𝑦1(𝑡) = Δ𝑉𝐵(𝑡)/𝑉𝐵0 approximation) and MAP (𝑦2(𝑡)) 

measurements are recorded for 40 min. For each patient, these measurements are used 

to estimate the model parameters using batch system identification techniques. To 

identify the model parameters, equation (17) is first discretized using forward Euler 

approximation for differentiation, which gives: 
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Δ𝑀𝐴𝑃(𝑖 + 2) + (𝐾𝑇𝑠 − 2)Δ𝑀𝐴𝑃(𝑖 + 1) + (1 − 𝐾𝑇𝑠)Δ𝑀𝐴𝑃(𝑖)

= 𝐾𝑚𝑎𝑝𝑇𝑠 𝑢(𝑖 + 1) + [𝐾𝑚𝑎𝑝𝐾𝑇𝑠
2

1

1 + 𝛼𝑢
− 𝐾𝑚𝑎𝑝𝑇𝑠] 𝑢(𝑖) 

(20) 

where (𝑖) is the discrete-time index and (𝑇𝑠) is the sampling time. Optimal model 

parameters are then found by solving the following minimization problem 

 Θ∗ = {𝛼∗, 𝐾∗, 𝑉𝐵0
∗ , 𝐾𝑚𝑎𝑝

∗ } = arg min
Θ

(𝜔1‖𝑦1(𝑖) − 𝑦̂1(𝑖|Θ)‖2 + 𝜔2‖𝑦2(𝑖) − 𝑦̂2(𝑖|Θ)‖2) (21) 

where 𝑦̂1 and 𝑦̂2 refer to the model predicted fractional blood volume change and MAP 

change. The optimal values {𝛼∗, 𝐾∗, 𝑉𝐵0
∗ , 𝐾𝑚𝑎𝑝

∗ } minimize the weighted sum of norms 

of prediction errors in both 𝑦1 and 𝑦2. Note that, because of the approximation in (19), 

we require to estimate one more parameter in this setting (𝑉𝐵0), which represents the 

blood volume prior to the beginning of infusion. However, if only MAP measurements 

were available, then we solve for the following minimization problem: 

 Θ∗ = {𝛼∗, 𝐾∗, 𝐾𝑚𝑎𝑝
∗ } = arg min

Θ
‖𝑦

2
(𝑖) − 𝑦̂

2
(𝑖|Θ)‖

2
 (22) 

3.3.2 Step (2): Model Reference Adaptive Control 

 A model-reference adaptive controller is constructed using the estimated model 

parameters {𝛼∗, 𝐾∗, 𝑉𝐵0
∗ , 𝐾𝑚𝑎𝑝

∗ }. MRAC structure decomposes into two components: (i) 

the model reference control law (MRC) obtained by model matching, and (ii) the 

update law. In the design of a model reference control law, the control input is designed 

to have 𝑦2(𝑡) = Δ𝑀𝐴𝑃(𝑡) track a desired reference trajectory described by a first order 

reference model, given by the following transfer function 

 𝑊𝑚(𝑠) =
𝑦𝑚(𝑠)

𝑟(𝑠)
=

𝑎𝑚

𝑠 + 𝑎𝑚
 (23) 
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where 𝑦𝑚 is the desired time evolution of 𝑀𝐴𝑃(𝑡), 𝑎𝑚 is the model’s time constant of 

15 minutes and 𝑟 is the reference target value of Δ𝑀𝐴𝑃(𝑡) (i.e.: the desired change in 

MAP from the first measurement). The goal of MRC is to achieve perfect tracking by 

asymptotically driving the output tracking error 𝑒𝑡𝑟(𝑡) = 𝑦2(𝑡) − 𝑦𝑚(𝑡) to zero. The 

reference model in equation (23) also meets the reference model assumptions [27] 

which are: 

- M1: reference model transfer function numerator and denominator 

polynomials are monic Hurwitz polynomials of degree 𝑞𝑚, 𝑝𝑚 respectively 

where 𝑝𝑚 ≤ 𝑛. 

- M2: The relative degree 𝑛𝑚
∗ = 𝑝𝑚 − 𝑞𝑚 of is the same as that for 𝐺𝑝(𝑠). 

Now consider the following control law as shown in figure (11): 

 𝑢(𝑡) =
𝜃1

𝑠 + 𝜆
𝑢(𝑡) +

𝜃2

𝑠 + 𝜆
𝑦2(𝑡) + 𝜃3𝑦2(𝑡) + 𝜃4𝑟(𝑡) (24) 

 

Figure 11: Model-Reference Control law [27] 

where 𝜆 > 0. Substituting equation (24) in (18) gives the following closed-loop transfer 

function: 
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 𝑦2(𝑠) =
𝜃4𝐾𝑚𝑎𝑝 (𝑠 +

𝐾
1 + 𝛼) (𝑠 + 𝜆)

(𝑠 + 𝜆 − 𝜃1)(𝑠2 + 𝐾𝑠) − 𝐾𝑚𝑎𝑝 (𝑠 +
𝐾

1 + 𝛼) (𝜃2 + 𝜃3(𝑠 + 𝜆))
𝑟(𝑠) (25) 

For perfect model matching, the transfer function in (25) must be equal to the reference 

model transfer function (23). This is known as the certainty equivalence principle and 

is used to find the mapping between plant parameters and controller parameters. 

Equating the two transfer functions gives: 

 
𝑎𝑚

𝑠 + 𝑎𝑚
=

𝜃4𝐾𝑚𝑎𝑝 (𝑠 +
𝐾

1 + 𝛼) (𝑠 + 𝜆)

(𝑠 + 𝜆 − 𝜃1)(𝑠2 + 𝐾𝑠) − 𝐾𝑚𝑎𝑝 (𝑠 +
𝐾

1 + 𝛼) (𝜃2 + 𝜃3(𝑠 + 𝜆))
 (26) 

Solving equation (26) for the controller parameters 𝜃1, 𝜃2, 𝜃3, 𝜃4 yields: 

 

𝜃1 = 𝜆 −
𝐾

1 + 𝛼
 𝜃3 =

[𝐾 − 𝑎𝑚 − 𝜆]

𝐾𝑚𝑎𝑝
 

(27) 

𝜃2 =
[𝜆2 − 𝜆𝐾]

𝐾𝑚𝑎𝑝
 𝜃4 =

𝑎𝑚

𝐾𝑚𝑎𝑝
 

and the control law (24) becomes: 

 𝑢(𝑡) = (𝜆 −
𝐾

1 + 𝛼
)

𝑢(𝑡)

𝑠 + 𝜆
 +

1

𝐾𝑚𝑎𝑝

{[𝜆2 − 𝜆𝐾]
𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾 − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)} (28) 

However, true controller parameters 𝜃s are not known because true {𝛼, 𝐾, 𝐾𝑚𝑎𝑝} are 

unknown. Our best approximation to the control law so far is to replace the parameters 

{𝛼, 𝐾, 𝐾𝑚𝑎𝑝} with their batch system identification estimates {𝛼∗, 𝐾∗, 𝐾𝑚𝑎𝑝
∗ } from 

either (21) or (22), depending on available measurements. As described in chapter (2), 

𝛼 and 𝐾 are regarded as constant parameters and will be fixed at their batch system 

identification result {𝛼∗, 𝐾∗}. An online parameter estimate can now be applied to 
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estimate 𝜃 =
1

𝐾𝑚𝑎𝑝
 . True 𝜃 is replaced by its estimate 𝜃(𝑡) in the control law (28) to 

yield: 

 𝑢(𝑡) = (𝜆 −
𝐾∗

1 + 𝛼∗
)

𝑢(𝑡)

𝑠 + 𝜆
 + 𝜃(𝑡) {[𝜆2 − 𝜆𝐾∗]

𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)} (29) 

The update law for 𝜃(𝑡) is derived using Lyapunov theory in the following section 

3.4 Adaptive Law and Stability Analysis 

We investigate the stability of the adaptive law proposed in section (3.3) using the 

following Lyapunov analysis. The output 𝑦2 in figure (10) can be expressed as [30]: 

 𝑦2(𝑡) = 𝑦𝑚(𝑡) +
𝑎𝑚

𝑠 + 𝑎𝑚

𝐾𝑚𝑎𝑝

𝑎𝑚
𝜃̃(𝑡) {[𝜆2 − 𝜆𝐾∗]

𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)} (30) 

where 𝜃̃(𝑡) = 𝜃(𝑡) − 𝜃 denotes the parameter estimation error. Let the tracking error 

be 𝑒𝑡𝑟(𝑡) = 𝑦2(𝑡) − 𝑦𝑚(𝑡) so that: 

 𝑒𝑡𝑟(𝑡) =
𝑎𝑚

𝑠 + 𝑎𝑚

𝐾𝑚𝑎𝑝

𝑎𝑚
𝜃̃(𝑡) {[𝜆2 − 𝜆𝐾∗]

𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)} (31) 

For notational simplicity, let 

 𝜓(𝑡) = {[𝜆2 − 𝜆𝐾∗]
𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)} (32) 

For Lyapunov stability analysis we propose the following Lyapunov function 

 𝑉 (𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) =
1

2
𝑒𝑡𝑟(𝑡)2 +

1

2𝛾
𝐾𝑚𝑎𝑝𝜃̃(𝑡)2 (33) 

The time derivative of (32) is given by: 

 𝑉̇ (𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) = 𝑒𝑡𝑟(𝑡)𝑒̇𝑡𝑟(𝑡) +
1

𝛾
𝐾𝑚𝑎𝑝𝜃̃(𝑡)𝜃̇̃(𝑡) (34) 

The derivative of the tracking error is obtained by re-arranging equation (31) 
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 𝑒̇𝑡𝑟(𝑡) = −𝑎𝑚𝑒𝑡𝑟(𝑡) + 𝐾𝑚𝑎𝑝𝜃̃(𝑡)𝜓(𝑡) (35) 

Substituting (35) into equation (34) gives: 

 𝑉̇ (𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) = −𝑎𝑚𝑒𝑡𝑟
2 (𝑡) + 𝑒𝑡𝑟(𝑡)𝐾𝑚𝑎𝑝𝜃̃(𝑡)𝜓(𝑡) +

1

𝛾
𝐾𝑚𝑎𝑝𝜃̃(𝑡)𝜃̇̃(𝑡) (36) 

Since the assumption was made earlier that 𝐾𝑚𝑎𝑝(𝑡) is a constant or slowly varying 

parameter, then 𝜃̇̃(𝑡) = 𝜃̇(𝑡). To ensure negative definiteness of the time derivative of 

Lyapunov function, we choose the adaptation law of 𝜃(𝑡) as 

 𝜃̇(𝑡) = −𝛾𝑒𝑡𝑟(𝑡) {[𝜆2 − 𝜆𝐾∗]
𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)} (37) 

Plugging equation (37) back into (36) gives 

 𝑉̇ (𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) = −𝑎𝑚𝑒𝑡𝑟
2 (𝑡) ≤ 0 (38) 

Since 𝑉(𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) is positive definite and 𝑉̇(𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) is negative semi-definite, 

then 𝑉(𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) is bounded. Hence, the plant model (18) and the adaptation law 

(37) are globally stable and consequently, 𝑒(𝑡), 𝜓(𝑡) and 𝜃̃(𝑡) are bounded. Since 𝑒(𝑡) 

and 𝜃̃(𝑡) are bounded, then 𝑒̇(𝑡) is bounded as in (35). Moreover, since 𝑉̇(𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) 

is bounded, then 𝑉̈(𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) is also bounded and by invoking Barbalat’s lemma we 

find that 𝑉̇(𝑒𝑡𝑟(𝑡), 𝜃̃(𝑡)) is uniformly continuous and lim
𝑡→∞

𝑉̇ = lim
𝑡→∞

𝑒(𝑡) = 0. 

Therefore, stability of the proposed control algorithm is guaranteed. 

To evaluate the controller performance under different measurement availability 

scenarios, we will introduce composite adaptation terms into equation (35). First, we 

will make use of both fractional blood volume measurements 𝑦1 and MAP 

measurements 𝑦2 in the adaptation law as a combination of tracking error 𝑒𝑡𝑟(𝑡) =

𝑦𝑚(𝑡) − 𝑦2(𝑡) and 𝑦1-prediction error terms: 
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 𝜃̇(𝑡) = −𝛾1𝑒𝑡𝑟(𝑡)𝜓(𝑡) + 𝛾2 [𝑦1(𝑡) − 𝜃(𝑡)
𝑦2(𝑡)

𝑉𝐵0
∗ ]

𝑦2(𝑡)

𝑉𝐵0
∗  (39) 

The composite term in equation (39) is trying to minimize the input prediction error 

between true 𝑦1 and estimated 𝑦̂1 =
Δ𝑉𝐵

𝑉𝐵0
∗ =

𝑦2

𝐾̂𝑚𝑎𝑝(𝑡)𝑉𝐵0
∗ =

𝜃(𝑡)𝑦2

𝑉𝐵0
∗ . We refer to equation 

(39) as the 2-measurement composite adaptation scheme. 

Similarly, we will consider using MAP measurements only, which is more clinically 

plausible since fractional blood volume measurements are not easy to obtain. When 

only MAP measurements are available, we use an adaptation law that is a combination 

of tracking error 𝑒𝑡𝑟(𝑡) and input-prediction error (𝑢(𝑡) − 𝑢̂(𝑡)) instead of 𝑦1-

prediction error term. The composite term is derived by re-writing the plant’s input in 

terms of the controller parameters, and then use the gradient rule to minimize the input-

prediction error 𝑒𝑝𝑟,𝑢 [30]. 

 

𝑦2 = 𝐾𝑚𝑎𝑝

(𝑠 +
𝐾∗

1 + 𝛼∗)

𝑠(𝑠 + 𝐾∗)
𝑢  

1

𝐾𝑚𝑎𝑝
 

𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

 𝑦2 =
𝑢

𝑠
 

𝜃(𝑡)
𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2 =
𝑢

𝑠
 

(40) 

Define the input-prediction error term as 

 𝑒𝑝𝑟,𝑢(𝑡) = 𝜃(𝑡)
𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2(𝑡) −
𝑢(𝑡)

𝑠
 (41) 
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∴ 𝜃̇(𝑡) = −𝛾2 [
𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2] 𝑒𝑝𝑟,𝑢 

(42) 

We can now simply augment equation (37) with the composite term (equation 42) to 

get the following single-measurement composite adaptation scheme: 

 𝜃̇(𝑡) = −𝛾1𝑒𝑡𝑟(𝑡)𝜓(𝑡) − 𝛾2 [
𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2(𝑡)] (𝜃(𝑡)
𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2(𝑡) −
𝑢(𝑡)

𝑠
) (43) 

where 𝜓(𝑡) = {[𝜆2 − 𝜆𝐾∗]
𝑦2(𝑡)

𝑠+𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)}. 

To summarize, in this chapter we proposed a two-step control architecture to regulate 

MAP to a set-value following a reference model trajectory. In-silico simulation 

scenario assumes that a patient suffers hemorrhage which is then stopped and treated, 

after which a two-step resuscitation control algorithm is initiated. First step involves a 

bolus fluid infusion and measurement collection which are later used to individualize 

the underlying hemodynamic model. Then, a semi-adaptive model reference adaptive 

controller is built using the individualized model to regulate MAP to a set-value. The 

control law is given in equation (29), and is expressed as: 

 𝑢(𝑡) = (𝜆 −
𝐾∗

1 + 𝛼∗
)

𝑢(𝑡)

𝑠 + 𝜆
 + 𝜃(𝑡) {[𝜆2 − 𝜆𝐾∗]

𝑦2(𝑡)

𝑠 + 𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)}  

with the parameter 𝜃(𝑡) being the online estimate of 1/𝐾𝑚𝑎𝑝. To evaluate the 

performance of the controller and online estimation of 𝜃(𝑡) under different 

measurement availability scenarios, we proposed three versions for 𝜃(𝑡) update laws: 

• Plain MRAC:  

𝜃̇(𝑡) = −𝛾𝑒𝑡𝑟(𝑡)𝜓(𝑡) 
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• Single measurement composite adaption scheme:  

𝜃̇(𝑡) = −𝛾1𝑒𝑡𝑟(𝑡)𝜓(𝑡) − 𝛾2 [𝜃(𝑡)
𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2(𝑡) −
𝑢(𝑡)

𝑠
] (

𝑠 + 𝐾∗

𝑠 +
𝐾∗

1 + 𝛼∗

𝑦2(𝑡)) 

• 2-measurement composite adaptation scheme:  

𝜃̇(𝑡) = −𝛾1𝑒𝑡𝑟(𝑡)𝜓(𝑡) + 𝛾2 [𝑦1(𝑡) − 𝜃(𝑡)
𝑦2(𝑡)

𝑉𝐵0
∗ ]

𝑦2(𝑡)

𝑉𝐵0
∗  

where again, 𝜓(𝑡) = {[𝜆2 − 𝜆𝐾∗]
𝑦2(𝑡)

𝑠+𝜆
+ [𝐾∗ − 𝑎𝑚 − 𝜆]𝑦2(𝑡) + 𝑎𝑚𝑟(𝑡)}. In the next 

chapter, a rigorous in-silico evaluation of the proposed controller, with the 

corresponding three variations of the update law, is conducted using a highly nonlinear, 

well-known model of human cardiovascular physiology developed by Arthur Guyton 

[34].  
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Chapter 4:  In-Silico Evaluation of Proposed Controllers 

In this chapter, we will present a rigorous in-silico evaluation of the controllers 

discussed in chapter 3. First, we will explain the simulation resuscitation scenario, then 

we will show how the controllers perform on the same model used for control design 

(for proof of concept). For a more rigorous evaluation, we used a highly nonlinear, well 

established computer model of human cardiovascular physiology developed by Arthur 

Guyton [34] as basis for our in-silico testbed. Using this model, we generated a cohort 

of 100-virtual subjects by perturbing key model parameters within a physiological 

range. Results are analyzed and discussed in further detail in chapter 5. 

4.1 In-silico Testing Scenario 

The testing scenario is as follows: the patient is assumed to have lost blood (or 

fluid) prior to the resuscitation process, then after hemorrhage is treated and stopped, 

an initial bolus infusion is given followed by the closed loop control action (see figure 

(12)). For simulation purposes, the lost blood is assumed to be a total of 2.5L over a 

time period of 120 minutes. Then, 120 minutes after hemorrhage had taken place, we 

begin resuscitation by first infusing a fluid bolus of 0.5L for 30 minutes, then monitor 

the patient’s response for 10 minutes. During these 40 minutes, the patient’s fractional 

blood volume and mean arterial pressure data are collected and used in “step 1: batch 

system identification” (check section 3.3.1 above). Then, 160 minutes after the patient 

had experienced hemorrhage, the MRAC adaptive control law, built using the collected 

data, is initiated to regulate mean arterial blood pressure to some set-point given by the 

clinician (for simulation purposes, this set point is an increase of 30mmHg in MAP). 
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Figure 12: In-silico resuscitation scenario 

4.2 Proof of Concept of Proposed Control Law 

It is usually a good rule of thumb to test the controller on the same model used 

for controller design. Results are expected to be identical to what theory dictates in 

chapter 3, and the reason behind showing such results it to ensure that the controller 

works and help understand the controllers’ performance when tested on a more realistic 

(highly nonlinear) model later in this chapter. 

4.2.1 Plain MRAC and Single-Measurement Composite Adaptation Schemes 

As explained in chapter 3, we investigated different versions of the controller’s 

update law: (i) plain MRAC update law, (ii) single-measurement composite adaptation 

scheme and (iii) 2-measurement composite adaptation scheme. In this section we will 

show the results of testing the controller on the same simplified model used for 

controller design for the first two versions, i.e.: using plain MRAC and single-

measurement composite adaptation. For sake of simulation, model parameters were 

chosen within a physiological range as 𝛼 = 1.3478, 𝑉𝐵0 = 4.6043, 𝐾 = 0.0946 and 

𝐾𝑚𝑎𝑝 = 40. The reason for investigating the two cases together is that both update laws 
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use MAP measurements only, and therefore share the same procedure for step (1) batch 

system identification that solves for model parameters using (22). As seen in figure 

(13), the estimated parameters perfectly match the model parameters. 

 

Figure 13: Batch system identification results for plain MRAC and single-measurements case 

At this point the MRAC control law is initiated to regulate MAP to a set point of 30 

mmHg increase along with the adaptive laws (equations 37 and 40 respectively) to 

estimate 𝐾𝑚𝑎𝑝 online. The results of equation (37) shown in figure (14a) clearly show 

the effect of lack of information when using plain MRAC as opposed to using the 

single-measurement composite adaptation scheme in figure (14b) (equation 43). As 

reported in [52], the use of input-prediction error composite term in the adaptation rule 

clearly enhanced tracking performance as well as online estimation. 



 

 

 

36 

 

 

Figure 14: Tracking and online estimation performance for (a) plain MRAC and (b) single-measurement 

composite adaptation 

4.2.2 Two-Measurements Composite Adaptation Scheme 

Here we follow a similar procedure to the one followed in section 4.2.1, except 

that in the batch system identification step we use both measurements to solve for the 

model parameters 𝑉𝐵0, 𝛼, 𝐾, and 𝐾𝑚𝑎𝑝 as in equation (21). Again, the estimated 

parameters perfectly match the model parameters as seen in figure (15). The tracking 

and estimation performance, as given by equations (29, 39), is shown in figure (16). 

It is clear from figure (16) that availability of both sources of information (namely, Hct 

and MAP) allowed us to achieve perfect tracking of 𝐾𝑚𝑎𝑝(𝑡) online without requiring 

a persistently exciting input. 
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Figure 15: Batch system identification results for two-measurements case 

 

Figure 16: Tracking and online estimation performance in the presence of two measurements 

4.3 Guyton’s Model and Virtual Subjects Generation 

Arthur Guyton in [34] developed a computer simulation model as an analysis 

tool of the circulatory system designed specifically to study most of the important 
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factors that control arterial pressure. As seen in figure (17) the model is divided into 

eight sub-models: (1) circulatory dynamics, (2) interstitial fluid, (3) autoregulation, (4) 

sympathetic simulation, (5) kidney output, (6) pressure positive feedback, (7) function 

curve adaptation, and (8) angiotensin. Slight extensions were made to this model in 

order to accommodate the application of the proposed closed-loop fluid resuscitation 

control algorithm: (i) Introduce the capability of the model to simulate hemorrhage and 

resuscitation. Such blood volume changes were simulated by adding and subtracting 

fluid to the intravascular compartment directly. (ii) Incorporate plasma volume and red 

blood cells change that are required to calculate hematocrit Hct(t). 
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Figure 17: Guyton's computer simulation model of human circulatory system 
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The computer model proposed by Arthur Guyton has over 40 constant parameters 

describing the interactions between 8 intermediate subsystems that control the arterial 

pressure. Out of the 40 parameters, some are key “multiplier factors” which generally 

determine the physiology of the simulated patient. For example, Heart Strength (HS) 

represents the heart pumping capacity and is used to calculate cardiac output by 

multiplying it with sympathetic stimulation. Another example is Basic Arterial 

Resistance (RAB) which is used along with other signals to calculate TPR (total 

peripheral resistance) eventually. Table (2) summarizes the key parameters of Guyton’s 

model 

Table 2: Summary of Guyton's model key parameters 

Parameter Physiological Interpretation Parameter Physiological Interpretation 

RAB Baseline arterial resistance SYMKID 
Effects of sympathetic signals on 

kidney function multiplier 

HS Heart strength multiplier ANGVMC Angiotensin multiplier constant 

NN 
Fluid filtration from capillaries 

into tissue space multiplier 
ANGSHC 

Angiotensin renal function curve 

shift constant 

CV Capacitance venous tree VVOB 
Baseline unstressed venous 

volume 

 

By randomly perturbing these key parameters from their nominal values within a 

plausible physiological range, we generated a cohort of 100 virtual subjects, which will 

be used to conduct the in-silico testing. Guyton’s model is based on human physiology 

so it should be noted again that although we verified the proposed cardiovascular model 

using sheep data (section 2.4), the great similarities that exist between human and sheep 

cardiovascular physiology allow us to use our controller for human in-silico testing 
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scenarios. Figure (18) shows the samples that were drawn for the 100 virtual patients 

of the 8 key parameters. Also shown in figure (18) is the range of pre-hemorrhage blood 

volume [5-5.5 L] and mean arterial pressure [80-120 mmHg] for the 100 virtual 

subjects. 

 

 

Figure 18: Model parameters distribution and BV-MAP values for all 100 subjects 

To make the testing scenario as realistic as possible, the algorithm was implemented 

digitally with a sampling time of 0.5 min. Moreover, fractional blood volume and mean 

arterial pressure measurements were contaminated by adding a uniform random noise 

of sizable magnitude (+/- 0.01 and +/- 2 mmHg) respectively. This reflects the 

inaccuracy in blood hematocrit saturation and MAP measurements [53]. To dampen 

the effect of the measurement noise on the control algorithm, these measurements were 



 

 

 

42 

 

smoothed using 6-point moving average digital filter before being used in both steps of 

the control architecture. 

4.4 Simulation Results 

 In this section, we will show simulation results on Guyton’s model for a 

nominal subject (i.e: 5L pre-hemorrhage blood volume and 100mmHg pre-hemorrhage 

mean arterial pressure). 

 

Figure 19:In-silico simulation scenario of a nominal subject 

We can see from figure (19) that BV and MAP of the patient dropped to ~4.25L and 

~82mmHg after hemorrhage (T=240 min). The goal of the control algorithm is to raise 

the blood pressure of the patient by 30mmHg. During step (1) of the control architecture 

which starts at time (T=240 min), a bolus infusion is administered to the patient. This 

raises the blood volume and MAP to ~4.5L and ~88mmHg respectively. The data 

collected between T=240 and T=280 min is used to individualize the hemodynamic 

model using equations (21) or (22) depending on measurement availability. Then, 

MRAC control is initiated and the blood pressure is raised by 30mmHg (82 to 112 

mmHg) following a first order model trajectory with time constant of 15 min. Figures 

(20,21 and 22) show the infusion profile, MAP tracking performance and 𝐾𝑚𝑎𝑝 online 

estimation results for the three versions of the control algorithm (equations 37,39 and 

40) respectively. 
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Figure 20: Tracking performance, infusion profile, and online estimation of 𝐾𝑚𝑎𝑝 – plain MRAC scheme 

 
Figure 21: Tracking performance, infusion profile, and online estimation of 𝐾𝑚𝑎𝑝 – single measurement CAC 
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Figure 22: Tracking performance, infusion profile and online estimation of 𝐾𝑚𝑎𝑝 – two measurement CAC 

 

We can see from the figures above that tracking performance was achieved for all three 

versions of the control algorithm, while online estimation of 𝐾𝑚𝑎𝑝 was only possible 

when both measurements (Hct and MAP) were available (figure 22). However, it 

performed slightly worse in terms of tracking as evident of the more oscillatory 

behavior of the response. This is due to the tracking-estimation tradeoff in adaptive 

control. When more noisy measurements are being fed to the adaptation law to get 

better estimates, worse tracking performance is observed [54].  

From figures (20-21), contrary to what is expected by theory, plain MRAC scheme 

provided better online estimation performance than single-measurement composite 

adaptation scheme. This is due to the inaccurate estimates of 𝛼 and 𝐾 in the batch 

system identification step, which are used in the input prediction error composite term 

in equation (43). Further investigation supports this hypothesis. First, we realize that 

Guyton’s model does not have 𝐾, 𝛼 parameters explicitly so we try to find the “true” 𝐾 
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values by exciting the model using a rich signal (white noise) and performing system 

identification. “True” 𝛼 is found by its definition 𝛼 =
Δ𝑉𝐼𝑆𝐹

Δ𝑉𝐵
. Table (3) shows a sample 

result for “true” vs estimated 𝛼, 𝐾. Second, we check our hypothesis by plugging in the 

“true” values in the input prediction error term in equation (43). 

Table 3: True vs estimated K, 𝛼 values for one virtual patient 

 “True” values Batch SYSID results (eqn. 22) 

𝑲 0.0380 0.15 

𝜶 3.1937 5.999 

 

 
Figure 23: Comparison between the performance of single-measurement composite adaptation using "true" and 

estimated 𝛼 and 𝐾 

In figure (23), we can see that using “true” values we get better performance and online 

estimation than when using plain MRAC. This agrees with the discussion in 4.2.1. 
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In this chapter, we investigated the tracking and parameter estimation performance of 

a semi-adaptive controller under different measurement availability scenarios. Details 

of an in-silico test done on a highly nonlinear computer model of human cardiovascular 

system were shown. Results of the in-silico test on a nominal subject showed that our 

proposed control algorithm successfully tracked a first order reference model trajectory 

change in MAP. Moreover, depending on the quality and availability of measurements, 

we were able to estimate the time-varying parameter describing the relationship 

between BV and MAP. In the next chapter, we will provide a more detailed analysis of 

the results obtained from the in-silico testing over a cohort of 100 virtual patients and 

compare them from a statistical point of view.  
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Chapter 5:  Results, Discussion and Conclusions 

 In chapter 4, we presented the in-silico testing scenario and provided the results 

on a nominal patient for the control architecture under different measurement 

availability scenarios. Here, we will discuss a more rigorous test of the controller by 

running similar simulations on a cohort of a 100 virtually generated patients as 

discussed in section (4.3). Obviously, it is not feasible to show the results for all 100 

subjects, therefore, in this chapter we wish to quantify the tracking and estimation 

performance of the different versions of the adaptive controller. To do so, we analyze 

the results by conducting a statistical t-test and discuss the key features of the proposed 

controllers. 

5.1 Performance Error Metrics 

To quantify both tracking and estimation performance, we ought to use a 

common metric to evaluate the performance of computer-controlled infusion pumps, 

better known as Performance Error (PE) metrics [55]. In quantifying tracking 

performance of a controller, performance error is defined as the ratio of the discrepancy 

between reference model and actual MAP values, to the actual MAP values. 

 𝑃𝐸 =
𝑦𝑚 − 𝑦

𝑦
⋅ 100% (44) 

For quantifying online 𝐾𝑚𝑎𝑝(𝑡) estimation, performance error metric is defined as the 

ratio of the discrepancy between “true” 𝐾𝑚𝑎𝑝(𝑡) value and estimated 1/𝜃(𝑡) to the 

estimated 1/𝜃(𝑡). 
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 𝑃𝐸 =
𝐾𝑚𝑎𝑝(𝑡) − 1/𝜃(𝑡)

1/𝜃(𝑡)
⋅ 100% (45) 

Equations (44, 45) are used to define the following four measures, for the case of 

tracking and estimation independently: (i) Median Absolute Performance Error 

(MDAPE) which is a measure of inaccuracy. 

 𝑀𝐷𝐴𝑃𝐸 = median {|𝑃𝐸|} (46) 

 (ii) Median Performance Error (MDPE): a measure of “bias”. This a signed value and 

represents how much the output (or parameter) overshot or undershot its true values. 

 𝑀𝐷𝑃𝐸 = median {𝑃𝐸} (47) 

 (iii) Divergence: the slope obtained from linear regression of the absolute PE against 

time. This measure describes the time-related trend of the actual versus estimated 

values. 

 Divergence =  
(∑ |𝑃𝐸𝑖| ⋅ 𝑡𝑖

𝑁
𝑖=1 ) − (∑ |𝑃𝐸𝑖|

𝑁
𝑖=1 )(∑ 𝑡𝑖

𝑁
𝑖=1 )/𝑁

∑ 𝑡𝑖
2𝑁

𝑖=1 − (∑ 𝑡𝑖
𝑁
𝑖=1 )2/𝑁

 (48) 

 (iv) Wobble: a measure of inter-subject variability as well as an indicator of time-

related changes in tracking or estimation performance. 

 Wobble = median {|𝑃𝐸 − 𝑀𝐷𝑃𝐸|} (49) 

5.2 Tracking Performance Results 

In this section, we will compare the tracking performance of all three versions of the 

proposed controller. We begin by using equation (44) to calculate the PE, then evaluate 

the four metrics explained in section 5.1. In particular, for every patient of the 100 

virtual patients, we run the in-silico simulation and collect the output data (𝑦2) as well 

as (𝑦𝑚) then calculate MDAPE, MDPE, Divergence and Wobble for each  patient. 
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Finally, the results of each controller for all subjects are reported in Table (5) which 

shows the mean and standard deviation of all the results. 

Table 4: Summary of performance error metrics for tracking performance 

Metric (mean +/- 

SD) 

2-measurement 

adaptation scheme 

Single-measurement 

adaptation scheme 
Plain MRAC 

MDAPE [%] 2.886 +/- (1.007) 2.546 +/- (0.72) 2.507 +/- (0.829) 

MDPE [%] 1.741+/- (1.399) -0.698 +/- (1.695) -1.474 +/- (1.201) 

Divergence [%/min] -0.082+/- (0.042) -0.096 +/- (0.063) -0.096 +/- (0.066) 

Wobble [%] 2.043+/- (0.368) 2.498 +/- (0.829) 2.417 +/- (0.836) 

 

The results suggest that the tracking accuracy (MDAPE) of the three controllers, 

although comparable, was significantly different depending on measurement 

availability. Generally, the controller was able to track a first order model change to a 

desired set point successfully. However, when more information is fed to the controller, 

tracking performance slightly deteriorates in exchange of enhanced estimation. MDPE 

results suggest that 2-measurement adaptation scheme overshot (on average) the 

predetermined set point, while single-measurement schemes undershot it. Divergence 

was not significantly different between the three controllers, indicating that there were 

no abnormal time trends and that all controllers successfully tracked the first order 

model trajectory. Finally, results also show how 2-measurement adaptation scheme was 

significantly better in adapting to inter-subject variability as measured by the Wobble 

metric. To make such a conclusion, the following t-test provide a better insight. Using 

MATLAB’s (Mathworks, Natick, MA) one-way analysis of variance tools “ANOVA1” 

and “multicompare”, we got the results of pairwise comparison results for the four 
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metrics (MDAPE, MDPE, Divergence and Wobble). Figures (24-27) show the results 

of this analysis. 

 

Figure 24: Statistical t-test results for tracking performance MDAPE metric 

 

Figure 25: Statistical t-test results for tracking performance MDPE metric 
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Figure 26: Statistical t-test results for tracking performance Divergence metric 

 

Figure 27: Statistical t-test results for tracking performance Wobble metric 

5.3 Estimation Performance Results 

 In this section, we quantify the online estimation performance of the three 

adaptation schemes. The same performance error metrics are followed, that is: we use 

equation (45) to calculate PE, then evaluate MDAPE, MDPE, Divergence and Wobble 
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for each patient. Following the same procedure in 5.2, the table below lists the mean 

and standard deviation of the PE metrics for all three adaptation schemes. 

Table 5: Summary of performance error metrics for estimation performance 

Metric (mean +/- 

SD) 

2-measurement 

adaptation scheme 

Single-measurement 

adaptation scheme 
Plain MRAC 

MDAPE [%] 0.051 +/- (0.032) 0.517 +/- (0.052) 0.331 +/- (0.119) 

MDPE [%] 0.031 +/- (0.051) -0.517 +/- (0.052) -0.326 +/- (0.132) 

Divergence [%/min] 0.000 +/- (0.000) 0.001 +/- (0.001) -0.001 +/- (0.001) 

Wobble [%] 0.009 +/- (0.001) 0.021 +/- (0.007) 0.015 +/- (0.006) 

 

The results suggest that availability of two measurements is best for online estimation, 

which is expected because we have more information about the system. However, as 

opposed to what is expected by the theory presented in chapter 3, the plain MRAC 

provides better estimates for online estimation of 𝐾𝑚𝑎𝑝(𝑡) rather than the single-

measurement composite adaptation scheme. This is due to the presence of inaccurate 

𝛼, 𝐾 in the input prediction error composite term that caused deteriorated estimate of 

𝜃(𝑡) and hence 𝐾𝑚𝑎𝑝(𝑡) (see discussion in section 4.4). Also, we can see from table 

(5) that divergence metric for 2-measurement composite adaptation scheme was 0, 

which indicates that we managed to maintain perfect online parameter estimation for 

all subjects as indicated by the wobble metric as well (the estimation algorithm also 

adapted to inter0subject variability). To further analysis this hypothesis, we conducted 

a one-way analysis of variance test, the results of which are presented in the figures 

below. 
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Figure 28: Statistical t-test results for estimation performance MDAPE metric 

 

Figure 29: Statistical t-test results for estimation performance MDPE metric 
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Figure 30: Statistical t-test results for estimation performance Divergence metric 

 

Figure 31: Statistical t-test results for estimation performance Wobble metric 

5.4 Conclusions and Discussion 

In this work, we proposed an extension to an existing hemodynamic model of 

blood volume response to fluid infusion to include mean arterial pressure response to 

blood volume perturbation. We used this 5-parameter linear model to develop three 
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versions of a two-step semi-adaptive closed loop control algorithm for the development 

of an autonomous fluid resuscitation system and investigated them under different 

measurement availability scenarios. To evaluate the performance of the control 

algorithms, we conducted an in-silico test on a highly non-linear, well-established 

computer model of cardiovascular system (Guyton’s model) on a cohort of 100 

virtually generated patients. The virtual patients were generated by randomly 

perturbing eight key parameters of the model within a physiological range. The results 

were presented in chapter 4, and the following two points were observed: 

1) The use of two-measurements adaptation scheme provides slightly worse (more 

oscillatory) tracking performance to reference model trajectories, than when 

using single-measurement adaptation schemes. 

2) The use of two-measurements adaptation scheme provides better (perfect) 

online estimation of model parameter 𝐾𝑚𝑎𝑝(𝑡), than when using single-

measurement adaptation schemes. 

These two points indicate that a trade-off between tracking and estimation performance 

exists in adaptive control algorithms. This is due to the adaptation-noise rejection 

tradeoff in the adaptation algorithm and the fact that the two-measurement adaptation 

scheme is exposed to more error sources than its counterparts. 

Statistical test done on results of an in-silico test of the control algorithm for 100 virtual 

patients, supports the existence of such trade-off between tracking and estimation 

performance. The deterioration in tracking performance, although small in terms of 

performance error (average increase of ~0.3%), was significant when compared to the 

tracking performance of single-measurement schemes (p<0.015). 
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5.5 Future Work 

 The extension of the hemodynamic model to include mean arterial pressure 

response to blood volume perturbations was described using a time-varying parameter 

𝐾𝑚𝑎𝑝(𝑡), which is intended to capture the sensitivity of SV and 𝐸𝑎 changes to BV 

changes. One important assumption in the development of this control algorithm was 

the assumption that 𝐾𝑚𝑎𝑝(𝑡) is generally positive during fluid resuscitation. However, 

this assumption is not true for subjects that are not responsive to fluid resuscitation. 

This is one limitation of the case of single-measurement adaptation scheme, which will 

be addressed in future work. Second, physiological interpretability was not strictly 

made since 𝐾𝑚𝑎𝑝(𝑡) describes the responsiveness of the patient to fluid infusion and it 

does not have an exact counterpart in physiology literature. However, it is 

physiologically plausible: for example, high 𝐾𝑚𝑎𝑝(𝑡) values indicate high 

responsiveness of MAP during fluid infusion. 

Online estimation of 𝐾𝑚𝑎𝑝(𝑡) is useful for learning more about the responsiveness of 

the patient to fluid infusion. This can be incorporated in the design of an autonomous 

set point selection controller where the need for the clinician to enter a specified set 

point is not required, but rather a set of upper and lower bounds that should not be 

exceeded. To get almost perfect estimates of 𝐾𝑚𝑎𝑝(𝑡), we require the availability of 

both MAP measurements and Hct measurement, which highly affects the estimates of 

𝑉𝐵0
∗  in equation (39). Hct measurements are hard to obtain in clinical scenarios but 

would be achievable with the advancement of blood volume monitoring and measuring 

devices.  
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Finally, this controller can potentially be used in a Hardware-in-the-Loop (HIL) test to 

evaluate the robustness and accuracy of such controllers under more practical 

scenarios.  
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Appendices 

Appendix (A): Model Fitting Results to Experimental Data  
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