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Chapter 1

Introduction

1.1 Stochastic Volatility

The modern asset pricing theories are dominated by the idea that higher risk

should be compensated by higher return of investments. Volatility, which essentially

measures the level of fluctuation in the underlying asset’s return, serves as an impor-

tant thermometer of risk. Stochastic volatility models deal with the time-varying

volatility in financial markets and enable us to capture, for example, empirically

observed departures from the Black-Scholes-Merton model for financial options and

could be applied in a variety of areas such as pricing derivatives which are written

on the volatility and related quantities.

The first discrete time stochastic volatility model was proposed by Taylor

(1982) where the assets returns are modeled as:

ri = µ + σiǫi, (1.1)

where ri, i = 1, ..., n are the daily returns, µ is the mean return of ri and ǫi are i.i.d

random variables with zero mean and unit variance. The volatility coefficients σi
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follow a log-autoregressive process independent of ǫi. More specifically,

σi = exp(ζi/2),

ζi+1 = µ + φ(ζi − µ) + ηi, (1.2)

ηi ∼ NID(0, σ2
η).

So this model contains a two-dimensional Markovian process and volatility is

described as a latent stochastic process. It is different from the famous Autoregres-

sive Conditional Heteroskedasticity Model (ARCH) of Engle (1978) and Generalized

Autoregressive Conditional Heteroskedasticity model (GARCH) of Bollerslev (1986).

Although this stochastic volatility has a simple structure, its realistic and innovative

description of the volatility process has raised much academic and industrial interest

and inspired a sizable amount of literature studying its econometric properties and

other relevant issues. Among those are Jacquier et al. (1993), Taylor (1986), Taylor

(1994), Shephard (1996) and Chernov and Ghysels (1999).

A well-documented fact about stock returns and implied/realized volatility is

that volatility tends to increase when the stock price falls. A standard explanation

ties this phenomenon, which is also called Leverage Effect, to the effect that a change

in market valuation of a firm’s equity has on the degree of leverage1 in its capital

structure, with an increase in leverage producing an increase in stock volatility.

Leverage effect was studied by Black (1976) and motivated the introduction of the

exponential-GARCH model of Nelson, the threshold ARCH model of Glosten et al.

(1993) and Quadratic GARCH model of Sentana (1995). The economic theory of

1Leverage is defined as the ratio of a firm’s debt to equity in its balance sheet.
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these effects is discussed by Campbell and Kyle (1993).

Research on continuous time stochastic volatility can be tracked back to Clark

(1973), which introduced the concept of stochastic volatility to financial economics.

Johnson (1979) applied a continuous time stochastic volatility model to study the

pricing of options. Heston (1993) introduced stochastic volatility model to describe

returns as diffusions with stochastic volatility described by an Ornstein-Uhlenbeck

process. The model accommodates a stationary and mean-reverting volatility dy-

namic and also it incorporates the leverage effect through the negative correlation

between the return and volatility which can be expressed in the following stochastic

differential equations:

dSt = µSdt +
√

σtSdz1,t,

dσt = β(ν − σt)dt + δ
√

σtdz2,t, (1.3)

where St is the spot asset price and z1,t and z2,t are two correlated Wiener processes

with instantaneous covariance ρdt =< dz1(t), dz2(t) >.

It has been widely agreed that models built only upon continuous process

cannot fully explain the extraordinary movements of asset prices and therefore it

is critical to incorporate jumps into the model. That led to the development of

a series of jump diffusion models. Among them, Bates (1996) added a Poisson

process in addition to a diffusion process of returns. Barndorff-Nielsen and Shephard

(1999) extended it by replacing the Poisson jumps with a more generic Lévy process

and assumed the volatility is completely jump-driven. The jump-diffusion model
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describes the return process r(t) as follows,

drt = {µ + βσ2
t }dt + σtdωt + ρdz̄(λt),

d(σ2
t ) = −λσ2

t dt + dz̀(λt), (1.4)

where ω is the Wiener process, z̄t = z̀t − E(z̀t) is the compensated Lévy process

corresponding to z̀ , λ is the event rate of the Poisson process and σ2
t follows an

Ornstein-Uhlenbeck process defined also in term of z̀ by the stochastic differential

equation (1.4).

Geman et al. (2001) suggest that price processes for financial assets must have

a jump component but they need not have a diffusion component. The use of jump

processes with an infinite arrival rate, such as Madan and Miline (1991) and the

variance gamma process of Madan et al. (1998), can encompass the contribution of

any diffusion component. Their argument is based on regarding all pricing processes

as Brownian motion subordinated to a random clock and regarding the clock as

a cumulative measure of economic activity, as conjectured by Clark (1973). The

randomness of the clock process induces stochastic volatility and because time is

increasing, the random clock can be modeled as a pure jump increasing process, as

an efficient alternative to a time integral of a positive diffusion process. Therefore

the diffusion part is just redundant.

Carr et al. (2003) continued to propose a more generic class of stochastic

volatility Lévy processes based on three homogeneous Lévy processes (NIG, VG

and CGMY models ). Stochastic volatility is generated by subordinating a Lévy

process to the time integral of an Ornstein-Uhlenbeck process, for example, the CIR
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process of Cox et al. (1985).

1.2 Discrete time stochastic volatility model with local skewness and

kurtosis

The empirical success of stochastic volatility models is not maintained when

one considers pricing volatility products. The value of options written on realized

variance is determined by the cumulative variance of returns and thus by higher

moments of the return distribution. Most stochastic volatility models show decreas-

ing kurtosis as term increases. For example, for a stochastic volatility Lévy process,

skewness is inversely proportional to the square root of term and kurtosis is inversely

proportional to the term. This implies that the value of the option on realized vari-

ance also decreases with the same speed. In contrast, the real prices observed in the

market often suggest different or even opposite patterns.

This dissertation proposes a solution to this problem by turning to a discrete

time model and using a new generic distribution to describe the local innovation

process. In the new model the returns are driven by the product of a non-Gaussian

innovation and a stochastic volatility coefficient. Therefore besides stochastic volatil-

ity, the new model introduces another source of non-Gaussian kurtosis and skewness

and the overall effect is that as term increases the kurtosis accumulates rather than

diminishes.
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1.3 Estimation

As the model introduced in this dissertation belongs to the wide class of non-

linear state-space models, classical parameter estimation is difficult due to lacking

the tractable form of the likelihood. To solve the estimation problem we apply

an EM algorithm of Dempster et al. (1977), enhanced by the Markov chain Monte

Carlo ( MCMC ) and particle filter techniques for efficient computations of posterior

distribution.

This dissertation also explores another modeling issue in reducing the com-

putational cost of estimation. Unlike continuous time models, discrete time models

give us the freedom to have different frequencies for the changing of return and

volatility. A lower frequency of volatility change will significantly reduce the dimen-

sions of numerical integration required for calculation of the likelihood function and

therefore improve the speed of estimation. To explore the optimal frequency we can

compare the fitting performance of models with different frequencies of volatility

change.

1.4 Organization of this dissertation

The dissertation is organized as follows. Chapter 2 introduces the new stochas-

tic volatility model that incorporates major features intended for financial appli-

cations. Chapter 3 describes the method of estimating in our model using the

Expectation-Maximization algorithm and the Particle Filter sampling technique.

We explore the issue of frequency of volatility change and study methods of detect-
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ing optimal frequency using two different types of information criteria for model

selection. Chapter 4 applies the new model in pricing volatility products. This is

achieved by combining the distribution of volatility projected from estimated models

with concave distortions based on coherent risk measure theory. Chapter 5 explores

an application of the model in portfolio optimization. Chapter 6 summarizes the

research, makes conclusions, and discusses possible future work.
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Chapter 2

Model Structure

In this chapter we address a number of issues in building a stochastic volatility

model. First, the volatility coefficient in the return process is represented by a

mean-reverting and non-Gaussian process. Secondly, to bring non-zero skewness and

kurtosis to the conditional distribution of returns, we propose a new distribution

which is based on adapting a continuous Levy process to unit time. Thirdly, the

negative correlation between price and volatility is built into the volatility process

through a deterministic function of asset returns. Finally, an issue in the research

on stochastic volatility models, which is about the discrepancy in the frequencies of

volatility and return, is explored and we also discuss its significance in improving

the computational efficiency.

The return of an underlying asset is defined as the change of the logarithm of

asset price:

rt = log St+1 − log St, (2.1)

where St is the asset’s price at time t, t = 1, ...., T .
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We assume that rt follows a process of the form,

rt = µh + σtxt + g(σt),

σ2
t = σ′2

t Vth, (2.2)

where µ is the mean rate of the return and h is the time interval between two

observations. The process xt is the independent innovation process with a flexible

marginal distribution that has non-Gaussian properties such as non-zero skewness

and kurtosis. We will introduce a new distribution which is devised by adapting

the variance gamma (VG) process of Madan and Seneta (1990) and Madan and

Miline (1991) to unit time. The resulting distribution parsimoniously satisfies the

requirements.

The volatility coefficient σt consists of two parts: σ′
t is a deterministic function

of returns rt through which the leverage effect is introduced. Vt is a mean-reverting

stochastic process that we will introduce more details in the following sections.

Overall the product σ′2
t Vth is the cumulative variance in one time period.

The function g(z) in the return equation is defined as

g(z) = − log Φxt(z) (2.3)

where Φxt(z) = E(ezxt) is the moment generating function of xt. By adding g(σt)

to the return process, the conditional martingale property of the discounted asset

9



price e−tµhSt is satisfied:

E(St+1|St, σt) = Ste
µhE[eσtxt|σt]

= Ste
µheg(σt)Φxt(σt)

= Ste
µh. (2.4)

2.1 Double Gamma Stochastic volatility

The volatility component should possess a couple of properties such as non-

negativity and mean-reversion. One model that satisfies these requirements was pro-

posed by Barndorff-Nielsen and Shephard (2001), where a non-Gaussian Ornstein-

Uhlenbeck process is employed in the volatility processes. However since it was

built as a continuous time model and the discretization cannot guarantee the non-

negativity, this method cannot be directly applied to discrete time settings.

In our model, the stochastic part of the volatility process is specified as follows:

Vt+1|Vt ∼ Gamma(d, λVt + κ), (2.5)

where d and λVt + κ are, respectively, the scale parameter and the shape parameter

of the conditional Gamma distribution of Vt+1. The conditional density function of

Vt+1 given Vt is:

fVt+1(v|Vt) =
dλVt+κ

Γ(λVt + κ)
vλVt+κ−1e−dv. (2.6)

It follows that the conditional expectation and volatility of Vt+1 given Vt are

both affine functions of Vt.
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Lemma 1 Given Vt, the mean, variance, skewness and kurtosis of Vt+1 are

E(Vt+1|Vt) =
λ

d
Vt +

κ

d
,

V ar(Vt+1|Vt) =
λ

d2
Vt +

κ

d2
, (2.7)

Skewness(Vt+1|Vt) =
2√

λVt + κ
,

Kurtosis(Vt+1|Vt) =
6

λVt + κ
.

To separate the controls of the speed of mean-reversion and the overall vari-

ance of volatility, we can refine the above structure by replacing κ in the conditional

distribution of Vt+1 by a random variable ut, which follows another Gamma distri-

bution.

Definition 1 The Double Gamma Process is a process Vt defined as follows:

Vt+1|Vt, ut+1 ∼ Gamma(d, λVt + ut+1),

ut+1 ∼ Gamma(c, γ), (2.8)

where ut are i.i.d random variables that follow a Gamma distribution whose pdf

f(ut) is defined as:

f(ut) =
cγ

Γ(γ)
uγ−1

t e−cut. (2.9)

By integrating ut+1 out of the conditional distribution of Vt+1 we have the

conditional expectation and variance for the new process.

Lemma 2 The first and second moments of Vt+1 given Vt are

E(Vt+1|Vt) =
λ

d
Vt +

γ

cd
, (2.10)

V ar(Vt+1|Vt) =
λ

d2
Vt +

γ

cd2
+

γ

c2d2
. (2.11)
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The proof is trivial using the properties of the Gamma distribution.

Lemma 3 For t ≥ 1, the mean and variance of Vt given V0 are

E(Vt|V0) = atV0 + b
1 − at

1 − a
, (2.12)

V ar(Vt|V0) =

(
at−1 1 − at−1

1 − a
+ a2(t−1)

)
lV0 + q

1 − a2t

1 − a2

+
bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)
, (2.13)

where the coefficients a, b, l and q are defined as

a =
λ

d
, b =

γ

cd
, l =

λ

d2
, q =

γ

cd2
+

γ

c2d2
.

Proof: for t = 2, 3, we have:

V ar(V2|V0) = E(V ar(V2|V1)|V0) + V ar(E(V2|V1)|V0)

= E(lV1 + q|V0) + V ar(aV1 + b|V0)

= lE(V1|V0) + a2V ar(V1|V0) + q

V ar(V3|V0) = E(V ar(V3|V2)|V0) + V ar(E(V3|V2)|V0)

= E(lV2 + q|V0) + V ar(aV2 + b|V0)

= lE(V2|V0) + a2V ar(V2|V0) + q

= lE(V2|V0) + a2(lE(V1|V0) + a2V ar(V1|V0) + q) + q. (2.14)
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Recursively we can generalize V ar(Vt|V0) for t ≥ 1

V ar(Vt|V0)

=l
t−1∑

i=1

a2(t−1−i)E(Vi|V0) + a2(t−1)V ar(V1|V0) + q
t−1∑

i=1

a2(i−1)

=l

t−1∑

i=1

a2(t−1−i)

(
aiV0 + b

1 − ai

1 − a

)
+ a2(t−1)(lV0 + q) + q

t−1∑

i=1

a2(i−1)

=

(
at−1 1 − at−1

1 − a
+ a2(t−1)

)
lV0 +

bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)

+ q
1 − a2t

1 − a2
.

Lemma 4 For t ≥ 1 and an integer p > 0, the covariance of Vt and Vt+p given V0

is

cov(Vt, Vt+p|V0) = AV0 + B, (2.15)

where the coefficients A and B are defined as

A = at+p−1l
1 − at−1

1 − a
+ a2(t−1)+pl,

B = apq
1 − a2t

1 − a2
+ ap bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)
.
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Proof:

Cov(Vt+p, Vt|V0) = E(Vt+pVt|V0) − E(Vt+p|V0)E(Vt|V0)

= E(E(Vt+p|Vt)Vt|V0) − E(Vt+p|V0)E(Vt|V0)

= E(apV 2
t + b

1 − ap

1 − a
Vt) −

(
at+pV0 + b

1 − at+p

1 − a

)(
atV0 + b

1 − at

1 − a

)

= ap
[
V ar(Vt|V0) + E2(Vt|V0)

]
+ b

1 − ap

1 − a
E(Vt|V0)

−
(

at+pV0 + b
1 − at+p

1 − a

)(
atV0 + b

1 − at

1 − a

)

= ap

(
at−1 1 − at−1

1 − a
+ a2(t−1)

)
lV0 + ap bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)

+ apq
1 − a2t

1 − a2
+ ap

(
atV0 + b

1 − at

1 − a

)2

+ b
1 − ap

1 − a

(
atV0 + b

1 − at

1 − a

)

−
(

at+pV0 + b
1 − at+p

1 − a

)(
atV0 + b

1 − at

1 − a

)

=

(
at+p−1l

1 − at−1

1 − a
+ a2(t−1)+pl

)
V0 + apq

1 − a2t

1 − a2

+ ap bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)
.

Lemma 5 (i) Assume that the initial variance V0 follows a distribution with mean

µ0 and variance σ2
0. Then the unconditional mean and variance of Vt are

E(Vt) = atµ0 + b
1 − at

1 − a
, (2.16)

V ar(Vt) =

[
at−1 1 − at−1

1 − a
+ a2(t−1)

]
lµ0 + a2tσ2

0

+
bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)
+ q

1 − a2t

1 − a2
(2.17)
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and the covariance between Vt and Vt+p is

Cov(Vt, Vt+p) =

(
at+p−1l

1 − at−1

1 − a
+ a2(t−1)+pl

)
µ0 + a2tσ2

0

+ apq
1 − a2t

1 − a2
+ ap bl

1 − a

(
1 − a2(t−1)

1 − a2
− at−1 − a2(t−1)

1 − a

)
. (2.18)

(ii) Given λ/d < 1, as t → ∞, we have the following

lim
t→∞

E(Vt) =
b

1 − a
,

lim
t→∞

V ar(Vt) =
q

1 − a2
+

bl

(1 − a)(1 − a2)
, (2.19)

lim
t→∞

Cov(Vt, Vt+p) = ap

[
q

1 − a2
+

bl

(1 − a)(1 − a2)

]
.

Using the original parameter set, we have

lim
t→∞

E(Vt) =
γ

c(d − λ)
,

lim
t→∞

V ar(Vt) =
γ(d − γ + cd)

c2(d − γ)(d2 − γ2)
, (2.20)

lim
t→∞

Cov(Vt, Vt+p) =

(
λ

d

)p
γ(d − γ + cd)

c2(d − γ)(d2 − γ2)
.

Also it follows that the asymptotic autocorrelation function is

r(p) = lim
t→∞

Corr(Vt, Vt+p) =

(
λ

d

)p

. (2.21)

Thus as t → ∞, the process Vt exhibits properties of a stationary mean-

reverting process. For process Vt to have asymptotic mean one, we can make

d = λ + γ/c. As exhibited by Figure 2.1, the faster the process reverts to the

asymptotic mean level, the lower the value of autocorrelation (for a fixed lag p) is.

Thus the speed of mean-reverting of this process can be reflected by the autocorre-

lation function, and thus the value of λ/d.

15



Figure 2.1: Simulated paths for double gamma process.
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Figure(2.1) gives three simulated paths of double gamma processes with dif-

ferent set of parameters. As illustrated, c determines the overall volatility level of

the Double Gamma process, that is, a greater c corresponds to smaller variances

of ut and a less volatile volatility process, and vice versa. Meanwhile, c also sets

the level of persistence, which can be defined as the tendency of a mean-reverting

process reverts slowly to its equilibrium (Dias and Marques (2005)). The slower

the underlying process converges to its equilibrium, the more persistent the process

is. Since a high autocorrelation corresponds to a slow mean-reverting speed, persis-

tence is positively related to the asymptotic autocorrelation r(p) = (cλ/(cλ + γ))p.

With a greater value of c, the process has higher autocorrelation, slower speed of

mean-reverting and thus is more persistent and vice versa. Reducing γ will offset the

impact of lower c and make it possible for a process to have both high persistence

and high volatility and vice versa.

Also we can calculate the moment generating function of Vt+p for an arbitrary

step number p.

Lemma 6 The moment generating function of Vt+p conditioned on Vt is:

φVt+1|Vt(ω) =

(
d

d − ω

)λVt

φu

(
log

d

d − ω

)
, (2.22)

φVt+2|Vt(ω) = φVt+1|Vt

(
λ log

d

d − ω

)
φu

(
log

d

d − ω

)
, (2.23)

φVt+p|Vt(ω) = φVt+1|Vt(λg(p)(ω))

p−1∏

j=1

φu(g
(j)(ω)) (2.24)
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where φu(ω) is the moment generating function of a gamma random variable u:

φu(ω) =

(
c

c − ω

)γ

, (2.25)

and g(t)(ω) is a sequence defined sequentially as

g(n)(ω) = log

(
d

d − g(n−1)(ω)

)
,

g(0)(ω) = ω.

Proof of equation(2.23):

φVt+2|Vt(ω) = E(eωVt+2 |Vt)

= E
(
E(eωVt+2 |Vt+1)|Vt

)

= E

((
d

d − ω

)λVt+1+ut+2

|Vt

)

= E

(
exp

(
λVt+1 log

d

d − ω

)
|Vt

)
φu

(
log

d

d − ω

)

= φVt+1|Vt

(
λ log

d

d − ω

)
φu

(
log

d

d − ω

)
.

Proof of equation(2.22) is trivial. And given (2.23), it is trivial to prove equation(2.24).

Similarly we can also use characteristic function to explore the distributional

properties of the Double Gamma process. Similar to Formulas (2.22-2.25), the

recursive calculation of characteristic functions can be written as,

φ̂Vt+1|Vt(ω) =

(
d

d − iω

)λVt

φ̂u

(
−i log

d

d − iω

)
, (2.26)

φ̂Vt+2|Vt(ω) = φ̂Vt+1|Vt

(
−iλ log

d

d − iω

)
φ̂u

(
−i log

d

d − iω

)
, (2.27)

φ̂Vt+p|Vt(ω) = φ̂Vt+1|Vt(λĝ(p)(ω))

p−1∏

j=1

φ̂u(ĝ
(j)(ω)) (2.28)

18



where φ̂(u) is the characteristic function of a gamma random variable u:

φ̂u(w) =

(
c

c − iω

)γ

,

and ĝ(t)(ω) is a sequence defined recursively as

ĝ(n)(ω) = −i log

(
d

d − iĝ(n−1)(ω)

)
, ĝ0(ω) = ω.

For ω near 0, we can use the principal branch Log() of the logarithm of the complex

values to avoid the multivalued problem for complex logarithm.

2.2 Local innovation driven by adapted Lévy process

In this section we introduce the new distribution for the local innovation xt

which provides another source of non-zero skewness and kurtosis, besides stochastic

volatility. Such a random variable xt can be generated by discretizing the variance

gamma process of Madan and Miline (1991).

The variance gamma process G(t; σ, ν, θ) is defined by a Brownian motion

with drift, b(t; θ, σ), and an independent random gamma time with mean rate one,

γ(t; 1, ν). More specifically,

G(t; σ, ν, θ) = b(γ(t; 1, ν); θ, σ). (2.29)

By definition we can obtain a variance gamma process by evaluating Brownian

motion at a random time which follows a gamma process. The marginal distribution

of the variance gamma process are determined by three parameters: (i) σ, the

volatility of the Brownian motion; (ii) ν, the variance rate of the gamma time change
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and (iii) θ, the drift in the subordinated Brownian Motion with drift. The process

incorporates richer distributional features, particularly a versatile specification of

skewness and kurtosis that are jointly determined by θ and ν.

Definition 2 A random variable X has an adapted variance gamma distribution if

it can be specified as follows,

X|Y ∼ N
(
θ(Y − 1), σ2Y

)
,

Y ∼ Gamma(1/ν, 1/ν). (2.30)

According to the definition we can produce an adapted Variance Gamma ran-

dom variable X by firstly generating a Gamma random variable Y with scale pa-

rameter 1/ν and shape parameter 1/ν, and then generating a random variable that

follows a conditional normal distribution with mean θ(Y − 1) and variance σ2Y .

The new distribution defined above inherits the moments of a variance gamma

process at unit time.

Lemma 7 (i). The density function of the adapted variance gamma variable X is

fX(x|θ, σ, ν) =
2 exp(θ(x + θ)/σ2)

ν1/ν
√

2πΓ(1/ν)

(
(x + θ)2

2σ2 + θ2

) 1
2ν

− 1
4

K 1
ν
− 1

2

(
1

σ2

√
(x + θ)2(2σ2/ν + θ2)

)
, (2.31)

where K is the modified Bessel function of the second kind.
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(ii). The unconditional central moments of X are:

E(X) = 0,

E[X − E(X)]2 = θ2ν + σ2,

E[X − E(X)]3 = 2θ3ν2 + 3σ2θν, (2.32)

E[X − E(X)]4 =3σ4ν + 12σ2θ2ν2 + 6θ4ν3 + 3σ4

+ 6σ2θ2ν + 3θ4ν2.

Proof of (i).The density function of X conditional on Y is:

fX(x|Y ) =
1√

2πY σ
exp

(
−(x − θ(Y − 1))2

2σ2Y

)
(2.33)

and the density function of Y is:

fY (y) =
(1/ν)1/ν

Γ(1/ν)
y1/ν−1e−y/ν . (2.34)

Thus the density function of X can be calculated by integrating Y out of the joint

density function:

fX(x) =

∫ ∞

0

1√
2πY σ

exp

(
−(x − θ(Y − 1))2

2σ2Y

)
(1/ν)1/ν

Γ(1/ν)
y1/ν−1e−y/νdy. (2.35)

By Gradshetyn and Ryzhik (1980) 3.471.9 this form is integrable with the result

given by equation (2.31).

Proof of (ii). Since E(X|Y ) = θ(Y − 1) and E(Y ) = 1, E(X) = 0, the expectation

of X2 can be calculated as follows,

E(X2) = E[E(X2|Y )] = E[Var(X|Y )] + E(E(X|Y ))2

= σ2E(Y ) + θ2E(Y − 1)2.
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Since E(Y − 1)2 = Var(Y ) = ν, we have E(X2) = σ2 + θ2ν.

Expressing X = θ(Y − 1) + σ
√

Y z with z being a standard normal variable,

we have

E(X3) =E(E(X3|Y ))

=E[θ3(Y − 1)3 + 3θ2(Y − 1)2σ
√

Y z + 3θ(Y − 1)σ2Y z2 + σ3Y 3/2z3]

=E[θ3(Y − 1)3)] + 3θσ2ν.

On explicit integration we have that

E(Y 3) = ν2(2 +
1

ν
)(1 +

1

ν
)
1

ν
.

It follows that

E[(Y − 1)3] = 3 + 3ν + 2ν2 − 3(ν + 1) = 2ν2.

For the fourth moment we note on expanding X4 and taking expectations that

E(X4) = θ4E[(Y − 1)4] + 6σ2θ2E[(Y − 1)2Y ] + 3σ4E(Y 2).

The expectation of Y 4 can be explicitly computed by integration and is

E(Y 4) = (3ν + 1)(2ν + 1)(ν + 1).

By substitution and collecting terms we have

E[X4] =3σ4ν + 12σ2θ2ν2 + 6θ4ν3 + 3σ4

+ 6σ2θ2ν + 3θ4ν2.

For this new distribution, skewness and kurtosis are determined jointly by θ

and ν. For X to have a unit variance, we can specify θ =
√

(1 − σ2)/ν.
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Figure 2.2: VG probability density function fX(x). Parameters (θ, σ,
ν) for VG density: upper left (-4.0, 0.9985, 0.0002)– very close to Nor-
mal, upper right (-0.1, 0.994, 1.1964) –high kurtosis, lower left (-0.6,
0.92, 0.4267)–negative skewness, lower right (0.6, 0.92, 0.4267)–positive
skewness.
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As illustrated in Figure 2.2, this distribution parsimoniously covers the cases of

non-zero skewness and excess kurtosis. The adaption can be extended to other Lévy

processes, for instance, CGMY process of Carr, Geman, Madan, and Yor (2002) and

the normal inverse Gaussian process of Barndorff-Nielsen and Shephard (1998).

An analytic density function, although desirable, doesn’t necessarily exist for

the random variables generated from the procedure described above. In such cases

we can turn to the analytical characteristic functions, and apply the Fast Fourier

Transform to evaluate the distribution function. Details of this methodology are

given in Carr and Madan (1998).

2.3 Leverage effect

In the model description equations(2.2), the leverage effect is incorporated into the

model by assuming that σ′2
t is a quadratic function of the lagged disturbance xt:

σ2
t = σ′2

t Vth, (2.36)

σ′2
t = σ2

0(1 + αxt + βx2
t ).

The covariance between σ′2
t and xt is as follows,

cov(σ′2
t , xt) = E(σ′2

t − E(σ′2
t ))xt

= σ2
0E[αxt + β(x2

t − E(x2
t )]xt (2.37)

= σ2
0

(
αE(x2

t ) + βE(x3
t )
)

= σ2
0

(
α + βE(x3

t )
)
.

Here we used the properties of xt that E(xt) = 0 and E(x2
t ) = 1. If α < 0 and xt
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Figure 2.3: Leverage effect observed in historical data of VIX and
S&P500Dashed line is the VIX index from 2001 to 2006. Solid line is S&P500
index on the same period.
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(0.17,−0.9, 1) and (λ, γ, c) = (5, 20, 2)

has zero skewness, for example xt follows a standard normal distribution and thus

E(x3
t ) = 0, then cov(σ′2

t , xt) < 0 and σ′2 and xt are negatively correlated. In the

case α < 0, β > 0 and xt has negative skewness, we also have cov(σ′2
t , xt) < 0.

Since this quadratic function will be non-negative if and only if α2 − 4β < 0,

we set β = 1
4
α2 + η with η > 0 to satisfy this condition.

2.4 Frequency of volatility change

Assuming that Vt changes every m days and hence the original time span [0, T ]

can be cut into N = [ T
m

] periods, we can model the constant level of volatility in the

nth period using a new process Wn where Wn,n = 1, ...N follows a double gamma
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process as defined in section 2.1. More specifically,

Vt = W[(t−1)/m],

Wn+1|Wn ∼ Gamma(d, λWn + Un+1), (2.38)

Un+1 ∼ Gamma(c, γ).

This modification drops the constraint that the latent volatility process has

to evolve with the same frequency as that of the price changes, and thus avoids the

possible problem of overfitting. A by-product of this optimal frequency searching is

that computational cost can potentionally be significantly reduced, specifically, in

calculating the likelihood function during estimation. More details on this issue will

be given in next chapter.

2.5 Long-term dependence

Our model and technique extends to the case where volatility follows a weighted

sum of independent double-gamma processes with different levels of persistence, that

is,

Vt =
M∑

j=1

wjVj(t), (2.39)

where

Vj,t|Vj,t−1 ∼ DG(Vj,t−1, γi, dj, λj, cj, dj) and

M∑

j=1

wj = 1. (2.40)

Since some of the components of the volatility may represent short-term vari-

ation in the process whereas others represent long-term movements, by adding to-

gether the independent double-gamma processes with different persistence levels we
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can obtain a more generic volatility structure. Combining with the results in section

2.1, this implies an asymptotic autocorrelation function which is a weighted sum of

exponentials:

r(k) = w′
1 exp(−ρ1|k|) + ... + w′

m exp(−ρm|k|) (2.41)

with

ρi = − log(
λi

di
), w′

i =
w2

i Ai∑M
i=1 w2

i Ai

and

Ai =
γi(di − γi + cidi)

c2
i (di − γi)(d

2
i − γ2

i )
.

Other discrete time models of this type are discussed by Engle and Lee (1993),

Dacorogna, Muller, Olsen, and Pictet and Barndorff-Nielsen and Shephard (1998).

By choosing the weights and damping factors in (2.41) appropriately and let-

ting M → ∞ it is possible to construct tractable volatility models with long-range

dependence. In particular, Barndorff-Nielsen and Shephard (2000) showed that

there is a limiting model for which

r(k) = (1 + ρ|k|)−2(1−H), (2.42)

where ρ > 0 and H ∈ (1/2, 1) is the long memory parameter. The authors also devel-

oped more general models, applying the theory of independently scattered measures

and Lévy random fields. Similar types of arguments have previously been used for

real-valued time series models by, for example, Granger (1980) and Cox (1991).

Ding and Granger (1996) have studied long memory in volatility using the addition

of short memory processes, whereas Andersen and Bollerslev (1997) have applied the
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theory of heterogeneous information arrivals to motivate a long memory volatility

model.
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Chapter 3

Estimation

The estimation of the stochastic volatility model requires evaluations of the likeli-

hood function for a high dimensional model which contains latent volatility series.

To evaluate the likelihood function we need to integrate the volatilities out of the

joint density function and eventually the high dimension of the process renders the

direct numerical integration impractical. For this type of problem we propose a

method based on the combination of Expectation-Maximization algorithm (Demp-

ster, Laird, and Rubin (1977)) and the particle filter method to maximize the like-

lihood function.

The second part of this chapter is spent on exploring the issue of determining

the optimal frequency for volatility change. As different frequencies of volatility

changes correspond to different models, we will apply model selection methods -

Akaike Information Criterion and Likelihood Ratio Test, to search for the optimal

frequency that best fits the observed return data.
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3.1 Likelihood Function

Given the observed returns rt, t = 1, ..., T , the likelihood function of the

parameter set Ω for the stochastic volatility model is

L(Ω|r1, .., rT ) = f(r1|Ω)
T∏

t=2

f(rt|r1, ..., rt−1, Ω). (3.1)

For the convenience of notation we denote {r1, ..., rt} by r1:t and {(V1, u1), ..., (Vt, ut)}

by V1:t . To calculate the marginal conditional density function of rt, f(rt|r1:t−1, Ω),

the latent variables V1:t need to be integrated out of the joint density function of

the observed and latent variables,

f(r1:T ,V1:T |Ω) = f(V1, u1|Ω)

T∏

t=2

f(rt|Vt, ut)f(Vt, ut|Vt−1, ut−1.Ω). (3.2)

From a broad perspective, the Expectation-Maximization algorithm of Demp-

ster et al. (1977) lends us the idea to solve the problem of high dimensional integra-

tion. The joint density function of r1:t can be written as

f(r1:t|Ω) = f(r1:t,V1:t|Ω)/f(V1:t|r1:t, Ω). (3.3)

Taking logarithms on both sides we have

log f(r1:t|Ω) = log f(r1:t,V1:t|Ω) − log f(V1:t|r1:t, Ω). (3.4)

Now for an arbitrary parameter set Ω′, taking expectations on both sides with

respect to the posterior distribution of V1:t given r1:t and another parameter set Ω,

we see readily that

log f(r1:t|Ω′) = EV1:t|r1:t,Ω[log f(r1:t,V1:t|Ω′)] − EV1:t|r1:t,Ω[log f(V1:t|r1:t, Ω
′)]. (3.5)
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Dempster et al. (1977) proved that for a sequence of parameters (Ω1, ..., Ωk, ...),

which is updated sequentially in the following iteration,

Ωk+1 = argmaxΩ′EV1:t|r1:t,Ωk
[log f(r1:t,V1:t|Ω′)]. (3.6)

Each iteration of the EM algorithm contains two steps. The expectation (E)

step is to calculate the expectation of function log f(r1:t,V1:t|Ω′), as a function of

the new parameter set Ω′. The posterior density for calculating expectation is a

function of the former parameter set Ωk. The maximization (M) step maximizes the

expectation as indicated in equation (3.6).

The convergence of LM algorithm was studied by Wu (1983). Denote M as

the set of local maxima in the interior of parameter space Ω and J as the set of

stationary points in the interior of Ω. If L(Ωk+1|Ωk) is continuous in both Ωk and

Ω′ and

sup
Ω′∈Ω

L(Ω′|Ωk) > L(Ωk|Ωk)

for any Ωk ∈ J /M, then the EM algorithm converges monotonically to L∗ = L(Ω∗)

for some local maximum Ω∗. An important class of densities satisfy this condition

is the curved exponential family

f(x|Ω) = b(x) exp{ΩT t(x)/a(Ω)}. (3.7)

Since the expectation of the log likelihood function, designated by Q(Ωk, Ω
′),

is

Q(Ωk, Ω
′) = EV1:t|r1:t,Ωk

[log f(r1:t,V1:t|Ω′)]

=

∫
log f(r1:t,V1:t|Ω′)f(V1:t|r1:t, Ωk)d(V1:t) (3.8)
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and does not yield a closed form expression, we turn to Monte Carlo integration

QM(Ωk, Ω
′) in the E Step to approximate Q(Ωk, Ω

′):

Q(Ωk, Ω
′) ≈ QM(Ωk, Ω

′)

=
M∑

j=1

log f(r1:t,V
(j)
1:t |Ω′)p(V

(j)
1:t |r1:t, Ωk) (3.9)

where V
(j)
1:t is jth of the M paths sampled from the distribution f(V1:t|r1:t, Ωk). The

weights p(V
(j)
1:t |r1:t, Ωk) are values proportional to f(V

(j)
1:t |r1:t, Ωk) and are subjected

to the constraint that
∑M

j=1 p(V
(j)
1:t |r1:t, Ωk) = 1 .

To apply the EM algorithm to the estimation of the stochastic volatility model,

there are two issues to be resolved. The first is to evaluate the posterior distribution

f(V1:t|r1:t, Ωk) and the second is how to generate samples from resulting distribution.

3.2 Calculation of Posterior Distribution

According to Bayes’ theorem, the conditional density function of V1:t given the

observations r1:t can be written as

f(V1:t|r1:t, Ω) =
f(r1:t|V1:t, Ω)f(V1:t|Ω)∫

f(r1:t|V1:t, Ω)f(V1:t|Ω)dV1:t

. (3.10)

The following formula can be used to recursively calculate f(V1:t|r1:t, Ω):

f(V1:t|r1:t, Ω) = f(V1:t−1|r1:t−1, Ω)
f(rt|Vt, Ω)f(Vt|Vt−1, Ω)

f(rt|r1:t−1, Ω)
. (3.11)

Here we apply the Markovian property of both price and volatility processes.
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More specifically,

f(rt|r1:t−1,V1:t, Ω) = f(rt|Vt, Ω),

f(Vt|r1:t−1,V1:t−1, Ω) = f(Vt|Vt−1, Ω). (3.12)

3.2.1 Sequential Importance Sampling

Importance sampling is applied to generate samples from the posterior distri-

bution of V1:t, f(V1:t|r1:t, Ω), which cannot be directly simulated. The idea is to

simulate the paths of V1:t from the proposal distribution π(V1:t|r1:t) and then to

modify equation (3.9) as follows:

Q(Ωk, Ω
′) ≈ QM(Ωk, Ω

′)

=
M∑

j=1

log f(r1:t,V
(j)
1:t |Ω′)p(V

(j)
1:t |r1:t, Ωk)

=

M∑

j=1

log f(r1:t,V
(j)
1:t |Ω′)w(V

(j)
1:t |r1:t, Ωk)π(V

(j)
1:t |r1:t, , Ωk), (3.13)

where w(V
(j)
1:t |r1:t, Ωk) is known as the importance weight,

w(V
(j)
1:t |r1:t, Ωk) =

p(V
(j)
1:t |r1:t, Ωk)

π(V
(j)
1:t |r1:t, Ωk)

. (3.14)

Following equation (3.13) we can simulate M i.i.d paths {V (j)
1:t , j = 1, ..., M}

from π(V
(j)
1:t |r1:t, Ωk), and then calculate a Monte Carlo estimate of Q(Ωk, Ω

′) through

equation (3.13).

Similar to equation (3.11) the approximation process for the conditional dis-

tribution π(V
(j)
1:t |r1:t, Ωk) can also be carried out recursively applying the Markovian
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property of both the rt and Vt processes, so that

π(V1:t|r1:t, Ωk) =
π(r1:t|V1:t, Ωk)π(V1:t, Ωk)∫

π(r1:t|V1:t, Ωk)π(V1:t|Ωk)dV1:t

. (3.15)

Combining equations (3.11) and (3.15) we can calculate the importance weight

function w̃
(j)
t = w(V

(j)
1:t |r1:t, Ωk) as:

w̃
(j)
t+1 = w̃

(j)
t

f(Vt+1|V (j)
1:t , r1:t+1, Ωk)

π(Vt+1|V (j)
1:t , r1:t+1, Ωk)

∝ w̃
(j)
t

f(rt+1|V (j)
t+1, Ωk)f(V

(j)
t+1|V

(j)
t , Ωk)

π(Vt+1|V (j)
1:t , r1:t+1, Ωk)

. (3.16)

One convenient choice for the proposal distribution π(V1:t|r1:t, Ωk) is the prior

distribution f(V1:t|Ωk), by which the proposal distribution function π(V1:t|r1:t, Ωk)

can be calculated as:

π(V1:t|r1:t, Ωk) = f(V1:t|Ωk) = f(V1|Ωk)

t∑

i=2

f(Vi|Vi−1, Ωk). (3.17)

Then the importance weights are simplified to

w̃
(j)
t+1 ∝ w̃

(j)
t f(rt+1|V (j)

t+1, Ωk). (3.18)

Sequential importance sampling is an attractive method but also has signifi-

cant drawbacks when applied to problems with high dimension, as pointed by Gilks,

Richardson, and Spiegelhalter (1996). As t increases, the distribution of the impor-

tance weight w
(j)
t becomes increasingly skewed and therefore after a few time steps,

only one path has non-zero importance weight. Consequently the algorithm fails to

represent the posterior distributions. To avoid the degeneracy problem, one more

step needs to be added to resample the sampled paths.

35



3.2.2 Particle filter

Particle filtering is applied to eliminate the simulated paths (particles) with

low importance weights w
(j)
t and to multiply paths with greater weights (Gordon).

In implementation we replace the weighted empirical distribution

P̂M(V1:t|r1:t) =
M∑

j=1

w
(j)
t δ

V
(j)
1:t

(dV1:t) (3.19)

by

PM(V1:t|r1:t) =
1

N

N∑

j=1

N
(j)
t δ

V
(j)
1:t

(dV1:t), (3.20)

where δ
V

(j)
1:t

denotes the Dirac mass located at V
(j)
1:t and N

(j)
t is the number of offspring

associated with particle V
(j)
1:t , which satisfies

∑M
j=1 N

(j)
t = M . If N

(j)
t = 0 then the

particle V
(j)
1:t is filtered out. After the selection step the surviving particles V

(j)
1:t

with N
(j)
t > 0, are distributed as f(V1:t|r1:t). We obtain the surviving particles

by sampling N times from the distribution P̂M(V1:t|r1:t), which is equivalent to

sampling the number of offspring N
(j)
t according to a multinomial distribution with

parameters w
(j)
t .

The next sections will summarize the implementation for two cases. We begin

with the case where volatility is assumed to change with the same frequency as

prices, then advance to a more generic setting where different frequencies of volatility

change are allowed.

3.2.3 Algorithm for daily-changing volatility

Assuming volatility changes daily, we have the frequency parameter m equal

to 1. Then V could be simulated by carrying out the following steps.
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Step 1. At t = 1, set V
(j)
1 = 1 and w

(j)
1 = 1/M for j = 1, ..., M .

Step 2. At t = i ≥ 2, generate V
(j)
i from the double gamma process con-

ditional on V
(j)
i−1, for j = 1, ..., M . Reset the weight of each particle in the sample

by

w
(j)
i ∝ w

(j)
i−1f(ri|V (j)

i ) (3.21)

where f(ri|V (j)
i ) is the conditional density function of ri given V

(j)
i .

Normalize w
(j)
i such that

∑M
j=1 w

(j)
i = 1.

Add V
(j)
i to the sequence V

(j)
1:i−1 and set Ṽ

(j)
1:i = (V

(j)
1:i−1, V

(j)
i ).

Step 3. Resample with replacement M particles {V(j)
1:i , j = 1, .., M} from

{Ṽ(j)
1:i , j = 1, .., M} with weights {w(j)

i , j = 1, .., M}.

Set i = i + 1 and go to step 2.

3.2.4 Algorithm for volatility with arbitrary frequency

In this case m is an integer greater than or equal to one. With some modifi-

cation to the algorithm described in the last section, we sample V as follows.

Step 1. At n = 1, set W
(j)
1 = 1 and w

(j)
1 = 1/M for j = 1, ..., M . Set

V
(j)
k = W

(j)
1 for k = 1, ..., m.

Step 2. At n = i, generate W
(j)
i from the double gamma process conditional

on W
(j)
i−1, for j = 1, ..., M . Set V

(j)
k+(i−1)m = W

(j)
i for k = 1, ..., m. Reset the weight

of each particle in the sample by

w
(j)
i ∝ w

(j)
i−1

m∏

k=1

f(r
(j)
k+(i−1)m|V

(j)
k+(i−1)m) (3.22)

37



where f(r
(j)
k+(i−1)m|V

(j)
k+(i−1)m) is the conditional density function of r

(j)
k+(i−1)m given

V
(j)
k+(i−1)m.

Normalize w
(j)
i such that

∑M
j=1 w

(j)
i = 1.

Add W
(j)
i to the sequence W

(j)
1:i−1, set W̃

(j)
1:i = (W

(j)
1:i−1, W

(j)
i ).

Step 3. Resample with replacement M particles {W(j)
1:i , j = 1, .., M} from

{W̃(j)
1:i , j = 1, .., M} with weights {w(j)

i , j = 1, .., M}.

Set V
(j)
t = W

(j)
[(t−1)/m] for t = 1, .., im, j = 1, ..., M .

Set i = i + 1 and go to step 2.

3.3 Data and results

In this section we implement the method explicated above for estimation of

the new model. Historical data of eight indices cross different countries, which

include the Standard and Poor 500 index (SPX), Dow-Jones Industrial Average

Index (DJIA), National Association of Securities Dealers Automated Quotations

Index (NASDAQ), Nikkei 225 Stock market index (NIKKI), Financial Time Security

Exchange Index (FTSE), Deutscher Aktien IndeX (DAX 30), Hang Seng Index (HSI)

and Cotation Assistee en Continu Index (CAC 40), are taken as inputs from the

period between January 1, 2001 and September 30, 2006, inclusive.

The estimation results for models with and without leverage effects are, respec-

tively, shown in Table 3.1 and Table 3.2. We note that the leverage effect component

significantly improves the fitting performance, which is shown by the fact that the

maximized likelihoods increase by 71.9, 90.8, 31.3, 67.1, 69.1,72.8, 69.3 and 134.6,
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respectively, for each index after adding the leverage effect component. Secondly,

the skew parameter θ remains negative for all indices with and without the lever-

age effect. This finding implies that the leverage effect cannot explain by itself the

skewness in return data and therefore the non-zero skewness in the distribution of

innovation is necessary. Finally, the stochastic volatilities show different levels of

persistence for each index. Table 3.3 summarizes the decay rate as a measure of

persistence for each index.

Another observation is that the latent volatility processes exhibit strong sim-

ilarity across different indices, as illustrated in Figure 3.1. Carrying out a principal

component analysis on the covariance matrix of the filtered volatility processes to

measure the similarity, we find out the first three principal components explain 94%

of overall variation. This finding indicates the possibility of using a multifactor

model to link the dynamics of different assets’ volatility processes, which is further

explored in the next chapter.
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Figure 3.1: Mean of posterior distribution of latent volatility f(Vt|rt, Θ)

for eight global indices, plotted against time.
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Table 3.1: Estimated parameters of SV model without leverage effect.

DAX30 DJIA CAC40 FTSE SPX NIKKEI NASDAQ HSI

µ 0.300 0.266 0.300 0.297 0.294 0.300 0.300 0.279
θ -0.155 -0.136 -0.178 -0.154 -0.176 -0.158 -0.17 -0.146
θ -0.155 -0.136 -0.178 -0.154 -0.176 -0.158 -0.170 -0.146
σ 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999
ν 0.166 0.108 0.063 0.084 0.065 0.080 0.069 0.094
σ0 0.235 0.172 0.205 0.159 0.160 0.210 0.238 0.176
λ 8.048 2.114 2.000 6.533 7.813 2.000 5.052 2.000
c 1.262 1.000 1.000 1.000 4.900 7.314 1.685 1.197
γ 0.100 1.736 0.100 0.457 0.754 8.894 9.692 1.021

− log L 4,492.0 4,955.5 4,706.1 5,011.7 4,917.5 4,340.0 4,347.2 4,723.0

Note:Estimation is based on assumption of no leverage effect,i.e., α = ρ = 0. Here µ is
drift parameter, θ, σ and ν are VG parameters, σ0 is average level of volatility and λ, d,
γ and c are double-gamma stochastic volatility parameters with average level one. When
sampling volatility from the posterior distribution we use the particle filter with M = 2000
paths.

3.4 Testing frequencies of volatility change

In this section we study the impact of different frequencies of changing volatility

on the computational cost of model estimation. Different updating frequencies cor-

responds to different values of m in our model. For instance, m = 1 is for daily

change and m = 20 is for monthly change. Following a similar procedure to that of

the last section, we estimate the model for different frequencies of volatility change,

and also that of constant volatility (CV). The results are shown in Table 3.4:

Table (3.4) shows that higher frequency of volatility change always leads to

higher likelihoods as the granularity and finesse of volatility process increase. The

cost of overfitting the model, however, is apparently also expensive. As the model es-

timation intensively depends on simulation, overestimating the frequency of volatil-

41



Table 3.2: Estimated parameters of SV model with leverage effect.

DAX30 DJIA CAC40 FTSE SPX NIKKEI NASDAQ HSI

µ 0.102 0.118 0.150 0.135 0.095 0.096 0.137 0.076
θ -0.153 -0.177 -0.184 -0.183 -0.168 -0.164 -0.164 -0.168
σ 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
ν 0.128 0.096 0.089 0.089 0.1063 0.112 0.112 0.106
σ0 0.175 0.133 0.225 0.151 0.1273 0.168 0.180 0.140
α -0.100 -0.080 -0.700 -0.100 -0.135 -0.599 -0.014 -1.305
ρ 119.1 113.1 133.8 113.1 118.5 680.0 394.8 650.0
λ 2.005 3.469 2.000 4.604 10.66 6.625 2.000 10.51
d 7.117 5.613 6.000 4.969 13.71 7.806 2.101 13.04
γ 6.301 1.053 1.000 1.006 3.895 3.625 1.010 3.50
c 1.233 0.491 0.250 2.754 1.277 3.070 10.00 1.380

− log L 4,420.1 4,864.7 4,614.8 4,944.6 4,848.4 4,267.2 4,277.9 4,588.4

Note: Here α and ρ are additional leverage effect parameters and d = λ + γ/c.

Table 3.3: Persistence of stochastic volatility.

DAX30 DJIA CAC40 FTSE SPX NIKKEI NASDAQ HSI

λ/d 0.770 0.785 0.461 0.962 0.952 0.718 0.333 0.477
τ 0.113 0.105 0.336 0.017 0.021 0.144 0.477 0.322
K0.5 2.655 2.867 0.895 17.990 14.207 2.091 0.631 0.936

Note: The decay rate τ = − log(λ/d) also reflects the level of persistence. K0.5 =
−1/τ log 0.5 is half-life (in days) for decaying volatility.

ity change will significantly and unnecessarily increase the time spent in simulating

latent volatility paths.

To choose the optimal frequency of volatility change we can employ model

selection methods that balance between fitting and controlling the numbers of pa-

rameters. In the next section we will show this experiment using two representative

methods: Akaike Information Criterion and Likelihood Ratio test.
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Table 3.4: Negative maximized log-likelihoods for different frequencies and eight
indices, with leverage effect component.

m DAX30 DJIA CAC40 FTSE SPX NIKKEI NASDAQ HSI

1 4,420.1 4,864.7 4,614.8 4,944.6 4,848.4 4,267.2 4,277.9 4,588.4
5 4,930.3 5,338.6 5,130.6 5,454.2 5,362.2 4,783.6 4,816.4 5,057.2
10 4,979.8 5,364.6 5,172.0 5,498.0 5,389.0 4,825.8 4,851.8 5,102.5
20 4,992.2 5,399.8 5,198.3 5,538.6 5,416.1 4,848.9 4,887.7 5,135.8
40 5,015.8 5,429.7 5,209.3 5,557.8 5,441.7 4,859.1 4,927.2 5,158.9
60 5,049.5 5,451.6 5,237.5 5,574.9 5,462.3 4,877.7 4,943.6 5,181.4
120 5,063.4 5,467.8 5,252.1 5,590.1 5,479.8 4,901.7 4,974.6 5,201.1
240 5,114.1 5,493.9 5,302.0 5,650.9 5,508.3 4,923.1 4,996.0 5,228.1
CV 5,447.7 5,668.4 5,578.1 5,897.6 5,737.2 5,047.3 5,382.3 5,346.0

3.4.1 Akaike information criterion

The Akaike information criterion (AIC) is a measure of the goodness of fit of

of an estimated model. It is defined as

AIC = −2 log L + 2p, (3.23)

where L is the likelihood and p is the total number of parameters, which is deter-

mined by:

p = p1 + [T/m] − p2 (3.24)

where p1 is the number of parameters in the observation equation and p2 is that of

the latent equation.

We can test the performance of AIC in detecting real frequencies by looking

at the Type I error and Type II errors. For each of the two models with m = 1 and

m = 10, this method is tested against 1,000 simulated paths of 500-day returns. The

parameters for these two models are estimated for each of the overall 2,000 return

paths. Then on each path we choose the model and the corresponding m value with
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Table 3.5: Testing power of AIC.

Actual m

m=1 m=10

Test m=1 0.863 0.137
result m=10 0.101 0.899

the lowest AIC. In this way we approximate Type I and Type II error by computing

the ratio of false rejection and false acceptance respectively.

The test result are shown in Figure 3.2. We find that for all eight indices

the AIC changes with the same pattern. There’s a noticeable drop of AIC when

the model moves from constant volatility to stochastic volatility where volatility

changes every 240 days. This trend continues, however with a decreasing speed,

until it reaches a minimum around m = 20 or 40, which corresponds to monthly or

bimonthly change.

3.4.2 Likelihood ratio test

The likelihood ratio is defined as

λ(r) =
supΘ0

L(θ|r)
supΘ L(θ|r) , (3.25)

where Θ0 and Θ are parameter spaces corresponding to the null hypothesis and

alternative hypothesis and r is the observed data . The quantities supΘ0
L(θ|r) and

supΘ L(θ|r) are two supreme of L(θ|r) over Θ0 and Θ. The likelihood ratio test is

defined by the rejection region

{r : −2 log λ(r) ≥ χ2
α(p)}, (3.26)
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Figure 3.2: AIC for different frequencies of volatility change(times/day).
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Table 3.6: Testing Power of Likelihood Ratio Tests.

m: H0 vs H1 Type I Error Type II Error

10 vs 5 0.061 0.144

20 vs 10 0.073 0.137

40 vs 20 0.085 0.124

60 vs 40 0.091 0.110

120 vs 60 0.109 0.106

240 vs 120 0.117 0.083

CV vs 240 0.129 0.075

Note: Hypotheses are tested against 1,000 simulated paths of 500-day data. Estimations
with different m values are run for each of the 2,000 returns paths. On each path we
accept or reject the hypothesises according to rejection region (3.26). Type I and Type
II error are approximated by computing the ratio of false rejection and false acceptance
respectively.

where χ2
α(p) is the cutoff point of a χ2 distribution with p degrees of freedom and

p equals the difference between the number of free parameters specified by θ ∈ Θ0

and the number of free parameters specified by θ ∈ Θ.

Barndorff-Nielsen and Shephard (2004) and Bos and Shephard (2006) used

likelihood ratio test in selecting different granularities of volatility changes. Here

to examine the testing power we carry out the same simulation based Type I and

Type II calculation as in last section. The result, shown in Table 3.6, suggests that

using Likelihood Ratio Test, Type I error increases and Type II error decreases as

the value of m increases.

The results of log-likelihood tests are shown in Table 3.6. From the table

we can see that models with lower frequencies are rejected until reach the optimal

frequency. Afterward the increase in log-likelihood cannot compensate the increased
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Table 3.7: Stepwise Likelihood ratio tests with asymptotic size α = 0.05.

m: H0 vs H1 DAX30 DJIA FCHI FTSE SPX NIKKEI NASDAQ HSI

10 vs 5 98.9 52.1 82.7 87.7 53.6 84.3 70.7 90.5
(175.2) (173.0) (176.3) (174.1) (173.0) (169.7) (173.0) (170.8)

20 vs 10 26.4 52.4 69.7 79.2 81.4 50.7 35.3 61.8
(93.9) (92.8) (95.1) (93.9) (92.8) (91.7) (92.8) (91.7)

40 vs 20 48.7 61.9 20.9 58.4 51.0 19.3 85.7 54.5
(52.2) (51.0) (52.2) (51.0) (51.0) (49.8) (51.0) (51.0)

60 vs 40 68.3 40.7 52.2 31.9 31.4 34.2 31.4 54.5
(21.1) (21.1) (21.1) (21.1) (21.1) (21.1) (21.1) (21.1)

120 vs 60 22.9 29.8 30.8 35.4 31.6 51.5 69.4 37.8
(21.1) (21.1) (21.1) (21.1) (21.1) (21.1) (21.1) (21.1)

240 vs 120 92.2 51.6 85.3 105.2 56.1 42.6 51.1 55.7
(12.6) (12.6) (12.6) (12.6) (12.6) (12.6) (12.6) (12.6)

CV vs 240 665.4 348.6 554.1 497.6 460.8 248.5 766.3 236.1
(12.6) (12.6) (12.6) (12.6) (12.6) (11.1) (12.6) (11.1)

m∗ 40 20 40 20 20 40 20 20

Note:The first column indicates the stepwise hypothesis test for models with dif-
ferent frequencies (m values). Numbers in other columns without parentheses are
−2 log λ(r). Numbers with parentheses are the corresponding cutoff value of chi-
square distribution χ2

α(p). The last row gives the optimal m value for each index.
The null hypothesis (lower frequency, greater m ) is rejected if the likelihood ratio
is greater than the cutoff chi-square value.

complexity of the model.

Computational cost for estimation varies significantly for models with different

frequencies. For the daily-changing volatility model, it takes 12.5 seconds on a PC

with Intel Core 2 Duo 2.13GHz processor and 2GB RAM to sample 2000 paths

from the posterior distribution of volatility using particle filter algorithm. For a

model with volatility changing every 10 days the sampling costs 1.45 seconds on the

same machine. If the frequency decreases to once every 20 days, the cost in each

sampling reduces to 0.87 seconds. This substantial reduction in computation cost
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on each sampling, multiplied by the number of iterations in optimization, leads to

a significant improvement of computational efficiency of estimation and application

of the model.

This conclusion has important implication for our practice in developing and

applying stochastic volatility model. The latent volatility process is unobservable

and thus a pure abstract concept, and most existing stochastic volatility models

including ours are built for serving specific practical purposes instead of to establish

unchallengeable latent structure of the volatility processes. For instance GARCH

type models are applied primarily in the field of risk management to evaluate the

exposure to volatility changes. Continuous stochastic volatility models including

those by Heston (1993), Bates (1996) and Carr et al. (2003) are used mainly for

interpolating market traded vanilla option prices cross maturities and strikes. For

our case, the purpose is to evaluate and optimize portfolio of volatility contracts

that cannot be handled well by any existing volatility models. Thus although the

method described above does not determine the exact dynamic of volatility process,

it gives us a superior model judged jointly by fitting performance, computational

efficiency and practical applicability.
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Chapter 4

Application to Pricing Volatility Derivatives

In this chapter we will discuss how to price volatility derivatives by combining the

estimated stochastic volatility model with the concave distortion of distribution

functions introduced by Cherny and Madan (2007) and Cherny and Madan (2006).

The essential idea is that we could compute the price of a certain financial

asset as the minimum value that can sufficiently compensate the taken risk to an

acceptable level. The level of acceptability is measured by one coherent performance

measure that can be interpreted as the expected cash flow in an extreme scenario.

The payoff distribution under the extreme scenario can be derived from the model

estimated from the historical data.

This chapter starts with a brief review of two volatility products: volatility

swaps and options. In the second part of this chapter we present the concept of

coherent risk measures and the associated concave transformations of distribution

functions, and then introduce a new method of pricing volatility products by using

the combination of historical distribution and the concave distortions. In the third

part we will show the results of the application.
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4.1 Volatility swaps and options

Volatility derivatives cover a group of financial products whose values are

directly determined by the level of volatility. The pricing methodology introduced

in this chapter is initialized by, but not limited to, the study on pricing of the two

fundamental volatility derivatives: volatility swaps and volatility options.

Traditional volatility investment strategies include taking a delta-hedged po-

sition in options, buying a straddle or a straggle, and buying a volatility swap or

option. A delta-hedged position in options removes the exposure to the stock price.

However, the accuracy of delta-hedging depends on the soundness of the employed

models which might be far from reality. Moreover, other issues such as transac-

tion costs and liquidity concern often attenuate the feasibility of such investment

strategies.

In contrast, since volatility or variance swaps are directly written on the volatil-

ity level, they provide much cleaner exposure to volatility than other strategies. Ap-

plications of this new category of volatility derivatives include speculation on future

volatility levels, trading on the spread between realized and implied volatility, or

hedging the volatility exposure of other positions. For example, if an investor fore-

sees a rapid decline in political and financial turmoil after a forthcoming election,

a short position in volatility might be appropriate. Another example is that hedge

funds or risk arbitrageurs might want to short volatility since they often take posi-

tions which assume that the spread between stocks of companies planning mergers

will narrow. If overall market volatility increases, the merger may become less likely
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and the spread may widen and cause loss, but a short position on volatility will

provide positive cash flow to smooth the total payoff.

The first volatility swap trade was done in 1997 and was written on FTSE. The

participants in this new market initially were a small number of very quantitative

hedge funds, but since 2005 the volume of trade increased dramatically and now the

market has been extended to new users like insurance companies, asset managers,

pension funds and individual investors.

The realized volatility σR of an asset over some period is the annualized stan-

dard deviation of the daily returns. Given observations of stock prices Si, i = 1, ..., T ,

σR is defined in the following equations:

yi = log
Si

Si−1

,

σ2
R =

252

T − 1

T∑

i=1

y2
i . (4.1)

The annualized realized variance does not coincide with the classic statistical defi-

nition of variance, but follows the usual market convention of not subtracting the

mean.

4.1.1 Variance swap and volatility swap

The payoff P of a volatility swap at maturity depends on the difference between

the realized volatility σR during the contract period and a predetermined constant

value Kvol,

P = N(σR − Kvol), (4.2)
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where Kvol is the annualized volatility delivery price and N is the notional amount1

of the swap in dollars per annualized volatility point. The holder of a volatility

swap at expiration receives N dollars for every unit, usually in percentage, that the

stock’s realized volatility σR exceeds the volatility delivery price Kvol.

The delivery price Kvol is typically quoted as a volatility and the notional

amount is typically quoted in dollars per volatility point. One example is a swap

contract with Kvol = $35% and N = $250, 000/%. If at the expiry of the contract,

the realized volatility σR = 36%, then the final payoff equals to $250, 000.

Variance swap is a similar forward contract written on future realized variance

of return. The payoff of variance swap at maturity equal to

P = N(σ2
R − Kvar), (4.3)

where Kvar is delivery price for variance, N is the notional amount in units of a

certain currency per variance point, and σ2
R is the realized variance over the life

of the contract. Compared to volatility swaps, variance swaps are less commonly

traded, and therefore lack a general quoting convention. The fair value of variance

is the delivery price that sets the expectation of the final payoff to zero:

Kvar = E(σ2
R). (4.4)

Similarly we have

Kvol = E(σR). (4.5)

1The notional amount (or notional principal amount or notional value) on a financial instrument

is the nominal or face amount that is used to calculate payments made on that instrument. This

amount generally does not change hands and is thus referred to as notional.
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4.1.2 Option on realized variance

Option on realized variance, which is also called variance swaption2 is a finan-

cial contract with payoff contingently depending on the realized variance σ2
vol and a

specified strike level Kvar. For example, the payoff function of a variance call option

(also named ”call swaption”) is

P = N(σ2
R − Kvar)

+. (4.6)

Assuming the current price of this variance call option is C, the cash flow to

the owner when the contract expires equals to

X = CerT − N(σ2
R − Kvar)

+, (4.7)

where r is the interest rate and T is the time to the expiration day.

4.1.3 Pricing

As volatility contract is still relatively illiquid, they are traded with a rela-

tively wide bid-ask spread and the price for trading largely depends on the direc-

tion of trade. To solve this problem we apply a method proposed by Cherny and

Madan (2007), which sets the price of volatility contracts to a value that locates

the corresponding cash flow X inside an acceptable range Aa. Here X is a bounded

random variable defined on a standard probability space (Ω,F , P ), X ∈ L∞ and

L∞ = L∞(Ω,F , P ). The acceptable range Aa is then the set of cashflows whose

2Swaption: option on swap, a financial contract giving the buyer the right but not the obligation

to buy or sell swap contract when the payoff is favorable when the option contract expires.
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acceptability measure α(X), a real valued map from L∞ to [0,∞), is above certain

level a,

Aa = {X : α(X) ≥ a a ∈ R
+}. (4.8)

By investigating the levels of acceptability available in the economy across a

broad set of activities, one can identify acceptability levels that are good target

values. This knowledge may be combined with a historical distribution to price a

contingent claim with a view to attaining a predetermined target level of accept-

ability.

In the following sections we will review the concept of coherent acceptability

index with which Cherny and Madan (2007) proposed a set of measures to define

the cone of acceptability of investments.

4.2 Coherent Acceptability index α(X)

4.2.1 Coherent measures

There are eight properties that the acceptability index α(a) should satisfy. The

first four properties define a coherent acceptability index. The remaining properties

are additional properties that enable us to provide a number of tractable examples

of coherent acceptability indices.

Definition 3 A function of X, α(X) is a coherent acceptability index if it satisfies

the following four properties:
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1. Convexity. This condition requires the function α(X) to satisfy the condition

that if α(X) ≥ a and α(Y ) ≥ a, then α(λX +(1−λ)Y ) ≥ a for any λ ∈ [0, 1].

2. Monotonicity. This is the condition that if X is acceptable and Y dominates

X as a random variable, then Y is acceptable. Equivalently, we require that

if X ≤ Y , then α(X) ≤ α(Y ).

3. Scale invariance. It’s required that α(λX) = α(X) for a constant λ > 0.

4. Fatou property. For any countable collection of random variables Xn with

|Xn| ≤ 1 such that α(Xn) ≥ a, we require that if Xn converges to X in

probability, then α(X) ≥ a.

In addition there are four other properties useful in constructing practical

examples of coherent acceptability indices.

1. Law invariance This property requires that: if X
law
= Y , then α(X) = α(Y )

2. Second order monotonicity. For the index to be consistent with expected

utility, we must have that if X 42 Y , then α(X) ≤ α(Y ) where X 42 Y means

that Y dominates X in the second order3 which can be met if E[f(X)] ≤

E[f(Y )] for any increasing concave function f .

3. Arbitrage consistency. We require the index is infinity for arbitrages or

equivalently that α(X) = ∞ if and only if X ≥ 0.

3Distribution F (x) dominates G(x) in the second order, or F ≥2 G, if T (x) =
∫

x

a
[G(t) −

F (t)]dt ≥ 0 for all x ∈ [a, b].(Please refer to Bawa (1975).)
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4. Expectation consistency We relate the positivity of the index to the posi-

tivity of the mean and require that if E(X) ≤ 0, then α(X) = 0; if E(X) > 0,

then α(X) > 0.

Denote P as the set of probability measures absolutely continuous with respect

to P , for each positive real a we can define an acceptable set Aa of random variables

associated with test measures Da ⊂ P such that X ∈ Aa if and only if for every

measure Q ∈ Da we have that EQ(X) ≥ 0. We make the cones of acceptability Aa

smaller and converging to the positive orthant as we raise the level a by increasing

the sizes of the set of test measures (Da)a∈R. The acceptability index α(X) is then

defined by the largest level of a with X ∈ Aa,

α(X) = inf{a ∈ R+ : inf
Q∈Da

EQ[X] < 0}. (4.9)

Two acceptability indices, Sharpe Ratio and Value at Risk, are widely used

in practice to measure risk. However, neither of these two satisfy all the required

properties of a coherent measure.

Specifically, it is well known that the Sharpe Ratio S(X) = E(X)/σ(X) does

not have the monotonicity property and is also not consistent with arbitrage. One

example is that by using the Sharpe Ratio as benchmark to measure the acceptability

of an investment we will reject an arbitrage opportunity that has a positive payoff

but also a variance converging to infinity and making the Sharpe Ratio converge to

zero.
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Value at Risk (VAR) is defined as the negative of the quantile q+
α of the final

net flow X,

V ARα(X) = − inf{a|P(X ≤ a) > α}. (4.10)

While VAR satisfies the requirements of monotonicity, scale invariance and Fatou

property, it fails to satisfy the convexity or subadditivity properties.

Other acceptability indices, based on risk measures such as Gain-Loss ratio,

Tilt Coefficient and Tail VAR, provide remedies for some of these problems but still

fail to qualify as coherent and economically sensible measures of risk. For instance,

the Gain-Loss ratio is defined as

GLR(X) =






E(X+)
E(X−)

− 1, if E(X) > 0;

0, otherwise.

The associated acceptability index satisfies convexity, law and scale invariance, Fa-

tou property arbitrage and expectation consistency, and it’s monotonic and therefore

it’s a coherent measure. However Gain-Loss ratio doesn’t have an explicit analytic

formula for the state-price density 4, which is critical in practice. In addition, as

pointed out by Cherny and Madan (2007), the state-price density treats small losses

4State price density is often called the risk-neutral density and is related to Arrow-Debreu

securities, which is elementary securities each paying one dollar in one specific state of nature

and nothing in any other state. In a continuum of states, state-price density defines the prices of

Arrow-Debreu securities by giving each state x the price of a security paying one dollar if the state

falls between x and x + dx. Ross (1976) and Cox and Ross (1976) first observed that the Black-

Scholes formula can be derived by assuming that all investors are risk neutral and all assets in such

a world-including options-must yield an expected return equal to the risk-free rate of interest.
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and large losses symmetrically and hence exaggerates losses uniformly.

The motivation for incorporating an exaggeration of losses relative to a si-

multaneous deflation of gains is rooted in economic principles advocating weight-

ings proportional to marginal utility with a similar effect. This led to the work of

Artzner et al. (1997) and Carr et al. (2001) on the tilt coefficient, which concep-

tualizes acceptable risks in terms of a convex cone or set containing the positive

orthant.

The tilt coefficient (TC) for the random cash flow X is the highest level of

absolute risk aversion for exponential utility such that the cash flow is still attractive

to such a utility at the margin:

TC(X) = inf{λ ∈ R+ : E(Xe−λX) < 0}. (4.11)

TC satisfies the requirement of monotonicity, law invariance and the Fatou property.

It is arbitrage and expectation consistent, but it is not convex or scale invariant.

4.2.2 Acceptability Index Based on TVAR AIT (X)

Tail Value at risk or TVAR is a coherent risk measure defined based on a

coherent utility measure uλ(X):

TV AR(X) = −uλ(X), (4.12)

uλ(X) = inf
Q∈Dλ

EQ[X], (4.13)

where Dλ is the set of probability measures absolutely continuous with respect to P

such that dQ/dP ≤ λ−1, where λ ∈ (0, 1] is a parameter. In particular, if X has a
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continuous distribution, then the above infimum is attained at the measure Q∗(X)

with

dQ∗(X)

dP
= λ−11X≤qλ(X),

where qλ denotes the λ-quantile of X. From this it is clear that uλ(X) = E[X|X ≤

qλ(X)].

The acceptability index based on TVAR is AIT and is defined by

AIT (X) = (inf{λ ∈ (0, 1] : uλ(X) ≥ 0})−1 − 1. (4.14)

As the map λ → uλ(X) is continuous in λ, we have that AIT (X) ≥ a if and

only if u
1

a+1 (X) ≥ 0, and hence, AIT has the convexity property. It is also monotone,

scale invariant and has the Fatou property. The law invariance of TV AR is obvious.

if X has a continuous distribution. Second order monotonicity is also inherited from

the same property of uλ.

Arbitrage and expectation consistency properties follow from the relations

lim
λ↓0

uλ(X) = essinfωX(ω) = sup{c ∈ R : X ≥ c a.s.},

lim
λ↑1

uλ(X) = E[X].

for X with a continuous distribution, the extreme measures or coherent state-price

densities are given by

dQ∗
a(X)

dP
= (a + 1)1X≤q1/(a+1)(X), a ∈ R+.

These measures are even more extreme than those supporting GLR. Here by

employing measures that are zero for gains and uniform with respect to the size
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of losses, the gains are ignored. From the perspectives of economics considerations

these are unreasonable measures and probably more so than those associated with

GLR. this problem can be overcome by the AIW index proposed by Cherny and

Madan (2007).

4.2.3 Weighted VAR and Acceptability Indices AIW (X)

Weighted VAR is a coherent risk measure defined as WV AR(X) = −U(X),

where

U(X) =

∫

(0,1]

uλ(X)µ(dλ), (4.15)

µ is a probability measure on (0, 1] and uλ is the utility function defined in equa-

tion (4.13). To have a tractable expression for this risk measure Cherny and Madan

(2007) introduced a concave distribution function Ψ(y) on (0, 1].

Ψµ(y) =

∫ y

0

∫

(0,z]

λ−1µ(dλ)dz, y ∈ (0, 1]. (4.16)

We have the map µ → Ψµ between probability measures µ on (0, 1] and concave

distribution functions Ψµ on (0, 1]. Differentiation of Ψµ establishes that it is mono-

tone and concave. Since it can be easily proved that Ψµ(1) = 1 and Ψµ(0) = 0, it’s a

probability measure on (0, 1]. The inverse map is given by µ(dy) = −y(Ψ(y))
′′

(dy),

where Ψ(y) is second derivative in the sense of distributions.

Follmer and Schied (2004) established

U(X) =

∫

R

yd(Ψµ(FX(y)), (4.17)
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where FX is the distribution function of X. The right-hand side of (4.17) is the ex-

pectation of a random variable X with Ψµ(FX) being the distribution function of X.

The representation (4.17) provides a convenient way to construct particular exam-

ples of the class WV AR. The coherent utility U(X) associated with weighted value

at risk can be simply computed by taking expectations under a concave distortion

with the concave distortion specified by the function Ψµ.

The function U(X) is a coherent utility with all the required properties inher-

ited from uλ. According to Cherny (2006), its determining set is given by

Dµ = {Z : Z ≥ 0, E(Z) = 1, and E((Z − y)+) ≤ Φµ(y) ∀y ∈ R
+}, (4.18)

where Φµ is the convex conjugate of Ψµ:

Φµ(y) = sup
z∈[0,1]

(Ψµ(z) − yz), y ∈ R
+. (4.19)

For a random variable X with continuous distribution, the minimum of ex-

pectations EQ(X) over Q ∈ Dµ is attained at the measure Q∗(X) that is given

by

dQ∗(X)

dP
= (Ψµ)′−(FX(X)), (4.20)

where (Ψµ)′− is the left-hand derivative.

Representation (4.17) allows us to define the WVAR acceptability index AIW

by

AIW (X) = inf{a ∈ R
+ :

∫

R

yd(Ψa(FX(y))) < 0}, (4.21)

where (Ψa)a∈R+ is a collection of concave distribution functions on [0, 1] that satisfy

Ψa1(y) ≤ Ψa2(y) for all y and a1 ≤ a2.
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As the mapping a 7→
∫

R
yd(Ψ−

a (FX(y))) is left-continuous, we may then write

AIW (X) ≥ a ⇔
∫

R

yd(Ψa(FX(y))) ≥ 0 (4.22)

from which it is clear that AIW satisfies convexity, the Fatou property, monotonicity,

scale invariance, law invariance and second order monotonicity.

The notation

ua(X) =

∫

R

ydΨa(FX(y)) (4.23)

is employed for the series of coherent utilities associated with the index, which will

be discussed in the next subsections.

Four special examples of WV AR, namely, MINVAR, MAXVAR, MINMAX-

VAR, MAXMINVAR and also the corresponding acceptability indices, AIMIN-

VAR, AIMAXVAR, AIMINMAXVAR, AIMAXMINVAR are described. The ex-

treme measures of this set form the counterpart of state-price densities in classical

expected utility theory and may be viewed as coherent analogs of the tilt coeffi-

cient and thereby are more closely related to the intuitions embedded in classical

economics.

4.2.3.1 MINVAR and Acceptability Indices AIMIN(X)

MINVAR is associated with a concave distortion

Ψa(y) = 1 − (1 − y)a+1, a ∈ R
+, y ∈ [0, 1]. (4.24)

For integer a we have ua(X) = E(Y ), where

Y
law
= min{X1, ..., Xa+1}, (4.25)
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and X1, ..., Xa+1 are independent draws of X. MINVAR refers to the risk measure

ρa(X) = −µa(X) and AIMIN is the associated acceptability index. It is actually

the largest number a such that the expectation of the minimum of a+1 draws from

the cash flow distribution is still positive.

For X with a continuous distribution, the state-price densities are given by

dQ∗
a(X)

dP
= (a + 1)(1 − FX(X))a, a ∈ R

+. (4.26)

As Cherny and Madan (2007) pointed out, a potential drawback of AIMIN

is that this density converges to 0 at +∞ and a finite value a + 1 at −∞, the

latter indicates the density exaggerates losses uniformly. However, from a economic

perspectives we are accustomed to measure changes that exaggerate large losses

more than small losses.

4.2.3.2 MAXVAR and Acceptability Indices AIMAX(X)

Another concave distortion is to consider

Ψa(y) = y
1

a+1 , a ∈ R
+, y ∈ [0, 1]. (4.27)

For integer a we have ua(X) = E(Y ), where Y is a random variable with

property

max{Y1, ..., Ya+1} law
= X, (4.28)

where Y1, ..., Ya+1 are independent draws of Y. MAXVAR is the risk measure ρa(X) =

−ua(X) and AIMAX is the associated acceptability index .
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Then the state-price densities of X is given by

dQ∗
a(X)

dP
=

1

a + 1
(FX(X))−

a
a+1 , a ∈ R

+. (4.29)

This density tends to +∞ at −∞ but has another potential drawback: it tends to

a strictly positive value 1/(a + 1) at +∞. This corresponds to an asymptotically

linear utility for large gains. However, according to law of diminishing marginal

utility, the marginal utility of returns for typical risk-aversive investor diminishes as

X increases, hence the state-price densities should tend to zero at positive infinity.

4.2.3.3 MAXMINVAR and Acceptability Indices AIMAXMIN(X)

Combining MINVAR and MAXVAR, we consider the distortion

Ψa(y) = (1 − (1 − y)a+1)
1

a+1 , a ∈ R
+, y ∈ [0, 1]. (4.30)

For an integer a we have ua(X) = E(Y ), where Y is a random variable with the

property:

max{Y1, ..., Ya+1} law
= min{X1, ..., Xa+1}, (4.31)

where X1, ..., Xa+1 are independent draws of X, and Y1, ..., Ya+1 are independent

draws of Y . MAXMINVAR is the corresponding risk measure ρa(X) = −ua(X)

and AIMAXMIN is the associated acceptability index. It is in recognition of the

fact that we construct the worst case scenario first using a MINVAR perspective

followed by a MAXVAR perspective.

For X with a continuous distribution, the state-price densities are given by

dQ∗
a(X)

dP
= (1 − FX(X))a(1 − (1 − FX(X))a+1)−

a
a+1 , a ∈ R

+. (4.32)
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In particular, this density tends to +∞ at −∞ and to 0 at +∞.

4.2.3.4 MINMAXVAR and Acceptability Indices AIMINMAX(X)

Another way to combine MINVAR and MAXVAR is to consider

Ψa(y) = 1 − (1 − y
1

a+1 )a+1, a ∈ R
+, y ∈ [0, 1]. (4.33)

For integer a we have ua(X) = E(Y ), where Y is a random variable with the

property

Y
law
= min{Z1, ..., Za+1},

max{Z1, ..., Za+1} law
= X, (4.34)

and Z1, ..., Za+1 are independent draws of Z. MINMAXVAR is the risk measure

ρa(X) = −ua(X) and denote the associated acceptability index as AIMINMAX

in recognition of the fact that we construct the worst case scenario first using a

MAXVAR perspective followed by a MINVAR perspective.

For X with a continuous distribution, the state-price densities are given by

dQ∗
a(X)

dP
= (1 − FX(X)

1
a+1 )aFX(X)−

a
a+1 , a ∈ R

+. (4.35)

4.3 Pricing

Our method of pricing volatility products by combining historical distribution

of return and concave distortions could be implemented as follows. Firstly based

on the estimated model we simulate a number of price paths and then calculate

the realized variance or volatility σR for each path using equation (4.1). Based
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on the resulted empirical distribution of σR we then apply the concave distortion

to generate the distributions of payoff under an extreme scenario, from which we

could easily calculate the expectation of the payoff and set the target price as the

acceptable ask price for volatility products.

4.3.1 Determination of Tilt Coefficient

Tilt Coefficient could be calculated by minimizing the overall difference be-

tween the observed market prices and the model prices. The exact implementation

depends on the type of market contracts taken into calibrations. As an example,

assume we have N = nT · nK European options across nT different maturities Ti,

i = 1, ..., nT and nK strikes Kj , j = 1, .., nK . Using the estimated model together

with a tilt parameter a we have the model prices Pa(Ti, Kj) for the same options.

The tilt coefficient a∗ is the value that minimizes sum of squared errors of pricing:

a∗ = argminag(a), (4.36)

where g(a) =
∑

i,j(P (Ti, Kj) − Pa(Ti, Kj))
2 and P (Ti, Kj) is the market quotes

for the N contracts.

For different concave distortions we have different optimal Tilt Coefficients.

In the following pricing section, we choose those parameters as follows.

Table 4.1: Optimal Tilt Coefficients.

Tilt Coefficient MINVAR MAXVAR MAXMINVAR MINMAXVAR

a 0.5 0.25 0.15 0.15
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4.3.2 Pricing of variance and volatility swaps

Here we calculate the swap rate Kvol or Kvar for which the volatility or variance

swap has zero initial expected value. This is equivalent to finding the price level at

which the expectation of future cash flow under the concavely distorted measure Q∗
α

equals to zero. That is, for a volatility swap Kvol is the swap rate satisfying

Z = Kvol − σR,

EQ∗

α(Z) =

∫

R

zdΨα(FZ(z)) ≥ 0, (4.37)

and for a variance swap, Kvar is the swap rate that satisfies

Z = Kvar − σ2
R,

EQ∗

α(Z) =

∫

R

zdΨα(FZ(z)) ≥ 0. (4.38)

The results for variance swap rates using different concave distortions are pre-

sented in Table 4.2.

For each of the four concave distortions, the calculated swap rates are all

greater than the one computed without distortion. The new distributions shift

weight to combinations of negative cash flow and high realized volatility and there-

fore reflect the fact that the sellers of the products ask for risk compensation by

exaggerating the possibilities of loss.

4.3.3 Options on Realized Variance and Volatility

The ask price5 P for variance or volatility option is determined by the expected

cash flow from the short position. The expected cash flow on expiration day under

5Ask price is the price for a financial security quoted by a market maker for an immdediate

purchase. Bid price is the price for an immediate sale.
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Table 4.2: Prices of Variance Swap. (Units are percentage)

Maturity Distortion DAX30 DJIA CAC40 FTSE SPX Nikkei Nasdaq HSI

None 13.84 10.81 12.21 7.42 5.27 13.68 21.40 10.65
MINVAR 15.98 13.09 14.24 8.87 6.11 16.16 26.80 12.70

3 Month MAXVAR 15.27 12.56 13.66 8.57 6.05 15.42 27.99 12.13
MAXMINVAR 15.43 12.63 13.77 8.61 6.03 15.57 27.10 12.24
MINMAXVAR 15.50 12.72 13.85 8.66 6.06 15.66 27.39 12.31

None 10.74 8.47 9.88 5.49 4.11 10.65 20.60 7.87
MINVAR 11.89 9.86 11.03 6.27 4.56 12.09 25.86 9.01

6 Months MAXVAR 11.50 9.48 10.67 6.07 4.51 11.63 27.02 8.66
MAXMINVAR 11.59 9.55 10.75 6.11 4.50 11.73 26.17 8.73
MINMAXVAR 11.63 9.60 10.79 6.14 4.52 11.78 26.45 8.78

None 9.28 7.27 8.68 4.50 3.56 9.18 19.53 6.62
MINVAR 9.94 8.15 9.38 4.94 3.81 10.06 24.27 7.28

1 Year MAXVAR 9.69 7.89 9.13 4.81 3.76 9.76 24.61 7.05
MAXMINVAR 9.75 7.94 9.19 4.84 3.76 9.83 24.14 7.10
MINMAXVAR 9.77 7.97 9.21 4.86 3.77 9.86 24.37 7.13

None 8.56 6.74 8.11 4.06 3.27 8.39 19.08 5.94
MINVAR 8.96 7.33 8.54 4.32 3.41 8.95 23.26 6.33

24 Months MAXVAR 8.80 7.13 8.38 4.24 3.37 8.74 22.86 6.19
MAXMINVAR 8.84 7.18 8.42 4.26 3.38 8.80 22.76 6.23
MINMAXVAR 8.85 7.20 8.43 4.27 3.39 8.82 22.93 6.24

Note: Stress levels: MINVAR a = 0.5, MAXVAR a = 0.25, MAXMINVAR a = 0.15, MINMAX-

VAR a = 0.15.
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distorted measure Ψα is

Z = P − (σvar − Kvar)
+,

EQ∗

α(Z) =

∫

R

zdΨα(FZ(z))) (4.39)

for a variance option with strike price at Kvar. Similarly

Z = P − (σvol − Kvol)
+,

EQ∗

α(Z) =

∫

R

zdΨα(FZ(z)) (4.40)

for a variance option with strike price at Kvol. The ask price is the value that sets

the expectation equal to zero. Table 4.3 presents the pricing results.

Table 4.3: Price of 30% OTM Variance Swaption using SVPS (concave distorted).

Maturity Distortion DAX30 DJIA CAC40 FTSE SPX Nikkei Nasdaq HSI

NONE 0.52 1.24 0.72 0.35 0.10 1.07 8.08 0.61
MINVAR 3.42 4.35 3.87 1.90 0.96 4.62 17.42 2.96

3 Month MAXVAR 3.51 4.52 3.95 1.93 1.01 4.74 19.80 3.01
MAXMINVAR 3.42 4.37 3.86 1.88 0.97 4.61 18.53 2.94
MINMAXVAR 3.46 4.43 3.90 1.91 0.99 4.67 18.80 2.98

NONE 0.24 0.82 0.38 0.17 0.04 0.61 7.58 0.34
MINVAR 2.30 3.67 2.87 1.42 0.54 3.73 17.52 2.32

6 Months MAXVAR 2.45 3.74 2.97 1.45 0.62 3.78 19.50 2.37
MAXMINVAR 2.35 3.65 2.88 1.41 0.58 3.70 18.39 2.31
MINMAXVAR 2.39 3.70 2.92 1.43 0.59 3.74 18.65 2.34

NONE 0.09 0.46 0.15 0.08 0.01 0.31 6.49 0.15
MINVAR 1.34 2.90 1.90 0.93 0.20 2.70 16.68 1.58

1 Year MAXVAR 1.54 2.94 2.05 1.00 0.27 2.81 18.01 1.68
MAXMINVAR 1.44 2.87 1.96 0.96 0.24 2.72 17.18 1.61
MINMAXVAR 1.46 2.91 1.99 0.97 0.24 2.76 17.41 1.64

NONE 0.02 0.23 0.04 0.02 0.00 0.11 4.75 0.06
MINVAR 0.48 2.07 0.86 0.43 0.05 1.57 15.26 0.88

24 Months MAXVAR 0.66 2.16 1.06 0.52 0.08 1.75 15.69 1.01
MAXMINVAR 0.58 2.09 0.97 0.48 0.07 1.65 15.25 0.94
MINMAXVAR 0.59 2.12 0.98 0.49 0.07 1.68 15.45 0.97

Note: Stress levels: MINVAR a = 0.5, MAXVAR a = 0.25, MAXMINVAR a = 0.15, MINMAX-

VAR a = 0.15.
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4.3.4 Portfolio of underlying assets and variance swaps

In this section we will solve the optimization problem for a portfolio that

consists of variance contracts and the underlying asset. The cash flow to the owner

of this portfolio at expiration is

X = ST − S0e
rT + βNvar(σ

2
vol − Kvar), (4.41)

where Nvar is the notional value for per unit of realized variance, Kvar is the pre-

determined swap rate, ST − S0e
rT is the profit from investing one share of stock

and Nvar(σ
2
vol − Kvar) is the profit from one variance swap contract. The problem

is to decide the weight β of the variance contract to achieve the best combination

of profitability and risk taking.

The value of β is set to make the resulting cash flow fall inside the acceptable

set at level a

Aa = {X : α(X) ≥ a}. (4.42)

For two different strike prices, K = E(σ2
vol) and K = 1.2E(σ2

vol), the resulting

β are shown in Table 4.4 and Table 4.5.
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Table 4.4: Weight β of variance swap in portfolio with underlying assets. K =
E(σ2

vol).

Maturity Distortion DAX30 DJIA CAC40 FTSE SPX Nikkei Nasdaq HSI

MINVAR 0.07 -0.30 0.19 2.34 -0.89 -0.45 -0.31 -0.44
3 Month MAXVAR 2.03 2.76 -1.92 -2.70 -1.38 3.77 -0.61 5.46

MAXMINVAR -1.34 -2.93 -1.54 2.03 0.94 2.43 0.03 3.53
MINMAXVAR -1.96 1.58 1.13 2.12 -1.19 2.25 -0.48 3.26

MINVAR 3.84 4.65 2.35 6.88 2.23 -9.68 -0.76 12.69
6 Months MAXVAR -9.76 -12.97 7.72 14.40 6.22 -18.51 -1.13 23.13

MAXMINVAR -7.88 -10.80 6.02 7.27 3.44 -15.52 -1.26 17.57
MINMAXVAR -7.44 -10.24 -5.62 -11.33 3.34 -14.67 -1.13 16.67

MINVAR 18.66 -22.61 15.68 27.65 -15.30 52.21 -1.75 -55.84
1 Year MAXVAR -38.70 -37.00 -32.13 -52.46 -22.93 63.73 -2.69 90.132

MAXMINVAR 29.12 30.78 24.21 16.99 -20.71 51.75 -2.45 -81.63
MINMAXVAR 28.16 -36.18 23.32 40.89 -19.68 48.39 1.19 68.50

Note: Stress levels: MINVAR a = 0.5, MAXVAR a = 0.25, MAXMINVAR a = 0.15, MINMAX-

VAR a = 0.15.

Table 4.5: β of variance swap in portfolio with underlying assets. K = 1.2E(σ2
vol)

Maturity Distortion DAX30 DJIA CAC40 FTSE SPX Nikkei Nasdaq HSI

MINVAR -0.64 -0.25 -0.56 0.35 0.09 -4.53 -0.46 -2.71
3 Month MAXVAR 0.17 0.85 0.52 2.35 0.33 1.03 -0.23 1.61

MAXMINVAR 0.19 -1.97 0.36 0.74 -2.63 0.61 0.00 0.99
MINMAXVAR 0.18 0.53 0.32 0.79 -1.65 0.55 -6.29 0.03

MINVAR 0.91 1.62 0.79 2.71 -0.22 2.35 -5.34 3.51
6 Months MAXVAR 1.96 3.49 1.76 4.14 1.23 2.36 -0.33 6.52

MAXMINVAR 1.63 2.87 1.47 3.64 1.06 2.36 0.02 5.52
MINMAXVAR 1.58 2.77 1.42 3.57 1.12 3.66 -3.76 5.36

MINVAR 4.21 7.09 4.07 9.64 2.93 9.85 -8.96 14.50
1 Year MAXVAR 6.23 10.63 5.83 12.74 3.70 14.34 0.82 20.39

MAXMINVAR 5.58 9.44 5.27 11.68 3.43 12.87 -0.23 18.49
MINMAXVAR 5.47 9.26 5.18 11.53 3.09 12.64 -7.65 18.17

Note: Stress levels: MINVAR a = 0.5, MAXVAR a = 0.25, MAXMINVAR a = 0.15, MINMAX-

VAR a = 0.15.
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Chapter 5

Markowitz portfolio theory for variance contracts

In this chapter we will discuss how to extend the portfolio optimization theory to the

application of stochastic volatility models to set the optimal strategy for variance

contracts.

5.1 Markowitz theory

Markowitz theory describes how rational investors will use diversification to optimize

their portfolio. If we have n assets with returns r = {r1, r2, ..., rn} and the weights

of assets are w = {w1, w2, .., wn}, then the overall return of the portfolio is the

weighted average of the returns of each asset

rP = wr =
n∑

i=1

wiri. (5.1)

Markowitz theory uses an exponential utility function to measure the degree

of satisfaction that an investor gets from the investments:

U(rP ) = 1 − exp(−ηrP ), (5.2)

where η is a positive scalar parameter which measures the degree of risk aversion of

investor. It further assumes that a typical investor determines the optimal strategy
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by maximizing the expected utility, under the restriction that the overall risk can’t

exceed a certain level. The risk is measured by the variance of the portfolio, VrP
=

w′Vrw, where Vr = cov(r), the covariance matrix of r. The problem of finding the

optimal investment strategy can be represented as an optimization problem, that is,

to find the weights of contracts in the portfolio that maximizes the expected utility.

w∗ = argmaxE[U(wr)] (5.3)

subject to

w′Vrw ≤ Vmax. (5.4)

If all the returns follow normal distributions,

r ∼ N(µr,Vr), (5.5)

then so does the portfolio return,

rP ∼ N(µrP
, VrP

), (5.6)

where µrP
= wµr and µbr = E(r). Then the expected utility is

E[U(rP )] = E[1 − exp(−ηrP )] = 1 − exp(−ηµrP
+

1

2
η2VrP

)

= 1 − exp(−ηwµr +
1

2
η2w′Vrw). (5.7)

So the expected utility is an increasing function of expected return and a

decreasing function of variance. The solution of the portfolio weight vector w is

w∗ = V −1
r

µr

η
. (5.8)

The implications of this result for portfolio management are as follows. First,

the investors are risk aversive such that given portfolios of same risk level, a ra-

tional investor will choose the one with highest expected return. Conversely, given
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portfolios with same level of expected return, the investor will chose the one least

risky.

Secondly, the benefit of diversification comes from the fact that if the assets

are not perfectly correlated, then investors can reduce their exposure to individual

risk by holding a diversified portfolio of assets since the variance of the portfolio is

strictly less than the weighted average of the variance of individual assets. That

is, VR ≤
∑n

i=1 σ2
i . Diversification allows for the same portfolio return with reduced

risk.

We can apply the essential ideas of Markovian theory in solving the problem

of allocating volatility contracts. However since the normality assumption doesn’t

hold for stochastic volatility processes, the above result can’t be applied directly.

Based on our volatility model estimated from the historical data, we can still find

out how to maximize the expected utility function while keeping the overall risk

level under a certain level. In the next sections we will describe how to factorize the

volatility process and introduce correlation among volatility processes of different

assets. This will lead to our final solution to optimization of portfolio of volatility

contracts.

5.2 Multidimensional volatility process

In chapter 3 we observed that the volatility processes for eight different indexes seem

to follow a similar pattern. This suggests that a multifactor model can be employed

to correlate those processes. We assume the stochastic volatility process for each
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of the M indices, Wi,n, i = 1, . . . , M , n = 1, . . . , N , is determined by two global

factors (F1 and F2) and one local idiosyncratic factor ǫi. The weights {αi,1, αi,2}M
i=1

indicate how significant the impact of the factors are to each volatility process. The

structure of the model for multi-dimensional case is specified as follows

Vi,t = F
αi,1

1,t F
αi,2

2,t ϑζi
i,t i = 1, ..., 8, t = 1, ..., T (5.9)

while F1 and F2 are two independent double-gamma processes, ϑi,t = exp(ǫi) and ǫi

is normally distributed disturbance in the volatility:

F1,t ∼ Gamma(d1, λ1F1,t−1 + u1,t), u1,t ∼ Gamma(c1, γ1), (5.10)

F2,t ∼ Gamma(d2, λ2F2,t−1 + u2,t), u2,t ∼ Gamma(c2, γ2).

To estimate this multidimensional version of the stochastic volatility model we

need to adjust the particle filter used in the univariate case.

Table 5.1: Parameters for two Double Gamma factors.

λ d γ c Persistence=λ/d

F1 11.921 21.508 0.479 0.050 0.554
F2 10.521 43.756 3.414 0.103 0.241

Table 5.1 shows the parameters of the two factors estimated from the historical

data of eight indexes. Table 5.2 gives the coefficients of each factor in the volatility

processes. Two important facts can be discovered from the results. First, the

two factors differ in the degree the autocorrelation, persistence and mean-reverting

speed, as can be observed in Figure 5.1. The first factor has a damping rate 0.5542,

compared to that of the second factors, 0.2405, and is more autocorrelated, less

persistent and converges to mean level with a slower speed. This finding is in line

75



0 200 400 600 800 1000 1200
0

2

4

6

0 200 400 600 800 1000 1200
0

1

2

3

4

5

days

Figure 5.1: Two factors for stochastic volatility process.
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with Engle and Lee (1993), who conjected that the volatility can be decomposed

into a long-term component and a short-term component. The two factors are both

mean-reverting processes, with different mean-reverting rates which lead to different

persistence rates. This structure can also serve as a preliminary attempt to explain

the long-term dependence property of volatility process which is crucial for pricing

volatility options, whose value largely depends on the long-term level of volatility.

Table 5.2: Coefficients for two Double Gamma factors and the idiosyncratic factors.

DAX30 DJIA CAC40 FTSE SPX NIKKEI NASDAQ HSI

F1 0.448 0.349 0.451 0.466 0.347 0.106 0.336 0.110
F2 -0.245 0.413 -0.355 -0.419 0.455 -0.042 0.508 -0.031

ζi 0.121 0.084 0.095 0.113 0.059 0.114 0.101 0.071

Another observation is that the difference in the coefficients of the two factors

reveals their nature. For the first factor all eight indexes have positive coefficients.

For the second factor the three American indexes (DJIA, SPX, Nasdaq) have positive

loadings while the five foreign indexes (DAX30, CAC40, FTSE, NIKKEI, HSI) have

negative loadings. Therefore the first factor can be regarded as a global trend, while

the second one can be deemed as a domestic influence of United States. Finally the

idiosyncratic factors are more regional and can explain how local economic, political

and many other local factors affect the behavior of stock markets.

This multidimensional stochastic volatility model is of particular importance

because it holds together different volatility processes, builds up a codependency

structure and meanwhile maintains the local idiosyncratic features. The joint law

gives the expectation of functions of the volatility values at arbitrary time points
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and thus expected utility can be calculated and optimization of the portfolio can be

achieved.
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5.3 Optimal strategy for portfolio of volatility contracts

Suppose we have n volatility swap contracts, written on the realized volatilities

V = {V1, V2, ..., Vn} of indexes with swap prices K = {K1, K2, ...Kn}. The payoff of

each contract at expiration date is r = V − K. Thus given the weights w of these

contracts in the portfolio, the overall payoff equals

rP = w(V −K) =

n∑

i=1

wi(Vi − Ki). (5.11)

Our goal is to find the optimal strategy which maximizes the expected utility,

with restriction that the variance cannot exceed a certain level:

w∗ = argmaxE[U(wV)], s.t. VrP
≤ Vmax. (5.12)

Unlike the case where asset returns follows a normal distribution, there is

no closed-form solution for w∗ due to the complex nature of the distribution of

V. Nevertheless, since the processes can be easily simulated, we can calculate the

expectation by Monte Carlo simulation based on the multidimensional volatility

model. This can be done through four steps.

In step one we simulate a number of paths for the two independent double

gamma factors and eight idiosyncratic factors using the parameters estimated from

historical data. In the second step we construct paths for each of the eight individual

volatility processes using the two common factors and eight idiosyncratic factors.

In the third step we calculate the realized volatility on each path using Equation

(4.1). Finally we can approximate the expectation of the utility function through

the simulated realized volatilities and the weights of each volatility swap contract

79



using Equation (5.13) .

Although the expected utility is calculated based on simulation, the total

computational cost for finding the optimal strategy is fairly low. The reason is

because during the whole procedure, the simulation is needed only once. Once the

empirical probability space of the realized volatility is constructed, the expected

utility can be calculated fairly quickly as a simple function of the simulated realized

volatilities Vm, m = 1, ..., N :

E[U(rP )] ≈ 1 − 1

N

N∑

m=1

exp[−ηw(Vm − Km)] = f(w). (5.13)

Figure 5.2: Efficient frontier for portfolio of volatility contracts.

The efficient frontier of a portfolio is the set of all optimal combinations of
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expected return and risk of the portfolio. We can build up the efficient frontier for

eight volatility contracts as shown in Figure 5.2.

Table 5.3 shows an example of the result of optimal portfolio of volatility con-

tracts for different risk tolerance levels Vmax. The expected return of the portfolio rP

increases as the risk tolernce level increases and the weights on each index’s volatil-

ity contract also vary in the optimal portfolioes as results of different balancing of

expected returns and risk. For investor with high level of risk-tolerence, the alloca-

tion is more skewed to contracts with higher expected return and higher uncertainty

(volatility). For investor with lower risk-tolerence level, the optimal portfolio will

be more diversified to reduce overal risk. Among the candidate contracts in the

portfolio, volatility swap written on FTSE has low expected return, high risk and

meanwhile has great correlation with some other contracts (CAC40 and DAX30),

thus is not chosen in the porfolio even at the lowest risk tolerence.

Table 5.3: Optimal portfolios of volatility swaps for different risk tolerance level
(Vmax).

Vmax 0.0025 0.003 0.006 0.008 0.01 0.012 0.016

DAX30 0.027 0.055 0.214 0.343 0.510 0.651 0.890
DJIA 0.237 0.180 0.000 0.000 0.000 0.000 0.000
CAC40 0.005 0.005 0.022 0.037 0.032 0.023 0.007
FTSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPX 0.269 0.148 0.000 0.000 0.000 0.000 0.000
NIKKEI 0.179 0.271 0.330 0.064 0.000 0.000 0.000
NASDAQ 0.039 0.135 0.435 0.556 0.458 0.326 0.104
HSI 0.244 0.206 0.000 0.000 0.000 0.000 0.000

rP 0.035 0.041 0.059 0.065 0.069 0.072 0.077
UrP

0.051 0.060 0.085 0.093 0.098 0.102 0.109
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Chapter 6

Conclusions

In this dissertation we assumed the stochasticity of volatility is determined

by a double-gamma process. The benefit from this unique specification is twofold.

First, it accommodates the non-Gaussian properties of volatility as documents in

Chernov et al. (2003). Secondly it has an Affine structure for conditional expectation

and variance of volatility, which is convenient for the pricing of derivative products.

To solve the problem of fast decaying skewness and excess kurtosis we construct

an innovations part of the return process based on Lévy processes at unit time.

Although we only used a Variance-Gamma process to derive the density function of

innovation, this method can be easily expanded to other Lévy processes.

Another stylized fact addressed is the leverage effect. In our model, it is

incorporated by one component which is a quadratic function of past innovations in

return. Its main distinctive feature is that it allows an asymmetric effect of positive

and negative lagged values of innovations on volatility.

To estimate the model we applied the Particle filter EM algorithm to evaluate

the likelihood function, which is used for calculate the MLE of the models param-

eters. A particle filter is applied to sample paths from a posterior distribution of
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volatility and it significantly improves the efficiency and accuracy of the estimation.

To lessen the burden of estimation, we also explored an untapped issue in

stochastic volatility modeling, that is, volatility might change with different fre-

quencies to return. The likelihood ratio tests on models with different frequencies of

volatility not only dismisses the restriction that the volatility changes with the same

pace to return, but also provides a way to search for optimal updating frequencies.

With a lower-valued optimal frequency the time spent on sampling latent process is

significant and the computational burden is greatly eased.

An important application of the stochastic volatility model is to price volatility

contracts including variance/volatility swap and variance/volatility option. Since

the market is not liquid enough to provide sufficient price data to do the calibration,

we rely on the physical measure which is ready after we solve the estimation problem

based on historical data. To compensate the risk we distort the physical measure

under a coherent utility function and the corresponding acceptability index. This

method overcomes the calibration problem in pricing derivatives and surpasses the

non-arbitrage pricing methodology and therefore provides a robust and efficient

way to price the exotic derivative contracts combining historical price information,

market risk aversion level and direction of trade.

Future researches will include study on calibration issues in capturing the

implied market information instead of just historical information, further theoretical

study on hypothesis test among different volatility change frequencies, and issues in

evaluation of more exotic volatility products using this model.
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