
Abstract

Title of dissertation: MULTIMEDIA PROTECTION USING

CONTENT AND EMBEDDED FINGERPRINTS

Avinash Laxmisha Varna, Doctor of Philosophy, 2011

Dissertation directed by: Professor Min Wu
Department of Electrical and Computer Engineering

Improved digital connectivity has made the Internet an important medium

for multimedia distribution and consumption in recent years. At the same time,

this increased proliferation of multimedia has raised significant challenges in se-

cure multimedia distribution and intellectual property protection. This dissertation

examines two complementary aspects of the multimedia protection problem that

utilize content fingerprints and embedded collusion-resistant fingerprints.

The first aspect considered is the automated identification of multimedia using

content fingerprints, which is emerging as an important tool for detecting copyright

violations on user generated content websites. A content fingerprint is a compact

identifier that captures robust and distinctive properties of multimedia content,

which can be used for uniquely identifying the multimedia object. In this disser-

tation, we describe a modular framework for theoretical modeling and analysis of

content fingerprinting techniques. Based on this framework, we analyze the impact

of distortions in the features on the corresponding fingerprints and also consider



the problem of designing a suitable quantizer for encoding the features in order

to improve the identification accuracy. The interaction between the fingerprint

designer and a malicious adversary seeking to evade detection is studied under a

game-theoretic framework and optimal strategies for both parties are derived. We

then focus on analyzing and understanding the matching process at the fingerprint

level. Models for fingerprints with different types of correlations are developed and

the identification accuracy under each model is examined. Through this analysis we

obtain useful guidelines for designing practical systems and also uncover connections

to other areas of research.

A complementary problem considered in this dissertation concerns tracing the

users responsible for unauthorized redistribution of multimedia. Collusion-resistant

fingerprints, which are signals that uniquely identify the recipient, are proactively

embedded in the multimedia before redistribution and can be used for identifying

the malicious users. We study the problem of designing collusion resistant finger-

prints for embedding in compressed multimedia. Our study indicates that directly

adapting traditional fingerprinting techniques to this new setting of compressed

multimedia results in low collusion resistance. To withstand attacks, we propose

an anti-collusion dithering technique for embedding fingerprints that significantly

improves the collusion resistance compared to traditional fingerprints.
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Chapter 1

Introduction

Multimedia consumption via the Internet has increased radically over the last

few years. The Internet has also emerged as an important medium for distribution of

multimedia content such as video and audio. Video streaming services are available

from such providers as Netflix, Blockbuster, Hulu, and Amazon. Services such as

Google TV and Apple TV that are being planned will further strengthen this trend.

Fueling this trend is the technological improvement in the bandwidth of network

connections, and the growing popularity of user-generated content (UGC) websites,

such as YouTube, which have changed the perspectives of both content providers

and consumers with regards to the Internet.

At the same time, this ease of access has brought significant challenges to

intellectual property protection, as the improved technology has made it easier to

redistribute copyrighted multimedia content to a large number of users. The pop-

ularity of UGC websites has also raised concerns about the posting of copyrighted
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content by users. The movie industry estimated that piracy and illicit redistribution

have caused over $6 billion loss annually in terms of lost revenue [80, 82].

The problem of secure distribution and protection of multimedia in the Internet

age raises significant technical challenges and various new technologies have been

developed to address these issues. In this dissertation, we examine two important

aspects of multimedia protection that rely on digital fingerprints.

1.1 Content Fingerprints for Multimedia Identification

One approach to protecting intellectual property rights is to reduce the num-

ber of avenues available for illicit multimedia redistribution. Most UGC websites

have adopted rules and policies that discourage users from uploading copyrighted

content and are seeking technological solutions for implementing these policies. A

technology that automatically identifies videos can enable UGC websites to filter out

copyrighted content and protect themselves from costly lawsuits and litigation. One

promising solution to this problem relies on a technology called content fingerprints.

A content fingerprint, in this context, is a compact signature that represents robust

and unique characteristics of the multimedia and can be used to identify the doc-

ument. For each video uploaded, the service provider can compute the fingerprint

and compare it with a database of fingerprints of copyrighted content, to decide

whether the video in question is copyrighted or not.

Content fingerprints are also used for identifying multimedia in a variety of

other applications in multimedia management. Fingerprints are employed by such

2



services as Shazam, Midomi, VCAST, etc. to perform automatic music identifica-

tion. Given a noisy recording of an audio captured using a mobile device, these

services identify the original audio track and provide metadata information, such

as the album, options to buy the track, etc. Fingerprints have also been used to

perform automatic tagging of audio collections and create automatic playlists based

on user preferences [12].

The fingerprints utilized for identification should be robust, so that they are

not altered by benign processing or minor distortion of the multimedia, but should

be discriminative enough to distinguish between millions of different multimedia

objects. In many practical applications, fingerprint extraction and matching are

performed in real-time, which places constraints on the computation and memory

requirements of the identification system. A significant amount of research effort has

been focused on designing fingerprinting schemes with various robustness properties,

that employ different kinds of features, and provide varying tradeoffs between ro-

bustness, discrimination, and computational requirements. These schemes are then

evaluated using experiments on moderate sized databases.

While such experimental evaluations are important, they may not provide a

complete picture of how the performance scales when the same algorithm is used to

identify videos from a very large database with millions of hours of video. Also, the

understanding obtained from evaluating a particular fingerprinting scheme may not

help in predicting the performance of another scheme. To complement these experi-

mental evaluations, there is a strong need for a systematic analysis of fingerprinting

schemes that can help us obtain deeper insights and uncover connections to related

3



areas. Analysis can help us answer such fundamental questions as - “What is the

best possible identification accuracy achievable using any fingerprinting scheme?”,

“What properties should an optimal fingerprinting scheme have?”, “How should the

fingerprint be designed to resist attacks?”, “What is the impact of using module

X as opposed to module Y ?”, and others. Such an analysis can also guide the de-

sign of better fingerprinting schemes. A systematic study would also help identify

weaknesses of fingerprinting systems that may be exploited by smart attackers to

circumvent the system and allow suitable counter-attack strategies to be devised.

In this dissertation, we describe a modular framework for analyzing fingerprinting

systems that can help answer some of these questions.

1.2 Collusion-Resistant Fingerprints for Traitor Tracing

A complementary aspect of multimedia protection is to identify the user re-

sponsible for redistributing or pirating the content. This issue is not only important

in the context of movie piracy, but becomes a critical necessity in many applications

involving highly secure and classified documents. Consider, for example, a classified

video that only a select group of users has access to. An untrustworthy user may

leak this video to an outsider, or publish it via the internet. It then becomes nec-

essary to identify the user responsible for this leak. The presence of such a tracing

mechanism can also serve to deter and prevent users from redistributing classified

information in the first place.

Embedded fingerprints have emerged as an important forensic tool to combat

4



such illegal redistribution of protected content. The main idea behind fingerprinting

is to embed a fingerprint signal in every legally distributed copy of the content that

uniquely identifies the recipient. When an unauthorized copy is discovered, the

embedded fingerprint can be extracted and used to identify the source of the leak.

While such a system may be effective at identifying single adversaries, multiple

malicious users may collaborate to launch powerful collusion attacks against the

fingerprinting system [103]. By comparing their different versions, the colluders

can attempt to identify the locations containing the fingerprint signal, remove the

information from these locations and thereby create a copy that cannot be traced

back to any of them.

Collusion-resistant fingerprints designed to withstand such attacks have been

proposed in the literature [83, 98]. These designs provide good collusion resistance

when embedded in uncompressed multimedia. In practical applications, multimedia

is widely stored and transmitted in compressed format, and it is often necessary to

embed fingerprints in compressed multimedia. Existing techniques, which are suit-

able for uncompressed multimedia, do not provide good resistance when adapted

to compressed host signals, and novel designs that explicitly account for the com-

pressed nature of the host are needed [86]. In this dissertation, we describe an

Anti-Collusion Dither based technique that can significantly improve the collusion

resistance of fingerprints embedded in compressed signals.

5



1.3 Organization of the Dissertation

As described in the previous sections, the first contribution of this dissertation

is to develop models for and study the performance of content fingerprints. Chap-

ter 2 describes the overall modeling framework for theoretical analysis of content

fingerprints. Under this framework, modules that are typically utilized in finger-

printing algorithms are individually analyzed to understand their impact on the

overall identification performance. This can also be thought of as a layered or hi-

erarchical approach to modeling and designing content fingerprints, in terms of the

underlying multimedia content, the features extracted from the multimedia, encod-

ing the features to obtain compact fingerprints and the matching process. In the

same chapter, some aspects of the relations between the features used in construct-

ing the fingerprints and the final fingerprints obtained are examined. Specifically,

the impact of distortion in the feature domain on the fingerprint bits is studied.

An algorithm to optimize the design of the feature quantizer to improve the iden-

tification performance is described. Lastly, the interaction between the fingerprint

designer and the adversary is studied under a game-theoretic framework and the

optimal fingerprint bit distribution from the designer’s perspective is determined.

Chapters 3-5 then focus on, and examine in detail, the fingerprint matching

process, with progressively more complex models. In Chapter 3, a simple i.i.d.

model is adopted for the fingerprint bits. Fingerprint matching is modeled as a

hypothesis testing problem, and the best performance achievable using i.i.d. bits

is determined. Bounds are also derived on the length of the fingerprint needed to

6



achieve a desired performance. As practical fingerprints have correlated compo-

nents, Chapter 4 describes a Markov Random Field based model that can capture

these correlations. A statistical physics based approach is developed to estimate

the identification accuracy under this model. Chapter 5 examines models to cap-

ture the temporal correlations among fingerprints that reflect the correlations of the

underlying multimedia. An adaptive detector is then proposed that improves the

matching accuracy.

In Chapters 6 and 7, the problem of designing collusion resistant fingerprints

for compressed multimedia is studied. In Chapter 6, the performance of tradi-

tional fingerprints designed for uncompressed multimedia when applied to com-

pressed multimedia is first examined. As the existing techniques result in low

collusion resistance, an Anti-Collusion Dithering(ACD) technique is described to

improve the overall collusion resistance, and the performance is studied via sim-

ulations and experiments. Chapter 7 then performs a theoretical analysis of the

collusion-resistant fingerprints for compressed multimedia from different perspec-

tives, and demonstrates that the proposed ACD technique is advantageous under

each of these criteria.

The thesis concludes with Chapter 8, which summarizes the contributions of

the dissertation and discusses future perspectives.
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Chapter 2

Theoretical Modeling and Analysis

of Content Fingerprinting

In recent years, user generated content (UGC) websites such as Youtube have

grown in popularity and revolutionized multimedia consumption and distribution.

Increasingly, the Internet is being seen as a medium for delivering multimedia con-

tent to consumers. These new distribution channels have made it easier to access

multimedia in digital form and redistribute it via the internet. Concerns have been

raised about the redistribution of copyrighted content, especially through UGC web-

sites [81]. To identify and filter such copyrighted videos, several UGC websites are

deploying content filtering schemes that rely on an emerging technology called con-

tent fingerprinting. A content fingerprint, is a compact identifier that represents

robust and unique characteristics of the multimedia and can be used to identify the

document. In this respects, it is similar in usage to a human fingerprint, and hence

8



the name. The fingerprint of the uploaded video can be compared to a database of

fingerprints of copyrighted content to identify whether it is copyrighted or not.

Watermarking, which is a proactive technique wherein a special watermark

signal is embedded into the host at the time of content creation, can also be used

for content identification. This embedded signal can later be extracted and used

to identify the content and retrieve associated metadata [5]. Watermarking tech-

niques are suitable if the embedder has control over the content creation stage. This

requirement may be difficult to satisfy in many practical applications, including

content filtering on UGC sites. In particular, a large volume of existing multimedia

does not have embedded watermarks and cannot be identified using this approach.

Content fingerprints, on the other hand, do not require access to the content at the

time of creation and can be used to identify existing multimedia content that does

not have embedded information.

Content fingerprints are designed to be robust to minor content preserving op-

erations while being able to discriminate between different multimedia objects. At

the same time, the fingerprints must be compact to allow for efficient matching. In

this respect, content fingerprinting shares similarities with robust hashing [26, 78].

Traditionally, robust hashing was studied in the context of authentication, where

the main objective was to prevent an adversary from forging a valid hash for a given

image, and also prevent him/her from obtaining an image that has the same hash

as the given image. In contrast, while collisions or false alarms are also a concern in

content fingerprinting, the main threat model is an adversary making minor modifi-

cations to a given multimedia document that would result in a significantly different

9



fingerprint and prevent identification. Another difference between fingerprinting and

robust hashing is that fingerprinting applications typically involve large databases

with millions of hours of video and audio, whereas traditional applications of im-

age hashing typically focus on authenticating a smaller set of images. However,

many hashing schemes with good robustness properties can be adapted for content

identification purposes and hence the terms “content fingerprinting” and “robust

hashing” are often used interchangeably in the literature.

Content fingerprinting has received a lot of interest from the research commu-

nity and different approaches for fingerprinting have been proposed, some of which

are reviewed in Section 2.1. Most of these works address the problem of designing

fingerprinting schemes that are robust to different kinds of processing and achieve

various tradeoffs between robustness, discrimination, and computational complex-

ity. Typically, these algorithms are designed based on heuristics and are evaluated

through experiments on moderately large databases. Some studies have also focused

on the modeling and analysis of certain modules employed for designing fingerprints,

but no overarching framework has been developed.

There is a strong need for theoretical modeling and analysis of the fingerprint-

ing problem that can provide deeper understanding and insight. For example, in

the field of data-hiding, the modeling of watermarking as communications with side

information [18] led to the development of schemes inspired by communication ap-

proaches with provable optimality properties [11]. A similar framework for content

fingerprints, that uncovers connections with other areas of research, can guide the

design of better fingerprinting algorithms. In this dissertation, we develop a frame-
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work that can provide a basis for further study and analysis, and answer some of

the fundamental questions regarding content fingerprints.

2.1 Prior Work on Content Fingerprinting

Content fingerprinting has attracted a lot of research and several audio and

video fingerprinting techniques have been proposed in the literature. A robust fin-

gerprinting technique for audio identification based on the signs of the differences

between the energy in different frequency bands of overlapping frames was proposed

in [30]. A similar approach for video, coupled with efficient indexing strategies was

proposed in [64]. Ranks of the block average luminance of sub-sampled frames were

used as fingerprints in [60], while signs of significant wavelet coefficients of spectro-

grams were used to construct fingerprints in [3]. Moment invariants that capture

appearance and motion were proposed as features for fingerprints in [68].

In the robust hashing literature, hash generation by quantizing projections

of images onto smooth random patterns was proposed in [26], which is used as a

building block in many fingerprint constructions such as [68]. Hashes resilient to

geometric transforms based on properties of Fourier transform coefficients were pro-

posed in [78]. Spatiotemporal video hashes based on 3-D transforms were proposed

in [15]. Several other hashing schemes with different robustness properties have been

proposed in the literature. A comparative study of a few representative algorithms

was performed in [46]. A survey of various fingerprinting and hashing algorithms

proposed in the literature may be found in [53].
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Regarding theoretical aspects of fingerprinting, qualitative guidelines for de-

signing multimedia hash functions were provided in [56], with a focus on bit assign-

ment and the use of suitable error-correcting codes to improve the robustness. Ro-

bust hashing was considered as a classification problem in [95]. As a null-hypothesis

and false alarms were not explicitly considered in the formulation of [95], the anal-

ysis cannot be directly applied to the problem of content identification. In the

related field of biometrics, the capacity of biometrics-based identification was stud-

ied in [101]. Capacity was defined as the maximum rate R such that 2LR distinct

biometrics could be identified with an asymptotic error probability of zero, as the

length of the fingerprints L → ∞. However, as noted in [101], while designing

practical systems, we are more interested in determining the best performance ob-

tainable using a given length of the fingerprint, which is one of the contributions of

our study. Subsequent to the results described in Chapter 3, which were summa-

rized in [88], a similar analysis applicable to fingerprints over general alphabets was

described in [62].

Most of these prior works focused on the design and analysis of particular

modules used in fingerprint and robust hash designs. In this dissertation, we describe

a holistic framework for modeling and analysis of fingerprints, and study different

aspects of the fingerprint problem.
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Figure 2.1: Framework for modeling content fingerprints.

2.2 Framework for Modeling Content Fingerprints

In this section, we describe the overall framework for analyzing various con-

tent fingerprinting schemes [84]. Practical algorithms for fingerprinting proposed

in the literature may employ different building blocks, but they typically follow

the general framework shown in Figure 2.1. Given the multimedia data, features

that capture distinctive properties of the multimedia are extracted. These features

should be robust to distortions of the underlying signal, so that they can be reliably

extracted from a distorted version of the original content, while being distinctive

enough to distinguish diverse multimedia objects. Robust properties of the signal

in various domains, such as spatial, temporal or transform domain, may be used

as features [53]. In many practical applications with stringent requirements on the

computational complexity, simpler, easy-to-compute features may be preferred [53].

Some commonly used image/video features, such as interest point based features,
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block average luminance, and color histograms are illustrated in the second block of

Figure 2.1.

The extracted features are typically quantized and compactly encoded as bits

or integers to obtain the fingerprint, as illustrated in the third block of Figure 2.1.

The computed fingerprints are then stored in the reference database for later use.

Given a multimedia object that needs to be identified, features are extracted and

encoded to form the query fingerprint, which is then matched with the fingerprints

in the reference database to identify the multimedia. For the matching process,

exhaustively comparing the query with every fingerprint in the database is optimal,

but may incur high computational cost. Instead, efficient approximate matching

schemes, such as Locality Sensitive Hashing (LSH) and k-D trees may be used in

practice.

The accuracy of a given fingerprinting algorithm for different genres of multi-

media is influenced by each module. To understand the overall matching accuracy,

it is necessary to understand the contribution of each of these individual modules

to the performance. In particular, through our analysis, we wish to understand how

different multimedia are mapped into features, how distortion of the multimedia

changes the feature values extracted, how these changes in the features affect the

final fingerprint, and how these distortions of the fingerprint in turn impact the

matching and the overall identification accuracy.

In the subsequent sections and chapters, we describe the analysis of some

modules used in fingerprinting algorithms under this framework. We first examine

different aspects of the mapping of the features to fingerprint bits in the remainder
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of this chapter. In Section 2.3 we examine the minimum amount of distortion

that an attacker needs to introduce into the features to change a certain number

of fingerprint bits, and in Section 2.4, we examine how the quantizer should be

designed to improve the overall identification accuracy. Section 2.5 sheds light on

the optimal choice of the fingerprint distribution to resist attacks. Chapters 3-5 are

devoted to analyzing the matching performance at the binary fingerprint stage.

2.3 Distortion in Features Reflected in the Fingerprints

In this section, we study how distortion in the features translate into changes

in the fingerprint bits. First, we study the probability of a fingerprint bit changing

when the features are distorted, and examine the influence of the variance of the

distortion and the correlation between the features and distortion on this probability.

We then determine the minimum amount of distortion required to cause a unit

change in the fingerprint, and the influence of the fingerprint distribution on this

quantity.

2.3.1 Problem Setup

In many fingerprint constructions, the final binary fingerprint is obtained by

comparing each feature component to a threshold. For example, in [30], the signs of

differences between the average energy of adjacent frequency bands across frames are

used as fingerprints. Similarly, in schemes employing random projection as the final

step, such as [26, 68], the projection of the feature on a random vector is compared
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to a threshold. We adopt a similar model for our analysis of the fingerprints, where

a set of features are extracted from a multimedia document such as image/video and

are then quantized to 1-bit accuracy by comparing with a threshold. The feature

used could be average block luminance, differences between average block luminance

of adjacent blocks, or functions of transform coefficients.

Suppose that L featuresX1, X2, . . . , XL are extracted from a given multimedia.

For simplicity, we assume that the features can be modeled as i.i.d. random variables

with a common p.d.f. f and corresponding c.d.f. F . Let the ith bit of the fingerprint

Bi ∈ {0, 1} be obtained by comparing the ith feature value to a threshold τ , Bi =

Q(Xi) = U(Xi − τ), where U(·) is the unit step function. Typically, the threshold

is set to be equal to the median value of the distribution f , so that the resulting

bits are equally likely to take the values 0 and 1 [26]. Henceforth, without loss of

generality, we assume that the features have been centered so that the median is

equal to 0 and that the threshold is chosen to be equal to the median, so that τ = 0.

2.3.2 Probability of Flipping a Fingerprint Bit

In this subsection, we examine how distortions of the multimedia are reflected

as changes in the binary fingerprint in terms of the probability of a bit being flipped.

Due to distortions of the underlying signal, the features extracted from a query may

be different from the original features {Xi}. Denote the features obtained from the

distorted content by Xi+Zi, where {Zi} is the distortion in the features. In general,

the distortion Zi may be correlated with the original feature Xi. We assume that
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the noise in each feature Zi is independent of the remaining {Xj}j 6=i and {Zj}j 6=i.

The probability of a fingerprint bit flipping may be written as:

p = Pr(B′
i 6= Bi) = Pr(Xi > 0, Xi + Zi < 0) + Pr(Xi < 0, Xi + Zi > 0), (2.1)

where B′
i = Q(Xi+Zi) is the ith fingerprint bit obtained from the distorted content.

For many distributions of interest, the probability in Eqn. (2.1) can be evaluated

numerically. As an example, we consider the case of Gaussian distributed features

and distortion. The inferences obtained from this example would apply similarly to

the case of other distributions.

Suppose that [Xi Zi]
T is jointly Gaussian with mean µ and covariance Σ:

µ =









0

µn









, Σ =









1 ρσz

ρσz σ2
z









,

where for convenience we have normalized the mean and variance of the feature Xi

to 0 and 1, respectively. The probability p can then be expressed as:

p =

∫

x>0

fX(x) Pr(Zi < −Xi|X = x) dx+

∫

x<0

fX(x) Pr(Zi > −Xi|X = x) dx

=

∫

x>0

fX(x)Φ(−x;µz|x, σ
2
z|x) dx+

∫

x<0

fX(x)(1− Φ(−x;µz|x, σ
2
z|x)) dx,

where Φ(x;µ, σ2) is the c.d.f. of a Gaussian distribution with mean µ and variance

σ2, and the mean and variance of the conditional distribution of Zi|X = x are given

by:

µz|x = µz + ρσzx, σ2
z|x = σ2

z(1− ρ2).

The probability p can then be evaluated numerically. Figure 2.2 examines the influ-

ence of the noise power σ2
n and the correlation ρ on the probability of a bit flipping,
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Figure 2.2: Relation between the distortion in features and the probability of a

fingerprint bit changing.

when µz = 0. From Figure 2.2(a), we observe that for a fixed correlation, as the

distortion power increases, the probability of a bit flipping increases, as expected.

Figure 2.2(b) indicates that a negatively correlated distortion has a higher proba-

bility of altering a fingerprint bit.

2.3.3 Minimum Distortion Required to Alter Fingerprint

Bits

The probability of a bit flipping for a given type of distortion as evaluated

above is useful for modeling benign processing and gives a sense of the average

distortion needed to change a certain fraction of the fingerprint bits. However, a

malicious adversary seeking to evade detection could distort the features in a smart

manner to cause large changes in the fingerprint while minimizing the amount of dis-
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tortion introduced. The minimum amount of distortion that needs to be introduced

to change fingerprint bits is thus an indicator of the robustness of the feature against

malicious adversaries. We now derive an analytical expression for this metric.

The fingerprint bit obtained by quantizing a given feature Xi can be altered

by adding a value −Xi to it, so that the amount of squared distortion introduced

is |Xi|2. Given L features, m bits of the fingerprint can be changed with mini-

mum distortion by altering the m features with the smallest absolute values. Let

Yi = |Xi| and Y(1), Y(2), . . . , Y(L) denote the order statistics of {Yi}, where Y(1) cor-

responds to the minimum value and Y(L) corresponds to the maximum value. To

change m fingerprint bits, it is sufficient to modify the features corresponding to

Y(i), i = 1, 2, . . . , m and change their sign. The mean squared distortion D′
L(m) thus

introduced in the features is:

D′
L(m) =

1

L

m
∑

i=1

Y 2
(i)

Let p = m
L

denote the fraction of fingerprint bits changed, and DL(p) denote

the minimum expected mean squared distortion needed to change a fraction p of

the bits:

DL(p) = E[D′
L(⌈Lp⌉)] (2.2)

DL(p) represents the best tradeoff, from an attacker’s perspective, between the

amount of distortion introduced and the changes in the fingerprint. In this sense,

DL(p) is similar to the rate-distortion function in information theory [16].
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2.3.4 Evaluation of the Distortion Function

The distortion function DL(p) defined in Eqn. (2.2) can be expressed as

DL(p) =
1

L
E





⌈Lp⌉
∑

i=1

Y 2
(i)





=
1

L

⌈Lp⌉
∑

i=1

E[Y 2
(i)]

=
1

L

⌈Lp⌉
∑

i=1

(

E[Y(i)]
2 +Var(Y(i))

)

,

where E[Y(i)] and Var(Y(i)) represent the mean and variance of the order statistics.

It can be shown that for large L, the order statistics converge in distribution to a

Gaussian random variable:

X(⌈Lp⌉)
D−→ N

(

F−1(p),
p(1− p)

L[f(F−1(p))]2

)

,

where,
D−→ denotes convergence in distribution and F−1(·) denotes the inverse

c.d.f. [20]. The convergence to the Gaussian distribution, combined with the fact

that the variance reduces to 0 as L increases, implies that the ⌈Lp⌉th order statistic

converges in probability to the mean, X(⌈Lp⌉)
P−→ F−1(p).

Using the above results for the mean and variance of order statistics, we have:

DL(p) ≈ 1

L

⌈Lp⌉
∑

i=1

(

[

F−1
Y

(

i

L

)]2

+
i
L

(

1− i
L

)

L[f(F−1
Y

(

i
L

)

)]2

)

−→ 1

L

⌈Lp⌉
∑

i=1

(

[

F−1
Y

(

i

L

)]2
)

,

as the variance term decays to zero for large L. Define mi =
i
L
and ∆m = mi −

mi−1 = 1
L
. Using these variables, the expression for the distortion function can be
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written as

DL(p) =

p
∑

mi=
1
L

[

F−1
Y (mi)

]2
∆m

−→
∫ p

0

[

F−1
Y (m)

]2
dm = D(p), (2.3)

for large L, where F−1
Y (·) corresponds to the inverse c.d.f. of the absolute value of the

features. Using the above expression, the distortion function can be evaluated for

any distribution for which the inverse c.d.f. can be computed efficiently. Further, we

observe that the the number of features L does not appear in the above expression.

This implies that the minimum expected mean squared distortion needed to alter a

fixed fraction of the fingerprint bits is independent of the number of bits.

2.3.5 Numerical Results

To verify our theoretical derivations, we perform experiments with synthetic

data. We generate random variables with a specified distribution, alter the signs of

Lp features with the minimum absolute values, and compute the average distortion

introduced to estimate D(p).

Figure 2.3 shows the distortion function for the case when the features {Xi}

extracted from the image/video are distributed as standard Gaussian random vari-

ables. From the figure, we observe that for L ≥ 64, the distortion function is

independent of the number of features. The difference between the distortion func-

tion for L = 16 and for larger L is small, especially in the region of interest, where

p < 0.5. Further, to completely change the fingerprint, the mean squared distor-

tion introduced is equal to the variance of the features. This is due to the fact
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Figure 2.3: Influence of the number of features N on the distortion function.

that to change every single fingerprint bit, the distortion needed will be equal to

the negative of the features. As a result, the average distortion introduced will be

equal to the variance of the feature. We next compare the simulation results with

the analytical expression in Eqn. (2.3), which is evaluated by numerical integration.

Figure 2.4 shows that the theoretical expression and the simulation results agree

very well.

2.3.6 Influence of Different Feature Distributions

We next consider the effect of the distribution of the features on the distortion

function. As indicated by Eqn. (2.3), the inverse c.d.f. of the absolute value of the

feature determines the distortion function. We consider three commonly encoun-

tered distributions for image features - uniform, Laplacian, and Gaussian. To enable

a fair comparison, we normalize the variance of the distributions.

The uniform distribution on [−∆
2
, ∆
2
] with ∆ =

√
12 has unit variance. The
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c.d.f. of Yi = |Xi| is then given by F
(U)
Y (y) = 2y

∆
, 0 ≤ y ≤ ∆

2
, and the inverse c.d.f.

F
−1 (U)
Y (y) = ∆y

2
, 0 ≤ y ≤ 1. The distortion function for the uniform distribution

can then be derived as:

D(U)(p) =
∆2p3

12
= p3

as the variance ∆2

12
= 1.

For the Laplacian distribution defined as fL(x) =
1
2b
exp(− |x|

b
), the variance is

given by σ2
L = 2b2, so that for unit variance, b =

√

1
2
. The c.d.f. of the corresponding

Yi = |Xi| is then given by F
(L)
Y (y) = 1−exp(−y

b
), y ≥ 0 and the corresponding inverse

c.d.f. is F
−1 (L)
Y (y) = −b ln(1 − y), 0 ≤ y ≤ 1. Integrating the square of the inverse

c.d.f. to obtain the distortion function gives

D(L)(p) = 0.5[2p− (1− p)((ln(1− p))2 − 2 ln(p))]

where we have used the fact that 2b2 = 1. For the Gaussian distribution, no closed

form expression exists for the inverse c.d.f, and we use numerical techniques to

23



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

D
(p

)

 

 

Uniform
Gaussian
Laplacian

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.005

0.01

0.015

0.02

0.025

0.03

p

D
N

(p
)

 

 

Uniform
Gaussian
Laplacian

(b)

Figure 2.5: Influence of the feature distribution on the distortion function. (b)

displays an enlarged portion of the distortion function to highlight the region 0 <

p < 0.5.

compute the distortion function.

Figure 2.5(a) shows the distortion function for random variables with the uni-

form, Gaussian, and Laplacian densities and Figure 2.5(b) shows an enlarged portion

of the distortion function in the region of practical interest. From these figures, we

observe that the uniform distribution requires the highest distortion to change the

fingerprint by a fixed fraction, followed by the Gaussian distribution. The Laplacian

distribution requires the least amount of distortion to be introduced. These results

can be explained by examining the inverse c.d.f. of the absolute value F−1
Y (y), shown

in Figure 2.6. We observe that for small y, the inverse c.d.f. corresponding to uni-

form distributed random variables has the highest value compared to the Gaussian

and Laplacian distributions, which results in a corresponding highest value for the

distortion function. Intuitively, since the Gaussian and Laplacian distributions are
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more likely to produce values closer to 0, the average amount of distortion needed

to change these values is lower, compared to the uniform distribution. Thus, a dis-

tribution that is more spread out, or has lesser probability mass close to 0, would

give a better performance from this viewpoint. In terms of the kurtosis, which is a

measure of the “peakedness” of a distribution, having a lower value for the kurtosis

implies that the distribution is more robust under this metric. If a designer has

an option to choose between features with different distributions, then this metric

could be used as a guideline for choosing a robust feature.

2.4 Optimal Quantizer Design for Content Identification

As described in Section 2.2, features extracted from multimedia are often quan-

tized and encoded to obtain compact fingerprints, which require lesser storage. The

quantization can also serve to improve the robustness against noise, but should
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be designed carefully to preserve the discriminative ability of the features. 1-bit

quantizers are commonly used in fingerprinting applications [30]. Another common

quantization and encoding technique is ordinal ranking [60], which has been studied

and analyzed in [13, 14].

The problem of designing quantizers to optimize various criteria has been

studied in the literature in different contexts. Quantizing and reconstructing a signal

to achieve the minimum mean squared reconstruction error was studied in [51]. The

optimal quantizer for this problem is the well known Lloyd-Max quantizer [36, 51].

Vector quantization techniques with applications in signal compression have also

been studied in the literature [28]. Quantizer design for encoding a signal in noise

to achieve minimum reconstruction error with respect to the noiseless source was

studied in [2]. Quantizer design in a joint source channel coding framework was

considered in [24]. In this setting, a source signal is quantized, and the binary

codeword representing the quantized signal is transmitted over a binary symmetric

channel. The decoder uses the channel output to reconstruct the source signal. The

goal is to design a quantizer that minimizes the mean squared error between the

source and the reconstructed signal.

As we will show below, quantizer design for content identification shares some

similarities with the joint source channel coding problem considered in [24]. How-

ever, the main difference is that in [24] the binary encoded signal is transmitted

over the noisy channel, whereas in the fingerprinting problem, the original signal

is itself transmitted over a channel, which induces a noisy channel between the

corresponding quantized versions or fingerprints.
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2.4.1 Problem Description

The problem setup for quantizer design in identification applications is shown

in Figure 2.7. A source X is quantized using a scalar quantizer QX(·), to obtain

Z = QX(X). The random variable X may correspond to features derived from

images or video in content identification applications or may correspond to features

derived from biometric data in biometric identification applications. The quantized

value Z which corresponds to the fingerprint is then stored in the database. In

the identification stage, a noisy version of X denoted by Y is observed. To com-

pute the fingerprint W , the feature Y is quantized using a quantizer QY (·) so that

W = QY (Y ). The quantizers QX and QY have LX and LY reconstruction values

respectively. The objective is to choose the quantization thresholds of QX and QY

so as to achieve the best identification performance.

The performance of an identification system is typically measured in terms

of the probabilities of false alarm and correct identification. However, closed form

expressions for these quantities in terms of the distributions of X and Y cannot be
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easily obtained. Instead, we use the identification capacity Cid [101] as a measure of

the identification performance. The identification capacity for the system described

in Figure 2.7 is given by Cid = I(Z;W ), where I(Z;W ) is the mutual information

between the random variables Z and W [101]. The identification capacity is an

important parameter, as the maximum number of distinct fingerprints that can be

identified Nmax is related to the capacity Cid as Nmax ≈ 2LCid, where L is the length

of the fingerprint.

Let −∞ = t0 < t1 < . . . < tLX
=∞ be the quantization thresholds of QX and

−∞ = t′0 < t′1 < . . . < t′LY
= ∞ be the thresholds of QY . The problem can now

be stated as: Given the distribution of X ∼ pX(x) and the conditional distribution

of Y |X ∼ pY |X(y|x), choose the values {ti}LX−1
i=1 and {t′j}LY −1

j=1 so as to maximize

the mutual information I(Z;W ). Note that as the mutual information depends on

the joint probability distribution of Z and W and not on the actual values of the

random variables, the reconstruction points of the quantizer need not be considered

in the optimization problem.

2.4.2 Necessary Condition for Optimality

In this section, we derive a necessary condition for optimality by setting the

first derivative of the objective function to zero. For convenience, denote the recon-

struction points of QX and QY by {ri}LX

i=1 and {r′j}LY

j=1, respectively, so that

QX(x) = ri if x ∈ (ti−1, ti].
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QY can be defined in a similar way. The probability mass function (p.m.f.) of Z is

then given as

pZ(ri) =

∫ ti

ti−1

pX(x) dx

and the joint p.m.f. of Z and W is given by

pZW (ri, r
′
j) =

∫ ti

ti−1

pX(x)

∫ t′j

t′j−1

pY |X(y|x) dy dx.

The mutual information I(Z;W ) can then be computed as

I(Z;W ) =
∑

ri,r′j

pZW (ri, r
′
j) log

pZW (ri, r
′
j)

pZ(ri) pW (r′j)
.

At the optimal solution, the derivative of the objective function should be zero.

Setting ∂
∂ti

I(Z;W ) = 0, ∀i = 1, 2, . . . , LX − 1 implies that:

log
pZ(ri)

pZ(ri−1)
−

M
∑

j=1

p(W = r′j|X = ti) log
pZW (ri, r

′
j)

pZW (ri−1, r′j)
= 0 (2.4)

∀i = 1, 2, . . . , LX − 1. Similarly, setting ∂
∂ti

I(Z;W ) = 0, ∀j = 1, 2, . . . , LY − 1, we

have

log
pW (r′j)

pW (r′j−1)
−

L
∑

i=1

p(Z = ri|Y = t′j) log
pZW (ri, r

′
j)

pZW (ri, r′j−1)
= 0, (2.5)

where we have assumed that pX(ti) 6= 0 and pY (t
′
j) 6= 0, Eqns. (2.4) and (2.5)

give LX + LY − 2 simultaneous nonlinear equations in LX + LY − 2 variables. Un-

fortunately, these equations cannot be solved analytically to obtain closed form

expressions for the optimal solution. As an alternative, in the next section, we

propose an iterative algorithm for determining the quantizer thresholds.
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2.4.3 Iterative Algorithm

In many quantizer design problems, it is often not possible to analytically solve

for the optimum thresholds and reconstruction values, and iterative algorithms are

used instead. The Lloyd-Max algorithm for designing quantizers with minimum

mean-square reconstruction error [51] is a classical example of such an iterative

algorithm. This algorithm alternates between optimizing the quantizer thresholds

and the reconstruction points at each iteration. We adopt a similar approach to

iteratively optimize the quantizer thresholds.

The thresholds {ti} and {t′j} are randomly initialized. At each step of the

iteration, the algorithm alternates between estimating the optimal values for {ti}

and {t′j} assuming that the other set of values is fixed. For example, first, the

thresholds {ti} for the QX quantizer are fixed and the values of {t′j} that maximize

the objective function I(Z;W ) are found numerically. Subsequently, these {t′j}

values are kept constant and the optimal values of {ti} are determined. This process

is repeated until the value of the objective function does not change significantly

with each iteration. As the value of the objective function is non-decreasing in each

step of the iteration, the algorithm is guaranteed to converge to a local minimum.

Convergence to the global minimum is typically not guaranteed in many quantizer

design problems such as [51], due to the multi-dimensional optimization and the

non-convex objective function which may have several local minima.
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2.4.4 Results

In this subsection, we present experimental results using i.i.d. Gaussian signals

as an example. The original feature components are assumed to be i.i.d. N (0, 1),

and the noise components are assumed to have components that are i.i.d. N (0, σ2
n).

The iterative algorithm described in the previous subsection is used to design the

quantizers to maximize the mutual information between the original and noisy fin-

gerprints. As a baseline for comparison, the Lloyd-Max quantizer which is the

optimal MMSE quantizer is used to obtain the quantization thresholds for QX(·)

and QY (·).

The number of quantizer levels is set to 4 in both cases, LX = LY = 4, so that

three thresholds need to be determined for each of the quantizers. As the distribution

is symmetric about zero, the second threshold obtained by both algorithms turns out

to be zero, so that the quantizers are mid-rise. Further, the first and third thresholds

are negatives of each other, implying that the quantizers can be characterized by one

parameter, say, the value of the third threshold. Figure 2.8 compares the thresholds

determined by the Lloyd-Max algorithm and the proposed method for QX and QY .

We observe that when the value for the noise is small, each algorithm chooses similar

values for the threshold of QX and QY . This is due to the fact that when the noise

is small, the distribution of the noisy features Y is similar to the distribution of the

original featuresX . We also observe that as the noise power increases, the thresholds

chosen by both algorithms for QY becomes similar, as the noise distribution tends to

dominate. For intermediate values, we observe that the proposed algorithm chooses
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Figure 2.8: Comparison of the quantization thresholds obtained by the proposed

method and the Lloyd Max algorithm.

thresholds that are somewhat smaller than the corresponding ones for the Lloyd-

Max quantizer.

Figure 2.9 compares the identification accuracy in terms of the receiver oper-

ating characteristic (ROC) curves, where we plot the probability of correctly iden-

tifying a query Pc as a function of the probability of false alarm Pf on a semi-log

scale, when the noise standard deviation σn = 0.5. We also compare the accuracy

achievable using two different detectors. The optimal Maximum Likelihood (ML)

detector utilizes the knowledge of the joint p.m.f. of the quantized original and

noisy features to compute the likelihood and compares it to a threshold. In practi-

cal applications, this joint p.m.f. may not be available and it may be simpler to use

the minimum distance detector instead. The minimum distance detector finds the

fingerprint in the database that is closest to the query and compares this distance to
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Figure 2.9: Comparison of the identification accuracy using the ML and mini-

mum distance detector using features quantized by the proposed and Lloyd-Max

algorithms.

a threshold. In our simulations, we use the L1 distance as the distance metric. From

the figure, we observe that using the ML detector in conjunction with the quantizer

from the proposed algorithm gives the best performance. When the minimum dis-

tance detector is used instead, the Pc reduces, but is still better than the accuracy

achievable using the Lloyd-Max quantizer. We observe that features quantized using

the proposed algorithm yield consistently higher performance, especially at low Pf .

For example, when Pf = 10−3, fingerprints obtained using the proposed algorithm

yield 10− 15% higher Pc compared to the Lloyd-Max quantizer.

As the proposed quantizer design algorithm utilizes the knowledge of the noise

distribution, it is interesting to examine how changes in the noise parameters would

impact the performance. To understand the generalization capability of the quan-
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Figure 2.10: Generalization capabilities of the quantizers.

tizer, we perform the following experiment. The quantizers are designed assuming

that the noise standard deviation is σn = 0.25 and the resulting quantizers are

used to encode the features and obtain the fingerprints. Subsequently, noise with

standard deviation σn = 0.25 and 0.5 is added to the features and these noisy fea-

tures are quantized to obtain the distorted fingerprints. The identification accuracy

when the distorted fingerprints are used as queries is shown in Figure 2.10. We ob-

serve that for features quantized using both the quantizers, the performance reduces

when σn = 0.5 compared to when σn = 0.25 due to the stronger noise. However,

the fingerprints obtained using the proposed method lead to a higher accuracy. For

example, the proposed method results in a 5% higher Pc at Pf = 10−3 compared to

the Lloyd-Max quantizer.
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2.5 Game-Theoretic Analysis of Content Fingerprinting

In Section 2.3, we examined the relation between the feature distribution and

the amount of distortion needed to change a given fraction of the fingerprint bits.

In this section, we study the optimal choice for the distribution of the fingerprint

bits from the system designer’s perspective, in the presence of such distortion that

may be introduced by adversaries.

In the content identification problem, the system designer and the adversary

modifying the content have conflicting objectives. The adversary’s goal is to upload

content and avoid detection, while the designer’s goal is to identify modified content

and minimize the probability of misclassification and false alarm. These conflicting

objectives can be modeled under the framework of game theory [65]. In this section,

we model the dynamics between the designer and the adversary by a two-player game

between the adversary A and the system designer D. In this game, the designer D

designs the fingerprinting scheme and the adversary chooses the attack, to maximize

their respective payoff functions. We illustrate this model using the example of

binary fingerprints, which are commonly used for content identification [3, 15, 30].

We focus on the design and possible attacks on the fingerprints at the binary level.

To specify the game, we describe below the strategy spaces and payoff functions for

the two players.
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2.5.1 Strategy Space

In the content identification game using binary fingerprinting, the strategy

space of the designer consists of possible choices for the distribution of the fingerprint

bits. For simplicity, here we consider fingerprint bits that are i.i.d. Under this

setting, the designer chooses a value 0 ≤ q0 ≤ 0.5 as the probability that a fingerprint

bit is 0 and q1 = 1 − q0 is the probability that a bit is 1. Thus, the strategy space

for the designer SD is the interval [0, 0.5].

The strategy space for the adversary consists of possible modifications of the

content that do not introduce excessive distortion and render the content unusable.

Denote the probability of a fingerprint bit 0 being changed to a 1 after modification of

the video by p01 and the probability that a bit 1 changes to 0 by p10. As the adversary

chooses these parameters, his strategy space is given by SA = 0 ≤ p01, p10 ≤ 1.

2.5.2 Payoff functions

Designer’s Payoff Function

At the detection stage, for each content V(i) in the database, the detector

has to decide whether the query content denoted by Z is a distorted version of

V(i), by comparing their fingerprints. Let X(i) and Y be the fingerprints of V(i)

and Z, respectively. If Z is indeed a modified version of V(i), then the fingerprints

X(i) and Y are dependent and their joint distribution is p(Y|X(i))q(X(i)), where

q(·) is the marginal distribution of the fingerprints and p(Y|X(i)) is the conditional

distribution representing the modification. If Z is not a modified version of V(i),
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then the fingerprints X(i) and Y are independent and their joint distribution is

q(Y)q(X(i)).

The identification system’s performance can be characterized by the probabil-

ity Pf of incorrectly deciding that X(i) and Y are dependent when they are actually

independent, which corresponds to a false alarm, and the probability Pm of deciding

that X(i) and Y are independent when they are actually dependent which corre-

sponds to a missed detection. As the designer’s objective is to achieve low values

for Pf and Pm, a suitable function of these quantities can be chosen as the payoff for

the designer. However, as in any detection problem, these error probabilities are not

independent of each other. In many practical applications, it is common to fix one

of these error probabilities, say Pf , to be less than a threshold α and then minimize

the other type of error. From the Chernoff-Stein Lemma [16], we know that the best

asymptotic error exponent that can be achieved under this setting is given by the

Kullback-Leibler (KL) distance between the distributions under the two hypotheses

D(p(Y|X(i))q(X(i))||q(Y)q(X(i))). As the fingerprint bits are i.i.d., the KL distance

between the distributions is LDKL, where DKL = D(p(y|x)q(x)||q(y)q(x)), p(·|·) is

the conditional distribution representing the modification of one bit and q(·) is the

common distribution of the individual fingerprint bits. By choosing q0 appropriately

to maximize the KL distance, the designer can reduce the probability of making an

error. Thus, we choose the KL distance between the two distributions as the payoff

(utility) function for the designer UD(q0, p) = DKL = D(p(y|x)q(x)||q(y)q(x)).

37



Adversary’s Payoff Function

The adversary’s main goal is to evade detection while minimizing the amount

of distortion introduced into the content. By choosing the parameters p01 and p10

to minimize the KL distance DKL between the two distributions, the adversary can

reduce the probability of being detected. Hence, we choose −DKL as the adversary’s

payoff function. We also add a penalty term to the adversary’s payoff based on the

amount of distortion introduced into the video, to incorporate the adversary’s goal

of minimizing the perceptual distortion. We assume that the distortion of the origi-

nal video can be equivalently represented in terms of the change in the fingerprint of

the video, as analyzed in Section 2.3. For simplicity, we assume that the perceived

commercial value of the distorted content reduces as a linear function of the Ham-

ming distance between the fingerprints of the original and modified content. The

analysis can be performed similarly for other models relating the distortion to the

reduction in commercial value.

Under this setting, the expected utility for the adversary can be given as

UA(q0, p) = −DKL− cd
1
L
E[dH(X

(i),Y)], where E[dH(X
(i),Y)] is the expected Ham-

ming distance between the fingerprint X(i) of the original content and the finger-

print Y of the distorted content, and cd is the rate at which the perceived value

of the content reduces as a function of the average Hamming distance. Since

the fingerprint bits are i.i.d., the average Hamming distance can be written as

1
L
E[dH(X

(i),Y)] = q0p01 + q1p10 and the expected payoff for the adversary is given

by UA(q0, p) = −DKL − cd(q0p01 + q1p10). We see that the adversary can reduce
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the probability of being detected by reducing DKL, but this would increase the dis-

tortion and hence reduce the value of the content. The adversary has to find the

optimal tradeoff between these conflicting objectives.

2.5.3 Subgame Perfect Nash Equilibrium

We recognize that under the above settings, the game corresponds to a two

player sequential game with perfect recall [65]. In such sequential games, the optimal

strategies for the players are given by Subgame Perfect Nash Equilibria (SPNE). The

SPNE are similar to saddle-points and correspond to strategies from which neither

player has incentive to deviate, given that the other player plays his equilibrium

strategy. In other words, given that the designer plays his part of the equilibrium

solution, the adversary cannot obtain a higher payoff by playing any strategy other

than his equilibrium strategy, and vice versa. The SPNE of this game are given by

points (q∗0, p
∗(q∗0)), such that

p∗(q0) = arg max
0≤(p01,p10)≤1

UA(q0, p)

q∗0 = arg max
0≤q0≤0.5

UD(q0, p
∗(q0)). (2.6)

These equations indicate that for each q0 chosen by the designer, the attacker chooses

the strategy that maximizes his/her payoff function, called the best response strat-

egy. The designer chooses the strategy that maximizes his/her payoff given that the

attacker chooses the best response strategy.

The maximum expected payoff that the adversary can achieve, given that the
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Figure 2.11: Adversary’s best response strategy: Optimum choices of (a) p01 and

(b) p10 as a function of the system designer’s choice of q0.

designer chooses q0 is given by

U∗
A(q0) = max

0≤p01,p10≤1
−DKL − cd(q0p01 + q1p10).

As −DKL is concave in p [16], the utility function UA is concave in p. As the

constraints are also concave, there is a unique maximizer which is determined as

p∗01(q0) = q12
−cd

q0+q12−cd
and p∗10(q0) = q02

−cd

q1+q02−cd
. Using the above values for p∗01 and

p∗10, the maximum value of the expected utility for the adversary is found to be

U∗
A(q0) = q0 log2(q0 + q12

−cd) + q1 log2(q1 + q02
−cd).

Figure 2.11 shows the optimal values for p01 and p10 as a function of q0 for

various values of the degradation parameter cd. We observe that when cd is small,

e.g. cd = 0.1, which implies that the value of the distorted content reduces slowly

as a function of the distortion introduced, the adversary can choose large values for

p01 and p10, corresponding to making large changes to the content so as to evade
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Figure 2.12: Maximum payoffs for the players: (a) Maximum payoff for adversary

as a function of q0. (b) Designer’s payoff when the adversary plays his best strategy.

detection, without incurring a significant reduction in the commercial value. If the

parameter cd is large, e.g. cd = 10, the adversary cannot introduce much distortion

into the content, as the value reduces rapidly and is restricted to modifications that

result in a very small fraction of the fingerprints bits being altered. The maximum

payoff that the adversary can obtain by playing his optimal strategy, in response to

the designer’s choice of q0 is shown in Figure 2.12(a). For any fixed value of q0, the

adversary obtains a higher payoff when cd is small, as he can introduce distortion

without reducing the value of the content significantly.

When the adversary plays his best response strategy p∗(q0) shown in Fig-
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ure 2.11, the payoff for the designer is found to be

UD(q0, p
∗(q0)) = −q0 log2(q0 + q12

−cd)

−q1 log2(q1 + q02
−cd)

−cdq0q1
1 + 2−cd

(q0 + q12−cd)(q1 + q02−cd)
,

and is shown in Figure 2.12(b). We observe that when cd increases, the designer can

obtain a higher payoff, as the adversary can make limited changes to the content.

This indicates that the fingerprint algorithm should be designed carefully, so that

it is not easy to alter fingerprint bits without causing a lot of distortion. From the

figure, we also see that for a fixed cd, the payoff for the designer is an increasing

function of q0, attaining a maximum at q0 = 0.5. Thus, the optimal strategy for the

designer is to choose the fingerprint bits to be 0 or 1 with equal probability, while

the corresponding best strategy for the adversary is p01 = p10 = 1
1+2cd

. If 2cd ≫ 1,

p01 = p10 ≈ 2−cd indicating that the optimal choice for the adversary is to modify

a very small fraction of the bits. If 2cd ≪ 1, then p01 = p10 ≈ 1 signifying that the

adversary can cause large changes to the hash and easily evade detection.

2.6 Chapter Summary

In this chapter, we described a framework for analyzing content fingerprinting

by developing models for the various commonly used modules. By such an analysis

we can gain understanding of how different types of multimedia processing affects

the fingerprints and how such changes in turn affect the identification performance.

Under this framework, we studied how distortion of the features affects the
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fingerprint bits extracted from the features. We derived a closed form expression for

the minimum amount of distortion needed to change a certain fraction of bits. Our

analysis showed that to change a fixed fraction of bits, the minimum mean squared

distortion needed is independent of the number of features or equivalently, the length

of the fingerprint. We also studied the influence of the feature distribution on this

metric and found that distributions that produce values close to zero with higher

probability or have high kurtosis, are not favorable from the designer’s perspective.

We next studied the design of a quantizer for use in fingerprint schemes to

achieve the best identification performance. We derived sufficient conditions for

the optimality of the quantizer, and proposed an iterative algorithm to determine

the quantization thresholds. Through experiments, we showed that the proposed

quantizer can improve the identification performance by around 10% at low Pf

values.

We also modeled the dynamics of the interaction between the fingerprint sys-

tem designer and an adversary seeking to evade detection under the framework of

game theory. Using the example of binary fingerprint-based content identification,

we illustrated the model and obtained strategies for designing the fingerprints to

achieve the best possible performance. We showed that the optimal strategy for the

system designer is to design the fingerprinting scheme such that the resultant bits

are equally likely to take values 0 and 1 and also highlighted the benefit of designing

robust schemes such that the content has to be distorted significantly in order to

cause changes to the fingerprint.

Having gained some understanding of different modules involved in translat-
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ing video features to fingerprint bits, in the next three chapters, we focus on the

modeling and analysis of fingerprints in the bit domain. Chapter 3 examines the

best possible identification accuracy achievable using binary i.i.d. fingerprints. In

Chapter 4 we refine this model to allow correlations among the fingerprints and ex-

amine their performance. We examine the impact of correlations among fingerprints

extracted from successive temporal frames in Chapter 5.
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Chapter 3

Analysis of Binary Fingerprints

with i.i.d. Components

As discussed in the previous chapter, theoretical analysis of content fingerprint-

ing approaches can provide insights into the performance of various algorithms, and

enable us to predict how the performance would scale as system parameters, such

as the size of the database, increase. In this chapter, we first describe a hypothe-

sis testing framework for evaluating content fingerprinting schemes in Section 3.1.

Subsequently, in Section 3.2 we focus on binary fingerprints with i.i.d. bits and

derive expressions for the probability of correctly identifying the content. We then

use these expressions to derive bounds on the error probabilities in Section 3.3 and

examine how these probabilities depend on factors such the fingerprint length and

the size of the database. A lower bound on the fingerprint length needed to achieve a

desired identification performance is obtained. This analysis also uncovers relations
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between video fingerprinting and the problem of decoding with errors and erasures.

In Section 3.4, we validate our theoretical predictions using an image database and

a simple fingerprinting scheme.

3.1 Hypothesis Testing Framework

Hypothesis testing has been commonly used to model identification and clas-

sification problems [67] and a similar framework is adopted in this dissertation for

analyzing content identification. To establish the notation that will be used in this

and the subsequent chapters, we summarize the hypothesis testing framework in

this subsection. For ease of presentation, we describe the framework using the ex-

ample of a video identification application, but the analysis and results apply to

other identification tasks as well.

The system model for a fingerprint-based video identification scheme is shown

in Figure 3.1. Suppose that the detector has a collection ofN videosV(1),V(2), . . . ,V(N)

which would serve as a reference database for identifying query videos. For exam-

ple, in a UGC website application, the videos {V(i)} may correspond to copyrighted

videos that should be identified and filtered. In the initial creation stage, compact

fingerprints {X(i)} corresponding to the videos {V(i)} are computed and stored in

the database as shown in Figure 3.1(a). Note that the dimension of the fingerprint

X(i) is usually much smaller than the dimensionality of the video V(i).

Given a query video Z that needs to be identified, the detector computes the

fingerprint Y of the query and compares Y with the fingerprints {X(i)}Ni=1 stored
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Figure 3.1: System Model

in its database, which are available at the detector. In general, the query Z may be

some video W that does not correspond to any video in the database or a possibly

distorted version of some video V(i) in the database. These distortions may be

caused by incidental changes that occur during transmission and storage, such as

compression and transcoding, or they may be intentional distortions introduced by

an attacker to prevent the identification of the content.

We consider two different detection objectives based on the requirements of

different applications. In some applications, such as a video sharing website imple-

menting content filtering, it may be sufficient to determine if the content is subject

to copyright protection or not. In this case, the detector is only interested in de-

termining whether a given video is present in a database of copyrighted material or

not. We refer to this scenario as the detection problem, which can be formulated as
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a binary hypothesis test:

H0 : Z does not correspond to any video in {V(1),V(2), . . . ,V(N)},

H1 : Z corresponds to some video in {V(1),V(2), . . . ,V(N)}. (3.1)

Under this setting, the performance of a particular fingerprinting scheme with the

associated decision rule δD(·) can be evaluated using the probability of false alarm

Pf = Pr(δD = 1|H0) and the probability of correct detection Pd = Pr(δD = 1|H1)

or equivalently, the probability of missed detection Pm = 1− Pd.

In some applications, such as automatic tagging of content, the detector is

further interested in identifying the original video corresponding to a query video.

We refer to this scenario as the identification problem, which can be modeled as a

multiple hypothesis test with each hypothesis corresponding to one original video

and a null hypothesis corresponding to the case that the uploaded video is not

present in the database:

H0 : Z is not from the database {V(1),V(2), . . . ,V(N)},

Hi : Z is a (possibly distorted) version of V(i), i = 1, 2, . . . , N. (3.2)

In this scenario, the probability of correctly identifying a query video Pc, the proba-

bility of misclassifying a video Pmc, and the probability of false alarm Pf can be used

to quantify the performance of a given fingerprinting scheme and the corresponding

detector δI(·). In the remainder of this chapter, we examine the performance of i.i.d.

binary fingerprinting schemes under this hypothesis testing framework.
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3.2 Fingerprints with Independent Bits

Binary strings are commonly employed in fingerprinting schemes such as [30,

64] since comparison of binary strings can be performed efficiently. From the de-

signer’s point of view, it is desirable for the fingerprint bits to be independent of

each other, so that an attacker cannot alter a significant number of fingerprint bits

at once by making minor changes to the content. Further, if the bits are equally

likely to be 0 or 1, the overall entropy is maximized and each bit conveys the max-

imum amount of information. If the bits are not equally likely to be 0 or 1, they

can be compressed into a shorter vector with equiprobable bits, in order to meet

the compactness requirement of the fingerprint. As shown in Section 2.5, from a

game-theoretic perspective also, using equally likely bits is advantageous for the

designer [90]. Binary strings with independent and identically distributed (i.i.d.)

bits also arise in biometric identification [94]. Hence, in this chapter, we focus on

the performance of fingerprinting schemes with i.i.d. equally likely bits and assume

that each fingerprint X(i) consists of L bits that are distributed i.i.d. according

to a Bernoulli(0.5) distribution. Binary fingerprints with correlated bits will be

examined in Chapter 4.

Distortions introduced into the content translate into changes in the fingerprint

of the content. By a suitable choice of features used for constructing the fingerprint

and appropriate preprocessing and synchronization, such attacks can be modeled

as additive noise n in the hash space [56]. Since the hash bits considered in this

section are designed to be i.i.d., we model the effect of attacks on the multimedia
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content as altering each bit of the hash independently with probability p < 0.5, i.e.

the components of n are i.i.d. Bernoulli(p). The maximum possible value of p is

proportional to the maximum amount of distortion that may be introduced into the

multimedia content and will be referred to as the distortion parameter.

3.2.1 Detection Problem

Under the assumptions outlined above, the detection problem, where the detec-

tor is only interested in identifying whether a given content is present in a database

or not, becomes:

H0 : Y 6= X(i) + n for i = 1, 2, . . . , N,

H1 : Y = X(i) + n, for some i ∈ {1, 2, . . . , N} (3.3)

where Y, X(i), i = 1, 2, . . . , N and the noise n are all binary vectors of length

L. Under hypothesis H0, Y can take any value with equal probability, since the

fingerprint bits are i.i.d. with equal probability of being 0 or 1, so that Pr(Y =

y|H0) =
1
2L
, ∀y ∈ {0, 1}L. The distribution of the fingerprint Y, given that it is a

modified version of X(i), Pr(Y|X(i)) can be specified by considering their Hamming

distance. Let di = d(Y,X(i)) be the Hamming distance between the fingerprint of

the query video and a given fingerprint X(i) in the database. Since the probability

of a bit being altered due to the noise is p, the probability that exactly di bits are

altered is Pr(Y|X(i)) = pdi(1− p)L−di.

The alternative hypothesis H1 is thus a composite hypothesis, as the computed

fingerprintY can have different distributions depending on which original fingerprint
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it corresponds to. The optimal decision rule for composite hypothesis testing is given

as [67]:

Decide H1 if
p(Y|H1)

p(Y|H0)
> τ ′′ (3.4)

where the threshold τ ′′ can be chosen to satisfy some optimality criterion. If the pri-

ors of the hypotheses and the associated costs are known, then τ ′′ can be computed

so as to minimize the expected Bayes risk. If the costs are known, but the priors are

unknown, the threshold τ ′′ can be chosen to minimize the maximum expected risk.

We use a Neyman-Pearson approach [67] to maximize the probability of detection

Pd subject to the constraint that the probability of false alarm Pf ≤ α.

To simplify the analysis, we assume that all videos in the database are equally

likely to correspond to a query. In situations where some popular videos may be

queried more often than others, the analysis can be applied by appropriately mod-

ifying the prior probabilities. With this assumption, the likelihood ratio test in

Eqn. (3.4) becomes:
∑N

i=1 p(Y|X(i))p(X(i)|H1)

p(Y|H0)
> τ ′′.

Substituting p(Y|H0) = 1
2L
, p(Y|X(i)) = pdi(1 − p)L−di , and p(X(i)|H1) = 1

N
, we

get:
N
∑

i=1

(

p
di
L (1− p)1−

di
L

)L

> τ ′ (3.5)

where the constants have been absorbed into the threshold τ ′. We note that the left

hand side is a sum of exponentials, and for a reasonably large L, only the largest

term would be relevant. Further, since px(1− p)1−x is a decreasing function of x for

p < 0.5, the largest term in the left hand side of Eqn. (3.5) would be the one with
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the smallest value of di. Thus, we arrive at the decision rule:

δD =







































1 if dmin < τ,

1 with probability q if dmin = τ ,

0 otherwise,

(3.6)

where dmin = min
i=1,2,...,N

di. Here τ is an integer threshold expressed in terms of the

Hamming distance, and τ and q are chosen to achieve a desired probability of false

alarm α. Based on this decision rule, the query is detected as being present in the

database (δD = 1), if the minimum Hamming distance between the fingerprint of

the query and the fingerprints in the database is less than a specified threshold τ .

Computing Pd and Pf

The probability of false alarm Pf for a threshold τ is given by Pf(τ) =

Pr(dmin < τ |H0) + qPr(dmin = τ |H0). To compute the value of Pf (τ), consider the

Hamming distance between Y andX(i), which can be expressed as di = d(Y,X(i)) =

wt(Y ⊕X(i)), where wt(·) denotes the Hamming weight of a binary vector and ⊕

denotes addition over the binary field (XOR). Under H0, since each bit of Y and

X(i) are equally likely to be 0 or 1, each component of Y⊕X(i) is also Bernoulli(0.5).

The probability distribution of di = wt(Y ⊕ X(i)) thus corresponds to the weight

of a random binary vector with i.i.d. uniform entries, which is a binomial distri-

bution with parameters L and 0.5. Denote the probability mass function (p.m.f.)

of a binomial random variable with parameters L and 0.5 by f0(k) , 1
2L

(

L
k

)

and

the tail probability by F0(k) ,
∑L

j=k f0(j). Then Pr(di = k|H0) = f0(k) and
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Pr(di ≥ k|H0) = F0(k).

As the fingerprints X(i), i = 1, 2, . . . , N are independent, we have Pr(dmin ≥

τ |H0) =
∏N

i=1 Pr(di ≥ τ |H0) = [F0(τ)]
N . The probability of false alarm can now be

written as

Pf(τ) = (1− [F0(τ)]
N ) + q([F0(τ)]

N − [F0(τ + 1)]N)

= 1− (1− q)[F0(τ)]
N − q[F0(τ + 1)]N (3.7)

To compute the probability of detection, denote the p.m.f. of a binomial

random variable with parameters L and p by f1(k) ,
(

L
k

)

pk(1 − p)L−k and the tail

probability by F1(k) ,
∑L

j=k f1(j). The probability of detection is given as Pd(τ) =

Pr(dmin < τ |H1) + qPr(dmin = τ |H1). Suppose that H1 is true and that the query

video is actually a distorted version of video Vs. As the noise is assumed to change

each fingerprint bit independently with probability p, Pr(ds = k|H1, s) = f1(k) and

Pr(ds ≥ τ |H1, s) = F1(k). For i 6= s, since X(i) is independent of Y and has i.i.d.

equally likely bits, Y⊕X(i) has i.i.d. Bernoulli(0.5) components. Thus the distance

di = wt(Y⊕X(i)), i 6= s follows a binomial distribution with parameters L and 0.5,

which is the same as the distribution under H0. Now consider

Pr(dmin ≥ τ |H1, Vs) = Pr(ds ≥ τ |H1, Vs)
∏

i 6=s

Pr(di ≥ τ |H1, Vs)

= F1(τ)[F0(τ)]
N−1.

The probability of detection can then be written as

Pd(τ) = 1− [F1(τ)][F0(τ)]
N−1 + q( [F1(τ)][F0(τ)]

N−1 − [F1(τ + 1)][F0(τ + 1)]N−1 )

= 1− (1− q)[F1(τ)][F0(τ)]
N−1 − q[F1(τ + 1)][F0(τ + 1)]N−1. (3.8)
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Figure 3.2: ROC for the binary hypothesis testing problem obtained from theo-

retical analysis.
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Numerical Results

In Figure 3.2, we show the receiver operating characteristics (ROC) computed

using Eqns. (3.7) and (3.8) for various values of the parameters L, N , and p. Fig-

ure 3.2(a) shows the ROC curves as the distortion parameter p is increased from 0.2

to 0.3 for N = 230 fingerprints in the database each of length 256 bits. We observe

that as the distortion parameter p increases, the probability Pd of detecting a copy-

righted video reduces for a given probability of false alarm Pf . As p approaches 0.5,

the probability of detection approaches the lower bound Pd = Pf . Figure 3.2(b) ex-

amines the influence of the number of fingerprints in the database N on the detector

performance for a fixed fingerprint length L = 256 bits and distortion parameter

p = 0.3. As N increases, the probability of false alarm increases. As a result, for a

given Pd, the Pf is higher, or equivalently, for a fixed Pf , the probability of detection

is lower. Figure 3.2(c) shows that under a given distortion, the detector performance

can be improved by using a longer fingerprint. As the fingerprint length is increased,

Pd increases for a given Pf .

3.2.2 Identification Problem

We now consider the identification problem for binary fingerprinting schemes,

where the detector is interested in identifying the specific video that the query

corresponds to. As discussed in Section 3.1, this scenario can be modeled as a
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multiple hypothesis test:

H0 : Y 6= X(i) + n, for i = 1, 2, . . . , N,

Hi : Y = X(i) + n, i = 1, 2, . . . , N. (3.9)

As before, we assume that the fingerprint bits are i.i.d. and equally likely to

be 0 or 1, the noise independently changes each bit with probability p and that the

prior probability of each hypothesis is the same. Under this model, the Maximum

Likelihood (ML) decision rule can be derived as:

δI =























i if di ≤ τ and i = argmin
j=1,2,...,N

dj ,

0 otherwise,

(3.10)

where di = d(Y,X(i)). If fingerprints of several copyrighted videos have the same

distance to the fingerprint of the query video Y, one of them is chosen randomly as

the match.

We now compute the performance metrics for the ML detector δI . The prob-

ability of false alarm Pf is given by

Pf (τ) = Pr(at least one of d1, d2, . . . , dN ≤ τ |H0),

= 1− Pr(none of d1, d2, . . . , dN ≤ τ |H0),

= 1− [F0(τ + 1)]N .

As the fingerprints {X(i)} are identically distributed and equally likely to be queried,

and the distribution of the noise n under each of the hypotheses is the same, the over-

all probability of correct identification Pc will be equal to the probability of correct
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identification under any given hypothesis, for example H1. Under this hypothesis,

d1 has p.m.f. f1 and di, i 6= 1 has p.m.f. f0, so that:

Pc(τ) = Pr(δI = 1|H1)

= Pr(d1 ≤ τ
∧

d1 < min
i>1

di|H1) + Pr(min
i>1

di = d1
∧

d1 ≤ τ
∧

δI = 1|H1),

=
τ
∑

j=0

f1(j)

[

{F0(j + 1)}N−1 +
N−1
∑

k=1

1

k + 1

(

N − 1

k

)

[f0(j)]
k[F0(j + 1)]N−1−k

]

.

Similarly, the probability of misclassification can be computed as:

Pmc(τ) = Pr(δI ∈ {2, 3, . . . , N}|H1),

= Pr(min
i>1

di ≤ τ
∧

min
i>1

di < d1|H1) + Pr(min
i>1

di = d1
∧

d1 ≤ τ
∧

δI > 1|H1),

=

τ
∑

j=0

[

N−1
∑

k=1

{(

N − 1

k

)

f0(j)
k[F0(j + 1)]N−1−k ×

(

F1(j + 1) +
k

k + 1
f1(j)

)}

]

.

Figure 3.3 shows the influence of the various parameters on the identification

accuracy of the ML detector in Eqn. (3.10). Figure 3.3(a) shows the influence of the

distortion parameter p. We observe that as p increases, the probability of correct

identification Pc at a given false alarm probability Pf reduces, and the probability

of misclassification Pmc increases. The influence of the number of videos N on the

accuracy of identification is shown in Figure 3.3(b). As the number of videos in

the database increases, the probability of false alarm increases, or equivalently, at

a given Pf , the value of Pc is lower. Figure 3.3(b) shows that the probability of

correct identification under a given distortion p and a given Pf can be increased

by increasing the hash length. Thus, given the number of videos N and a desired

probability of false alarm Pf , the content identification system can be made more

robust by choosing a longer hash length L. These results are similar to that obtained
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Figure 3.3: ROC curves for the multiple hypothesis testing problem obtained from

theoretical analysis.
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for the detection problem in the previous section.

3.3 Error Exponents and Performance Bounds

In Section 3.2, we have derived expressions for the probability of correct iden-

tification and false alarm for a given set of parameters and examined the tradeoff

between identification accuracy, robustness and the fingerprint length. In practice,

we are often interested in choosing system parameters to ensure that the probabil-

ity of error is below a certain threshold. While the expressions for Pd and Pf in

Section 3.2 can be used to choose the parameters, the equations are non-linear and

cannot be solved easily. Hence, in this section, we derive bounds on the achievable

error probabilities using fingerprints of a given length and provide guidelines for

choosing the fingerprint length required to achieve a desired detection accuracy. We

provide an intuitive interpretation of these bounds and show that content identifi-

cation with a false alarm requirement shares some similarities with the problem of

joint source channel coding.

3.3.1 Error Exponents

Consider the detection problem where the detector is only interested in de-

ciding whether a query video is a modified version of some video in the database

or not. As before, we examine the case of i.i.d. binary fingerprints with the corre-

sponding decision rule given by Eqn. (3.6). As we are interested in deriving bounds,

we assume, for simplicity, that q = 1 in the decision rule. The probability of false
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alarm is given by

Pf(τ) = Pr

(

N
⋃

i=1

{d(Y,X(i)) < Lλ}|H0

)

,

≤
N
∑

i=1

Pr(d(Y,X(i)) < τ |H0),

= N Pr(d(Y,X(1)) < τ |H0), (3.11)

where we have used the union bound and the fact that the fingerprints X(i) are

i.i.d. As discussed in the previous section, under H0, Y and X(1) are independent

with each component being equally likely to be 0 or 1. Thus, the XOR of Y and

X(1) is uniformly distributed over all binary strings of length L. The Hamming

distance d(Y,X(1)) = wt(Y ⊕ X(1)) and as a result, Pr(d(Y,X(1)) < τ |H0) =

1
2L

∑

x∈{0,1}L 1({wt(x) < τ}) = 1
2L
SL,τ , where 1(·) is an indicator function and SL,τ

is the number of binary vectors within a sphere of radius τ in {0, 1}L. Let λ = τ
L
be

the normalized radius. The volume of the sphere SL,Lλ, for λ ≤ 1
2
can be bounded

as

SL,Lλ ≤ 2Lh(λ),

where h(p) = −p log2 p−(1−p) log2(1−p) is the entropy function [69]. By combining

this result with Eqn. (3.11), the probability of false alarm can be bounded from above

as

Pf (Lλ) ≤ N2−LSL,τ

≤ N2−L(1−h(λ)) (3.12)

where τ = Lλ. The same result can been obtained by applying the Chernoff bound

to upper bound Pr(d(Y,X(1)) < Lλ) for λ < 1
2
, with d(Y,X(1)) being a binomial
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random variable with parameters L and 1
2
[73]. However, we prefer this approach as

it provides an intuitive explanation of the bounds, which is discussed in Section 3.3.3.

We next consider the probability of a missed detection Pm = 1− Pd. Suppose

that X(i) is the fingerprint of a video V(i) in the database and that Y is the finger-

print of a modified version of V(i). A missed detection occurs if no fingerprint in

the database is within a distance τ of the query fingerprint Y. The probability of a

missed detection can thus be bounded by the probability that the distance between

Y and the original fingerprint X(i) is larger than τ :

1− Pd(τ) = Pm(τ) = Pr

(

N
⋂

j=1

{d(Y,X(j)) > Lλ}|Hi

)

,

≤ Pr(d(Y,X(i)) > Lλ|Hi)

Since Y is generated by flipping each bit of X(i) with a probability p, d(Y,X(i)) is

distributed according to a binomial random variable with parameters L and p so

that Pm ≤ Pr(B > τ), where B is a binomial random variable with distribution

Binomial(L, p). By the Chernoff bound [73], the tail probability of the binomial

distribution can be bounded as

Pr(B ≥ Lλ) ≤ 2−LD(λ||p)

where D(λ||p) is the Kullback-Leibler distance between two Bernoulli distributions

with parameters λ and p respectively. Thus, the probability of missed detection

when τ = Lλ can be bounded as

Pm(Lλ) ≤ 2−LD(λ||p). (3.13)

These bounds on Pf and Pm may be interpreted as consequences of the large de-
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viations principle [21]. As the Chernoff bound is asymptotically tight, the bounds

presented above are also asymptotically tight on the exponential scale, for example,

limL→∞
1
L
logPm(Lλ) = D(λ||p).

Eqns. (3.12) and (3.13) show the tradeoff between the probability of false alarm

Pf , the probability of missed detection Pm and the number of fingerprints N in the

database. For example, given N videos, reducing the Pf would require 1− h(λ) to

be as large as possible, or equivalently, λ must be as small as possible. However,

reducing λ leads to an increase in the Pm. To further examine this tradeoff, let us

define the rate R as N = 2LR, the false alarm error exponent as Ef = 1− h(λ)−R,

and the missed detection error exponent as Em = D(λ||p), so that Pf ≤ 2−LEf and

Pm ≤ 2−LEm. In the Neyman-Pearson setting, given a certain number of videos

N and fingerprint length L, suppose we wish to ensure that Pf ≤ ǫ = 2−L∆ and

minimize Pm. This is equivalent to maximizing Em for a fixed rate R while ensuring

that Ef ≥ ∆:

max
λ

Em = D(λ||p) subject to 1− h(λ)− R ≥ ∆. (3.14)

As the objective function is increasing in λ, while the constraint is decreasing

in λ, the maximum is achieved when 1−h(λ)−R = ∆. Under this setting, Figure 3.4

shows the maximum achievable missed detection error exponent Em as a function of

the false alarm error exponent ∆, for a fixed rate R, when p = 0.3. From the figure,

we observe that at a given rate R, Em reduces as a function of ∆, which implies

that for a fixed number of fingerprints in the database, reducing the false alarms

leads to an increase in the number of missed detections, and vice versa. From the
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Figure 3.4: Error exponent for missed detection as a function of the rate for

different values of the false positive error exponent.

figure, we also observe that for a fixed value of ∆, Em reduces as N increases. This

trend matches the results presented in Section 3.2.

To ensure that Pm < 0.5, the decision threshold τ = Lλ should be greater

than the mean of the binomial distribution Lp. As the entropy function h(λ) is

monotonically increasing for λ < 0.5, this would in turn imply that the false alarm

exponent ∆ = 1− h(λ)−R ≤ 1− h(p)− R. Hence, to ensure that Pf ≤ ǫ = 2−L∆,

we require that R +∆ ≤ 1− h(p), or equivalently,

1

L
log2

N

ǫ
≤ 1− h(p). (3.15)

Thus, given a video database of size N , to ensure that the probability of false alarm

Pf ≤ ǫ when the attack alters on average a fraction p of the hash bits, the length

of the fingerprints used for identification should be chosen large enough to satisfy

Eqn. (3.15). The corresponding probability of missed detection is then less than

2−LEm, where Em can be computed from Eqn. (3.14). It should be noted that at
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extremely small values of the probability of false alarm, the model mismatch between

the i.i.d. model and the practical fingerprint distribution can cause discrepancies

between the predicted and practical values of Pf . The required fingerprint length

derived from this bound can serve as a guideline for choosing the fingerprint length

in a practical system, with suitable compensations to allow for model mismatch.

3.3.2 Bounds on the Error Probabilities for the Identifica-

tion Problem

Similar bounds on the various errors may be derived in the identification prob-

lem. As the expression for the false alarm probability in the identification problem is

identical to that in the detection problem, it can be bounded by Pf ≤ 2−L(1−h(λ)−R).

Now, consider the probability of misclassification Pmc:

Pmc = Pr(δI ∈ {2, 3, . . . , N}|H1),

≤ Pr(
N
⋃

i=2

{d(Y,X(i)) < Lλ}|H1)

≤
N
∑

i=2

Pr(d(Y,X(i)) < Lλ|H1),

= (N − 1) Pr(d(Y,X(1)) < Lλ|H1),

≤ 2−L(1−h(λ)−R)

where we have used the Chernoff bound and replaced N − 1 by N . Now let P ′ =

Pr(d(Y,X(i)) > Lλ|Hi). As discussed in the previous subsection, this probability

can be bounded using the Chernoff bound as P ′ ≤ 2−LD(λ||p). The probability of not
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making a correct decision 1− Pc is then bounded by:

1− Pc ≤ Pmc + P ′

≤ 2−L(1−h(λ)−R) + 2−LD(λ||p).

These results are similar to the bounds derived in [25] and [27, Problems 5.14 and

5.15] for the problem of decoding error correcting codes with an erasure option.

3.3.3 A Sphere Packing Perspective

In the previous subsections, we have examined the relation between the rate

R, the missed detection error exponent Em, and the false alarm error exponent ∆.

We now provide an intuitive explanation of the theoretical results obtained.

Consider the space of all binary strings of length L, represented by the dashed

circle in Figure 3.5. Let the N binary fingerprints X(i), i = 1, 2, . . . , N present in

the database be represented by the solid dots in the figure and the circles around

the dots represent the detection regions for the respective fingerprints. Any query

fingerprint that falls within such a sphere is identified as the fingerprint represented

by the center of the sphere. The number of such spheres controls the rate R, and

the volume of the spheres determines the probability of false alarm and missed

detections.

To ensure a low probability of missed detection when the probability of a bit

flipping is p, the detection region around each fingerprint should include all binary

strings that are within a Hamming distance Lp from the fingerprint. The volume of

such a sphere of radius Lp is SL,Lp, which for large L is approximately SL,Lp ≈ 2Lh(p).
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As we have assumed that in the null hypothesis, the fingerprints of the videos absent

from the database are uniformly distributed over the entire space of binary strings

of length L, the probability of false alarm is approximately

Pf =
N × SL,Lp

2L
⇒ ǫ ≈ N2Lh(p)

2L
(3.16)

which upon rearrangement gives Eqn. (3.15). To achieve a higher rate, we would

like to pack more such spheres into the binary space, but this would increase the

probability of false alarms. Similarly, to reduce the probability of missed detection,

the volume of the decoding region around each fingerprint has to be increased, which

would also increase Pf and reduce the number of spheres that can be packed into

the binary space.

We see that the fingerprinting problem shares some analogies with source and

channel coding. In channel coding, to achieve capacity, we are interested in packing

as many spheres as possible into the binary space such that their overlap is minimum.

In source coding with a fidelity criterion (rate-distortion theory), we are interested

in covering the entire space with as few spheres of fixed size as possible. Here, to

minimize the probability of false alarms, we would like to cover the space as sparsely

as possible, but the conflicting objective of increasing the rate requires packing as

many spheres as possible. Thus, fingerprinting can be thought of as being similar

to joint source-channel coding.
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Figure 3.5: Sphere packing perspective of content fingerprinting.

3.4 Evaluation of a Practical Fingerprinting Scheme

In this section, we examine the applicability of our theoretical results to a

practical identification scheme. We use a simple image fingerprinting scheme based

on the wavelet transform coefficients [55] as an example. A similar scheme for video

fingerprinting based on DCT coefficients has been proposed in [15]. We present

results for image identification, but the results can be easily extended to the case of

video or audio identification using schemes such as [15].

3.4.1 Fingerprint Generation

Wavelet coefficients, and in particular, signs of wavelet coefficients have been

used for content identification [3], retrieval of similar images [35], and to generate

fingerprints for image authentication [59]. It has been shown that detail coeffi-

cients of the wavelet transform are symmetric around zero and can be modeled as
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i.i.d. generalized Gaussian random variables [54]. Thus, quantizing wavelet detail

coefficients to 1 bit would yield i.i.d. equiprobable bits, which could be used as

fingerprints to represent the image.

We decompose a 512 × 512 image using five levels of the wavelet transform

using the Haar wavelet [55], which is chosen because of the low cost for computing

the transform. Each of the four subbands at the coarsest level of decomposition

thus has coefficients of size 16 × 16. We retain only the signs of the coefficients

belonging to these subbands to obtain a 1024-bit sequence. A ‘1’ at a particular

location indicates a positive coefficient, whereas a ‘0’ indicates a negative coefficient.

Figure 3.6 shows the distribution of the bits comprising this bit sequence estimated

from 1000 grayscale images of size 512×512. In Figure 3.6(a), we show the fraction

of images (out of 1000) that have a ‘1’ at a particular location. The first 256 bits

correspond to the signs of the approximation coefficients, followed by 256 bits for

each of the horizontal, vertical and diagonal detail coefficients. From this figure,

we observe that the signs of the approximation coefficients are not independent

and equally likely. This is due to the fact that the approximation coefficients for

natural images are likely to be correlated with each other. The same holds true

for the horizontal and vertical detail coefficients, since coefficients which correspond

to strong horizontal or vertical edges would lie along the same row or column,

respectively. The signs of the diagonal detail coefficients, however, appear to be

less correlated and approximately equally likely to be ‘0’ or ‘1’. Figure 3.6(b) shows

the fraction of bits that are ‘1’ for a given image. We observe that approximately

half the bits are ‘1’, indicating that these bits are approximately independent and
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Figure 3.6: Distribution of fingerprint bits obtained by quantizing wavelet coeffi-

cients. (a) Fraction of images with a bit ‘1’ at a given location and (b) Fraction of

bits that are ‘1’ for a given image.

equally likely. The coefficients at the lowest level of decomposition are also expected

to be robust to common signal processing operations and can be used as fingerprints

for image identification.

In summary, given an image, we resample it to size 512×512, perform wavelet

decomposition up to 5 levels, and extract the diagonal detail coefficients. We then

retain the signs of these coefficients to form a 256-bit fingerprint for the given image.

3.4.2 Attacks

We evaluate the ability of these fingerprints to correctly identify an image after

it has undergone the potential malicious attacks listed in Table 3.1. As the image

pixel values are normalized to lie between 0 and 1, addition of zero mean Gaussian

noise with standard deviation σ = 0.2 represents a strong attack and introduces
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Table 3.1: List of attacks tested

Attack No. Attack Parameters

1-4 Zero-mean Gaussian Noise Addition σ = 0.05, 0.1, 0.15, 0.2

5-8 Uniform Noise Addition [−∆
2
, ∆
2
] ∆ = 0.05, 0.1, 0.15, 0.2

9 Histogram Equalization

10-19 Gamma Correction γ = 0.75 : 0.05 : 1.25\{1}

20-28 Average, Median, and Gaussian Filtering Filter Size = 3, 5, 7

29-31 JPEG Compression Quality Factor = 25, 50, 75

32-34 Rotation by multiples of 90◦

a lot of distortion, as shown in Figure 3.7. Rotation by multiples of 90◦ (Attack

No. 32-34) are very strong attacks that may be of concern if the image/video is being

viewed on a portable device, which provides freedom in adjusting the orientation.

The strength of an attack can be measured in terms of the probability (p) of

a fingerprint bit being altered after the attack. Figure 3.8 shows the probability

of a fingerprint bit being changed as a result of each attack, averaged over 1000

images. We observe that the rotation attacks are devastating, and the probability

of a fingerprint bit being altered is almost 0.5 for each of them. Our analysis of

the probability of correct identification and false alarm in Section 3.2 suggests that
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Attack 4 Attack 9 Attack 32 Attack 33 Attack 34

Figure 3.7: Some attacked versions of the Lena image. (The list of attacks is

provided in Table 3.1).
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Figure 3.8: Probability of a fingerprint bit flipping averaged over 1000 images for

each attack.

the fingerprinting scheme will not accurately identify the images after these attacks

due to the high value of p. Among the other attacks, Gaussian noise addition with

standard deviation of 0.2 (Attack No. 4) causes the highest number of changes to

the fingerprint bits.
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3.4.3 Performance Evaluation

We now evaluate the accuracy of the content identification system under these

attacks. Our database consists of N = 1000 grayscale images of size 512×512. The

attacks in Table 3.1 are applied to each of these images to obtain a set of 34, 000

attacked images. The length of the fingerprint used is L = 256 bits. The threshold

for detection τ is chosen to achieve a probability of false alarm ǫ = 10−6. From

Eqn. (3.15), the maximum attack strength that can be resisted under these settings

is found to be p = 0.3. Thus, we expect that the rotated images (Attack No. 32-34)

which have p = 0.5 will not be detected correctly. The other attacks No. 1−31 have

p < 0.3 and hence we expect the probability of detection Pd to be close to 1.

For the detection problem, we compute the fingerprint of an attacked image

and compare it with each fingerprint in the database. We then use the decision

rule described in Eqn. (3.6) to perform the classification. If the minimum distance

dmin < τ , we declare the image to be present in the database. Figure 3.9 shows the

probability of detection obtained using this decision rule under each of the attacks.

As expected, the images which correspond to rotated versions of images in the

database are almost never detected (Attacks No. 32 − 34). This problem can be

alleviated by suitably designing the fingerprints, as discussed in Section 3.4.5.

Under most of the other attacks, the probability of detection Pd is close to 1,

except for addition of Gaussian noise with large variance (attacks no. 2-4). Under

these attacks, the fraction of fingerprint bits altered for some images is larger than

0.3. Thus, according to our theoretical analysis, these images cannot be identified
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Figure 3.9: Probability that an attacked image is detected as a modified version

of an image in the database Pd.

and the probability of detection, Pd, is less than 1 for these attacks. The overall

probability of detection for attacks no. 1-31 was 0.991.

For the identification problem, we use the ML detector in Eqn. (3.10) to per-

form the classification. We found that every image that was detected as being

present in the database in the detection problem was correctly identified, so that

Pc = 0.991 and the probability of misclassification Pmc = 0.

The probability of false alarm Pf was estimated using the leave-one-out proce-

dure in both the detection and identification problems. Every image in the database

was treated as a probe image and compared with the remaining images. If the mini-

mum distance of the fingerprint dmin < τ , the image constituted a false alarm. Using

the fingerprint of length 256 bits, no false alarms were observed in our experiments.

73



3.4.4 Influence of the Fingerprint Length

Based on the analysis in Section 3.3, we know that longer fingerprints can

resist stronger attacks. In this subsection, we perform simulations to determine the

influence of the fingerprint length on the detection performance.

To generate fingerprints of different lengths, the number of levels of the wavelet

decomposition is varied. For example, to generate fingerprints of length 1024 bits,

we resample the image to size 512 × 512 and decompose it to four levels using the

Haar wavelet. We then extract the signs of the diagonal detail coefficients at the

coarsest level of decomposition. As the number of levels of decompositions becomes

smaller, the diagonal detail coefficients correspond to higher frequencies and we

expect these features to be less robust to modifications. Figure 3.10 shows the prob-

ability of a fingerprint bit flipping after attacks, for fingerprints of length 64, 256,

and 1024 corresponding to 6, 5, and 4 levels of decomposition respectively. We ob-

serve that as the number of decomposition levels decreases (corresponding to longer

fingerprints), the probability that a fingerprint bit changes increases, indicating that

these coefficients are less robust to modifications.

From Eqn. (3.15), we find that for N = 1000 and ǫ = 10−6, the maximum

probability of a bit flipping (p) that can be tolerated by fingerprints of length 64,

256, and 1024 bits is 0.1, 0.3, and 0.4, respectively. Thus, we expect the fingerprint

with length 1024 bits to have a higher value of Pd, as it can resist stronger attacks.

In Figure 3.11, we examine the influence of the fingerprint length L on the

probability of detection Pd under various attacks. In each case, the threshold for
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Figure 3.10: Probability of a fingerprint bit flipping under an attack on the image

as a function of the fingerprint length.

detection τ was chosen to attain the desired value of Pf = ǫ = 10−6 as given by

Eqn. (3.15). We observe that the fingerprint with length 1024 bits has the highest

probability of detection. Even though the probability of a bit being altered after an

attack p is higher for the 1024-bit fingerprint than the other fingerprints, the longer

length of the fingerprint compensates for the reduced robustness of each individual

bit, and leads to a higher overall probability of detection.

In Table 3.2, we compare the overall probability of detection under attacks

no. 1−31 as a function of the fingerprint length. We observe that as the fingerprint

length increases, Pd also increases. There was only one case of false alarm when

using fingerprints of length 1024 bits. Upon closer observation, it was found that

these two images actually corresponded to the same scene, but the number of objects

and illumination conditions in the picture were slightly different. These two images

can be regarded as being obtained from each other after significant modification,

such as insertion or deletion of objects, change in brightness, and modification of
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Figure 3.11: Probability of detection under various attacks as a function of the

fingerprint length.

the details in the image. The overall attack would change a large fraction of the

fingerprint bits, and is hence not identified using the shorter fingerprints. Since the

1024 bit fingerprint is more robust against changes in the fingerprint bits, it is able to

determine that these two images are not independent of each other, and could have

originated from the same source. Thus, the length of the fingerprint plays a crucial

factor in determining the performance of the fingerprinting scheme, as predicted by

our theoretical analysis in Section 3.3.

Under the identification problem, every image that is detected as having orig-

inated from an image present in the database is also correctly identified, so that

Pc = Pd. Thus, the probability of misclassification as obtained from our experi-

ments is Pmc = 0 and the probability of correct identification is the same as the

second column in Table 3.2.
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Table 3.2: Overall Pd and Pf obtained against Attacks No. 1-31 as a function of

the fingerprint length.

Hash Length (bits) Pd Pf

64 0.924 0

256 0.991 0

1024 0.996 0.002
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Figure 3.12: Probability of a bit flipping p for the rotationally invariant fingerprints

under various attacks.
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3.4.5 Proper Choice of Hash Features

Our attack model assumes that most attacks on multimedia can be modeled

as additive noise in the fingerprint space. For some fingerprinting schemes, desyn-

chronization attacks, including rotation, cropping, and geometric attacks, may not

be directly modeled as additive noise fingerprint space. However, by suitably de-

signing the features and applying appropriate preprocessing, it is possible to reduce

these attacks to the additive noise model. We briefly illustrate the importance of

appropriate choice of features using the example of the rotation attacks studied in

Section 3.4.2. If robustness against rotations by multiples of 90◦ is desired, the

following modification of the fingerprint scheme in Section 3.4.1 can improve the

robustness against rotations.

Given a 512 × 512 image, we obtain four images corresponding to rotations

by multiples of 90◦, which are then summed pixel-wise. The resulting image is

decomposed up to four levels using the Haar wavelet and the signs of the 1024

diagonal detail coefficients at the coarsest level of decomposition are extracted. As

these bits are dependent, we retain only 25% of the bits that correspond to the

coefficients in the upper left corner of the subband. The 256 bits thus obtained

form the fingerprint for the image, which is invariant under rotations of the original

image by multiples of 90◦.

Figure 3.12 shows the probability of a bit flipping under the attacks listed in

Table 3.1 for this modified scheme. We observe that none of the bits are altered

under rotations by multiples of 90◦. The fingerprint bits are also moderately robust
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under the other attacks no. 1-31. Under the detection problem we obtained Pd = 1

under the rotation attacks no. 32-34, while the overall Pd for attacks no. 1− 31 was

0.99. Thus, a suitable choice of the fingerprint features can enhance the robustness

against attacks.

3.5 Chapter Summary

In this chapter, we presented a decision theoretic framework for analyzing

binary fingerprint-based content identification schemes. We formulate the problem

of detecting whether a given video or audio is present in a database of copyrighted

material as a binary hypothesis test and the problem of correctly identifying the

original content corresponding to a given query object as a multiple hypothesis test.

Under this framework, we considered the case of fingerprinting schemes that generate

i.i.d. equally likely bits and modeled distortions on the host content as altering

each fingerprint bit independently with probability p. We derived expressions for

the probability of correct identification under this model and studied the tradeoff

between the number of fingerprints, the robustness, the identification performance

and the length of the fingerprints. To understand the fundamental limits on the

identification capability, we next derived bounds on the achievable error probabilities

and characterized the tradeoff between the detection probability and the number of

fingerprints in terms of the error exponents. We then derived guidelines for choosing

the fingerprint length to attain a desired performance objective and provided an

interpretation of our results from a joint source-channel coding perspective.
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Under the proposed framework, we also examined a practical binary hash-

based content identification scheme which utilizes the signs of the diagonal detail

coefficients in the wavelet decomposition of the image. The simulation results con-

firm our theoretical predictions. We also briefly discussed the importance of choosing

appropriate hash features to achieve robustness against attacks.

Our analysis provides a quantitative evaluation of how various system parame-

ters influence the identification accuracy, and guidelines to choose these parameters

to achieve a desired accuracy. It also reveals connections between the fingerprinting

problem and other areas such as sphere-packing, joint source channel coding, and

errors and erasures decoding.

The results in this chapter have been mainly presented in the context of content

fingerprinting, but they are also applicable in many other applications, such as

biometrics based identification. For example, Vetro et al. recently showed that

by suitably transforming features extracted for human fingerprint matching using

minutiae, the biometric data can be transformed into i.i.d. Bernoulli(0.5) bits and

that the distortions caused while recapturing the fingerprint can be modeled by a

binary symmetric channel [94]. The results and bounds derived would be applicable

in this setting.
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Chapter 4

Binary Fingerprints with

Correlated Bits

The analysis and results described in the previous chapter have been focused

on fingerprints with i.i.d. components and provides useful performance bounds

and guidelines for designing fingerprinting schemes. Many practical fingerprinting

schemes, however, generate fingerprints with correlated components. While it is

possible to include an explicit decorrelation stage to remove such dependencies and

obtain a shorter fingerprint with independent bits, to meet stringent computational

requirements in large-scale practical deployments, it may be preferable to use the

correlated fingerprint bits directly without incurring the additional computational

cost for decorrelation. Another important reason that correlated fingerprints are

used in practice is to cope with desynchronization. For example, fingerprints may

be extracted from overlapping segments of multimedia to deal with cropping issues,
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which results in correlated components.

We use a Markov Random Field to model such correlations in the fingerprints

and the noise introduced through distortion of the content. We then describe an

approach inspired by statistical physics to compute the probability of errors and

study the impact of the correlation on the identification performance of different

detectors. Although we use a simple 2-D Ising model as a concrete example to

illustrate our results, the analysis and the proposed method are quite general and

can be applied to any Markov Random Field. We begin with a brief review of

Markov Random Fields in the next subsection.

4.1 Markov Random Fields

Markov Random Fields (MRFs) are a generalization of Markov chains in which

time indices are replaced by space indices [40]. MRFs are undirected graphical

models and represent conditional independence relations among random variables.

MRFs have been used in image processing [36, Chapter 6], image modeling [8, 39],

and computer vision [9, Chapter 8] to model correlated random variables.

An MRF is represented by an undirected graph G = (V, E) with a set of nodes

V = {1, 2, . . . , N} and a set E of edges between nodes, where an edge is represented

by an unordered pair of nodes. Each node i ∈ V represents a random variable Xi

and the vector X denotes all random variables represented by the MRF. Two nodes

i and j are said to be neighbors if there is an edge between them, i.e. (i, j) ∈ E . A

set of nodes C is called a maximal clique if every pair of nodes in C are neighbors
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and no node in V\C is a neighbor of every node in C. Denote the set of variables

corresponding to the nodes in C by XC and their realizations by xC. The set of all

the maximal cliques in the graph G is denoted by C.

An energy function EC(xC) is associated with every maximal clique C ∈ C

that maps the values xC of the nodes in C to a real number. The energy of the

entire configuration x is defined as E(x) =
∑

C∈C EC(xC). The joint probability

distribution of all the random variables represented by the MRF is then given as

p(X = x) = 1
Z
exp (−E(x)), where Z =

∑

x exp (−E(x)) is a normalization constant

called the partition function.

4.2 Model for a Block-based Fingerprinting Scheme

We model content fingerprints as a Markov Random Field where each fin-

gerprint value is represented as a node in the MRF, and pairs of nodes that have

dependencies are joined by edges [89, 91]. As a concrete example of our modeling

approach, we describe a model for a representative fingerprinting scheme that parti-

tions each video frame into blocks and extracts one bit from each block [53]. While

we use a simple two-dimensional model for ease of illustration, the analysis can be

extended to three-dimensional and more complex models.

Suppose that each video frame of size PH×QW is partitioned into PQ blocks

of size H × W each and one bit of the fingerprint is extracted from each block.

For example, the fingerprint bit could be obtained by thresholding the average

luminance of a block. Due to underlying correlations among the blocks of the frame,
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Figure 4.1: Markov Random Field model for a block-based fingerprinting scheme:

(a) fingerprint components and (b) fingerprint and noise.

these bits are likely to be correlated. We denote the bit extracted from the (i, j)th

block by X ′
i,j . For notational convenience, we use a vector X to represent the bits

X ′
i,j, 1 ≤ i ≤ P, 1 ≤ j ≤ Q, which could be obtained by any consistent reordering,

such as raster scanning. Specifically, let X(i−1)Q+j = X ′
i,j. The random variables Xk

are represented as nodes in a graph and may take one of two values ±1, with bit value

‘0’ represented as +1 and bit value ‘1’ represented as −1. Each node is connected

to the four nearest neighbors, so that the overall graph G0 = (V0, E0) satisfies 4-

connectivity as shown in Figure 4.1(a). The set of nodes V0 = {1, 2, . . . PQ}. The

corresponding set of edges E0 contains pairs of the form ((i−1)Q+j, (i−1)Q+j+1),

which are horizontally adjacent neighbors, or ((i−1)Q+j, iQ+j), which are vertically

adjacent neighbors.

As described in Section 4.1, the joint probability distribution of the fingerprint

can be specified by defining an energy function for the model. We use the energy
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function that has been commonly used for modeling binary images [9, Chapter 8]:

E0(x) = −ν
∑

i

xi − η
∑

(j,k)∈E0

xjxk. (4.1)

This corresponds to the 2-D Ising model that has been widely used in statistical

physics to model ferromagnetism arising out of interactions between individual spins.

Here η controls the correlation between nodes that are connected and ν determines

the marginal distribution of the individual bits. A higher value for η would increase

the correlation among neighboring bits, and large ν would bias the bits to be +1.

The joint distribution can then be written as p0(x) =
1
Z0

exp(−E0(x)), with Z0 being

the normalization constant to ensure that the distribution sums to 1.

The above model describes the fingerprint bits obtained from the original

video frame. In many practical applications, fingerprints are extracted from possi-

bly modified versions of the video and may be noisy. The noise components may

be correlated and also dependent on the fingerprint bits. To accommodate such

modifications, we propose a joint model for the noise bits and the fingerprint bits

of the original unmodified video, which is shown in Figure 4.1(b). The filled circles

represent the noise bits and the open circles represent the fingerprint bits. The solid

edges capture the dependencies among the fingerprint components, while the dashed

and dotted edges represent the local correlations among the noise bits. The dashed

edges capture the dependence between the noise bits and the fingerprint bits. The

noise may be causally dependent on the fingerprint of the original video, but the

fingerprint bits of the original video should not be influenced by the noise. However,

the addition of these undirected edges makes the graph symmetric with respect to

85



the fingerprint and noise bits and does not accurately reflect the causal dependence.

Factor graphs may be used to represent this dependence, and will be addressed in

our future work.

We consider the case where the noise bits may be mutually dependent, but

are independent of the fingerprint bits, implying that the dashed edges between

the noise bits and the fingerprint bits are absent. In this example, the model for

the noise bits N reduces to a 2-D Ising model with underlying graph G1 = (V1, E1)

similar to that for the fingerprints. The energy function for a configuration n can

be defined as:

E1(n) = −α
∑

i

ni − γ
∑

(j,k)∈E1

njnk, (4.2)

and the distribution is specified as p1(n) =
1
Z1

exp(−E1(n)). The parameters α and

γ control the marginal distribution and the pairwise correlation among the noise

bits, respectively.

The above MRF can be used to model block based binary video fingerprints

computed on a frame by frame basis. For other fingerprinting schemes, different

graphs can be used to capture the correlations among the fingerprint components.

4.2.1 Hypothesis Testing

As discussed in Section 3.1, content identification using fingerprints can be

modeled as a multiple hypothesis test. Under the MRF model, since it is difficult to

directly compute the error probabilities for the (N+1)-ary hypothesis test, we first

consider a binary hypothesis test, where the detector compares the query fingerprint
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with a given fingerprint from the database.

Given a query video Z and a reference video V in its database, consider the

problem where the detector has to decide whether Z is derived from V or whether

the two videos are unrelated. To do so, the detector computes the fingerprints

y and x from the videos Z and V, respectively. The corresponding noise in the

bit domain will then be given by the XOR of the two fingerprints. In the MRF

model, as a logical value b is represented by (−1)b, the XOR operation corresponds

to an element-wise multiplication ⊗, so that the noise n = x ⊗ y. The detector

then performs a binary hypothesis test with the null hypothesis H0 that the two

fingerprints are independent and the alternate hypothesis H1 that the fingerprint y

is a noisy version of x:

H0 : (x,y) ∼ p0(x)p0(y),

H1 : (x,y) ∼ p0(x)p1(n), (4.3)

where p0(·) is the distribution of the fingerprints and p1(·) is the distribution of the

noise.

We consider a Neyman-Pearson setting, where the detector seeks to maximize

the probability of detection under the constraint that the probability of false alarm

does not exceed ǫ. The optimal decision rule is to compare the log likelihood ratio

(LLR) to a threshold:

LLR(x,y) = E0(y)− E1(n)
H1

≷
H0

τ, (4.4)

where the constants have been absorbed into the threshold τ , which is chosen such
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that the probability of false alarm = ǫ. In cases where the LLR is discrete, it may

be necessary to incorporate randomization when the LLR equals the threshold.

For example, for the block-based binary fingerprinting scheme model described

in Section 4.2, the LLR is given by:

LLR(x,y) = −ν
∑

i

yi − η
∑

E0

yjyk + α
∑

i

ni + γ
∑

E1

njnk.

If the fingerprint bits are i.i.d. and equally likely to be ±1, corresponding to η =

ν = 0, and the noise bits are independent (γ = 0), the optimum decision rule

reduces to a comparison of the Hamming distance between x and y to a threshold.

However, when the bits are not independent, a decision rule that compares the

Hamming distance to a threshold is suboptimal. The LLR can be interpreted as

performing an implicit decorrelation by compensating the Hamming distance for

the empirical correlations among the fingerprint components. We would like to

quantify the accuracy using this optimal decision rule and the performance loss

when the Hamming distance is used instead.

While we have adopted a Neyman-Pearson approach based on the likelihood

ratio test to derive the optimal detector, another alternative may be to use a χ2-

test. When a large number of observations is available, it has been shown that

under some conditions, the distribution of the log-likelihood ratio under the null

hypothesis converges to a χ2 distribution with the appropriate number of degrees of

freedom [48, 100]. The threshold in the decision rule can then be chosen based on

the χ2 distribution, given the constraint on the probability of false alarm.

Under the Neyman-Pearson setting, define the probability of detection for this
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binary hypothesis test as P
(b)
d = Pr(LLR(x,y) > τ |H1) and probability of false

alarm P
(b)
f = Pr(LLR(x,y) > τ |H0). One approach to estimate the error proba-

bilities would be to draw samples from the MRF distribution using a traditional

Markov Chain Monte Carlo (MCMC) technique and use these samples to estimate

the probabilities [102]. However, a main challenge in accurately estimating the prob-

abilities is that such error events have small probability of occurrence and are rarely

observed in a typical MCMC simulation.

An alternative approach is to use the large deviations principle to obtain expo-

nential bounds on the probability of making an error [21, Theorem 2.3.6 and 3.4.3].

Evaluating the exponent would then require the computation of a transform of the

asymptotic limit of the cumulant generating function of the log likelihood ratio [21].

To the best of our knowledge, there is no closed form expression or simple technique

to evaluate this rate function when the relevant distributions are Markov Random

Fields, and we may have to resort to simulation-based techniques such as Markov

Chain Monte Carlo as well. Instead, we take a different approach inspired by sta-

tistical physics to first estimate the so-called density of states and then utilize this

information to estimate the probability of making an error.

4.2.2 Density of States

For ease of illustration, we again use the example of the binary fingerprint

model described in Section 4.2. Suppose we define M(x) =
∑

i xi and Ecorr(x) =

−∑(j,k)∈E0
xjxk, the LLR in Eqn. (4.4) can be written as LLR(x,y) = −νM(y) +
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ηEcorr(y) + αM(n) − γEcorr(n), since E0 = E1 in this model. Similarly, the energy

for the fingerprint bits and the noise, E0(x) and E1(n), described in Eqns. (4.1) and

(4.2) can be rewritten in terms of these parameters. Thus, the tuple

S(x,y) = (M(x), Ecorr(x),M(y), Ecorr(y),M(n), Ecorr(n)), (4.5)

captures all necessary information regarding the configuration (x,y), and is a suffi-

cient statistic [67] for the p0 and p1 distributions. Define g(s) = |{(x,y) : S(x,y) =

s}| as the number of configurations that have the same state s. The function g(·) is

referred to as the “density of states” in the physics literature and it depends only on

the underlying graphical model and is independent of the parameters (ν, η, α, γ) of

the distributions. In some respects, the state of a vector is similar to the concept of

“type” of a sequence in information theory. The main difference is that the method

of types is typically used in conjunction with i.i.d. variables, whereas we consider

correlated random variables in this section.

As all configurations (x,y) with the same state have the same LLR and prob-

ability of occurrence, the probability of detection P
(b)
d can be rewritten as:

P
(b)
d (τ) =

∑

(x,y)

1 ({LLR(x,y) > τ}) p0(x) p1(n)

=
∑

s

g(s)1 ({LLR(s) > τ}) ps,1(s), (4.6)

where the summation in Eqn. (4.6) is over all possible values of s, ps,1(s) and LLR(s)

are the probability under H1 and the LLR, respectively, of any configuration (x,y)

with S(x,y) = s, and 1(·) is an indicator function. Similarly,

P
(b)
f (τ) =

∑

s

g(s)1 ({LLR(s) > τ}) ps,0(s), (4.7)
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where ps,0(s) is the probability under H0 of a configuration with state s. As the LLR

and the probabilities p1(n) and p0(x) depend only on s, knowledge of g(s) allows

us to compute P
(b)
d and P

(b)
f . We also note that the M(·) terms in the state vector

in Eqn. (4.5) can only take L + 1 values, whereas the Ecorr(·) terms can take at

most
(

L
2

)

∼ Θ(L2) values. Thus, the number of states is a polynomial function of

the number of bits and the summations in Eqns. (4.6) and (4.7) have manageable

computational complexity. The problem of computing P
(b)
d and P

(b)
f has now been

converted into one of estimating the density of states g(s).

An algorithm to estimate the density of states was proposed by Wang and

Landau in [96]. A summary of this algorithm and the key steps are provided as

an appendix in Section 4.5. The main idea behind the algorithm is to construct a

Markov chain that has 1
g(s)

as its stationary distribution and use samples drawn from

this distribution to estimate g(s). An advantage of this “Wang-Landau” algorithm

is that states with low probability of occurrence are also visited as often as high

probability states, enabling us to estimate their probabilities accurately. We first

use this algorithm to estimate the density of states g(s) and then compute P
(b)
d

and P
(b)
f using Eqns. (4.6) and (4.7). As the number of states is polynomial in the

number of variables N , this approach is more efficient than an exhaustive evaluation

of P
(b)
f and P

(b)
d . However, the density of states estimation is limited by the amount

of memory and computational resources available and cannot be used for arbitrarily

large graphical models. In such situations, nested models may be used for modeling

the fingerprints and will be examined in our future work.
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4.2.3 Bounds on Error Probabilities for Overall Matching

Given the values of P
(b)
d and P

(b)
f obtained using the above technique, for com-

pleteness, we now derive bounds on the probability of correct identification for the

overall matching process. We assume that the detector has no a priori knowledge of

which video is more likely to be queried and compute the error probabilities assum-

ing that the queries are equiprobable. If the detector has prior knowledge about the

queries, these could be incorporated into the decision rule under a Bayesian setting.

Consider the probability of false alarm Pf , which can occur if the LLR of

the query and any reference fingerprint exceeds the threshold. The false alarm

probability can then be bounded by

Pf ≤ 1− (1− P
(b)
f )N ≤ NP

(b)
f ,

when NP
(b)
f ≪ 1. Now suppose that the query video is actually a modified version

of V(i). A misclassification can occur if LLR(X(j),Y) > τ for any j 6= i. Thus, the

probability of misclassification can be bounded as:

Pmc ≤ 1− (1− P
(b)
f )N−1 ≤ (N − 1)P

(b)
f .

An incorrect decision happens when either a misclassification occurs, or if LLR(X(j),Y) <

τ , so that

1− Pc ≤ 1− P
(b)
d + Pmc

⇒ Pc ≥ P
(b)
d −NP

(b)
f .

Thus, given a desired overall probability of correct identification and false alarm,

suitable values of P
(b)
f and P

(b)
d can be computed based on these bounds and used
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to choose the appropriate threshold in the binary hypothesis test. As these bounds

have been derived by extending the results from the binary hypothesis test to the

identification problem, the bounds may not be tight. Finding tighter bounds on the

error probabilities for the identification problem when correlated fingerprints are

used, is an open research problem that will be addressed in future work.

Another interesting question is how the error probabilities for correlated fin-

gerprints scale as the number N and length L of the fingerprints increases. In the

i.i.d. case, when N grows exponentially with the length as N = 2LR, if the error

exponents corresponding to the rate R as discussed in Section 3.2 are positive, the

error probabilities reduce exponentially with the length L. It remains an open ques-

tion whether this result would still hold for the case of correlated fingerprints, and if

it does hold, how the error exponents would depend on the parameters of the MRF

distribution and the resulting correlation.

4.3 Numerical Evaluation

We use the MRF model coupled with the technique for computing P
(b)
d and P

(b)
f

described in the previous section to study the influence of correlation among the fin-

gerprint components on the detection performance. We focus on binary fingerprint-

ing schemes and provide numerical results for the model described in Section 4.2.

We present results for the estimation of the density of states in Section 4.3.2, and

compare the performance of the LLR and Hamming distance based detectors via

numerical evaluations in Section 4.3.3. In Section 4.3.5, we validate the theoretical

93



predictions by experiments using a database of images.

4.3.1 Correlation Structure among Fingerprint and Noise

Components

We first analyze the correlation structure among the fingerprint components

and noise under the MRF model. The correlation among the fingerprint components

depends on the covariance E[XXT ]. It is possible for two realizations X(i) and X(j)

that have the same state s to have different outer products X(i)X(i)T and X(j)X(j)T

depending on the exact arrangement of +1 and −1 within the vectors. Hence, the

correlation cannot be directly obtained from the density of states. Instead, we draw

108 samples from the MRF distribution using the Metropolis-Hastings algorithm [32]

by retaining only 1 out of 100 iterations to reduce the effect of correlations between

successive iterates in the MCMC simulations. We then use these samples to estimate

the correlation among the components. As the states with small probability do not

significantly alter the correlation, this approach gives us an accurate estimate of the

correlation.

We stack the fingerprint and noise samples into a single vector [XT NT ]T and

compute the correlation coefficient among its elements. Figure 4.2 shows the corre-

lation coefficient among the fingerprint bits and noise for a 4×4 model, obtained by

setting ν = 0, η = 0.3, α = 0.3, and γ = 0.1. For ease of visualization, Figure 4.3(a)

shows the correlation between the (1, 1)th bit (top left corner) and every other bit

while Figure 4.3(b) and (c) show the same for the (2, 1)th bit and the (2, 2)th bit,
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Figure 4.2: Correlation among the fingerprint and noise components under the

MRF model for ν = 0, η = 0.3, α = 0.3, and γ = 0.1.

respectively. Due to symmetry, other bits in corresponding positions have similar

correlations. We observe that the average correlation between each fingerprint bit

and its nearest neighbor ρx ≈ 0.3 and the correlation decays with distance. This is

the typical correlation behavior observed in our model and reflects the correlation

expected in practice - bits extracted from adjacent blocks are expected to be more

correlated than bits extracted from blocks farther apart. The correlation among the

noise bits has a similar structure, as the noise model is similar, while the noise bits

are uncorrelated with the fingerprint bits.

4.3.2 Density of States Estimation

We evaluate the accuracy of the density of states estimation algorithm using

known exact results for the density of energy states gI(E) for the 2-D Ising model
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Figure 4.3: Typical correlation structure among the various fingerprinting bits.

Correlation coefficients for the (a) (1, 1)th bit, (b) (2, 1)th bit, (c) (2, 2)th bit and

the remaining bits. The ‘*’ denotes the bit under consideration.

with periodic boundary conditions [7]. To enable comparison, periodic boundary

conditions are imposed on the graph G0 - the nodes X ′
1,j in the top row are con-

nected to the corresponding nodes X ′
M,j in the bottom row, and the nodes in the

first column are similarly connected to the nodes in the last column, so that ev-

ery node is 4-connected. 4-connectivity is similarly achieved for the noise nodes

N. We then use the Wang-Landau algorithm to estimate the density of states

g(s) = g(mx, ex, my, ey, mn, en) by performing a random walk in the 6-D parameter

space [96] and use the obtained g(s) to estimate the density of energy states gI(E)

by summing over all other variables and normalization:

gI(E) =
1

2PQ

∑

(mx,my ,ey,mn,en)

g(mx, E,my, ey, mn, en).

In our simulations, we use the parameters suggested in [96] and the maximum num-

ber of iterations is capped at 1010.

We measure the accuracy of estimation by computing the relative error ε(gI(E))
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Figure 4.4: Relative error in the estimation of density of states for a 4x4 Ising

model with periodic boundary conditions.

in the estimate of the density of states, defined as ε(x) = |x−xest|
x

. Figure 4.4 shows

the relative error in the estimation of the density of states for a 2-D Ising model

of size 4 × 4 with periodic boundary conditions. We observe from the figure that

the maximum relative error is approximately 0.37%, and the mean relative error is

0.1%. These results demonstrate that accurate estimates of the density of states

can be obtained using the Wang-Landau algorithm.

4.3.3 Detection Accuracy of Correlated Fingerprints

To examine the performance of correlated fingerprints, we use the model with-

out periodic boundary conditions, as practical fingerprints are not expected to have

such periodic relationships. The nodes at the corners are only connected to their

two closest neighbors, the remaining nodes at the borders are connected to their

three closest neighbors, and all the other nodes are 4-connected.

Using the estimated density of states, we compute the probabilities P
(b)
d and
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P
(b)
f as described in Section 4.2.2 and study the effect of different parameters on the

detection performance. Although errors in the estimation of the density of states will

also affect the accuracy of the estimates of P
(b)
d and P

(b)
f , as shown in Section 4.3.2,

these errors are small, and the accuracy can be improved by obtaining a better

estimate of the density of states.

We first examine the effect of the noise on the detection accuracy in Figure 4.5.

We characterize the noise by the probability pn of a noise bit being ‘−1’ which is the

equivalent of a binary ‘1’ bit, and the average correlation among adjacent noise bits

ρn, which are estimated from the MCMC trials. Figure 4.5(a) shows the ROC curves

for a fingerprint of size 4 × 4 bits with correlation ρx = 0.2 under two different pn

and fixed ρn = 0.2, for detection using the LLR statistic and the Hamming distance

statistic. We observe that for a given noise level, the LLR statistic gives 5 − 10%

higher P
(b)
d at a given P

(b)
f compared to the Hamming distance detector. As expected,

the performance for any given detector is worse when there is a higher probability

of the noise changing the fingerprint bits.

Fig 4.5(b) shows the influence of the noise correlation on the detection perfor-

mance. The figure indicates that for a fixed correlation among the fingerprint bits

ρx = 0.2 and a fixed marginal probability of the noise bits pn = 0.3, detection using

the LLR statistic is not significantly affected by the noise correlation. This is due

to the fact that the LLR takes into account the correlation among the noise bits.

On the other hand, using the Hamming distance leads to some degradation in the

performance as the correlation increases. This can be explained by the fact that as

the noise correlation increases, noise vectors with large Hamming weights become
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Figure 4.5: Influence of the noise distribution on the detection: (a) Impact of the

noise marginal distribution pn on the detection performance, ρx = 0.2 and ρn = 0.2,

and (b) Impact of noise correlation ρn at fixed pn = 0.3 and ρx = 0.2.

more probable, leading to higher missed detections.

Next, we examine the influence of the correlation among the fingerprint bits on

the detection accuracy. Figure 4.6 shows the ROC curves for content identification

using fingerprints of size 4× 4 for different correlations, where the noise parameters

pn = ρn = 0.2. We again observe that detection using the LLR statistic, which

compensates for the correlation among the fingerprint bits, is not significantly af-

fected by the correlation. For the Hamming distance statistic, there is an increase

in false alarms at a given P
(b)
d as the correlation among the fingerprints increases,

since similar configurations with smaller distances become more probable.
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Figure 4.6: Influence of correlation of the fingerprint bits on the detection perfor-

mance (pn = ρn = 0.2).

4.3.4 LS Estimation of Parameters

Having examined the performance of the LLR and Hamming distance detectors

for the MRF model through numerical simulations, we next validate our theoretical

predictions through experiments on image databases. To predict the detection ac-

curacy using a given database, we first need to obtain the parameters for the MRF

model that best captures the distribution of the data. We use the Least Squares (LS)

technique for estimating the parameters of the underlying MRF proposed in [23],

which is equivalent to the coding method proposed in [8]. A summary of the es-

timation procedure is provided as appendix in Section 4.6. In this subsection, we

present results on the accuracy of the LS parameter estimation.

To evaluate the accuracy of the LS parameter estimation technique, we inde-

pendently choose parameters (ν, η, α, γ) uniformly distributed in the interval (0, 1)
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Figure 4.7: Accuracy of the LS estimation of the MRF parameters: (a) Mean and

(b) Variance of the estimation error over 1000 trials.

and generate samples from the MRF distribution with these parameters using the

Metropolis-Hastings algorithm. These samples are then used to obtain estimates

(ν̂, η̂, α̂, γ̂) of the parameters of the MRF distribution, and the error in estimating

the parameters is determined. For example, νerr = |ν − ν̂|, and ηerr, αerr, γerr are

similarly defined. The residues in the LS estimation of the parameters of the finger-

print and noise distributions are also noted. Figure 4.7 shows the mean and variance

of the error in estimating the parameters over 1000 trials. From the figure, we ob-

serve that the LS estimates for the η and γ parameters have approximately 3 − 4

times less error on average, compared to the estimates for ν and α. When a larger

number of samples is available, the estimation accuracy is significantly better for all

the parameters. Further, we observe that the estimation accuracies of η and γ, and

ν and α are similar, since these parameters play similar roles in the fingerprint and

noise distributions.
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4.3.5 Simulation Results using Image Database

In this subsection, we compare the performance predicted by the theoretical

analysis with simulation results obtained using two image databases. The first

database consists of 1000 images downloaded from the Flickr photo hosting service

by searching for the tag “panda”1, and the second database is the Uncompressed

Colour Image Database (UCID) [71]. For extracting the fingerprints, each image is

divided into 16 blocks in a 4×4 grid and the average luminance within each block is

computed. The average luminance is then quantized to one bit accuracy according

to whether it is greater than or lesser than the grayscale value of 128, giving a 16-bit

fingerprint for each image. To evaluate the appropriateness of our model, we require

a distortion that results in the noise in different image blocks being correlated and

significantly alters the fingerprint bits. We choose histogram equalization as the

distortion and apply it to the luminance portion of the image and compute the

noisy versions of the fingerprints. The hypothesis test described in Sec. 4.2.1 is

then performed using the noisy fingerprints. Additionally, 1000 pairs of original

fingerprints are randomly chosen and compared to each other to obtain an estimate

of the false alarm probability. We also estimate the Ising model parameters for the

fingerprints and the noise using the least squares method discussed in 4.3.4, and

obtain the theoretical predictions for the ROC curves as described in Section 4.2.2.

Figs. 4.8 and 4.9 show the results obtained for the panda database and the

UCID images, respectively. Figure 4.8(a) displays the correlation among the finger-

1Links to the images used in the experiments are available at

www.ece.umd.edu/∼varna/panda database/
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print and noise components for the fingerprints computed from the panda database.

We observe that the correlation is similar to the correlation structure for the MRF

model in Figure 4.2. The residue for the LS estimate of the hash parameters is 0.067

and for the noise parameters is 0.06 indicating that the MRF model is a good fit

for this data. Figure 4.8(b) compares the ROC curves obtained from theory and

simulation for the LLR detector and the Hamming distance based detector. As the

data obtained from real images may not exactly follow the Ising model, we observe

that there are some differences between the theoretical predictions and simulation

results. For the LLR detector, the theory and simulation results agree well, but

for the Hamming distance based detector and Pf > 0.5 region, there is some gap

between the two curves due to the model mismatch.

For the UCID database, we find that the residues in the LS estimate for the

hash and noise parameters are 0.24 and 0.253 respectively, which is around 4 times

that for the panda database. Thus, we expect that the Ising model may not be a good

fit for the fingerprints obtained from this particular database. Figure 4.9(b) shows

that the theoretical predictions and the simulation results for the LLR detector have

a similar trend. The Hamming distance based detector performs much better in the

simulations compared to the theoretical predictions, and there is a large gap. From

these results, we see that while the model mismatch can affect the accuracy of the

theoretical predictions compared to the simulation results, the LLR detector derived

through this analysis can improve the detection accuracy by approximately 5-20%

over the simple Hamming distance based detector when the fingerprints and noise

are correlated.
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Figure 4.8: (a) Correlation among fingerprint and noise components, and (b)

Comparison of theoretical and simulation results for a database consisting of 1000

images obtained from Flickr.

In general, the distribution of the fingerprints depends on the fingerprinting

algorithm and the images in the database. Based on the particular algorithm, a

suitable graphical model may be used for modeling the fingerprint and noise distri-

bution. Given such a graphical model, the LLR detector can be derived and used for

the fingerprint matching. A suitable set of parameters can be defined as the state

and the Wang-Landau algorithm can be used to estimate the density of states. The

density of states estimate can then be used to predict the detection accuracy that

can be achieved using the fingerprinting scheme under this model.
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Figure 4.9: (a) Correlation among fingerprint and noise components, and (b)

Comparison of theoretical and simulation results for UCID images.

4.4 Chapter Summary

This chapter focuses on modeling correlated binary fingerprints and analyzing

their performance under a hypothesis testing framework. We proposed a Markov

Random Field model for the fingerprint and noise bits. Under this model, we exam-

ined fingerprint matching as a hypothesis testing problem and proposed a statistical

physics inspired approach to compute the probabilities of detection and false alarm.

Our analysis showed that Hamming distance based detection, which is commonly

employed in many applications, is suboptimal in this setting and is susceptible to

correlations among the fingerprint bits or the noise. The optimal log-likelihood ratio

detector provides 5− 20% higher detection probability and the performance is rela-

tively stable for different correlations among the fingerprint and noise components.

Simulation results using image databases corroborate our theoretical analysis.
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4.5 Appendix: Wang-Landau Sampling

In statistical physics, the density of states is an important quantity that en-

ables the computation and characterization of various thermodynamic properties

of a physical system. Given a system which may exist in different configurations,

the density of states is defined as the number of configurations that have the same

energy. This quantity is independent of the thermodynamic temperature and once

determined, can be used to compute the properties of the system at any temper-

ature. Traditional MCMC methods, which are used to estimate thermodynamic

properties such as free energy, sample from the distribution over the set of config-

urations, and may not visit states with low probability often enough to allow for

accurate estimation of the density of states. To address this problem, Wang and

Landau [96] proposed a technique for estimating the density of states by performing

a random walk in the energy space. We illustrate the algorithm using an example

of a physical system with spins that can take values ±1.

Suppose we have a system with L spins Xi ∈ {−1,+1}, i = 1, 2, . . . L. Given

a particular configuration of the spins X = [X1 X2 . . . XL] = x ∈ {−1,+1}L, let

the energy of the system be given by Ex(x). We are interested in determining the

density of states g(·) defined as:

g(E) = |{x ∈ {−1,+1}L : Ex(x) = E}|

where | · | denotes the cardinality of a set. The main idea behind the Wang-Landau

algorithm is to construct a Markov Chain with stationary distribution proportional

to 1
g(E)

. Samples X(1),X(2), . . . ,X(t), . . . are then drawn from this Markov Chain
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and used to estimate g(E).

The Markov Chain is constructed as follows. The initial value of the spinsX(0)

is chosen randomly from {−1,+1}L and an initial value is chosen for the density of

states, e.g. g(E) = 1, ∀E. The number of times that a particular energy value has

been encountered in the simulation is initialized to zero, i.e. count(E) = 0, ∀E, and

the update factor for the density of states estimate χ is set to a moderately large

value, e.g. χ = exp(1). At the tth iteration, a value J(t) uniformly distributed on

{1, 2, . . . , L} is chosen and the sign of XJ(t) is flipped with a certain probability qt

as described next.

Let flipj(x) be the function that flips the sign of the jth element of x, i.e.

flipj(x) = [x1 x2 . . . − xj . . . xL]. Define

κt =
g(Ex(X(t− 1)))

g(Ex(flipJ(t)(X(t− 1))))
(4.8)

which is the ratio of (the current estimates of) the density of states for the energy

of the current state X(t − 1) and the energy of the state that would result if the

J(t)th spin was flipped. Now let qt = min(κt, 1) and

X(t) =



















flipJ(t)(X(t− 1)) with probability qt

X(t− 1) with probability 1− qt.

It can be verified [96] that the samples X(t) thus obtained form a Markov

Chain with stationary distribution proportional to 1
g(E)

. The count of the energies

encountered and the estimate of the density of states are updated as:

count(Ex(X(t))) ← count(Ex(X(t))) + 1

g(Ex(X(t))) ← g(Ex(X(t)))× χ
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Algorithm 1: Wang-Landau density of states estimation

Initialize: Xi = ±1 randomly, i = 1, 2, . . . , L; χ = exp(1).

g(E) = 1, count(E) = 0, ∀E.

while χ < exp(10−8) do

Choose J uniformly at random from {1, 2, . . . , L}

κ = g(Ex(X))
g(Ex(flipJ (X)))

q = min(κ, 1)

Set XJ ←



















−XJ with probability q

XJ with probability 1− q

count(Ex(X))← count(Ex(X)) + 1

g(Ex(X))← g(Ex(X))× χ

if minE count(E) > µ× avg(count(E)) then

count(E) = 0, ∀E

χ← √χ

end

end

Normalize the density of states g(E).

where χ is the update factor.

When all energy values have been encountered equally often, the estimate of

the density of states has an accuracy proportional to ln(χ). If a better accuracy

is desired, the update factor χ is reduced, the counts are reset to zero, and the

iterations are continued. Initially, the update factor χ is chosen to be large enough

so that all the energy levels are visited quickly, and then it is progressively reduced to
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obtain a finer estimate. This process is continued until χ becomes small enough, e.g.

χ < exp(10−8). The g(E) obtained after convergence is relative and is normalized

to obtain an estimate of the density of states. The algorithm is summarized in

Algorithm 1, where we have dropped the dependence of the variables on the iteration

number t for notational convenience and presented in-place operations instead.

The above algorithm was described in the context of estimating the density of

energy states. In some applications, multiple parameters of the system may be of in-

terest, e.g. the energy Ex(x) and the magnetization Mx(x) =
∑

i xi. The state may

then be defined to consist of these multiple parameters: s = S(x) = (Ex(x),Mx(x)).

The corresponding density of states g(s) can be estimated by performing the random

walk in the appropriate 2-D state space. The quantity κt would then be replaced

by:

κ′
t =

g(S(X(t− 1)))

g(S(flipJ(t)(X(t− 1))))
.

For large systems, the parameter space can be divided into several regions and

independent random walks can be performed over each of these regions for faster

convergence. The overall density of states can then be reconstructed from these

individual estimates by ensuring continuity at the boundaries. For further details

regarding the algorithm, please see [96].
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4.6 Appendix: Least Square Estimation of MRF Parame-

ters

For the MRF model, as the partition function Z depends on the parameters

in a complicated manner, direct Maximum Likelihood estimation of the parameters

given sample data is typically difficult. Instead, various techniques such as pseudo-

likelihood [8] and Least Square (LS) based estimation [23] are often used to estimate

the parameters. For the Ising model, both these techniques turn out to be equivalent.

In this appendix, we briefly summarize the Least Square(LS) estimation of the MRF

model parameters described in [23], which we use in our experiments.

Consider a particular node Xi in the MRF and denote the set of neighbors of

Xi by Ni. Due to the Markov property of the MRF, the conditional distribution of

Xi given all the remaining nodes depends only on the values of its neighbors. For

the specific energy function defined in Eqn. (4.1), we have:

Pr(Xi = xi| XNi
) ∝ exp

(

νxi + ηxi

∑

j∈Ni

xj

)

so that

1

2
ln

Pr(Xi = +1| XNi
)

Pr(Xi = −1| XNi
)
= ν + η

∑

j∈Ni

xj . (4.9)

The quantity on the left hand side of Eqn. (4.9) may be estimated from the samples

of the MRF distribution by counting the number of occurrences of Xi = +1 and

−1 for different values of the neighbors XNi
. This yields a set of equations in ν

and η that can be solved using the least squares technique to obtain an estimate of

the parameters of the MRF model. The parameters α and γ for the noise can be
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estimated in a similar manner from the training data.
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Chapter 5

Modeling Temporal Correlations

in Content Fingerprints

In the previous two chapters, we have developed models for binary fingerprints

and analyzed their performance. We first examined i.i.d. fingerprints with equally

likely bits in Chapter 3. As practical algorithms generate fingerprints with corre-

lated components, we proposed an MRF model for binary fingerprints in Chapter 4

that can capture these correlations. The MRF model was mainly described in the

context of modeling the components of the fingerprint of a single frame, which can be

considered to be spatial correlations. Practical fingerprints also exhibit correlations

in the temporal direction. Fig. 5.1 shows the 512 successive fingerprints for a 100s

long video sequence obtained using the algorithm described in [64]. Each column in

the image represents the 32 bit fingerprint corresponding to one frame, with a white

pixel representing the bit value ‘1’ and a black value indicating ‘0’. From the figure,
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Figure 5.1: Example of temporal correlations among fingerprints from 512 succes-

sive frames for a 100s video using the algorithm in [64].

we observe that fingerprint values change slowly over time and exhibit correlations.

The MRF model proposed in the previous chapter can be used to model such

correlations. As the number of states grows polynomially with the number of nodes

in the model, the associated computational approach for estimating the detection

accuracy may not be scale very well if the number of nodes becomes very large. To

address this problem, in this chapter we examine various models for capturing such

temporal correlations. Using detectors derived based on these models, we improve

the accuracy of identifying matching content.

We model the temporal relations between fingerprints using a Markov chain in

Section 5.1, and evaluate the suitability of this model using a database of videos in

Section 5.2. As the experimental results indicate that the MC model is suitable only

in a certain regime, we examine hybrid models for the fingerprints and corresponding

detectors in Section 5.3.

5.1 Markov Chain based model for temporal correlations

In practical applications involving large databases, to reduce the complexity

of the matching process, a coarse search of the database is first performed using the

query fingerprint to identify likely matches. Approximate search techniques such as

113



Locality Sensitive Hashing [29] are typically used for this purpose. Once this reduced

set of candidates is obtained, a more detailed matching is carried out to identify

the most likely match. In this chapter, we focus only on the finer matching and

describe a model for the matching process that explicitly accounts for correlations

among fingerprint components.

In many practical schemes, fingerprints for a long multimedia sequence are ob-

tained by concatenating the sub-fingerprints obtained from shorter sub-sequences [64].

We will refer to such a unit from which one sub-fingerprint is computed as a

“frame”. In some video fingerprinting schemes, this abstract frame may corre-

spond to a single physical frame, whereas in others, it may correspond to a group

of frames. Let y(j) represent the sub-fingerprint of the jth frame of the query and

Y = [y(1) y(2) . . . y(L)] denote the overall fingerprint of the query. Similarly, let

X = [x(1) x(2) . . . x(L)] be the fingerprint of a candidate video in the database.

We model the fingerprint matching as a hypothesis test [88] and consider the

binary hypothesis test to determine whether the query fingerprint Y matches with

fingerprint X. The null hypothesis H0 corresponds to the case where X and Y do

not match, whereas the alternative hypothesis H1 corresponds to the case where X is

a match for Y. The overall matching procedure may be considered as a sequence of

such binary hypothesis tests whose results are combined to obtain the final decision.

To characterize this hypothesis test, we require the joint distribution p′i(X,Y) =

qi(Y|X) q′(X), i = 0, 1 under the two hypotheses. Here qi(Y|X) represents the

conditional distribution of the query Y given the reference X under Hi and q′(X)

is the marginal distribution of X. However, as X and Y have high dimension,
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obtaining the joint distribution is not feasible in practice and alternative approaches

are needed.

We first observe that the Likelihood Ratio (LR) for the hypothesis test, given

by

LR′(X,Y) =
p′1(X,Y)

p′0(X,Y)
=

q1(Y|X)

q0(Y|X)
,

only depends on the conditional distributions q′0, q
′
1 of Y given X under the two

hypotheses. Obtaining this conditional distribution still suffers from the problem of

high dimensionality. To allow for practical modeling, we assume that the conditional

distribution only depends on the distance between the fingerprints. This assumption

is motivated by the use of simple distance based matching in practical applications

and its good performance.

Let d(X,Y) = [d(1) d(2) . . . d(L)]T , be the vector of distances between the

fingerprints X and Y, where d(j) = d(x(j),y(j)) is the distance between the jth

sub-fingerprint of the query and the reference obtained using a suitable distance

metric. To capture the temporal correlations in the video frames that are reflected

in the fingerprints, we model the sequence of distances {d(j)} as following a Markov

chain distribution with transition probability matrix Pi under hypothesis Hi [92]:

H0 : d ∼ π0(d(1))
L
∏

j=2

P0(d(j − 1), d(j))

H1 : d ∼ π1(d(1))

L
∏

j=2

P1(d(j − 1), d(j)),

where Pi(k, l) = Pr(d(j) = l | d(j − 1) = k,Hi) represents the probability of tran-

sitioning from state k to state l for the Markov chain and πi is the corresponding
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stationary distribution. The likelihood ratio test is given by:

LRMC(X,Y) =
π1(d(1))

π0(d(1))

L
∏

j=2

P1(d(j − 1), d(j))

P0(d(j − 1), d(j))

H1

≷
H0

τMC , (5.1)

where τ is an appropriately chosen threshold. The above Markov chain based model

may be applied to any fingerprinting scheme with the associated distance metric.

Another commonly used decision rule is to compare the average distance to a

threshold:

d̄ =
1

L

L
∑

j=1

d(j)
H0

≷
H1

τd. (5.2)

If all the fingerprint bits are i.i.d. and equally likely to be ‘0’ or ‘1’, and the noise

operates in a similar manner, then the Hamming distance based detector is optimal,

as shown in Section 3.2. In practice, this detector is usually preferred due to its

low computational complexity and ease of implementation. In the next section, we

compare the detection accuracy of these detectors using a practical fingerprinting

scheme and a video database.

5.2 Experimental Results

In our experiments, we use the video fingerprinting scheme proposed in [64].

The frame rate of the video is normalized by downsampling to 5 fps and a 32-bit

fingerprint is computed for every frame of the video. The MUSCLE-VCD-2007

database [47] is used for estimating the detection accuracy. The database consists

of 101 videos with a total duration of approximately 100 hours. Half the videos are

randomly selected for training and the remaining are used for testing. We use 10
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Figure 5.2: Comparison of the transition matrices under the two hypotheses.

fold cross-validation [43] and average the identification results obtained from each

of these individual runs.

5.2.1 Estimating the transition matrices

Histogram equalization is used as an example of the processing that may be

encountered in a practical system. Other distortions can be treated similarly. The

observed distances between the fingerprints of the distorted and reference videos

are used to estimate the transition probability matrix P1 under hypothesis H1.

Similarly, the distances between the fingerprints of every pair of videos in the training

set is used to estimate P0.

Figure 5.2 compares the transition matrices obtained when the first 50 movies

are used for training. These transition matrices reveal the correlated nature of

the distances between the sub-fingerprints of adjacent frames. The strong diagonal

component in both the transition matrices indicates that the value of d(j) is very
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Figure 5.3: Stationary distribution of the distances under the two hypotheses.

likely to be close to d(j−1). As large distances are not observed frequently under H1,

the probability of d(j) given that d(j− 1) is a large value is approximately uniform,

as seen by the last several rows of P1 in Figure 5.2(a). On the other hand, under

H0, large values are observed frequently enough to obtain an accurate estimate of

the transition probability, as depicted in Figure 5.2(b).

Figure 5.3 shows the stationary distributions under the two hypotheses. From

the figure, we see that under the null hypothesis H0, the distribution resembles a

binomial distribution centered at 16. Under H1, the distances are clustered around

4 − 5 and the distribution is non-binomial. This indicates that the noise within a

given frame is possibly correlated. This is to be expected, since histogram equaliza-

tion introduces correlated noise.
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Figure 5.4: Comparison of the detection performance of the Markov Chain LLR

detector and the average Hamming distance detector for query video size of 100

frames (a) Complete ROC curve in log-log scale (b) Low Pf region and (c) Low Pm

region.

5.2.2 Detection Accuracy

We use the 50 videos in the testing set to compare the detection accuracy of the

likelihood ratio and the average distance based detectors. Each video is distorted by

applying histogram equalization and divided into distinct queries of 20s each with
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100 sub-fingerprints. These are compared with the original undistorted fingerprints

to estimate the probability of missed detection Pm. To estimate the probability

of false alarm Pf , each video in the testing set is divided into queries of 100 sub-

fingerprints each and compared with the fingerprints of every other video in the

database. The Pm and Pf values obtained are averaged over the different iterations

of the k-fold cross-validation.

Figure 5.4 compares the Receiver Operating Characteristic (ROC) curves for

the Markov chain likelihood ratio and the average distance based detectors. Fig-

ure 5.4(a) shows Pm as a function of Pf for both detectors on a logarithmic scale.

From the figure, we observe that the likelihood ratio based detector has lower Pm

in the low Pf region, whereas the average distance based detector performs better

in the low Pm region. Upon closer examination of the low Pf region, as shown in

Figure 5.4(b), we observe that the LR detector has approximately 5 − 10% lower

Pm than the average distance based detector. In the low Pm region shown in Fig-

ure 5.4(c), the average distance based detector has a similar improvement.

5.3 Mixture and Adaptive Models

In the previous section, we have seen that the Markov chain is a better model

for the distances in the low Pf regime, which corresponds to the case when the

average distance is small. In the low Pm regime, an independent model for the

distances is a better fit. This motivates us to explore the use of mixture models

for the distances to achieve a better performance in both regimes. The first model
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we consider is a mixture model where the components of the mixture are a Markov

chain like distribution and an independent model. Then, we consider a variation

of this mixture model, where instead of assigning prior probabilities based on the

training data, we adaptively choose the underlying mixture component based on the

observation.

5.3.1 Mixture Model

In this section, we describe a mixture model [9, 57] for the distances between

the query and reference fingerprint. The components of the mixture are chosen to be

a Markov-Chain like distribution and an independent model. We introduce latent

variables z = [z1 z2]
T ∈ {[1 0]T , [0 1]T} to denote the component from which the

observation is drawn. Only one of z1 and z2 is equal to 1 and the other variable

is 0, which corresponds to the 1-of-K coding scheme [9]. Under hypothesis Hi, the

probability distribution of the distances d given the latent variable z(i) is given by:

Pr(d | z(i) = [1 0]T ,Θ(i), Hi) = πi(d(1))
L
∏

j=2

Pi(d(j − 1), d(j))

Pr(d | z(i) = [0 1]T ,Θ(i), Hi) =

L
∏

j=1

qi(d(j)),

where in the second component, the distances are assumed to be i.i.d. with a

common distribution qi under Hi. In the above expressions, the parameters of

the model Θ(i) consists of the transition matrix Pi, the corresponding stationary

distribution πi and the common distribution qi. The prior probabilities of each of
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the components is given as:

Pr(z(i) = [1 0]T |Hi) = α
(i)
1

Pr(z(i) = [0 1]T |Hi) = α
(i)
2

Given the training data, the parameters of the models can be estimated using the

Expectation-Maximization (EM) algorithm [22, 58]. The details of the EM algo-

rithm for this model are provided as appendix in Section 5.5. Using the estimated

parameters, the log-likelihood ratio corresponding to this mixture model is used to

identify whether the query fingerprint is a match to the reference fingerprint or not.

Experimental Results

As before, we evaluate the appropriateness of this model using the MUSCLE-

VCD database. 50 videos are randomly selected and used for training while the

remaining are used for testing. This procedure is repeated 10 times and the results

are averaged. Figure 5.5 compares the performance of the detector based on this

mixture model with the detectors based on the Markov chain model and the average

distance. From the figure, we observe that the performance of the mixture-model

based detector very closely follows that of the Markov chain based detector. To

understand this behavior, we examined the parameters estimated for each of the

distributions during the training process. Under both hypotheses, we found that

the prior probabilities of the Markov chain component α
(i)
1 ≥ 0.9 implying that

the contribution from the Markov chain component dominates the likelihood of the

observations under this model and the contribution from the independent model is
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Figure 5.5: Comparison of the detectors based on the mixture model, Markov-

Chain model, and the average distance.

very small. As a result, the performance of the mixture model is similar to that of

the Markov chain model.

5.3.2 Adaptive Model

Based on the analysis and discussion in the previous subsection, we see that

merely relying on the prior probabilities of the mixture components results in the

likelihood being dominated by the Markov chain component. Further, the charac-

teristics of the observation are not utilized in choosing the mixture component or

equivalently, the values of the latent variables. To remedy this problem, we propose

a different approach to estimate the value of the latent variable, and then utilize the

estimated value to make a decision in the hypothesis test.

We use the average distance d̄ as a parameter to guide us in choosing the ap-

propriate model. If d̄ ≥ d0, we use the LLR detector based on the i.i.d. distribution,
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and the Markov chain based detector otherwise. This is equivalent to setting:

z(i) =



















[0 1] if d̄ ≥ d0

[1 0] if d̄ < d0

Under this setting, the model for the distribution of the distances becomes:

Pr(d | d̄ < d0, Hi) = πi(d(1))
L
∏

j=2

Pi(d(j − 1), d(j))

Pr(d | d̄ ≥ d0, Hi) =

L
∏

j=1

qi(d(j)),

The corresponding decision rule is given as:























LR(X,Y) =
H1

≷
H0

τA1 if d̄ < d0

∏L
j=1

q1(d(j))
q0(d(j))

H1

≷
H0

τA2 if d̄ ≥ d0.

(5.3)

Thus, the detector adaptively chooses between the Markov chain and independent

model based decision rules depending on the average distance of the observations.

We will refer to the detector that utilizes this decision rule as the adaptive detector.

The parameter d0 can be estimated by evaluating the performance of the adaptive

detector using the training set and choosing the value that results in the best per-

formance. In practice, we found that the performance is not very sensitive to the

value of d0, and that a value 0.25 dmax ≤ d0 ≤ 0.35 dmax, where dmax = 32 is the

maximum possible distance between two sub-fingerprints provides a good detection

accuracy. In our experiments, we use the value of d0 = 0.25 dmax = 8.

As the decision thresholds (τA1 , τ
A
2 ) vary, different tradeoffs between Pm and

Pf can be obtained. Figure 5.6 compares the ROC curves for the adaptive detector,
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Figure 5.6: ROC curves for the various detectors.

the Markov chain LR, the mixture model based and the average distance based

detectors on a logarithmic scale. As expected, we see that the adaptive detector

performs better than or comparable to the other detectors for all values of Pm and

Pf . In particular, the adaptive detector has approximately 5 − 10% lower Pm for

Pf < 10−3.
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In practical applications, the computational complexity of the detectors is also

an important parameter. The average distance based detector requires O(L) oper-

ations for computing the average distance, which is then compared to a threshold.

The adaptive detector utilizes the average distance and the number of transitions

between the various states, which can both be computed with one pass over the

data requiring O(L) operations. The individual likelihood ratios that appear in the

decision rule, may be pre-computed and stored, so that computing the appropriate

detection statistic requires at most an additional O(L) operations. The overall com-

plexity is still O(L), implying that the adaptive detector based on this model is only

slightly more expensive compared to the simple average distance based detector.

5.3.3 Model Evaluation using Information Criteria

In the previous section, we have seen that the adaptive model gives the best

performance in both the low Pf and low Pm regimes. As the adaptive model is a

more complicated model compared to the Markov chain model, there is a danger

that the model is overfitting the available data. Typically, when various models

are available for fitting the data distribution, various information criteria, such as

the Akaike Information Criterion (AIC) [1] or the Bayesian Information Criterion

(BIC) [38, 72] are used to evaluate the tradeoff between model complexity and the

better fitting capability of a more complex model. In this subsection, we use these

information criteria to compare the adaptive model and the Markov chain model.
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The AIC is defined as:

AIC = ln p(D|ΘML)−Np,

where D is the set of available observations, ΘML is the ML estimate of the model

parameters, and Np is the number of parameters in the model. A Bayesian approach

was adopted in [37, 72] to derive a related information criterion called the BIC:

BIC = ln p(D|ΘML)−Np lnM,

whereM is the number of training samples available. Compared to the AIC, the BIC

has a higher penalty for the model complexity in terms of the number of parameters.

For the Markov chain model, we estimate the transition matrix from the train-

ing data. As the Hamming distance between any two sub-fingerprints can take val-

ues from 0 to dmax = 32, there are (dmax + 1) states in the Markov chain and the

transition matrix is of size (dmax + 1) × (dmax + 1). As the transition matrix is

stochastic, implying that the sum of each row equals 1, only dmax entries in each

row are independent. Thus, the number of parameters for the Markov chain model

Np = (dmax + 1)dmax. For the adaptive model, we have (dmax + 1)dmax parameters

for the transition matrix, dmax parameters for the independent distribution, and an

additional parameter d0, so that the total number of parameters Np = (dmax + 1)2.

Figure 5.7 compares the values of the AIC and BIC for the Markov Chain

and adaptive models using the training data under the two hypotheses. From the

figure, we observe that the Markov chain model has a slightly higher value for both

the information criteria. The adaptive model has a 6% lower BIC under the H1

hypothesis and 12% lower BIC under the H0 hypothesis. This would imply that
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Figure 5.7: Evaluation of AIC and BIC for Markov chain and adaptive models

using training data under the two hypotheses.
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from this perspective, the adaptive model is slightly worse compared to the Markov

chain model. However, as shown via the experimental results in Section 5.3.2, the

adaptive model is better at discriminating between the two hypothesis.

5.4 Chapter Summary

In this chapter, we developed models for temporal correlations in fingerprints.

We first explored the use of a Markov chain to model the distribution of the dis-

tances between the query and reference fingerprints. Fingerprint matching was then

considered as a hypothesis test and the optimal likelihood ratio based detector based

on this Markov chain model was derived. Experimental results indicated that the

Markov chain model is a good fit only for a certain part of the distribution, and

an independent model may be a better fit in other regimes. Motivated by this ob-

servation, we proposed a hybrid model for the fingerprints and derived an adaptive

detector that performs better than or comparable to the Markov chain and average

distance based detectors. While this adaptive model has 5 − 10% lower values for

the model information criteria, the corresponding adaptive detector provides ap-

proximately 5− 10% lower Pm in the low Pf regime without significantly increasing

the computational cost.
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5.5 Appendix: EM Algorithm for the Mixture Model

In this appendix, we derive the Expectation-Maximization algorithm for es-

timating the parameters of the mixture model described in Section 5.3.1. The pa-

rameters for the model under H1 and H0 hypothesis are estimated separately using

the corresponding sets of training data. As the model for the data under both

hypotheses is the same, the steps involved in estimating the parameters are also

identical. Below, we drop the explicit conditioning on the hypothesis Hi to simplify

the notation.

Suppose that we have training data D = [d1 d2 . . . dM ], where each di

consists of L components and M is the size of the training set so that D is an

L ×M matrix. Let the corresponding latent variables for each observation in the

training data be represented by the matrix Z = [z1 z2 . . . zM ]. As each zi is a

vector of size 2 × 1, Z has size 2 ×M . Denote the parameters for each component

in the mixture model by θk which are to be estimated from the training data and

let p(d | zk = 1, θk) , pk(d | θk).

The joint distribution of an observation and the corresponding latent variables

can be written as:

p(d, z |Θ) =
2
∏

k=1

(αkpk(d | θk))zk ,

where αk = Pr(zk = 1) and Θ = (θ1, θ2). For the overall training data we have:

p(D,Z |Θ) =

M
∏

m=1

2
∏

k=1

(αkpk(dm | θk))Zkm , (5.4)
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5.5.1 E-step

For the E-step, we need to compute the expectation of ln p(D,Z |Θ) under

the distribution p(Z |D,Θ). Using Eqn. (5.4), we have:

Ep(Z |D,Θ)[ln p(D,Z |Θ)] =

M
∑

m=1

2
∑

k=1

Ep(Z |D,Θ)[Zkm] (lnαk + ln pk(dm | θk)) . (5.5)

We now need to evaluate Ep(Z |D,Θ)[Zkm]. As each column in Z is independent, we

can consider each column individually. For the mth column,

Ep(zm |dm,Θ)[zm] =
∑

zm

zmp(zm |dm,Θ)

=
∑

zm

zm
p(zm,dm |Θ)

p(dm |Θ)

=

∑

zm
zmp(zm,dm |Θ)

∑

zm
p(zm,dm |Θ)

.

Since zm can take only two values [1 0]T , [0 1]T , we have:

Ep(Z |D,Θ)[Zkm] =
αkpk(d | θk)

∑2
k=1 αkpk(d | θk)

= γ(Zkm),

which allows us to compute the desired quantity in Eqn (5.5) and complete the E-

step of the EM algorithm. The quantities γ(Zkm) are called the “responsibilities” as

they indicate the responsibility for the mth observation taken by the kth component

of the mixture model [9].

5.5.2 M-step

In the M-step of the algorithm, we choose the parameters Θ that maximize

the expectation Ep(Z |D,Θ)[ln p(D,Z |Θ)] obtained in the E-step of the algorithm

and shown in Eqn (5.5).
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First, consider the prior probabilities αk. As the prior probabilities should

sum to 1, we construct the Lagrangian:

Lα({αk}) =
M
∑

m=1

2
∑

k=1

γ(Zkm) (lnαk + ln pk(dm | θk)) + λ

(

1−
2
∑

k=1

αk

)

.

Differentiating with respect to αk and equating the derivative to 0, we obtain

αk = 1
λ

∑M
m=1 γ(Zkm). Using the condition that

∑2
k=1 αk = 1, we obtain λ =

∑2
k=1

∑M
m=1 γ(Zkm) = M , so that

αk =

∑M
m=1 γ(Zkm)

M
.

Next, we estimate the parameters for each of the individual mixture compo-

nents. For the Markov chain component, the parameter θ1 to be estimated cor-

responds to the transition matrix P. The log-likelihood under this component is

given as ln p1(d | θ1) = ln π(d(1))+
∑L

j=2 lnP (d(j− 1), d(j)). Let N(i, j) denote the

number of transitions from state i to j, so that the log-likelihood can be written

in terms of the N(i, j) as ln p1(d | θ1) = ln π(d(1)) +
∑

(i,j)N(i, j) lnP (i, j). While

estimating the P (i, j), we also have the constraint
∑

j P (i, j) = 1, ∀i. We construct

the Lagrangian appropriately as:

L1(P) =
M
∑

m=1

γ(Z1m) (lnα1 + ln p1(dm | θ1)) +
∑

i

λi

(

∑

j

P (i, j)− 1

)

.

Substituting the expression of the log-likelihood into the above Lagrangian, dif-

ferentiating with respect to P (i, j), equating the derivative to 0, and utilizing the

normalization constraint, we obtain:

P (i, j) =

∑M
m=1 γ(Z1m)N(i, j)

∑

j

∑M
m=1 γ(Z1m)N(i, j)

.
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For the independent distribution component, the parameter θ2 to be estimated

corresponds to the common distribution q. The log-likelihood under this compo-

nent is ln p2(d | θ2) =
∑L

i=1 ln q(d(i)). Let Nj denote the number of occurrences

of the value j in d, so that the log-likelihood can be expressed as ln p2(d | θ2) =

∑

j Nj ln q(d(i)). Using the constraint
∑

j q(j) = 1, the Lagrangian can be written

as:

L2(q) =
M
∑

m=1

γ(Z2m) (lnα2 + ln p2(dm | θ2)) + λ′(
∑

j

q(j)− 1).

Maximizing with respect to q(j), we obtain

q(j) =

∑M
m=1 γ(Z2m)Nj

∑

j

∑M
m=1 γ(Z2m)Nj

.

The E-step and M-steps are performed alternately until the value of the objec-

tive function does not change much to obtain the final estimates of the parameters

of the mixture model.
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Chapter 6

Collusion-Resistant Fingerprinting

for Compressed Multimedia

Content fingerprinting, which was studied in the previous chapters, relies on

the intrinsic characteristics of multimedia to identify and filter them. It can be

used to prevent the redistribution of multimedia via UGC websites and peer-to-

peer networks. On the other hand, collusion-resistant fingerprinting is a proactive

technique employed to deter multimedia piracy and prevent the leak of classified

information. In each authorized copy of the multimedia, a unique signal is embedded

that identifies the recipient. This embedded fingerprint can be extracted from a

pirated copy and used to trace the user responsible for the leak.

As this fingerprint is unique to each recipient, a group of malicious users can

collaborate to launch collusion attacks on the system. By comparing their individual

fingerprinted copies, the colluders can attempt to identify the locations of the em-
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bedded fingerprint and remove them. Various collusion-resistant fingerprint designs

have been proposed in the literature and are summarized in Section 6.1. Most of

these techniques have been developed for protecting uncompressed multimedia. In

many practical applications, multimedia is utilized in a compressed format, where

it is necessary to embed fingerprints into compressed multimedia.

One representative application scenario is an online music/video store that

wishes to deter illicit redistribution of the content purchased from the store. Primar-

ily based on proprietary security protocols and data formats, most existing Digital

Rights Management (DRM) [50] techniques are not interoperable between devices

from different vendors and often restrict the freedom of the users to play the content

on the device of their choice [42]. Further, if the protection provided by the DRM

technique is circumvented, the user can redistribute the content without fear of be-

ing apprehended. Embedding imperceptible fingerprints, on the other hand, does

not restrict content to be packaged in any proprietary format. It is thus interoper-

able and can be incorporated into existing systems to complement other protection

techniques. For an online store to deploy fingerprinting to protect its multimedia

content, the fingerprints should be embedded in the source audio or video files that

are typically stored in compressed form to conserve storage space. When a user

purchases a particular content, a unique fingerprint is embedded in the host audio

or video signal and this fingerprinted signal is then transmitted to the user over

the internet in compressed form to conserve bandwidth. As it is possible for users

to gather multiple fingerprinted versions of the same content and apply collusion

attacks, the embedded fingerprints should be resilient to collusions. This scenario
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Figure 6.1: Digital TV distribution scenario where the host signal to be finger-

printed is compressed.

highlights the necessity of collusion resistant fingerprint design for compressed mul-

timedia.

Another representative application scenario is shown in Figure 6.1. A digital

TV service provider delivers compressed video to millions of subscribers. The video

is compressed to meet bandwidth requirements and may be further encrypted to

prevent unauthorized users from viewing the content. At the viewer’s end, a set-

top box decrypts, decompresses, and then displays the video stream. The video

output of the set-top box may be intercepted by a malicious user who can then

rebroadcast or resell the content for profit. Digital fingerprinting can be employed

to deter and trace these adversaries [34]. If the fingerprint embedding is performed

at the source (TV service provider), a unique stream would have to be transmitted

to each user. The amount of bandwidth required for this scheme would be several

orders of magnitude higher than broadcasting a single stream to all users. The

bandwidth consumption can be reduced by employing coding techniques to reduce

the number of different versions of the content that need to be transmitted [33,105],
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but would still be several times the amount of bandwidth required to transmit just

one stream. An attractive alternative is to embed the fingerprints at the set-top

box, which has already been secured and tamper-proofed for performing decryption.

This post-distribution fingerprinting approach requires only a single transmission of

the host video to all users. In this case, the set-top box would have to embed a

fingerprint in the host stream that has been previously compressed. In order to

combat adversaries who may store the video output of the set-top box and then

collude to remove traces of their fingerprints before redistributing the content, the

fingerprints embedded should be robust against collusion attacks.

6.1 Related Prior work

Collusion-resistant fingerprint design has been an active research topic for sev-

eral years. A systematic binary fingerprint construction technique for generic data

was proposed by Boneh and Shaw in [10] using an inner staircase code and a random

outer code. The Boneh-Shaw code relied on the “marking assumption” that a group

of colluders could only modify those parts of the content in which their copies dif-

fered. A fingerprinting code construction based on a relaxed version of the marking

assumption and optimal in the code length was described in [79]. The marking as-

sumption may not be valid for multimedia data, as the attackers can also modify the

parts of the content containing undetectable bits, where their copies are the same,

without causing significant perceptual degradation. These fingerprinting codes are

usually adapted for multimedia fingerprinting by combining the codes with a finger-
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print embedding layer. A fingerprinting scheme for multimedia data based on the

Boneh-Shaw code and using a Direct Sequence Spread Spectrum embedding layer

was proposed in [104] under a relaxed assumption that allowed modification of the

undetectable bits. The code length of this scheme is high, limiting its feasibility in

practical applications. Fingerprinting constructions based on q-ary Error-Correcting

Codes (ECC) were proposed in [70] with tolerance towards erasures and cropping.

This work did not explicitly consider embedding issues and used an abstract as-

sumption to model the underlying embedding scheme. Other fingerprinting codes

based on ECC and their properties were examined in [4]. Based on the robust

spread-spectrum watermark embedding scheme by Cox et al. [17], a fingerprinting

technique for multimedia content was proposed in [83] employing a combinatorial

construction and orthogonal spreading sequences for modulation. Fingerprinting

based on Quantization Index Modulation [11] was also explored in [77]. Multimedia

fingerprint embedding techniques proposed in the literature so far, such as [17, 77],

were primarily designed for fingerprinting uncompressed signals.

Information theoretical aspects of fingerprinting have been investigated by

modelling fingerprinting as communications with side information [18]. Capacity

expressions for fingerprinting signals with finite alphabets [75] and continuous alpha-

bets have been derived [97]. Recently, a capacity achieving universal fingerprinting

code has been proposed in [61], where the detector is not required to have knowledge

of either the collusion attack or the number of colluders. These theoretical results

guarantee the existence of good fingerprinting codes, but often require decoding

schemes with high computational complexity and may not be suitable for practical
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implementations.

Another body of related literature addresses the problem of watermarking

compressed signals. A few robust watermarking techniques for compressed signals

have been proposed. Watermarks can be embedded in a compressed video stream

by adding the Discrete Cosine Transform (DCT) coefficients of a watermark to the

quantized DCT coefficients of the compressed host signal followed by re-encoding of

the watermarked signal [31]. Another approach embeds watermarks by selectively

discarding high-frequency DCT coefficients in certain regions of the image [45].

These techniques were not designed for fingerprinting applications and thus have

limited collusion resistance.

Chapter Contributions

One of the reasons that fingerprinting compressed signals has not received

much attention is perhaps the implicit belief in the robustness of the underlying

embedding technique. Indeed, individual spread spectrum fingerprints embedded in

uncompressed hosts are robust enough to survive strong compression [17]. However,

as will be shown in this chapter, if the fingerprint is to be embedded in a compressed

host signal and the fingerprinted result also has to be stored in compressed form, the

corresponding fingerprint components for different users can only take values from

a small, discrete set, making the system vulnerable to collusion. To address this

problem, we describe a new technique called Anti-Collusion Dithering to overcome

this constraint and resist collusion attacks [86]. Through experimental studies as well
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Figure 6.2: System model for compressed domain fingerprinting.

as theoretical analyses based on probability, estimation, and information theories,

we will show that almost the same level of collusion resistance can be achieved when

applying Anti-Collusion Dithered fingerprinting to compressed host signals as that

obtained when fingerprinting uncompressed hosts.

Section 6.2 describes the system model for fingerprinting compressed signals.

Section 6.3 examines the collusion resistance of quantized Gaussian fingerprints

through simulations. Anti-Collusion Dithering technique is then proposed in Section

6.4 to improve the collusion resistance of the fingerprints. Theoretical analysis of

fingerprinting techniques for compressed multimedia will be considered in Chapter 7.

6.2 System Model

Figure 6.2 depicts the system model for compressed domain fingerprinting. Let

S = [S1, S2, . . . , SM ] represent the compressed host signal of lengthM . For example,

in the case of image or video fingerprinting, the host samples could correspond to

the 8× 8 block DCT coefficients that are widely adopted in image and video coding
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standards. For simplicity, we consider the vector S as comprising of elements from

one frequency channel after compression, and model the compression of the host

signal as a uniform quantization operation with step size ∆, so that Sj = m∆,

where m = 0,±1,±2, . . . The analysis can be extended to the case of a host signal

comprising of elements with different quantization step sizes by grouping samples

with similar quantization as one channel.

A fingerprint is embedded in the compressed host signal S to obtain the fin-

gerprinted signal for each of the N users. The fingerprinted signal for the kth user,

X(k), is quantized with step size ∆e, i.e. for each signal component, X
(k)
j = m∆e.

The value of ∆e represents the compression of the fingerprinted signal and is chosen

by the embedder to achieve a tradeoff between perceptual distortion and band-

width consumption. If ∆e < ∆, the bandwidth required to transmit the finger-

printed signal may increase compared to the host signal before fingerprinting. Al-

ternatively, choosing ∆e > ∆ may result in further perceptual distortion. Thus,

a reasonable choice for the embedder is to set ∆e = ∆. The fingerprinted sig-

nal for user k can be generated by additive embedding X(k) = S + W(k), where

W(k) = [W
(k)
1 ,W

(k)
2 , . . . ,W

(k)
M ] represents the kth user’s fingerprint. The energy of

the fingerprint is chosen such that the distortion introduced by embedding does not

cause visual artifacts. We quantify the distortion using the Mean Squared Error

(MSE) and express the distortion constraint as:

E[‖S−X(k)‖2] ≤ M ·D(∆), ∀k = 1, 2, . . . , N, (6.1)

where D(∆) is the maximum allowed squared distortion per sample, given the quan-
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tization step size ∆.

6.2.1 Collusion Attacks

A group of K malicious users UK , may mount collusion attacks and attempt

to create a copy V that does not contain traces of their fingerprints. The colluders

can re-compress the attacked signal for ease of redistribution and to further remove

traces of their fingerprints. Suppose the attackers compress the colluded signal by

quantizing it with step size ∆c so that Vj = m∆c. The attackers’ choice of ∆c

is affected by the value of ∆. Since the fingerprinted signal has previously been

quantized with step size ∆, by choosing ∆c < ∆ the colluders would not improve

the perceptual quality of the attacked signal. Applying milder quantization would

not only lead to increased bandwidth requirements for the colluded copy, but also

favor the survival of fingerprints, resulting in a higher probability for at least one

of the colluders to be caught. On the other hand, choosing ∆c > ∆ would further

reduce the perceptual quality of the colluded signal. A reasonable compromise for

the attacker would be to choose ∆c = ∆, which we will examine in the following

section. The case of ∆c 6= ∆ will be examined later in Section 6.4.3.

The jth sample of the colluded version Vj is obtained as Vj = g({X(k)
j }k∈UK

),

where g(·) is a suitable collusion function. Several linear and nonlinear collusion

attacks have been studied in [106] for Gaussian based independent fingerprints for

uncompressed host signals. We extend these attacks to compressed signals by adding

quantization, and examine their effectiveness against the fingerprinting system. The
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attacks are defined as:

Average : V
avg
j = round

(

∑

k∈UK
X

(k)
j

K∆c

)

×∆c,

Median : Vmed
j = round

(

median({X(k)
j }k∈UK

)

∆c

)

×∆c,

Minimum : Vmin
j = min({X(k)

j }k∈UK
),

Maximum : Vmax
j = max({X(k)

j }k∈UK
),

Min-Max : Vminmax
j = round

(

Vmin
j + Vmax

j

2∆c

)

×∆c,

Modified Negative : V
modneg
j = Vmin

j + Vmax
j − Vmed

j ,

Randomized Min-Max1: V randMinMax
j =



















Vmin
j with probability 0.5

Vmax
j with probability 0.5

(6.2)

where round(·) denotes rounding to the nearest integer. Further processing, such as

addition of noise and filtering, may be applied to the colluded signal. For simplicity,

we model these operations as additive white Gaussian noise n, with zero mean and

variance σ2 to obtain Z = V + n, as shown in Figure 3.1. It is also possible to

consider the case where the noise n is quantized, but our experiments have shown

that there is no significant difference in the results when the noise n is quantized,

as the noise mainly serves to confuse the detector. Henceforth, we will restrict our

attention to the case where n is a (continuous-valued) zero-mean white Gaussian

noise vector.

Another attack that the colluders can mount is the random attack. The at-

tackers first estimate the dynamic range of the fingerprinted signal, i.e. Xmin
j and

1This attack corresponds to the randomized negative attack examined in [106].
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Xmax
j such that, for all k = 1, 2, 3, . . . , N ,

Xmin
j ≤ X

(k)
j ≤ Xmax

j .

Since the values of Xmin
j and Xmax

j are typically chosen by the fingerprint em-

bedder to ensure that no perceptual distortion is introduced by the embedding, the

colluders can randomly choose Vj = m∆c from the interval [Xmin
j , Xmax

j ] without

introducing perceptual distortion. This attack may be modelled as the Min-Max

attack plus additional noise and hence will not be treated separately in this work.

6.2.2 Colluder Detection

For detection, we focus our attention on the problem of identifying one of

the adversaries who have contributed to a colluded signal under question, known

as the “Catch One” case [98]. The analysis can be extended to other cases such

as “Catch More” or “Catch All”, by properly adjusting the form of the detector

and the corresponding threshold and evaluation criteria [98]. Since the host signal

S is usually available to the detector in fingerprinting applications, the detector

first performs registration and subsequently removes the interference from the host

signal S, by subtracting it from the attacked signal Z to obtain Y = Z − S. The

detector then applies preprocessing to remove any non-zero mean. We follow the

method in [106] to preprocess the test signal and center the histogram of the test

signal around zero. If a single non-zero sample mean is observed, such as that

observed in the case of minimum or maximum attacks, shown in Figure 6.3(a) and

(b), it is subtracted to obtain a zero mean signal, Y ′
j = Yj − (

∑M
j=1 Yj)/M . If a
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Figure 6.3: Histograms of extracted fingerprints Y for (a) Minimum, (b) Maxi-

mum, and (c) Randomized Min-Max Attacks.

bi-modal distribution is observed, as in the case of a randomized min-max attack

(Figure 6.3 (c)), the fingerprint components are clustered into two distributions

and the corresponding mean is subtracted for each distribution. Specifically, define

µneg = (
∑M

j=1 Yj.1{Yj < 0})/(∑M
j=1 1{Yj < 0}) and µpos = (

∑M
j=1 Yj.1{Yj >

0})/(∑M
j=1 1{Yj > 0}), where 1{·} is an indicator function. The preprocessing

applied can be expressed as:

Y ′
j =















Yj − µneg if Yj < 0

Yj − µpos if Yj > 0

.

The detector then correlates the test signal Y′ with each of the fingerprints

W(k) in the database to obtain the detection statistic T (k) for each user k,

T (k) =
1

M
〈Y′,W(k)〉. (6.3)

The user q whose fingerprint has the maximum correlation with the extracted test

signal is declared guilty:

q = arg max
k=1,2,...,N

T (k). (6.4)
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Gaussian based spread spectrum fingerprints have been shown to be effective

against collusion attacks on uncompressed host signals [76,106] and have also served

as an embedding layer for adapting systematic fingerprint construction techniques

to multimedia fingerprinting [33, 83]. The Gaussian distribution has been shown

to be the optimal distribution for uncompressed multimedia fingerprints under a

wide variety of attacks [41]. Hence, we first examine the performance of Gaussian

fingerprints when fingerprinting compressed multimedia signals in the next section.

6.3 Evaluation of Quantized Gaussian Fingerprints

In this section, we evaluate the collusion resistance when using Gaussian based

independent signals as fingerprints for compressed host signals. In the embedding

stage, watermark components W
(k)
j are generated by quantizing independent and

identically distributed (i.i.d.) samples from a zero-mean Gaussian distribution with

step size ∆, W
(k)
j = round

(

Q
(k)
j

∆

)

×∆, where Q
(k)
j is a zero mean Gaussian random

variable. These watermark sequences are then embedded into the host signal to

obtain the fingerprinted signal. The variance of the Gaussian random variable Q
(k)
j

is chosen such that the fingerprinted signal satisfies the distortion constraint in Eqn.

(6.1). For the attacks, we first concentrate on the case ∆c = ∆, where the attackers

use the original quantization step size of the host signal to compress the colluded

signal, and consider the case ∆c 6= ∆ in Section 6.4.3. Guilty users are identified

using the correlation based detector in Eqn. (6.4).

In our experiments, we focus on one frequency channel in the block DCT do-
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main, and the results can be extended to the multi-channel case. Since the host

signal, fingerprint signal, and colluded signal are all quantized with the same quan-

tization step size ∆, and the host signal is subtracted from the colluded signal before

detection, the distribution of the detection statistics is independent of the host, as

will be shown in Section 7.1. Thus, the simulation results obtained are independent

of the host distribution. We consider a system with N = 1024 users, and choose

the fingerprint length M = 104 which is the approximate number of coefficients in a

256 × 256 natural grayscale image that can be used for embedding the fingerprint.

The maximum allowed squared distortion, D(∆) is set to 15, which results in a

Peak Signal to Noise Ratio (PSNR) of around 36dB if every DCT coefficient were

to be used for embedding with the same maximum allowed distortion. We test the

performance of the system for ∆ = 6, 4, and 1 which correspond to quantization

step sizes for the AC11 band in the JPEG table for quality factors of 75, 85, and 95,

respectively. A quality factor of 75 is the default in many applications as it generally

provides a good tradeoff between signal quality and bit rate. Quality factors larger

than 75 are typically used in applications that demand high quality and hence we

investigate the performance under these settings.

Figure 6.4 shows the probability of catching one colluder, Pd, versus the num-

ber of colluders for various collusion attacks. In each case, the additive noise power

is set to be comparable to the fingerprint power, i.e., Watermark-to-Noise Ratio

(WNR) = 0dB, but the overall distortion between the attacked image and the com-

pressed host image would depend on the distortion introduced by the corresponding

attack. Figure 6.4(a) shows Pd when ∆ = 1 under averaging, median, minimum
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Figure 6.4: Probability of catching one colluder using quantized Gaussian finger-

prints at WNR = 0dB, N = 1024 users, M = 104, D(∆) = 15 for (a) ∆ = 1 and (b)

∆ = 6.

and randomized min-max attacks, and Figure 6.4(b) shows the corresponding re-

sults for ∆ = 6. From Figure 6.4(a), we see that for ∆ = 1, we have approximately

100% detection against the examined attacks when the number of colluders is less

than 30, except for the randomized min-max attack, under which Pd starts to drop

moderately at 18 colluders. When ∆ = 6, averaging is the most effective attack

and the fingerprinting system can resist only 7 colluders with Pd ≈ 1, as shown in

Figure 6.4(b). We also observe that the probability of detection does not degrade

gracefully with the number of colluders for averaging and median attacks, and there

is an abrupt drop around 10 colluders. By symmetry, the behavior of Pd under

maximum attack is identical to that under minimum attack and is hence omitted

from the figure. Under the Min-Max and modified negative attacks, Pd = 1 for up
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Figure 6.5: Probability of catching an attacker under averaging attack for different

quantization step size ∆.

to 30 colluders in both scenarios and have been omitted from the figures for clarity.

From Figure 6.4(a) and (b), we observe that the value of the quantization step

size has a significant influence on the detection performance. To understand the

influence of the quantization step size ∆, in Figure 6.5 we compare the probability

of detection under averaging attack for different quantization step sizes at constant

D(∆) = 15. We observe that for weak quantization (∆ = 1), the performance

is similar to that obtained for uncompressed hosts. When stronger compression

is applied and the host signal values become more discrete, the averaging attack

becomes more powerful. When ∆ = 6, the fingerprinting system can be defeated

by averaging just 10 copies. Further, as will be shown in Section 7.2, the averaging

attack introduces the lowest distortion, making it a very powerful attack against

fingerprint systems for compressed signals.

To gain insight into the reduced collusion resistance for compressed host sig-
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∆ = 1.

Figure 6.6: Distribution of colluded fingerprint after averaging, minimum and

randomized min-max attacks by 25 colluders.
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nals, we examine in Figure 6.6 the histogram of the extracted fingerprint signal

(without additive noise) for 25 users’ collusion [87] using the same settings as be-

fore. Under averaging collusion for ∆ = 6, we see from Figure 6.6(a) that most of

the fingerprint components are zero and completely removed from the host media

after collusion, leading to a failure in identifying colluders. However, when ∆ = 1,

Figure 6.6(b) shows that approximately half of the colluded fingerprint components

remain non-zero under averaging collusion, which enables the detector to catch at

least one of the 25 colluders with high probability. A similar trend is observed

under the minimum and randomized min-max attacks for ∆ = 6 and ∆ = 1, as

shown in Figs. 6.6(c) through (e). Comparing the histograms for averaging and

minimum attacks under ∆ = 6, we can see that while averaging collusion removes

almost all fingerprint traces (Figure 6.6(a)), the minimum attack still retains some

fingerprint components and is thus less effective than averaging collusion (Figure

6.6(c)). Similar inferences can be drawn regarding the other attacks by studying

their histograms, which explains the results reported in Figure 6.4(a) and (b) for

the probability of catching one colluder.

6.4 Anti-collusion dither

In the previous section, we have shown that even at moderate compression,

quantized Gaussian fingerprints may be removed by averaging a few different finger-

printed copies. The main reason that the traditional Gaussian based fingerprinting

fails for compressed host signals is because of the discrete nature of the signals
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before and after fingerprint embedding. When the quantization step size becomes

larger, e.g. ∆ = 6, we notice that the Gaussian distributed fingerprints are mostly

quantized to 0, especially after multi-user collusion as shown in Figure 6.6(a). This

does not happen for uncompressed host signals, because the relatively continuous

nature of the host signal helps retain some of the fingerprint information even after

the fingerprinted signal goes through compression. Inspired by this observation, we

introduce a new fingerprinting technique that mimics the case of uncompressed host

signals by adding a pseudo-random dither sequence to the compressed host signal

before embedding fingerprints. We will show, through analysis and simulation that

the proposed scheme has higher collusion resistance.

6.4.1 Fingerprint Embedding

We illustrate the proposed technique using an example. We model the prob-

ability distribution function (p.d.f.) of the host signal prior to quantization by a

Laplacian distribution, which has been shown to be a good model for DCT coeffi-

cients of natural images [44,74]. Figure 6.7 shows the p.d.f. of the host signal before

quantization, f
S
(0)
j

, and after quantization, fSj
. We make the quantized host signal

appear more continuous to the fingerprint embedder by convolving it with a narrow

rectangular distribution to approximate the distribution of the host signal before

quantization.

Let d = [d1, d2, . . . , dM ] denote i.i.d. random variables uniformly distributed

over [−∆
2
, ∆
2
), and let S ′

j = Sj + dj. The p.d.f. of S ′
j is given as fS′

j
(x) = fSj

(x) ⊗
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Figure 6.7: Distribution of the host signal before quantization, after quantization

and after adding dither.

fdj (x), where fdj is the p.d.f. of dj and ⊗ denotes convolution. The p.d.f. fS′

j
(x)

is a staircase function that approximates the original host distribution as shown in

Figure 6.7. We refer to the signal d as Anti-Collusion Dither (ACD), and as will

be shown subsequently, this dither signal that is added to the quantized host signal

helps improve the collusion resistance of the system.

We construct the fingerprinted signal, X′(k), by adding the ACD signal and

the Gaussian fingerprint Q
(k)
j to the quantized host signal, and then applying re-

quantization:

X ′(k)
j = round

(

Sj + dj +Q
(k)
j

∆

)

×∆. (6.5)

As the Sj are multiples of ∆, the effective changes, Wd
(k), made on the signal sent

to the kth user is given by Wd
(k)
j = round

(

dj+Q
(k)
j

∆

)

×∆, with its energy constrained

by E[‖Wd
(k)‖2] ≤ M · D(∆). Upon obtaining the attacked signal Z, the detector
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(a) Without ACD. (b)With ACD.

Figure 6.8: Distribution of the effective fingerprint for a single user (a) without

ACD and (b) with ACD for ∆ = 6.

extracts the fingerprint and declares user q to be guilty if

q = arg max
k=1,2,...,N

1

M
〈h(Z− S− d),Wd

(k) − d〉,

= arg max
k=1,2,...,N

1

M
〈h(Z− S− d),Wd

(k)〉, (6.6)

where h(·) is the preprocessing applied to make the histogram of the test signal

symmetric around zero as explained in Section 6.2. The second equation is obtained

from the fact that the dither term is independent of the user index k and hence does

not affect the maximization.

6.4.2 Colluder Identification Accuracy

We test the fingerprinting system with the proposed ACD technique using the

settings described in Section 6.3. Figure 6.8(a) and (b) show the histograms of the

effective fingerprint for a single user without ACD (W) and with ACD (Wd − d),
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respectively. We observe that the effective fingerprintWd−d is now more continuous

in nature, and thus the collusion resistance is improved [87]. Figure 6.9(a) and (b)

compare the probability of catching one colluder Pd, with and without ACD for

∆ = 6 at a WNR of 0dB. We observe that the probability of catching one colluder

has increased significantly for fingerprinting with ACD as opposed to fingerprinting

without ACD. The collusion resistance against averaging and median attacks is

now quadrupled and the system with ACD can resist over 30 attackers’ collusion

compared to only 7 when without ACD. We observe that the performance against

minimum and maximum attacks also improves and the Pd against Min-Max attack

continues to be close to 1. However, the probability of detection under modified

negative attack is reduced slightly.

A similar performance improvement for ACD is observed at lower WNR levels.

For example, when WNR = -5dB, the collusion resistance without dithering reduces

further to only 7 colluders, whereas fingerprinting with ACD can resist around 13

colluders. For averaging attack with coalition size larger than 5, Pd without ACD

reduces sharply to close to 0, whereas Pd with ACD degrades gracefully and is

around 0.6 for 30 colluders.

We also compare the performance improvement of ACD under different attacks

when the overall distortion introduced by the collusion attacks are kept the same.

Using a similar evaluation framework as in [98], the power of the additional noise

n added to the attacked signal after collusion is varied, such that the overall dis-

tortion introduced into the signal by the different attacks are approximately equal.

Figure 6.10 shows the probability of detection for fingerprinting with and without
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Figure 6.9: Performance improvement for fingerprinting using ACD at WNR =

0dB.
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Figure 6.10: Comparison of Pd when the overall distortion introduced into the

signal is approximately equal under different attacks for (a) Fingerprinting without

ACD and (b) Fingerprinting with ACD.
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ACD when the overall distortion introduced into the signal is approximately 4 times

the power of the watermark, or equivalently, the overall watermark to noise ratio

is approximately −6dB. From Figure 6.10(a), we observe that the attacks follow

the same trend under fingerprinting without ACD as when a constant amount of

noise was added (Figure 6.4). Due to the higher noise power, the averaging attack

leads to a lower probability of detection and the overall collusion resistance is now

reduced to 5 colluders. Under fingerprinting with ACD, we observe that the overall

collusion resistance is 13 colluders and the probability of detection is increased for

all collusion attacks except the modified negative attack. As shall be seen from the

theoretical analysis in Chapter 7, the modified negative attack leads to a higher

variance in the detection statistics and hence a lower probability of detection. This

suggests that the distortion constraints in higher fidelity applications may prevent

the attackers from employing the modified negative attack, although if the overall

allowable distortion in the attacked signal is large, modified negative would be the

colluders’ preferred attack against ACD-based fingerprinting systems.

6.4.3 Colluders’ Choice of Quantization Step Size ∆c

So far, we have only considered the case where the attackers use the same

quantization step size to requantize the colluded signal as that chosen by the content

owner, i.e. ∆c = ∆. In this subsection, we examine the case where the attackers

choose a different quantization step size ∆c 6= ∆. We use the non-blind correlation

detector to identify one guilty user. In our experiments, we set the fingerprint length
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M = 10000 and the number of users is N = 1024. The host signal is modelled after

the DCT coefficients of the AC1,1 band in the Lena image, such that the host follows

a Laplacian distribution with variance 61. The host is then quantized with step size

∆ = 6 and the fingerprint is embedded. The embedding power is chosen to satisfy

the maximum distortion constraint D(∆) = 15.

Figure 6.11 shows the probability of catching at least one colluder for various

choices of the quantization step size by the colluders at additive noise power of 0dB.

Figure 6.11(a) depicts the results under averaging collusion for fingerprinting with-

out ACD. From the figure, we observe that attackers’ choice of ∆c = ∆ = 6 leads to

the lowest probability of detection. Further, we see that the probability of detection

for the cases when ∆c and ∆ are co-prime is higher than for other choices of ∆.

Figure 6.11(b) shows the results under median collusion for fingerprinting without

ACD. We observe that the results are similar regardless of the choice of ∆c by the

colluders. Figure 6.11(c) and (d) show the results for the case of fingerprinting using

ACD under averaging and median collusion, respectively. The collusion resistance

of the system improves significantly for some choices of ∆c under averaging collu-

sion and for all ∆c under median attack. More importantly, the performance is now

comparable for all ∆c. Thus, from an attacker’s perspective, the choice of ∆c = ∆

is no worse than any other choice of ∆c in terms of Pd and is preferable based on

bandwidth and quality considerations, as discussed earlier. In view of these results,

in the remainder of the chapter, we only consider the case of ∆c = ∆.
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Figure 6.11: Probability of successfully catching one colluder when ∆c 6= ∆ and

additive noise power is equal to the watermark power for (a) averaging and (b)

median collusion for fingerprinting without ACD, and (c) averaging and (d) median

collusion for fingerprinting with ACD.
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6.5 Simulation Results on Images

So far, we have focused on the case of one channel, which may represent one

feature or one frequency band. We now examine the performance of the proposed

technique on actual images, where the fingerprint is embedded in a set of different

frequency bands.

We use images of size 320 × 320 compressed with JPEG quality factor of 75

as host images, as this compression setting is the default in many applications to

provide a good tradeoff between perceptual quality and bandwidth. The fingerprint

is embedded in the middle frequency bands of the 8x8 block DCT domain, guided by

the Human Visual System (HVS) model [66]. The embedding distortion is measured

by the Peak Signal to Noise Ratio (PSNR) defined as PSNR = 10 log 2552

‖I−Iw‖2 , where

I is the original image, Iw is the fingerprinted image and ‖I−Iw‖2 =
∑

m,n(I(m,n)−

Iw(m,n))2. The embedding PSNR is set to 42dB and the fingerprint energy in each

frequency band is allocated based on the corresponding quantization step size.

Figure 6.12 shows the fraction of the coefficients used for embedding that

belong to a channel with a given quantization step size ∆ for the Lena test image.

From the figure, we observe that approximately 25% of the coefficients used for

embedding have ∆ = 6. The other coefficients come from channels with larger

quantization step sizes, or stronger compression, and hence we expect the overall

performance of both the fingerprinting schemes to be lower than that obtained for

the one channel ∆ = 6 case presented in Sections 6.3 and 6.4.

Figure 6.13 shows parts of Lena and baboon images before and after fingerprint
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Figure 6.12: Fraction of the coefficients used for embedding belonging to channels

with different quantization step sizes for the cropped Lena image.

embedding, with and without the proposed ACD technique. Figure 6.13(a) and (b)

are the original JPEG compressed images, Figure 6.13(c) and (d) are images fin-

gerprinted using quantized Gaussian fingerprints without ACD, and Figure 6.13(e)

and (f) are images fingerprinted using the proposed ACD technique. We observe

no perceptual difference between the original compressed image and the two fin-

gerprinted images. Table 6.1 compares the file sizes of the resulting JPEG images.

The numbers in parenthesis indicate the percentage change in the file size. From

the table, we see that the file size of the JPEG compressed fingerprinted image is

not significantly different from the original image, and thus the bandwidth required

for transmission in our proposed scheme will be approximately the same as the

requirement for transmitting the original host.

Figure 6.14 shows the average probability of catching at least one colluder

for the various attacks described in Eqn. (6.2) when the additive noise power is

equal to the watermark power. The simulation results are similar to the results
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(b) (d) (f)

Figure 6.13: Parts of Lena and baboon images before and after fingerprint em-

bedding. (a) and (b) Original compressed images at a JPEG quality factor of 75.

(c) and (d) Fingerprinted images without ACD and (e) and (f) fingerprinted images

with ACD. (Embedding PSNR = 42dB.)
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Table 6.1: Comparison of file size (in Bytes) of original and fingerprinted JPEG

images.

Image Original Size Fingerprinted image size Fingerprinted image size

(without ACD) (with ACD)

Lena 16,007 15,973 (-0.21%) 16,014 (+0.04%)

Baboon 24,592 24,631 (+0.15%) 24,588 (-0.02%)

Barbara 18,921 18,938 (+0.09%) 18,963 (+0.22%)
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Figure 6.14: Simulation results for images: average probability of catching at least

one colluder for fingerprinting with and without ACD under various attacks for the

Lena test image.
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presented in Section 6.3 for the one channel case, but the exact probabilities seen in

Figure 6.14 are slightly lower due to the different quantization step sizes of different

frequency locations in the DCT of the image. From Figure 6.14, we observe that

using ACD, the overall collusion resistance has approximately doubled from 7 to

13 colluders. The probability of detection has increased for all attacks, except the

modified negative attack. Under the modified negative attack, the probability of

detection reduces by around 20% for attack by 20 colluders. However, as discussed

in Section 7.2, the distortion introduced by this attack under ACD is higher than

without ACD. The increase in Pd for the randomized negative attack is also lower

compared to the other attacks, due to the higher distortion introduced by this attack.

6.6 Chapter Summary

In this chapter, we examined the problem of collusion resistant fingerprint de-

sign for compressed multimedia. Our studies indicate that adding Gaussian spread

spectrum fingerprints, that are effective for uncompressed signals, and recompressing

the fingerprinted signal leads to a low collusion resistance. This can be mainly at-

tributed to the discrete nature of the fingerprint. After multi-user collusion attacks,

the fingerprint traces are completely removed from the media, making it difficult

to identify users participating in the collusion. We found that the averaging and

median attacks are particularly effective from the colluders’ perspective, and the

fingerprint can be removed by averaging around 10 copies.

To remedy this shortcoming, we propose an Anti-Collusion Dither technique
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to improve the collusion resistance. A pseudorandom dither signal is added to the

compressed host before fingerprint embedding to make it appear more continuous

from the embedder’s perspective. The dither also makes the effective fingerprint

more continuous, thereby improving its collusion resistance. Simulation results us-

ing JPEG compressed images demonstrate that the file-size of the image is not

significantly altered by the fingerprinting and the perceptual quality is preserved.

The proposed ACD technique can approximately quadruple the collusion resistance

under the averaging and median attacks as compared to fingerprinting using quan-

tized Gaussian fingerprints without ACD. Similar results have been obtained for the

minimum, maximum, min-max and randomized min-max collusion attacks.

In large-scale applications involving compressed multimedia, the proposed

technique can be combined with other coding schemes to create efficient and scal-

able fingerprinting systems with high collusion resistance. For example, for uncom-

pressed hosts, the fingerprint construction and detection technique of [34] builds

on Gaussian spreading sequences and employs ECC-based construction to support

millions of users. Analogously, the proposed ACD-based fingerprinting can be used

in conjunction with error correcting codes, Boneh-Shaw codes, or Tardos codes for

implementing fingerprinting schemes for compressed multimedia.
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Chapter 7

Theoretical Analysis of

Fingerprinting Techniques for

Compressed Multimedia

In the previous chapter, we have introduced the technique of ACD and demon-

strated through simulations that the probability of identifying a colluder is higher

for fingerprinting with ACD compared to without ACD. In this section, we provide

a theoretical analysis of the two schemes for fingerprinting compressed multimedia

from different perspectives. First, we derive expressions for the probability of detec-

tion for the two fingerprinting schemes. We then bring in an estimation viewpoint

from the colluders’ perspective, to compare the accuracy with which the attack-

ers can estimate the host signal. We also evaluate fingerprinting with and without

ACD from an information theoretic viewpoint in terms of the maximum number
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of distinct users that the system can accommodate, such that the asymptotic error

probability goes to zero.

7.1 Probability of Detection

We now derive the probability mass function (p.m.f.) of the fingerprints and

compute the probability of detecting one of the guilty users after a collusion at-

tack [85]. Let h(·) denote the preprocessing applied to the test signal to make its

distribution symmetric around zero, as described in Section 6.2. The test signal

used by the detector can be represented as

h(Z− S) = h(V + n− S) = h(g({W(k)}k∈UK
)) + n,

since the attacks satisfy g({X(k)
j }k∈UK

) = Sj + g({W (k)
j }k∈UK

). We have also used

the approximation h(n) ≈ n−E[n]1 = n, where 1 represents a vector of all ones and

the fact that the noise n has mean equal to zero. Denoting g′(·) = h(g(·)), we have

the detection statistic for user α, T (α) = 1
M

∑M
j=1(g

′({W (k)
j }k∈UK

) + nj)×W
(α)
j . As

the components W
(α)
j are i.i.d., from the Central Limit Theorem, T (α) approaches

a Gaussian distribution when the fingerprint length M is large. Further, the mean

and variance of the Gaussian distribution are independent of j due to the i.i.d.

property, and depend only on whether α belongs to the set of colluders UK or not.

After dropping the subscript j to simplify the notation, the mean and variance of
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T (α) for α /∈ UK are given by

mean: µ0 = E[g′({W (k)}k∈UK
) + n]E[W (α)] = 0,

variance: σ2
0 =

1

M
E[((g′({W (k)}k∈UK

) + n)W (α))2],

=
1

M
E[(g′({W (k)}k∈UK

))2 + n2]E[(W (α))2].

Here, the equalities follow due to the independence assumption and that W (α) has

a zero mean. Similarly, for α ∈ UK ,

µ1 = E[g′({W (k)}k∈UK
)W (α)] + E[n]E[W (α)],

= E[g′({W (k)}k∈UK
)W (α)],

as the noise n is independent of W (α) and has zero mean. The variance of the

detection statistic is given as

σ2
1 =

1

M
Var([g′({W (k)}k∈UK

) + n]W (α))

=
1

M

(

E[({g′({W (k)}k∈UK
) + n}W (α))2]− µ2

1

)

=
1

M

(

E[(g′({W (k)}k∈UK
)W (α))2] + E[n2]E[(W (α))2]− µ2

1

)

.

The quantities µ1, σ2
0, and σ2

1 can be computed from the joint distribution of

g({W (k)}k∈UK
) and W (α), α ∈ UK and the distribution of g({W (k)}k∈UK

). The prob-

ability of successfully catching one colluder is then given by the probability that the

detection statistic for one of the colluders is larger than the detection statistics of

all the innocent users:

Pd = Pr(max
k∈UK

T (k) > max
α/∈UK

T (α)).
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7.1.1 Analysis of Quantized Gaussian Fingerprints

Consider the scenario of quantized Gaussian fingerprints under the averaging

attack. Let W ′ = 1
K

∑

k∈UK
W (k) and Wavg=round

(

W ′

∆

)

×∆. Then,

Pr(Wavg = m∆) = Pr(W ′ ∈ Im), (7.1)

where Im =
[

m∆− ∆
2
, m∆+ ∆

2

)

. The characteristic function of W ′, M ′(t) =

E[exp(itW ′)] is related to the characteristic function of W (α), M(t), as M ′(t) =

[M( t
K
)]K , where K is the number of colluders. The probability mass function

(p.m.f.) of W ′ is then given as

Pr

(

W ′=m
∆

K

)

=
1

2πK

∫ πK

−πK

exp

(

−itm∆

K

)[

M

(

t

K

)]K

dt.

The joint p.m.f. Pr(Wavg = m∆,W (α) = n∆), α ∈ UK , can be written as the prod-

uct of the conditional distribution Pr(Wavg = m∆|W (α) = n∆) and the marginal

distribution Pr(W (α) = n∆). Here, the conditional distribution can be computed as

Pr(Wavg = m∆|W (α) = n∆)=Pr
(

W ′ ∈ Im|W (α) = n∆
)

=Pr





1

K

∑

k∈UK\{α}

W (k) ∈ Im,n





where Im,n =
[

m∆− ∆
2
− n∆

K
, m∆+ ∆

2
− n∆

K

)

and

Pr





1

K

∑

k∈UK\{α}

W (k)=
m∆

K



=
1

2πK

∫ πK

−πK

exp

(

−itm∆

K

)[

M

(

t

K

)]K−1

dt.

The p.m.f. of the colluded fingerprints under other attacks can be derived similarly.

The detailed derivations are omitted here due to space constraints.

Based on these derivations, we compute the probability of detection Pd for the

settings described in Section 6.3. We choose the fingerprint length M = 10000, the
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Figure 7.1: Probability of catching one colluder using traditional Gaussian based

fingerprints at WNR = 0dB, 1024 users, M = 104, D(∆) = 15.

number of users N = 1024, and the distortion D(∆) = 15. To obtain numerical

results, the integrals in the expressions for the probability distributions are evaluated

using the trapezoidal rule. Figure 7.1 shows the probability of successfully catching

one colluder (Pd) versus the number of users participating in the collusion for various

attacks. The power of additive noise is set to be the same as the power of the

watermark, i.e., the Watermark-to-Noise Ratio (WNR) is set to 0 dB for each of

the attacks. From the figure, we observe that the probability of catching a guilty

user is the lowest for averaging attack and the system can resist only 7 colluders

with Pd ≈ 1. The median attack is also very effective at removing traces of the

fingerprints. The minimum and maximum attacks are less effective, and the modified

negative and the min-max attacks are the least effective attacks. These results agree

very well with that obtained through simulations, presented in Section 6.3.
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7.1.2 Performance Analysis under Anti-Collusion Dithering

With Anti-Collusion Dithering, we follow a similar approach to compute the

probability of catching one colluder. We illustrate our analysis by deriving the

p.m.f.s under the averaging attack. LetW
(α)
d = round

(

d+Q(α)

∆

)

×∆, W ′
d =

1
K

∑

k∈UK
W

(k)
d ,

and W
avg
d = round

(

W ′

d

∆

)

× ∆, where we have dropped the subscript j due to the

i.i.d. property and Q is a Gaussian random variable. For the averaging attack, we

have:

Pr
(

W
avg
d = m∆

)

= Pr (W ′
d ∈ Im)

=
1

∆

∫ ∆
2

−∆
2

Pr (W ′
d ∈ Im|d = x) dx

=
1

∆

∫ ∆
2

−∆
2

Pr

(

1

K

∑

k∈UK

round

(

x+Q(k)

∆

)

∈ Im
)

dx.(7.2)

The joint p.m.f. Pr(W
avg
d = m∆,W

(α)
d = n∆) can be computed by integrating the

product Pr(W
avg
d = m∆|W (α)

d = n∆, d = x) Pr(W
(α)
d = n∆|d = x)fd(d = x) over

the range x ∈ [−∆
2
, ∆
2
]. The conditional distribution is computed as

Pr(W
avg
d = m∆|W (α)

d = n∆, d = x) = Pr
(

W ′
d ∈ Im|W

(α)
d = n∆, d = x

)

= Pr





1

K

∑

k∈UK\{α}

round

(

x+Q(k)

∆

)

∈ Im,n



 .

The last term can be computed by first obtaining the characteristic function and

then computing the p.m.f. from the characteristic function as illustrated earlier. A

similar analysis can be carried out for the other nonlinear attacks.

Figure 7.2 shows the probability of catching one colluder versus the number

of colluders for fingerprinting using ACD. We observe that the collusion resistance
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Figure 7.2: Probability of catching one colluder for fingerprinting with ACD at

WNR = 0dB, 1024 users, M = 104, D(∆) = 15.

against averaging and median attacks has now quadrupled from 7 to approximately

30 colluders. The collusion resistance for the minimum and maximum attacks has

also increased. As before, we observe that the probability of detection has slightly

reduced for the modified negative attack. These results are consistent with the

simulation results presented in Section 6.4.

7.2 Estimation Accuracy of Various Collusion Attacks

Collusion attacks to remove traces of the fingerprints can be formulated as

the colluders’ attempt to estimate the host signal given their fingerprinted versions.

The accuracy with which attackers can estimate the host signal was suggested as one

of the criteria for determining optimal collusion attacks for uncompressed domain

fingerprinting in [41], but no explicit evaluation of the estimation accuracy was

provided for different collusion attacks. In this subsection, we examine collusion
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from the attackers’ perspective and evaluate the effectiveness of collusion attacks on

compressed domain fingerprinting systems in terms of the accuracy of estimating

the host signal. We provide an explicit evaluation and quantitative comparison of

the estimation accuracy of different collusion attacks.

As before, denote the host signal sample by Sj, and the fingerprinted sig-

nal for user k by X
(k)
j . Let the estimate of the host signal be represented as

Ŝj = G′({X(k)
j }k∈UK

), where G′(·) is some suitable estimator. The accuracy of

the estimate, or equivalently, the effectiveness of the collusion attack can be mea-

sured in terms of the Mean Squared Error (MSE), given by ε = E[(Sj − Ŝj)
2]. The

collusion attacks defined in (6.2) can be considered as estimators if we set G′(·) =

h(g(·)) for the collusion attack g(·). These estimators satisfy G′({X(k)
j }k∈UK

) =

Sj + G′({W (k)
j }k∈UK

). Thus, the MSE of estimation simply becomes the variance

of the colluded fingerprint which can be computed using the distribution of the

colluded signal as derived in Section 7.1.

Figure 7.3 shows the MSE of various estimators as a function of the number of

colluders for the experimental setup described in Section 7.1. From Figure 7.3(a),

we see that averaging collusion has the lowest MSE, followed by median, minimum,

min-max, and modified negative attacks for fingerprinting using independent Gaus-

sian based fingerprints. Figure 7.3(b) shows the corresponding MSEs under ACD

fingerprinting. Comparing Figure 7.3(a) and Figure 7.3(b) we observe that the MSEs

of all the estimators are significantly higher with ACD than without the dithering.

The MSE of estimation for the averaging and median attacks, which are close to

zero with just 11 fingerprinted copies for fingerprinting without ACD, remain non-
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Figure 7.3: MSE (ε) of various estimators for fingerprinting (a) without ACD and

(b) with ACD for ∆ = 6.

zero even with 30 colluders for fingerprinting with ACD. The MSE for other attacks

approximately triples and thus the attacks are not effective at estimating the host

signal for the ACD fingerprinting system.

The distortion introduced by the collusion attack, measured with respect to

the host, is given by the second moment of the colluded fingerprint and is equal

to the sum of the MSE and the square of the mean. For averaging, median, min-

max and modified negative, the mean of the colluded fingerprint is zero and the

distortion introduced is equal to the MSE. For the minimum and maximum attacks,

the colluded fingerprint has non-zero mean and the overall distortion increases with

the number of colluders.

From Figure 7.3(a), we observe that averaging introduces the lowest distortion

for fingerprinting without ACD. The averaging attack also has the lowest probability
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of detection for a given distortion, as shown in Figure 6.10(a). Thus, the averaging

attack is the best choice for the colluders under fingerprinting without ACD. When

ACD is used, the colluders’ strategy is not so simple. Although Figure 7.3(b) shows

that the lowest distortion is again introduced by the averaging attack and that the

modified negative attack has the highest distortion, we recall from Figure 6.10(b)

that the modified negative attack has a lower probability of detection at a given level

of distortion. This is because, unlike the averaging and median attacks which aim to

estimate the host signal, the modified negative attack attempts to move the attacked

signal in a direction opposite to that of a majority of the colluders’ fingerprints.

This results in a higher overall distortion, as shown in Figure 7.3. Despite this

high distortion, for Gaussian fingerprints, due to the symmetry of the colluders’

fingerprints, the resultant attacked signal may still have sufficient correlation with

some colluder’s fingerprint, enabling us to catch one of the colluders with high

probability. However after applying ACD, the additive dither reduces the statistical

symmetry among the colluders’ effective fingerprint. This reduced symmetry makes

the resulting direction of the modified negative attack less likely to be correlated with

the colluders’ fingerprint and reduces the probability of detection. Therefore, the

adversaries’ best strategy in an ACD fingerprinting system depends on the distortion

allowable by their attacks. If the distortion introduced by the modified negative

attack is within the attackers’ distortion constraint, the modified negative attack

would be more favorable from the colluders’ perspective. On the other hand, if the

allowable distortion is small, it is advantageous for the attackers to choose averaging

collusion instead.
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7.3 Comparison based on Mutual Information

In this subsection, we leverage the capacity results for fingerprinting finite

alphabet from the literature to analyze the performance enhancement achieved by

the proposed ACD techniques from an information theoretic standpoint.

For fingerprinting signals drawn from finite alphabets, the private fingerprint-

ing game with non-blind detection was considered in [75], and the public finger-

printing game with blind detection was analyzed in [97]. In practice, due to bit rate

and dynamic range limitations, compressed host signals can only take values from a

finite set and the results from [75] are applicable in this case. The formulation in [75]

considers a fingerprinting code of length M with N sequences such that N = 2MR,

where R is the rate of the code. The fingerprinted sequences are generated from the

i.i.d. host signal S under a specified distortion constraint and the colluded version

created by K users is also subject to a similar distortion constraint. A fingerprint-

ing rate R is defined as “achievable” if the probability of not detecting any of the

colluders tends to zero as the length of the fingerprint M approaches infinity.

The fingerprinting capacity as a function of the distortion constraints and the

probability distribution of the host is defined to be the supremum of all achiev-

able rates. Under memoryless collusion attacks by K colluders, and fingerprinting

using constant composition codes, the capacity Cfp is shown to be related to the

conditional mutual information as

Cfp = max
p(X|S)

min
p(Z|X1,X2,...,XK)

1

K
I(Z;X1, X2, . . . , XK |S). (7.3)

Here p(X|S) is the conditional p.m.f. of the fingerprinted signal given the host
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signal, p(Z|X1, X2, . . . , XK) is the conditional p.m.f. of the attacked signal given the

fingerprints of the colluders, and I(X ; Y ) denotes the mutual information between

two random variables X and Y . The evaluation of the fingerprinting capacity (Eqn.

(7.3)) is non-trivial even for simple settings. To the best of our knowledge, the

capacity has not been determined for any host distribution with finite support,

except for the case of binary hosts, and consequently capacity achieving fingerprint

designs are unknown.

Inspired by connections drawn by the theoretical studies between the best

achievable fingerprinting rate and the conditional mutual information, we propose

to employ mutual information to guide the development and analysis of practical

fingerprinting algorithms for quantized hosts. For a given fingerprinting scheme and

a given attack, it can be shown that the rate 1
K
I(Z;X1, X2, . . . , XK |S) provides a

tight upper bound on the maximum number of users that the fingerprinting system

can support [75]. This rate, denoted as Rmax, is thus an indicator of the collusion

resistance of the fingerprinting scheme under the given attack, as a higher value of

Rmax suggests that a larger number of users can be supported by the corresponding

embedding scheme. We now use Rmax to compare the two designs of fingerprint-

ing codes for compressed hosts, namely, quantized gaussian fingerprints with and

without ACD fingerprinting.

Consider the noise-free averaging collusion attack, which can be represented

as

p(Z = z|X1, X2, . . . , XK)) = δ(z −Xavg), (7.4)
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where

Xavg = round

(

X1 +X2 + . . .+Xk

K∆

)

×∆ and δ(z) =















1 z = 0

0 z 6= 0

.

The maximum fingerprinting rate in terms of the conditional mutual information

under this attack is given by

R
avg
max =

1

K
I(Z;X1, X2, . . . , XK |S),

=
1

K
[H(Z|S)−H(Z|X1, X2, . . . , XK , S)],

=
1

K
H(Z|S), (7.5)

where H(X) denotes the entropy of a random variable X , and the last equation

follows from the fact that Z is a deterministic function of X1, X2, . . . , XK and

hence H(Z|X1, X2, . . . , XK , S) = 0. Noting that the averaging attack satisfies

g(X1, X2, . . . , XK) = S + g(W1,W2, . . . ,WK) = S + Wavg, Eqn. (7.5) can be

further simplified as

R
avg
max = H(S +Wavg | S),

= H(Wavg), (7.6)

which can be evaluated numerically from the p.m.f. of the attacked fingerprint

Wavg as derived in Section 7.1 (Eqn. (7.1) and (7.2)). This analysis can be carried

out in a similar fashion for the remaining attacks.

We present results for the averaging and median attacks, which are shown to

be the most effective attacks by our simulation results (Section 6.3) and analytical

study (Section 7.1). Figure 7.4 shows the rate function Rmax for averaging and
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Figure 7.4: The rate function Rmax for averaging and median attacks with and

without ACD.

median attacks with and without ACD. We observe that the rate is higher for

fingerprinting with ACD than without ACD, suggesting that fingerprinting with

ACD is more resilient to averaging and median attacks.

7.4 Chapter Summary

In this chapter, we have performed a theoretical analysis of collusion-resistant

fingerprinting techniques for compressed multimedia from various viewpoints, and

demonstrated the significant advantages of the ACD technique. We first showed

that ACD increases the probability of identifying a colluder using the correlation

detector and the colluded copy, as compared to fingerprinting without dithering.

ACD also reduces the accuracy with which attackers can estimate the host signal,

and allows the fingerprinting system to accommodate a larger number of users under

a given attack.
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Chapter 8

Conclusions and Future

Perspectives

In this dissertation, we examined two complementary approaches for multi-

media protection using content and embedded fingerprints. Content fingerprints

can be used to prevent the redistribution of multimedia through the internet, while

embedded fingerprints can be used to trace individual copies and deter users from

unauthorized redistribution.

This dissertation describes a framework for theoretical modeling and analysis

of content fingerprints, whereby each individual module is studied to understand

its influence on the identification accuracy. Under this framework, the impact of

distortion of the content on the features, the resulting changes in the fingerprints

computed, and the eventual effect on the matching process and identification accu-

racy can be examined separately. Accordingly, we studied how distortions in the
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features affect the fingerprints and identified the correlation between the features

and the noise as an important factor. We then considered the problem of encod-

ing the features into fingerprints and proposed an iterative algorithm to design the

quantizer such that the identification performance is improved.

In the content identification problem, the fingerprint system designer and an

adversary seeking to upload content and evade detection have conflicting objectives.

We studied these interactions under a game-theoretic framework by modeling con-

tent identification as a two-player game. The designer and the adversary choose

strategies to optimize their respective objective functions. Through this analysis,

we showed that choosing the fingerprint bits to be i.i.d. and equally likely to take

the values 0 or 1 is the optimal strategy for the designer.

Based on this result, we then studied the best identification performance

achievable using fingerprints with i.i.d. equiprobable bits. We modeled content

identification as a hypothesis testing problem and derived closed form expressions

for the probability of making an error. For ease of use in practical applications,

we derived bounds on the error probabilities and provided a lower bound on the

length of the fingerprint needed to achieve a desired accuracy. This analysis also

revealed the connections between content fingerprints and the problems of joint

source-channel coding and errors and erasures decoding.

As practical fingerprinting schemes generate fingerprints with correlated com-

ponents, we proposed a Markov Random Field model for the fingerprint and noise

distributions. To evaluate the associated probability of making a detection error, we

described a statistical physics inspired algorithm to estimate the density of states,

181



and utilize the density of states to compute the probabilities of interest. We showed

through experiments using image databases that the detector developed using this

model can improve the detection accuracy.

The algorithm for estimating the density of states cannot be used with models

containing a large number of random variables. This makes it difficult to use the

MRF model for correlated fingerprints obtained from long sequences of multimedia.

We proposed modeling the distribution of these fingerprints using a Markov chain

model. Experiments indicated that the Markov chain model is a good fit only in

certain regimes. We then proposed an adaptive model and an associated detector

that provides the best detection accuracy over a wide range of operating points.

When an unauthorized copy of a multimedia document is detected using,

for example, content fingerprints, embedded collusion-resistant fingerprints may be

used to further identify the users responsible for the redistribution. Existing collu-

sion resistant fingerprints were designed and tested using uncompressed multimedia,

whereas most practical applications utilize compressed multimedia. Our study indi-

cated that directly utilizing traditional schemes for embedding fingerprints in com-

pressed signals leads to low collusion-resistance. To improve the collusion-resistance,

we developed an Anti-Collusion Dithering technique for embedding fingerprints in

compressed multimedia. The proposed technique approximately triples the number

of colluders that can be resisted under many attacks. We also performed a the-

oretical analysis from different perspectives, and showed that the ACD technique

increases the probability of detecting a colluder, reduces the accuracy with which

colluders may estimate the host signal, and increases the fingerprinting capacity.
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The analysis framework for content fingerprints described in this dissertation

provides a foundation for further exploration and study. In particular, examining

how distortions of the multimedia translate into changes in the features extracted

is of considerable interest to the content fingerprinting community. Similarly, the

robustness of different features to various processing can also be studied under the

same framework. In this thesis, we adopted a model suitable for the study of features

based on spatial or transform domain properties. Recently, many fingerprinting

algorithms have advocated the use of local interest point based features such as

SIFT [52], SURF [6] and other spatio-temporal features [46, 53]. Typically, these

features are represented by vector quantization as “visual words” [63]. It would be

interesting to study how distortion in these features would impact the fingerprints

computed and the overall matching accuracy.

The game-theoretic modeling of content fingerprinting also holds promise and

can potentially reveal interesting insights and guidelines for the design of fingerprint-

ing schemes. The models developed for correlated fingerprints could be incorporated

into the game framework to extend the analysis to non-i.i.d. fingerprints. In the

game-theoretic study described in this dissertation, a simple model was adopted

for the relation between the distortion in the fingerprints and the reduction in the

adversary’s payoff. As shown in Section 2.3, for many feature distributions of prac-

tical interest, it is possible to analyze this relation more carefully. The results of this

analysis could be incorporated into the game-theoretic framework and create a more

holistic model of the choices and payoffs for the designer and adversary. Another

aspect of interest is to analyze how the behavior of the adversary and designer can
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evolve over time, as they learn from each other’s strategies. Tools from evolutionary

game theory [99] can be used to model such a time-varying behavior of the designer

and adversary.

In content-fingerprinting applications, as the adversary typically has access to

the results of the detector, he/she can repeatedly probe the detector with different

inputs to better understand the algorithms and estimate the internal parameters.

This knowledge could be exploited to design smart attacks for defeating the content

identification system while minimizing the distortion introduced into the content.

Such attacks have been studied under the name of “sensitivity attacks” in the water-

marking literature [19], and various randomization techniques have been proposed

for mitigating such attacks [49, 93]. Sensitivity attacks are also possible in the con-

tent fingerprinting context, but have not been systematically studied. As these

attacks can be potentially devastating, it is of interest to study whether such at-

tacks can be mitigated using randomization techniques, similar to those proposed for

watermarking. A related question is whether introducing randomization techniques

in any of the various stages of fingerprinting would improve the overall security of

the system and benefit the fingerprint designer. The overall modeling framework

and the game-theoretic approach could be used to obtain a better understanding of

these issues.

The connections to joint source channel coding revealed by the study of the

identification accuracy and quantizer design provide another avenue for further ex-

ploration. Error correcting codes have been used to quantize and improve the ro-

bustness of hashes designed for authentication in the robust image hashing litera-
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ture [78]. We envision that similar concepts borrowed from the extensive literature

in this research area could guide the design of future fingerprinting algorithms that

achieve better performance.
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