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Several data reduction techniques have been proposed recently as methods for

providing fast and fairly accurate answers to complex queries over large quantities of

data. Their use has been widespread, due to the multiple benefits that they may offer

in several constrained environments and applications. Compressed data representa-

tions require less space to store, less bandwidth to communicate and can provide,

due to their size, very fast response times to queries. Sensor networks represent a

typical constrained environment, due to the limited processing, storage and battery

capabilities of the sensor nodes.

Large-scale sensor networks require tight data handling and data dissemination

techniques. Transmitting a full-resolution data feed from each sensor back to the base-

station is often prohibitive due to (i) limited bandwidth that may not be sufficient

to sustain a continuous feed from all sensors and (ii) increased power consumption

due to the wireless multi-hop communication. In order to minimize the volume of the

transmitted data, we can apply two well data reduction techniques: aggregation and

approximation.



In this dissertation we propose novel data reduction techniques for the transmis-

sion of measurements collected in sensor network environments. We first study the

problem of summarizing multi-valued data feeds generated at a single sensor node,

a step necessary for the transmission of large amounts of historical information col-

lected at the node. The transmission of these measurements may either be periodic

(i.e., when a certain amount of measurements has been collected), or in response to

a query from the base station. We then also consider the approximate evaluation of

aggregate continuous queries. A continuous query is a query that runs continuously

until explicitly terminated by the user. These queries can be used to obtain a live-

estimate of some (aggregated) quantity, such as the total number of moving objects

detected by the sensors.
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Chapter 1

Introduction

1.1 The Need for Data Reduction Techniques

Several data reduction techniques have been proposed recently as methods for provid-

ing fast and fairly accurate answers to complex queries over large quantities of data.

The most popular approximate processing techniques include histograms, random

sampling and wavelets. Their use has been widespread, due to the multiple benefits

that they may offer in several constrained environments and applications. The con-

straints that may necessitate the construction of data synopses are numerous, and

vary in each case, based on the targeted application. First of all, when the amount

of stored data is too large to store and process, data reduction techniques present a

natural choice for data compression. Moreover, when fast response times are desired

without requiring 100% accuracy, such as in data mining and approximate query pro-

cessing applications, the constructed data synopses can provide significantly faster

answers than exact processing techniques since, due to their small size, they can be

maintained in main memory. Finally, when data is communicated between different

locations and either the available bandwidth or the energy of the nodes is limited, as

is typically the case in sensor network applications, transmitting a compressed data

representation is the only viable solution.
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Depending on the nature and the characteristics of the collected data, differ-

ent data reduction techniques may be deemed as more appropriate and effective.

Moreover, even when considering the same data set within the context of different

applications, the technique of choice may vary based on its processing and memory

requirements and the corresponding capabilities of the application at hand. For ex-

ample, while a sensor node with very limited capabilities may elect to approximate its

measurements using a sampling algorithm, a more powerful sensor may elect to utilize

a wavelet-based technique for the same task, in order to achieve a more accurate data

synopsis. Furthermore, different criteria may be used for the selection and tuning of

the used techniques. In most cases the user/application specifies the desired size of

the reduced data representation and the goal is to maximize the accuracy (or, equiv-

alently, minimize the error) of the approximate reconstructed data. In other cases, a

desired accuracy of the approximate data is specified, and the goal is to minimize the

size of the reduced representation that achieves the specified accuracy guarantees.

In this dissertation we develop several data reduction techniques that can be

applied on a variety of applications in constrained environments. However, we focus

our discussion primarily on the area of sensor network applications, and later detail

other domains where our techniques are also applicable.

The deployment of densely distributed sensor networks has been made feasible,

from both a technological as well as an economical point of view, by recent advances

in wireless technologies and microelectronics. These networks are used in a variety

of monitoring applications such as military surveillance, habitat monitoring, location

tracking and inventory management. Each sensor node may be equipped with several
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sensing elements, such as microphones, accelerometers and temperature sensors that

allow it to gather low-level measurements of its surroundings. These measurements

can then be processed locally and transmitted, either in chunks, or in a continuous

fashion, to a base station for further analysis. A base station may represent any node

of the network with increased storage, battery and processing capabilities.

Besides its sensing elements, each sensor node consists of several parts, including

a processing unit (cpu), a memory component, a battery used to power the sensor

and a radio used by the sensor to communicate with its surrounding nodes. The

characteristics of the used sensor nodes depend on the nature of the application at

hand. Applications such as military reconnaissance that require significant processing

to be performed at the nodes use sensor nodes with significant processing power. As an

example, the Stargate nodes constructed by Crossbow [cro] contain a 400MHz X-Scale

Intel processor (model PXA255) and can support up to 256 MB of FLASH memory,

while being powered by a Li-Ion battery. On the other hand, the current sensor

nodes that are most frequently used have significantly more limited capabilities. For

example, the Berkeley Mica2 motes utilize a 7.3828 MHz processor and can support

up to 128 KB of FLASH and 32 KB of EEPROM memory, while being powered by 2

AA batteries. As the processing and storage capabilities of sensor nodes tend to follow

Moore’s Law,1 we expect that in the near future significantly more powerful sensor

nodes will be available and more frequently used, due to their increased processing,

storage and sensing capabilities. Our belief is also powered by ongoing efforts by the

industry to construct significantly more powerful and energy-efficient sensor motes,

1http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/L07.ppt
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such as the Intel motes.

Large-scale sensor networks require tight data handling and data dissemination

techniques. Transmitting a full-resolution data feed from each sensor back to the base-

station is often prohibitive due to (i) limited bandwidth that may not be sufficient

to sustain a continuous feed from all sensors and (ii) increased power consumption

due to the wireless multi-hop communication. In order to minimize the volume of the

transmitted data, we can apply two well known ideas: aggregation and approximation.

Aggregation works by summarizing the measurements in the form of simple statistics

like average, maximum, minimum etc. that are then transmitted to the base-station

over regular intervals. Aggregation is an effective means to reduce the volume of

data, but may be rather crude for applications that need detailed historical data,

like military surveillance. Furthermore, when data feeds exhibit a large degree of

redundancy, approximation is a less intrusive form of data reduction in which the

underlying data feed is replaced by an approximate signal tailored to the application

needs. The trade-off is then between the size of the approximate signal and its

precision compared to the real-time information monitored by the sensor.

In this dissertation we propose novel data reduction techniques for the transmis-

sion of measurements collected in sensor network environments. We first study the

problem of summarizing multi-valued data feeds generated at a single sensor node,

a step necessary for the transmission of large amounts of historical information col-

lected at the node. The transmission of these measurements may either be periodic

(i.e., when a certain amount of measurements has been collected), or in response to

a query from the base station. We then also consider the approximate evaluation of
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aggregate continuous queries. A continuous query is a query that runs continuously

until explicitly terminated by the user. These queries can be used to obtain a live-

estimate of some (aggregated) quantity, such as the total number of moving objects

detected by the sensors.

While our algorithms for the evaluation of continuous queries can be applied,

due to their simplicity, to all current models of sensor nodes, the processing require-

ments of our data approximation algorithms impose some constraints on the models

of sensor nodes that can be used to execute them. Our wavelet-based techniques

(Section 1.2.2) exhibit near-linear running times and are thus suited even for low-end

sensor nodes, such as the often used MICA2 nodes. On the other hand, our Self-

Based Regression algorithm (Section 1.2.1) requires sensor nodes with significantly

more powerful processors. In Section 3.5.3 a 300 MHz processor required about 9.7

seconds to compress 10,240 data values. We expect that most sensors with processors

clocked around 80 MHz (or higher) will be able to easily execute this algorithm, since

the amount of transmitted data in most sensor network applications will often be

smaller. However, the organization of sensor nodes in localized groups discussed in

Section 3.4.4 can help further reduce the processing requirements in low-end sensor

nodes.

1.2 Compressing Historical Information

We study the problem of summarizing multi-valued data feeds generated at a single

sensor node for the periodic transmission of its measurements. We explore two dif-
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ferent approaches for this application: (i) A model-driven data reduction technique

appropriate for applications where each sensor monitors several quantities over spe-

cific data intervals; and (ii) Wavelet-based techniques applicable to multi-dimensional

data sets, with near-linear running times. The choice among these two approaches

may depend on the dimensionality of the data and the processing capabilities of the

sensor node. We need to mention that both of our approaches only consider as their

constraint the desired size of the compressed data representation. While the energy

consumed by the sensor during the execution of the algorithm is also an important

factor, transmission is the dominant source of energy drain in sensor networks.

1.2.1 Compressing Multiple Time Series

Our first approach builds on the observation that the values of the collected mea-

surements from sensor nodes may exhibit similar patterns over time, or that different

measurements are naturally correlated, as is the case between pressure and humidity

in weather monitoring applications. At the core of our Self-Based Regression (SBR)

approximation algorithm lies the notion of a base signal, a set of values from the

collected measurements that capture prominent features of the data. Following the

construction of the base signal, the collected data is partitioned into intervals that

can be efficiently approximated as linear projections of some part of the base sig-

nal. We provide techniques for (i) constructing the base signal; (ii) approximating

the recorded measurements by exploring piece-wise correlations amongst them and

the base signal; and (iii) dynamically updating the base signal to capture new data
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trends in subsequent transmissions. Our methods are easily adaptable to different

error metrics with a simple change in the used subroutine that performs the linear

regression, and have been shown to significantly outperform current data reduction

techniques in a variety of data sets.

Sensors networks are built with the premise that nodes should collaborate to

perform the task at-hand. Thus, designing localized algorithms is of utmost im-

portance in these networks [EGHK99, Kot05]. In our work we have been able to

extend our framework to be used in a localized manner, where groups of sensors that

lie within a small distance from each other cooperate to produce a more accurate

approximate representation of their collected data. Under the localized mode of op-

eration the sensor nodes transmit their compressed data feeds to the group leader,

which in turn applies our compression algorithm to the incoming feeds (including its

own measurements). The group leader further coordinates the allocation of band-

width among the members of its group in order to minimize the desired error metric.

This localized framework allows the group leader to explore correlations between mea-

surements of different sensors to achieve a significantly more accurate approximation

for the same overall compression ratio. Such correlations may be either due to the

small variations of the monitored physical quantities because of the proximity of the

sensors (for instance when obtaining temperature readings), or due to the nature of

the measurements (i.e., voice levels tend to fall gradually with the radius from the

source).

While the above approach is able to provide very accurate data synopses, its

running time, which exhibits a O(n1.5) dependency on the size n of the collected data,
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may limit its applicability to several current sensor models with restricted processing

and memory capabilities. On the other hand, our experimental study demonstrates

that the base signal is rarely populated, or in very small parts, after the initial trans-

missions, since it is already of good quality. This allows us to shortcut some parts

of the algorithm in constrained environments and reduce the complexity of the algo-

rithm to only a linear dependency to the size of the processed data. Moreover, since

some powerful sensor nodes have already been developed (i.e., [cro]), and due to the

rapid increase of the processing and storage capabilities, at a rate similar to Moore’s

Law [L07], of the sensor nodes, we expect that in the following years a large amount

of the available sensors will be able to compress even large amounts of collected data

using our techniques.

1.2.2 Extended Wavelets for Multi-Measure Data Sets

For lower-end processors and for applications where the collected data is multi-

dimensional we need to develop additional techniques for the efficient and accurate

compression of the sensor’s collected data. While such multi-dimensional data sets

are more common in other application environments (see Section 1.4) they may also

arise in several sensor network applications. For example, if the sensor is attached to

a moving object, it may additionally record for each set of obtained measurements not

only the time, but also its location. Moreover, each sensor is a device that communi-

cates with other nodes within its vicinity. Collecting statistics on the input (output)

traffic, such as the types and number of packets received by (transmitted to) other
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nodes may help reveal not only areas of congestion and high packet loss, but even

nodes that are either malfunctioned, or even behaving in a malicious way.

In our work we focused our attention to the wavelet decomposition technique,

since the work in [CGRS00, MVW98, VW99] demonstrated that wavelets can achieve

increased accuracy to queries over other data reduction techniques, such as histograms

and random sampling. In this dissertation we propose a novel approach for effectively

adapting wavelet-based data reduction methods to multi-measure data sets through

the use of extended wavelet coefficients. Briefly, an extended wavelet coefficient can

store multiple coefficient values for different – but not necessarily all – measures.

The end result is a flexible, space-efficient storage scheme that can eliminate the

disadvantages of prior algorithms. We then consider the problem of constructing

effective extended wavelet coefficient synopses (under a given storage constraint) op-

timized for the (1) weighted sum-squared error, and (2) relative error in the approx-

imate data reconstruction. Our synopsis-construction problems are natural general-

izations of the corresponding problems for conventional (i.e., L2-error) wavelet syn-

opses [VW99, CGRS01] and probabilistic (i.e., relative-error) wavelet synopses [GG04]

for the single-measure case. We demonstrate that, in the presence of multiple mea-

sure, choosing an effective subset of extended wavelet coefficients gives rise to difficult

optimization problems that are significantly more complex than their single-measure

counterparts. This is primarily due our more involved extended-coefficient storage for-

mat that forces non-trivial dependencies between thresholding decisions made across

different measures. We propose optimal solutions based on novel algorithmic formula-

tions that employ Dynamic-Programming (DP) ideas. Given the high time and space
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complexities of our exact DP schemes, we also introduce fast, greedy approximation

algorithms (based on the idea of marginal error gains) that produce near-optimal

solutions. To the best of our knowledge, our work represents the first principled, me-

thodical study of effective wavelet-based data reduction techniques for multi-measure

data sets.

1.3 Evaluating Approximate Continuous Queries

In sensor networks, processing is often driven by designated nodes that monitor the

behavior of either the entire, or parts of the network. This monitoring is typically

performed by issuing queries, which are propagated through the network, over the

data collected by the sensor nodes. The output of the queries is then collected by

the monitoring node(s) for further processing. While typical database queries are

executed once, queries in monitoring applications are long-running and executed over

a specified period, or until explicitly being terminated. These types of queries are

known as continuous queries [CDTW00, TGNO92].

In these types of monitoring applications, data influencing the result of the

query is transmitted almost continuously, since an on-line estimation of the query

result is desired. Since under this scenario each node will typically transmit a single

value, the data reduction techniques that we have proposed so far are not applicable.

Instead, protocols that reduce the number of messages that need to be transmitted

are needed.

In our work we have developed new techniques for data dissemination in sen-
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sor networks when the monitoring application is willing to tolerate a specified error

threshold. Two scenarios are explored, where the monitoring application specifies

either the maximum error that it is willing to tolerate, or the desired average band-

width consumption in the network. Our techniques operate by placing error filters at

each sensor node participating in the query evaluation, necessitating the transmission

of its data only in certain cases. In order to adjust to potentially different charac-

teristics of the collected data, our algorithms are adaptive and periodically adjust

these error filters by considering the potential benefit of increasing the error thresh-

old at a sensor node, which is equivalent to the amount of messages that we expect

to save by allocating more resources to the node. The result of using this gain-based

approach are two robust algorithms that are able to identify volatile data sources

and eliminate them from consideration. Moreover, we have introduced the residual

mode of operation, during which a parent node may eliminate messages from its chil-

dren nodes in the aggregation tree when the cumulative change from these sensor

nodes is small. Finally, unlike previous algorithms [OJW03, OW02] for the same ap-

plication over non-hierarchical environments, our algorithms operate with only local

knowledge, where each node simply considers statistics from its children nodes in the

aggregation tree. This allows for more flexibility in designing adaptive algorithms

and is a more realistic assumption, especially for sensors nodes with very limited

capabilities [MFHH02].
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1.4 Additional Potential Applications

The use of data reduction techniques has been widely studied for the area of Decision

Support Systems (DSS ), which require processing huge quantities of data to produce

exact answers to posed queries. Due to the sheer size of the processed data, queries

in DSS systems are typically slow. However, many situations arise when an exact

answer to a query is not necessary, and the user would be more satisfied by getting

a fast and fairly accurate answer to his query, perhaps with some error guarantees,

than by waiting for a long time to receive an answer accurate up to the last digit.

This is often the case in OLAP applications, where the user first poses general queries

while searching for interesting trends on the data set, and then drills down to areas

of interest.

While previous work[CGRS00, MVW98, VW99] demonstrated the applicability

of wavelets in such applications, little emphasis had been placed on applying wavelets

to data sets containing multiple measures. Such data sets are very common in many

database applications. For example, a sales database could contain information on the

number of items sold, the revenues and profits for each product, and costs associated

with each product, such as the production, shipping and storage costs. Moreover, in

order to be able to answer types of queries other than Range-Sum queries, it would

be necessary to also store some auxiliary measures. For example, if it is desirable to

answer Average queries, then the count for each combination of dimension values also

needs to be stored. Our work can be directly applied to these types of applications.

While our SBR algorithm is motivated by applications on sensor networks, the
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same technique can also be used in other applications for the lossy compression of

multiple time series. For instance the phone-call and stock data sets that we use in

our experiments are not directly related to sensor networks. In domains where sig-

nificantly more powerful processors can be used than in sensor network applications,

some of the shortcuts introduced in this dissertation (for example, a larger number of

candidate intervals for inclusion in the base signal may be considered) may be relaxed

in order to achieve even better approximation.
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Chapter 2

Related Work

2.1 Sensor Networks

In recent years there has been a flurry of research in the area of sensor networks.

Several recent proposals, such as COUGAR [YG02] and TinyDB [MFHH02], have

been issued on infusing database primitives on sensor networks. A declarative query

language like SQL provides far greater flexibility than hand-coded programs that

are pre-installed at the sensor nodes [MFHH03]. In the database community there

is ongoing effort in understanding how embedded database systems can be used to

provide energy-based query optimization [MFHH03, YG02].

In-network data aggregation is investigated in [DKR04, IEGH02, MFHH02,

YG02, SBLC04, DGR+03, GEH02]. The main idea is to build an aggregation tree,

which partial results will follow. Non-leaf nodes of the tree aggregate the values of

their children before transmitting the aggregate result to their parents, thus reducing

substantially the number of messages in the network. Data transmission protocols

also need to be developed for the data aggregation process. In [MFHH02], nodes of

the aggregation tree carefully synchronize the periods when they transmit data. The

idea is to subdivide each epoch into intervals and have parent nodes in the tree listen

for messages from their children during pre-defined time-slots. This allows the nodes
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to power-down their radios when not necessary and reduce energy and bandwidth

consumption. Another notable method for synchronizing the transmission periods

of nodes is the recently proposed wave scheduling approach of [DGR+03]. Our al-

gorithms for the approximate evaluation of continuous aggregate queries should be

implemented on top of a protocol like TAG [MFHH02] to obtain their maximum

benefits. Decentralized algorithms for aggregate computation have also been pro-

posed [BGMGM03, KDG03].

Recent proposals for combining data modeling with data acquisition can also

help in reducing the cost of aggregation [DGM+04, Kot05]. Some additional im-

portant issues addressed in recent work include network self-configuration [CE02,

Kot05], discovery [EGHK99, HSI+01] and computation of energy-efficient data rout-

ing paths [CT00, HCB00, LR02, MFHH02, SWR98, TK03]. The techniques de-

veloped in the above work are complementary to our work, since while the above

techniques help determine energy-efficient aggregation trees, our algorithms further

reduce the amount of information flowing in the network. In [CLKB04], a frame-

work for compensating for packet loss and node failures during query evaluation

is proposed. In the database community additional issues such as data modeling

and acquisition have been recently addressed [DGM+04, Kot05]. Distributed stor-

age management is another topic that brings together the networking and database

communities [DGR+03, GGC03, RKY+02].

Sensor nodes are small devices that “measure” their environment and com-

municate streams of low-level values to a base station for further processing and

archiving. These streams are then used to construct a higher-level model of the
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environment. This process makes historical data equally important to current val-

ues [AFF+03, CFZ01]. In this dissertation we propose approximation techniques as

a less intrusive form of data reduction that is more suited for applications in which

a long-term historical record of measurements from each sensor is required. In this

scenario the sensor nodes wait till enough data has been gathered and only then is the

data compressed and transmitted over the network. This allows the nodes to power-

down their radios for long intervals, thus substantially reducing the energy drain of

their batteries.

Recently, there has been increasing interest in understanding the principles of

continuous queries in data streams [CDTW00, HFC+00, MWA+03, VN02, ZSC+03].

Olston et al. in [OLW01, OW00, OW02] investigated the tradeoffs between precision

and performance in cached and replicated data. In [OW02] the emphasis is on deter-

mining when cached objects of remote data sources should be refreshed in order to

minimize the average divergence of the cached objects given a server-size bandwidth

constraint. The used divergence function can either represent the staleness or the

update lag of the cached object, or the value deviation between the object’s cached

and current values. The work in [OJW03] also discusses extensions for the execution

of multiple concurrent continuous queries. Several of these ideas can also be combined

with our algorithms. The problem of minimizing the number of messages exchanged

in the network for a given error constraint has also been studied recently in [SBLC04].

In [SBLC04] the authors suggest using a uniform distribution of the error, while our

algorithms distribute the error based on local statistics collected on a node. On the

other hand, earlier work in distributed constraint checking [BGM92, SS90] cannot be
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directly applied in our setting, because of the different communication model and the

limited resources at the sensors.

An online algorithm for minimizing the update cost while the query can be

answered within an error bound is presented in [KT01]. The evaluation of proba-

bilistic queries over imprecise data was studied in [CKP03, CP03]. Extending this

work to hierarchical topologies, such as the ones studied in our work, is an open re-

search topic. Finally, [BGMGM03, KDG03] investigate decentralized algorithms for

aggregate computations with applications in P2P and sensor networks.

2.2 Data Reduction Techniques

The main data reduction mechanisms studied so far include histograms, random sam-

pling and wavelets. These techniques are mainly targeted towards low to medium data

dimensionalities, as their accuracy has been shown to decrease for high-dimensional

data sets. For high-dimensional data, techniques that try to achieve dimensionality

reduction by identifying dependencies among the dimensions seem to be more promis-

ing. Examples include the work in [GTK01], using probabilistic relational models,

and the work in [DGR01], where the goal is to construct accurate high-dimensional

histograms by employing statistical interaction models to identify and exploit depen-

dency patterns in the data.

Histograms are the most extensively studied data reduction technique with wide

use in query optimizers to estimate the selectivity of queries, and recently in tools for

providing fast approximate answers to queries [IP00, PG99]. A classification of the
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types of histograms proposed in literature is presented in [PI97]. The main challenge

for histograms is to be able to capture the correlation among different attributes in

high-dimensional data sets. Recent work in [TGIK02] addresses the problem of con-

structing accurate high-dimensional histograms with the use of sketching techniques,

which were first introduced in [AMS96].

Random Sampling is based on the idea that a small random sample of the data

often represents well the entire data set. The result to an aggregate query is given

by appropriately scaling the result obtained by using the random sample. Random

sampling possesses several desirable characteristics as a reduction method: the esti-

mator for answering count, sum and average aggregate queries is unbiased, confidence

intervals for the answer can be given, construction and update operations are easy

and have low overhead, and the method naturally extends to multiple dimensions and

measures. In [Vit85] the reservoir sampling algorithm was introduced, which can be

used to create and maintain a random sample of a fixed size with very low overhead.

This method was further refined in [Gib01] for data sets containing duplicate tuples.

Haar wavelets are a mathematical tool for the hierarchical decomposition of

functions with several successful applications in signal and image processing [JS94,

SDS96]. A number of recent studies have also demonstrated the effectiveness of the

Haar wavelet decomposition as a data-reduction tool for database problems, includ-

ing selectivity estimation [MVW98] and approximate query processing over massive

relational tables [CGRS00, GG02, VW99] and data streams [GKMS01, MVW00].

Briefly, the key idea is to apply the decomposition process over an input data set

along with a thresholding procedure in order to obtain a compact data synopsis com-
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prising of a selected small set of Haar wavelet coefficients. The results of several

research studies [CGRS00, GG02, GG04, MVW98, SS02, VW99] have demonstrated

that fast and accurate approximate query processing engines can be designed to op-

erate solely over such compact wavelet synopses. Furthermore, even though the Haar

wavelet decomposition was originally designed with the objective of minimizing the

overall mean-squared error (i.e., the L2-norm error) in the data approximation, recent

work [GG04, GK04] has also demonstrated their use in optimizing relative-error met-

rics. Relative errors are arguably the most important metrics for approximate query

answers and can also enable meaningful, non-trivial error guarantees for reconstructed

values (by bounding the maximum relative error in the approximate reconstruction

of individual data values [GG04, GK04]).

The Discrete Cosine Transform (DCT) [ANR74] constitutes the basis of the

mpeg encoding algorithm and has also been used to construct compressed multi-

dimensional histograms [LKC99]. Linear regression has been recently used in [CDH+02]

for on-line multidimensional analysis of data streams.

The use of a dictionary is a standard technique in data compression algorithms

(for example in gzip). As an abstraction, the base signal that we construct in one of

our SBR algorithm (Chapter 3) is a dynamic data dictionary that is used to compress

present and future values. A fundamental difference with compression techniques such

as gzip is that our compression is lossy, which allows us to achieve significantly higher

compression ratios. Furthermore, the details of our approximation (construction of

the base signal, approximation using regression etc.) differ at a fundamental level

from standard compression techniques. Many popular transforms also use some form
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of basis that is either fixed (i.e., Wavelets, DCT) or data dependent (i.e., SVD).

We also explore the use of such bases in our framework and present the necessary

modifications. However, the base signal constructed by our algorithms seems to

always outperform these bases, for the specific encoding we use in our approximation.
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Chapter 3

Compression of Multiple Time Series

3.1 Introduction

Recent advances in wireless technologies and microelectronics have made feasible,

from both a technological as well as an economical point of view, the deployment of

densely distributed sensor networks. These networks are used in a variety of monitor-

ing applications such as military surveillance, habitat monitoring, location tracking

and inventory management. Each sensor node may be equipped with several sensing

elements, such as microphones, accelerometers and temperature sensors that allow it

to gather low-level measurements of its surroundings. Once enough data is collected,

it is processed locally and transmitted to a base station for further analysis. A base

station may represent any node of the network with increased storage, battery and

processing capabilities.

Large-scale sensor networks require tight data handling and data dissemination

techniques. Transmitting a full-resolution data feed from each sensor back to the base-

station is often prohibitive due to (i) limited bandwidth that may not be sufficient

to sustain a continuous feed from all sensors and (ii) increased power consumption

due to the wireless multi-hop communication. In order to minimize the volume of the

transmitted data, we can apply two well known ideas: aggregation and approximation.
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Aggregation works by summarizing the measurements in the form of simple statistics

like average, maximum, minimum etc. that are then transmitted to the base-station

over regular intervals. Aggregation is an effective means to reduce the volume of data,

but is rather crude for applications that need detailed historical data, like military

surveillance. Furthermore, when data feeds exhibit a large degree of redundancy,

approximation is a less intrusive form of data reduction in which the underlying data

feed is replaced by an approximate signal tailored to the application needs.

In this chapter we study the problem of disseminating historical information

in sensor networks. We first look at the problem of summarizing multi-valued data

feeds generated at a single sensor node. Our techniques build on the observation that

the values of the collected measurements exhibit similar patterns over time, or that

different measurements are naturally correlated, as is the case between pressure and

humidity in weather monitoring applications. At the core of our approximation lies

the notion of a base signal, a set of values from the collected measurements that can

be used to linearly approximate other parts of the data. Following the construction of

the base signal, the collected data is partitioned into intervals that can be efficiently

approximated as linear projections of some part of the base signal. As we will show

in this chapter, our techniques provide:

• Increased accuracy and robustness when compared to other approximation tech-

niques: Our algorithm feeds from intrinsic redundancy in the collected measure-

ments (like many data reduction techniques), but has full control over the data

model used to exploit these redundancies (which values to insert into the base
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Figure 3.1: Dissemination using localized groups: nodes form groups and elect a group
leader. Using a localized algorithm each node in the group obtains a compression
ration ki so that the target overall compression ratio is achieved, while the error of
the approximation is minimized.

signal), the amount of space allocated for this data model and the number of

coefficients that describe the projections of the data values on this data model.

Due to this fact, our algorithm produced up to 27 and 1000 times smaller er-

rors than the next best competitive method for the sum squared and the sum

squared relative error metrics, respectively, Moreover, due to its fall-back mech-

anism to linear regression, as we will later explain, it performs at least as good

as linear regression, but in practice is significantly more accurate.

• Adaptability to different error metrics: Our algorithm can be adapted with

only minor modifications, which do not alter its time complexity, to minimize

different error metrics, such as the sum squared error, sum squared relative

error, and maximum error of the approximation. We further discuss extensions

when the application requires strict error bounds or a combination of error and

space bounds.

Sensors networks are built with the premise that nodes should collaborate to

perform the task at-hand. Thus, designing localized algorithms is of utmost im-
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portance in these networks [EGHK99, Kot05]. We have been able to extend our

framework to be used in a localized manner, where groups of sensors that lie within

a small distance from each other cooperate to produce a more accurate approximate

representation of their collected data. Under the localized mode of operation the

sensor nodes transmit their compressed data feeds to the group leader, which in turn

applies our compression algorithm to the incoming feeds (including its own measure-

ments). The group leader further coordinates the allocation of bandwidth among the

members of its group in order to minimize the desirable error metric. This process

is illustrated in Figure 3.1. As will be explained, our algorithm is applied on the

compressed values directly; there is no need for the group leader to “uncompress”

the feeds received by the other nodes in its group. This localized framework allows

the group leader to explore correlations between measurements of different sensors to

achieve a significantly more accurate approximation for the same overall compression

ratio. Such correlations may be either due to the small variations of the monitored

physical quantities because of the proximity of the sensors (for instance when obtain-

ing temperature readings), or due to the nature of the measurements (i.e. voice levels

tend to fall gradually with the radius from the source).

3.2 Preliminaries

In this section we first present a description of the characteristics of sensor networks

and their applications. We then describe the operation of sensor nodes in our data

reduction framework and present the optimization problems that we address in this
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chapter.

3.2.1 Characteristics of Sensor Networks

Recent technological advances have made possible the development of low-cost sen-

sor nodes with heavily integrated sensing, processing and communication capabilities.

Information about the environment is gathered using a series of sensing elements con-

nected to an analog-to-digital converter. Examples include microphones for acoustic

sensing, accelerometers and temperature sensors. Once enough data is collected, it

is processed locally and periodically forwarded to a base station, using a multi-hop

routing protocol [SCI+01].

The processing subsystem on the nodes depends on the nature of the applica-

tion. Applications such as military reconnaissance that require significant processing

to be performed at the nodes use sensor nodes with significant processing power.

As an example, an improved model of the commonly used StrongARM 1100 proces-

sor (µAMPS [SCI+01] and HiDRA nodes) reaches a frequency of 400 MHz and can

support up to 64 MB of memory.

As the processing and storage capabilities of sensor nodes tend to follow Moore’s

Law, their communication and power subsystems become the major bottleneck of

their design. For example, over the last years, the energy capacity of the batteries

used in such nodes has exhibited a mere 2-3% annual growth.1 The main source of

energy consumption in a node is the data transmission process. There are several

reasons for this:

1http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/L07.ppt
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1. The energy drain during transmission is much larger than the consumption dur-

ing processing [EGHK99]. As an example, on a Berkeley MICA Mote sending

one bit of data costs as much energy as 1,000 CPU instructions [MFHH03].

Faster processors typically achieve lower power consumptions per CPU instruc-

tion, making the above ratio even larger.

2. Transmission ranges between nodes are fairly short. The transmitted data may

thus require to traverse multiple hops to reach the base station. This retrans-

mission process at each intermediate node is very costly. Furthermore, because

nodes often use broadcast protocols over radio frequencies [MFHH02], trans-

mitted messages are not only received by the intended node, but by all nodes

in the vicinity of the sender, thus increasing the overall power consumption.

Even on applications where battery lifetime is not a concern (i.e., military

surveillance sensing nodes attached to moving vehicles with practically infinite power

supply), the available bandwidth may not sustain a continuous feed of measurements

for all sensors deployed in the terrain. The design of data reduction protocols that

effectively reduce the amount of data transmitted in the network is thus essential

when the goal is to meet the application’s bandwidth constraints or to increase the

network’s lifetime.

3.2.2 Data Model and Processing

In order not to deplete their power supply and to conserve bandwidth, the sensors

do not continuously transmit every new measurement they obtain but rather wait till
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enough data is collected and then forward it to the base station [SCI+01]. This form

of batch processing allows them to power-down their radio transmitter and prolong

their lifetime in a way analogous to [MFHH02].

Within a sensor, the recorded data is depicted in a two dimensional array where

each row i stores sampled values of a distinct quantity. Informally, each row i is a

time series ~Yi of samples from quantity i collected by the sensor. The array has N

rows, N being the number of recorded quantities, and M columns, where M depends
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on the available memory.2

As more measurements are obtained, the sensor’s memory buffers become full.

At this point the latest NxM values are processed and each row i (of length M) is

approximated by a much smaller set of Bi values, i.e. Bi � M . The resulting “com-

pressed” representation, of total size equal to B =
∑N

i=1 Bi, is then transmitted to

the base station. The base station maintains the data in this compact representation

by appending the latest “chunk” to a log file. A separate file exists for each sensor

that is in contact with the base station. The entire process is illustrated in Figure 3.2.

Each sensor allocates a small amount of memory of size Mbase for what we call

the base signal. This is a compact ordered collection of values of prominent features

that we extract from the recorded values and are used as a base reference in the

approximate representation that is transmitted to the base station (details will be

given in the next section). The data values that the sensor transmits to the base

station are encoded using the in-memory values of the base signal at the time of

the transmission. The base signal may be updated at each transmission to ensure

that it will be able to capture newly observed data features and that the obtained

approximation will be of good quality. When such updates occur, they are transmitted

along with the data values and appended in a special log file that is unique for each

sensor. This allows the base station to reconstruct (approximately) the series ~Yi at

any given point in the past.

2We here assume that all quantities are sampled with the same frequency. This simplifies notation,
however, our framework also applies when each quantity is recorded on a different schedule.
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3.2.3 Our Optimization Problem

We can think of the base signal as a dictionary of features used to describe the data

values. The richer the pool of features we store in the base signal the better the

approximation. On the other hand, these features have to be (i) kept in the memory

of the sensor to be used as a reference by the data reduction algorithm and (ii) sent

to the base station in order for it to be able to reconstruct the values. Thus, for a

target bandwidth constraint (number of values that can be transmitted) the more

insert and update operations on the base signal that we perform, the less bandwidth

is left available for approximating the data values. Moreover, the time to perform

the data approximation increases, in our algorithms, linearly with the size of the base

signal.

In the next section we present an efficient algorithm that decides (i) how large

the base signal needs to be at each transmission; (ii) what new features to be included

in it; (iii) which older features are not relevant any more; and (iv) how to best

approximate the data measurements using these features. The only user input needed

by the algorithm is the target bandwidth constraint and the maximum buffer size of

the base signal values.

3.3 The SBR Framework

We now describe our framework in more detail. We start with a motivational example

that demonstrates the intuition behind our techniques. Subsection 3.3.2 presents the

primitive operations required by our framework while the SBR algorithm is presented
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Configuration Parameters
N Number of input signals
M Measurements per input signal
Input Parameters
TotalBand Total bandwidth per transmission
Mbase Buffer size for base signal values
Derived/Calculated Parameters
n = N ×M Size of in-memory data
W =

√
n Size of each base interval

B Compressed data size
maxIns Maximum number of base intervals inserted in current transmission
Ins Number of base intervals actually inserted in the current transmission

Table 3.1: Configuration, input and derived parameters of our algorithms

in subsection 3.3.3. Table 3.1 contains a brief description of the parameters used in

our algorithms.

3.3.1 Motivational Example

Many real signals are correlated. We expect this to be particularly true for measure-

ments taken by a sensor, especially if they are physical quantities like temperature,

dew-point, pressure etc. The same is often true in other domains. For example, in

Figure 3.3 we plot the average Industrial and Insurance indexes from the New York

stock market for 128 consecutive days.3 Both signals show similar trends; i.e., they

go up and down together. Figure 3.4 depicts a XY scatter plot of the same values.

This is created by pairing values of the Industrial (X-coordinate) and Insurance (Y-

coordinate) indexes of the same day and plotting these points in a two-dimensional

plane. The strong correlation among these values makes most points lie on a straight

line. This observation motivates our work. Assuming that the Industrial index (call

3Data at http://www.marketdata.nasdaq.com/mr4b.html
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it ~X) is given to us in a time-series of 128 values, we can approximate the other

time-series (Insurance: ~Y ) as:

~Y ′ = a ∗ ~X + b

The coefficients a and b are determined by the condition that the sum of the square

residuals, or equivalently the L2 error norm || ~Y ′ − ~Y ||2, is minimized. This is noth-

ing more than standard linear regression. However, unlike previous methods, we will

not attempt to approximate each time-series independently using regression. In Fig-

ure 3.3 we see that the series themselves are not linear, i.e. they would be poorly

approximated with a linear model. Instead, we will use regression to approximate

piece-wise correlations of each series to a base signal that we will choose accordingly.

In the example of Figure 3.4 the base signal can be the Industrial index ( ~X) and the

approximation of the Insurance index will be just two values (a, b). In practice the

base signal may be much smaller than the complete time series, since it only needs

to contain the “important” trends of the target signal ~Y . For instance, in case ~Y

is periodic, a sample of the period would suffice. Our algorithm breaks the latest

measurements obtained by the sensor into small intervals (of varying sizes) and looks

for intervals of the same length in the base signal that are linearly correlated. At the

same time, the base signal values are evaluated and may get updated with features

from the newly collected measurements when necessary.
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3.3.2 Primitives of our Implementation

Piece-wise Approximation of Measurements

We here assume that the base signal ~X is given to us; we later describe how to

construct the base signal. We will approximate the latest N ×M measurements in

~Y1, . . . , ~YN using B ≥ 4×N values, i.e. using at least four values per time series.

To simplify notation, we model the collected data as a single series ~Y that is

simply the concatenation of the N series ~Yi. Our technique relies on breaking ~Y

into B/4 intervals and “mapping” each one to an interval of the base signal of equal

length.4 The algorithm works recursively. It starts with a single interval for each

row of the collected data. In each iteration, the interval with the largest error in

the approximation is selected and divided in two halves, until the “budget” of B/4

intervals is exhausted. An interval I is a data structure with six entries:

• start, length: these define the scope of the interval; i.e. I represents values of

Y [i], with i in [start, start + length).

• shift: it defines the part of the base signal that is used to approximate the

values of I; the interval I is mapped to segment [shift, shift + length) in ~X.

• a, b, err: the first two are the regression parameters, while err is the sum

squared error (sse) of the approximation.

Subroutine Regression() shown in Figure 3.5 is at the core of our method. This

function pairs a segment of the base signal between values [start x, start x + length)

4This mapping requires four values per interval, thus the division by 4.
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procedure Regression( ~X, ~Y , start x, start y, length)
Input: Base signal ~X; signal ~Y ; starting points

start x and start y of the paired intervals; interval length length.
Output: Regression parameters a, b, error err of the approximation.
begin
1. //Compute Regression Parameters
2. sum x=

∑
0≤i<length X[i + start x]

3. sum y=
∑

0≤i<length Y [i + start y]
4. sum xy=

∑
0≤i<length X[i + start x]Y [i + start y]

5. sum x2=
∑

0≤i<length X[i + start x]2

6. a= length×sum x y−sum x×sum y
length×sum x2−sum x×sum x

7. b= sum y−a×sum x
length

8. // Compute sse of signal ~Y ′ = a ~X + b in range [start y . . . start y + length)
9. err =

∑length
i=0 (Y [i + start y]− (a×X[i + start x] + b))2

10. return (a,b,err)
end

Figure 3.5: Regression Subroutine

with values of ~Y between [start y, start y +length), as in Figure 3.4, and computes

the regression parameters a, b as well as the (sse) error of the approximation ~Y ′ =

a ~X + b in this range. Each value Y [i] with index i in [start y, start y + length) is

approximated as aX[start x + i− start y] + b.

It should be noted that the Regression() subroutine calculates the optimal a,

b values that minimize the sum squared error of the approximation. If the desired

error metric is different, then the formulas need to be appropriately modified. In

Section 3.3.6 we present the necessary modifications for two interesting optimization

problems: minimizing the sum squared relative error, and minimizing the maximum

absolute error of the approximation. The modified algorithms run in O(length) time

and require O(1) and O(length) space, respectively.

Subroutine BestMap() of Figure 3.6 looks for the best way to approximate

an interval I. It shifts I over ~X and calculates the regression parameters and the
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procedure BestMap( ~X, ~Y , Interval I)
Input: Base signal ~X; signal ~Y ; mapped interval I.
Output: Regression parameters I.a, I.b at the I.shift value than minimizes the

approximation error I.err of the interval I.
begin
1. I.shift = −1
2. Perform standard linear regression on I and set the values of I.a, I.b and I.err
3. if (I.length ≤ 2×W ) then
4. // Shift I over ~X and find the segment for which the regression error is minimized
5. for shift := 0 to 0..length( ~X)− I.length− 1 do
6. (a,b,err) = Regression( ~X, ~Y , shift, I.start, I.length)
7. if (err is minimum error so far) then
8. Update values of I.a, I.b, I.err and I.shift
9. endif
10. endfor
11. endif
end

Figure 3.6: Regression and BestMap Subroutines

approximation error for the shift parameter that produces the smallest error. This

algorithm contains two deviations from our previous discussion. First, it also considers

approximating each interval I using standard linear regression, and uses a negative

value for the I.shift parameter to denote this. Second, it performs the shifting

process over the base signal only for intervals with a maximum length of 2 × W ,

where W is a parameter that denotes the length of the intervals that constitute the

base signal.5 The last modification is performed both to reduce the time complexity

of the algorithm to O(I.length + W ×Mbase), and because of the reduced likelihood

that large intervals will be accurately mapped to multiple consecutive intervals of the

base signal.

The core approximation algorithm GetIntervals() is given in Figure 3.7. The

approximation obtained is returned as a list of B/4 intervals in i list. This list is

5This will become more clear later in our discussion.
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maintained sorted (priority queue) based on the sse of each interval. ~X is the current

base signal.

Theorem 1 The GetIntervals() algorithm runs in O(NMlog(B
N

)+B×Mbase×W )

time.

Proof: The GetIntervals() algorithm repeatedly breaks the interval with the

largest error into two halves and calls the BestMap() algorithm for each interval.

Retrieving the interval with the maximum error can be done in O(1) time since the

i list is sorted. Since the running time of the BestMap() algorithm increases with

the size of the mapped interval, the worst case complexity of the GetIntervals()

algorithm arises when the algorithm continuously retrieves and breaks the interval

with the largest size. Since exactly B/4− 1 breaks will be performed, and N signals

of size M exist, the algorithm will perform in the worst case N breaks of intervals

with size M , 2 × N intervals of size M
2

,. . . , 2log B
4N

−1 × N intervals of size M
log B

4N
−1

.

Thus, the overall running time is:

log B
4N∑

i=1

(N × 2i−1 ×O(
M

2i−1
+ W ×Mbase)) = O(N ×

log B
4N∑

i=1

(M + W ×Mbase × 2i−1)) =

O(MN log
B

4N
+ N ×W ×Mbase ×

B

4N
) = O(MN log

B

N
+ B ×W ×Mbase).

For each interval in i list a record with four values (I.start, I.shift, I.a, I.b)

is transmitted to the base station. The base station will sort the intervals based on

I.start and, thus, there is no need to transmit their length. It is interesting to note
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procedure GetIntervals( ~X, ~Y1,. . . , ~YN , B, W )
Input: Base signal ~X; signals ~Y1,. . . , ~YN ;

space constraint B; length W of intervals in base signal
Output: List i list of approximated intervals.
begin
1. i list = ()
2. ~Y = concat( ~Y1, . . . , ~YN ) // Virtual assignment
3. // Create an interval for each row ~Yi (M values each)
4. for i := 1 to N do
5. (I.start, I.length) = ((i-1) × M , M)
6. BestMap( ~X, ~Y , I, W )
7. i list.push(I)
8. endfor
9. num intervals = N
10. while num intervals++ < B / 4 do
11. // i list is sorted on decreasing order of I.err
12. I = i list.pop()
13. // Break I in 2 pieces
14. (Ileft.start, Ileft.length) = (I.start, I.length/2)
15. BestMap( ~X, ~Y , Ileft, W )
16. (Iright.start, Iright.length) = (I.start+I.length/2, I.length/2)
17. BestMap( ~X, ~Y , Iright, W )
18. i list.push(Ileft)
19. i list.push(Iright)
20. endwhile
21. return (i list)
end

Figure 3.7: GetIntervals Algorithm

that the GetIntervals() algorithm decides dynamically how many intervals it will

use to approximate each of the N rows of the collected data, allocating more intervals

to signals that are harder to approximate accurately.

Selecting Data Features for Inclusion in the Base Signal

We focus on the time when the sensor’s memory is filled with NxM values, as depicted

in Figure 3.2. We assume that the buffer allocated to the base signal is of size Mbase.

This buffer is organized as a list of intervals (called base intervals) of the same length
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procedure GetBase( ~Y1, . . . , ~YN , W , M , maxIns)
Input: Signals ~Y1,. . . , ~YN ; length W of intervals in base signal;

length M of signals; maximum number maxIns of selected base intervals
Output: List base list of candidate base intervals
begin
1. Create K = N×M

W CBIs of width W
2. For each CBI Candi, set its benefit to 0
3. Maintain unsorted list Q with CBIs
4. Maintain list base list with selected stored intervals
5. LinearErr(Candj) is the error of approximating Candj using standard linear regression
6. for i := 1 to K do
7. for j := 1 to K do
8. // Calculate error of approximating the j-th CBI by using as base the i-th CBI
9. error=Regression(Candi,Candj ,0,0,W )
10. if error ≤ LinearErr(Candj) then
11. Candi.benefit+=LinearErr(Candj)-error
12. endif
13. endfor
14. Q.insert(Candi)
15. endfor
16. for i := 1 to maxIns do
17. C = Q.popBestInterval()
18. base list.insert(C)
19. for j := 1 to |Q| do
20. adjust(Q[j].benefit, C)
21. endfor
22. endfor
23. return (base list)
end

Figure 3.8: GetBase Algorithm

W . For simplicity, we assume that both M and Mbase are multiples of W . We note

here that in Figure 3.7 the base signal is presented as a series of Mbase values, which

is simply the concatenation of the base intervals in the buffers.

The GetBase() algorithm (Figure 3.8) is called during the initialization and

update procedure of the base signal. The algorithm receives as inputs the N signals,

each of size M , the size W of each base interval, and the maximum number of intervals
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Approximated CBI Total
CBI 1 2 3 Benefit

1 1 0.95 0.50 2.45
2 0.8 1 0.55 2.35
3 0.6 0.65 1 2.25

Approximated CBI Total
CBI 2 3 Benefit

2 0.05 0.05 0.10
3 0 0.5 0.50

Initial Benefits of CBIs Adjusted Benefits of Non-Stored CBIs

Figure 3.9: Example of the GetBase Algorithm

maxIns that can be inserted in our base signal, where

maxIns =
min{Mbase, T otalBand}

W

Each input signal ~Yi is broken into M
W

non-overlapping intervals of size W . This

provides a “dictionary” of N∗M
W

candidate base intervals (CBIs). The algorithm will

choose maxIns CBIs out of this dictionary to be inserted into a candidate update

base signal. We will describe in subsection 3.3.3 how to determine how many of these

CBIs will ultimately be inserted into the base signal.

Each CBI Candi can be used to approximate any other CBI Candj, which

is in-fact part of some ~Yk, using regression. We consider such an approximation

to be beneficial, only if the error of the approximation is smaller than the error of

approximating Candj using standard linear regression. In Figure 3.8 we denote the

latter error as LinearErr(Candj). The benefit of using Candi to approximate Candj

is simply the reduction in error that we get compared to LinearErr(Candj).

The CBIs are stored in an unordered list Q. At each step, the CBI in Q with

the largest benefit is selected for inclusion in the candidate update base signal stored

in base list. After each selection, the benefits of the remaining CBIs in Q have
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to be properly updated. As we mentioned, the benefit of using Candi to approx-

imate Candj is originally equal to the reduction in error that we get compared to

LinearErr(Candj). However, at an intermediate step of the algorithm, some CBIs

have already been selected for inclusion in the candidate update base signal. By using

these stored CBIs, many of the remaining CBIs can now be better approximated than

by using standard linear regression. Thus, the benefit of using Candi to approximate

Candj has to be adjusted to depict the reduction in error that we get when compared

to the best approximation for Candj that we have so far, by using the current can-

didate update base signal. Intuitively, this adjustment prohibits the inclusion in the

base signal of CBIs that help approximate well similar parts of the data.

An example is presented in Figure 3.9. In this small example we consider just

3 CBIs, out of which we need to pick which two to select. In the left part of the

figure, we present the benefits of each of the 3 CBIs. Recall that at each step of the

algorithm, the benefit of using the i-th CBI for the approximation of the j-th CBI is

defined as the reduction in error that we achieve compared to the best approximation

that we may achieve for the j-th CBI using either standard linear regression, or a

mapping to an already selected CBI. In our example, the first CBI has the largest

total benefit, and is thus selected. In the right part of the figure, the adjusted benefits

of the remaining CBIs are presented. For example, the benefit of using the second

CBI in order to approximate the third CBI is reduced to 0.55 − 0.50 = 0.05, due to

the improved approximation of the third CBI that we can achieve using the recently

selected first CBI. Notice that now, the third CBI will be selected, even though

initially it had a lower benefit than the second CBI.
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In the GetBase() algorithm, for each of the K = N×M
W

CBIs, we first estimate

its benefit for approximating all the other CBIs. Each such approximation requires

O(W ) time, thus resulting in a total complexity of O(N2M2

W
). Then, for each of

the maxIns selected CBIs, detecting the one with the largest benefit requires O(K)

time (we do not sort the CBIs). After each selection, adjusting the benefits of the

remaining CBIs requires time O(K2). Thus, the overall running time complexity of

the algorithm is O(N2M2

W
+maxIns× N2M2

W 2 ), while its space requirements is O(N2M2

W 2 ).

For n = N × M being the size of the data, a value of W =
√

n used by

the SBR algorithm (described in the next subsection) results in a running time of

O(n1.5) for GetBase() and space of O(n), since maxIns ×W ≤ TotalBand ≤ n. In

case of severe memory constraints, we can easily modify the GetBase() algorithm

to only store for each CBI the smallest error of approximating it using at each step

the current base signal. The only modification will be to replace Lines 19-21 of the

GetBase() algorithm with a double for-loop similar to the one of Lines 6-15, and

alter the calculation of each CBI’s benefit to take into account the error of the best

approximation that we have for each CBI so far. This modified algorithm requires

O(
√

n) space and has a running time of O(maxIns× n1.5).

3.3.3 The SBR Algorithm

We now present the Self-Based Regression (SBR) algorithm that performs the approx-

imation of the data values. The algorithm receives as input the latest n = N×M data

values, a bandwidth constraint TotalBand (number of values to transmit, including
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any base signal values), the maximum size of the base signal Mbase and the current

base signal ~X of size | ~X| ≤Mbase.
6 From these parameters the user/application has to

provide only TotalBand and Mbase. The SBR algorithm must then make the following

decisions:

1. Decide how many, and which base intervals to insert into the base signal. Recall

that any such base interval has to be transmitted to the base station.

2. If the above procedure causes the size of the base signal to exceed Mbase, then

some base intervals need to be evicted from the base signal, in order to keep its

maximum size at Mbase.

3. Decide how to best approximate the data values given the updated base signal.

We here have to emphasize that it is not always desirable to insert a large

number of base intervals into the base signal. Since any inserted base interval needs

to be communicated to the base station, the larger the number of such intervals, the

smaller the number of intervals that can be used to approximate the N signals by

the GetIntervals() algorithm, since the overall bandwidth consumption is upper-

bounded by the TotalBand parameter.

The SBR algorithm is presented in Figure 3.10. It initially calls the GetBase()

subroutine to select a set of maxIns CBIs, where maxIns = min{Mbase,T otalBand}
W

. It

then performs a binary search on this list, to determine the number of CBIs that will

ultimately be inserted into the base signal. This search terminates when the algorithm

determines a number of intervals Ins, such that the error of the approximation when

6At the first transmission the current base signal will be empty.
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procedure SBR( ~X, ~Y1, . . . , ~YN , M , TotalBand, Mbase)
Input: Current base signal ~X; signals ~Y1,. . . , ~YN ; length M of each signal;

total bandwidth constraint TotalBand; maximum base signal size Mbase

Output: New base signal stored at ~X; approximated data intervals
begin
1. maxIns = min{Mbase,T otalBand}

W
2. W =

√
N ×M

3. base list = GetBase( ~Y1, . . . , ~YN ,W, M, maxIns)
4. // Errors[i] is the approximation error after inserting the first i CBIs of

base list in the base signal
5. Initialize Errors[i] = UNDEFINED ∀i ∈ [0..maxIns)
6. Ins = Search( ~X, ~Y1, . . . , ~YN ,W, M, TotalBand, base list, Errors, 0,maxIns)
7. Form ~Xnew by appending the Ins first intervals of the base list to ~X
8. B = TotalBand− Ins× (W + 1)
9. GetIntervals( ~Xnew, ~Y1, . . . , ~YN , B, W )
10. if | ~Xnew| > Mbase then

11. Evict Repl = | ~Xnew|−Mbase

W intervals of ~Xnew that also belonged to ~X
using a LFU replacement policy

12. Replace evicted intervals with the last Repl intervals of ~Xnew

13. endif
14. ~X = ~Xnew

15. Transmit the inserted base intervals, their offsets in the base signal and the
regression intervals

end
Figure 3.10: SBR Algorithm

inserting the first Ins intervals of the aforementioned list in the base signal is lower

than inserting either the first Ins− 1 intervals, or the first Ins + 1 intervals into the

base signal. This is achieved through the call to function Search() at Line 6, which

is presented in Figure 3.12. The approximation of the N signals is then performed

by using the concatenation of the previous base signal with these Ins intervals. After

this step, if the size of the base signal now exceeds Mbase, then enough base intervals

of the old base signal are evicted from the base signal using a Least Frequently Used

(LFU) replacement policy. Any newly inserted base interval will thus either occupy an

empty position of the base signal, or replace another base interval. Each transmission
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procedure CalculateError( ~X, ~Y1, . . . , ~YN , B, W, Errors, pos)
Input: Base signal ~X; signals ~Y1, . . . , ~YN ; ~Y ; space for intervals B; length W of intervals

in base signal; array of calculated errors Errors and position pos of interest
Output: Approximation error when inserting pos intervals into the base signal
begin
1. if Errors[pos] == UNDEFINED then
2. list’ = GetIntervals( ~X, ~Y1, . . . , ~YN , B − pos×W,W )
3. Errors[pos] = sum of errors in list’
4. endif
end

Figure 3.11: CalculateError Subroutine

includes exactly TotalBand values:

1. The Ins newly inserted base intervals, and their position in the base signal in

which they were ultimately inserted (Ins× (W + 1) values in total).

2. TotalBand−Ins×(W+1)
4

intervals of four values each (start, shift plus the two regres-

sion parameters).

The running time complexity of the SBR algorithm is O(n1.5+(nlog(TotalBand
N

)+

TotalBand×
√

n×Mbase)×log(maxIns)), where maxIns = min{Mbase,T otalBand}√
n

. Thus,

the entire algorithm has a modest O(n1.5) dependency on the data size, while its

running time scales linearly with the size of the transmitted data TotalBand and the

(maximum) size of the base signal Mbase.

3.3.4 Design Issues in SBR

Several decisions in the design of the SBR algorithm were made to limit its running

time complexity. We initially decided to simply look for and exploit linear piece-wise

dependencies between each data interval and some part of the base signal. Obviously,

we could alternatively have used a more complex model (i.e., a polynomial function),
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procedure Search( ~X, ~Y1, . . . , ~YN ,W, B, base list, Errors, start, end)
Input: Base signal ~X; signals ~Y1,. . . , ~YN ; length W of base intervals;

array of calculated errors Errors; starting and ending positions of binary search
Output: Number of inserted CBIs that achieves the smallest approximation error
begin
1. if end == start then
2. return start
3. endif
4. middle = (start + end) / 2
5. CalculateError( ~X, ~Y1, . . . , ~YN , B, W, middle)
6. CalculateError( ~X, ~Y1, . . . , ~YN , B, W, start)
7. if Errors[middle] > Errors[start] then
8. CalculateError( ~X, ~Y1, . . . , ~YN , B, W, end)
9. if Errors[end] > Errors[start] then
10. return Search( ~X, ~Y1, . . . , ~YN ,W, M, B, base list, Errors, start,middle)
11. else
12. return Search( ~X, ~Y1, . . . , ~YN ,W, M, B, base list, Errors,middle, end)
13. endif
14. else
15. CalculateError( ~X, ~Y1, . . . , ~YN , B, W, middle + 1)
16. if Errors[middle + 1] < Errors[middle] then
17. return Search( ~X, ~Y1, . . . , ~YN ,W, M, B, base list, Errors,middle + 1, end)
18. else
19. return Search( ~X, ~Y1, . . . , ~YN ,W, M, B, base list, Errors, start,middle)
20. endif
21. endif
end

Figure 3.12: Search SubRoutine

hoping that the increased model expressiveness could lead to a more accurate com-

pressed representation of the data. However, one of the main advantages of using a

linear model is that its parameters can be easily calculated in time linear to the size

of the approximated interval. Any model which would require more than linear time

for the calculation of its parameters would incur a similar increase in the complexity

of the SBR algorithm. Moreover, the use of a linear model is intuitive. If two data

series exhibit a similar behavior, then if we appropriately scale and then shift one of

them we expect it to match the other one quite well. This is exactly what a linear
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regression model achieves.

Similarly, in our GetIntervals() algorithm (Algorithm 3.7) the interval with

the largest error is broken in half. This step is obviously suboptimal, since breaking

the interval into two subparts of uneven length might result in a better approxima-

tion. However, such a modification would entail two main disadvantages. Firstly,

the running time complexity of finding the best breakpoint for an interval of length

I.length will require O(I.length× (I.length + W ×Mbase)) time. Moreover, the op-

timal breakpoint may lie near the endpoints of the interval, which implies that the

length of one of the newly generated subinterval may be as high as I.length − 2.

This, in turn, results in higher running times, since larger intervals are broken and

mapped into the base signal. Thus, the overall increase in the algorithm’s running

time complexity would be prohibitive in sensor network applications, even though

it might be acceptable in other, less constrained applications. For example, in our

Phone data set experiment in Section 3.5 (Table 3.3), this modification reduces the

error of SBR in the first transmission by 14.7%, while increasing its running time 111

times.

A similar justification also motivated the design of our GetBase() algorithm.

An alternative choice would have been to consider (M −W + 1) CBIs of length W

for each monitored quantity (signal) (instead of just M
W

CBIs), where the i-th CBI

would cover the values in the range [i..i + W ]. Using an increased number of CBIs

would help in cases when two CBIs corresponding to two different signals are strongly

correlated (i.e., follow a similar behavior), but with a small time delay. The selection

of the CBIs to include in the candidate update base signal then has to be modified,
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since two (or more) selected CBIs from the same signal may correspond to ranges of

data values that overlap. Thus, the selection for inclusion should be based on the

per storage benefit of selecting a CBI, where the CBI’s storage cost is defined as the

number of its data values that are not already included in the candidate update base

signal, at the current step of the algorithm. The SBR algorithm then requires the

following important changes:

1. The used CBIs in the binary search process may not have the same length (due

to the described possible overlap).

2. We need to make sure that overlapping CBIs are properly stored (i.e., based

on the index of their covered data values) in the candidate update base signal,

independently of the timing of their selection from the GetBase() algorithm.

This will force consecutive values from CBIs of each signal to also lie consecu-

tively in the candidate update base signal, and increases the chance that larger

data intervals will be accurately mapped into the base signal.

However, these changes would result in an increase of the running times requirements

of the GetBase() (and, thus, the SBR algorithm) to O(n2.5), while its space require-

ments also increase to O(n2), which would obviously make the algorithm impractical

for sensor network applications.

3.3.5 Understanding the Complexity of SBR

We note that the SBR algorithm is only executed periodically, thus, its running-time

complexity has to be evaluated with respect to the size of the data and the frequency
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that the algorithm is being executed in a real application. Using our implementa-

tion of the algorithm on a 300MHz processor, it takes about 30 seconds to process

n=20,480 data values (10 time series of 2048 values each) for a 10% compression ratio

(see Section 3.5). Even if one measurement is being taken every second, the above run-

ning time corresponds to measurements collected over 34 minutes. This means that

the time required by the SBR algorithm for approximating the data is just the 1/68 of

the time it took the sensor to collect it, thus making it easy for the SBR algorithm to

run in parallel with the collection process. If a shorter running time of SBR is desired,

one can simply either execute the algorithm with a smaller value of n,7 or decide not

to update the base signal, which is by far the most expensive part of the SBR algo-

rithm, in each invocation. The latter method is not expected to affect the quality of

the approximation significantly, since our experiments have demonstrated that after

the first transmissions few base intervals are inserted in the base signal, because the

current base signal is already of good quality at that point. Notice that if the base sig-

nal is not updated, then only the GetIntervals() algorithm is invoked, resulting in

an overall running time complexity of: O(nlog(TotalBand
N

)+TotalBand×
√

n×Mbase).

In this case the algorithm exhibits a linear dependency on the size of the processed

data n.

7For example, when reducing the value of n to 10,240 data values, the corresponding running
time of SBR is just 14.4 seconds.
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3.3.6 Handling Other Error Metrics

We now present the necessary modifications to the Regression algorithm of Sec-

tion 3.3.2 when the desired error metric involves minimizing the sum squared relative

error, or the maximum absolute error of the approximation.

The Regression algorithm approximates the value Y [i + start y] as a × X[i +

start x] + b. The relative error induced by this approximation is:

|Y [i + start y]− a×X[i + start x]− b|
max{c, |Y [i + start y]|}

where the c value serves as a sanity bound, and helps avoid very large relative error

values when the Y [i + start y] value is either zero, or close to zero. The Regression

algorithm that minimizes the sum squared relative error of the approximation is

presented in Figure 3.13.

Calculating the a,b parameters that minimize the maximum absolute error of the

approximation is somewhat harder to accomplish. The solution is based on the well

known Chebyshev approximation problem, which can be solved with a randomized

linear programming algorithm in O(length) randomized expected time and O(length)

space.

3.3.7 Providing Strict Error Bounds

The SBR algorithm, as presented above, seeks to minimize a user-defined error metric

(i.e., the sum squared error) given a target bandwidth constraint. An interesting

extension is when the application requires strict error bounds. The typical goal in
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such cases is to minimize the maximum error of the approximation and provide this

maximum error along with the approximate signal. In this case, a Regression()

subroutine for minimizing the maximum error of the approximation (see Section 3.3.6)

should be used.

Another interesting case occurs when the application provides a target size

TargetBand and an error target with which it will be satisfied. In this case, the ap-

plication will be satisfied with any approximation of size less or equal to TargetBand

that satisfies the error target (if such an approximation exists). In this case the recur-

sive procedure of the GetIntervals() algorithm may be stopped if the error target

is achieved before the size of the transmitted data reaches TargetBand.

It is important to emphasize that in these application scenarios, whenever the

base signal is not updated, it is easy for the sensor to also report to the base station

the error of the approximation for multiple synopses with size less than TotalBand.

Note that this is feasible because at each step of the GetIntervals() algorithm we are

fully aware of the approximation error for each data interval. Reporting the errors

for multiple synopses sizes can be helpful, since the application can then properly

select the size of the transmitted data given its requirements on the accuracy of the

compressed representation.

3.3.8 Node Operation when the Bandwidth Changes

In our discussion so far, each sensor is aware of the total size TotalBand for its

compressed, transmitted data. However, there might be situations when the value

49



procedure Regression( ~X, ~Y , start x, start y, length, sanity)
Input: Base signal ~X; signal ~Y ; starting points start x and start y of

the paired intervals; interval length length; sanity bound sanity
Output: Regression parameters a, b, error err of the approximation.
begin
1. //Compute Regression Parameters
2. sum x=

∑
0≤i<length

X[i+start x]
max{sanity,|Y [i+start y]|}

3. sum y=
∑

0≤i<length
Y [i+start y]

max{sanity,|Y [i+start y]|}
4. sum xy=

∑
0≤i<length

X[i+start x]Y [i+start y]
max{sanity,|Y [i+start y]|}

5. sum x2=
∑

0≤i<length
X[i+start x]2

max{sanity,|Y [i+start y]|}
6. sum z=

∑
0≤i<length

1
max{sanity,|Y [i+start y]|}

7. a= sum z×sum x y−sum x×sum y
sum z×sum x2−sum x×sum x

8. b= sum y−a×sum x
sum z

9. // Compute sum squared relative error of signal ~Y ′ = a ~X + b
// in range [start y . . . start y + length)

10. err =
∑length−1

i=0 (Y [i+start y]−(a×X[i+start x]+b)
max{sanity,|Y [i+start y]|} )2

11. return (a,b,err)
end

Figure 3.13: Regression subroutine for the sum squared relative error

of TotalBand may change. For example, the error of the compressed data may

be so small that the base station may decide that the error would be acceptable if

it decided to limit the desired value of TotalBand. Moreover, in cases when the

network dynamics change due to either node/link failures or changes in the available

bandwidth due to cross-traffic, it might also be desirable to modify the desired size

of the transmitted data. Obviously, if the node is notified for the new value of

TotalBand before it initiates the execution of SBR, no modifications are necessary

to the algorithm. On the other hand, when the new value of TotalBand is received

during the execution of the algorithm, it would be desirable if several steps of the

algorithm can be reused, in order to avoid executing it from the beginning. Depending

on whether the sensor decided to update its base signal (or simply executed the
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GetIntervals() algorithm), the following optimizations can be made:

1. If only the GetIntervals() algorithm is executed and the size of the com-

pressed data (calculated by the number of created data intervals) is less than

TotalBand, then the algorithm simply continues its operation until it reaches

this compressed data size. If, however, the size of the compressed data has ex-

ceeded the value TotalBand/4, then we can either re-execute the GetIntervals()

algorithm (in which case we have do not reuse any of the algorithm’s steps),

or keep a list of the choices (Line 12 in Algorithm 3.7) that the algorithm has

made, in order to backtrack to a stage where the new space constraint is met.

For this list of choices we simply need to store the starting point of the split

interval at each step. This will obviously be the same as the starting point of

the first subinterval created by GetIntervals(), while the length of this first

subinterval reveals the starting point (and the length) of the second subinterval.

2. If the base signal is updated, then obviously the results of the GetBase() algo-

rithm, which is computationally the most expensive part of SBR, can be reused.

If the change in the bandwidth constraint is not significant and the SBR algo-

rithm has already decided how many CBIs to insert into the base signal, then

we can simply execute the GetIntervals() algorithm on the updated base sig-

nal using the new value of TotalBand (and subtracting the size of the newly

inserted CBIs). If the change in the bandwidth constraint is significant, then

the errors calculated by SBR in Line 6 of the algorithm may differ significantly

from the true errors, given the new constraint. Thus, in this case only the

51



results of GetBase() can be reused.

3.4 Localized Groups

3.4.1 Framework Description

It would often be advantageous to collect the input of several sensors on a single node,

and perform the approximation for all values simultaneously. We expect that several

quantities (like temperature, pressure, etc.) observed by neighboring nodes in the

network will exhibit similar trends. Thus, many intervals of the base signal in one

sensor could approximate well intervals of signals from its neighbors. A non-localized

algorithm would not be able to detect this, and would include in the base signals

of individual nodes intervals of similar features. Moreover, a localized algorithm

that operates on the collected measurements of multiple sensors can make better

decisions involving the distribution of the approximated intervals over them, thus

further reducing the error of the approximation.

Assume a group of S sensors that operate individually. Each sensor i transmits

an approximation of the N × M values it collects of size ki × (N × M). The ratio

ki < 1 of the size of the transmitted data over the size of the collected data is called

the “compression ratio”. For ease of exposition, we first assume that for all sensors

in the group the number of monitored quantities, their sampling rates and their

compression ratios ki are the same. We will deviate from this latter assumption later

in this section. If the base station is, on average, H hops away then the volume of
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data sent is (for ki = k)

datanon−localized = k × (N ×M)× S ×H

The alternative organization that we explore in this section is depicted in Fig-

ure 3.1. The sensors nodes are organized as a group and one of them is assigned to

act as the group leader. The rest of the sensors in the group (S-1 in total) will send

it an approximation of their measurements using a compression ratio ki. For now,

let us assume that all values of ki are the same (i.e., equal to k1). Without loss of

generality, we also assume that the group leader is one hop away from each sensor

in the group (i.e., the group is of radius 1), as shown in the figure. While this later

assumption is made to simplify our presentation, the modifications to our formulas

for groups of larger radii are straightforward.

The group leader will approximate all values in the group (S×N ×M in total)

with a compression ratio kgl. We note that this process does not require for the group

leader to decompress the values from the other nodes in the group. Our algorithms

can be rewritten to operate directly on the transmitted approximate values that

essentially describe a piece-wise approximation of each series Yi. The approximation

of each data interval (from the other sensors) is easily computed from the respective

base interval of that sensor that is used to approximate this interval using linear

regression. It is important to emphasize though that:

1. The group leader needs to maintain and update the base intervals transmitted

to it by the other sensors in its group.
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2. The base signal of the group leader is constructed using the group leader’s

collected data and the (approximate) reconstructed data values received by the

other sensors of the group.

Using an organization of the sensors like the one depicted in Figure 3.1, the total

volume of data transmitted will now be

datasensors→group leader + datagroup leader→base station =

(k1 × (S − 1) + kgl × S ×H)× (N ×M)

The goal of our localized processing algorithm is to construct a more accurate ap-

proximate data representation of the data, while using at most as much bandwidth

as in a non-localized organization. To achieve the latter requirement, our localized

algorithm will control the values of kgl and k1 based on the overall data reduction

factor k that the non-localized organization would use, by enforcing that:

k1 × (S − 1) + kgl × S ×H ≤ k × S ×H =⇒ k1 ≤ (k − kgl)×
S

S − 1
H (3.1)

If, due to correlations among the measurements of the sensors in the group, we

can achieve a higher reduction in the data transmitted from the group leader to the

base station (i.e., kgl < k), then we can use more bandwidth for sending the initial

measurements to the group leader (i.e., k1 > k). As an example, assume that we

target an overall compression ratio k=10% for a group of five sensors (S=5) and that

H=20. For kgl equal to e.g. 7% we get k1 = 3 ∗ 5/4 ∗ 20=75% that is much higher
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Figure 3.14: (a) Transmission of query and desired Bandwidth consumption B. (b)
Group Leader assigns initial bandwidth limit to nodes in group. (c) Nodes report
error with given bandwidth limit. (d,e) Handshake procedure: Group Leader assigns
additional bandwidth to node with largest error, and receives from this node a new
reported error. (f) At the end of the handshake process, nodes transmit their com-
pressed data. (g) Group leader compresses data from all nodes in group and transmits
them towards the base station.

than the target k=10%. Notice that the maximum value of k1 is linear to the number

of wireless hops. Thus, the further away the base station is, the more leverage we

get. In fact if

H >
S

S − 1

1

k − kgl

i.e., 27 hops for our example, we can afford sending the exact, uncompressed data

values to the group leader.

3.4.2 Tuning the Compression Ratios

Previously, we assumed that each sensor node in the group (other than the group

leader) uses the same compression ratio k1 to summarize its values. There are many

55



reasons why this “uniform” allocation of bandwidth among the sensors will be sub-

optimal. For instance, all sensor nodes will not necessarily monitor the same quan-

tities. Some sensor nodes within a group may obtain meteorological measurements,

while other nodes may obtain measurements involving noise and chemical levels, num-

ber of detected objects etc. It is expected that some measured quantities will be

harder to accurately approximate than others. The same may also occur even among

nodes collecting the same type of data, simply because of some spatio-temporal char-

acteristics of the monitored quantities.

In what follows we describe an algorithm for tuning the compression ratio used

by each sensor to communicate with the group leader. A high level view of the

algorithm is as follows. Each sensor node in the group will execute the SBR algorithm

for a selected target bandwidth smaller than the one required by the application and

will inform the group leader of the error of the approximation obtained. The group

leader will then adjust the individual compression ratios used by the nodes in its

group, allowing for more bandwidth on nodes whose values are harder to approximate.

During this process the nodes will execute the SBR algorithm only once. When

additional bandwidth is given to a node, this node will call a re-entrant version of the

GetIntervals() subroutine to further partition the previously created data intervals.

We assume as input to the algorithm the desired total bandwidth consumption

B, the number of nodes in the group S, the distance of the group leader from the

base station H. Without loss of generality, we assume that all nodes have the same

amount of data N ×M ; this only simplifies notation in the presentation. Bandwidth

B includes the cost of retransmissions. Thus, B translates to an overall (average)
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compression ratio of

k =
B

S ×H ×N ×M

in the non-localized setting.

The group leader first determines the compression ratio kgl that it will use for

its own transmission. In our experimental evaluation we demonstrate how the value

of kgl can be properly selected, given the bandwidth consumption B. Each node in

the group other than the group leader is initially assigned the same compression ratio

ki = (k−kgl)× S
S−1

H (see Section 3.4.1). This implies a bandwidth Bi = ki×N ×M

for the transmission of node i to the group leader.

The key part of the algorithm involves the adjustment of the Bi bandwidth units

to the S − 1 nodes of the group (besides the group leader) for the transmission of

their values to the group leader. The adjustment process distributes a portion of the

total bandwidth to the nodes that exhibit the largest errors in their approximation,

while also taking into account the bandwidth consumed by each node in its previous

transmission. To accomplish this, each sensor node i executes the SBR algorithm

and reports to the group leader the resulting error using a smaller value for Bi than

the one used during its last transmission. In particular, it scales Bi by a factor λ:

Bi(t) = λ × Bi(t − 1) (e.g. λ=0.80). In the initial transmission, we set Bi(t − 1) =

ki × N × M . Notice that this step does not involve transmitting any compressed

data. Node i simply executes the algorithm, reports the error and awaits for further

instructions.

Since each node in the group has reported errors for a reduced bandwidth Bi(t),
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there is a residual bandwidth of Bresidual = (1 − λ)
∑

Bi(t− 1) that can be redis-

tributed among the S − 1 nodes. The group leader considers the reported error of

each node and continuously allocates to the node with the largest error additional

bandwidth Bresidual×α−1, where α is an integer parameter that controls the number

of performed iterations. In our experiments we use α = S − 1. Essentially, this pro-

cess continuously allocates additional bandwidth to nodes that need it the most and

results in the reduction of the approximation error of these nodes. Each node will ul-

timately transmit their compressed data to the group leader only after this bandwidth

partitioning process has been completed, using the Bi value achieved at the end of

the process. An alternative bandwidth dissemination option would have been to use

a two-step dissemination process, where the additional bandwidth assigned to each

node during the second step would be proportional to its data reconstruction error.

This two-step bandwidth allocation process leads to smaller execution times of the

overall compression process, but may result in sub-optimal bandwidth distribution

in cases where nodes can significantly reduce their approximation error with a small

increase in their bandwidth consumption.

A key observation is that nodes that receive additional bandwidth do not need

to run the SBR algorithm again. These nodes have already created a base signal and

have partitioned their collected data into intervals approximated by linear regression

with some part of this base signal. When additional bandwidth is given, the node

may simply call a modified GetIntervals() subroutine that continuous partitioning

the previously created data intervals (instead of starting from the original data), until

the new bandwidth limit is reached. It then notifies the group leader for the new error
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obtained. This incremental evaluation of the algorithm is essential for the efficient

execution of the compression process.

When ki < 1, our localized schema assumes that the group leader maintains

an up-to-date replica of the base signal of sensor node i in the group, of size Mbase,

in order to be able to reverse the transmitted encodings. In the experiments we see

that real data need very small base signals which suggest that this assumption is

reasonable.

In Figure 3.14 we demonstrate the end-to-end process. First, the base station

informs the group leader for the bandwidth consumption limit B. The group leader

then allocates the same bandwidth Bi to all nodes in its group and each node reports

its error after running the SBR algorithm, Figure 3.14(b,c). In Figure 3.14(d), the

group leader assigns extra bandwidth to the node with the largest error (node 2

in this example). In turn, node 2 reports the new error E
′
2 obtained with the extra

bandwidth by a continuing execution of subroutine GetIntervals() (Figure 3.14(e)).

These two steps are repeated α times, assigning each time additional bandwidth to

the node with the largest error. In Figure 3.14(f), all nodes transmit their values to

the group leader. Finally, the group leader executes the SBR algorithm and transmits

the compressed data to the base station.

3.4.3 Selecting the Group Leader

In our discussion so far we have not referenced the procedure with which the sensor

nodes (i) determine how many localized groups to form, (ii) detect their localized
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group, and (iii) select the group leader of each group. Our solution to this problem

is motivated by the recently proposed HEED protocol, described in [YF04], which

describes a distributed and energy-efficient way of clustering sensor nodes in a way

that seeks to maximize the lifetime of the network. This clustering phase is performed

within a provably small number (O(1)) of phases (iterations), thus ensuring high

scalability and low reorganization cost, While the cost model that we will use in

our localized scheme differs from the approach envisioned in [YF04], the techniques

proposed in [YF04] are still applicable, with some modifications.

Consider that the base station issues a query over the data collected by the

sensor nodes in an area of the network over the last M epochs, along with a desired

average compression ratio k. The query is disseminated through the network in search

of the nodes that meet the query’s selection criteria. The resulting set S of nodes,

that will transmit their collected data in response to the query initiate a process for

selecting the group leaders amongst all nodes in S. The number of group leaders is

not known beforehand. We will describe this process shortly. After the set GL of

group leaders has been determined, each node in S −GL needs to inform one of the

nodes in GL that it will be a member of its group. Most sensor nodes can adjust

their transmission power based on the distance of the node with which they wish to

communicate ([YF04]). It is, thus, optimal in terms of energy consumption for a node

to select as group leader the node in GL which lies the closest to it, since the energy

drain during transmission will be minimized with this approach.

Now, let us consider how the set of group leaders is selected. The operation of

the HEED protocol consists of multiple steps (iterations), during which sensor nodes
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initially become tentative group leaders and, later, some of these tentative group

leaders will ultimately form the final list of group leaders. Consider a scenario where

all the sensor nodes possess the same processing and memory characteristics. If this

is not the case, then only the most powerful of the nodes will attempt to become

group leaders.

Since the group leaders process larger amounts of data, which, in turn, results

in a larger energy drain, it would be preferable if the group leaders are amongst the

nodes with the largest remaining energy. Consider a single sensor node and let Einit

denote its initial (maximum) energy, while Ecurr denotes the current energy of the

node. At each iteration of the HEED clustering protocol, if this sensor does not lie

within the radius of a group leader, it will elect to become a group leader with an

initial probability CHprob = Cprob × Ecurr

Einit
, where Cprob has a suggested value of 0.05

in [YF04]. This initial probability CHprob is then doubled in each iteration for all these

“uncovered” nodes. A new group leader is considered to be tentative if its CHprob is

lower than 1 and final, otherwise. Each new group leader transmits a message to the

sensors within its transmission range containing: (i) The estimated cost, in terms of

energy, for all the nodes in its radius to transmit their uncompressed measurements

to it (calculated using the transmission power needed by each of these nodes to reach

this group leader), and (ii) The estimated distance (in the number of hops) of the

group leader from the base station.

Nodes within the radius of a set SGL of group leaders elect the group leader

with the minimum advertised cost (described above) to join. In case of a tie, the

group leader that is the closest to the base station is selected (this could be the node
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itself). When the value of CHprob reaches the value 1, the selection of the group leader

becomes final. At the final step of the algorithm, all “uncovered” nodes will elect to

perform the compression of their measurements individually.

There is one more detail that we have not discussed so far. When the group

leader of a sensor node Ni changes, the sensor needs to construct a new base signal

for its new group leader GLi, since the new group leader is not aware of the base

intervals that the node transmitted to its previous group leader. Even if the sensor

Ni had used the same group leader GLi in the past, it is not guaranteed that GLi

will have kept in its buffers the candidate base intervals of Ni, since this depends on

its memory and storage capabilities and the time that has elapsed between these two

events. Of course, if the node Ni (group leader GLi) have enough memory to maintain

the base intervals transmitted to GLi(received from Ni), then Ni may use these base

intervals for the approximation of its measurements. Finally, we need to emphasize

that transferring the base signal and the individual base signals of all the nodes in

the group from the previous group leader to the new group leader is not often a good

decision, even if the nodes in the group have not changed, as this procedure may

consume a significant fraction of the available bandwidth. Thus, it may be preferable

from a node to voluntarily surrender being a group leader only when its energy drops

significantly, compared to the energy of the other nodes in its group. In this case,

this group leader transmits a message and initiates the process described above for

selecting a new group leader only among the nodes in its group (and not in a global

fashion at each data transmission).
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3.4.4 Alternative Group Operation

The execution of the SBR algorithm may be infeasible for sensor nodes with very lim-

ited capabilities. For such sensors, or generally in the case of hybrid sensor networks

with nodes that possess widely different capabilities, the operation of the localized

group may be slightly altered in order to help the low-end sensors to compress their

data using the base signal of the group leader. The alternative group operation that

we explore is one where the group leader initially constructs a base signal based

solely on the data that it has collected. The group leader then transmits this base

signal to the nodes in its group using a single broadcast message. The other nodes

in the group will then use this base signal and compress their data by simply calling

the GetIntervals() algorithm. Note that the handshaking process described above,

where the bandwidth allocated to each node is determined after several steps, will

still be followed. The group leader simply has to take into account the size of its

transmitted base signal when deciding on the amount of bandwidth that the sensor

nodes in its group will use to transmit their measurements to the group leader. Also,

notice that in this case the group leader has already performed an approximation

of its own data, and has computed the error of this approximation. Therefore, we

can also perform the following two modifications to the localized group operation

algorithm:

1. At each step of the handshaking process, the group leader may decide to allocate

additional to itself, instead of strictly allocating bandwidth to the other nodes

within its group. Similarly, if a 2-step approach is followed for the bandwidth
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dissemination (see Section 3.4.2), then the node will also allocate part of the

bandwidth to the size of its own compressed data representation.

2. Since the group leader has allocated bandwidth to each node within its group

based on the approximation error of each node, and due to the common base

signal being used by all nodes, there is no need for the group leader to re-

compress the data that it receives from the nodes within its group.

If BBaseSignal = Ins × (W + 1) denotes the bandwidth needed to transmit the

updates to the base signal (determined by the group leader) and k1 denotes the average

compression ratio used by the nodes in the group (including the group leader), then

the overall bandwidth consumption will be:

BBaseSignal × (H + 1) + k1 ×N ×M × (S ×H + S − 1)

Thus, since we would like the localized organization not to exceed the bandwidth

consumption B specified by the query, the value of k1 must be set to:

k1 ≤
B −BBaseSignal

N ×M × (S ×H + S − 1)

This alternative localized processing algorithm results in significant energy sav-

ings compared to the organization model proposed in Section 3.4.2, both for the group

leader, since it compresses only its own data, but also for the remaining nodes within

the group, since they only need to execute the GetIntervals() algorithm. More-

over, no changes are needed if the group leader changes (if the nodes comprising the
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group remain the same), since all the nodes within the group are aware of the used

base signal. On the other hand, the accuracy of the compressed data will depend on

the quality of the base signal constructed by the group leader and whether this base

signal contains patterns observed frequently by the other nodes within the group.

3.5 Experiments

In this section, we provide an experimental evaluation of our techniques. In subsec-

tion 3.5.1 we compare the SBR algorithm against standard approximation techniques

(Wavelets, DCT, Histograms). In subsection 3.5.2 we compare the GetBase() al-

gorithm against alternative base-signal constructions, while in subsection 3.5.3 we

present an analysis of the SBR algorithm. In subsection 3.5.4 we evaluate the local-

ized mode of operation and draw direct comparisons against the non-localized setting.

For these experiments we used the following real data sets:

1. Phone Call Data: Includes the number of long distance calls originating from

15 states (AZ, CA, CO, CT, FL, GA, IL, IN, MD, MN, MO, NJ, NY, TX, WA).

For each state we provide the number of calls per minute for a period of 19 days

(data provided by AT&T Labs).

2. Weather Data: Includes the air temperature, dewpoint temperature, wind

speed, wind peak, solar irradiance and relative humidity weather measurements

for the station in the university of Washington, and for year 2002.8

8 http://www-k12.atmos.washington.edu/k12/grayskies
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Compression Weather Data Stock Data
Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms
5% 1.160 2.187 35.835 27.692 0.089 0.123 0.232 0.283
10% 0.403 0.824 20.169 11.294 0.033 0.056 0.208 0.233
15% 0.209 0.514 14.328 5.432 0.017 0.034 0.192 0.214
20% 0.118 0.356 10.774 3.009 0.009 0.022 0.179 0.199
25% 0.069 0.258 8.975 1.507 0.006 0.015 0.166 0.182
30% 0.043 0.191 6.526 0.995 0.003 0.011 0.153 0.169

Table 3.2: Average SSE Error Varying the Compression Ratio for Weather and Stock
Data Sets

Compression Average SSE Error Total Sum Squared Relative Error
Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms
5% 9,631 29,938 15,714 165,241 922 38,477 9,019 139,528
10% 5,071 12,349 10,173 45,610 503 19,186 3,002 62,337
15% 3,192 7,998 6,767 23,311 325 12,885 1,400 36,812
20% 2,170 5,821 5,661 15,581 222 10,954 1,192 34,820
25% 1,527 4,468 4,791 11,340 158 6,915 823 33,237
30% 1,091 3,537 4,157 8,689 116 3,865 721 30,010

Table 3.3: Errors Varying the Compression Ratio for Phone Call Data Set

3. Stock Data: Includes information on all trades performed in a minute ba-

sis over April 3 and April 4 of year 2000. The approximated measure in our

experiments is the trade value of the stock.

3.5.1 Comparison to Alternative Techniques

For this experiment we used all three data sets described above. From the Stock data,

we extracted the trade values of the following ten (N=10) stocks: Microsoft, Oracle,

Intel, Dell, Yahoo, Nokia, Cisco, WorldCom, Ariba and Legato Systems. For each

stock we created a random sample of 20,480 of its trade values, and then split each

sample in ten files of 2,048 values each. The first of these ten files of each stock was

used for the initial creation of our base signal, while the remaining files were used
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to simulate nine update operations. For the Weather data set, we selected the first

40,960 records and then split the data measurements of each signal into ten files of

4,096 values each. For the Phone Call data set, the aggregates for each state (N=15)

were broken into ten files of 2,560 values each.

In our experiments we compared the accuracy of SBR against the approxi-

mations obtained by using the Wavelet decomposition [CGRS00], equi-depth His-

tograms [PIHS96] and the DCT. The Fourier transform was also considered, but pro-

duced consistently larger errors than DCT and is thus omitted. For a fair comparison

we set the space used by all methods to the exact same amount.

For all methods we considered both treating each bunch of updates as a group

of N series ~Yi each of length M and, alternatively, concatenating the signals into a

single series Y of length N × M . For Wavelets, we found out that this produced

in most cases significantly more accurate results than by dividing the space equally

among the N signals (by a factor of 5 in many cases) because some signals needed

more wavelet coefficients than others to be approximated well. For Wavelets, we

also considered a 2-dimensional decomposition of the N ×M values, which produced

worse results than the 1-dimensional decomposition. We here present the best results

achieved by each method.

Varying the Compression Ratio

We varied the compression ratio (size of the transmitted data TotalBand over the

data size n) from 5% to 30%. In this experiment we set Mbase to 2,048 values for the

Phone Call and the Stocks data sets and to 3,456 values for the Weather data set.
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In Tables 3.2 and 3.3 we present the results.

In all data sets SBR produces significantly more accurate results than the other

approximations. The difference is larger for the Phone Call data set which contained

the largest values. As the size of transmitted data increases, the error in our method

decreases more sharply, and is up to 4.4 times smaller than the error of Wavelets.

The DCT and the Histogram approximations produced much larger errors is most

cases.

We repeated the experiment for the Phone Call data set, computing this time

the sum-squared relative error. The results are also shown in Table 3.3. Depending

on the compression ratio, our method was up to 49 times better than Wavelets, 9.8

times better than DCT and 258 times better than Histograms. We note here that for

this comparison we used Haar Wavelets that are optimal only under the sum-squared-

error. The work of [GG02] describes algorithms for minimizing, among other metrics,

the relative error of a Wavelet-based approximation. Except for cases of very skewed

data sets, these algorithms reduce the mean relative error up to 3 times over regular

Wavelets. These improvements were seen for very coarse approximations (i.e., for a

compression ratio of 5% or less) where our method already has an advantage of 42-1

over regular Wavelets. For more space, these techniques are a lot closer to regular

Wavelets.

The increased accuracy of SBR over techniques like Wavelets and DCT is not

surprising. Similarly to SBR, both the Wavelets and DCT utilize a basis in order

to compress the data. However, while this basis is data-independent in the cases of

Wavelets and DCT, SBR extracts the values contained in the base signal from the
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actual data. Moreover, as the number of base intervals stored in the base signal

increases, the chances of accurately mapping a data interval on some area of the

base signal is increased as well, a feature unique in SBR when compared to the other

techniques that utilize a fixed, predetermined basis for the data compression. This is

why the improvements of SBR over the competitive techniques increase as the size of

the transmitted data increases (more base intervals can be inserted as the bandwidth

constraint increases). On the other hand, the same argument leads us to believe that

SBR might not be the method of choice if very small compression ratios (i.e., 1%)

are desired. In such cases, unless the base station is willing to accept a larger size of

transmitted data in the initial transmission, the small bandwidth constraint would

prevent the inclusion of base intervals, thus resulting in an approximation of the data

using only standard linear regression. Of course, the use of very small compression

ratios might not be desirable in sensor network applications, since they may result in

significant approximation errors.

Finally, in order to explain the increased accuracy achieved by SBR, one has

to consider what happens when a data set contains multiple correlated data intervals

that are hard to approximate. In this case, the studied competitive techniques will

spend the same amount of effort (space) approximating each of these data intervals.

On the other hand, SBR has the option of including just one of these intervals in the

base signal to help accurately compress the other intervals, while devoting very small

space for them.
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Compression Average Sum Squared Error Total Sum Squared Relative Error
Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms
5% 2,900 8,094 12,677 199,150 113 20,974 29,625 182,027
10% 918 3,020 7,146 46,805 37 11,054 8,653 43,701
15% 364 1,582 4,757 23,711 17 5,481 4,825 26,068
20% 139 894 3,814 14,157 9 5,310 3,339 14,780
25% 46 516 3,120 10,486 5 5,172 6,115 11,118
30% 11 297 2,680 6,894 3 5,109 1,579 9,591

Table 3.4: Errors Varying the Compression Ratio for the Mixed Data Set

Modifying the Data Correlations

The SBR algorithms exploits intrinsic correlations between the signals. We now

explore its behavior when these correlations are reduced. At first, we tried mixing

data from our three data sets. We created a data set that contains phone call data

from three states (AZ, CA and FL), three types of meteorological measurements (air

temperature, pressure and solar irradiance), and data from three stocks (Microsoft,

Intel and Oracle). For each of these data series we created ten files of 2,048 values

each. We then varied the compression ratio of all algorithms from 5% to 30% and

set Mbase to 2,048 values. In Table 3.4 we present the average sum squared and total

sum squared relative errors for all methods. The relative performance of the SBR

algorithm is even better compared to the other methods: the SBR algorithm produced

up to 27 times smaller average sum squared errors than the closest competitor, while

the improvement reached up to 1,034 times for the total sum squared relative error.

While the results may seem surprising because the correlation between the data

sets was decreased, they are not counter-intuitive. All the approximation methods

exploit some form of correlation or redundancy to reduce the footprint of the data.

Table 3.4 simply shows that SBR is more robust, than Wavelets and Histograms for
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Figure 3.15: Total SSE error vs Fractal
Dimension
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Figure 3.16: Total SSRE error vs Frac-
tal Dimension

example, when such correlations are reduced. The design of the algorithm allows it

to find correlations even in such cases, between intervals from different signals and

different time periods. The algorithm also has a fall-back plan of using plain regression

when such correlations are not strong. In such cases, fewer space is allocated for the

base signal and most of the transmitted values are used for approximating more,

shorter intervals.

We now also explore the sensitivity of all methods to the correlation of the

time series by generating synthetic sensor streams, where the correlation amongst

their values is varied. We started with a set of four streams of 20,480 values that we

broke into 10 pieces for simulating updates (N=4,M=2,048). The first stream was

produced using the identity function, the second using the step (Haar) function. The

third stream was from a cosine function while the fourth one was depicting normally

distributed data (bell-shaped curve). All streams where normalized within the range

[-20..20]. We then started perturbing the values by adding white Gaussian noise at

random places. During this process we executed each data reduction algorithm for
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a compression ratio of 10% and computed the average sum squared error and the

total sum squarred relative error of the approximation. In Figures 3.15 and 3.16

we plot the results (for SBR, we set Mbase to 256 values and W=64). The x-axis

in both Figures is the fractal dimension of the data set, as defined in [BF95]. As

explained in [BF95] the fractal dimension is a single positive number that describes

the degree of freedom amongst the four data-streams. A larger number denotes more

random/uncorrelated values amongst the data streams due to the addition of white

noise. As expected, all methods substantially degrade their quality of approximation

when the fractal dimension increases. Moreover, we can see that the improvements

of SBR over the competitive techniques are very large when strong correlations occur

(fractal dimension close to 1), while when the correlation becomes very small due to

the added white noise, Wavelets and DCT produce competitive errors to SBR.

3.5.2 Alternative Base Signal Constructions

We present two alternative techniques to our GetBase() algorithm. The first, de-

noted as GetBaseSVD(), is based on the Singular Value Decomposition. The second

algorithm, denoted as GetBaseDCT(), uses the basis of the Discrete Cosine Transform

(DCT), which is a collection of cosine functions. Finally, a third alternative for SBR

is to do standard linear regression without using a specially constructed base signal.

For the later case, no bandwidth is consumed for sending base signal values and we do

not need the I.shift pointer. Thus, we can send exactly TotalBand/3 intervals for

a bandwidth limit TotalBand. Similarly, the DCT base consists of cosine functions
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Error over GetBase()
Data Set GetBaseSVD Linear Regression GetBaseDCT
Weather 10.55 4.47 6.44
Phone 1.13 1.32 1.19
Stock 2.08 2.77 2.99

Table 3.5: Comparison to Alternative Base Signals

and its values are constructed on the fly and are thus neither stored in memory, nor

are they transmitted to the base station.

Construction Using SVD

SVD involves computing the eigenvectors and eigenvalues of a given N ×n matrix R.

It can be proven (see [PTVF92]) that any real N × n matrix can be written as:

R = U × Λ× V t

where U is a column-orthonormal N × r matrix, r is the rank of matrix R, Λ is a

diagonal r× r matrix of the eigenvalues λi of R and V is a column-orthonormal n× r

matrix. By definition U t × U = V t × V = I, where I is the identity matrix. The

columns of V are the eigenvectors of matrix Rt × R. Similarly, the eigenvalues of

Rt ×R are the squares of λis:

Rt ×R = V × Λ2 × V t

For R=A (our collected measurements), Rt×R captures the similarities among

the columns of A (each collected sample). SVD can be used for approximating Rt ×
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R by keeping the first few eigenvectors (columns of matrix V ). Informally, each

eigenvector captures linear trends among the rows of A (the ~Yis).
9 We here propose

the use of SVD as a competitor to the GetBase() algorithm for generating a base

signal from the data. We sketch the new algorithm (GetBaseSVD()) below.

1. For each row of A, list all non-overlapping intervals of length W . This gives us

M
W

intervals per row and K = N×M
W

intervals overall.

2. Build a K ×W matrix R whose rows are the intervals of the previous step.

3. Compute the SVD of R = U × Λ× V t. Return the first Store columns of V .

By definition, V is an r×W matrix (r=rank(R)) of the eigenvectors of Rt×R.

The eigenvectors are ordered from left to right in V . The first column of V contains

the eigenvector (of length W ) that corresponds to the largest eigenvalue of Rt × R.

The algorithm returns the top-maxIns eigenvectors of total size maxIns×W . These

constitute the base signal from GetBaseSVD().

Construction Using DCT

The base signal can be constructed from the basis-vectors of standard mathematical

transforms. We here present a base signal construction motivated by the Discrete

Cosine Transform (DCT). Assuming that we are to use base intervals of length W ,

we enumerate all frequencies f such that 0 ≤ f ≤ W . For each frequency f , we define

a base interval with values cos( (2i+1)π
2W

f), where 0 ≤ i < W . We call this algorithm

9[KLKF00] presents an application of this observation in a different context.
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Transmission
Data Set 1 2 3 4 5 6 7 8 9 10

Weather 6 6 1 0 3 0 2 3 0 1
Phone 3 6 0 1 0 0 2 0 0 1
Stock 3 0 0 2 1 0 0 0 2 0

Table 3.6: Number of Inserted Base Intervals per Transmission

GetBaseDCT(). We notice that we do not need to store these intervals implicitly, as

they can be computed on the fly.

In Table 3.5 we compare the approximations obtained by using the base signals

computed in algorithm GetBase() with the base signal from the alternative construc-

tions. We need to emphasize here that for this experiment we modified the BestMap()

function not to use linear regression as an alternative to using the base signal (so that

the differences among GetBase(), GetBaseSVD(), GetBaseDCT() and linear regres-

sion are not diffused). Using the BestMap() function as presented in Section 3.3.2

would further improve the results of our method. The compression ratio was set to

10%. We notice that GetBase() performs a lot better in the Weather data set, up

to 10 times better than the alternative algorithms. For the Phone Call and the Stock

data the differences are smaller but still significant.

3.5.3 Analysis of SBR

We now analyze several characteristics of the SBR algorithm, including its running

time, the number of base intervals it selects for inclusion in the base signal and the

quality of its decisions.

In Figure 3.17 we plot the average time of each transmission operation for the
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Stock data set, when the size of the transmitted data is varied from 5% to 30% of the

data size, the size of n varies from 5,120 to 20,480,10 and the size of the base signal

is 1,024. Since we have not yet ported our code to the StrongARM platform, we

executed this experiment on a Irix machine using a 300MHz processor. As expected

(see Section 3.3.3) the running time scales linearly with the size of the transmitted

data. Notice that SBR is significantly faster when greater reduction is obtained. For

many practical applications, we expect to use a compression ratio of 10% (or even

less), where running time varies from 5.6 to 30 seconds depending on the value of n.

The SBR algorithm dynamically decides the number of base signal values to

use for an upper bound Mbase. We now compare SBR against a straight-forward

implementation that populates all the available space for the base signal. In Fig-

ure 3.18 we plot the error of only the initial transmission as the size of the base signal

is varied, manually, from 1 to 30 intervals for the Phone, Stock and Weather data

sets. For this initial transmission we populated the entire space of the base signal

10By varying the value of M. We always used data from 10 stocks.
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using the GetBase() algorithm. For each data set we also show the selection that

the SBR algorithm made, when deciding how many base intervals to populate. For

presentation purposes the errors for each data set have been divided by the error of

the approximation when using just one interval. We set the size of each stock, phone

and weather data file to 3072, 2048 and 5120 values respectively, in order for all data

sets to have exactly the same size, and the TotalBand value to 5012, which results

to a compression ratio (TotalBand/n) of about 16%.

The fixed value of the compression ratio implies that an increase in the size of

the base signal results in a decrease in the number of intervals used to approximate the

data values in order to keep the total space constant. After some point, the benefit of

storing more intervals for the base signal is outweighted by the increase in the error

that we get due to the reduced number of intervals used for the approximation. It is

interesting to see that the optimal case occurs for a base size of between 7 (for the

Weather data set) and 9 base intervals (for the Stock data set), which correspond

to just 2.9% to 3.75% of the data size at the first transmission. The SBR algorithm

made the optimal choice for the Phone and Weather data sets and produced a near-

optimal solution for the Stock data set (it selected to insert 6 base intervals, instead

of 9). We remind that the Mbase base signal values need to be kept in the memory

of the sensor in order to perform the approximation. Our results suggest that a very

small fraction of memory needs to be sacrificed for these values.

For the same data setup, we report in Table 3.6 the number of inserted base

intervals during the 10 transmissions. As we can see, most base intervals are inserted

during the first two transmissions. We notice that there are many transmissions
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during which no new base intervals are inserted, and that the different data sets seem

to contain a widely different number of features, with the Weather data set containing

the most features, and the Stock data set containing the fewest.

The small number of intervals inserted in the base signal after the initial trans-

missions allows us to consider executing the SBR algorithm only periodically, or when

the quality of the approximation degrades, in the case of constrained environments.

For the other transmissions, the approximation may be performed by simply using

the significantly faster GetIntervals() algorithm.

3.5.4 Localized Groups

We now seek to evaluate the benefits of localized group processing described in Sec-

tion 3.4. We first investigate which are the best values of the compression ratios k1

and kgl, as a function of the target compression ratio k.11 We used a group of six

sensors, each collecting 4096 values from a different type of weather measurements

(i.e., one sensor monitoring air temperature, one sensor monitoring pressure etc). We

set the compression ratio k of the non-localized approach to 10% and adjusted the

ratio k1

kgl
so that the localized approach consumes the same amount of bandwidth.

For a given value of k and for a fixed ratio of k1

kgl
, the values of k1 and kgl follow easily

from equation 3.1.

In all cases the number of transmissions (update operations) was set to 6, while

λ = 0.6, and Mbase = 2048. Figure 3.19 presents the total sum squared error for all

11k1 is the initial value for the compression ratios ki of the sensor nodes in the group. While our
algorithm dynamically adjusts the values of ki to reduce the error of the approximation, the ratio
avg(ki)

kgl
remains constant.
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six transmissions for the localized and the non-localized approach and for different

values of H. We also conducted a similar experiment, where the value of H was set

to 10 and we varied the ratio k1

kgl
for different values of k and present the total SSE

error in Figure 3.20. Table 3.7 also presents the errors for the non-localized approach

for the second experiment and compares them to the errors of the localized algorithm,

when the ratio k1

kgl
is set to 3. Two major observations can be drawn from Figures 3.19

and 3.20 and Table 3.7:

1. The localized approach can result in a significant reduction in the approxima-

tion’s error when compared to the non-localized approach. This error reduction

is often by a factor more than 5 (and up to 15 in Table 3.7), and increases with

the distance H of the base station from the group leader or with smaller values

of k.

2. There is a large range, whose width increases with the value of H and k, of

values (i.e. between 2 and 4) for the ratio k1

kgl
for which near optimal results

are obtained for the localized algorithm. For very small or large values of this

ratio the quality of the approximation degrades, but is often still significantly

better than the localized case. We thus suggest always setting the ratio k1

kgl
to

the value 3.

To understand why the range of values of the ratio k1

kgl
where near-optimal results

are obtained, is increased with H, we need to consider the relative change
δkgl

kgl
when

we increase the ratio k1

kgl
from r to r + δr (ex: δr = 1) for the same value of k. We
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k Localized Non-localized
5% 203,213 2,923,141

7.5% 99,342 812,026
10% 64,507 303,460
15% 35,784 84,907
20% 22,278 38,954
25% 14,876 23,706
30% 10,169 16,901

Table 3.7: Error comparison of Lo-
calized vs non-Localized algorithm

Sensor
Update 1 2 3 4 5

1 14.3% 24.0% 33.7% 33.7% 14.3%
2 8.5% 33.6% 29.9% 29.9% 18.1%
3 5.1% 39.4% 46.8% 17.9% 10.8%
4 3.0% 42.9% 47.3% 20.3% 6.4%
5 11.4% 35.4% 38.0% 21.8% 13.5%
6 6.8% 40.5% 42.0% 22.6% 8.0%

Table 3.8: Compression ratios for sensors
(k=10%, H=10)

can then show that:

δkgl

kgl

=
δr(S − 1)

(r + δr)(S − 1) + SH

Thus, the relative reduction in the value of kgl decreases with the value of H. This

justifies the reduced effect that the k1

kgl
ratio has on the approximation accuracy as H

increases.

In Table 3.8 we present the compression ratios ki that were assigned to each of

the 5 sensor nodes in the group (besides the group leader) for each update operation in

the second experiment (where H = 10 and we varied k) for a value of k = 10%. This

table clearly demonstrates the need for adjusting the bandwidth for each node. Nodes
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1 and 5 seem to always collect measurements that are easy to approximate, while the

measurements of node 3 are consistently hard to approximate and its compression

ratio value is higher. On the other hand, notice that initially more bandwidth was

assigned to node 4 than in node 2, a trend that was reversed in later invocations of

the algorithm. Any algorithm that statically allocates the bandwidth to each sensor

would not be able to exploit such changes in the characteristics of the collected data

and would result in reduced accuracy in the obtained approximation.
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Chapter 4

Extended Wavelets for Data Sets with

Multiple Measures

4.1 Introduction

Approximate query processing techniques have been proposed recently as methods

for providing fast and fairly accurate answers to complex queries over large quantities

of data. The most popular approximate processing techniques include histograms,

random sampling and wavelets. In recent years there has been a flurry of research

on the application of these techniques to such areas as selectivity estimation and

approximate query processing. The work in [CGRS00, GG02, GG04, MVW98, SS02,

VW99] demonstrated that wavelets can achieve increased accuracy to queries over

histograms and random sampling.

Despite the surge of interest in wavelet-based data reduction and approxima-

tion in database systems, relatively little attention has been paid to the application

of wavelet techniques to complex tabular data sets with multiple measures (multi-

ple numeric entries for each table cell). Such massive, multi-measure tables arise

naturally in several application domains, including OLAP environments and time-

series analysis/correlation systems. As an example, a corporate sales database may
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tabulate, for each available product, (1) the number of items sold, (2) revenue and

profit numbers for the product, and (3) costs associated with the product, such as

shipping and storage costs. Similarly, real-life applications that monitor continu-

ous time-series typically have to deal with several readings (measures) that evolve

over time; for example, a network-traffic monitoring system takes readings on each

time-tick from a number of distinct elements, such as routers and switches, in the

underlying network and typically several measures of interest need to be monitored

(e.g., input/output traffic numbers for each router or switch interface) even for a fixed

network element [net].

Traditionally, two obvious strategies, termed Individual and Combined, have

been employed when adapting wavelet-based methods over such multi-measure data

sets. The Individual algorithm performs the wavelet decomposition on each of the in-

dividual measures, and stores the important coefficients for each measure separately.

On the other hand, the Combined algorithm performs a joint wavelet decomposition

on the multi-measure data set by treating all the measures as a vector of values and,

at the end, determines a subset of vectors of coefficient values to retain in the synop-

sis. As demonstrated in this chapter, such obvious individual or combined approaches

can lead to poor synopsis-storage utilization and suboptimal solutions even in very

simple cases. Due to the nature of the wavelet decomposition and the possible corre-

lations across different measures, there are many scenarios in which multiple – but not

necessarily all – wavelet coefficients at the same coordinates have large values, and

are thus beneficial to retain, for instance, in an L2-optimized synopsis. In such cases,

the Individual algorithm essentially replicates the storage of the shared coordinates
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multiple times, wasting valuable synopsis storage. The Combined algorithm, on the

other hand, stores all coefficient values sharing the same coordinates, thus wasting

space by storing small, unimportant values for certain measures.

In this chapter we propose a novel approach for effectively adapting wavelet-

based data reduction methods to multi-measure data sets through the use of extended

wavelet coefficients. Briefly, an extended wavelet coefficient can store multiple co-

efficient values for different – but not necessarily all – measures. The end result

is a flexible, space-efficient storage scheme that can eliminate the disadvantages of

both the Individual and Combined algorithms discussed above. We then consider

the problem of constructing effective extended wavelet coefficient synopses (under

a given storage constraint) optimized for the (1) weighted sum-squared error, and

(2) relative error in the approximate data reconstruction. Our synopsis-construction

problems are natural generalizations of the corresponding problems for conventional

(i.e., L2-error) wavelet synopses [VW99, CGRS01] and probabilistic (i.e., relative-

error) wavelet synopses [GG04] for the single-measure case. We demonstrate that,

in the presence of multiple measure, choosing an effective subset of extended wavelet

coefficients gives rise to difficult optimization problems that are significantly more

complex than their single-measure counterparts. This is primarily due to our more

involved extended-coefficient storage format that forces non-trivial dependencies be-

tween thresholding decisions made across different measures. We propose optimal so-

lutions based on novel algorithmic formulations that employ Dynamic-Programming

(DP) ideas. Given the high time and space complexities of our exact DP schemes, we

also introduce fast, greedy approximation algorithms (based on the idea of marginal
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error gains) that produce near-optimal solutions. To the best of our knowledge, our

work represents the first principled, methodical study of effective wavelet-based data

reduction techniques for multi-measure data sets.

4.2 Preliminaries

In this section, we provide a quick introduction to the conventional Haar wavelet

decomposition and wavelet-coefficient synopses in both one and multiple dimensions.

We also discuss the existing Individual and Combined strategies for handling mul-

tiple measures and demonstrate some of their important shortcomings. Finally, we

introduce the notion of an extended wavelet coefficient which forms the basis for our

proposed approach and data-reduction algorithms.

4.2.1 One-Dimensional Haar Wavelets

Wavelets are a useful mathematical tool for hierarchically decomposing functions in

ways that are both efficient and theoretically sound. Broadly speaking, the wavelet

decomposition of a function consists of a coarse overall approximation along with

detail coefficients that influence the function at various scales [SDS96]. The wavelet

decomposition has excellent energy compaction and de-correlation properties, which

can be used to effectively generate compact representations that exploit the structure

of data. Suppose we are given the one-dimensional data vector A containing the

N = 8 data values A = [2, 2, 0, 2, 3, 5, 4, 4]. The Haar wavelet transform of A can be

computed as follows. We first average the values together pairwise to get a new “lower-
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resolution” representation of the data with the following average values [2, 1, 4, 4]. In

other words, the average of the first two values (that is, 2 and 2) is 2, that of the

next two values (that is, 0 and 2) is 1, and so on. Obviously, some information has

been lost in this averaging process. To be able to restore the original values of the

data array, we store some detail coefficients, that capture the missing information. In

Haar wavelets, these detail coefficients are simply the differences of the (second of the)

averaged values from the computed pairwise average. Thus, in our simple example,

for the first pair of averaged values, the detail coefficient is 0 since 2− 2 = 0, for the

second we again need to store −1 since 1 − 2 = −1. Note that no information has

been lost in this process – it is fairly simple to reconstruct the eight values of the

original data array from the lower-resolution array containing the four averages and

the four detail coefficients. Recursively applying the above pairwise averaging and

differencing process on the lower-resolution array containing the averages, we get the

following full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

The wavelet transform (also known as the wavelet decomposition) of A is the

single coefficient representing the overall average of the data values followed by the

detail coefficients in the order of increasing resolution. Thus, the one-dimensional

Haar wavelet transform of A is given by WA = [11/4, −5/4, 1/2, 0, 0, −1, −1, 0].

Each entry in WA is called a wavelet coefficient. The main advantage of using WA
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instead of the original data vector A is that for vectors containing similar values most

of the detail coefficients tend to have very small values. Thus, eliminating such small

coefficients from the wavelet transform (i.e., treating them as zeros) introduces only

small errors when reconstructing the original data, resulting in a very effective form

of lossy data compression [SDS96].

Note that, intuitively, wavelet coefficients carry different weights with respect

to their importance in rebuilding the original data values. For example, the overall

average is obviously more important than any detail coefficient since it affects the

reconstruction of all entries in the data array. In order to equalize the importance of

all wavelet coefficients, we need to normalize the final entries of WA appropriately. A

common normalization scheme [SDS96] is to divide each wavelet coefficient by
√

2l,

where l denotes the level of resolution at which the coefficient appears (with l = 0

corresponding to the “coarsest” resolution level). Thus, the normalized coefficient,

c∗i , is ci/
√

2level(ci).

The Haar Coefficient Error Tree. A helpful tool for exploring and understand-

ing the key properties of the Haar wavelet decomposition is the error tree struc-

ture [MVW98]. The error tree is a hierarchical structure built based on the wavelet

transform process (even though it is primarily used as a conceptual tool, an error tree

can be easily constructed in linear O(N) time). Figure 4.1(a) depicts the error tree

for our example data vector A. Each internal node ci (i = 0, . . . , 7) is associated with

a wavelet coefficient value, and each leaf di (i = 0, . . . , 7) is associated with a value in

the original data array; in both cases, the index/coordinate i denotes the positions in
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Symbol Description (i ∈ {0, . . . , N − 1}, j ∈ {1, . . . ,M},
j index/subscript is dropped for M = 1)

N Number of data-array cells
D Data-array dimensionality
M Number of data-set measures
B Space budget for synopsis
A, WA Input data and wavelet transform arrays
dij Data value for ith cell and jth measure of data array
d̂ij Reconstructed data value for ith cell and jth measure
cij , c

∗
ij Un-normalized/normalized Haar coefficient at coordinate i for

the jth measure
path(u) All non-zero proper ancestors of u in the error tree
ECi Extended wavelet coefficient at coordinate i

H Storage space for the extended wavelet coefficient header
(coefficient coordinates and bitmap)

Table 4.1: Notation.

the data array or error tree. For example, c0 corresponds to the overall average of A.

The resolution levels l for the coefficients (corresponding to levels in the tree) are also

depicted. We use the terms “node” and “coefficient” interchangeably in what follows.

Table 4.1 summarizes some of the key notational conventions used in this chapter;

additional notation is introduced when necessary. Detailed symbol definitions are pro-

vided at the appropriate locations in the text. For simplicity, the notation assumes

one-dimensional wavelets – extensions to multi-dimensional wavelets (Section 4.2.2)

are straightforward.

Given a node u in an error tree T , let path(u) denote the set of all proper

ancestors of u in T (i.e., the nodes on the path from u to the root of T , including

the root but not u) with non-zero coefficients. A key property of the Haar wavelet

decomposition is that the reconstruction of any data value di depends only on the

values of coefficients on path(di); more specifically, we have di =
∑

cj∈path(di)
δij · cj,
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Figure 4.1: (a) Error-tree structure for our example data vector A (N = 8). (b) Support
regions and signs for the sixteen nonstandard two-dimensional Haar basis functions. The
coefficient magnitudes are multiplied by +1 (−1) where a sign of + (respectively, −) appears,
and 0 in blank areas.

where δij = +1 if di is in the left child subtree of cj or j = 0, and δij = −1 otherwise.

Thus, reconstructing any data value involves summing at most log N + 1 coefficients.

For example, in Figure 4.1, d4 = c0 − c1 + c6 = 11
4
− (−5

4
)+ (−1) = 3. The support

region for a coefficient ci is defined as the set of (contiguous) data values that ci is

used to reconstruct; the support region for a coefficient ci is uniquely identified by its

coordinate i.

Similarly, the evaluation of the sum of data values in the range [i..j] depends

only on the values of coefficients on path(di) or path(dj); to see why this is the case,

consider that any coefficient (besides the overall average) whose support region lies

entirely within the query range will make contributions to the data values lying to

its left and right subtrees that will cancel out each other. Thus, evaluating any range

query involves considering the contributions of at most 2 log N − 1 coefficients. To

calculate the contribution of each of these coefficients, we need to multiply its value
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by the difference in the number of data values within the range query that lie to the

left and to the right of the coefficient in the error tree. For example, in Figure 4.1,

Sum[2..5] = 4× c0 + (−2)× c2 + 2× c3 = 11− 1 + 0 = 10.

4.2.2 Multi-Dimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multi-dimensional data arrays

using two distinct methods, namely the standard and nonstandard Haar decomposi-

tion [SDS96]. Each of these transforms results from a natural generalization of the

one-dimensional decomposition process described above, and both have been used

in a wide variety of applications, including approximate query answering over high-

dimensional DSS data sets [CGRS00, VW99].

As in the one-dimensional case, the Haar decomposition of a D-dimensional

data array A results in a D-dimensional wavelet-coefficient array WA with the same

dimension ranges and number of entries. (The full details as well as efficient decom-

position algorithms can be found in [CGRS00, VW99].) Consider a D-dimensional

wavelet coefficient W in the (standard or nonstandard) wavelet-coefficient array WA.

W contributes to the reconstruction of a D-dimensional rectangular region of cells in

the original data array A (i.e., W ’s support region). Further, the sign of W ’s con-

tribution (+W or −W ) can vary along the quadrants of W ’s support region in A.

As an example, Figure 4.1(b) depicts the support regions and signs of the sixteen

nonstandard, two-dimensional Haar coefficients in the corresponding locations of a

4 × 4 wavelet-coefficient array WA. The blank areas for each coefficient correspond
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to regions of A whose reconstruction is independent of the coefficient, i.e., the co-

efficient’s contribution is 0. Thus, WA[0, 0] is the overall average that contributes

positively (i.e.,“+WA[0, 0]”) to the reconstruction of all values in A, whereas WA[3, 3]

is a detail coefficient that contributes (with the signs shown in Figure 4.1(b)) only

to values in A’s upper right quadrant. Each data cell in A can be accurately re-

constructed by adding up the contributions (with the appropriate signs) of those

coefficients whose support regions include the cell. Figure 4.1(b) also depicts the two

levels of resolution (l = 0, 1) for our example two-dimensional Haar coefficients; as in

the one-dimensional case, these levels define the appropriate constants for normalizing

coefficient values [CGRS00, SDS96].

Error-tree structures for multi-dimensional Haar wavelets can be constructed

(once again in linear O(N) time) in a manner similar to those for the one-dimensional

case, but their semantics and structure are somewhat more complex. A major dif-

ference is that, in a D-dimensional error tree, each node (except for the root, i.e.,

the overall average) actually corresponds to a set of 2D − 1 wavelet coefficients that

have the same support region but different quadrant signs and magnitudes for their

contribution. Furthermore, each (non-root) node t in a D-dimensional error tree has

2D children corresponding to the quadrants of the (common) support region of all co-

efficients in t.1 (Note that the sign of each coefficient’s contribution to the leaf (data)

values residing at each of its children in the tree is determined by the coefficient’s

quadrant sign information.) As an example, Figure 4.2 depicts the error-tree structure

1 The number of children (coefficients) for an internal error-tree node can actually be less than 2D

(respectively, 2D−1) when the sizes of the data dimensions are not all equal. In these situations, the
exponent for 2 is determined by the number of dimensions that are “active” at the current level of the
decomposition (i.e., those dimensions that are still being recursively split by averaging/differencing).
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Figure 4.2: Error-tree structure for the sixteen nonstandard two-dimensional Haar coeffi-
cients for a 4× 4 data array (data values omitted for clarity).

for the two-dimensional 4× 4 Haar coefficient array in Figure 4.1(b). Thus, the (sin-

gle) child t of the root node contains the coefficients WA[0, 1], WA[1, 0], and WA[1, 1],

and has four children corresponding to the four 2×2 quadrants of the array; the child

corresponding to the lower-left quadrant contains the coefficients WA[0, 2], WA[2, 0],

and WA[2, 2], and all coefficients in t contribute with a “+” sign to all values in this

quadrant.

Based on the above generalization of the error-tree structure to multiple dimen-

sions, we can naturally extend the process for data-value reconstruction to multi-

dimensional Haar wavelets. Once again, the reconstruction of di depends only on the

coefficient sets for all error-tree nodes in path(di), where the sign of the contribu-

tion for each coefficient W in node t ∈ path(di) is determined by the quadrant sign

information for W .
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4.2.3 Wavelet-based Data Reduction: Coefficient Thresholding

Given a limited amount of storage for building a wavelet synopsis of the input data

array A, a thresholding procedure retains a certain number B � N of the coeffi-

cients in WA as a highly-compressed approximate representation of the original data

(the remaining coefficients are implicitly set to 0). The goal of coefficient thresh-

olding is to determine the “best” subset of B coefficients to retain, so that some

overall error measure in the approximation is minimized. The method of choice for

the vast majority of earlier studies on wavelet-based data reduction and approxima-

tion [CGRS00, MVW98, MVW00, VW99] is conventional coefficient thresholding that

greedily retains retains the B largest Haar-wavelet coefficients in absolute normalized

value. It is a well-known fact that this thresholding method is in fact provably optimal

with respect to minimizing the overall sum-squared error (i.e., L2-norm error) in the

data compression [SDS96].

More formally, letting d̂i denote the (approximate) reconstructed data value

for cell i, retaining the B largest normalized coefficients implies that the resulting

synopsis minimizes the quantity
∑

i(d̂i−di)
2 (for the given amount of space B). This

fact follows from the orthonormality of the normalized Haar-wavelet basis which, by

Parseval’s theorem, implies that the energy of the signal is the same in both the

data and the (normalized) wavelet domain – that is,
∑

i d
2
i =

∑
i(c

∗
i )

2 (thus, the

“energy” loss is minimized when dropping the smallest normalized coefficients from

the synopsis).

Each Haar coefficient is stored in the wavelet synopsis as a pair < i, c∗i >, where
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Coordinate Value Normalized Value Stored Tuple
0 11/4 11/4 < 0, 11/4 >
1 −5/4 −5/4 < 1,−5/4 >

2 1/2
√

2/4 < 2,
√

2/4 >
3 0 0 —
4 0 0 —
5 −1 −1/2 < 5,−1/2 >
6 −1 −1/2 < 6,−1/2 >
7 0 0 —

Table 4.2: Wavelet-Coefficient Tuples for Example Data Vector A (N = 8).

i denotes the index/coordinate of the coefficient and c∗i denotes its (normalized) value.

In the case of D-dimensional data, each synopsis coefficient is stored as a (D + 1)-

tuple < i1, i2, . . . , iD, c∗i1,i2,...,iD
>, where i1, . . . , iD denote the coefficient’s coordinates

in the (D-dimensional) wavelet-coefficient array WA. Table 4.2 depicts the tuples

corresponding to each Haar wavelet coefficient for our example array A (of course,

zero-valued coefficients are never retained in a synopsis).

4.2.4 Existing Approaches for Multiple Measures

Two existing approaches [SDS96] (termed Individual and Combined) have been pro-

posed for adapting wavelet-based data reduction to data sets with multiple measures

– both are straightforward generalizations of the single-measure case. The Individual

strategy performs an independent wavelet decomposition for each individual mea-

sure, and the decisions on which coefficients to retain are made independently for

each measure. In the Combined approach, both the original data values and the

produced wavelet coefficients are treated as M -component vectors (where M denotes

the number of data measures). The pairwise averaging and differencing procedure
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described above is then performed between corresponding vector components (i.e.,

values for the same measure). The Combined thresholding procedure is very similar

to that for the single-measure case: the coefficient vectors retained in the synopsis

are the ones with the largest values for the L2 vector norm.

We also use the terms individual and combined coefficient to refer to the coef-

ficient values that result from the corresponding decomposition algorithms. Thus, a

combined coefficient is an M -component vector that stores individual coefficient val-

ues for each of the M measures in the data set (at given coordinates). An example of

the Combined decomposition algorithm is shown in Table 4.3. Our example data set

here comprises two measures: the values for the first measure are identical to those

in our first example array in Section 4.2.1, while the values for the second measure

are [4, 6, 3, 5, 2, 8, 3, 3]. Thus, in Table 4.3, the first (second) row of each vector corre-

sponds to either data or coefficient values for the first (respectively, second) measure.

The final set of combined coefficients is WA = [

[
11/4

17/4

]
, [

[
−5/4

1/4

]
,

[
1/2

1/2

]
,

[
0

1

]
,[

0

−1

]
,

[
−1

−1

]
,

[
−1

−3

]
,

[
0

0

]
].

The Combined data-reduction strategy is expected to achieve better storage uti-

lization than the Individual algorithm for the L2 error metric in data sets where multi-

ple component values for the same combined coefficient are simultaneously “large” (in

terms of their absolute normalized value). In such cases, the coordinates of such large

combined coefficients are stored only once, thus allowing for a more compact repre-

sentation. More compact representations imply the ability to store larger numbers of

coefficient values and, thus, improved result accuracy (for a given space budget). On
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Resolution Averages Detail Coefficients

3 [
[

2
4

] [
2
6

] [
0
3

] [
2
5

] [
3
2

] [
5
8

] [
4
3

] [
4
3

]
] —

2 [
[

2
5

] [
1
4

] [
4
5

] [
4
3

]
] [

[
0
−1

] [
−1
−1

] [
−1
−3

] [
0
0

]
]

1 [
[

3/2
9/2

] [
4
4

]
] [

[
1/2
1/2

] [
0
1

]
]

0 [
[

11/4
17/4

]
] [

[
−5/4
1/4

]
]

Table 4.3: Example Combined Wavelet Decomposition.

Case A Case B
Coordinate Values

Available 0 100 0 0
Coefficients 1 0 100 0

Coordinate Values
Available 0 100 100 100

Coefficients 1 0 100 0
Coordinate Values

Combined
Retains

0 100 0 0

Coordinate Values
Combined
Retains

0 100 100 100

Coordinate Value Measure
Individual 0 100 1
Retains 1 100 2

Coordinate Value Measure
Individual 0 100 3
Retains 0 100 2

Combined Benefit = 1002 = 10000

Individual Benefit = 1002 + 1002 = 20000

Combined Benefit
Individual Benefit

= 10000
20000

= 50%

Combined Benefit = 1002 + 1002 + 1002 = 30000

Individual Benefit = 1002 + 1002 = 20000

Individual Benefit
Combined Benefit

= 20000
30000

≈ 66.7%

Table 4.4: Sub-optimality of the Combined and Individual Strategies.

the other hand, in many scenarios, a combined coefficient might help reduce the error

significantly in only one, or few, measures. In such cases, some of the space occupied

by the combined-coefficient components is essentially wasted, without improving the

overall quality of the approximate results.

Table 4.4 depicts only two combined coefficients for a one-dimensional data set

with three measures. The actual data that helped construct these two coefficients,

or the remaining set of coefficients are not important, since the sole purpose of this

example is to show that both the Individual and Combined strategies can result in
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poor choices, even when choosing between just two coefficients. We assume that each

dimension coordinate and each coefficient value require one unit of space. Under this

scenario, each combined-coefficient tuple occupies four space units (one coordinate

+ three measure values), while each individual coefficient occupies only two space

units. For a storage constraint of four units of space, the Combined algorithm can

thus select only one tuple to store, while the Individual algorithm can store up to two

individual coefficients. By Parseval’s theorem (Section 4.2.3), the benefit of retaining

any single coefficient value is equal to the its squared normalized value. As Table 4.4

shows, in Case A, for the given storage constraint, the Combined algorithm chooses a

solution with only half the benefit of the solution picked by the Individual algorithm.

The roles are reversed in Case B, where the Individual algorithm selects a solution

with only two thirds of the benefit achieved by the Combined algorithm. Note that,

in Case B, the ties on the retained coefficients for the Individual algorithm are broken

arbitrarily, as four individual coefficients have the same benefit. By increasing the

number of measures in the data set for Case A, and the number of dimensions for

Case B, one can easily create examples where the quality of the sub-optimal solutions

returned by the Combined and Individual strategies (respectively) is significantly

worse than the optimal choice. For instance, by expanding our one-dimensional data

set of Table 4.4 to a data set with M measures, and considering which M+1
2

candidate

individual coefficients to retain under a storage constraint of M +1 space units, it can

be shown that, in Case A: Combined Benefit
Individual Benefit

= 2
M+1

, while, in Case B: Individual Benefit
Combined Benefit

=

M+1
2M

.

An additional disadvantage of the Combined data-reduction strategy is that it
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cannot be easily adapted for cases when one would like to assign different weights

on the quality of the answers for different measures. For example, in colored image

databases, data sets form two-dimensional arrays with three measures, namely the

pixel values for each of the three basic colors (Red, Green and Blue). It has been

shown [FvDFH90] that better image compression is possible by first converting the

image values from the RGB color space to the YIQ color space, thus separating the

luminance (Y) from the chromatic information (I and Q). Since human perception is

more sensitive to variations in Y and less sensitive to variations in Q, we may want

to specify a larger weight for errors in Y and a smaller weight for errors in Q. In such

scenarios, the use of the Combined algorithm becomes problematic, since it cannot

devote different fractions of the available space to different measures, even though

the coefficient values within each vector are weighted differently. Moreover, for data

sets with several measures, it seems quite unlikely that the coefficient values across

all measures would be simultaneously large or small (i.e., all measure values in the

data are positively correlated). For such data sets, the Combined algorithm would

clearly waste synopsis storage space, without significantly improving the accuracy of

the resulting approximation for all measures.

On the other hand, there are cases when we can expect multiple coefficient val-

ues of a combined coefficient to have large values. As discussed in Sections 4.2.1-4.2.2,

Haar coefficient values are normalized based on their respective resolution levels. Due

to this normalization, coefficient values at lower (i.e., “coarser”) resolution levels typ-

ically tend to have larger values, and this occurs for all measures. Another scenario

where multiple large coefficient values might occur at the same coordinate(s) arises

98



for sparse data sets (that are typical in real-life high-dimensional data-analysis ap-

plications). In such data sets, there often are sparse regions of the data space with

only one or very few data tuples present. Depending on the sizes of such regions and

the tuple data values, such “spikes” in the input data signal can potentially create

large Haar coefficient values across many measures. Clearly, in such scenarios, the

Combined algorithm can provide significant advantages over an Individual strategy

by avoiding the replication of coordinates for multiple measures in the synopsis.

4.2.5 Our Approach: Extended Wavelet Coefficients

The above-described Individual and Combined essentially represent the two extremes

of the design spectrum, by assuming that either one or all values of a Haar coefficient

are important for the synopsis (and can share their coordinates). Given the impor-

tant shortcomings of both techniques when dealing with multi-measure data sets, we

now introduce the notion of an extended wavelet coefficient that tries to bridge the

gap between the two extremes by providing an efficient, flexible storage format for

retaining any subset of coefficient values.

Definition 1 An extended wavelet coefficient EC for a D-dimensional data set with

M measures is defined as a triple EC =< C, β, V > consisting of: (1) The coordinates

C of the coefficient; (2) A bitmap β of size M where the ith bit denotes the existence or

absence of a coefficient value for the ith measure; and, (3) The set of stored coefficient

values V .
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The bitmap of an extended wavelet coefficient determines exactly which of the

(at most M) per-measure values of the combined coefficient at the given coordinates C

have actually been stored. Thus, an extended wavelet coefficient combines the positive

aspects of both the Individual and Combined algorithms as a flexible storage method

that can store anywhere from one to M values for any combination of coefficient

coordinates. (We refer to the (coordinates, bitmap) pair for an extended wavelet

coefficient as the coefficient’s header.)

In the remainder of the chapter, we address the problem of building effective

extended wavelet coefficient synopses (under a given storage constraint) for different

classes of target error metrics in the approximate data reconstruction. (Our develop-

ment typically assumes that the unit of storage space is equal to the space needed to

store a single coefficient value (e.g., size of a float denoted as sizeof(float)), and

all space requirements/constraints are expressed in terms of this unit.) Since our fo-

cus is on selecting the specific coefficient values to store, our algorithms address only

the final thresholding step of the wavelet-based data reduction process. The input to

all of our thresholding schemes is the complete set of combined wavelet coefficients,

which can be trivially created using the same decomposition process as in either the

Individual or the Combined algorithm (Section 4.2.4).
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4.3 Extended Wavelet Synopses for Weighted Sum-Squared

Error

As discussed earlier, the most common optimization objective for conventional wavelet

synopses in the single-measure case is the sum-squared (i.e., L2) error in the data

approximation. Thus, a natural extension for data sets with multiple measures is to

optimize for a weighted sum-squared error across all data measures. More formally,

our optimization problem can be stated as follows.

[Weighted Sum-Squared Error Minimization for Extended Coef-

ficients] Given a collection WA of candidate combined wavelet coefficients

of a D-dimensional data set with M measures, a storage constraint B, and

an M -vector of measure weights w, select a synopsis S of extended wavelet

coefficients that minimizes the weighted sum of the L2-error norms across

all measures; that is, minimize
∑M

j=1

(
wj ×

∑
i(dij − d̂ij)

2
)

subject to the

constraint
∑

EC∈S |EC| ≤ B.

Based on Parseval’s theorem and the discussion in Section 4.2.3, and using c∗ij

to denote the normalized value for the jth measure of the ith input combined wavelet

coefficient, we can restate the above optimization problem in the following equivalent

(and, easier to process) form.
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[Weighted Sum-Squared Benefit Maximization for Extended Co-

efficients] Given a collection WA of candidate combined wavelet coef-

ficients of a D-dimensional data set with M measures, a storage con-

straint B, and an M -vector of measure weights w, select a synopsis S

of extended wavelet coefficients that maximizes the weighted sum of the

retained normalized squared coefficient values across all measures; that

is, maximize
∑

EC=<C,β,V >∈S
∑

j,β(j)=1 wj × (c∗ij)
2 subject to the constraint∑

EC∈S |EC| ≤ B.

4.3.1 DynProgL2: An Optimal Dynamic-Programming Algorithm

We now propose a thresholding algorithm (termed DynProgL2) based on Dynamic-

Programming (DP) ideas, that optimally solves the optimization problem described

above. Our DynProgL2 algorithm takes as input a set of combined coefficients WA, a

space constraint B, and an M -vector of weights w (used to weight the benefit of the

coefficient values for each measure). DynProgL2 treats the individual coefficient values

for each input combined coefficient as subitems in our problem, utilizing an implicit

mapping that maps the jth coefficient value of the ith combined coefficient to the

subitem index k = (i−1)∗M +j. (Thus, the M per-measure values for each combined

coefficient correspond to consecutive subitems.) Our discussion in this section makes

use of this mapping in order to simplify the development of our algorithms. Finally,

we should emphasize here that our DynProgL2 thresholding algorithm is applicable

(without any modifications) independently of the data dimensionality, since increasing

the dimensionality only affects the header size H for the retained extended wavelet
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coefficients.

Let k = (i − 1) ∗ M + j denote the subitem index corresponding to the jth

coefficient value of the ith combined coefficient. Retaining the kth subitem in our

synopsis, gives us a weighted benefit equal to wj×(c∗i,j)
2. However, the space overhead

for storing this subitem obviously depends on whether this is the first coefficient value

being stored from the ith combined coefficient, or not. If this is indeed the first value

retained from the ith combined coefficient, then its space requirements are equal to the

space needed to store the extended coefficient header (coordinates and bitmap) plus

the space for storing the coefficient value. On the other hand, if other subitems for the

coefficient have already been stored, then we have already paid the space penalty for

the coefficient header, and the subitem’s space requirements are simply the space for

storing the coefficient value. These dependencies on the storage-space requirements

across coefficient values (due to the shared space for extended coefficient headers)

render the design of an optimal solution to our problem significantly more complex

than that of known (pseudo-polynomial) DP algorithms to traditional knapsack-style

problems. (Note, of course, that in our problem scenario, the space bound B is always

upper bounded by |WA| and, thus, is polynomial (linear) in the input size.)

We now try to formulate a DP recurrence for our optimization problem. Note

that, to be able to tabulate partial solutions in our DP table, our development here

requires that all subitems occupy an integral number of space units – this can be

done, for instance, by assuming a basic space unit of 1 bit. 2 For the optimal solution

2 Some techniques, like encoding the bitmap within some coefficient coordinate(s) for small
numbers of measures, can help increase the size of the space unit, thus decreasing the memory
requirements of our DP tables. Still, such optimizations do not improve the asymptotic space
complexity of our problem.
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using synopsis space of at most S, and considering the first k subitems, three cases

may arise:

1. The optimal solution is the same as using k − 1 subitems and the same space

S;

2. The optimal solution is achieved by including subitem k, and k is the first

subitem of its combined coefficient included in the optimal solution; or,

3. The optimal solution is achieved by including subitem k, and k is not the first

subitem of its combined coefficient included in the optimal solution.

It is important to note that, in the third case, the kth subitem needs to be

combined with the optimal partial solution P that (a) uses at most the first k − 1

subitems and space at most S − sizeof(float); and (b) includes at least one more

subitem (i.e., other than k) from the corresponding, ith combined coefficient. This

second requirement results in a perhaps surprising observation: The partial solution

P is not necessarily optimal for our optimization problem when using only the first

k − 1 subitems and up to S − sizeof(float) units of space. An example is shown

in Table 4.5, which depicts just two coefficients corresponding to a three-dimensional

data set with three measures. To keep things simple, assume that the storage bound

B is equal to the size of one tuple augmented by a bitmap of three bits, and that

each measure has a weight of 1. Note that, under this storage bound, it is obviously

impossible to store two coefficient values from different coefficients. Let S1 denote

the space needed to store a single coefficient value along with the pertinent header

information; that is, S1 = H + sizeof(float). Now, consider the optimal solution
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Candidate Coefficients
Coordinates Values
0 0 1 100 1 2
1 2 0 99 98 97

SubItems in Optimal Solution
Considered For Space Bound
Subitems S1 S1 + sizeof(float) S1 + 2sizeof(float)
First 1 1 1 1
First 2 1 1,2 1,2
First 3 1 1,3 1,2,3
First 4 1 1,3 1,2,3
First 5 1 4,5 4,5
First 6 1 4,5 4,5,6

Table 4.5: Unexpected Optimal Solution Arises for Space Bound S1+sizeof(float).

for space bound S1 + sizeof(float), when considering up to the first five subitems.

It is easy to see that, at this point, the optimal solution is to store subitems 4 and 5

(both corresponding to the second combined coefficient); however, it is also easy to

see that subitem 4 is not part of any optimal solution involving only the first four

subitems (for any storage bound ≤ B), since subitem 1 can always be used in its

place to give a solution with larger benefit.

The above discussion basically shows that our optimization problem for ex-

tended wavelet synopses basically violates the key principle of optimality for con-

ventional dynamic programming [CLR90], and requires us to come up with a novel

algorithmic solution. An important observation here is that we only need to store,

for each possible subitem×space (k, S) combination only a single suboptimal solution,

namely the best solution (for at most S units of space and considering up to the kth

subitem) which forces at least one subitem of the combined coefficient correspond-

ing to k to be included in the synopsis. Our dynamic program employs an array

Force[k, S] to tabulate such suboptimal solutions (for each subitem×space combi-

nation), in addition to the more conventional Opt[k, S] DP array which tabulates the
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(partial) optimal solutions to our problem (when using space ≤ S and considering

the first k subitems).

Our DynProgL2 algorithm (depicted in Figure 4.3) computes the entries for the

Opt[k, S] and Force[k, S] arrays (both of size (N ·M)×B) in a mutually-recursive

manner. Each cell of these two arrays comprises two numeric fields: (1) a “bene-

fit” field recording the total benefit for the corresponding partial solution, and (2)

a “choice” field used to code the choice made by our dynamic program when de-

ciding the benefit of a cell (to be explained shortly). (Both fields are necessary in

order to retrace the actions of our algorithm when building the optimal solution.)

DynProgL2 begins by initializing some entries for both the Opt and Force arrays:

Lines 1–3 are based on the fact that no coefficient value can be stored in space

less than H + sizeof(float). Similarly, the optimal solution for space of at least

H + sizeof(float) and considering only the first subitem obviously only includes

this subitem (Lines 4–6).

DynProgL2 then iteratively fills in the values for the remaining cells (Lines 7–

17). For the Opt array, the benefit for the optimal solution using space ≤ S and

considering up to the first k subitems, is computed as the best (i.e., maximum-benefit)

choice from the three cases described above (Lines 12–13). A similar choice is made

for the corresponding best solution for the Force array entries (Lines 14–15). Note

that some of the three cases are valid only if the current subitem satisfies some

conditions, namely that it corresponds to a coefficient value with a measure index of

at least two (i.e., j > 1). The “choice” field of our DP array entries, which codes the

choice made when determining the benefit of an entry, is assigned a value of 2, 3, or
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procedure DynProgL2(WA, B, w)
Input: N ×M vector of combined wavelet coefficients WA; space constraint B;

per-measure weight vector w.
Output: Optimal set of extended wavelet coefficients and benefit of optimal solution.
1. for each S < H + sizeof(float) do // initialize DP array entries
2. Opt[∗, S].benefit := Force[∗, S].benefit := 0
3. Opt[∗, S].choice := Force[∗, S].choice := 1
4. for each S ≥ H + sizeof(float) do
5. Opt[1, S].benefit := Force[1, S].benefit := w1 ∗ (c∗1,1)

2

6. Opt[1, S].choice := Force[1, S].choice := 3
7. for k := 2 to N ·M do
8. let i := 1 + (k − 1)÷M // combined coefficient index
9. let j := 1 + (k − 1) mod M // measure index
10. let f := sizeof(float) // space for a single coefficient value
11. for S := H + f to B do

12. Opt[k, S].benefit := max


Opt[k − 1, S].benefit

Opt[k − 1, y −H − f ].benefit + wj ∗ (c∗i,j)
2

Force[k − 1, y − f ].benefit + wj ∗ (c∗i,j)
2 j > 1

13. Depending on which of the three choices listed above produced the maximum
benefit value, set Opt[k, S].choice equal to 2, 3 or 4 (respectively)

14. Force[k, S].benefit := max


Force[k − 1, S].benefit j > 1

Opt[k − 1, y −H − f ].benefit + wj ∗ (c∗i,j)
2

Force[k − 1, y − f ].benefit + wj × (c∗i,j)
2 j > 1

15. Depending on which of the three choices listed above produced the maximum
benefit value, set Force[k, S].choice equal to 2, 3 or 4 (respectively)

16. endfor
17. endfor
18. Build the optimal solution by doing a reverse traversal starting from the entry

Opt[N ·M,B], and moving based on the choice field of the current entry
19. return(Opt[N ·M,B].benefit) // return benefit of optimal synopsis
end

Figure 4.3: The Optimal DynProgL2 Algorithm.

4 (respectively), depending on which of the three above-described cases produced the

optimal solution. Entries corresponding to cases where no subitem can be stored in

the specified space have a “choice” field value of 1 (Line 3).

At the end, the total benefit for the optimal extended wavelet synopsis is the
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benefit achieved when considering all the N ·M subitems and using at most B space

units, i.e., Opt[N · M, B].benefit. We can build the optimal solution by retracing

the actions of DynProgL2, starting from cell [N ·M, B] and moving depending on the

“choice” field of the current cell. More formally, our optimal synopsis construction

process starts by initializing the synopsis S to φ and, assuming that at some point we

are at cell [k, S], the action performed is determined based on the value of the cell’s

“choice” field as follows:

• choice = 1: End of traversal.

• choice = 2: Move to cell [k − 1, S] of the same array.

• choice = 3: Add an extended wavelet coefficient containing the kth subitem to

S, and move to cell [k − 1, S −H − sizeof(float)] of the Opt array.

• choice = 4: Add the kth subitem to S (creating a new extended wavelet coeffi-

cient, if necessary), and move to cell [k − 1, S − sizeof(float)] of the Force

array.

Time and Space Complexity. The space requirements of our DynProgL2 algo-

rithm are essentially determined by the size of the Opt and Force arrays, which is

O(NMB). Given that the value of each cell is computed in constant O(1) time for

both of our DP arrays, the overall time complexity of DynProgL2 is also O(NMB).

Our reverse-traversal procedure for constructing the optimal extended wavelet synop-

sis takes O(NM) time, since each step essentially checks (in constant time) whether

a subitem k belongs in the synopsis and then proceeds to subitem k − 1.
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4.3.2 GreedyL2: An Efficient, Provably Near-Optimal Approximation

Algorithm

We now present a greedy solution to the optimization problem of Section 4.3. Our

algorithm, to which we will refer as GreedyL2, is based on transforming the optimiza-

tion problem to match the 0-1 Knapsack Problem, and then selecting which coefficient

values to store based on a per space benefit metric. The notation used in this section

is consistent with the one described in Table 4.1. However, we revert to our original

definition of the space unit to be equal to the size of storing one coefficient value

(i.e., equal to sizeof(float)). Note that the GreedyL2 algorithm, similarly to the

DynProgL2 algorithm, can be applied without any modifications, independently of the

data dimensionality, since the increased dimensionality simply affects the size of the

header of any stored extended wavelet coefficients.

Similar to the dynamic programming algorithm presented in the previous sec-

tion, GreedyL2 receives as input a set of candidate combined wavelet coefficients WA,

a set of weights w, and a storage constraint B. Instead of considering the benefit of

each coefficient value individually, GreedyL2 considers at each step the optimal benefit

achieved by selecting a set of k (1 ≤ k ≤ M) coefficient values of the same combined

coefficient that have not already been stored. It easy to see that the optimal selection

will include the non-stored coefficient values that have one of the k largest benefits:

wj× (c∗ij)
2, where wj is the weight corresponding to the coefficient value, and c∗ij is its

normalized value. The storage space for these k values will be equal to H + k, if no

value of this combined coefficient has been stored before, and k otherwise. GreedyL2
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procedure GreedyL2(WA, B, W )
Input: N ×M vector of combined wavelet coefficients WA; space constraint B;

per-measure weight vector w.
Output: Selected set of extended wavelet coefficients and benefit of greedy solution
1. A max-heap structure struct is used to maintain the optimal benefits of

the candidate sets of coefficient values.
2. Each entry in struct has 4 fields:

psb: per space benefit
num: number of coefficient values in candidate set
space: space needed for storing the set’s coefficient values
index: index of combined coefficient the set belongs to

3. Stored[i] denotes the number of coefficient values from the i-th input
combined coefficient that have already been selected to be stored.

4. for i := 1 to N do
5. Sort coefficient values in descending order of their weighted benefit wj × (c∗ij)

2

6. Set SortOrder[i, j] to the index of the measure with the j-th top weighted benefit
7. Stored[i] := 0
8. InsertSets(i, struct, Stored, SortOrder, w)
9. endfor
10. SpaceLeft := B
11. while (SpaceLeft ≥ 1) AND (struct.size() > 0) do
12. repeat PickedSet = struct.pop() until PickedSet.space ≤ SpaceLeft
13. Also remove all candidate sets of the combined coefficient PickedSet.index
14. SpaceLeft -= PickedSet.space
15. Stored[PickedSet.index]+ = PickedSet.num
16. Remove from struct all sets belonging to coefficient PickedSet.index
17. InsertSets(PickedSet.index, struct, Stored, SortOrder, w)
18. endwhile
19. For each combined coefficient store the Stored coefficient values with the

largest weighted benefit
end

Figure 4.4: The GreedyL2 Algorithm

maintains a structure with all the optimal sets of size k (1 ≤ k ≤ M) of all the

combined coefficients, and selects the set with the largest per space benefit. The coef-

ficient values belonging to the selected set are stored, and the benefits of the optimal

sets for the chosen combined coefficient have to be recalculated to only consider values

that have not already been stored. The algorithm is presented in Figure 4.4.

For each input combined coefficient, the first step is to decide the sort order of

its coefficient values based on their weighted benefit (Lines 5-6). For each combined

coefficient we also maintain the number of its coefficient values that have been selected
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procedure InsertSets(i, struct, Stored, SortOrder, w, SpaceLeft)
Input: Index i of input combined coefficient; structure struct of candidate sets;

Symbols Stored, SortOrder, w and SpaceLeft defined as in GreedyL2 algorithm
Output: Candidate sets inserted in struct structure
begin
1. cumulativeBen := 0
2. for j := Stored[i] + 1 to M do
3. p = SortOrder[i, j]
4. cumulativeBen+ = wp × (c∗ip)

2

5. if (Stored[i] > 0) then
6. spaceNeeded = j − Stored[i]
7. else
8. spaceNeeded = H + j
9. if (spaceNeeded < SpaceLeft) AND ((c∗ip)

2 > 0) then
10. struct.insert(candidateSet( cumulativeBen

spaceNeeded , j, spaceNeeded, i))
11. Also connect all inserted sets of same combined coefficient using a cyclic list
12. endfor
end

Figure 4.5: The InsertSets Subroutine

for storage in a Stored array, whose entries are initialized to 0 at the beginning of

the algorithm (Line 7). Due to the way our algorithm is formulated, we do not need

to remember which of the coefficient’s values have been selected for storage, since

these will always be the ones with its Stored[] maximum weighted benefits. We then

calculate the optimal benefits of sets containing k coefficient values, 1 ≤ k ≤ M

(Line 8). The maximum number of such sets is at most M , but not always equal to

M , since we do not need to create any sets that include any coefficient values with

zero benefit. The space needed to store each of these k sets is H + k. The per space

benefit of each set, along with its occupied space, the number of coefficient values

within that set, and the identifier of the coefficient it belongs to, are then inserted

in a max-heap structure, where its elements are ordered based on their per-space

benefit. We chose to use such a structure, since each of the insert, delete and finding

the maximum value operations has at most logarithmic cost. However, any other
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data structure with similar characteristics can be used in its place.

The algorithm then repeatedly (Lines 11-18) picks the set with the maximum

per space benefit that can fit in the remaining space. The values corresponding to

this set are uniquely identified by the identifier field of the corresponding combined

coefficient (stored in the index field of each set), its Stored variable, and the size of the

picked set. For the corresponding combined coefficient of the picked set, the optimal

benefits of its sets have to be recalculated to include only non-stored coefficient values.

This coefficient’s previous sets are removed from the tree and the newly calculated

ones are then inserted. Note that the space required for the newly inserted sets does

not include the size of the header, since this has already been taken into account. The

entire procedure terminates when no set can be stored without violating the storage

constraint (SpaceLeft < 1). In order to create the output extended coefficients, we

simply have to parse the list of the combined coefficients, and for any coefficient that

has a Stored[] value greater than 0, create an extended wavelet coefficient and store

in it its Stored[] coefficient values with the largest weighted benefits.

Theorem 1: The GreedyL2 algorithm has an approximation ratio bound of

min{2, 1 + 1
B

H+M
−1
}

Proof: The proof is similar to the corresponding proof for the 0-1 knapsack problem.

A significant observation is that whenever we select a set PickedSet of coefficient

values from a combined coefficient Coeff for storage, any candidate set subOpt of Coeff

that will later be inserted in the max-heap for consideration cannot have a larger per

space benefit than the one of PickedSet. We will prove this by contradiction. Assume

112



that subOpt has a larger per space benefit than PickedSet. By the way the candidate

sets are formed, the following observations hold:

1. The sets PickedSet and subOpt cannot share any coefficient values.

2. The largest benefit of a coefficient value of subOpt cannot be larger than the

smallest benefit of a coefficient value of PickedSet.

3. The space overhead of subOpt does not include the size of the header, while

for PickedSet this depends on whether it is the first set of Coeff selected for

storage.

If we depict the benefits of the coefficient values of PickedSet as v1, v2, . . . , vk

and the benefits of the coefficient values of subOpt as v′1, v
′
2, . . . , v

′
p, then the per space

benefits of the two sets are, correspondingly,
∑k

i=1 vi

δ×H+k
and

∑p
i=1 v′i
p

, where δ has a value

of 1 or 0, depending on whether PickedSet is the first set of Coeff selected for storage.

Since by hypothesis subOpt has a larger per space benefit than PickedSet:

∑p
i=1 v′i
p

>

∑k
i=1 vi

δ ×H + k
=⇒

p∑
i=1

v′i × (δ ×H + k) >
k∑

i=1

vi × p (4.1)

At the time PickedSet was selected, a candidate set notP icked of Coeff with

k + p subitems existed, having a benefit which is at least equal to the set union

containing all subitems in PickedSet and subOpt. Comparing the per space benefit
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of notP icked and PickedSet, we have:

benefit(notP icked)− benefit(PickedSet) ≥ benefit(union)− benefit(PickedSet)

=
∑k

i=1 vi+
∑p

i=1 v′i
δ×H+(k+p)

−
∑k

i=1 vi

δ×H+k
=

∑p
i=1 v′i×(δ×H+k)−

∑k
i=1 vi×p

(δ×H+(k+p))×δ×H+k
> 0

(4.2)

The last part of formula (2) follows immediately from the inequality of formula

(1). At this point we have reached a contradiction, since PickedSet should not have

a smaller per space benefit than the set notP icked. Therefore, subOpt cannot have a

larger per space benefit than PickedSet.

The above observation also implies that each candidate set inserted in the max-

heap after the first set selection made by the algorithm cannot have a larger per

space benefit than the ones that have already been selected. To prove this, consider

any such set nowInserted that is inserted in the max-heap following the selection for

storage of another set nowStored, of the same candidate combined coefficient Coeff,

and consider the following two observations:

1. Following the preceding proof, the set nowInserted cannot have a larger per

space benefit than any set already picked for storage from the same candidate

combined coefficient Coeff.

2. Consider any candidate set otherSet already selected for storage, which corre-

sponds to a candidate combined coefficient other than Coeff. At the moment

otherSet was selected for storage, the candidate set of Coeff with the largest

per space benefit that was at that time in the max-heap could not have a larger
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per space benefit than otherSet, since it would have been selected for storage

instead of it, and cannot have a smaller per space benefit than nowStored.

Now, consider that GreedyL2 solution has selected to store the sets S1, S2, . . . , Sl,

and that Sl+1 is the set with the largest per space benefit that cannot be stored due

to space constraints.3 Let BenStored =
∑l

i=1 Si.psb × Si.space denote the sum of

benefits of the l sets included in the solution (using the notation of Figure 4.4),

BenFraction = Sl+1.psb×Sl+1.space denote the benefit of set Sl+1 and BenOptimal

denote the benefit of the optimal solution. If the remaining storage space at this point

of our algorithm is SpaceLeft, it can easily be shown 4 that the optimal solution has

at most benefit equal to: BenStored + BenFraction× SpaceLeft
Sl+1.space

.

Obviously, Sl.psb ≤ BenStored
B−SpaceLeft

≤ BenStored
max{H+1,B−(H+M)} (since the space of the

stored sets must be at least H + 1 and at least equal to B − (H + M)), and, since

the per space benefit of Sl+1 cannot be larger than the one of Sl, Sl+1.psb ≤ Sl.psb ⇒

BenFraction× SpaceLeft
Sl+1.space

≤ (H + M)× Sl.psb ≤ BenStored×(H+M)
max{H+1,B−(H+M)} . Therefore,

BenOptimal ≤ BenStored + BenFraction× SpaceLeft

Sl+1.space

≤ BenStored× (1 +
H + M

max{H + 1, B − (H + M)}
)

For B ≥ 2H + M + 1, the proof of the approximation ratio bound is complete. For

B < 2H + M + 1, the solution Z = max{BenFraction, BenStored} has at least half

the benefit of the optimal solution, since:

3For simplicity, consider that Sl+1 could fit by itself within the original storage constraint.
4The proof is identical to the optimal proof for the fractional knapsack problem.
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BenOptimal ≤ BenFraction + BenStored ≤ 2×max{BenFraction, BenStored}

The following lemma can now be easily derived based on the above theorem.

Lemma 2: Let B− (H + M) < Bused ≤ B denote the space occupied by the GreedyL2

algorithm’s solution at the time the first PickedSet that requires space larger than

SpaceLeft = B−Bused is selected. The GreedyL2 algorithm always selects the optimal

solution for the space constraint Bused.

Proof: Using the notation of the above proof, for a space constraint Bused there is

no unused space (i.e. SpaceLeft′ = 0). From the above proof we can then infer

that BenFraction = 0, resulting in BenOptimal ≤ BenStored + BenFraction =

BenStored.

Time and Space Complexity. Each of the N input combined coefficients creates at

most M candidate sets. Therefore, the space for the max-heap is O(NM). For each

combined coefficient, maintaining the sort order requires O(M) space. The size of the

input combined coefficients is O(N(D + M)), making the overall space complexity of

the algorithm O(N(D + M)).

Determining the sort order for the values of each combined coefficient requires

time O(M log M). Calculating the benefits of the sets produced by each coefficient

then takes only O(M) time. The original construction of a max-heap with O(NM)

elements can be done in O(NM) time. Thus, the overall running time for the max-
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heap construction is O(NM log M). Each time a set is picked for inclusion in the

result, the search requires O(log(NM)) time. Then, we need to make O(M) deletions

from the max-heap, corresponding to all the sets of the chosen combined coefficient.

Finding all such nodes on the tree requires O(M) time, if they are connected by

a cyclic list. Note that all the sets of the same combined coefficient are created

at the same time, thus making it easy to create such a list. Each of the O(M)

insertion and deletion operation then requires O(log(NM)) time. Since at most

O(M×B
H+M

) sets can be picked (for each extended wavelet coefficient, the smallest average

space per stored coefficient value occurs when all the M coefficient values are stored),

the total time complexity should be O(NM log M + BM
H+M

×Mlog(NM)). However, a

small complication arises because the algorithm may at some point repeatedly select

candidate sets that do not fit within the remaining space. Since at most O(NM)

such sets may be selected and removed, the running time cost of this step might

dominate the algorithm’s running time. However, at this step, the algorithm may

deviate from its behavior of removing the candidate set with the maximum per space

benefit and scan the entire heap for the set with the maximum per space benefit

that fits within the remaining space SpaceLeft. Since the maximum value of the

remaining space when this occurs must be less than H + M , and since the minimum

size of each candidate set is 1, at most O(H + M) steps with linear search cost may

be incurred. This results in a total running time complexity of O(NM(H + M) +

BM
H+M

×Mlog(NM)).

Note that according to Theorem 1 and Lemma 2, the solution of the GreedyL2

algorithm at the time the first set that does not fit within the space bound is selected
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is of good quality. To further improve the running time of the algorithm, one may

ignore the small unused space and thus always only insert at most one candidate set

for each combined coefficient, namely the set with the maximum per space benefit,

since this is the only one that may be selected for inclusion in the final solution. This

reduces the space of the max-heap to O(N) and requires O(1) deletion and insertion

operations for each picked set, while maintaining the same tight approximation ratio

bound. Thus, the running time is improved in this case to O(NM log M+ BM
H+M

log N).

4.4 Extended Probabilistic Wavelet Synopses

for Relative Error

Unfortunately, conventional and extended wavelet synopses optimized for overall L2

error metrics (as described in Sections 4.2-4.3), may not always be the best choice

for approximate query processing systems. As observed in the recent work of Garo-

falakis and Gibbons [GG04], conventional L2-optimized wavelet synopses suffer from

several important problems, including the introduction of severe bias in the data re-

construction and wide variance in the quality of the data approximation, as well as the

lack of non-trivial guarantees for individual approximate answers. To address these

shortcomings, their work introduces probabilistic wavelet synopses, a novel approach

for constructing (single-measure) wavelet data summaries optimized for maximum

relative-error metrics in the approximate data reconstruction. Given the pitfalls and

shortcomings of synopses optimized for overall L2 errors [GG04], it is obviously impor-
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tant to extend the ideas of (relative-error optimized) probabilistic wavelet synopses to

the setting of multi-measure data and extended wavelet coefficients. This turns out to

be a challenging problem, mandating novel algorithmic solutions. Before discussing

the details of our approach, however, we provide some necessary background mate-

rial on (single-measure) probabilistic wavelets [GG04]. (To simplify the exposition,

our development here focuses primarily on the one-dimensional case; extensions to

multi-dimensional wavelets are described in Section 4.4.5.)

4.4.1 Probabilistic Wavelet Synopses for Single-Measure Data

Consider the wavelet-transform array WA containing the wavelet coefficients for an

input data vector. Rather than deterministically retaining the largest coefficients

(in absolute normalized value) in a data summary, a probabilistic wavelet synopsis is

constructed using a probabilistic thresholding process based on randomized round-

ing [MR95]. In a nutshell, the basic idea in to randomly round each coefficient either

up to a larger rounding value (i.e., coefficient is retained) or down to zero (i.e., coeffi-

cient is dropped), so that the value of each coefficient is correct on expectation. More

formally, each non-zero wavelet coefficient ci is associated with a rounding value λi

such that 0 < ci

λi
≤ 1, and the value of coefficient ci in the synopsis becomes a random

variable Ci ∈ {0, λi}, where,

Ci =


λi with probability ci

λi

0 with probability 1− ci

λi
.
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In other words, a probabilistic wavelet synopsis essentially “rounds” each non-zero

wavelet coefficient ci independently to either λi or zero by flipping a biased coin with

success probability ci

λi
. Note that the above rounding process is unbiased; that is,

the expected value of each rounded coefficient is E[Ci] = λi · ci

λi
+ 0 · (1 − ci

λi
) = ci,

i.e., the actual coefficient value. Thus, since each data value can be reconstructed

as a simple linear combination of wavelet coefficients (Section 4.2), and by linear-

ity of expectation, it is easy to see that probabilistic wavelet synopses guarantee

unbiased approximations of individual data values as well as range-aggregate query

answers [GG02].

A different way to view the above probabilistic thresholding process is as an

assignment of fractional storage yi ∈ (0, 1] to each non-zero coefficient ci, where yi =

ci

λi
(the probability of retaining the coefficient in the synopsis). Given a set of rounding

values {λi} (and the corresponding fractional storage assignments {yi}), the variance

of the value in the probabilistic wavelet synopsis for each coefficient ci 6= 0 is

Var(i, yi) = Var(Ci) = (λi − ci) · ci =
1− yi

yi

· c2
i (4.3)

and the expected size of the synopsis is simply E[|synopsis|] =
∑

i|ci 6=0 yi =
∑

i|ci 6=0
ci

λi
.

Garofalakis and Gibbons [GG04] propose several different algorithms for build-

ing probabilistic wavelet synopses. The key, of course, is to select the coefficient

rounding values {λi} such that some desired error metric for the data approxima-

tion is minimized while not exceeding a prescribed space limit B for the synopsis

(i.e., E[|synopsis|] ≤ B). Their winning strategies are based on formulating appropri-
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ate Dynamic-Programming (DP) recurrences over the Haar error-tree that explicitly

minimize either (a) the maximum normalized standard error (MinRelVar), or (b) the

maximum normalized bias (MinRelBias), for each reconstructed value in the data do-

main. As explained in [GG04], the rationale for these probabilistic error metrics is

that they are directly related to the maximum relative error (with an appropriate

sanity bound S)5 in the approximation of individual data values based on the syn-

opsis; that is, both the MinRelVar and MinRelBias schemes try to (probabilistically)

control the quantity maxi{ |d̂i−di|
max{di,S}}, where d̂i denotes the data value reconstructed

based on the wavelet synopsis. Note, of course, that d̂i is again a random variable,

defined as the ±1 summation of all (independent) coefficient random variables on

path(di). Bounding the maximum relative error in the approximation also allows for

meaningful error guarantees to be provided on reconstructed data values [GG04].

As an example, Equation (4.4) depicts the DP recurrence in [GG02, GG04] for

minimizing the maximum Normalized Standard Error (nse) in the data reconstruc-

tion, defined as

max
i

nse(d̂i) = max
i

√
Var(d̂i)

max{|di|, S}
,

where Var(d̂i) =
∑

cj∈path(di)
Var(j, yj). R[i, B] here denotes the minimum value of

the squared nse (i.e., nse2) among all data values in the subtree of the error-tree

rooted at coefficient ci assuming a space budget of B, and Norm(i) = max{d2
mini

, S2},

where dmini
is the minimum data value under ci’s subtree, is a normalization term

for that subtree. (Indices 2i and 2i + 1 in the recurrence correspond to the left and

5The role of the sanity bound is to ensure that relative-error numbers are not unduly
dominated by small data values [HS92, VW99].
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right child (respectively) of ci in the error-tree structure (Figure 4.1).) Intuitively,

the DP recurrence in Equation (4.4) states that, for a given space budget B at ci,

the optimal fractional-storage allotments {yk} and the corresponding maximum nse2

are fixed by minimizing the larger of the costs for paths via ci’s two child subtrees

(including the root in all paths), where the cost for a path via a subtree is the sum

of: (1) the variance penalty incurred at ci itself, assuming a setting of yi, divided

by the normalization term for that subtree, and (2) the optimal cost for the subtree,

assuming the given space budget. This minimization, of course, is over all possible

values of yi and, given a setting of yi, over all possible allotments of the remaining

B−yi space “units” amongst the two child subtrees of ci. Of course, if ci = 0 then no

space budget needs to be allocated to node i, which results in the simpler recurrence

in the second clause of Equation (4.4). Finally, data-value nodes (characterized by

indices i ≥ N , see Figure 4.1) cost no space and incur no cost, and the “otherwise”

clause handles the case where we have a non-zero coefficient but zero budget (ci 6= 0

and B = 0).

R[i, B] =



min
yi∈(0,min{1,B}];
bL∈[0,B−yi]

 max


Var(i,yi)

Norm(2i)
+ R[2i, bL] ,

Var(i,yi)

Norm(2i+1)
+ R[2i + 1, B − yi − bL]


 if i < N ,

ci 6= 0,
and B > 0

minbL∈[0,B] { max{R[2i, bL] , R[2i + 1, B − bL] } } if i < N
and ci = 0

0 if i ≥ N
∞ otherwise

(4.4)

As demonstrated by Garofalakis and Gibbons [GG02, GG04], the DP recur-

rence in Equation (4.4) characterizes the optimal solution to the maximum nse min-
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imization problem for the case of continuous fractional-storage allotments yi ∈ (0, 1]

(modulo certain technical conditions that may require small “perturbations” of zero

coefficients [GG02, GG04]). A similar DP recurrence can also be given for the maxi-

mum normalized bias metric. Their MinRelVar and MinRelBias algorithms then proceed

by quantizing the solution space; that is, they assume the storage allotment variables

yi and bL in Equation (4.4) to take values from a discrete set of choices correspond-

ing to integer multiples of 1/q, where q > 1 is an input integer parameter to the

algorithms. (Larger values of q imply results closer to the optimal, continuous solu-

tion.) The running time of their (quantized) MinRelVar and MinRelBias algorithms is

O(Nq2B log(qB)) with an overall space requirement of O(NqB) (and an in-memory

working-set size of O(qB log N)); furthermore, their techniques also naturally ex-

tend to multi-dimensional data and wavelets, with a reasonable increase in time and

space complexity [GG04]. Experimental results over synthetic and real-life data in

[GG02, GG04] have demonstrated the superiority of MinRelVar and MinRelBias prob-

abilistic synopses as an approximate query answering tool over conventional wavelet

synopses.

4.4.2 Extended Probabilistic Wavelets for Multiple Measures: Prob-

lem Formulation

In what follows, we introduce algorithms for building effective probabilistic synopses

comprising extended wavelet coefficients for multi-measure data sets. As in [GG04],

our primary focus is on synopses that minimize the maximum relative error (with
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appropriate sanity bounds) in the data reconstruction.6 Employing the more com-

plex extended-coefficient format enables effective space utilization, but, at the same

time, significantly increases the complexity of the probabilistic-thresholding process,

rendering the DP schemes of [GG04] inapplicable in our problem setting.

The Problem with Extended Coefficients. In a nutshell, the key difficulty in

probabilistic thresholding for extended wavelet coefficients stems from the common

header space (i.e., coordinates + bitmap) for all stored coefficient values. The ability

to share this header is the main benefit of the extended coefficient storage format but,

at the same time, this sharing of storage introduces non-trivial dependencies in the

thresholding process across coefficients for different measures, and implies that the

selection probabilities for such coefficients are no longer independent. More formally,

consider a data set with M measures, and let cij denote the Haar coefficient value

corresponding to the jth measure at coordinate i, and let yij denote the retention

probability (i.e., fractional storage) for cij in the synopsis. Also, let ECi be the

extended wavelet coefficient at coordinate i, and let H denote the space required by

an extended-coefficient header. (In our discussion, the unit of space is set equal to

the space required to store a single coefficient value (e.g., size of a float), and all space

requirements are expressed in terms of this unit.) The expected space requirement of

extended coefficient ECi can be computed as

E[|ECi|] =
∑

j|cij 6=0

yij + H × (1−
M∏

j=1

(1− yij)). (4.5)

6Our techniques also naturally extend to other approximation-error metrics, including
maximum weighted relative error and maximum absolute error.
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The first summand in the above formula captures the expected space for all (non-

zero) individual coefficient values at coordinate i. The second summand captures the

expected header overhead. To see this, note that if at least one coefficient value is

stored, then a header space of H must also be allotted. And, of course, the probability

of storing ≥ 1 coefficient values is just one minus the probability that none of the

coefficients is stored.

Equation (4.5) clearly demonstrates that the sharing of header space amongst

the individual coefficient values cij for different measures creates a fairly complex

dependency of the overall extended-coefficient space requirement on the individual

retention probabilities yij. Given a space budget B for the wavelet synopsis, ex-

ploiting header-space sharing and this storage dependency across different measures

is crucial for achieving effective storage utilization in the final synopsis. Essentially,

this implies that our probabilistic-thresholding strategies for allocating synopsis space

cannot operate on each measure individually; instead, space allocation must explicitly

account for the storage dependencies across groups of coefficient values (correspond-

ing to different measures). This requirement significantly complicates the design of

probabilistic-thresholding schemes for extended wavelet coefficients.

Problem Statement and Approach. Our goal is to minimize the maximum rel-

ative reconstruction error for each individual data value; this would also allow us to

provide meaningful guarantees on the accuracy of each reconstructed value. More for-

mally, we aim to produce estimates d̂ij of the data values dij, for each coordinate i and

measure index j, such that |d̂ij−dij| ≤ ε ·max{|dij|, Sj}, for given per-measure sanity
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bounds Sj > 0, where the error bound ε > 0 is minimized subject to the given space

budget for the synopsis. Since probabilistic thresholding implies that d̂ij is again a

random variable, and using an argument based on the Chebyshev bound [GG02], it

is easy to see that minimizing the overall nse across all measures guarantees a max-

imum relative error bound that is satisfied with high-probability. Thus, we can define

our probabilistic-thresholding problem for extended wavelet coefficients as follows.

[Maximum nse Minimization for Extended Coefficients] Find the

fractional-storage assignments yij for coefficients cij that minimize the max-

imum nse for each reconstructed data value across all measures; that is,

Minimize max

i∈{0,...,N−1}

j∈{1,...,M}

√
Var(d̂ij)

max{|dij|, Sj}
(4.6)

subject to the constraints 0 < yij ≤ 1 for all non-zero cij and E[|synopsis|] =∑
i E[|ECi|] ≤ B, where the expected size E[|ECi|] of each extended coef-

ficient is given by Equation (4.5).

We focus on the above maximum nse minimization problem for multi-measure

data in the remainder of this section; we do note, however, that our techniques

and algorithms also naturally extend to the multi-measure variants of the maximum

normalized-bias minimization problems of [GG02, GG04]. Our algorithms exploit

both the error-tree structure of the Haar decomposition and the above-described stor-

age dependencies (Equation (4.5)) for extended coefficients in order to intelligently

assign fractional storage {yij} to non-zero coefficients within the overall space-budget
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constraint B. As in [GG02, GG04], our schemes also rely on quantizing the space

allotments to integer multiples of 1/q, where q > 1 is an integer input parameter; that

is, we modify the constraint 0 < yij ≤ 1 to yij ∈ {1
q
, 2
q
, . . . , 1} in the above problem

formulation. (Remember that our space unit corresponds to the size of a coefficient

value.) Our first algorithm is based on an exact, generalized DP formulation that ex-

tends earlier schemes for the single-measure case [GG02, GG04] to the multi-measure

setting; unfortunately, this generalization comes at the cost of a significant increase

in computational complexity (as our empirical study also clearly shows). Our sec-

ond algorithm is a very fast, greedy approximation heuristic (termed GreedyRel) for

probabilistic multi-measure thresholding; our results show that GreedyRel consistently

provides near-optimal performance and can easily scale to problem sizes that are sim-

ply unattainable for DP-based solutions (even for the simpler single-measure case!).

4.4.3 PODPRel: An Optimal Partial-Order Dynamic Programming

Solution

Consider an input data set with M measures. At a high level, our maximum nse

minimization problem for extended wavelet coefficients (Section 4.4.2) can be seen as

a generalization of the single-measure nse-minimization setting of [GG04], where our

final goal is to minimize the maximum component of an M-component vector of nses

(i.e., the nse values for the approximation of each individual measure). Of course, the

key complication here is that, for a given synopsis space budget, these M per-measure

nse values are not independent and cannot optimized individually; this is, again, due
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to the intricate storage dependencies that arise between the approximation at different

measures because of the shared header space (Equation (4.5)). As already discussed

in Section 4.4.2, it is crucial that our thresholding algorithms are able to exploit these

dependencies to ensure effective synopsis-space utilization. This essentially implies

that our thresholding schemes have to treat these M -component nse vectors as a

unit during the optimization process.

Consider once again the DP recurrence in Equation (4.4) for the single-measure

case. Remember that the recurrence computes in R[i, B] the minimum value of the

nse2 among all data values under coefficient i in the error tree assuming a space

budget of B. Based on our discussion above, extending the formulation to the case

of multiple measures requires that we generalize R[i, B] to denote an M-component

vector of nse2 values corresponding to all M measures for the data values in the

subtree rooted at the coefficient with coordinate i, and assuming a total space of B

allotted to extended coefficients in that subtree. We similarly generalize Var and Norm

in Equation (4.4) to the M -component vectors of per-measure variances Var(i, yij)

and normalization values Norm(i, j) at extended coefficient i (for a total allotment

of yi); also, addition and division operators denote the corresponding component-

wise operations on the operand vectors. As in the single-measure case [GG04], we

can simplify the minimization problem of Equation (4.6) by normalizing the variance

value at each node with the normalization terms Norm(i, j) = max{d2
minij

, S2
j} of its

subtrees. Thus, we compute the j-th component of the R[i, B] vector at node i for a

given retention probability yij of the cij coefficient value, and solutions R[2i, b2i] and
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R[2i + 1, b2i+1] from the node’s left and right subtrees as:

R[i, B]j = max


Var(i,yij)

Norm(2i,j)
+ R[2i, b2i][j]

Var(i,yij)

Norm(2i+1,j)
+ R[2i + 1, b2i+1][j]

Our goal, of course, is to minimize the maximum component of the vector R[root, B];

that is, minimize maxk=1,...,M{R[root, B]k}.

Unfortunately, this generalization of R[i, B] to an M -component vector also im-

plies that, to ensure optimality, the bottom-up computation of the DP recurrence can

no longer afford to maintain just the locally-optimal partial solution for each subtree

(as in the single-measure case). In other words, merely tabulating the R[i, B] vec-

tor with the minimum max-component for each internal tree node and each possible

space allotment is no longer sufficient – more information needs to be maintained

and explored during the bottom-up computation. As a simple example, consider the

scenario depicted in Figure 4.6 for the case M = 2. (Slightly abusing notation, we

use R[2i, B− y] and R′[2i, B− y] to denote two possible nse2 vectors for space B− y

at node 2i.) To simplify the example, assume that the right child of node i also

gives rise to the exact same solution vectors R[] and R′[]. (The figure also depicts

the normalized-variance vector for the coefficient values at node i assuming a total

space of y.) It is easy to see that, in this case, even though R′[2i, B − y] is locally-

suboptimal at node 2i (since its maximum component is larger than that of R[]), it

gives a superior overall solution of [1 + 2, 3 + 0.5] = [3, 3.5] at node i when combined

with i’s local variance vector.
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i

2i+12i

Var(i, y) = [2, 0.5]Norm(2i)
R’ gives a better solution    
for space B at node i !

R’[2i, B−y] = [1, 3]
R[2i, B−y] = [2.5, 2]

Figure 4.6: Example for partial-order pruning.

The key here is that, unlike conventional dynamic programming, using an M -

component vector R[i, B] to capture the per-measure squared nses corresponding to

different partial solutions in the DP computation also means that the conventional

principle of optimality based on a total ordering of partial solutions [CLR90] is no

longer applicable. Thus, locally-suboptimal R[i, B]’s (i.e., with large maximum com-

ponent nse2s) cannot be safely pruned since they may, in fact, be part of an optimal

solution higher up in the tree. However, there does exist a safe pruning criterion

based on a partial ordering of the R[i, B] vectors defined through the M-component

less-than operator �M , which is defined over M -component vectors u, v as follows:

u �M v if and only if ui ≤ vi,∀i ∈ {1, . . . ,M}.

For a given coordinate i and space allotment B, we say that a partial solution R′[i, B]

is covered by another partial solution R[i, B] if and only if R[i, B] �M R′[i, B] – it

is easy to see that, in this case, R′[i, B] can be safely pruned from the set of partial

solutions for the (i, B) combination since, intuitively, R[i, B] can always be used in

its place to give an overall solution of at least as good quality.
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Our proposed Partial-Order Dynamic Programming (PODP) solution to the

maximum nse minimization problem for extended coefficients (termed PODPRel)

generalizes the corresponding DP formulation in [GG04, GG02] based on the above

observations.7 That is, our partial, bottom-up computed solutions R[i, B] are M -

component vectors of per-measure nse2 values for coefficient subtrees, and such

partial solutions are only pruned based on the �M partial order. Thus, for each

coordinate-space combination (i, B), our PODPRel algorithm essentially tabulates a

collection R[i, B] of incomparable solutions, that represent the “boundary points” of

�M ,

R[i, B] = {R[i, B] : for any other R′[i, B] ∈ R[i, B],

R[i, b] 6�M R′[i, B] and R′[i, b] 6�M R[i, B]}.

Of course, for each allotment of space B to the coefficient subtree rooted at node

i, PODPRel needs to iterate over all partial solutions computed in R[i, B] in order

to compute the full set of (incomparable) partial solutions for node i’s parent in

the tree. Similarly, at leaves or intermediate root nodes, we consider all possible

space allotments {yij} to each individual measure and estimate the the overall space

requirements of the extended coefficient using Equation (4.5).

The main drawback of our PODP-based solution is the dramatic increase in

time and space complexity compared to the single-measure case. PODPRel relies on a

much stricter, partial-order criterion for pruning suboptimal solutions which implies

7Ganguly et al. [GHK92] also discuss PODP in a completely different context, namely
designing a System-R-style algorithm for optimizing join orders in parallel database systems.
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that the sets of incomparable partial solutions R[i, B] that need to be stored and

explored during the bottom-up computation can become very large. For instance, in

the simple case of a leaf coefficient, it is easy to see that the number of options to

consider can be as high as O(qM), compared to only O(q) in the single-measure case;

furthermore, this number of possibilities can grow extremely fast (in the worst case,

exponentially) as partial solutions are combined up the error tree.

4.4.4 GreedyRel: An Efficient, Greedy Approximation Heuristic

Given the very high running-time and space complexities of our PODP-based solu-

tion, we seek to devise an effective approximation algorithm to our maximum nse

minimization problem for extended coefficients. In this section, we propose a very

efficient, greedy heuristic algorithm (termed GreedyRel) for this optimization problem.

Briefly, GreedyRel tried to exploit some of the properties of dynamic-programming

solutions, but allocates the synopsis space to extended coefficients greedily based on

the idea of marginal error gains. The key idea here is to try, at each step, to allocate

additional space to a subset of extended wavelet coefficients in the error tree that

result in the largest reduction in the target error metric (i.e., maximum nse2) per

unit of space used.

Our GreedyRel algorithm relies on three basic operations: (1) Estimating the

maximum per-measure nse2 values at any node of the error tree; (2) Estimating the

best marginal error gain for any subtree by identifying the subset of coefficients in

the subtree that are expected to give the largest per-space reduction in the maximum
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nse2; and, (3) Allocating additional synopsis space to the best overall subset of

extended coefficients (in the entire error tree). We describe these three operations in

detail in the remainder of this section. Consider a step of our GreedyRel algorithm,

and let yij denote the currently-assigned retention probability (i.e., fractional storage)

for each individual coefficient cij (i.e., at coordinate i for the jth measure); also, let

Tij denote the error subtree (for the jth measure) rooted at cij.

Estimating Maximum nse2 at Error-Tree Nodes. In order to determine the

potential reduction in the maximum squared nse due to extra space, GreedyRel first

needs to obtain an estimate for the current maximum nse2 at any error-tree node.

GreedyRel computes an estimated maximum nse2 G[i, j] over any data value for the

jth measure in the Tij subtree, using the recurrence:

G[i, j] =



max



Var(cij ,yij)

Norm(2i,j)
+ G[2i, j]

Var(cij ,yij)

Norm(2i+1,j)
+ G[2i + 1, j]

if i < N

0 if i ≥ N.

The above formula is similar to the DP recurrence for computing R[i, B] in Equa-

tion (4.4): The estimated maximum nse2 value is the maximum of two costs calcu-

lated for the node’s two child subtrees, where each cost sums the estimated maximum

nse2 of the subtree and the node’s variance divided by the subtree normalization term.

Note, however, that, while Equation (4.4) is exact for the maximum squared nse in
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the optimal, continuous solution for single-measure data [GG04], the above recurrence

is only meant to provide an easy-to-compute estimate for a node’s maximum nse2

(under a given space allotment) that GreedyRel can use in its computation.

Estimating the Best Marginal Error Gain for Subtrees. Given an error sub-

tree Tij (for the jth measure), our GreedyRel algorithm computes a subset potSet[i, j] of

coefficient values in Tij which, when allotted additional space quanta, are estimated

to provide the largest per-space reduction of the maximum squared nse over all data

values in the Tij subtree. (Remember that our algorithms allocate the synopsis space

budget in space quanta of 1/q, where q > 1.) Let G[i, j] be the current estimated

maximum nse2 for Tij (as described above), and let Gpot[i, j] denote the potential

estimated maximum nse2 for Tij assuming that a (minimal) additional space of 1/q

is allotted to all coefficient values in potSet[i, j]. Also, let potSpace[i, j] denote the

increase in the overall synopsis size, i.e., the cumulative increase in the space for

the corresponding extended coefficients, when allocating the extra space to the coef-

ficient values in potSet[i, j]. We now describe how our GreedyRel algorithm computes

potSpace[i, j], and how the best error-gain subsets potSet[i, j] are estimated through

the underlying error-tree structure.

Consider a coefficient value ckj ∈ potSet[i, j]. Based on Equation (4.5), it is easy

to see that an increase of δykj in the retention probability of ckj results in an increase

in the expected-space requirement E[|ECk|] of the corresponding extended coefficient
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ECk (and, thus, the overall expected synopsis size) of:

δj(E[|ECk|], δykj) = δykj · (1 + H ×
∏
p6=j

(1− ykp)). (4.7)

The total extra space potSpace[i, j] for all coefficient values in potSet[i, j] can be ob-

tained by adding the results of Equation (4.7) for each of these values (with δykj =

1
q
); that is,

potSpace[i, j] =
∑

ckj∈potSet[i,j]

δj(E[|ECk|],
1

q
).

The marginal error gain for potSet[i, j] is then simply estimated as gain(potSet[i, j]) =

(G[i, j]−Gpot[i, j])/ potSpace[i, j].

To estimate the potSet[i, j] sets, and the corresponding Gpot[i, j]) (and gain())

values at each node, GreedyRel performs a bottom-up computation over the error-

tree structure. For a leaf coefficient cij, the only possible choice is potSet[i, j] =

{cij}, which can result in a reduction in the maximum nse2 if cij 6= 0 and yij < 1

(otherwise, the variance of the coefficient is already 0 and can be safely ignored); in

this case, the new maximum nse2 at cij is simply Gpot[i, j] =
Var(cij ,yij+

1
q )

Norm(i,j)
.8 For a non-

leaf coefficient cij, GreedyRel considers three distinct cases of forming potSet[i, j] and

selects the one resulting in the largest marginal error gain estimate: (1) potSet[i, j] =

{cij} (i.e., select only cij for additional storage); (2) potSet[i, j] = potSet[k, j], where

k ∈ {2i, 2i+1} is such that G[i, j] = G[k, j]+ Var(cij, yij)/Norm(k, j) (i.e., select the

potSet from the child subtree whose estimated maximum nse2 determines the current

8As in [GG02, GG04], in our implementation, we actually cap the contribution of coef-
ficient cij to the overall variance at c2

ij . This essentially implies (see Section 4.2) that we
only need to consider non-zero allotments yij > 1/2 to coefficient cij .
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maximum nse2 estimate at cij); and, (3) potSet[i, j] = potSet[2i, j]∪ potSet[2i + 1, j]

(i.e., select the union of the potSets from both child subtrees). Among the above three

choices, GreedyRel selects the one resulting in the largest value for gain(potSet[i, j]),

and records the choice made for coefficient cij (1, 2, or 3) in a variable chij.
9 In order

to estimate gain(potSet[i, j]) for each choice, GreedyRel uses the following estimates for

the new maximum nse2 Gpot[i, j] at cij (index k is defined as in case (2) above, and

l = {2i, 2i + 1}− {k}):

Gpot[i, j] =



max


Var(cij ,yij+

1
q )

Norm(2i,j)
+ G[2i, j]

Var(cij ,yij+
1
q )

Norm(2i+1,j)
+ G[2i + 1, j]

chij = 1

max


Var(cij ,yij)

Norm(k,j)
+ Gpot[k, j]

Var(cij ,yij)

Norm(l,j)
+ G[l, j]

chij = 2

max


Var(cij ,yij)

Norm(2i,j)
+ Gpot[2i, j]

Var(cij ,yij)

Norm(2i+1,j)
+ Gpot[2i + 1, j]

chij = 3

As an example, consider the scenario depicted in Figure 4.7 for M = 2. The

figure shows, for each of the children of node i, the computed G, Gpot, and potSpace

values, along with the value of G and the current normalized variance for node i.

The three cases of forming potSet for each measure at node i are enumerated, the

corresponding potential reductions (Diff) in the estimated maximum nse2 value for

each measure are calculated, and the choice that results in the largest per-space

9It is easy to see that combining the root node cij with one or both of its child potSets
cannot have better marginal error gain than the best of the three options we consider.
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Evaluating Choices on Node i  ifVar(i, y+1)
Norm(i) = [0, 0]

Choice 1: P = [18, 20], Diff = [0,2], potSpace = [0, 1]   
Choice 2: P = [15, 21], Diff = [3,1], potSpace = [1, 1]   
Choice 3: P = [12, 16], Diff = [6,6], potSpace = [4, 2]   

potG    = [15, 16]

2i+1

Norm(i)
Var(i, y) = [0, 2]

2i

  

  

G    = [12, 14]pot

Maximum value of G obtained through
right subtree for measure 1,  
left subtree for measure 2

Decision on Node i Based on Marginal Gains:
Choice = [2, 3]

potSpace = [1, 2]

potSpace = [1, 1]
G    = [12, 10]pot

G = [18, 19]

G = [18, 22]

potSpace = [3, 1]

G = [15, 20]

i

Figure 4.7: Example for GreedyRel algorithm.

reduction is selected for each measure. This figure also depicts why it is important to

simultaneously increase the retention probabilities of more than one coefficient values.

At any node i where the calculated G values through its children are the same, or differ

only slightly, for some measure j (as is the case with measure 2 in our example), then

any individual assignment of additional space to a coefficient value of that measure

below node i would only result in either zero, or very small marginal gains, and would

therefore not be selected, independently of how much it would reduce the maximum

nse2 value through its subtree. This happens because the estimated value of G[i, j]

through the other subtree would remain the same. As the authors of [GG02] describe,

in single-measure data sets the value of G through both subtrees is the same in the

optimal solution, thus implying that the above situation is expected to occur very

frequently.

An important point to note is that GreedyRel does not need to store the coefficient

sets potSet[i, j] at each error-tree node. These sets can be reconstructed on the fly,

by traversing the error-tree structure, examining the value of the chij variable at each

node cij, and continuing along the appropriate subtrees of the node, until we reach
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nodes with chij = 1.

Distributing the Available Synopsis Space. After completing the above-described

steps, our GreedyRel algorithm has computed the estimated current and potential

maximum nse2 values G[0, j] and Gpot[0, j] (along with the corresponding potSet and

potSpace) at the root coefficient (node 0) of the error tree, for each data measure j.

Since our overall objective is to minimize the maximum squared nse among all mea-

sures over the entire domain, GreedyRel selects, at each step, the measure jmax with

the maximum estimated nse2 value at the root node (i.e., jmax = arg maxj{G[0, j]}),

and proceeds to allocate additional space of potSpace[0, jmax] to the coefficients in

potSet[0, jmax]. This is done in a recursive, top-down traversal of the error tree, start-

ing from the root node and proceeding as follows (i denotes the current node index):

(1) If chijmax = 1, set yijmax := yijmax+
1
q
, (2) If chijmax = 2, then recurse to the child

subtree Tk, k ∈ {2i, 2i + 1} through which the maximum nse2 estimate G[i, jmax] is

computed at node i, and (3) If chijmax = 3, then recurse to both child subtrees T2i

and T2i+1; furthermore, after each of the above steps, compute the new values for

G[i, jmax], Gpot[i, jmax], potSpace[i, jmax], and chijmax at node i.

A pseudocode description of our GreedyRel algorithm is depicted in Figure 4.8.

Note that in the later steps of the algorithm, the available synopsis space may become

smaller than potSpace[i, jmax]; in this case, rather than recursing on both child subtrees

of a node (when chijmax = 2), GreedyRel first recurses on the child causing the maximum

estimated squared nse, and then recurses on the other child with any remaining space
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procedure GreedyRel(WA, B, q, S)
Input: N ×M array WA of Haar wavelet coefficients; space constraint B;

quantization parameter q > 1; vector of per-measure sanity bounds S.
Output: Array y of retention probabilities yij for all N ×M coefficients.
begin
1. for i := N − 1 downto 0 do // traverse error tree bottom-up
2. for j := 1 to M do
3. yij = 0
4. Compute G[i, j], Gpot[i, j], potSpace[i, j], and chij

5. endfor
6. endfor
7. spaceLeft = B
8. while ( spaceLeft > 0 ) do
9. jmax := arg maxj{G[0, j]}
10. occupiedSpace := traverse(0, jmax, q, y, spaceLeft)
11. spaceLeft := spaceLeft - occupiedSpace
12. if (occupiedSpace = 0) then return(y) //not enough space
13. endwhile
14. return(y)
end

Figure 4.8: GreedyRel Algorithm Pseudocode.

(Lines 12–16 of traverse).

Time and Space Complexity. For each of the N error-tree nodes, GreedyRel main-

tains the variables G[i, j], Gpot[i, j], potSpace[i, j], and chij. Thus, the space require-

ments per node are O(M), resulting in a total space complexity of O(NM).

In the bottom-up initialization phase (Lines 1–6), GreedyRel computes, for each

error-tree node, the values of the G[i, j], Gpot[i, j], potSpace[i, j], and chij variables

(for each measure j). Each of these O(M) calculations can be done in O(1) time,

making the total cost of the initialization phase O(NM).

Then, note that each time GreedyRel allocates space to a set of K coefficients,

the allocated space is ≥ K × 1/q (see Equation (4.7)). To reach these K coeffi-

cients, GreedyRel traverses exactly K paths of maximum length O(log N). For each
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procedure traverse(i, j, q, y, spaceLeft)
Input: Index i of error-tree node; measure j chosen for space allocation;

quantization parameter q; array y of current retention probabilities;
maximum synopsis space to allocate (spaceLeft).

Output: Space allocated to the Tij subtree at this step.
begin
1. allocatedSpace := 0
2. if ( chij = 1 ) then
3. neededSpace := δj(E[|ECi|], 1/q) // see Equation (4.7)
4. if ( neededSpace ≤ spaceLeft ) then
5. yij := yij + 1/q
6. allocatedSpace := neededSpace
7. endif
8. else if ( chij = 2 ) then
9. Find index k of child subtree through which G[i, j] occurs
10. allocatedSpace := traverse(k, j, q, y, spaceLeft)
11. else
12. Find index k of child subtree through which G[i, j] occurs
13. Let l be the index of the other subtree
14. allocatedSpace := traverse(k, j, q, y, spaceLeft)
15. if ( spaceLeft > allocatedSpace ) then
16. allocatedSpace += traverse(l, j, q, y, spaceLeft-allocatedSpace)
17. endif
18. Recompute G[i, j], Gpot[i, j], potSpace[i, j], and chij

19. return( allocatedSpace )
end

Figure 4.9: Subroutine traverse

visited node and just for the selected measure jmax (chosen at the root), we need

to compute the new values of G, Gpot, potSpace, and ch, which requires O(1) time.

Finding the measure jmax with the maximum estimated nse2 value at the root re-

quires time O(log M).10 Thus, overall, GreedyRel distributes space ≥ K×1/q, in time

O(K log N+ log M), making the amortized time per-space-quantum 1/q equal to

O(log N+ log M/K) = O(log(NM)). Since the total number of such quanta that we

need to distribute is Bq, the overall running time complexity of GreedyRel is O(NM+

10Just for the root node, we may store the G[0, j] values in a heap.
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Bq log(NM)).

4.4.5 Extensions to Multi-Dimensional Wavelets

We now discuss the key ideas for extending our techniques to multi-dimensional data.

An introduction to multi-dimensional wavelets and the structure of the error tree in

these data sets was presented in Section 4.2.2.

Extending PODPRel. Our PODPRel algorithm for multi-dimensional data sets gen-

eralizes the corresponding multi-dimensional MinRelVar strategy in [GG04], in a way

analogous to the one-dimensional case. In a nutshell, PODPRel needs to consider,

at each internal node of the error tree, the optimal allocation of space to the ≤

2D − 1 wavelet coefficients of the node and its ≤ 2D child subtrees. The extension

of PODPRel to multi-dimensional data sets is therefore a fairly simple adaptation of

the multi-dimensional MinRelVar algorithm. However, as discussed in Section 4.4.3,

PODPRel needs to maintain, for each node i and each possible space allotment B, a

collection R[i, B] of incomparable solutions. This requirement, once again, makes the

time/space requirements of PODPRel significantly higher than those of MinRelVar.

Extending GreedyRel. The first modification involved in extending our GreedyRel

algorithm to multi-dimensional data sets has to do with the computation of G[i, j],

which now involves examining the estimated nse2 values over ≤ 2D child subtrees

and maintaining the maximum such estimate. Let S(i) denote the set of the ≤ 2D−1

coefficients of node i, and let i1, . . . , ip be the indexes of i’s child nodes in the error
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tree. Then,

G[i, j] =



max



∑
ck∈S(i)

Var(ckj ,ykj)

Norm(i1,j)
+ G[i1, j]

. . .∑
ck∈S(i)

Var(ckj ,yij)

Norm(ip,j)
+ G[ip, j]

i < N

0 i ≥ N

The only other necessary modification involves the estimation of marginal error

gains at each node. In Section 4.4.4, we consider a total of three possible choices for

forming potSet[i, j] for each (node, measure) combination. Now, each node has up to

2D child subtrees, resulting in a total of 2D +1 possible choices of forming potSet[i, j].

The first choice is to increase the retention probability for measure j of one of the

≤ 2D − 1 coefficients in node i. In this case, we simply include in potSet[i, j] the

coefficient in node i that is expected to exhibit the largest marginal gain for measure

j. For each of the remaining 2D possible choices of forming potSet[i, j], the k-th choice

(1 ≤ k ≤ 2D) considers the marginal gain of increasing the retention probabilities in

the child subtrees through which the k maximum nse2 values occur, as estimated in

the right-hand side of the above equation for G[i, j]. At each node, the computation

of Gpot[i, j], potSpace[i, j], and chij incurs a worst-case time cost of O(D × 2D) due

to the possible ways of forming potSet[i, j], and the required sorting operation of 2D

quantities. Again, let N denote the total number of cells in the multi-dimensional
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data array and Nmax denote the maximum domain size of any dimension. Then, the

running time complexity of GreedyRel becomes O(D × 2D× (NM+ BMq log Nmax)).

Note, of course, that in most real-life scenarios using wavelet-based data reduction,

the number of dimensions is typically a small constant (e.g., 4–6).

Improving the Complexity of GreedyRel. In the wavelet decomposition process

of a multi-dimensional data set, the number of non-zero coefficients produced may

be significantly larger than the number Nz of non-zero data values. In [GG04] the

authors proposed an adaptive coefficient thresholding procedure that retains at most

Nz wavelet coefficients without introducing any reconstruction bias. Using this pro-

cedure, the authors in [GG04] demonstrated how the MinRelVar algorithm can be

modified so that its running time and space complexities have a dependency on Nz,

and not on N (i.e., the total number of cells in the multi-dimensional data array). It

would thus be desirable if the GreedyRel algorithm could be modified in a similar way,

in order to decrease its running time and space requirements.

Let Nz denote the number of error tree nodes that contain non-zero coefficient

values, possibly after the afore-mentioned thresholding process. We will first illustrate

that for any node in the error tree containing zero coefficient values, and which has at

most one node in its subtree that contains non-zero coefficient values, no computation

is needed. Equivalently, our algorithm will need to compute G, Gpot values in only: (i)

nodes containing non-zero coefficient values; or (b) nodes that contain zero coefficient

values, but which are the least common ancestor of at least two non-zero tree nodes

beneath them in the error tree.
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Let k be a node that is the only node in its subtree with non-zero coefficient

values. Obviously we do not need to consider the G, Gpot values in the descendant

nodes of k, since they will be zero. An important observation is that for any ancestor

of k that contains just a single non-zero error tree beneath it (which is certainly

the subtree of node k), no computation is necessary, since the G, Gpot values of k

can always be used instead. The only additional computation is needed in any node

n with zero-coefficients that has at least two non-zero error tree nodes beneath it

in the error tree (in different subtrees). In this case, the G, Gpot values of node n

needs to be calculated, using as input the G, Gpot values of its non-zero descendant

tree nodes. It is easy to demonstrate that at most Nz − 1 such nodes may exist.

Thus, the GreedyRel algorithm will need to calculate the G, Gpot values in at most

O(2Nz−1)=O(Nz) nodes, thus yielding running time and space complexities of O(D×

2D× (NzM+ BMq log Nmax)) and O(NzM), respectively. We here need to note

that in order to implement our algorithm as described here, we need to sort the Nz

coefficients based on their postorder numbering in the error tree. This requires an

additional O(Nz log Nz) time for the sorting process. However, this running time

is often significantly smaller than the benefits of having running time and space

dependencies based on Nz, rather than on N .

Table 4.6 contains a synopsis of the running time and space complexities of our

GreedyRel and the MinRelVar algorithm of [GG04].
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Algorithm Space Running Time
GreedyRel O(NzM) O(D2D× (NzM+ BMq log Nmax))
MinRelVar O(NzMB2Dq) O(NzBM2Dq(q log(qB) + D2D))

Table 4.6: GreedyRel and MinRelVar complexities.

4.4.6 Comparing GreedyRel and GreedyL2

When comparing the GreedyL2 and the GreedyRel algorithms, we can observe that,

while the two algorithms share some common characteristics, there are distinct dif-

ferences in the way that the two algorithms operate.

Both algorithms operate on all the measures of the data set simultaneously and

utilize the notion of extended wavelets in order to achieve better storage utilization

and, thus, increased accuracy. Moreover, both algorithms allocate at each step space

to a group of coefficient values. The GreedyL2 algorithm, at each step, stores a group of

coefficient values corresponding to the same coefficient coordinates, since this grouped

space allocation policy often results in better per space benefits than storing individual

coefficient values one-by-one. On the other hand, the GreedyRel algorithm increases, at

each step, the retain probabilities of a group of coefficient values corresponding to the

same measure. The intuition behind this allocation policy is that a group assignment

may result in a larger per space decrease of the maximum nse value than increasing

the retain probabilities of individual coefficient values, especially in cases when two, or

more, subtrees have similar maximum nse values. The storage dependencies among

coefficient values are taken into account when calculating the per space benefits of

each space assignment on each node. We thus expect that the improvements in

the accuracy of the obtained approximation will be larger in the case of minimizing
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the weighted sum squared error, since the intra-coefficient storage dependencies are

taken into account more directly. While non-zero coefficient values always have some

benefit in reducing the weighted sum squared error of the approximation, this is often

not true when trying to minimize the maximum relative error of any data value,

since these non-zero coefficient values need to lie on root-to-leaf paths with high nse

values in order for the algorithm to increase their retention probabilities. Finally,

while the GreedyRel algorithm naturally extends to multi-dimensional data sets, the

extensions of GreedyL2 is even more straightforward, since it operates directly on the

input candidate combined coefficients, without needing to take into account the error

tree structure.

4.5 Experimental Study

In this section, we present an extensive experimental study of our proposed algorithms

for constructing wavelet synopses over data sets with multiple measures. Besides

validating the effectiveness of our extended wavelet coefficient approach compared to

existing Individual and Combined schemes, one of the main objectives of our study

was to evaluate the accuracy and scalability of our proposed GreedyL2 and GreedyRel

algorithms over several real-life and synthetic multi-measure data sets. The main

findings of our study can be summarized as follows.

• Highly Scalable Solutions. Our GreedyL2 and GreedyRel algorithms provide

fast and highly-scalable solutions for constructing conventional and probabilistic

wavelet synopses over large multi-measure data sets. Unlike earlier schemes (and
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the DynProgL2 and PODPRel algorithms), the GreedyRel and GreedyL2 algorithms

exhibit a linear and near-linear, correspondingly, dependency on the domain

size. Moreover, for probabilistic wavelet synopses, the running time and space

requirements of earlier techniques yield our GreedyRel algorithm as the only

viable solution, even for the single-measure case, for large real-life data sets.

• Near Optimal Results. The GreedyL2 and GreedyRel algorithms consistently

provide near-optimal solutions when compared to DynProgL2 and PODPRel (re-

spectively), demonstrating that they constitute efficient techniques for con-

structing accurate conventional and probabilistic synopses over large multi-

measure data sets.

• Improved Accuracy for Individual Reconstructed Answers through

the use of Extended Wavelet Coefficients. Compared to earlier approaches

that operate on each measure individually, our GreedyL2 and GreedyRel algo-

rithms significantly reduce the weighted sum squared and maximum relative

error of the approximation. These improvements are often by a factor of 2− 3,

but in many cases we also observe up to 7 times smaller errors than the clos-

est competitive technique. The improvements in the obtained accuracy are, of

course, due to the flexible storage format of the extended wavelet coefficients

and the improved storage utilization that they achieve.

All experiments reported in this section were performed on a personal computer

using an Athlon XP 1800+ processor with 512 MB of RAM memory.
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4.5.1 Techniques and Parameter Settings

Our experimental study is split into two parts, based on the error metric that our

algorithms try to minimize. We here need to emphasize that, besides the presented

techniques, we also performed a comparative analysis of the GreedyL2 and GreedyRel al-

gorithms in multi-measure data sets. However, the results were, as expected, qualita-

tively similar to the ones presented in [GG04], with the GreedyL2 algorithm producing

wavelet synopses with smaller weighted sum squared errors, while the GreedyRel al-

gorithm consistently produced significantly smaller maximum relative errors. This is

not surprising, as the two algorithms are designed to minimize different error metrics,

and the existence of multiple measures in data sets cannot result in a qualitatively

different behavior than in single-measure data sets. We thus omit this comparison

from our discussion.

• Weighted Sum Squared Error. We initially compared the performance of the

GreedyL2 and the DynProgL2 algorithms for constructing conventional wavelet synopses

over multi-measure data sets to the following four algorithms: (1) Random Sampling

(RS), using the Reservoir algorithm described in [Vit85], since the data sets that we

used did not contain duplicate tuples; (2) Ind, where the individual space allocated to

each measure is proportional to its weight, and the Individual algorithm is then run

for each measure; (3) IndSorted, where the individual coefficients from all measures

are sorted according to their weighted benefit, and the ones with the highest benefits

are retained, without imposing any limit to the size allocated to each measure; and

(4) Combined, where the combined coefficients are sorted according to their overall
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weighted benefit, and the ones with the highest benefits are retained.

Histograms were not included in the performance evaluation, due to their in-

ability to extend to data sets with multiple measures. Creating a separate histogram

for each measure might be an alternative, but the work in [CGRS00, VW99] leads

us to expect that they would perform worse than the Ind algorithm. As input to

our algorithms we used the output of the decomposition step of the Combined algo-

rithm, which we found to produce better results than the corresponding output of

the Individual algorithm.

• Maximum Relative Error. In the second part of our experimental study we

compare our GreedyRel and PODP algorithms for constructing probabilistic data syn-

opses over multi-measure data sets, along with a technique, which we will term as

IndDP that partitions the available space equally over the measures and then oper-

ates on each measure individually by utilizing the dynamic programming MinRelVar

algorithm proposed by Garofalakis and Gibbons in [GG02]. To provide a more fair

comparison to the IndDP algorithm, the majority of our experiments includes data

sets where all the measured quantities exhibit similar characteristics, thus yielding

the uniform partitioning of the synopsis space over all the measures as the appropriate

space allocation technique. The only parameter in our algorithms is the quantization

parameter q, which is assigned a value of 10 for the GreedyRel and IndDP algorithms,

and a smaller value of 4 for the PODP algorithm to reduce its running time (the

accuracy of the produced synopses was similar in PODP with larger values of q).

Moreover, the sanity bound of each measure is set to the 5%-quantile value of the
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measure’s data values.

4.5.2 Data Sets

We experiment with several one-dimensional and multi-dimensional synthetic multi-

measure data sets and present in this section a representative set of results. The input

parameters of our Zipfian data generator along with their default values are described

in Table 4.7. The generator begins by populating n regions rectangular regions of

a D-dimensional array, whose size is determined by the number of the data set’s

dimensions and the cardinalities Cardi of each dimension. The number of cells within

each region is bound by the values Vmin and Vmax. The total sum Sumi of values for

each measure is partitioned across the n regions rectangular regions through the use

of a Zipf function with parameter Z. Then, within each region each measure’s values

are distributed by using one of the five distributions described in Table 4.8, with the

parameter’s values ranging from zmini
to zmaxi

. Notice the use of the Altered-X 11

distribution, which helps create pairs of measures with similar, but not identical,

data distributions. The data generator then also populates a number of cells in the

remaining D-dimensional space, outside the dense regions. The fraction of such cells

over the total number of populated cells is defined by the spCount parameter, and

the total sum of the values of these cells by the spSumi parameter. Especially for the

case of one-dimensional data sets, the produced zipfian distributions span the entire

domain (i.e., n regions = 1, Vmin = Vmax = Card1 and spCount = spSumi = 0).

In our experimental study we also use real-life data sets. The Weather data

11X can be either one of the NoPerm, Normal, Middle or PipeOrgan distributions.
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Parameter Description Default Value
D Number of dimensions 2
M Number of measures 6
Cardi Cardinality of dimension i 1024
n regions Number of dense regions 10
Vmin, Vmax Minimum and maximum volume of regions 4900, 4900

Z Skew across regions 0.5
zmini

, zmaxi
Minimum and maximum skew within region i 1, 1

Sumi Sum of values for measure i 1,000,000
spCount Fraction of populated cells in sparse areas 0.05
spSumi Sum of values of populated cells in sparse area i 0.05

Table 4.7: Data Generator Input Parameters and Default Values

Distribution Description
NoPerm Cells with smaller L1-distance from lower-left corner have larger values
Normal Cells with smaller L1-distance from center have larger values
PipeOrgan Cells with smaller L1-distance from center have smaller values

Middle

Consider a hyper-rectangle centered at the region’s center, and
having for each dimension, half the length of the corresponding
region length. Cells with smaller L1-distance from this hyper-
rectangle have larger values

Altered-X
This measure follows the same distribution as X distribution,
but its values are randomly altered by up to 50%

Table 4.8: Data Generator Value Distributions

set contains meteorological measurements obtained by a station at the university

of Washington (data at http://www-k12.atmos.washington.edu/k12/grayskies).

For this data set we extract the following 6 measured quantities: wind speed, wind

peak, solar irradiance, relative humidity, air temperature and dewpoint temperature.

The Phone data set includes the total number of long distance calls per minute orig-

inating from 6 states (CA, GA, NJ, NY, TX, WA).

Approximation Error Metrics. The reported approximation error metric in each

case depends on our optimization problem. For conventional wavelet synopses we
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mainly report the weighted absolute error for all queries of our workload, calculated

as:

(
M∑

j=1

Wj)
−1 ×

M∑
i=1

(Wi × |actualresulti − estimatedresulti|),

where the variables actualresulti and estimatedresulti denote the exact and the

estimated values of the query result for measure i, correspondingly. The weighted

sum squared and relative errors are defined similarly, with the weighted sum squared

error also being reported in most cases. In the case of probabilistic wavelet synopses,

we focus on the maximum relative error of the approximation, which can provide

guaranteed error-bounds for the reconstruction of any individual data value, and is

the error metric that our probabilistic wavelet synopses algorithms try to minimize.

4.5.3 Weighted Sum Squared Error Algorithms

Synthetic Data Sets

We first investigate how close the weighted benefit achieved by the GreedyL2 algo-

rithm is to the one achieved by the DynProgL2 algorithm. We created a synthetic

2-dimensional data set with 4 measures, following the Normal, Altered-Normal, Mid-

dle and PipeOrgan distributions, and set the remaining parameters to the default

values of Table 4.7. We modified the storage constraint from 1200 to 6000 bytes and

present the results in Table 4.9. The deviation factor presented in this table is defined

as: 1− Benefit(GreedyL2)
Benefit(DynProgL2)

. The GreedyL2 algorithm produced solutions with benefit very

close to the optimal one, as expected by its tight approximation bound. Due to the

large amount of memory required by the DynProgL2 algorithm, we were unable to
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Storage Constraint (Bytes)
1200 2400 3600 4800 6000

Deviation Factor 3× 10−5 5× 10−4 10−6 10−4 10−6

Table 4.9: Deviation Factor of GreedyL2 Benefit when Compared to the DynProgL2

Benefit
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Figure 4.10: Average
Weighted Squared Error
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Figure 4.11: Average
Weighted Absolute Error
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Figure 4.12: Average
Weighted Relative Error

execute it for the remaining experiments and is, thus, omitted from the presented

results.

We now evaluate the impact that several parameters have on the performance

of our GreedyL2 algorithm. In each experiment, unless specified otherwise, the data

generator parameters were set to their default values. For the default number of mea-

sures (6), the data distributions were: Normal, Altered-Normal, PipeOrgan, Altered-

PipeOrgan, Middle and Altered-Middle. The query workload always consisted of 100

range queries, with the width of the range on each dimension being equal to 10. The

queries targeted the dense areas with greater probability, since most of the data is

stored there. The default storage bound was set to 5% of the data set’s size.
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Figure 4.13: Sensitivity to Skew: Sum
Squared Error
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Figure 4.14: Sensitivity to Skew:
Absolute Error
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Figure 4.15: Sensitivity to Weights:
Sum Squared Error
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Figure 4.16: Sensitivity to Weights:
Absolute Error

Storage Space. In Figures 4.10, 4.11, 4.12 we present the average weighted sum

squared, absolute and relative errors, respectively, for all the algorithms as the storage

space is varied from 2 to 10% of the data set’s size. The skew of the data distributions

within each region was set to 1.5. Note that the y-axis of Figure 4.10 is logarithmic,

due to the large errors exhibited by Random Sampling. The GreedyL2 algorithm

produced results with considerably smaller errors than the ones of the other algorithm.
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Figure 4.17: Errors for Different
Measures
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Figure 4.18: Sensitivity to Number of
Measures

In particular, the average weighted sum squared error of GreedyL2 was in most cases

about 3 times smaller than the error of the closest competitor, and as low as 3.5

times smaller (6105.25 vs 21399.2 for 8% space). For the average weighted absolute

error case, the error of GreedyL2 was typically about 1.5 times smaller than the one

produced by the closest competitor (51.85 vs 91.19 for 9% space, a ratio of 1.76).

Finally, for the average weighted relative error, GreedyL2 produced results that were

up to 1.62 times smaller (31.13% vs 50.36% for 2% space) than the ones of the closest

competitor. From the remaining methods, the Combined algorithm produced the

best results.

For the remaining experiments we present only the results for the average

weighted sum squared and absolute errors. We will also omit from the graphs the

results for the Random Sampling algorithm since its errors were consistently much

larger than the ones of the other algorithms.

Skew within Regions. We modified the zipfian parameter controlling the skew of
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the measure’s data distributions within each region from 0.5 to 4. Figures 4.13 and

4.14 present the obtained results for the weighted average sum squared and absolute

errors. As the skew increases, for each distribution the coefficients with large values

are limited to an increasingly smaller area. This results on one hand in the reduction

of the sum squared error of the results, as the number of coefficient values that greatly

influence it becomes smaller. On the other hand, the probability that coefficient values

from multiple measures be important simultaneously is decreased. These two factors

justify the relative improvement of the performance of IndSorted over the Combined

algorithm for larger skew values. While the Combined algorithm performs closely to

the GreedyL2 algorithm for small skews, the difference becomes very large as the skew

increases. For large skews, GreedyL2 exhibits about a 3-fold improvement over the

closest competitive algorithm for the average weighter absolute error (22.79 vs 62.21

for skew parameter = 4) and up to a 7-fold improvement for the average weighted

sum squared error, for the same skew parameter.

Variance in Weights. We varied the weight of the first measure from 0.5 to 4 to

identify the impact on the accuracy of the produced result. Figures 4.15 and 4.16

present the results. GreedyL2 exhibits weighted absolute errors that are consistently

about 1.5 times smaller than those of the closest competitor (97.36 vs 147.15 for

weight = 3.5). For the average weighted sum squared errors, the GreedyL2 algorithm

consistently provides a 3-fold improvement, and as high as 3.23 (71530.3 vs 22148.4 for

weight = 2). It is interesting to note that the GreedyL2 and the IndSorted methods ex-

hibit the greatest improvement in accuracy when the weights are varied significantly,
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both reducing their errors by about 19%.

It is interesting to see for this experiment how well each measure is approximated

by the different algorithms. Figure 4.17 presents the average absolute error for each

measure, for the case when the first measure is assigned a weight value of 4. To

calculate the average weighted error for all measures, the error of Measure 1 (M1)

needs to be multiplied by a factor of 4, and the resulting quantity to be divided

by the value 9, which is the sum of the measures’ weights. As Figure 4.17 shows,

the Ind algorithm exhibits the smallest error for the measure with the largest weight,

about half of the error that GreedyL2 achieves, while the Combined algorithm performs

the worst for this measure. However, GreedyL2 achieves the lowest errors for the

remaining five measures thus displaying that even though it can adjust its choices in

cases of measures with large weights, it does so without without severely impacting

the accuracy of the remaining measures. Another interesting observation is that

the second measure, which follows a distribution similar to the heavily weighted

Measure 1, benefited significantly in the GreedyL2 algorithm, a behavior that was

not observed in the other algorithms.

Number of Measures. In Figures 4.18 and 4.19 we present the average weighted

sum squared and absolute errors as the number of measures is varied from 2 to 6.

The initial two measures are the ones with distributions Normal and Middle, and the

measures that are later added are: PipeOrgan, Altered-Normal, Altered-PipeOrgan,

Altered-Middle. As the number of measures increases, the improvement on accuracy

of GreedyL2 over the competitive methods increases.
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Figure 4.19: Sensitivity to Number
of Measures
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Figure 4.20: Sum Squared Errors
for Weather Data Set
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Figure 4.21: Weighted Absolute Errors
for Weather Data Set
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Figure 4.22: Weighted Relative Errors
for Weather Data Set

Real Data Set

For our real data set we used the weather data set containing weather measurements

from the state of Washington (see Section 4.5.2). To simulate enhanced interest to

specific measures, we assigned a weight value of 3 to the first measure, a weight value

of 2 to the next two measures, and a weight value of 1 to the remaining measures. We

constructed a two-dimensional data set, with the day and time of each measurement as

the two dimensions, with a total of 521817 tuples. We performed 1000 range queries,
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where each range for the two dimensions was a random number with maximum value

30 and 180, respectively. Thus, the maximum selectivity of a query was about 1%.

From the results of each query, we calculated average values for the stored measures

over the queried day and time periods. The average values for each query were cal-

culated by using the number of cells that each query accessed. All measures were

normalized, with a process described in [DR03], where additional experiments involv-

ing different query selectivities and non-normalized measures are also presented. In

Figures 4.20, 4.21, 4.22 we present the results for the average weighted sum squared,

absolute and relative errors, as the storage bound was varied from 1KB to 10KB. The

errors for all wavelet methods decrease with the increase of the space bound. As it

can be seen from the three figures, the GreedyL2 algorithm consistently produced the

smallest errors for all error metrics. The average weighted sum squared and absolute

errors of Random Sampling were 2 and 1 orders of magnitude larger, respectively,

than the corresponding errors of GreedyL2, while the average weighted relative errors

of Random Sampling were about 3-4 times larger than the errors of GreedyL2. Even

though the optimization problem of Section 4.3 is directly linked only to the average

weighted sum squared metric, the improved storage utilization of GreedyL2 resulted

in improvements in the accuracy of the average weighted absolute and relative error

metrics as well.
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4.5.4 Maximum Relative Error Algorithms

We now compare the performance and accuracy of our GreedyRel algorithm in com-

parison to the PODP and IndDP algorithms, described in Section 4.5.1. Our study

included several one-dimensional synthetic and real data sets. For the synthetic data

sets, our zipfian data generator produced zipfian distributions of various skews (from

a low skew of 0.5 to a high skew of 1.5), with the sum of values for each measure set at

200,000. In all types of used zipfian distributions, the centers of the M distributions

are shifted and placed in random points of the domain. We also consider several dif-

ferent combinations of used zipfian distributions. In the “AllNoPerm” combination,

all M of the zipfian distributions have the “NoPerm” shape. Similarly, in the “All-

Normal” combination, all M of the zipfian distributions have the “Normal” shape.

Finally, in the “Mixed” combination, 1/3 of the M distributions have the “NoP-

erm” shape, 1/3 have the “Normal” shape, and the remaining had the “PipeOrgan”

shape. The results presented in this section are indicative of the multiple possible

combinations of our parameters.

Comparing PODP and GreedyRel. We now evaluate the accuracy and running time

of the GreedyRel algorithm in comparison to the PODP algorithm. In Figures 4.23, 4.24

and 4.25 we plot the running time and the maximum and average relative errors,

correspondingly, for the two algorithms and for the Weather data set when we vary

the synopsis space from 10 to 50 units of space (recall that the unit of space is the

size of each data value, i.e., sizeof(float)). In this experiment we only use from the

Weather data the three most difficult to approximate measures. The domain size
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Figure 4.23: Running Time vs Space
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Figure 4.24: Maximum Relative Error
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Figure 4.25: Average Relative Error
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Figure 4.26: Running Time vs Domain

of the data set is set to 128. Note that in all our plots depicting the running time

of algorithms, the Y axis is logarithmic. Clearly, the running time of the PODP

algorithm does not scale well with the size of the data synopsis, even for such a small

data set. For example, for a synopsis size of 50 space units, the PODP algorithm

requires more than 2 hours to complete, while the GreedyRel algorithm required just

a few milliseconds. However, as Figures 4.24 and 4.25 demonstrate, the GreedyRel

algorithm provides near-optimal solutions in all cases.

In Figure 4.26 we present the corresponding running times for both algorithms,
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as the domain size is increased from 64 to 512. From the weather data set we again

extract just three measures, and set the synopsis space to always be 5% of the size

of the input. Again, the running time performance of PODP is disappointing. For

a domain size of 512, its running time exceeds 14 hours. Finally, as Figure 4.27

demonstrates, the running time of PODP increases exponentially with the number of

the data set measures. Note that for data sets with 4 or more measures, the PODP

does not terminate within one day. It is easy to see that the PODP algorithm cannot

be used but for toy-like data sets. On the other hand, the GreedyRel algorithm provides

near-optimal solutions in all tested cases, while exhibiting small running times.

Running Time Comparison of GreedyRel and IndDP. We now compare GreedyRel

and IndDP in terms of their running time. In Figure 4.28 we plot the running times

of the IndDP and GreedyRel algorithms for the Weather data set (all 6 measures were

included) as the domain size is increased from 128 to 524288. The synopsis size

is always set to 5% of the input data. The IndDP algorithm is considerably slower

than the GreedyRel algorithm (3 orders of magnitude slower for domain size 131,072),

with their difference increasing rapidly with the increase of the domain size. Note

that while the GreedyRel algorithm scales linearly with the increase in the domain

size (doubling the domain size doubles the running time), the IndDP algorithm grows

much faster every time the domain size is doubled. This is of course consistent

with the running time complexity of the IndDP algorithm (see Section 4.4.1), since

when the domain size is doubled, the synopsis space is doubled as well. Moreover,

the large memory requirements (O(NBq)) of the IndDP algorithm prevented it from

terminating for domain sizes larger than 131,072 (the main memory of our machine
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Figure 4.27: Running Time vs Measures
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Figure 4.28: Running Time vs Domain
Size
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Figure 4.29: Skew 1, “Mixed”
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Figure 4.30: Skew 1, “AllNoPerm”

was 512MB). Thus, the linear scalability of the GreedyRel algorithm to the domain

size, in terms of both its running time and its memory requirements, constitutes it

as the only viable technique (except for small data sets) for providing tight error

guarantees, not only on multi-measure data sets, but also on single-measure data

sets, since both the GreedyRel and IndDP algorithms scale in a similar way for such

data sets. Moreover, as we will demonstrate in this section, the GreedyRel algorithm,

which utilizes the extended wavelet coefficients to store the selected coefficient values,
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Figure 4.31: Skew 1, “AllNormal”
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Figure 4.32: Skew 0.6, “Mixed”
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Figure 4.33: Skew 0.6, “AllNoPerm”
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Figure 4.34: Skew 0.6, “AllNormal”

also outperforms the IndDP algorithm in terms of the obtained accuracy of the data

synopsis. The improved accuracy is attributed to the improved storage utilization

achieved by the use of extended wavelet coefficients, and the ability of our GreedyRel

algorithm to exploit the underlying storage dependencies.

Accuracy Comparison of GreedyRel and IndDP in Synthetic Data Sets. For our

synthetic data sets, we use a domain size of 256, and present the obtained accuracy

in terms of the maximum error of the approximation for the GreedyRel and IndDP
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algorithms and six representative combinations of synthetic data sets. These six

combinations arise from considering zipfian distributions with skew 0.6 and 1, along

with all the other possible combinations of the used zipfian distributions (“AllNoP-

erm”, “AllNormal” and “Mixed”). The synthetic data sets in this section contain 6

measures/distributions.

We first consider the six possible combinations arising from distributions having

skew equal to 1. In Figures 4.29, 4.30 and 4.31 we plot the maximum relative errors

for the GreedyRel and IndDP algorithms, as the synopsis space is varied from 2% to

10% of the input data size, and for the “Mixed”,“AllNoPerm” and “AllNormal” (in

the specific order) selection of zipfian distribution shapes. Note that the Y axis

for the “AllNoPerm” and “Mixed” cases is logarithmic, due to the large maximum

errors observed in this case, mainly by the IndDP algorithm. Intuitively, this occurs

because the shifting of some distribution centers in this case results in the largest

values of the data set being adjacent to the smallest values, thus requiring several

coefficient values to capture this large difference of the values. As we can see, the

GreedyRel algorithm produces more accurate results than the IndDP algorithm, with

the differences being more significant in the “AllNoPerm” and “Mixed” cases (recall

that the Y axis is logarithmic in these 2 cases). Even though none of the techniques

produces tight error bounds for such a large data skew value and for small data

synopses, the improvements achieved by the GreedyRel algorithm are very significant

in each combination of used zipfian distributions. For each combination, GreedyRel

produces, correspondingly, up to 6.1, 5.7 and 3.5 times smaller maximum relative

errors than IndDP.
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Figure 4.35: Weather Data
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Figure 4.36: Phone Data

Similar results are also observed for the six combinations of synthetic data sets,

arising from setting the skew of the distributions to 0.6. In Figures 4.32, 4.33 and 4.34

we show the corresponding results for the “Mixed”, “AllNoPerm” and “AllNormal”

combinations of used data distributions (note the logarithmic Y axis in the “AllNoP-

erm” and “Mixed” cases). The maximum relative errors in this case are significantly

smaller for all methods. However, the GreedyRel algorithm is still able to provide

substantial more tight error bounds, up to 6.9, 2.7 and 2.3 times smaller than IndDP.

Accuracy Comparison of GreedyRel and IndDP in Real Data Sets. In Fig-

ures 4.35 and 4.36 we plot the maximum relative errors, respectively, for the Weather

and Phone data sets, as we vary the size of the synopsis, and for domain sizes of

2048 and 1024, respectively. As we can see, the benefits of the GreedyRel algorithm

continue to be significant in all cases. In the Weather data set, the GreedyRel algo-

rithm provided up to 3.5 times tighter error bounds than the IndDP algorithm (and

commonly at least a 2-fold improvement), while in the Phone data the corresponding

error bounds were up to 1.75 times tighter.
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Chapter 5

Hierarchical in-Network Aggregate

Continuous Queries

5.1 Introduction

Processing in sensor networks is often driven by designated monitoring nodes, which

usually possess increased processing, storage and energy resources, when compared

to the other nodes in the network. These monitoring nodes often evaluate the current

state of the network by issuing continuous queries [CDTW00, TGNO92] over the

data collected by the sensors.

Because of the multi-hop communication between nodes in sensor networks, the

broadcast nature of the transmitted messages and the high density of nodes in a

typical installation, collecting individual node measurements at the monitoring node

is immensely expensive. Aggregation is an effective mean to reduce the data mea-

surements into a much smaller set of comprehensive statistics, like sum, average etc.

In order to obtain the full benefits of data aggregation, recent proposals perform

the process inside the network [CT00, IEGH02, MFHH02, SWR98]. First, a routing

path, which is commonly referred to as the aggregation tree, to the monitoring node

is established. Then, through the use of a carefully designed transmission schedule,
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nodes are programmed to combine measurements that they receive from their descen-

dants in the topology and propagate a single value to their ancestors. With proper

synchronization [MFHH02], the number of messages required to update the aggregate

at the monitoring node is equal to the number of edges in the aggregation tree.

In-network data aggregation has been shown to reduce the number of messages

in the network, often by more than an order of magnitude [MFHH02, SBLC04]. How-

ever, in large networks, especially when the monitoring node is several wireless hops

away, the cost of aggregation may still be significant. In densely distributed net-

works, proper control on the bandwidth consumed by each running query is essential

to guarantee that parts of the network are not overburdened and that all required

processing can be performed by the network. For instance, a continuous user query

that aggressively computes the total number of moving objects detected by all sensors

nodes every second may consume a significant amount of the available bandwidth and

essentially block out other significant processing assigned to the nodes.

All the above techniques try to limit the number of transmitted data while al-

ways providing accurate answers to posed queries. However, there are many instances

where the application is willing to tolerate a specified error in order to reduce the

bandwidth consumption and increase the lifetime of the network. Limiting the band-

width consumed by a posed aggregate query is important to ensure the longevity

of the network, since transmission is the biggest source of energy drain in sensor

nodes [EGHK99]. This may not be a major concern when sensor nodes are at-

tached to larger devices with ample power supply, but becomes critical when nodes

are powered by small batteries. The reduction in bandwidth consumption results
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in an equally important reduction in the energy consumption of the sensor nodes,

since this is often directly proportional to the number of transmitted and received

bits [HCB00, LR02, TK03]. We need to note that, depending on the radio technology

used, each transmitted message may drain energy not only from the transmitting

node and the intended recipient, but also from other nodes in the vicinity of the

transmitting node which also receive the message due to the wireless nature of the

communication. As our experimental evaluation demonstrates, often a substantial

reduction in the consumed bandwidth during aggregate computation, achieved by

suppressing some update messages, only slightly impacts the accuracy of the pro-

duced results.

In this chapter we develop new techniques for data dissemination in sensor

networks when the monitoring application either is willing to tolerate a specified

maximum error threshold, or wants to limit the average bandwidth consumption of the

posed query. We refer to the second type of queries as bandwidth-constrained queries.

Our algorithms initially install an error filter in each node and then modifies these

filters in a way that seeks to, depending on the application scenario, either minimize

the bandwidth consumption of the query, or provide as strict error guarantees as

possible while equating the actual bandwidth consumption to the desired one. The

error guarantees and the overall bandwidth consumption are always known to the

monitoring node and are appropriately modified periodically, in order to optimize the

desired metric. Moreover, we introduce the residual mode of operation, during which

a parent node may eliminate messages from its children nodes in the aggregation tree,

when the cumulative change from these sensor nodes is small. Finally, unlike previous
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algorithms that we later detail, our algorithms operate with only local knowledge,

where each node simply considers statistics from its children nodes in the aggregation

tree. This allows for more flexibility in designing adaptive algorithms, and is a more

realistic assumption for sensors nodes with very limited capabilities [MFHH02].

The rest of the chapter is organized as follows. In Section 5.2 we provide an

introduction to the data aggregation process. In Sections 5.3 and 5.4 we describe

prior techniques that may be suitable for our applications, along with their short-

comings. Section 5.5 presents our extensions and our Potential Gains Adjustment

(PGA) algorithm for dynamically adjusting the error thresholds of the sensor nodes

when the application specifies a maximum error threshold that it is willing to tolerate,

while Section 5.6 contains our experimental evaluation for the same application. Sec-

tion 5.7 presents our Marginal Gains Adgustment (MGA) algorithm for the problem

of bandwidth-constraint queries, while in Section 5.8 we evaluate the performance of

our MGA algorithm against prior techniques.

5.2 Basics

In this section we provide some background information needed in our discussion. A

description of the characteristics of sensor nodes, focusing on the sources of energy

drain in sensor networks, was presented in Section 3.2.1. We first describe the data

aggregation process and highlight the major challenges addressed in our algorithms.

We then provide an analysis of the expected benefits on the network’s lifetime when

applying techniques that constrain the bandwidth consumption in these networks.
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5.2.1 Data Aggregation Process

We now briefly describe the data aggregation process in sensor networks when 100%

accuracy (ignoring network delays, or lost messages) is desired by the querying node

and when utilizing the TAG [MFHH02] model to synchronize the transmission of data

values by the sensor nodes.

Consider a node Root, which initiates a continuous query over the values ob-

served by a set of data sources and requests that the results of this query be reported

to it at regular time periods. The time interval between two such consecutive time

periods is referred to as the epoch of the query. The continuous query is disseminated

through the network in search of the sensor nodes that collect data relevant to the

posed query. While each such node may have received the announcement of the query

through multiple nodes, it only selects one of these nodes as its parent node, through

which it will propagate its results towards the Root node. The flow of the query

results forms a tree, rooted at the Root node, which is commonly known as the aggre-

gation tree [EGHK99, IEGH02, MFHH02]. The query dissemination process and a

sample aggregation tree are depicted in Figure 5.1. The nodes in the aggregation tree

can be classified as either active or passive. Active nodes (marked grey in the figure)

collect measurements relevant to the query, while passive nodes (marked white in the

figure) simply facilitate the propagation of results towards the Root node.

At each epoch, each sensor node Ni calculates the partial aggregate correspond-

ing to the query result produced by measurements obtained by sensor nodes in the

subtree of Ni. This calculation is performed bottom-up, where each node first waits
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Figure 5.1: Query dissemination process (steps (a) and (b)) and formed aggregation
tree (step (c))

to receive any updated partial aggregate values from its children nodes (in the aggre-

gation tree) and then combines these values with its own collected measurements (if

this is an active node) to produce the partial aggregate for its subtree.

5.2.2 Challenges During In-Network Data Aggregation

We now discuss some challenging characteristics of in-network data aggregation that

motivate our techniques.

Hierarchical Structure of Nodes

As we have mentioned above, the sensor nodes that either measure or forward data

relevant to a posed continuous query form an aggregation tree, which messages fol-

low on their path to the node that initiated the query. The procedure described in

Section 5.2.1 results in a single aggregate value transmitted by each node towards its

parent in the aggregation tree.

However, not all kinds of information relevant to the query execution process

can be aggregated in the same manner. Consider, for example, a scenario where

only a non-predetermined subset of the sensor nodes in the aggregation tree makes
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a transmission within each epoch. This scenario is typical, as we will discuss later

in this chapter, in the evaluation of approximate aggregate continuous queries. If

some application requires that the Root node know exactly which nodes made a

transmission during each epoch, then each transmitting node needs to piggyback its

identifier (id) to each message that it transmits. Note that, because messages are

combined in the aggregation tree, in this scenario each message transmitted by a

node Ni will contain the node ids of all the transmitting nodes in the subtree of

Ni. Obviously, this side information can potentially be excessive, thus resulting in

a significant increase in the power consumption by the sensor nodes. Moreover, this

information may not even fit within the maximum packet size, thus requiring that it

be fragmented and transmitted through multiple messages.

A similar problem occurs whenever a node requires individual statistics from the

sensors in the aggregation tree. This information cannot be aggregated, since each

individual node statistic needs to be accompanied by the node’s identifier. Thus,

any technique or algorithm that requires individual node statistics will result in the

transmission of large amounts of information that may outweigh the benefits of in-

network aggregation.

Nodes with Different Characteristics

In a large sensor network, nodes with widely different characteristics may exist. The

measurements of some nodes may be either significantly higher or exhibit much larger

variance than the measurements of some other nodes. For example, in an application

where sensors are used to trace moving objects within their vicinity, some sensor
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nodes may detect a large number of moving objects, while others may detect only

few, if any. Moreover, the number of detected moving objects over time by each

sensor may change either rapidly, if the speed of the objects is significant, or very

slowly, if the objects are moving slowly. Throughout this chapter, we refer to sensor

nodes that exhibit large variance in their measurements as volatile nodes. Proper

handling of volatile nodes is crucial, as an ill-designed algorithm may allocate a lot

of resources on them at the expense of other nodes in the network.

Negative Correlations in Neighboring Areas

During the data aggregation process, each node calculates the partial aggregate value

of its subtree and forwards this new value to its parent node in the aggregation

tree. However, there might be cases when changes from nodes belonging to different

subtrees of the aggregation tree either cancel out each other, or result in a very small

change in the value of the calculated aggregate. This may happen either because of a

random behavior of the data, or because of some properties of the measured quantity.

Consider for example the aggregation tree of Figure 5.1(c), and assume that each

node observes the number of items moving within the area that it monitors. If some

objects move from the area of node 4 to the area of node 5, then the changes that will

be propagated to node 2 will cancel out each other. In this case, the partial aggregate

value calculated by node 2 does not change and, therefore, there is no need for node

2 to make a transmission. Node 1 may then safely assume that the partial aggregate

value of node 2 has not been modified. Even when the overall change of a node’s

aggregate value is non-zero, but reasonably small, the filtering of transmissions from
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this node may result in a large number of saved messages with only minimum effect

in the reported aggregate result. In an approximate data aggregation application it is

crucial to detect and exploit areas where such negative correlations occur frequently.

5.2.3 Energy Benefits of Bandwidth-Constrained Queries

We now seek to evaluate how bandwidth-constrained queries reduce the energy drain

in sensor nodes. Similar benefits can be also achieved in the dual application scenario,

where each aggregate continuous query is associated with a maximum error that the

application is willing to tolerate. However, these benefits are easier to quantify using

a model for the case of bandwidth-constrained queries.

We construct a simple model that estimates the current total energy of the

nodes participating in the evaluation of the continuous query based on the number of

transmitted and received messages and the corresponding average transmission and

receiving costs (ET and ER, respectively) per message. Also, let EI denote the cost

of idle listening, which occurs when a sensor node listens to its channel awaiting for

messages. For simplicity, the transmission cost ET incorporates not only the energy

needed to transmit a single message among two nodes, but also any additional energy

consumed, which depends on the network protocol being used, in order to reserve the

channel for the transmission of this message, or to send/receive acknowledgments for

successfully receiving each message. For simplicity, we do not take into account the

computational costs, due to the small power consumption required to perform the

simple aggregation step in each node. Let ET = k × ER, where k denotes the ratio
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between the average energy consumed during the transmission of a message and the

corresponding energy consumed while receiving a message. Also, let ER = p × EI ,

where p denotes the ratio between the average energy consumed while receiving a

message and the corresponding energy consumed during idle listening.

Consider, for simplicity, that the nodes in our model form a full f -ary tree of

L levels, meaning that each non-leaf node has exactly f children nodes. Then, the

total number of nodes is T =
∑L−1

i=0 f i = fL−1
f−1

, while the number of non-leaf nodes is

Tnon−leaf =
∑L−2

i=0 f i = fL−1−1
f−1

= (T − 1)/f . Using a protocol like TAG [MFHH02],

in an unconstrained query evaluation each non-leaf node needs to keep its radio open

during an epoch for enough time in order to receive the f messages from its children

nodes containing the updated value of the partial aggregate corresponding to their

subtrees (see the following sections for details). This listening cost is not incurred by

the leaf nodes of the tree. In a full f -ary tree of L levels, the total cost of receiving

will thus be exactly:

RCuncon = Tnon−leaf × (f × ER) = (T − 1)× ER,

while the cost of transmitting the aggregate values will be equal to (the Root node

does not make a transmission):

TCuncon = (T − 1)× ET = k ×RCuncon.

On the other hand, a protocol implemented on top of TAG that restricts the band-
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width consumed for the execution of the continuous aggregate query to a fraction

B Util of the bandwidth required by an unconstrained evaluation, will result in 1-

B Util of the messages not being transmitted and the transmission energy drain will

be:

TCcon = (T − 1)×B Util × ET = B Util × k ×RCuncon,

while the total energy drain spent when either receiving packets or performing idle

listening will be:

RCcon = Tnon−leaf × f × (B Util × ER + EI(1−B Util))

= (T − 1)× ER × (B Util + (1−B Util)/p)

= (B Util + (1−B Util)/p)×RCuncon

If we consider the time needed for network’s energy to reach a value y, when

the total initial energy was C(t0), the unconstrained evaluation will require tuncon =

C(t0)−y
TCuncon+RCuncon

= C(t0)−y
RCuncon(1+k)

epochs, while the bandwidth-constrained execution will

reach this energy level after tcon = C(t0)−y
RCuncon((1+k−1/p)×B Util+1/p)

epochs. Therefore, for

any total initial energy level C(t0), the bandwidth-constrained execution will reach

this level y after 1+k
(1+k−1/p)×B Util+1/p

times more epochs than an unconstrained query

execution.

Example 1: . Assuming use of MICA2 nodes at their default and maximum transmis-

sion powers (Table 5.1) we get k=1.41 and 3, respectively (ignoring the cost of control

messages, retransmissions and acknowledgments), while p=1. For B Util=6%, the
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Characteristic Value
CPU 7.3828 MHz
Memory 4 KB SRAM, 128 KB FLASH
Additional Storage 32 KB EEPROM
Transmission Range 1000 ft
Battery 2 AA Batteries
Radio Current Draw 25 mA (Transmission max power)

8 mA (receiving)
< 1uA (sleep)

Table 5.1: Characteristics of the MICA2 Mote

network lifetime increases by a factor of 2.25 and 3.48, respectively. However, as our

experimental evaluation demonstrates, the aggregate computation during this con-

strained query execution may often incur only a small error (i.e., only 0.1% relative

error in Table 5.10).

Depending on the type of protocol (scheduled or contention [YH03]) being used

by the sensor nodes, each transmitted message may have many hidden costs associated

with it. In many protocols (i.e., the CSMA/CA protocol), prior to the transmission of

each message some control messages (RTS/CTS) need to be exchanged in order for the

transmitting node to gain access to the channel, or acknowledgments for each received

packet often need to be sent. Collisions between transmitted messages may occur

and retransmissions (which may result in a significant energy waste) are necessary.

By reducing the number of transmitted messages, the number of transmitted control

messages and the probability of collisions occurring, and thus the energy consumption

by nodes, are greatly reduced. Note that all these costs (including the corresponding

receiving costs for all these messages) have been incorporated into the ET parameter

in our model, and thus the actual k value is significantly larger (often by more than
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a factor of 5) than simply the power ratio between the transmit and receive modes

used in the example above. Finally, we note that in a constrained query execution,

each node that decides not to transmit a message may immediately go into a low-duty

cycle state and, thus, preserve large amounts of energy.

A point worth mentioning is that our algorithms and analysis for bandwidth-

constrained queries focuses on the average energy drain on the network without con-

cern on individual nodes whereabouts. The extensions that we discuss in Section 5.7

allow our techniques to provide for nodes that face severe energy constraints. How-

ever, it is our belief that applications are better not utilizing strict controls on the

operations of individual nodes. Sensor networks often contain redundant nodes to

ensure, for instance, coverage on regions with non-uniform communication density

and cope with unexpected node failures. Thus, our focus should not be on extending

the lifetime of individual nodes but on ensuring that the network as a whole has

enough resources to perform the task at hand. Prior work on sensor networks (for

instance [CE02, EGHK99, HCB00, Kot05]) has built upon these ideas and has been

our inspiration for focusing instead on the average energy drain among all nodes in

the aggregation tree.
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5.3 Error-Tolerant Applications: Existing Techniques and their

Drawbacks

In this section we will demonstrate that straight-forward extensions to the algorithm

of [OJW03] for sensor network applications, for applications that seek to minimize

the bandwidth consumption of a continuous query given the maximum error that

the application is willing to tolerate, result in several shortcomings due to the issues

discussed in Section 5.2.2.

The original algorithm of [OJW03] was devised for applications containing a

non-hierarchical node setup, where all the nodes in the aggregation tree can be as-

sumed to be direct children of the Root node that initiates the query and, therefore,

all the messages are aggregated only on that node. Moreover, due to the node setup

considered in [OJW03], all the nodes in the aggregation tree collect data relevant to

the query (passive nodes do not exist).

In our discussion hereafter, we will use the term Burden-Based Adjustment

(BBA) to refer to the adaptation of the algorithm of [OJW03] for approximate in-

network data aggregation, combined with the model of TAG [MFHH02], with the

latter being used in order to coalesce messages within the aggregation tree.

5.3.1 Burden-Based Adjustment of Node Filters

Consider a node Root, which initiates a continuous query over the values observed by

a set of data sources. This continuous query aggregates values observed by the data

sources and produces a single aggregate result. For each defined query, a maximum
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error threshold, or equivalently a precision constraint E Global that the application

is willing to tolerate is specified. The algorithm will install filters at each queried data

source, that will help limit the number of transmitted messages from the data source.

The selection process for the filters enforces that at any moment after the installation

of the query to the data sources, the aggregate value reported at node Root will lie

within the specified error threshold from the true aggregate value (ignoring network

delays, or lost messages).

Initially, a filter Fi is installed in every data source Si. Each filter Fi is an

interval of real values [Li, Hi] of width Wi = Hi − Li, such that any source Si whose

current observed value Currenti lies outside its filter Fi will need to transmit its

newly calculated partial aggregate value, while also taking into account any messages

from its children nodes, towards the Root node and then re-center its filter around

this transmitted value, by setting Li = Currenti−Wi/2 and Hi = Currenti + Wi/2.

If Currenti lies within the interval specified by the filter Fi, then this value does not

need to be transmitted. Note, however, that for any non-leaf node in the aggregation

tree, any messages that it receives from its children (unless the resulting aggregate

change from these messages is zero) need to be propagated towards the Root node,

since the node’s filter is applied only to the node’s observed data value and not on

the partial aggregate of its subtree.1 In this case, the node may include for free

in the newly calculated partial aggregate its current observed value and recenter its

filter around this value. It is important to emphasize that the initial error guarantees

1In the experiments we also investigate the option of applying the error filter to the partial
aggregate value of the subtree. However, this modification typically resulted in more transmitted
messages than the presented one.
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should not be violated by the filter initialization. For example, for the SUM aggregate

function the following inequality must be true:
∑

i
Wi

2
≤ E Global.

In order for the algorithm to be able to adapt to changes in the characteristics

of the data sources, the widths Wi of the filters are periodically adjusted. Every Upd

time units, Upd being the adjustment period, each filter shrinks its width by a shrink

percentage (shrink). At this point, the Root node obtains an error budget equal to

(1−shrink)×E Global, which it can then distribute to the data sources. The decision

of which data sources will increase their window Wi is based on the calculation of a

Burden Score metric Bi for each data source, which is defined as

Bi =
Ci

Pi ×Wi

(5.1)

In this formula, Ci is the cost of sending a value from the data source Si to the

Root and Pi is the estimated streamed update period, defined as the estimated amount

of time between consecutive transmissions for Si over the last period Upd. For a

single query over the data sources, it is shown in [OJW03] that the goal would be to

try and have all the burden scores be equal.2 Thus, the Root node selects the data

sources with the largest deviation from the target burden score (these are the ones

with the largest burden scores in the case of a single query) and sends them messages

to increase the width of their windows by a given amount. The process is repeated

every Upd epochs.

2In [OJW03] the case of multiple queries over the data sources is also considered. This is orthog-
onal to the proposed techniques in our work.
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5.3.2 Drawbacks of the BBA algorithm

We now discuss some of the key drawbacks of the BBA algorithm when applied to

sensor network applications. Our discussion will be based on the data aggregation

characteristics discussed in Section 5.2.2.

Hierarchical Structure of Nodes

In order to calculate the burden score of each sensor Ni, the Root node needs to

estimate the node’s estimated streamed update period Pi and the cost Ci of node Ni

transmitting values towards the Root node. In order for the Root to estimate the

Pis, each node either needs to transmit at the last epoch of the update period the

number of total transmissions that it performed, or piggyback in each message that it

transmits its identifier. Obviously, this amount of side information needed is excessive

(see Section 5.2.2) and may outweigh the benefits of approximate data aggregation.

Note that in a non-hierarchical setup of nodes, this problem would not occur, since

the Root node would be able to identify from any received packet’s header the sender

of the message, and accurately compute the number of transmissions by each node.

Calculating the average cost of the transmissions made by a node is more com-

plex. In a non-hierarchical setup of the nodes, this cost could depend on parameters

like the bandwidth capacity of the link between each node and the Root and could

be considered to be either fixed throughout the query execution, or change only occa-

sionally. In a hierarchical setup, this quantity, if measured in the number of messages

resulting from each node’s transmission, depends on the topology of the other trans-
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Figure 5.2: Two transmissions scenarios with different costs for each transmission

mitting nodes in the aggregation tree. This point can be more easily understood with

an example. Consider the two scenarios depicted in Figure 5.2. In both scenarios,

only two nodes make a transmission (the transmitted messages are depicted by bold,

thick arrows). However, the transmitted messages are aggregated at different nodes

of the aggregation tree. In the first scenario (Figure 5.2(a)), nodes 4 and 6 make a

transmission, and nodes 2 and 3 propagate these messages towards the Root node.

In this case, each transmission from nodes 4 and 6 is responsible for generating 2

messages. On the other hand, in the second scenario, (Figure 5.2(b)) nodes 4 and 5

make a transmission, and node 2 propagates a single message to node 1. Therefore,

each transmission is responsible for only 3/2 messages in this case.

To calculate the actual cost Ci (in number of generated messages) for each node

transmission (or an average cost over multiple transmissions), the Root node requires

knowledge of not only which nodes made a transmission within each epoch, but also

of the exact topology (parent-child relationships) of these nodes and, furthermore,

whether these nodes made a transmission because their monitored value laid outside
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the node’s filter, or simply made a transmission to forward changes in their calculated

partial aggregate because of transmissions by some of their descendants. However,

this is a completely unrealistic scenario, since too much information would need to be

communicated, namely the exact topology and the root-cause of each transmission.

Therefore, the techniques introduced in [OJW03] can be applied in our case only by

using a heuristic function to estimate Ci. In Section 5.6 we describe such a heuristic.

Nodes with Different Characteristics

One of the principle ideas behind the adaptive algorithms presented in [OJW03] is

that an increase in the width of a filter installed in a node will result in a decrease

at the number of transmitted messages by that node. While this is an intuitive

idea, there are many cases, even when the underlying distribution of the observed

quantity does not change, where an increase in the width of the filter does not have

any impact in the number of transmitted messages. To illustrate this, consider a

node whose values follow a random step pattern, meaning that the observed value

at each epoch differs by the observed value in the previous epoch by either +∆ or

−∆. In this case, any filter with a window whose width is less than 2 × ∆ will not

be able to reduce the number of transmitted messages. A similar behavior may be

observed in cases where the measured quantity exhibits a large variance. In such

cases, even a filter with considerable width may not be able to reduce but a few, if

any, transmissions.

The main reason why this occurs in the BBA algorithm is because the burden

score metric being used does not give any indication about the expected benefit that
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we will achieve by increasing the width of the installed filter at a node. In this way,

a significant amount of the maximum error budget that the application is willing to

tolerate may be spent on a few nodes whose measurements exhibit the aforementioned

volatile behavior (note that due to the large number of their transmissions these nodes

will also exhibit large burden scores), without any real benefit.

Negative Correlations in Neighboring Areas

According to the algorithms in [OJW03], each time the value of a measured quantity

at a node Ni lies outside the interval specified by the filter installed at Ni, then the

new calculated partial aggregate value of the node is transmitted and propagated

to the Root node. In this case, negative correlations, such as the ones described

in Section 5.2.2 are not exploited and messages cannot be prevented from reaching

the Root node. Even when we modify the BBA algorithm to take into account

negative correlations (see Section 5.6), performance is often worse, because BBA

cannot distinguish on the true cause of a transmission (change on local measurement

or change in the subtree).

5.4 Bandwidth-Constrained Queries: Existing Techniques and

their Drawbacks

We now provide a description of an alternative technique that can potentially be

used, for the hierarchical in-network evaluation of bandwidth-constrained continuous

aggregate queries in the area of sensor networks and draw direct comparisons to

186



our algorithms. The threshold-based adjustment (TBA) algorithm presented below is

motivated by the work of Olston et al. on determining when cached objects should be

refreshed based on a defined priority function [OW02]. A detailed description of the

algorithm and justification of its decisions can be found in [OW02]. We need to note

that we also experimented with some additional techniques that can also be used in

our application. These techniques are based on either uniform or biased sampling of

the data sources. However, due to the inability of these alternate techniques to provide

strong deterministic error guarantees and their poor performance in our experimental

evaluation, we omit their discussion.

Recently, novel algorithms that build probabilistic models of the observed data,

and then use these models to probe the sensors for their measurements in a limited

amount of epochs, depending on the confidence of the constructed model, have been

proposed [DGM+04, LM04]. While these techniques may result in a significant reduc-

tion in the number of transmitted messages, they present several drawbacks. First

of all, these techniques cannot provide strong deterministic guarantees on the quality

of the produced result. The provided guarantees are only probabilistic ones, and the

accuracy of these guarantees depends on whether the real-time observed data are

similar to the training data used for building the model. As the authors of [DGM+04]

state, “for models to perform accurate predictions they must be trained in the kind

of environment where they will be used”. While the acquisition of the appropriate

set of training data may be feasible in scenarios of controlled environments, such as

temperature monitoring applications within a lab, in applications where the sensors

are thrown over hostile environments or disaster areas this is an unrealistic assump-
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tion. Moreover, the techniques in [DGM+04] cannot be used for the detection of

outliers, meaning events or measurements that deviate significantly from either the

corresponding values observed in other sensors, or in the same sensor but over prior

time periods. However, the purpose of monitoring applications is often to detect such

large deviations from the normal behavior, since these deviations may require trigger

some alert or require appropriate action to be taken. We thus omit these techniques

from our discussion.

5.4.1 Threshold-Based Adjustment (TBA)

We now describe how the TBA algorithm can be adapted for the problem of bandwidth-

constrained queries over sensor networks. Each active node i in the aggregation tree

maintains the following statistics at each epoch ti:

• The value Vtnow of the node’s monitored quantity at the current epoch.

• The last transmitted measurement Vtlast
of this node and the time (epoch) of the

last transmission tlast.

• A threshold value Thri that will help determine the time of the node’s next trans-

mission.

• A priority value Pri calculated as:

Pri = (tnow − tlast) ∗ max
t∈[1+tlast,tnow]

|Vt − Vtlast
| −

∫ tnow

tlast

|Vt − Vtlast
|dt
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We here note that the definition of the priority function has been slightly modified

(to include the max quantity) from the formula in [OW02], since in our case, the

deviation value |Vt − Vtlast
| is not a non-decreasing function of t. The max quantity

is therefore needed to ensure that the calculated priority is always an non-decreasing

and non-negative value, as required in [OW02].

Each time a node’s priority value Pri exceeds the node’s threshold value Thri,

the node performs the following operations:

• Increases its threshold value by a factor θ; that is: Thri = Thri × θ.

• Transmits the difference Vtnow − Vtlast
and its current threshold towards its parent

node in the aggregation tree.

• Sets Vtlast
= Vtnow , tlast = tnow and Pri = 0.

Each node Ni may also transmit the difference Vtnow − Vtlast
if one of its descendant

nodes makes a transmission. In this case, node Ni can include the above difference

at no cost (after aggregating it with the one received by its child node), since any

messages received from descendant nodes will need to be propagated towards the Root

node anyway. In this case, the node performs most of the steps described above, but

does not increase its threshold value (neither transmits it), since its transmission was

due to another node’s measurements.

Note that the TBA algorithm does provide deterministic error guarantees, since

at each node i, its current value cannot deviate by more than Thri without resulting

in a transmission by the node. Therefore, the application error guarantee is equal to

the sum of threshold values by all active nodes in the aggregation tree.
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The Root node continuously monitors the thresholds received from the nodes

and, if it detects that the bandwidth is underutilized (the estimation of the bandwidth

consumption can be performed in the same way as in our algorithm), then it sends

feedback messages to the nodes with the highest thresholds to divide their thresholds

by a parameter ω > 1. Trying to keep the thresholds of all active nodes about equal

was shown in [OW02] to be the optimal solution, for a different problem though than

the one that we tackle in our work, and in a non-hierarchical setup of the nodes.

5.4.2 Drawbacks of the TBA Algorithm

We now discuss some of the key drawbacks of the TBA algorithm when applied

to sensor network applications. Our discussion is based on the data aggregation

characteristics discussed in Section 5.2.2. We omit the discussion about the drawbacks

of the TBA algorithm with respect to exploiting negative correlations in neighboring

areas, since they are identical to the corresponding drawbacks of the BBA algorithm

(Section 5.3.2).

Nodes with Different Characteristics

The TBA algorithm is only influenced by the variance of the measurements, and not

by their magnitude. However, the TBA algorithm fails to take into account that some

nodes may be volatile, meaning nodes that exhibit large variance in their measure-

ments. Such nodes tend to continuously make transmissions, since their thresholds

are usually not sufficiently large to prune any messages, thus significantly raising

their thresholds. On the update phase of the TBA algorithm, due to their increased
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threshold values, these same nodes are the ones which the Root node will ask to lower

their thresholds, a process which results in all the other non-volatile nodes to gradu-

ally increase their thresholds to large values, thus resulting in large maximum errors

for the application. However, it is obvious that the desired behavior would be for the

algorithm to eliminate these volatile nodes from consideration (by assigning them a

zero, or near-zero threshold). This would still result in a continuous transmission by

these nodes, but the thresholds of the remaining nodes would be considerably lower,

thus resulting in tighter error guarantees.

Hierarchical Structure of Nodes

One of the significant drawbacks of using the TBA algorithm for evaluating band-

width-constrained queries over sensor networks is the fact that the TBA algorithm

does not exploit or use the hierarchical structure of the aggregation tree. Deciding

the set of nodes whose threshold values will be decreased is based solely on the

threshold values, and not on the topology of the nodes. However, the tree topology

should clearly be taken into account, since the transmission by any node Ni causes

the transmission of messages by all the ancestors of Ni in the aggregation tree.

Moreover, in the TBA algorithm each message from node Ni to its parent is

accompanied by a potentially large list of identifiers of nodes which increased their

thresholds in the subtree of Ni. This information may be quite large, since it cannot

be aggregated. Furthermore, the algorithm needs to estimate the amount of consumed

bandwidth, which requires some additional, but easy to aggregate, information to be

propagated as well. Our MGA algorithm, as we will explain in Section 5.7 requires
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Symbol Description
Ni Sensor node i

Wi The width of the filter of sensor Ni

Ei = Wi/2 Maximum permitted error in node Ni

E Subi Maximum permitted error in entire subtree of node Ni

E Global Maximum permitted error of the application
V Curr The latest measurement obtained by the node (if active)
Upd Update period of adjusting error filters
shrink Shrinking factor of filter widths
T Number of nodes in the aggregation tree
Root The node initiating the continuous query
Gain The estimated gain of allocating additional error to the node
CumGain The estimated gain of allocating additional error to the

node’s entire subtree
CumGain Sub[i] The estimated gain of allocating additional error to the

node’s i-th subtree

Table 5.2: Symbols Used in our Algorithms

the transmission of three quantities which, however, is information that can be easily

aggregated.

5.5 Our PGA Algorithm

In this section we first provide a high-level description of our framework and then

present the details of our algorithms for dynamically modifying the widths of the filters

installed in the sensor nodes, when the application is willing to tolerate a maximum

error in its reported aggregate. The notation that we will use in the description of

our Potential Gains Adjustment (PGA) algorithm is presented in Table 5.2.
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Figure 5.3: Sample Aggregation Tree

5.5.1 Description of our Framework

We assume that the aggregation tree (i.e., Figure 5.3) for computing and propagating

the aggregate has already been established. Techniques for discovering and modifying

the aggregation tree are illustrated in [MFHH02]. There are two types of nodes in the

tree. Active nodes, marked grey in the figure, are nodes that collect measurements.

Passive nodes (for example, node 2 in the figure) are intermediate nodes in the tree

that do not record any data for the query but rather aggregate partial results from

their descendant nodes. By default all leaf nodes are active, while intermediate nodes

may be either active or passive. Our algorithms will install a filter to each node Ni

in the aggregation tree, independently on whether the node is an active or passive

one. This is a distinct difference from the framework of [OJW03], where filters are

assigned only to active nodes.

In our discussion we focus on queries containing the SUM aggregate function.

The COUNT function can always be computed exactly as the number of active nodes

in the aggregation tree, while the AVG function can be computed by the SUM and
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COUNT aggregates. As the work in [OJW03] demonstrated, adaptive filter adjust-

ment algorithms for the MAX and MIN aggregate functions make sense only when

considering a multi-query optimization scenario.

Figure 5.3 shows the maximum error of each filter for a query calculating the

SUM aggregate over the active nodes of the tree.3 Notice that the sum of the errors

specified is equal to the maximum error that the application is willing to accept

(E Global). Moreover, there is no point in placing an error filter in the Root node,

since this is where the result of the query is being collected.4

We now describe the protocol of propagating values in the aggregation tree.

In [MFHH02], ways of synchronizing the radios between parent and children nodes

in the aggregation tree are described, which try to minimize the amount of time that

sensors need to have their radios open in order to receive measurements from their

children, aggregate them and transmit them to their parent node. In our work we

assume a similar synchronization process. During an epoch duration and within the

time intervals specified in [MFHH02] the sensor nodes in our framework operate as

follows:

• An active leaf node i obtains a new measurement and forwards it to its parent

if the new measurement lies outside the interval [Li, Hi] specified by its filter.

• A passive (non-leaf) node awaits for messages from its children. If one or more

messages are received, they are combined and forwarded to its own parent only

3The width of the error filter in node 2 may in general be non-zero in our algorithms.
4This can change, when the Root node collects and transmits the aggregate to a distant base

station. The modifications to all algorithms considered here are straightforward.
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if the new partial aggregate value of the node’s subtree does not lie within the

interval specified by the node’s filter. Otherwise, the node remains idle.

• An active non-leaf node obtains a new measurement and waits for messages

from its children nodes as specified in [MFHH02]. The node then recomputes

the partial aggregate on its subtree (which is the aggregation of its own mea-

surement with the values received by its child-nodes) and forwards it to its

parent only if the new partial aggregate lies outside the interval specified by the

node’s filter.

Along this process, the value sent from a node to its parent is either (i) the node’s

measurement if the node is a leaf or (ii) the partial aggregate of all measurements

in the node’s subtree (including itself) if the node is an intermediate node. In both

cases, a node remains idle during an epoch if the newly calculated partial aggregate

value lies within the interval [Li, Hi] specified by the node’s filter. This is a distinct

difference from [OJW03], where the error filters are applied to the values of the data

sources, and not on the partial aggregates calculated by each node.

Details on the operation of the sensor nodes will be provided in the following

subsection. Compared to the work of [OJW03] we introduce two new ideas for the

approximate evaluation of aggregate queries:

1. A new algorithm called PGA (Potential Gains Adjustment) for adjusting the

widths of filters in the nodes. PGA bases its decisions on estimates of the

expected gain of allocating additional error to different subtrees. In this way,

our algorithm is more robust to the existence of volatile nodes, nodes where the
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value of the measured quantity changes significantly in each epoch. Moreover,

the estimation of gains is performed based only on local statistics for each node

(that take into account the tree topology), in contrast to BBA where sources are

independent and a significant amount of information needs to be propagated to

the Root node. Each time a node Ni transmits a message to its parent node in

the aggregation tree, then Ni also includes in that message a single value, which

is an estimate of the cumulative gain expected when allocating additional error

to its entire subtree. These gains are aggregated by the parent of the node,

so that only a single value (the cumulative gain) is sent along with the partial

aggregate.5

2. A hierarchical-based mode of operation: The filters in non-leaf nodes are used

in a mode that may potentially filter messages transmitted from their children

nodes, and not just from the node itself. We denote this type of operation as

residual-based operation, and also denote the error assigned to each node in this

case as a residual error. We show that under the residual-based mode nodes may

transmit significantly fewer messages than in a non-residual operation because

of the coalescing of updates that cancel out and are not propagated all the

way to the Root node. Note that, in contrast, the BBA algorithm, where the

filters are applied to each node’s measurements and not its calculated partial

aggregate, corresponds to the non-residual mode of operation of the nodes.

5The cumulative gains can also be transmitted only during the last epoch of the update period,
to limit the amount of side information transmitted over the network.
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5.5.2 Operation of Nodes

The operation of each sensor node is described in Figure 5.4 (notation from Ta-

ble 5.2). The algorithms consists of four major tasks: initialization, adjustment of

filters, aggregation and transmission of new aggregate. These tasks are discussed in

detail below.

Initialization (Lines 1–3)

A filter is initially installed in each node of the aggregation tree, except from the

Root node (Line 1). The initial width of each filter is important only for the initial

stages of the network’s operation, as our dynamic algorithm will later adjust the sizes

of the filters appropriately. In our experiments we initialize the widths of the error

filters similarly to the uniform allocation method. For example, in the case when

the aggregate function is the function SUM and there are Nactive active nodes in

the aggregation tree (excluding the Root node) then each active node is assigned the

same fraction E Global/Nactive of the error E Global that the application is willing

to tolerate.

We note that E i (Line 1) is the maximum permitted error in node Ni, while

E Subi is the maximum permitted error in the entire subtree of node Ni. Thus, for

the SUM function, E Subi is the sum of E i and all E j, where Nj is a descendant

of node Ni in the aggregation tree.
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procedure NodeOperation(E Sub)
Input: The maximum permitted error for the subtree of this node E Sub
begin

// E is the total maximum permitted error of the node itself
// V Self is the value of the node’s measured quantity at its last transmission
// LastReceived[i] is the last received partial aggregate value of the node’s i-th subtree

1. In each node initialize Ei using uniform allocation policy and calculate E Subi

2. NewAggr = 0 // Current partial aggregate
3. LTA = 0 // Last transmitted partial aggregate

// Every Upd epochs the widths of the filters will shrink
4. for each epoch ep do
5. if ep > 0 AND ep modulo Upd = 0 then
6. E Sub = shrink ∗ E Sub // 0 ≤ shrink < 
7. E = shrink ∗ E
8. if received message from father to increase error of subtree by E Additional then
9. E Sub+ = E Additional
10. Distribute E Additional to self and subtrees and clear all gain related statistics
11. if node is active then
12. Get current measurement V Curr
13. Wait for messages from children nodes.
14. ∆ChildrenAggr = 0
15. for Each Child i do
16. if i transmitted an aggregate value Vi and its cumulative gain CumGaini then
17. ∆ChildrenAggr += Vi − LastReceived[i] // Needed for non-residual operation
18. LastReceived[i] = Vi

19. CumGain Sub[i] = CumGaini // Store the cumulative gain of the node’s subtrees
20. endif
21. endfor
22. NewAggr = Combine(LastReceived, V Curr)
23. (Gain, CumGain) = UpdateExpectedGain(NewAggr, LTA,E, E Sub, Gain, CumGain Sub)
24. if (ResidualOperation == false AND ((∆ChildrenAggr > 0) OR |V Self − V Curr| > E))

OR (ResidualOperation == true AND |NewAggr − LTA| > E) then
25. V Self = V Curr
26. LTA = NewAggr
27. Transmit (NewAggr, CumGain) to parent node and re-center the error filter
28. endif
29.endfor
end

Figure 5.4: Operation of Nodes

Adjustment of Filters (Lines 5–10)

This adjustment phase is performed every Upd epochs. The first step is for all nodes

to shrink the widths of their filters by a shrinking factor shrink (0 ≤ shrink < 1).

After this process, the Root node has an error budget of size E Global× (1−shrink),

where E Global is the maximum error of the application, that it can redistribute
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Aggregate Function Implementation of Combine Function

SUM/AVG V Curr +
∑

i LastReceived[i]
MAX max{V Curr, maxi{LastReceived[i]}}
MIN min{V Curr, mini{LastReceived[i]}}

Table 5.3: Definition of the Combine function

recursively to the nodes of the network (Lines 8-10). This redistribution process is

done using a statistic called the cumulative gain of the node, which is a single value

and is the only statistic propagated to the parent node at each transmission. Details

of the adjustment process will be given later in this section. At each epoch the node

also updates some statistics (Line 23), which will be later used to adjust the widths

of the filters.

Aggregation (Lines 11–22)

In each epoch, the node obtains a measurement related to the observed quantity if it

is an active node (Lines 11-12), and then waits for messages from its children nodes

containing updates to their measured aggregate values (Line 13). We here note that

each node computes a partial aggregate based on the values reported by its children

nodes in the tree. This is a recursive procedure which ultimately results in the

evaluation of the aggregate query at the Root node. After waiting for messages from

its children nodes, the current node computes the new value of the partial aggregate

based on the most current partial aggregate values it has received from its children

(Line 22). Variable LastReceived[i] stores the last received partial aggregate value of

the root of node’s i subtree (Line 18).

Aggregation is performed through a call to the Combine function. The specific
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implementation depends on the aggregate function specified by the query. In Table 5.3

we provide its implementation for the most common aggregate functions. In the case

of the AVG aggregate function, we calculate the sum of the values observed at the

active nodes, and then the Root node will divide this value with the number of active

nodes participating in the query.

Transmission of New Aggregate (Lines 24–27)

After calculating the current partial aggregate, the node must decide whether it needs

to transmit a measurement to its parent node or not. This depends on the operation

mode being used. In a non-residual mode, the node would have to transmit a message

either when the value of the measured quantity at the node itself lies outside its filter,

or when at least one of the subtrees has transmitted a message and the new changes

do not exactly cancel out each other (∆ChildrenAggr > 0). This happens because

in the non-residual mode (e.g. the original algorithm of [OJW03]) the error filters are

applied to the values measured by each node, and not to the partial aggregates of the

subtree. On the contrary, in a residual mode of operation, which is the mode used in

our algorithms, the node transmits a message only when the value of the new partial

aggregate lies outside the node’s filter. In both modes of operation the algorithm that

distributes the available error enforces that for any node Ni, its calculated partial

aggregate will never deviate by more than E Subi from the actual partial aggregate

of its subtree (ignoring propagation delays and lost messages). When a node makes a

transmission, it caches its current state that includes its latest measurement V Curr

(that is copied to variable V Self).
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Example 2: Consider the aggregation tree of Figure 5.3. Assume that the posed

query involves the sum of values in the active nodes of the tree (all nodes except for

node 2), and that the maximum error that the application is willing to tolerate is

13.5, as shown in Figure 5.3. We will explain in detail the transmission of messages

for both the residual and the non-residual modes of operation, for the sample error

filters shown in the figure.

Residual Mode: In the residual mode, the filter of each node is applied to

the partial aggregate that it calculates for the subtree rooted at the node. In Ta-

ble 5.4 we present an example based on the aggregation tree of Figure 5.3. In this

table we show the current observed values (V Curr), the newly calculated partial

aggregate value (NewAggr) and the last transmitted partial aggregate value of each

node (LTA), the difference between these two values (Diff ) and whether the node

makes a transmission or not based on whether the absolute value of this deviation is

greater than the maximum permitted error in the node (|Diff | > Ei). Notice that

whenever a node makes a transmission, then the values of LTA are modified in the

next epoch. Moreover, since we are using the model of TAG, each non-leaf node first

receives (any) messages from its children nodes and then calculates the new estimate

of its partial aggregate.

Non-Residual Mode: In the non-residual mode, the filter of each node is

applied to the measurements of the node itself. In Table 5.5 we present an example

based on the aggregation tree of Figure 5.3 (same notation as above). In this table

we show the current observed values (V Curr), the measurement of the node at its

last transmission (V Self), the difference between these two values (Diff ), the last
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Epoch 1 Epoch 2
Node Ei V Curr NewAggr LTA Diff Transmit? V Curr NewAggr LTA Diff Transmit?

4 1 20 20 19 1 NO 21 21 19 2 YES
5 4 50 50 45 5 YES 51 51 50 1 NO
6 2 10 10 7 3 YES 9 9 10 -1 NO
7 1 25 25 24 1 NO 23 23 24 -1 NO
8 3 12 12 16 -4 YES 17 17 12 5 YES
2 0 – 69 64 5 YES – 71 69 2 YES

(19+50) (21+50)

3 2.5 19 65 67 -2 NO 17 68 67 1 NO
(10+24+12+19) (10+24+17+17)

1 0 30 166 160 6 N/A 28 166 166 0 N/A
(69+67+30) (71+67+28)

Table 5.4: Node Operation in Residual Mode

Epoch 1 Epoch 2
Node Ei V Curr V Self Diff LTA NewAggr Transmit? V Curr V Self Diff LTA NewAggr Transmit?

4 1 20 19 1 19 20 NO 21 19 2 19 21 YES
5 4 50 45 5 45 50 YES 51 50 1 50 51 NO
6 2 10 7 3 7 10 YES 9 10 -1 10 9 NO
7 1 25 24 1 24 25 NO 23 24 -1 24 23 NO
8 3 12 16 -4 16 12 YES 17 12 5 12 17 YES
2 0 – – – 64 69 YES – – – 69 71 YES

(19+50) (21+50)
3 2.5 19 20 -1 67 65 YES 17 19 -2 65 68 YES

(10+24+ (10+24+
12+19) 17+17)

1 0 30 29 1 160 164 N/A 28 30 -2 164 167 N/A
(69+65+30) (71+68+28)

Table 5.5: Node Operation in Non-Residual Mode

transmitted aggregate value of each node (LTA), the newly calculated aggregate value

(NewAggr), and whether the node makes a transmission or not based on its current

measurement and any received messages from its children nodes. Any active node

Ni makes a transmission whenever the absolute value of Diff is larger than Ei. Any

non-leaf node also makes a transmission whenever it has received an updated value

from at least one of its children, and these updates do not exactly cancel out each

other. Note that for leaf nodes the mode of operation (residual or non-residual) makes

no difference in their functionality.
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Figure 5.5: Potential Gain of a Node

5.5.3 Calculating the Potential Gain of each Node

Our algorithm updates the width of the filter installed in each node by considering

the potential gain of increasing the error threshold at a sensor node, which is defined

as the amount of messages that we expect to save by allocating more resources to

the node. The result of using this gain-based approach is a robust algorithm that

respects the hierarchy imposed by the aggregation tree and, at the same time, is

able to identify volatile data sources and eliminate them from consideration. This

computation of potential gains, as we will show, requires only local knowledge, where

each node simply considers statistics from its children nodes in the aggregation tree.

In Figure 5.5 we show the expected behavior of a sensor node Ni, varying the

width of its filter Wi. The y-axis plots the number of messages sent from this node

to its parent in the aggregation tree in a period of Upd epochs. Assuming that the

measurement on the node is not constant, a zero width filter (Wi = Ei = 0) results

in one message for each of the Upd epochs. By increasing the width of the filter,

the number of messages is reduced, up to the point that no messages are required.

Of course, in practice this may never happen as the width of the filter required may
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exceed the global error constraint E Global. Some additional factors that can make

a node deviate from the typical behavior of Figure 5.5 also exist. As an example, the

measurement of the node may not change for some period of time exceeding Upd.

In such a case, the curve becomes a straight line at y=0 and no messages are sent

(unless there are changes on the subtree rooted at the node). In such cases of very

stable nodes, we would like to be able to detect this behavior and redistribute the

error to other, more volatile nodes. At the other extreme, node Ni may be so volatile

that even a filter of considerable width will not be able to suppress any messages.

Thus, the curve becomes a straight line at y=Upd. Notice that the same may happen

because of a highly volatile node Nj that is a descendant of Ni in the aggregation

tree.

In principle, we cannot fully predict the behavior of a node Ni unless we take into

account its interaction will all the other nodes in its subtree. Of course, a complete

knowledge of this interaction is infeasible, due to the potentially large amounts of

information that are required, as described in Section 5.2.2. We will thus achieve this

by computing the potential gains of adjusting the width of the node’s filter Wi, using

simple local statistics that we collect during the query evaluation.

Let Wi be the width of the filter installed at node Ni at the last update phase.

The node also knows the shrink value that is announced when the query is initiated.

Unless the adaptive procedure decides to increase the error of the node, its filter’s

width is scheduled to be reduced to shrink × Wi in the next update phase, which

takes place every Upd epochs. The node can estimate the effects of this change as

follows. At the same time that the node uses its filter Wi to decide whether or not to
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send a message to its parent, it also keeps track of its decision assuming a filter of a

smaller width of shrink×Wi. This requires a single counter Bshrink that keeps track

of the number of messages that the node would have sent if its filter was reduced.

Bshrink gives as an estimate of the negative effect of reducing the filter of Ni. Since we

would also like the node to have a chance to increase its filter, the node also computes

the number of messages Bexpand in case its filter was increased by a factor dW to be

defined later.6

Our process is demonstrated in Figure 5.5. Let DB ≥ 0 be the reduction in the

number of messages by changing the width from shrink ×Wi (which is the default

in the next update phase) to Wi + dW . The potential gain for the node is defined as:

Gaini = DB = Bshrink −Bexpand

It is significant to note that our definition of the potential gain of a node is independent

on whether the node is active or not, since the algorithm for deciding whether to

transmit a message or not is only based on the value of the partial aggregate calculated

for the node’s entire subtree. Moreover, the value of dW is not uniquely defined in

our algorithms. In our implementation we are using the following heuristics for the

computation of gains:

• For leaf nodes, we use dW = E Global
Nactive

, Nactive being the number of active nodes

6Even though this computation based on two anchor points may seem simplistic, there is little
more that can truly be accomplished with only local knowledge, since the node cannot possibly know
exactly which partial aggregates it would have received from its children in the case of either a smaller
or a larger filter, because these partial aggregates would themselves depend on the corresponding
width changes in the filters of the children nodes.
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in the aggregation tree.

• For non-leave nodes, in the residual mode, we need a larger value of dW , since

the expansion of the node’s filter should be large enough to allow the node to

coalesce negative correlations in the changes of the aggregates on its children

nodes. As a heuristic, we have been using dW = num childreni × E Global
Nactive

,

where num childreni is the number of children of node Ni.

These values of dW have been shown to work well in practice on a large variety of

tested configurations. We need to emphasize here that these values are used to give

the algorithm an estimate on the behavior of the sensor and that the actual change

in the widths Wi of the filters will also be based on the amount of “error budget”

available and the behavior of all the other nodes in the tree.

Computation of Cumulative Gains

The computation of the potential gains, as explained above, provides us with an

idea of the effect that modifying the size of the filter in a node may have, but is by

itself inadequate as a metric for the distribution of the available error to the nodes

of its subtree. This happens because this metric does not take into account the

corresponding gains of descendant nodes in the aggregation tree. Even if a node may

have zero potential gain (this may happen, for example, if either the node itself or

some of its descendants are very volatile), this does not mean that we cannot reduce

the number of transmitted messages in some areas of the subtree rooted at that node.

Because of the top-down redistribution of the errors that our algorithm applies
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(using the AdjRoot algorithm described below), if no budget is allocated to Ni by

its parent node then all nodes in the subtree of Ni will not get a chance to increase

their error thresholds, and this will eventually lead to every node in that subtree to

send a new message on each epoch, which is clearly an undesirable situation. Thus,

we need a way to compute the cumulative gain on the subtree of Ni and base the

redistribution process on that value. In our framework we define the cumulative gain

on a node Ni as:

CumGaini =


Gaini Ni is a leaf node

Gaini +
∑

Nj∈children(Ni)
CumGain Sub[j] otherwise

(5.2)

This definition of the cumulative gain has the following desirable properties:

1. It is based on the computed gains (Gaini) that is purely a local statistic on a

node Ni.

2. The recursive formula can be computed in a bottom-up manner by having nodes

piggy-back the value of their cumulative gain in each message that they transmit

to their parent along with their partial aggregate value. This is a single number

that is being aggregated in a bottom-up manner, and thus poses a minimal

overhead. Moreover, transmitting the cumulative gain is necessary only if its

value has changed (and in most cases only if this change is significant) since the

last transmission of the node.

207



5.5.4 Adjusting the Filters

We here present two algorithms for adjusting the width of the filters on the nodes.

Both algorithms make their decisions using the cumulative gains calculated at each

node. They differ in that in the first algorithm, denoted as AdjRoot, the Root node

is the one initiating the process based on the available error budget generated from

shrinking the filters. In contrast, in the second algorithm that we denote as AdjLocal,

this process happens in a localized manner on a level by level basis in the aggregation

tree. Below we provide details for both algorithms.

5.5.5 The AdjRoot Algorithm

Every Upd epochs, all the filters shrink by a factor of shrink (see Figure 5.4, Lines

5–7). This results in an error budget of E Global× (1−shrink) which the Root node

can distribute to the nodes of the tree. Each node Ni has statistics on the potential

gain of allocating error to the node itself (Gaini), and the corresponding cumulative

gain of allocating error to each of its subtrees.

Assuming that the node can distribute a total error of E Additional to itself

and its descendants (Lines 8–10), the allocation of the errors is performed as follows:7

• For each subtree j of node Ni, increase E Subj proportionally to its cumulative

gain:

E Additionalj =
E Additional × CumGain Sub[j]

Gaini +
∑

Nj∈children(Ni)
CumGain Sub[j]

(5.3)

7For the Root node, E Additional = E Global × (− shrink)
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This distribution is performed only when this quantity is at least equal to

E Global/Nactive.

• The remaining error budget is distributed to the node itself.

The fraction of the error budget allocated to the node itself and to each of the

subtrees is analogous to the expected benefit of each choice. The use of the computed

local gain on the node in comparison to the cumulative gains of its subtrees, allows

us to differentiate on the true cause of the transmissions coming out of this node.

The only additional detail is that in case when the error allocated to a subtree

of node Ni is less than the E Global/Nactive value, then we do not allocate any error in

that subtree, and allocate this error to node Ni itself. This is done to avoid sending

messages downwards the aggregation tree for adjusting the filters when the error

budget is too small.

5.5.6 The AdjLocal Algorithm

In the AdjLocal algorithm, the nodes negotiate the allocation of the error budget

in a localized level-by-level manner, instead of having the whole process initiated by

the Root node. In particular, each non-leaf node in the tree claims an available error

budget equal to:

E Additionali =
∑

Nj∈children(Ni)

Ej × (1− shrink) (5.4)

209



This is exactly the available error budget due to the shrinkage of the filters of its

immediate descendants. The allocation of this budget among itself and its children

nodes in the tree is performed using the potential gain of the node and the gains of

its subtrees:

E Additionalj =
E Additionali ×Gainj

Gaini +
∑

Nj∈children(Ni)
Gainj

(5.5)

One way to visualize the differences of the two algorithms is to consider how

the error budget is being distributed. In the AdjRoot algorithm, the whole budget is

claimed by the Root node. This is possible because all nodes shrink their filters by

the same percentage. Then, this error budget is let to flow downwards through the

tree, using the accumulated statistics (gains) on the nodes. This process continues

until either we reach a leaf node, or when the remaining budget is too small. In

the later case the node in consideration claims all the remaining error budget, thus

saving downward messages on the corresponding subtree. In contrast, the AdjLocal

algorithm adjusts the filters in a localized fashion. Any intermediate node in the

aggregation tree uses information on the filter widths of its direct descendant nodes

to determine its available error budget and then distributes this budget among them

and the node itself, without recursively continuing this process on lower levels of the

tree.

When comparing the AdjRoot and the AdjLocal algorithms, one would expect

in most cases the AdjRoot algorithm to perform better, as it allows broader redistri-

bution of the available error budget. For instance, the AdjLocal algorithm will require
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more rounds (update periods) to shift a significant amount of error from a subtrees S1

rooted at a node close to the Root to a sibling subtree S2, because the error-budget

will first have to gradually ascend towards the root node of the S1 subtree and then

slowly be distributed to the nodes in the S2 subtree. In AdjLocal, whenever some

nodes allocate a significant amount of their error budget to themselves, then this

results in an increased error budget for the parents of these nodes in the next update

period. Using this process, the error of an entire subtree can gradually ascend to (and

therefore be distributed by) nodes in higher levels of the aggregation tree.

However, there are occasions when we expect the AdjLocal algorithm to be

superior. In particular, consider the case when the Root node is physically located

very far from the nodes that actually collect measurements and that the aggregation

tree is tall and narrow in its upper levels. This is a realistic scenario when the

aggregate query involves the values observed in just one area of the network. In

some extreme cases, the Root will be connected to the active nodes through a string

of nodes. When the Root is several links away from the leaf nodes, the AdjRoot

algorithm requires a lot of messages to propagate the error budget to the nodes that

actually need it. In such cases, the AdjLocal algorithm might require fewer messages,

since the redistribution process will mostly involve active nodes at (or near) the leaves

of the tree. Moreover, due to the minimum additional error that can be distributed

to subtrees by the AdjRoot algorithm, nodes with modest gains may not receive

any budget if they belong to subtrees with small cumulative gains. However, in the

AdjLocal algorithm, through a local redistribution of errors from their siblings and

their parent, these nodes will still be able to increase their filters and, thus, reduce
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the number of their transmitted messages.

5.6 PGA Algorithm Experiments

5.6.1 Description of Algorithms

We have developed a simulator for sensor networks that allows us to vary several

parameters like the number and configuration of the nodes, the topology of the ag-

gregation tree, the data distribution etc. The synchronization of the sensor nodes is

performed as described in TAG [MFHH02]. TAG allows us to reduce the number of

messages by combining, whenever possible, messages, on a path to the root within the

same epoch. All precision control algorithms are implemented on top of this protocol.

In our experiments we compare the following algorithms:

1. BBA (Burden-Based Adjustment): This is an implementation of the algorithm

presented in [OJW03] for the adaptive precision setting of cached approximate

values. As noted above, we use TAG to aggregate messages in the same epoch

to further reduce the overall bandwidth consumption.

2. Uni: This is a static setting where the error is evenly distributed among all

active sensor nodes, and therefore does not incur any communication overhead

for adjusting the error thresholds of the nodes.

3. PGA (Potential Gains Adjustment): This is our precision control algorithm,

based on the potential gains as described in section 5.5. For adjusting the

212



filters of the sensor nodes we use the AdjRoot algorithm; later in this section

we also provide an experimental evaluation with the AdjLocal method as well.

For the BBA algorithm, we experimented with several heuristics for estimating

the cost Ci of each message transmitted by a node Ni, and set it in our experiments to

disti+1
2

, where disti denotes the distance in number of hops of the node from the Root

node. Our heuristic is the average of the worst case cost (message not aggregated

with any other message until it reaches the Root) and the best case cost (message

aggregated with others at the parent node of Ni) of messages transmitted by node

Ni, and provided the best results in most cases. With this heuristic, each node is able

to estimate its burden score and potentially transmit it to the Root node at the last

epoch of the update period. It is important to emphasize that in our implementation

of BBA, we do not account for the additional amount of information needed for

the nodes to transmit their burden scores (we do not count the messages needed to

transmit them). This is an ideal scenario for BBA and is used to provide a more

direct comparison to the PGA algorithm, as to the amount of messages pruned by

each method due to the installation of the filters.

For the PGA and BBA algorithms we made a few preliminary runs to choose

their internal parameters (adjustment period, shrink percentage). Notice that the ad-

justment period determines how frequently the precision control algorithm is invoked,

while the shrink percentage determines how much of the overall error budget is being

redistributed. Based on the observed behavior of the algorithms, we have selected

the combination of values of Table 5.6 as the most representative ones for reveal-
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Configuration
Parameters Conf1 Conf2

Upd 50 20
shrink 0.6 0.95

Invocations Fewer Frequent
Error Amount Redistributed Significant Smaller

Table 5.6: Used Configurations

ing the “preferences” of each algorithm. The first configuration (Conf1) consistently

produced good results, in a variety of tree topologies and data sets, for the PGA

algorithm, while the second configuration (Conf2) was typically the best choice for

the BBA algorithm. In the BBA algorithm we also determined experimentally that

distributing the available error to 10% of the nodes with the highest burden scores

was the best choice for the algorithm.

The initial allocation of error thresholds was done using the uniform policy. We

then used the first 10% of epochs as a warm-up period for the algorithms to adjust

their thresholds and report the number of transmitted messages for the later 90%.

5.6.2 Description of Data Sets

Synthetic Data Sets: We generated synthetic data, similar in spirit to the data

used in [OJW03]. For each simulated active node, we generated values following a

random walk pattern, each with a randomly assigned step size in the range (0 . . . 2].

We further added in the mix a set of “unstable nodes” whose step size is much larger:

(0 . . . 200]. These volatile nodes allow us to investigate how the different algorithms

adapt to noisy sensors. Ideally, when the step-size of a node is comparable to the
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global error threshold, we would like the precision control algorithm to restrain from

giving any of the available budget to that node at the expense of all the other sensor

nodes in the tree. We denote with Pvolatile the probability of an active node being

volatile.

Pvolatile describes the volatility of a node in terms of the magnitude of its data

values. Volatility can also be expressed in the orthogonal temporal dimension. For

instance some nodes may not update their values frequently, while others might be

changing quite often (even by small amounts, depending on their step size). To

capture this scenario, we further divide the sensor nodes in two additional classes:

workaholics and regulars. Regular sensors make a random step with a fixed probability

of 1% during an epoch.8 Workaholics, on the other hand, make a random step on every

epoch. We denote with Pworkaholic the probability of an active node being workaholic.

Real Data Sets: We also report results using two real data sets. The first, de-

noted as LBL-TCP-3, is described in [PF95] and was also used in the original paper

of [OJW03]. It contains information on all the wide-area TCP traffic between the

Lawrence Berkeley Laboratory and the rest of the world for a period of two hours.

We have processed this data and created individual time-series (one per sensor node)

for each of the 1,540 source IP addresses in the trace. Each time-series describes the

number of bytes transmitted from a source IP per second.

The second real data set, denoted as Weather, was obtained from IRI/LDEO

Climate Data Library and consists of precipitation data from 1,582 weather stations.9

8We have experimented with many different mixes of configurations but, for brevity, we here
present the most characteristic cases.

9Data set at http://ingrid.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.DAILY/.FSOD/
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Again, we created individual time-series (one per sensor node) using precipitation

measurements from each weather station. Sensor networks that are used in environ-

mental monitoring are expected to process similar data.

5.6.3 Network Topology

We used three different network topologies denoted as Tleaves, Tall and Trandom. In

Tleaves the aggregation tree was a balanced tree with 5 levels and a fan-out of 4

(341 nodes overall). For this configuration all active nodes were at the leaves of the

tree. In Tall, for the same tree topology, all nodes (including the Root) were active.

Finally in Trandom we used 500 sensor nodes, forming a random tree each time. The

maximum fan-out of a node was in that case 8 and the maximum depth of the tree

6.10 Intermediate nodes in Trandom were active with probability 20% (all leave nodes

are active by default).

In all experiments, we executed the simulator 10 times and present here the

averages. In all runs we used the SUM aggregate function (the performance of AVG

was similar).

5.6.4 Benefits of Residual Mode of Operation

The three precision control algorithms considered (Uni, PGA, BBA) along with the

mode of operation (residual: Res, non-residual: N oRes) provide us with six different

choices (Uni+Res, Uni+N oRes, . . . ). We note that BBA+N oRes is the original

10This configuration resembles the placement of nodes in a 2 dimensional grid, where each node
can select its parent from up to 8 different choices.
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Tleaves Tall Trandom

PGA+Res 423 / 978 479 / 903 677 / 1,207
PGA+N oRes 463 / 924 558 / 894 830 / 1,454

BBA+Res 2,744 / 1,654 2,471 / 1,426 3,775 / 2,657
BBA+N oRes 3,203 / 1,394 2,967 / 1,481 4,229 / 2,474

Uni+Res 2,568 2,451 3,906
Uni+N oRes 2,568 2,642 4,044

(E Global=0)+Res 4,176 4,176 5,142

Table 5.7: First number is total number of messages (in thousands) in the network
when using parameters of Conf1, second for Conf2 (see also Table 5.6). Uni does not
use these parameters. Best numbers for each algorithm in bold.

algorithm of [OJW03] running over TAG, while BBA+Res is our extension of that

algorithm using the residual mode of operation. The combination PGA+Res denotes

our algorithm. We first investigate whether the precision control algorithms benefit

from the use of the residual mode of operation. We also seek their preferences in

terms of the values of parameters adjustment period and shrink percentage.

We used a synthetic data set with Pvolatile=0 and Pworkaholic=0.2. We then let

the sensors operate for 40,000 epochs using a fixed error constraint E Global=500.

The average value of the SUM aggregate was 25,600, meaning that this E Global value

corresponds to a relative error of about 2%. In Table 5.7 we show the total number of

messages in the sensor network for each choice of algorithm and tree topology and each

selection of parameters. We also show the number of messages for an exact computa-

tion of the SUM aggregate using one more method, entitled as (E Global=0)+Res,

which places a zero width filter in every node and uses our residual mode of operation

for propagating changes. Effectively, a node sends a message to its parent only when

the partial aggregate on its subtree changes. This is nothing more than a slightly
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enhanced version of TAG. The following observations are made:

• Using a modest E Global value of 500 (2% relative error), we reduce the number of

messages by 7.6-9.9 times (in PGA+Res) compared to (E Global=0)+Res. Thus,

error-tolerate applications can significantly reduce the number of messages in the

network resulting in great savings on both bandwidth and energy consumption.

• Algorithm PGA seems to require fewer invocations (larger adjustment period) but

with a larger percentage of the error to be redistributed (a smaller shrink per-

centage results in a wider reorganization of the error thresholds). In the table

we see that the number of messages for the selection of values of Conf1 is always

smaller. Intuitively, larger adjustment periods allow for more reliable statistics on

the computation of potential gains.

• On the contrary, BBA seems to behave better when filters are adjusted more often

by small increments. We also note that BBA results in a lot more messages than

PGA, no matter which configuration is used.

• The PGA algorithm, when using the residual operation (PGA+Res), results in

substantially fewer messages than all the other alternatives. Even when using the

non-residual mode of operation, PGA outperforms, significantly, the competitive

algorithms.

• BBA seems to benefit only occasionally from the use of the residual operation.

The adjustment of thresholds based on the burden of a node cannot distinguish on

the true cause of a transmission (change on local measurement or change in the

subtree) and does not seem to provide a good method of adjusting the filters with
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respect to the tree hierarchy.

In the rest of the section we investigate in more details the performance of the

algorithms based on the network topology and the data distribution. For PGA we

used the residual mode of operation. For BBA we tested both the residual and non-

residual modes and present the best results for each experiment.11 We configured

PGA using the values of Conf1 and BBA using the values of Conf2 that provided

the best results per case.

5.6.5 Sensitivity on Temporal Volatility of Sensor Measurements

We here investigate the performance of the algorithms when varying Pworkaholic and

for Pvolatile=0. We first fixed Pworkaholic to be 20%, as in the previous experiment. In

Figure 5.6 we plot the total number of messages in the network (y-axis) for 40,000

epochs when varying the error constraint E Global from 100 to 2,000 (8% is terms

of relative error). Depending on E Global, PGA results in up to 4.8 times fewer

messages than BBA and up 6.4 times fewer than Uni. These differences arise from

the ability of PGA to place, judiciously, filters on passive intermediate sensor nodes

and exploit negative correlations on their subtree based on the computed potential

gains. Algorithm BBA may also place filters on the intermediate nodes (when the

residual mode is used) but the selection of the widths of the filters based on the

burden scores of the nodes was typically not especially successful in our experiments.

Figures 5.7 and 5.8 repeat the experiment for the Tall and Trandom configurations.

For the same global error threshold, PGA results in up to 4 times and 6 times fewer

11As seen on Table 5.7, the differences were very small.
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Figure 5.6: Messages varying E Global
for Tleaves configuration
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Figure 5.7: Messages varying E Global
for Tall configuration
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Figure 5.8: Messages varying E Global
for Trandom configuration
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Figure 5.9: Messages varying Pworkaholic

for Tall configuration

messages than BBA and Uni respectively. In Figure 5.9 we vary Pworkaholic between

0 and 1 for Tall (best network topology for BBA) and for E Global=500. Again PGA

outperforms the other algorithms. An important observation is that when the value

of Pworkaholic is either 0 or 1, all the methods behave similarly. In this case all the

nodes in the network have the same characteristics, so it is not surprising that Uni

performs so well. The PGA and BBA algorithms managed to filter just a few more

messages than Uni for these cases, but due to their overhead for updating the error

thresholds of the nodes, the overall number of transmitted messages was about the
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Figure 5.10: Messages varying Pvolatile

for Tall configuration
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Figure 5.11: Messages varying Pvolatile

for Trandom configuration

same for all techniques.

5.6.6 Sensitivity in Magnitude of Sensor Measurements

In Figures 5.6.6, 5.11 we vary the percentage of volatile nodes (nodes that make very

large steps) from 0 to 100% and plot the total number of messages for Tall and Trandom

(Pworkaholic=0.2, E Global=500). For Pvolatile=1 the error threshold (500) is too small

to have an effect on the number of messages and all algorithms have practically the

same behavior. For smaller values of Pvolatile, algorithm PGA results in a reduction

in the total number of messages by a factor of up to 3.8 and 5.5 compared to BBA

and Uni respectively.

5.6.7 Comparison of the AdjRoot and AdjLocal Algorithms

We started with a balanced aggregation tree with a fan-out of 4 and 6 levels (1,365

nodes overall) having all active nodes at the leaves of the tree (i.e., similar to Tleaves).

We then gradually augmented the tree by injecting transport nodes between levels
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Figure 5.12: Original
aggregation tree Figure 5.13: After adding

transport nodes between
layers 0-1 and 1-2

Figure 5.14: After adding
second set of transport
nodes between layers 0-1
and 1-2
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Figure 5.15: Algorithm performance
varying the number of transport layers

550000

600000

650000

700000

750000

800000

0 1000 2000 3000 4000 5000 6000

To
ta

l n
um

be
r o

f m
es

sa
ge

s

Error Threshold (E_Global)

 

"Uni"
"BBA"
"PGA"

Figure 5.16: Messages, LBL-TCP-3 data
set

0-1, 1-2 and 2-3 in the tree. This process is illustrated in Figures 5.12, 5.13 and 5.14.

For presentation purposes in these figures we use an initial tree with fan-out 2 and

only 4 levels. In Figure 5.13 we show the resulting tree of adding transport nodes

between levels 0-1 and 1-2, while Figure 5.14 shows the tree after adding another set

of transport nodes between these levels. Essentially each step makes the top-level

nodes of the tree lay further away for the leaf nodes that collect the measurements.

In Figure 5.15 we compare the performance of the BBA algorithm against PGA
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(residual mode) with the later using (i) the AdjRoot algorithm for adjusting the filters

(the default choice) and (ii) the AdjLocal algorithm. The y-axis is the figure shows

the percentage of nodes in the tree transmitting on an epoch, averaged over 1,000

epochs and 10 repetitions of the experiment (E Global=1,500). The x-axis shows

the number of successive steps of adding transport nodes. As more nodes are added

between the Root and the leaves of the tree, the number of messages increases in both

BBA and PGA+AdjRoot algorithms. This is due to both the increased number of

nodes in the tree and because both algorithms adjust the filters in a top-down manner,

thus resulting in a larger reorganization overhead, since the average distance of the

Root node from the nodes of the aggregation tree that ultimately received most of the

error budget increases. In contrast, when using the AdjLocal algorithm for adjusting

the filters, the performance is practically unaffected by the addition of the transport

nodes. We note that both PGA+AdjLocal and PGA+AdjRoot operate on the same

set of statistics collected at the nodes and, in principle, one can alternate between the

two algorithms; i.e., use PGA+AdjLocal when the data distribution appears to be

relatively static and switch to PGA+AdjRoot when a quick large-scale redistribution

of the budget is required.

5.6.8 Experiments with Real Data

In Figure 5.16 we summarize our results for the LBL-TCP-3 data set and the Trandom

topology. This data set has the unique feature that many IP-sources show long periods

of inactivity (number of bytes sent is zero) followed by short, bursty transmissions.
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Figure 5.17: Messages, Weather data set, Tall configuration

We include this data, as a “hard” case for our algorithm, since this property makes

it hard to predict future behavior based on past statistics. However, we can see that

PGA still outperforms the other alternatives. We also note that, for very small values

of E Global, Uni is very competitive, as in that case the available thresholds are not

enough to prune transmissions of active IP sources. We remind that Uni has a static

allocation of filters, and has no overhead of adjusting them, unlike the other two

algorithms.

We also provide results using precipitation readings from the Weather data set.

In Figure 5.17 we show the total number of messages, varying E Global, for the three

algorithms, when nodes are organized in the Tall configuration.

5.7 Our MGA Algorithm

In this section we first describe the notion of a marginal gain and how it can be

calculated at each node. We then provide details on which statistics need to be main-

tained at each node by our MGA algorithm, how each node calculates the cumulative

bandwidth consumption within its subtree, and how our MGA algorithm dynami-
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cally adjusts the filter widths of the sensor nodes. Some basic information on the

node operation and the use of the error filters was presented in Section 5.5.1. The

notation used throughout this section is consistent with the notation introduced in

Table 5.2. Additional notation is introduced in Table 5.8. A detailed description

of these symbols is presented in appropriate parts of this section. We finally dis-

cuss some interesting extensions to our algorithm, including modifications when node

movement occurs or when local bandwidth constraints exist.

5.7.1 Algorithm Description

Intuition of our Algorithm

Assume a simple schedule in which the Root node decides how to adjust the nodes’

error filters every Upd epochs. Consider a snapshot of the network at the epoch

when the Root node makes such a decision. Let Bactual denote the overall bandwidth

consumption since the last update epoch, and B Global×Upd = B Util×T×Upd de-

note the targeted bandwidth consumption. If the network bandwidth is underutilized

(Bactual <B Global×Upd), the Root node may instruct some nodes to increase their

bandwidth consumption by decreasing their error thresholds. This necessitates the

Symbol Description
B Cum Total bandwidth consumption in node’s subtree
DE Difference of filter widths between the two anchor points used when calculating

the node’s marginal gain
DB Expected decrease in bandwidth when increasing filter width by DE
CumDE Sum of DE values among all nodes with DB 6= 0 in subtree
CumDB Sum of DB values among all nodes in subtree
budget Bandwidth (positive or negative) assigned to the node’s subtree in the update process

Table 5.8: Notation Used in the MGA Algorithm
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existence of a method to translate the additional bandwidth units in each node to

changes in the node’s error filter. An important question that is also being raised is

which nodes should receive the most additional bandwidth. Since we want to pro-

vide tight error guarantees, it is evident that nodes which are expected to exhibit

the largest reduction in their error filters per additional bandwidth unit should be

ordered to increase their bandwidth consumption by the largest amount. Inversely,

if the bandwidth is overutilized, then some nodes will be ordered to decrease their

bandwidth utilization. In this case, the nodes which will exhibit the smallest increase

in their error filters per reduced bandwidth unit should be ordered to have the largest

decrease in their bandwidth consumption.

Marginal Gains

In Figure 5.18 we depict the expected width of a sensor node’s error filter as we

vary the desired number of transmitted messages by the node to its parent in the

aggregation tree, within a period of Upd epochs. This is similar to Figure 5.5, but

augmented with more information needed in our algorithm. The maximum number

of transmitted messages within an update period is obviously equal to Upd, and this

may occur, for example, when the filter has zero width and the partial aggregate

value calculated by the node changes at each epoch. As the desired bandwidth con-

sumption increases, the width of the filter that is expected to result in this bandwidth

consumption gradually decreases.

Now, consider a randomly chosen node Ni in the aggregation tree and let Wi

denote the node’s error filter width. At each epoch, Ni decides whether to make a
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Figure 5.18: Marginal Gains of a Node

transmission, based on the value of the current partial aggregate calculated at Ni

and its deviation from the previously transmitted aggregate value. At the same time,

the node also keeps track of the number of transmissions it would have performed

had its filter width been either a smaller Wshrink or a larger Wexpand value. We

refer to these filter width values as the two anchor points, and defer the discussion

on how to determine their values for Section 5.7.2. Let Bshrink and Bexpand denote

the calculated number of transmissions in each case, correspondingly, and also let

DB = Bshrink − Bexpand and DE = Wexpand − Wshrink. Then, the ratio DE
DB

is an

indication of the decrease (increase) on the node’s maximum error per additional

(reduced) bandwidth unit assigned to the node.

Statistics Maintained at each Node

Besides the values of DB and DE that we described above, each node also needs

to maintain some additional statistics. We denote as CumDEi the sum of the DE

values among all nodes in Ni’s subtree that have nonzero DB values; that is:
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CumDEi =
∑

j : Nj ∈ subtree(Ni)

and DBj > 0

DEj =



DEi +
∑

j : Nj ∈ children(Ni)

CumDEj DBi > 0

∑
j : Nj ∈ children(Ni)

CumDEj DBi = 0

The reason why we exclude from the calculation of the CumDE values those nodes

which have zero DB values will be made clear later in this section. We also de-

note as CumDBi the corresponding sum of the DB quantities among all nodes in

Ni’s subtree. Each node can, therefore, perform the calculation of the CumDBi and

CumDEi values using local statistics that its children nodes can piggyback to mes-

sages transmitted by them. This is a minimal amount of information needed that is

aggregated at each node. These two quantities will be used, as we will explain later,

by our algorithm to dynamically adjust the widths of the error filters. We here note

that each node should not discard the latest individual CumDB and CumDE statis-

tics transmitted by its children, as these quantities will also be used by our MGA

algorithm in the allocation of bandwidth among the nodes in the aggregation tree.

Computing the Bandwidth Consumption

Because of the hierarchical topology and the limited transmission ranges of nodes,

the Root node has no way of determining by itself the actual bandwidth consumption

in the entire network. To resolve this, we use a simple intuitive idea. Each node

maintains an estimate B Cum of the overall bandwidth consumed by nodes in its
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subtree (including the node itself) during the last update period. When a node

transmits a message to its parent node, it increments its calculated B Cum value for

its subtree by one (to account for the new message) and piggybacks this estimate in

its message.12 The parent in turn uses the last received bandwidth estimates from its

children to calculate its own B Cum value. Think of these values as “bubbles” that

ascend the hierarchy when nodes transmit. The Root node sums-up all the values it

receives from its children.

A small complication arises because some nodes in the middle of the hierarchy,

due to their error filters, may have pruned messages. Thus, some statistics on the

bandwidth consumption of their descendant nodes may not have been propagated

towards the Root node. To solve this problem, at the epoch immediately before the

invocation of the algorithm for adjusting the filters (discussed below), the statistics

(bubbles) that still remain in the network are transmitted towards the Root node.

Every node whose last transmitted value of B Cum differs from the corresponding

current value performs a transmission, even if this is not required by its latest mea-

surement, and this process goes on recursively until all bubbles reach the Root node.

Note that the above procedure may only occur for non-leaf nodes of the aggregation

tree.

12Actually, when using the cost model used by the LEACH [HCB00] and Pegasis [LR02] protocols,
where the energy drain during the transmission or reception of messages is proportional to the
number of transmitted/received bits, it is often optimal, in terms of energy consumption, to transmit
the B Cum, CumDE and CumDB statistics only at the last epoch of each update period.
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Adjusting the Error Filters

We now present the complete MGA algorithm for dynamically adjusting the error

filters installed in sensor nodes.

The algorithm starts at the Root node and progressively distributes additional

bandwidth (which is positive in case of bandwidth underutilization, or negative in

case of bandwidth overutilization) to subtrees and nodes in a top-down fashion. Each

node Ni awaits a message containing the additional bandwidth budgeti (positive or

negative) to be distributed to the nodes in its subtree. If such a message arrives and

budgeti > 0, then this budget is distributed among the node itself and the node’s

subtrees proportionally to the expected per bandwidth unit benefit of each choice,

which is in turn equal to DEi

DBi
for the node itself (if DBi > 0) and

CumDEj

CumDBj
for each child

subtree with CumDBj > 0. Subtrees (nodes) having CumDB = 0 (DB = 0) receive

no bandwidth and no message is being sent to them. For the remaining subtrees,

their budget is calculated as (assuming DB > 0):

budgetj =
budgeti × CumDEj

CumDBj

DEi

DBi
+

∑
Nk ∈ children(Ni)

and CumDBk > 0

CumDEk

CumDBk

(5.6)

and a message is transmitted to them with this value. The formula for calculating

the budget allocated for the filter of node Ni itself is similar, but instead uses the

quantity DEi

DBi
on the nominator. The budget allocated to the node is then multiplied

by DEi

DBi
to determine the appropriate increase in the error filter’s width. If the budget

given to some subtree is very small (for example, less than 1) then there is no real
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benefit in such a budget assignment, since the update message itself will outweigh any

possible benefits of error filter adjustments in the subtree. These small bandwidth

budgets can be redistributed to subtrees which are programmed to receive additional

bandwidth.

We now consider the case when either some node does not receive any update

message, or has DB = 0. If DB = 0, then the node can decrease its error filter’s

width to Wshrink without this having an impact on the expected bandwidth consumed

by the node. If DB > 0 and no bandwidth is allocated to the node, then the node

does not modify its error filter.

Finally, the case when the bandwidth is overutilized (and therefore the dissem-

inated budget is negative) is almost symmetric to our above discussion. Based on

our discussion at the beginning of this section, the nodes which are expected to ex-

hibit the smallest increase in their error filters per reduced bandwidth unit should

be ordered to have the largest decrease in their bandwidth consumption. Therefore,

the distribution of the negative budget should be performed proportionally to the DB
DE

quantity in this case. For any node Ni, the equation of allocating bandwidth to its

children subtrees therefore becomes:

budgetj =
budgeti × CumDBj

CumDEj

DBi

DEi
+

∑
Nk∈children(Ni)

CumDBk

CumDEk

(5.7)

Finally, the case when DB = 0 is handled almost identically to the case of band-

width underutilization (a small difference is discussed in Section 5.7.2). Therefore,

independently of whether the dispensed budget is positive or negative, the behavior
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Node W DB CumDB DE CumDE

1 0 0 260 0 8
2 2.5 90 120 2 4
3 1.25 0 180 1 4
4 2.5 30 30 2 2
5 5 0 0 4 0
6 2.5 60 60 2 2
7 1.25 50 50 1 1
8 1.25 70 70 1 1

Table 5.9: Sample Statistics

of nodes having DB = 0 remains the same. This is the reason why they are not taken

into account when calculating the CumDE values at each node. It is interesting to

note that in the case of bandwidth overutilization, the width of a node’s error filter

may either increase (if negative budget is assigned to the node), remain intact (if it

receives zero budget), or even decrease (if DB = 0).

It is important to emphasize that in either case (positive or negative bandwidth

budget), each node Ni in the aggregation tree decides how to distribute its budget

to the node itself and to its children subtrees by using only statistics received by

its children nodes. The tree topology is taken into account when calculating the

cumulative statistics (CumDE, CumDB and B Cum) of each subtree. Finally, we

need to note that in the first epoch after the reorganization, each node needs to

transmit the new error of its entire subtree (calculated bottom-up) so that the Root

node will be able to know the error guarantees of its estimated aggregate value.

Example 3: We now present a simple example to demonstrate the error filter ad-

justment process. Consider the aggregation tree of Figure 5.3 and assume that the

budget of node 1 is 30 (the bandwidth was therefore underutilized in our example
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in the previous update period) and that the W , DE, DB, CumDE and CumDB

values of each node are the ones presented in Table 5.9. Note that in two cases where

DB = 0, the CumDE values (marked in bold) have omitted from their calculations

the DE values of some nodes. At the beginning, node 1 disseminates its budget based

on the values CumDE2

CumDB2
and CumDE3

CumDB3
. Using Equation 5.6, the node dispenses budget 18

and 12 to nodes 2 and 3, respectively. The budget left for node 1 is 0, because there

is no point in using a non-zero filter at the Root node. Now, considering just the case

of node 2, the node will dispense budget 13.5 to node 4, 0 budget to node 5 and keep

the remaining budget (4.5) for itself. Node 5 has DB5 = 0 and, therefore, decreases

its error filter to Wshrink5 . Node 4 will decrease its error filter by 0.9 = 13.5× 2
30

and

set its new width to 1.6. Similarly, node 2 will decrease its filter by 0.1 = 4.5× 2
90

.

5.7.2 Algorithm Details

We now present some details of our algorithm that are either not covered by the above

discussion, or have been omitted to this point for ease of presentation.

Selecting the Anchor Points

The selection of the two anchor points Wshrink and Wexpand should enable the sensor

nodes to calculate useful statistics on the expected impact on their error filters by

a desired increase or decrease of their bandwidth consumption. While there is no

optimal way to select these two anchor points, there are some useful guidelines that

help determine their values. A simple technique would be to select filters with widths

smaller and larger than Wi by a factor of a (0 < a < 1), i.e. setting Wshrink = (1−a)Wi
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and Wexpand = (1+a)Wi. However, using this setting, for nodes with small error filters

the distance of the two anchor points will be small. This prevents the collection of

useful statistics and often results in estimated DB values of zero. A more robust

approach would utilize the standard deviation σ (or equivalently the variance σ2) of

the measurements collected at the node during the previous update period13 thus

setting Wshrink = max{Wi− σ, 0} and Wexpand = Wi + σ. This technique, however, is

slow to react to nodes that exhibited a small variance in their measurements during

their previous update period, thus resulting in a small distance of the two anchor

points in the current update period, and which suddenly become more volatile in

their measurements. What is, thus, needed is a combination of the aforementioned

techniques.

In our MGA algorithm we use the following values for the two anchor points:

Wshrink = max{0, min{Wi − σ, (1 − a)Wi}} and Wexpand = max{Wi + σ, (1 + a)Wi,

Wshrink + minDE}. The minDE value specifies a minimum distance of the two

anchor points and is needed in the case of nodes with both small filters and small

variance in their measurements. Consider for example the case where the readings

in a sensor node are integer values. Then, if the node’s filter is centered around an

integer value, any distance of the two anchor points smaller than 2 will always result

in DB = 0. Thus, the minDE value can be determined by the granularity of the

node observations.

13The standard deviation at the current update period cannot be used, since this would result in
moving anchor points, based on the observations during each, current, epoch.
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Filter Modification Based on Assigned Budget

Let DEshrink = W − Wshrink and DEexpand = Wexpand −W . Also, let DBshrink

(DBexpand) denote the expected increase (decrease) in the number of messages trans-

mitted by the node by decreasing (increasing) its error filter to Wshrink (Wexpand).

Obviously, DB = DBshrink + DBexpand. After determining the budget (positive or

negative) assigned to each node during the update process, the desired modification

of the error filter is more accurately calculated if, instead of using the node’s DE

and DB values calculated by both anchor points, the node utilizes just the statistics

of the anchor point in the direction of the filter modification. Therefore, when zero

budget is assigned to a node, the MGA algorithm shrinks the node’s filter to Wshrink if

DBshrink = 0. If negative bandwidth is allocated to the node, then the ratio
DEexpand

DBexpand

is used to determine the increase in the filter’s width. If positive bandwidth is allo-

cated to the node and DBshrink > 0, then the ratio DEshrink

DBshrink
is used to determine the

decrease in the filter’s width. Finally, if positive bandwidth is allocated to the node

and DBshrink = 0 (but DB > 0), then the MGA algorithm shrinks the node’s filter to

min{Wshrink, max{W− |budget|×DE
DB

, 0}}. We here need to emphasize that the DEshrink,

DEexpand, DBshrink and DBexpand statistics are not transmitted to other nodes (to

limit the size of the transmitted information), and that the bandwidth dissemination

is based solely on the DE and DB values, and the corresponding cumulative statistics

for the subtree.
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Additional Details

The MGA algorithm also imposes a set of restrictions concerning the budget dissem-

ination process.

• There is no point in assigning to a subtree negative budget larger (in absolute

value) than the bandwidth B Cum it consumed during the previous update period.

Moreover, we cannot assign to a node itself more budget than what is necessary to

drop its error to 0.

• For passive nodes with a single child node, the error filter is always set to zero,

since one can easily demonstrate that it is always more beneficial to “push” the

error budget of that node to its child.

5.7.3 Extensions

We now describe interesting extensions to our framework, such as dealing with node

movement and imposing strict bandwidth constraints in areas of the aggregation tree.

Node Movement

In sensor networks the aggregation tree often changes during the lifetime of a contin-

uous query. This may happen because of node and link failures or, for instance, when

nodes are attached to moving objects. When the aggregation tree gets reorganized,

each node which experiences changes in the set of its children nodes needs to:

1. Receive the partial aggregate and collected statistics from its new children nodes.
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2. Calculate the new partial aggregate and statistics of its subtree by considering the

newly acquired values received from its new children nodes and by subtracting the

corresponding values of its children nodes that were removed.

3. Make a transmission depending on the value of the new calculated partial aggregate.

Strict Bandwidth Constraints in Local Areas

While our MGA algorithm limits, on the average, the targeted overall bandwidth

consumption, it can be adapted to provide a strict bandwidth guarantee in all or

parts of the aggregation tree. This will be useful when parts of the network exhibit

severe bandwidth or energy constraints. As mentioned in the previous section, each

node maintains an estimate of the bandwidth consumption B Cum in its subtree.

If this bandwidth consumption exceeds the given strict constraint for the area, then

sufficient negative budget should be assigned to this node’s subtree in the next update

epoch, independently of the overall bandwidth consumption.

Let B Limi denote the bandwidth constraint in the subtree of node Ni. If we

do not wish to impose a bandwidth constraint at certain subtrees, then B Limi = ∞.

Each node Ni needs to maintain an additional statistic B Needi which denotes the

minimum amount, in absolute value, of negative budget needed to be disseminated

to descendant nodes of Ni. The value of B Needi is calculated as follows:

B Needi =
∑

k:Nk∈children(Ni)

B Needk + max{0, B Cumi −
∑

k:Nk∈children(Ni)

B Needk −B Limi}
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The first summand in the equation above represents the budget needed by nodes in

subtrees rooted at children nodes of Ni. The second summand represents the budget

needed by node Ni itself and is more complicated. To properly calculate this second

summand, we need to take into account not only the bandwidth consumption and

the bandwidth constraint in the entire subtree of Ni, but also consider how much

of the difference between these two values will be offset by limiting the bandwidth

consumed by the subtrees of Ni. The MGA algorithm now requires the following

modifications:

• The Root node adds (since B Need represents needed negative budget, in absolute

value) its computed B Need value to the budget that it will disseminate to the

sensor nodes. Therefore, the disseminated budget is decided only after the Root

node takes into account the minimum negative bandwidth needed by areas of the

aggregation tree that have exceeded their bandwidth limits.

• Each subtree with a B Need value greater than zero automatically receives at least

this amount of negative budget. We here note that this negative budget will not be

assigned to the subtree by its parent node, but is acquired automatically. Additional

negative budget may be assigned to this subtree if the budget disseminated by the

Root node is negative. Positive budget is disseminated only to subtrees that have

not exceeded their bandwidth limit.
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5.8 MGA Algorithm Experiments

We have developed a simulator for testing the TBA and MGA algorithms that we

discussed in this chapter under various conditions. The experiments that we present

are split in two parts. We first use synthetic data sets to test the effect of various

data characteristics. In the second part we experiment with real sensor data.

5.8.1 Configuration Parameter Selection

We first ran a set of preliminaries experiments for setting up the configuration pa-

rameters of the algorithms. Both algorithms had a large range of values for their

configuration parameters that provided near-optimal results. As an example we show

in Figures 5.19 and 5.20 the average error guarantee when varying the update period

(Upd) from 10 to 100 epochs for the light and temperature measurements of the lab

data set discussed in Section 5.8.3. For TBA we found out that the parameters that

were originally proposed in [OW02] provided the best results in most cases. We thus

used θ=1.1 and ω=10. The update period Upd was 50. For MGA we used α=40%

and Upd=40.

5.8.2 Sensitivity Analysis

There are two orthogonal dimensions that affect the evaluation of a bandwidth con-

strained query. The first is the hierarchical organization of the nodes and the second

is the data distribution. We have experimented with several topologies for the aggre-

gation tree. For brevity we present results for the following two configurations.
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Figure 5.19: Error Guarantee vary-
ing Upd, temperature measurements
(lab data set)
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Figure 5.20: Error Guarantee vary-
ing Upd, light measurements (lab
data set)

• T1: In this configuration the sensor nodes form a balanced tree with fanout = 3 and

6 levels (364 nodes overall). Only leaf nodes in the tree are active. Intermediate

nodes do not collect measurements but rather aggregate results from their subtrees.

• T2: The nodes form a random tree with the fanout of each node being randomly

chosen between zero (leaves) and 8 and with the maximum distance of a leaf from

the Root node equal to 6. The tree is not balanced and leaf nodes are in different

distances from the Root node. The tree that we used had 644 nodes. Intermediate

nodes are active with probability 20%. All leaf nodes are active by default.

The synchronization of the sensor nodes in the tree is performed as described

in TAG [MFHH02]. TAG reduces the number of messages by combining, whenever

possible, messages on a path to the Root node within the same epoch. All algorithms

are implemented on top of this protocol.

In the synthetic data sets, we had the values of each active node follow a random

walk pattern, similar to the discussion in Section 5.6.2. The probabilies Pvolatile and

Pworkaholic are defined in a similar way. In the following experiments, unless specified
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MGA TBA
B Global B used Error Guarantee Abs. Error B used Error Guarantee Abs. Error

20 19.5 3,667.0 279.2 19.0 35,013.7 245.9
30 28.9 2,506.8 195.7 28.5 9,527.5 203.7
40 38.6 1,914.2 155.4 38.1 5,221.6 217.1
50 48.4 993.1 75.7 46.8 4,255.7 218.6
60 58.0 442.2 46.9 55.7 3,439.0 208.1
70 67.5 217.6 21.4 62.2 2,438.8 161.5
80 77.7 121.5 10.9 72.7 1,417.7 101.7
90 87.8 71.5 5.7 77.4 1,463.2 107.2
100 97.6 26.1 1.8 89.9 675.0 54.1

Table 5.10: Avg Error Guarantee, Avg Abs Error and B used for T1
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Figure 5.21: Error Guarantee for T2

otherwise, we used the SUM function. Performance with the AVG function is similar.

Effect of Bandwidth Constraint. In Table 5.10 we show the average error guar-

antee and the average absolute error provided by the algorithms over 10,000 epochs

for different values of B Global (bandwidth constraint) and for the configuration T1.

The corresponding values of B Util can be easily derived in each case by considering

the number of nodes in each tested configuration. In this data, we used Pvolatile = 0.2

and Pworkaholic = 0.2.

In this table, the first column shows the constraint used, while the column

B used shows the average bandwidth (number of messages per epoch) achieved per
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algorithm.14 The numbers also include any control messages required by the algo-

rithms. We notice that both algorithms achieve a bandwidth consumption very close

to the input value. However, there are huge differences in the error guarantee pro-

vided per algorithm. The error guarantee of algorithm MGA is up to 26 times smaller

than the one of TBA for the same bandwidth constraint. In this table we also show

the average absolute deviation of the reported aggregate to the Root node from the

true aggregate value (corresponding to an unconstrained execution). We notice that

both algorithms are significantly more accurate than their reported error guarantee;

the (real) absolute error is typically an order of magnitude smaller than the reported

error guarantee. This is a trend consistent in all our experiments. For brevity, in the

remaining of this section we will only be reporting the error guarantees.

In Figure 5.21 we plot the average error guarantee versus B Global for T2. The

error guarantee of MGA, for the same bandwidth constraint is smaller by a factor of

up to 75, depending on the used bandwidth constraint.

Overall, the error guarantees provided by the algorithms are very tight. The

average value of the SUM aggregate was 254,429 and 531,718 for T1 and T2 (T1 has

fewer active nodes than T2). For B Global=20 in T1, MGA provides an average

error guarantee of 3,667. In relative terms this is just 1.5% of the aggregate value and

is obtained with just 19.5 messages per epoch, while an unconstrained execution of

the query, as in [MFHH02], would require 363 messages per epoch. Thus, we obtain

a 1.5% error guarantee using about 5% of the bandwidth. The actual error is just

14As mentioned, TBA does not aggregate the statistics sent to the Root node and, thus, the size
of each message is substantially larger. We do not account for this overhead of TBA here.
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T1 T2
Pvolatile MGA TBA MGA TBA

0.1 275.1 2,396.9 1,279.5 4,988.6
0.2 442.2 3,439.0 10,174.9 24,729.4
0.3 907.3 4,718.7 16,531.9 43,443.6
0.4 4,036.0 11,051.7 22,526.8 86,970.6
0.5 9,176.5 18,352.0 28,456.8 112,490.0
0.6 10,983.9 21,409.3 41,829.7 259,386.0
0.7 16,950.3 33,328.0 58,972.8 346,293.0
0.8 19,578.4 42,094.5 63,997.1 407,582.0
0.9 27,507.6 64,161.8 79,285.0 591,617.0

Table 5.11: Varying Pvolatile

T1 T2
Pworkaholic MGA TBA MGA TBA

0.1 413.5 2,873.6 4,162.3 10,428.4
0.2 442.2 3,439.0 10,174.9 24,729.4
0.3 1,774.4 7,239.1 12,487.9 34,428.8
0.4 2,594.7 8,534.7 16,841.0 70,116.4
0.5 4,070.6 10,258.9 18,370.5 91,735.1
0.6 4,220.3 10,947.1 21,356.7 125,393.6
0.7 6,291.4 13,681.1 27,911.5 171,527.2
0.8 8,431.1 16,521.5 25,152.0 172,036.2
0.9 10,281.7 23,102.3 36,684.1 276,168.8

Table 5.12: Varying Pworkaholic

0.1% for the same bandwidth.

Varying Mix of Nodes. In Table 5.11 we vary the probability Pvolatile that a node

is volatile. We set the probability Pworkaholic to 0.2 and used B Global=60 in all

cases. As the number of volatile nodes increases, the error guarantees increase as

well. Clearly, the error guarantee provided by MGA are significantly smaller than

the ones provided by TBA.

In Table 5.12 we repeat the experiment varying this time the probability Pworkaholic.

In this experiment we set Pvolatile to 0.2 and B Global=60.
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Variance
Measure Mean Data Measurements AVG aggregate

Lab-Temperature (Celsius) 21.81 11.55 1.72
Lab-Light (Lux) 378.61 254,668.00 11,718.55

Lab-Humidity (0-100%) 38.53 40.96 5.63
Weather-Temperature (Fahrenheit) 70.25 225.93 2.54

Table 5.13: Characteristics of Real Data Sets

Figure 5.22: Aggregation tree used in lab data set

0

2

4

6

8

10

12

14

16

4 6 8 10 12 14 16 18 20

E
rr

or
 G

ua
ra

nt
ee

 (C
el

si
us

)

B_used (out of 48)

 

"TBA"
"MGA"

Figure 5.23: Error Guarantee for
temperature readings (lab data set)
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Figure 5.24: Error Guarantee for
light readings (lab data set)

5.8.3 Experiments with Real Data

Sensor networks are frequently used in environmental monitoring. We here present

results on running experiments over two real-world data sets. The first data set, lab,
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Figure 5.26: Error Guarantee for
weather data set

is a trace of readings from sensors in the Intel Research, Berkeley lab [DGM+04],

collecting light, humidity and temperature readings.15 We used trace data of 48

sensors for a period of one week. For setting up the aggregation tree, we used the

aggregate connectivity data available with this trace. The sensors formed a tree

through a simple protocol that prioritized the choice of a parent node based on the

quality of the upload link. The final aggregation tree is shown in Figure 5.22.

The second data set, weather, provides temperature measurements at a reso-

lution of one minute for the year 2002 (a total of 525K measurements). The data

was collected at the weather station of the university of Washington (http://www-

k12.atmos.washington.edu/k12). We split the data into 53 non-overlapping sets. We

tested this set using a random aggregate tree consisting of 80 nodes. Each intermedi-

ate node in the tree had between one and four children while the maximum distance

of a leaf from the Root node was 5 (i.e. 6 levels). Intermediate nodes were active

with probability 20%.

15The data set is available at http://berkeley.intel-research.net/labdata/. We would like to thank
the owners for making their trace data publicly available.
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For the interpretation of the performance of the algorithms we provide in Ta-

ble 5.13 the mean value and variance of the sensor measurements as well as the

variance of the AVG function used in all the aggregate queries in this subsection. In

Figures 5.23, 5.24 and 5.25 we show the average error guarantee for the lab data set,

while Figure 5.26 depicts the performance for the weather data set. We notice that

with about 10% of the readings, MGA provides strong deterministic guarantees that

are below the variance of the aggregate in each case.
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Chapter 6

Conclusions

In this dissertation we presented several data reduction techniques that can be applied

in a variety of applications in constrained environments. We focused our discussion

on the area of sensor networks, where the severe energy and bandwidth constraints

require the development of novel data reduction techniques for the transmission of

measurements collected in these networks.

We first presented a new data compression technique, termed SBR, designed

for historical data collected in sensor networks, which however can also be applied in

compressing multiple time series in general. Our SBR algorithm splits the recorded

series into intervals of variable length and encodes each of them using an artificially

constructed base signal. The values of the base signal are extracted from the real

measurements and maintained dynamically as data changes. While the encoding of

the data using the base signal is performed using linear regression techniques, our

method does not only apply to linear data sets; in fact none of the data that we

used in our experimental evaluation are linear in nature. Linearity is exploited when

encoding the correlations of the data values and the base signal. The algorithm easily

adapts to different error metrics by simply changing the Regression subroutine used.

It can also be modified to provide strict error bounds or a combination of error and

space bounds.
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In our experiments we used real data sets from a variety of fields (weather,

stock and phone call data). Using the sum-squared error and the sum-squared relative

error of the approximation, our SBR algorithm significantly outperformed in accuracy

approximations obtained by using Wavelets, DCT and Histograms. We also explored

the benefits of organizing the nodes in localized groups and found the reduction in

the obtained approximation error to often be significant.

We then developed algorithm that enable the use of wavelet-based algorithms

in multi-measure data sets. These techniques can be used either when the processing

capabilities of the sensor nodes are prohibitively limited for the application of the

SBR algorithm, or when the collected data is multi-dimensional. For this task, we

introduced the notion of an extended wavelet coefficient as a flexible storage method

for maintaining wavelet coefficients for data sets containing multiple measures. This

flexible storage method bridges the gap between the two extreme storage hypotheses

that the existing algorithms represent, and achieves better storage utilization, which

results in improved accuracy to queries. We proposed both optimal and greedy,

near-optimal algorithms for selecting which extended wavelet coefficients to retain

under a storage constraint such that either the weighted sum of the squared L2 error

norms or the maximum relative error is minimized. The results from our extensive

experimental study validate the effectiveness of our approach, demonstrating that

our greedy GreedyL2 and GreedyRel algorithms constitute highly scalable solutions that

provide near optimal results in all cases and achieve significantly more accurate data

synopses than those of previously proposed algorithms.

Finally, we proposed a new framework for in-network data aggregation over
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sensor networks that supports the evaluation of aggregate queries in error-tolerant

applications. Our framework supports a dual scenario, where the application can

specify either the maximum error that it is willing to tolerate, or the average band-

width consumption of the continuous query. Unlike previous approaches, our PGA

and MGA algorithms exploit the tree hierarchy that messages follow in such appli-

cations to significantly reduce the number of transmitted messages and, therefore,

increase the lifetime of the network. These algorithms are based on two key ideas.

Firstly, the residual mode of operation for nodes in the aggregation tree allows nodes

to apply their error filters to the partial aggregates of their subtrees and, therefore,

potentially suppress messages from being transmitted towards the root node of the

tree. A second key idea is the use of simple and local statistics to estimate the gain

of allocating additional error to nodes in a subtree. This is a significant improvement

over straightforward extensions for the hierarchical setting of previous approaches

that require a large amount of information to be transmitted to the root node of the

tree. Through an extensive set of experiments, we have shown that while the distribu-

tion of the error based on the computed gains is the major factor for the effectiveness

of our techniques compared to other approaches, the fusion of the two ideas provides

the best improvements.
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