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Chapter 1

Preliminaries

1.1 Introduction

In this dissertation we study dynamical properties of a family of exact twist

maps preserving an infinite measure on a non-compact phase space. Our main fo-

cus is to establish results about abundance of escaping orbits, i.e. trajectories that

eventually leave any compact subset of the phase space. The study of the asymp-

totic dynamical features of this family is interesting for a variety of reasons. First

of all, the maps of the family can serve as a model for the high-energy dynamics

of some mechanical problems. Examples include the Fermi-Ulam ping-pong and its

generalizations, which have been the starting point for this dissertation, and that

will be explained in detail in a following section; some n-body problems, such as

the Sitnikov three body configuration or cometary motions, slow-fast systems and

motions close to a resonance also show remarkable similarities with the dynamical

system studied in this work.

Another quite interesting feature of the family under consideration is its affinity with

the Chirikov-Taylor standard map: in fact both systems share essentially the same

geometrical structure. For this reason, most of the difficulties we will encounter

in our work will be directly related to corresponding issues for the standard map

and we can expect that the techniques we use in our case could also be successfully
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applied to the more difficult case of the standard map.

The maps we study are given by transformations of the cylinder M = S
1×R ∋

(x, y) onto itself. Fix φ to be a smooth real-valued function on S
1, let φ̇ be its

derivative and Y be a function on R that will be specified below. Then consider the

map given by the following equation:

F :







x

y







7→







x + Y (y)

y + 2φ̇(x + Y (y))







. (1.1)

From now on, we assume, unless otherwise specified, that:

φ(x) +
A

2π
sin(2πx) (1.2)

where A > 0; we also define for γ ≥ 1 the function Y as follows:

Y (y) + Const · |y|γ. (1.3)

The family of maps we study is generated by the two parameters A and γ in (1.2)

and (1.3). As it will be clear later, it turns out that if γ 6∈ {1, 2}, the value of the

parameter A is almost irrelevant for our results; the only significant parameter of

the map F will be the exponent γ. Notice that F is smooth everywhere except on

the circle {y = 0}; however, since we are only interested in the asymptotic behavior

for y → ∞ of the map F , we will effectively neglect the singularity line {y = 0} and

treat F as a smooth (exact) twist map on the cylinder. Furthermore, notice that if

γ → 1 the map F essentially becomes an unfolding of the standard map:

Sk :







x

y







7→







x + y

y + kφ̇(x + y)







.
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Finally, F has a symmetry given by y 7→ −y, φ 7→ −φ, therefore we will restrict

ourselves to consider only positive large values of y.

In the next sections of this introductory chapter we will first explain how the

map F can be obtained as an asymptotic approximation for one of the aforemen-

tioned mechanical models, and then state the results we are going to prove in this

work.

1.2 Fermi acceleration

The acceleration mechanism known by the name of Fermi acceleration was

originally proposed in 1949 by Enrico Fermi [Fe49] to explain the presence in the

universe of high energy particles called cosmic rays. Such particles are believed to

gain energy by consecutive interactions with irregularities in an otherwise station-

ary magnetic field. Näıvely, one would expect a process of thermalization leading

to a stationary motion of the particle itself; such a reasoning turns out to be too

simplistic and a more refined analysis shows that there is a definite probability of

an average gain in energy.

In 1960, Ulam [Ul60] suggested a simple Hamiltonian system to model such statisti-

cal acceleration behaviour. The model has been thereafter known as the Fermi-Ulam

ping-pong model and consists of a particle moving between two infinitely heavy walls

that are performing an oscillatory motion; the particle changes its velocity only by

elastic collisions with the moving walls and it is not subject to any other force.
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The main questions about this problem regarded the existence of trajectories with

unbounded energy: such orbits can either be escaping, i.e. such that the energy of

the particle goes to infinity with time, or oscillating, meaning that the lim sup of

energy is infinite while the lim inf remains bounded. Fermi and Ulam, supported by

some numerical evidence, conjectured the existence of unbounded orbits for their

model. In 1977, however, KAM theory provided [Pu77, Pu95] a negative answer to

such questions: for sufficiently smooth motions of the walls, all orbits are bounded,

because for high energies there are invariant tori that prevent diffusion. It is inter-

esting to note that the smoothness condition is not a mere technical issue, as for less

regular motions one can indeed construct unbounded orbits [Zh97]. As an histori-

cal remark, it is perhaps worth mentioning that, despite using the most advanced

computer machines of their age, Fermi and Ulam were forced to perform very crude

approximations in order to obtain numerical results in a reasonable time. In partic-

ular, in their simulations, the position of the walls was given by a saw-tooth function

of time, which is precisely the function that has been used in the construction of

unbounded orbits in the non-smooth case.

A variazione sul tema involves a single oscillating wall and introduces a poten-

tial U(x) = xα, α > 0 which serves the purpose of bringing the particle back to the

wall. By considering different values of the exponent α one obtains a one-parameter

family of models; all such models preserve a measure (Liouville measure) that will be

the relevant measure in all results that follow. The case of gravity potential (α = 1)

has been the first to be investigated [Pu77] and the study yielded the following,

indeed quite surprising, result:
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Theorem 1.2.1 (Pustylnikov). There is an open set of wall motions φ(t) (in the

space of periodic analytic functions admitting an analytic continuation to a given

strip |ℑz| < ε) such that the measure of the escaping orbits is infinite.

The case of elastic potential (α = 2) has been studied in [Or99], [Or02]; abun-

dance of unbounded escaping orbits has been proved under some resonance condition

between the motion of the wall and the potential.

In a more general setting we can again use KAM theory [Do08] to prove the following

result:

Theorem 1.2.2 (Dolgopyat). If α > 1 but α 6= 2 and the motion of the wall

is smooth enough, then the set of escaping and oscillatory motions is empty since

invariant tori persist for high energies.

On the other hand, KAM theory do not forbid orbits with unbounded energy

for weak potentials. However, it is conjectured that for all potentials weaker than

gravity (i.e. for α < 1) the measure of escaping motions is zero. The conjecture is

substantiated by the following

Theorem 1.2.3 (Dolgopyat). If α < 1/3 and the motion of the wall is a sinusoid,

then the set of escaping orbits has zero measure.

The above results leave several open questions regarding the largeness of the

following sets:

• The escaping set E i.e. the set of orbits such that the energy E tends to

infinity as time t grows;
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• The set of orbits with bounded energy;

• The oscillatory set i.e. the set of orbits such that lim supE(t) = ∞ and

lim inf E(t) < ∞.

The maps considered in this dissertation can be regarded as the static wall approxi-

mation of the bouncing ball system. This approximation, described in more detail in

section 1.3, is widely used in physics literature. It has the advantage of being given

by simpler and more explicit formulae whereas keeping the essential geometrical

structure of the complete model.

1.3 Static wall approximation of the bouncing ball system

This section closely follows section 3 in [Do08]. Consider the problem of a point

mass bouncing vertically on an infinitely heavy horizontal plate which oscillates with

period 1 in the vertical direction and interacts with the particle by the law of elastic

reflection. The particle is moving in a potential U(x) = xα, where x is the vertical

position and α is some positive real number.

Let φ(t) be the vertical position of the plate at time t, periodic of period 1; for

simplicity we will consider the case:

φ(t) = B +
A

2π
sin(2πt). B >

A

2π
.

It is natural to associate to the system a discrete time map defined as follows. Let

tn be the time of the n + 1st collision between the plate and the particle and vn

its velocity (pointing upwards) immediately after the collision. Since the position
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of the plate is a 1-periodic function of time t, we can consider tn on S
1 = R/Z. In

this way the phase space is a half cylinder; in fact the velocity immediately after a

collision at time t has to satisfy the inequality v ≥ φ̇(t).

An approximation common to this kind of problems is the so-called static wall

approximation, in which we consider the plate fixed at position x0 but exchanging

momentum with the particle as if it were moving. Notice that, since the displacement

of the plate is a bounded quantity, we are neglecting terms of order at most 1/v;

the approximation is hence suitable for studying the high energy dynamics of the

mechanical system.

Fix x0 > 0, then define T (v) : R
+ → R

+ as the time taken by a ball leaving x = x0

with upward velocity v to return on x = x0 subject to the potential U(x). In our

case T (v) ∼ vγ, where it is easy to check that γ = 2/α − 1. In fact, let E0 be the

energy of the particle after the collision:

T = 2

∫ xmax

x0

1

v(x)
dx =

∫ xmax

x0

1√
E0 − xα

dx xmax = E
1/α
0 .

Performing the change of variable x = x
1/α
0 y we obtain:

T =

∫ 1

x0E
−1/α
0

1

E
1/2
0

√
1 − yα

E
1/α
0 dy = E

1
α
− 1

2
0 Const ·

(

1 + O

(
xα

0

E0

))

∼ v
2
α
−1.

Notice that the asymptotic expression is exact for x0 = 0 or α = 1.

Using the static wall approximation and considering T = C · vγ, the map F :

(tn, vn) 7→ (tn+1, vn+1) can be written as follows:

F :







t

v







7→







t + T (v)

v + 2φ̇ (t + T (v))






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which is (1.1) if we let (t, v) → (x, y) and T → Y . In the following, when useful, we

will borrow the terminology from the physical problem also when referring to the

model map (1.1). In particular we will often refer to the variable y as the energy of

the system.

The map F defined in (1.1) is the composition of two translations, therefore it

preserves the Lebesgue measure dxdy; by considering Y (y) rather than y as the

fundamental variable, we would obtain:

Y 7→ C

((
Y

C

)1/γ

+ 2φ̇ (x + Y )

)γ

∼ Y + Y 1−1/γ C ′ φ̇ (x + Y ) + h.o.t.

Thus, the map F appears to be similar to a standard map with perturbation pa-

rameter k = Y 1−1/γC ′ that depends on y. We can distinguish between the following

regimes:

• weak potentials (γ > 1) · the perturbation parameter grows as energy grows;

we can expect diffusion to high energies;

• gravity or standard (γ = 1) · the system is equivalent to the standard map

(unfolded on a semi-cylinder along y);

• strong potentials (0 < γ < 1) · the perturbation parameter decreases as we

increase the value of y; there is persistence of invariant tori for large y and

therefore we do not have diffusion to arbitrarily high energies;

• elastic potential (γ = 0) · the function Y is constant, this is an exceptional

case;
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• strong potentials (II) (−1 < γ < 0) · large values of y correspond to small

values of Y ; we recover once more invariant tori bounding energies from above;

• Fermi-Ulam ping pong (γ = −1) · once more we have invariant tori for high

energies. Notice that in this case the static wall approximation ceases to be a

good approximation because we neglect terms of the same order as Y .

Notice that, in order for the last two cases to make sense, we have to consider a

slightly different function Y = Const · |y − y∗|γ for some fixed y∗ > 0. The situation

we will study in this dissertation is given by the first case; for each γ > 1 we can see

the corresponding map as a realization of an anti-integrable limit for the standard

map.

1.4 Statement of the results

The purpose of this dissertation is to obtain results about abundance of un-

bounded orbits under iteration of the map F . Let (xk, yk) = F k(x0, y0), then the

escaping set can be defined as:

E = {(x0, y0) s.t. lim
n→∞

yn = ∞}.

The first result ensures that, provided γ > 1, the escaping set is not only non-empty,

but it is also topologically large.

Theorem A. If γ > 1 then the escaping set E has full Hausdorff dimension.

The theorem is proved in chapter 2 and the proof involves the construction of a

full dimensional subset of the escaping set using hyperbolic dynamics. On the other
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hand, the conjecture for the bouncing balls system suggests that results analogous

to theorem 1.2.3 should be valid for all γ > 1. In fact, theorem 1.2.3 can be easily

adapted to our situation; the key ingredient for the proof is showing that the x-

component of most trajectories approaches equidistribution. In the proof, valid up

to γ > 5, the equidistribution estimates are obtained by bounding the expansion

and distortion rates after a single iteration of F outside a so-called critical set .

The idea to improve the condition on γ is to consider further iterates of the map:

this allows to obtain stronger estimates outside a smaller critical set and leads us

to prove:

Theorem B. Let γ > 5/2, then the escaping set E has zero Lebesgue measure.

The proof of the theorem, given in chapter 3, relies on establishing two-step

estimates and defining a suitable critical set. Establishing good equidistribution

bounds in this case is considerably more complicated than in the one-step case.

Nevertheless, we believe we can further optimize the process and be able to obtain

better estimates by considering n-step estimates along with smaller critical sets. An

obvious obstruction to equidistribution, however, is given by the presence of elliptic

islands. Our last result deals with abundance of elliptic islands inside the critical

set.

Theorem C. Let γ > 1. Then:

a) for almost all values of the parameter A there are elliptic islands of period 2

for arbitrarily high energies. Moreover, if γ > 2 the same result holds for all

values of A;
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b) the total measure of such islands is infinite if γ > 4/3 and finite if γ ≤ 4/3.

This theorem is proved in chapter 4; we find such islands near homoclinic

tangencies which enjoy particular symmetries and for which we can find relations in

the parameter space that ensure their existence. This argument involves parameter

exclusion techniques that show connections with the work of Young-Wang [YW08].

Theorems A and C will soon be published as a paper [D09].

1.5 Remarks

The techniques we developed in order to achieve our objective could be used

to answer further natural questions which arise in the model, for instance to study

abundance of oscillatory motions, or more optimistically, to establish the presence

an ergodic component of infinite measure. In fact, as suggested by B. Fayad, one

should be able to adapt the proof of theorem A to prove that the set of oscillatory

orbits has also full Hausdorff dimension. Moreover it is likely that, either by a di-

rect application of the results, or by applying the same techniques to the systems

which are modeled by the transformation F , one could prove similar results for the

concrete examples mentioned earlier.

The finite-step mixing bounds turn out to be the most sophisticate estimates we

obtain in this work; however, they can be probably improved, but substantially

more work has to be done in order to achieve better bounds. One problem that will

surely arise is the given by abundance of elliptic islands, which prevents a priori

good equidistribution estimates; in theorem C we only consider islands of period 2,
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whereas we would need to control islands of higher period and more complicated

combinatorics. We believe that this task can be accomplished by a suitable adapta-

tion of the techniques developed by Gorodetsky-Kaloshin [GK07]. Such effort could

be rewarded with a quite deep understanding of the dynamics of the standard map

in the anti-integrable regime. In fact, as it is well known, in spite of all efforts, the

existence of a positive measure set of orbits with positive entropy for the standard

map has so far eluded all attempts of a proof. Improving the techniques developed in

this work could possibly shed some light upon this very resistant problem. Finally,

we have shown that questions about abundance of elliptic islands are related to cer-

tain questions of Diophantine approximations and it would be interesting to further

explore this connection. For instance, in the case γ = 2, Elkies-McMullen[EM04]

found and investigated a striking relation with flows on homogeneous spaces.

I wish to express my gratitude to my thesis advisor Dmitry Dolgopyat, who

introduced me to the problem and followed me through the development of this

work with interest and curiosity. I also want to thank Bassam Fayad and Carlangelo

Liverani for their most precious comments and suggestions.
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Chapter 2

Hausdorff Dimension of the escaping set

2.1 Main definitions

We recall the definition of Hausdorff dimension of a metric space. First we

define the Hausdorff s-measure of a metric space E as:

Hs(E) + lim sup
δ→0

inf
A={Ai}

δ−covering of E

{
∑

i

diam (Ai)
s

}

.

Then we define the Hausdorff dimension of E as that critical s such that:

dimH E + inf{s s.t. Hs(E) = 0} = sup{s s.t. Hs(E) > 0}.

It can be actually proved that if s < dimH(E) then Hs(E) = ∞; moreover, Hausdorff

dimension is a bilipschitz invariant of metric spaces.

We recall the definition of the escaping set; let (xk, yk) + F k(x0, y0) and define

E + {(x0, y0) s.t. yn → ∞ as n → ∞}.

Theorem A. Assume γ > 1, then dimH E = 2.

The proof will be given in the next two sections. In the first one we prove

an auxiliary result for a model system given by a sequence of expanding map on

the circle. In the second part we reduce the proof of theorem A to the previously

established result.
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2.2 Model system

Fix ϑ ∈ (0, 1) and let J0 ∈ S
1 be a closed interval of length ϑ. Fix two

increasing sequences of positive real numbers {mn} and {mn} such that:

∀n ∈ N 2ϑ−1 < mn < mn; mn,mn ր ∞.

Definition 2.2.1. A continuous function f : S
1 → S

1 is said to be n-admissible if

a lift f̂ : S
1 → R satisfies the following inequalities for all x, x′ ∈ S

1:

mnd(x, x′) ≤ |f̂(x) − f̂(x′)| ≤ mnd(x, x′),

where d is the standard Euclidean distance on S
1 = R/Z.

Then we can prove the following

Lemma 2.2.2. Let Jn ⊂ S
1 be a decreasing sequence of sets and let Fn be a sequence

of continuous functions Fn : Jn−1 → S
1. Assume for convenience F0 : S

1 → S
1 to be

the identity map and that ∀n ∈ N:

• Jn =
⊔

k Jn,k where each Jn,k is a closed interval such that the restriction

Fn : Jn,k → S
1 is one to one;

• Fn+1|Jn,k
= fn,k ◦ Fn where fn,k is a n-admissible map

• Jn+1 = F−1
n+1(J0)

and finally let

J =
⋂

n

Jn;

If there exists C ∈ R
+ such that for all large enough n we have mn ≤ Cmn, then

dimH J = 1.

14



Proof. In order to compute dimH J we construct a subset J ′ obtained as a limit of

a decreasing sequence of sets J ′
n ⊂ Jn that we define as follows: J ′

n +
⊔′

k Jn,k where

the union ranges only on those k such that Fn : Jn,k → J0 is one-to-one and onto.

We now introduce inductively what we will refer to as the natural indexing for the

sets Jn,k contained in J ′
n. Let J ′

1 =
⊔

k J1,k; we arbitrarily define J ′
[j1] = J1,k for each

J1,k ⊂ J ′
1. Then suppose we have already defined a natural indexing J ′

[j1···jn] for J ′
n;

we label all J ′
n+1,k ⊂ J ′

[j1···jn] as J ′
[j1···jnjn+1] by arbitrarily choosing the index jn+1.

Notice that we purposefully avoided to specify a range for the jks; in fact each jk

ranges on an index set which depends on the previous choice of j1 · · · jk−1. Finally

we let J ′ =
⋂

n J ′
n. Define now kn ∈ N according to the relation:

kn + 1 ≤ mnϑ < kn + 2 kn ≥ 1. (2.1)

For each n ∈ N let Kn be the number of intervals J ′
[j1···jn] in J ′

n; by definition of

n-admissible function we have:

Kn ≥ Kn−1 · kn ≥
n∏

j=1

kj + Kn.

We will now show that the set J ′ has Hausdorff dimension s = 1. First of all it is

obvious that s ≤ 1 since J ⊂ S
1, therefore it suffices to show that for all s < 1 we

have dimH(J ′) > s. To simplify the notation we will from now on write J ′
j1···jn

for

J ′
[j1···jn].

Definition 2.2.3. The running Hausdorff dimension of {j1 · · · jn} is the real number

sj1···jn satisfying

|J ′
j1···jn

|sj1···jn = K−1
n .
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The running Hausdorff dimension can be bounded using {mn,mn} and ϑ ac-

cording to the following estimate:

Lemma 2.2.4. Suppose that the following holds for all large enough n:

mn < Cmn.

Then we obtain the following lower bound for the running Hausdorff dimension:

sj1···jn > 1 +
log ϑ + n

(
log ϑ

3
− log C

)

log Mn − log ϑ
+ 1 − εn ր 1 as n → ∞. (2.2)

Proof. Using (2.1) we obtain the following estimates:

kn ≤ ϑmn ≤ kn + 2 ≤ 3kn

Kn ≤ ϑnMn ≤ 3nKn

Now since we know that |J ′
j1···jn

| > ϑ/Mn, for all possible choices of j1 · · · jn, we can

write:

Kn

(
ϑ/Mn

)sj1···jn < Kn

(
ϑ/Mn

)sj1···jn < Kn|J ′
j1···jn

|sj1···jn = 1,

and taking logarithms we establish the following inequality:

log Kn − sj1···jn

(
log Mn − log ϑ

)
< 0.

Therefore we obtain the bound:

sj1···jn >
log Mn + n log ϑ

3

log Mn − log ϑ
.

Now by hypothesis we know that eventually Mn < CnMn, thus log Mn < n log C +

log Mn that in turn implies:

sj1···jn >
log Mn + n

(
log ϑ

3
− log C

)

log Mn − log ϑ
,
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that yields estimate (2.2) provided that we show that εn is going to 0. In fact

εn ∼ n

log Mn

→ 0,

as log Mn/n is the average of the diverging sequence log mn.

To obtain a lower bound on the Hausdorff dimension of J ′ we are going to use

the following two propositions:

Proposition 2.2.5. Suppose there exists a probability measure µ on a metric space

X on the σ-algebra of Borel sets such that for all sufficiently small balls B we have:

µ(B) < Cdiam(B)s, (2.3)

then dimH X > s.

Proposition 2.2.6. There exists a probability measure µ on J ′ satisfying (2.3) for

all s < 1.

Propositions 2.2.5 and 2.2.6 imply that dimH J ′ > s for all s < 1, which

concludes the proof of lemma 2.2.2.

Proposition 2.2.5 is a classical result, hence the proof will be omitted (see e.g.

[Fa86]).

Proof of proposition 2.2.6. We first build a probability measure µ on J ′, and then

check that µ satisfies (2.3) for every s < 1. For each n and choice of a natural index

j1 · · · jn, fix a point xj1···jn ∈ J ′
j1···jn

. Then define the following sequence of positive

functionals acting on C(S1, R):

∀ϕ ∈ C(S1, R) Φn(ϕ) +
∑

j1,··· ,jn

1

Kn

ϕ (xj1···jn) .
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We now argue that this sequence of functionals has a weak limit for n → ∞. In fact

any continuous function ϕ on S
1 is also uniformly continuous; therefore ∀ ǫ ∃ δ such

that d(x, x′) < δ implies |ϕ(x)−ϕ(x′)| < ǫ. Now take n such that maxj1···jn |J ′
j1···jn

| <

δ. Then for each m > n:

|Φn(ϕ) − Φm(ϕ)| =

∣
∣
∣
∣
∣

∑

j1,··· ,jn

1

Kn

ϕ (xj1···jn) −
∑

j1,··· ,jm

1

Km

ϕ (xj1···jm)

∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣
∣

∑

j1,··· ,jn




1

Kn

ϕ (xj1···jn) −
∑

jn+1,··· ,jm

1

Km

ϕ (xj1···jm)





∣
∣
∣
∣
∣
∣

≤

≤
∑

j1,··· ,jm

1

Km

|ϕ (xj1···jn) − ϕ (xj1···jm)| ≤

≤
∑

j1,··· ,jm

1

Km

ǫ = ǫ.

In the above inequalities we used the fact that by definition

∑

jn+1···jm

Kn/Km = 1

and that J ′
j1···jm

⊂ J ′
j1···jn

which implies xj1···jn , xj1···jm ∈ J ′
j1···jn

, therefore d(xj1···jn , xj1···jm) <

δ. The sequence Φn weakly converges to a positive functional Φ i.e. to a Borel mea-

sure µ via the Riesz representation theorem. Moreover µ is a probability measure

(it suffices to compute the limit of Φn against the function ϕ ≡ 1).

At this point for any Borel set E and n ∈ N we can write:

µ(E) = lim
m→∞

∑

j1,··· ,jm

1

Km

χE (xj1···jm)

=
∑

j1,··· ,jn

lim
m→∞

∑

jn+1,··· ,jm

1

Km

χE

(
xj1···jnjn+1···jm

)

≤
∑

j1,··· ,jn

J ′

j1···jn
∩E 6=∅

1

Kn

lim
m→∞

∑

jn+1,··· ,jm

Kn

Km

=
∑

j1,··· ,jn

J ′

j1···jn
∩E 6=∅

1

Kn

,
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By definition of running Hausdorff dimension this implies the following estimate for

µ(E):

µ(E) ≤
∑

j1,··· ,jn

J ′

j1···jn
∩E 6=∅

∣
∣J ′

j1···jn

∣
∣
sj1···jn . (2.4)

In order to obtain estimate (2.3), fix a ball B of radius r = ρθ. Then 2ρ ∈

[M−1
n ,M−1

n−1) for some n. Now subdivide [M−1
n ,M−1

n−1) in mn − 1 intervals each

of length M−1
n . Let l > 0 be such that 2ρ ∈ [lM−1

n , (l + 1)M−1
n ). This means that

1

l + 1
2ρ ≤ M−1

n <
1

l
2ρ.

Using the previous estimate we know that each interval of J ′
n contains a ball of

radius ρ/(l + 1), therefore a ball of radius ρ can intersect at most l + 1 + 2 such

intervals. Using (2.2) and (2.4) we obtain:

µ(B) ≤
∑

j1,··· ,jn

J ′

j1···jn
∩B 6=∅

∣
∣J ′

j1···jn

∣
∣
sj1···jn <

∑

j1,··· ,jn

J ′

j1···jn
∩B 6=∅

∣
∣J ′

j1···jn

∣
∣
1−εn

≤
∑

j1,··· ,jn

J ′

j1···jn
∩B 6=∅

(ϑMn)−(1−εn) ≤ (l + 3)(ϑMn)−(1−εn)

≤ (l + 3)

(
2r

l

)1−εn

=
l + 3

l1−εn
|B|1−εn .

If n is large enough, the fraction equals lεn + O(1), which a priori may be not

bounded; but we have:

lεn < mǫn
n < M εn

n ,
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and:

M εn
n = exp

(

log Mn

log ϑ + n
(
log ϑ

3
− log C

)

log Mn − log ϑ

)

= exp

(
log Mn − log ϑ + log ϑ

log Mn − log ϑ

(

log ϑ + n

(

log
ϑ

3
− log C

)))

≤ exp

((

1 +
log ϑ

log Mn − log ϑ

) (

log ϑ + n

(

log
ϑ

3
− log C

)))

= exp

(

log Mn−1

(

1 +
log ϑ

log Mn − log ϑ

)
log ϑ + n

(
log ϑ

3
− log C

)

log Mn−1

)

+ M
ε′n
n−1,

with ε′n → 0 as n → ∞. Then

lεn < M
ε′n
n−1 < (2ρ)−ε′n .

So we finally obtain µ(B) < C|B|1−εn−ε′n . This estimate still depends on n therefore

on |B|, but notice that εn + ε′n is monotone decreasing to 0, therefore if we fix n the

inequality will hold for all B such that |B| < M−1
n−1. At this point it is easy to see

that ∀ ǫ > 0 ∃ δ̄ such that any δ-ball B with δ < δ̄ will satisfy inequality (2.3):

µ(B) < Cdiam(B)1−ǫ.

2.3 Reduction to the model system

In this section we show that lemma 2.2.2 can be applied to our dynamical

system to prove theorem A. We first build a set such that the dynamics of orbits that

never leave this set is hyperbolic; a quite more elaborate version of this construction
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will be introduced in the next chapter. For a > 0 small we define the set

Ba +
{

(x, y) s.t. |φ̈(x)| > a
}

;

we write for reference the differential dF :

dF =







1 Y ′(y)

2φ̈(x + Y (y)) 1 + 2Y ′(y)φ̈(x + Y (y))







.

Lemma 2.3.1. If y is large enough and F (x, y) ∈ Ba then dF is hyperbolic.

Proof. It suffices to check that Tr(dF ) = 2(1+Y ′(y)φ̈(x +Y (y))) > 2, but for large

enough y, Y ′(y) ≫ 1, therefore, since by hypothesis |φ̈(x + Y (y))| > a we have

hyperbolicity.

We now want to find an invariant cone field. In order to do so we consider

the direction corresponding to the expanding eigenvector in the limit Y ′ → ∞,

corresponding to high energies. We claim that a small cone around this direction is

invariant for large enough y. In fact the eigenvectors of dF in the above limit are

V+ = (δx, δy) = (1, 2φ̈(x + Y (y)))

V− = (δx, δy) = (1, 0)

Therefore, having fixed a small 0 < c < a, the cone field defined by the following

expression:

C(x,y) + {(δx, δy) s.t.

∣
∣
∣
∣

δy

δx
− 2φ̈(x)

∣
∣
∣
∣
< c} (2.5)

is invariant on F−1Ba for large enough y because V+ and V− are well separated on

F−1Ba and the expanding eigenvalue grows arbitrarily large. This means that if we
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take a curve whose tangent vectors lie in C and we apply F we are going to obtain

(on the hyperbolic set) a curve whose tangent vectors again lie in the cone field;

moreover since the vectors tangent to the curve are close to the expanding direction

of the map, the dynamics along the curve will also be expanding. For such reasons

we now define

ΓC = {(x, y) = (x,C + 2φ̇(x))}.

By the cone condition, orbits that never leave the set Ba are hyperbolic; more-

over each curve ΓC will be transversal to the stable direction at each point of the

hyperbolic set. Now define the following set:

Aε + {(xn, yn) s.t. yn − yn−1 > ε} .

Since yn − yn−1 = 2φ̇(xn), we have that {2φ̇(x) > ε} = Aε. We can therefore select

values of a, ε and ȳ such that there exists an interval J0 ⊂ S
1 satisfying:

J0 × {y ≥ ȳ} ⊂ Aε ∩ Ba,

and ȳ is large enough for lemma 2.3.1 to hold true and for the cone field in (2.5) to

be invariant for any y ≥ ȳ. We now define a sequence of sets Jn and of functions Fn

satisfying the hypotheses of lemma 2.2.2. Let π : M → S
1 be the projection onto

the x-component, fix ΓC = {x, ψ(x)} and let:

Fn + π ◦ F n ◦ ψ : x0 7→ xn

Jn +

n⋂

k=0

F−1
k J0.
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Lemma 2.3.2. For large enough C there exist positive constants C̃1, C̃2, C, C such

that:

∀x ∈ Jk C̃1 (C + εk)γ−1 <

∣
∣
∣
∣

F ′
k+1(x)

F ′
k(x)

∣
∣
∣
∣
< C̃2

(
C + 3Ak

)γ−1
.

Proof. We know that xk+1 = xk + Y (yk), thus:

dxk+1

dxk

= 1 + Y ′(yk)
dyk

dxk

.

If x ∈ Jk and C is large enough, we know that the cone field C is invariant i.e.

(1, dyk

dxk
) ∈ C, therefore

∣
∣
∣
∣

dyk

dxk

− 2φ̈(xk)

∣
∣
∣
∣
< c,

that implies

dxk+1

dxk

= O(1) + Const yγ−1
k (φ̈(xk) + O(c)).

and since (xk, yk) ∈ Ba and c < a we can find positive C̃1 and C̃2 such that

C̃1y
γ−1
k <

∣
∣
∣
∣

dxk+1

dxk

∣
∣
∣
∣
< C̃2y

γ−1
k .

Now since each (xk, yk) ∈ Aε we have the following bounds on yk:

C + εk < yk < C + 3Ak,

where C and C are respectively the minimum and the maximum y of the curve Γ

and by (1.2), A is the maximum of φ̇(x). Therefore

C̃1 (C + εk)γ−1 <

∣
∣
∣
∣

dxk+1

dxk

∣
∣
∣
∣
< C̃2

(
C + 3Ak

)γ−1

which is the required inequality.
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The previous lemma shows that each function f : xk → xk+1 is k-adapted with

respect to the sequences mk,mk defined as:

mk + C̃1 (C + εk)γ−1 mk + C̃2

(
C + 3Ak

)γ−1
.

Finally we can take C big enough so that we have mn|J0| > 2 and notice that

eventually mk < C̃2/C̃1(
4A
ε

)γ−1 · mk. Thus we can apply lemma 2.2.2 to J and

conclude that for large enough C all curves ΓC are such that

dimH ΓC ∩
⋂

n

F−n(Aε ∩ Ba) = 1.

On the other hand we have that orbits belonging to ΓC ∩ ⋂

n F−n(Aε ∩ Ba) are

uniformly hyperbolic and escaping. Since ΓC is transversal to the stable direction

we conclude that dimH E = 2.
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Chapter 3

Measure of the escaping set

In this section we will prove that the Lebesgue measure of the set of escaping

points is zero under some assumptions on the parameter γ. In what follows, to

simplify the notation, we again let (xk, yk) + F k(x0, y0). Recall that:

φ(x) +
A

2π
sin(2πx) (1.2)

and that the escaping set is defined as :

E + {(x0, y0) s.t. lim
n→∞

yn = ∞}.

The main result of this chapter is the following

Theorem B. Let γ > 5/2; then the escaping set E has zero Lebesgue measure.

The idea behind the proof is to consider the system as a slow-fast system,

the slow variable being the y-coordinate. Since the map F is exact, sufficiently fast

equidistribution along the x-coordinate should imply recurrence by comparison with

a one-dimensional random walk. However, we cannot obtain good equidistribution

estimates on orbits passing through a so-called critical set. For γ big enough we

can define a finite measure critical set which contains all points of the phase space

with small enough energy. Orbits that land on the critical set infinitely many times

can are thus recurrent by means of the Poincaré recurrence theorem. We then prove

that such orbits form a full-measure set in the phase space by using the previous
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comparison argument. To obtain good equidistribution estimates we decompose the

invariant Lebesgue measure into suitably defined measures over expanding curves.

Such objects are called standard pairs; studying the induced dynamics on standard

pairs outside the critical set allows us to prove equidistribution bounds along the x

coordinate for F .

The strategy of the proof of theorem B closely follows the one used in [Do08];

several estimates, however, need to be quite substantially improved. In particular

we need to establish two-step equidistribution estimates (lemma 3.4.3); we believe

that such bounds can be the first step to obtain sharper n-step estimates that should

in principle allow us to prove theorem B for smaller values of γ.

3.1 Induced dynamics

It is convenient to define the set of basic pairs, which are a pair of a curve of

length O(1) and a probability density over the curve.

Definition 3.1.1. A basic curve is a curve Γ ⊂ M which is a graph of a smooth

function ψ(x) over an interval I ⊂ S
1 of length δ < |I| < 2δ for some δ > 0 to

be fixed. A basic pair is given by a basic curve Γ and a strictly positive smooth

probability density ρ(x) on Γ; we denote a basic pair by ℓ = (Γ, ρ).

Given a real valued Borel measurable function A (x, y) we define:

Eℓ (A ) +

∫

Γ

A · ρ dx =

∫

I

A (x, ψ(x))ρ(x)dx,

and given a Borel measurable set E:

Pℓ(E) + Eℓ (1E) .
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A dot will denote differentiation with respect to the variable x; the slope of a

basic curve will be denoted by h(x) + ψ̇(x) and for convenience we will consider

h ∈ R∪{∞}; the logarithmic derivative of ρ will be denoted by r(x) + ρ−1(x)ρ̇(x).

Finally, given a basic pair ℓ = (Γ, ρ) we define:

ŷℓ = ŷΓ + inf
(x,y)∈Γ

y.

We require 2δ to be smaller than the minimum distance between the critical

points of φ̇. In our case (1.2) implies that it is enough to require δ ≤ 1/10.

For future reference, we introduce here the formulae for the push-forward F ∗ at the

point (x, y) of all relevant quantities associated to a basic pair; they can be readily

computed from definition (1.1).

ρ 7→ 1

L
ρ (3.1a)

r 7→ r

L
− ḣY ′

L2
− Y ′′

Y ′2

(

1 − 1

L

)2

(3.1b)

F ∗
(x,y) :

h 7→ 2φ̈(x + Y ) +
1

Y ′

(

1 − 1

L

)

(3.1c)

ḣ 7→ 2
...
φ (x + Y ) +

ḣ

L3
− Y ′′

Y ′3

(

1 − 1

L

)3

; (3.1d)

in the above expressions (3.1), we consider Y = Y (y) (similarly for Y ′ and Y ′′) and

L = L(x, y) defined as 1 + h(x, y)Y ′(y). Notice that if Γ is a curve of slope h we

have:

L(x0, y0) =
dx1

dx0

∣
∣
∣
∣
Γ

(x0);

for convenience we also define the adapted slope h̃:

h̃(x, y) = h(x, y) + 1/Y ′(y)

27



so that we can conveniently write L(x, y) = h̃(x, y)Y ′(y). We will consider (3.1b-d)

as the defining equations for an induced map on the fiber bundle over M given by

F ∋ (x, y, r, h, ḣ); this observation allows us to use a natural and convenient geo-

metrical terminology in what follows. In particular we will be able to define “nice”

pairs by specifying “nice” sections of the bundle F . Notice that we do not include

the density ρ as a coordinate in the bundle F because it is a non local quantity; on

the other hand r, h, ḣ are all local quantities associated respectively to distortion,

slope and curvature.

We now proceed to the definition of standard curves, which will be given in order

for them to enjoy good averaging and invariance properties.

Let V be the constant unit vertical vector field and h0 be the associated slope

field, i.e.

V (x, y) ≡







0

1







h0(x, y) ≡ ∞;

fix D0 ∈ R
+ to be specified later and let C0 be the cone field around V defined as

follows:

C0(x, y) =







v ∈ T(x,y)M s.t. v ∝







1

h







, |h̃| > D0Y
′(y)−1/2







;

with a slight abuse of notation, we will often consider the set C0(x, y) as the inter-

section of the following subset of F :

C0 =
{

(x, y, r, h, ḣ) ∈ F s.t. |h̃| > D0Y
′(y)−1/2

}
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with the fiber of F over (x, y).

For each k ∈ Z define a slope field hk and a cone field Ck, given at any point

(x, y) = (xk, yk) by the following expressions:

hk(xk, yk) = F ∗k
(x0,y0)h0(x0, y0)

Ck(xk, yk) = F ∗k
(x0,y0)C0(x0, y0).

By definition it is clear that, for l > k, we have the following compatibility condition:

Cl(xk, yk) ⊂ Ck(xk, yk) ⇐⇒ Cl−k(x0, y0) ⊂ C0(x0, y0).

Given a cone C, define its cone width at (x, y) as:

|C(x, y)| = sup
h,h′∈C(x,y)

|h − h′| .

Notice that, by definition, |C0| = ∞; moreover from the formula for the induced

slope (3.1c) we obtain, for k > 0:

|Ck+1(x1, y1)| =
1

Y ′(y0)2
sup

h,h′∈Ck(x0,y0)

∣
∣
∣
∣

1

h̃
− 1

h̃′

∣
∣
∣
∣

≤ L
−2 · |Ck(x0, y0)| (1 + O(|Ck(x0, y0)|/L)) , (3.2)

where

L = inf
h∈Ck(x0,y0)

|h̃Y ′(y0)|

is the least expansion rate at the point (x0, y0) of a curve compatible with Ck in

(x0, y0); by direct computation we have |C1(x1, y1)| ≤ 2(D0Y
′(y0)

3/2)−1.

Definition 3.1.2. We define a reference section as a section on F :

σ : (x, y) 7→ (x, y, r, h, ḣ)
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given by the following equations:

h(x0, y0) + h1(x0, y0) = 2φ̈(x0) +
1

Y ′(y−1)
(3.3a)

ḣ(x0, y0) + ḣ1(x0, y0) = 2
...
φ (x0) −

Y ′′(y−1)

Y ′3(y−1)
(3.3b)

r(x0, y0) + 0 (3.3c)

A reference curve is defined as an integral curve of the reference slope field h1, i.e

it can be written as (x, ψ1(x)) where:

ψ1(x) + 2φ̇(x) + Y −1 (x + c)

for some c ∈ R
+. A reference pair is a basic pair given by a reference curve Γ over

I and the uniform probability density ρ(x) ≡ |I|−1 over Γ.

We now can proceed to define standard sections ; standard sections are to the

reference section as the unstable cone is to the unstable direction in a uniformly

hyperbolic setting.

Definition 3.1.3. A section σ on F is said to be standard if it is close to the the

reference section in the following sense:

σ(x, y) ∈
{

(x, y, r, h, ḣ) ∈ C1 s.t.
∣
∣
∣ḣ − ḣ1

∣
∣
∣ <

A

10
, |r| < 1

}

A standard pair is a basic pair ℓ = (Γ, ρ) such that (x, y, h, ḣ, r) is a standard section

over Γ, which will be called a standard curve. The next lemma ensures that standard

curves are globally close to reference curves.

Lemma 3.1.4. Let Γ = (x, ψ(x)) be a curve over I such that |I| < 1, let Γ̄ =

(x, ψ̄(x)) be a reference curve over I which intersects Γ. Define ‖∆h‖Γ = supx′∈I |h(x′)−
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h1(x
′, ψ(x′))|; then:

∀x ∈ I |ψ(x) − ψ̄(x)| < 2‖∆h‖Γ|I|.

Proof. Let ŷ = min{ŷΓ, ŷΓ̄} and let

µ =

∣
∣
∣
∣

∂h1

∂y
(ŷ)

∣
∣
∣
∣
;

by definition we have µ ≤ Const·Y ′′(ŷ)/Y ′(ŷ)2, moreover ∀ y > ŷ we have
∣
∣
∣
∂h1

∂y
(y)

∣
∣
∣ ≤

µ and we can write:

∣
∣
∣
∣

d

dx

(
ψ(x) − ψ̄(x)

)
∣
∣
∣
∣
≤ |h(x) − h1(x, ψ(x))| +

∣
∣h1(x, ψ(x)) − h1(x, ψ̄(x))

∣
∣

≤ ‖∆h‖Γ + µ|ψ(x) − ψ̄(x)|.

Let J ⊂ I be the connected component of the set {|ψ(x) − ψ̄(x)| < 2‖∆h‖Γ}

containing the x-coordinate of a point in Γ ∩ Γ̄; for all x ∈ J we have then:

∣
∣
∣
∣

d

dx

(
ψ(x) − ψ̄(x)

)
∣
∣
∣
∣
≤ (1 + 2µ)‖∆h‖Γ ≤ 2‖∆h‖Γ

for large enough ŷ. This implies that J = I, thus:

∣
∣ψ(x) − ψ̄(x)

∣
∣ ≤ 2‖∆h‖Γ|I|

which concludes the proof.

3.2 Critical sets

We want to establish results regarding invariance properties of standard sec-

tions; in order to do so we need to obtain good geometrical and distortion bounds (to

control r, h and ḣ) for the map F . Such bounds cannot be established everywhere;
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points where this is not possible will belong to a set that we will call critical set.

Clearly the definition of the critical sets depends on what we consider as a “good”

bound, and therefore it is far from being unique. We define a first and a second

critical set as follows:

C1 +
{

(x0, y0) s.t. |h̃1(x0, y0)| < K1Y
′(y0)

−1/2
}

C2 + C1 ∩
{

(x0, y0) s.t. |h̃1(x0, y0)| < K2|h̃1(x1, y1)Y
′(y0)

1/2Y ′(y1)
1/2|−1

}

where we require K1 > 2D0 and K2 > 2K2
1 . Notice that by definition, if a standard

curve lies outside C1, then it is compatible with C0. Now let K3 < D2
0/A and define:

C̄2 +
{

(x0, y0) s.t. |h̃1(x0, y0)| < K3Y
′(y0)

−1
}

.

For convenience we will often use the following notation:

C(y∗) = C ∩ {y = y∗}, for C = C1,C2, C̄2.

The following observation

Y ′(yk) = Y ′(y0)
(
1 + O(|k|y−1

0 )
)

implies that, given k:

∀ ε > 0 ∃ ȳ s.t. y0 > ȳ ⇒ (1 − ε)Y ′(y0) < Y ′(yk) < (1 + ε)Y ′(y0). (3.4)

This simple but useful remark allows us, for instance, to show that for large enough

y:

C̄2(y) ⊂ C2(y)

in fact this easily follows from (3.4) and the fact that |h̃| is bounded by 3A for large

enough y. We require that all standard curves are expanded outside C2 for large
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enough y, therefore we assume K3 > 2. The set C̄2 we just defined will be called

the core of the critical set C2. Moreover, from the definitions it easy to check that

C1 ∩F−1C1 ⊂ C2. Finally notice that ∀ y∗ there exists a D̄ such that if D0 > D̄ we

have

C1 ⊃ {y < y∗}, C2 ⊃ {y < y∗}.

Figure 3.1: On the left picture we see C1 as the shaded set; on the right picture we

see for large enough y a detail of C1 (the light-shaded set) and the structure of C2

(dark-shaded set).

Lemma 3.2.1. Recall that Y ∝ yγ and let β = 1
2
(γ − 1); then we have:

(a) Leb(C1) is finite if and only if β > 1;

(b) Leb(C2) is finite if and only if β > 1/2.

Proof. To prove (a) notice that by definition:

∣
∣
∣h̃1(x0, y0)

∣
∣
∣ =

∣
∣
∣2φ̈(x0) + 1/Y ′(y−1) + 1/Y ′(y0)

∣
∣
∣ ;
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using (3.4) we can write, for large enough y:

C1(y) ⊂
{

(x, y) s.t.
∣
∣
∣2φ̈(x)

∣
∣
∣ < 2K1Y

′(y)−1/2
}

⊂
{
|x| < Const · Y ′(y)−1/2

}
∪

{
|x − 1/2| < Const · Y ′(y)−1/2

}
.

Denote the two sets that appear in the last expression by C
(0)
1 and C

(1)
1 respectively;

the Lebesgue measure of C
(i)
1 is finite if the function Y ′−1/2 is integrable at ∞, i.e.

if β > 1. In the same way we can obtain a lower bound, so that if β ≤ 1 then the

measure Leb(C1) = ∞.

In order to prove (b), first define, for i ∈ {0, 1} and n ∈ N:

C
(i,n)
2 + C2 ∩ C

(i)
1 ∩ {(x, y) s.t. x + Y (y) ∈ [n/2, (n + 1)/2]} ;

also let ŷn = inf
(x,y)∈C

(i,n)
2

y ∼ n1/γ . Then, for each C
(i,n)
2 , consider the following

decomposition (see also figure 3.2):

Figure 3.2: Decomposition of C
(i,n)
2 = C

′(i,n)
2 ∪ C

′′(i,n)
2 ∪ C

′′′(i,n)
2 .
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C
′(i,n)
2 +

{

(x0, y0) ∈ C
(i,n)
2 s.t.

∣
∣
∣h̃1(x1, y1)

∣
∣
∣ < (K2/K1)Y

′(y1)
−1/2

}

C
′′(i,n)
2 +

{

(x0, y0) ∈ C
(i,n)
2 s.t.

∣
∣
∣h̃1(x1, y1)

∣
∣
∣ < A

}

\ C
′(i,n)
2

C
′′′(i,n)
2 + C

(i,n)
2 \

(

C
′(i,n)
2 ∪ C

′′(i,n)
2

)

.

First consider (x, y) ∈ C
′′′(i,n)
2 ; by definition we have:

∣
∣
∣h̃1 (x, y)

∣
∣
∣ <

2K2

AY ′(y)

which is a bound for x of order O(y−2β), so that:

Leb(C
′′′(i,n)
2 ) ≤ Const · ŷ−4β

n .

The measure of C
′(i,n)
2 and C

′′(i,n)
2 can be estimated using the following change of

variables:

(x0, y0) 7→ (ξ, η) =
(

h̃1(x0, y0), h̃1(x1, y1)
)

;

this map is an invertible diffeomorphism and its Jacobian determinant is of order

Y ′(ŷn); for convenience let Y ′
n = Y ′(ŷn). Therefore, for C

′(i,n)
2 we obtain:

Leb(C
′(i,n)
2 ) ≤ 2

Y ′
n

∫ +2(K2/K1)Y ′

n
−1/2

−2(K2/K1)Y ′

n
−1/2

∫ +2K1Y ′

n
−1/2

−2K1Y ′

n
−1/2

dξdη = O(ŷ−4β
n )

and for C
′′(i,n)
2 :

Leb(C
′′(i,n)
2 ) ≤ 1

Y ′
n

∫ A

1
2
(K2/K1)Y ′

n
−1/2

∫ +2K2/ηY ′

n

−2K2/ηY ′

n

dξdη = O(ŷ−4β
n log ŷn).

Therefore we finally have:

Leb(C
(i,n)
2 ) ≤ Const · ŷ−4β

n log ŷn

and summing over i and n we obtain

Leb(C2) < ∞ if
∑

n

n− 4β
γ log n < ∞,
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where the series converges if β > 1/2.

To conclude, notice that if β ≤ 1/2 then C̄2 has infinite measure; since for large

enough y we have C2(y) ⊃ C̄2(y), statement (b) follows.

For convenience we will now define neighbourhoods of the critical sets; first fix

δ′ > 0 small, to be determined later and define the following neighbourhood of C1:

Ĉ1 +
{

(x0, y0) s.t. d((x0, y0),C1) < δ′Y ′(y0)
−1/2

}

where d is the standard Euclidean distance. Let us define K̂1 such that the following

inclusion holds:

Ĉ1 ⊂ {|h̃1(x0, y0)| < K̂1Y
′(y0)

−1/2}. (3.5)

We now extend C2 to Ĉ1:

C∗
2 + Ĉ1 ∩

{

(x0, y0) s.t. |h̃1(x0, y0)| < K2|h̃1(x1, y1)Y
′(y0)

1/2Y ′(y1)
1/2|−1

}

,

Notice that, as we did before, we require that K2 > 2K1K̂1, so that the inclusion

F−1C1 ∩ Ĉ1 ⊂ C∗
2 holds true.

To define the corresponding neighbourhood for C2 we need to be more careful; fix

δ′′ > 0 small, also to be determined later:

Ĉ2 + Ĉ1 ∩ {(x, y) : ∃ (x′, y′) ∈ C∗
2 and Γ standard s.t.

(x, y), (x′, y′) ∈ Γ and |x − x′| < δ′′Y ′(y)−1}

From the definition of C1 and Ĉ1, and using lemma 3.1.4 we can easily prove the

following:

Ĉ2 ⊂ Ĉ1 ∩ {(x, y) s.t. d∗((x, y),C∗
2) < δ′′Y ′(y)−1} (3.6)
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where d∗ is an adapted distance defined as:

d∗((x, y), (x′, y′)) = max(|x − x′|, 2(K̂1Y
′(y)−1/2)−1|y − y′|)

As we mentioned at the beginning of this section, on critical sets we lack good

geometrical and distortion estimates that can instead be achieved on the comple-

mentary set. In particular, outside C1 standard pairs will be mapped to standard

pairs; pieces of standard pairs passing through the first critical set will possibly be

mapped to non-standard pairs. However, pieces of standard pairs that lie in C1 \C2

will be standard after one more iteration. In the following lemma we prove the pre-

vious statements and moreover we establish some expansion bounds which will be

crucial for proving equidistribution properties of F along the horizontal direction.

Lemma 3.2.2 (Invariance). Let ℓ = (Γ, ρ) be a standard pair; let ŷ = ŷℓ, Y = Y (ŷ)

and similarly for Y ′. Then for large enough ŷ:

(a) there exist positive constants D1, D2 and D3 such that:

∣
∣
∣
∣

dx1

dx0

∣
∣
∣
∣
> D1Y

′1/2
if (x0, y0) 6∈ C1 (a1)

∣
∣
∣
∣

dx1

dx0

∣
∣
∣
∣
> D2 > 1 if (x0, y0) 6∈ C2 (a2)

∣
∣
∣
∣

dx2

dx0

∣
∣
∣
∣
> D3Y

′ if (x0, y0) ∈ C1 \ C2 (a3)

(b) we have the following almost Markov decomposition in respectively standard,

stand-by and invalid pairs:

Fℓ =
⋃

j

ℓj ∪
⋃

k

ℓ̃k ∪ Z,
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where ℓj are standard pairs and each ℓ̃k is a pair such that we have F ℓ̃k =
⋃

l ℓk,l

where ℓk,l are standard pairs.

Proof. To simplify notation we will write h′ = F ∗h, h′′ = F ∗2h (and similarly for ḣ

and r). We will once more use (3.4); additionally we consider ŷ to be large enough

for all the estimates below to be true. Now, recall that by definition:

dx1

dx0

=
∂x1

∂x0

+
dy0

dx0

Y ′(y0) = 1 + h(x0)Y
′(y0) ≃ h̃(x0)Y

′

dx2

dx0

≃ h̃′ (x1) h̃(x0)Y
′2

If (x0, y0) ∈ Γ\C1 we have |h̃1(x0, y0)| ≥ K1Y
′(y0)

−1/2; since ℓ is standard, |h(x0)−

h1(x0, y0)| ≤ |C1(x0, y0)| = O(Y ′−3/2), hence we obtain:

|h̃(x0)| > 3/4K1Y
′−1/2,

which implies (a1) with D1 = 2/3K1.

Similarly, if (x0, y0) ∈ Γ \ C2 we have |h̃1(x0, y0)| ≥ K3Y
′(y0)

−1 and, since ℓ is

standard, |h̃(x0)| ≥ 3/4K3Y
′−1 so estimate (a2) follows with D2 = 2/3K3 > 1.

Using (a2) and (3.1c) we now obtain:

h′(x1) = h0(x1, y1) + ∆h, |∆h| ≤ (D2Y
′)−1; (3.7)

hence, by definition of standard pair and of C2 we obtain the following bound:

|h̃(x0)h̃
′(x1)| ≥ 3/4K2Y

′−1

which implies (a3) with D3 = 2/3K2.
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To prove part (b), first let us define:

Γ∗
0 + Γ \ C1.

First of all we want to decompose FΓ∗
0 into basic curves; by definition of C1 we have

that Γ∗
0 is compatible with C0, therefore FΓ∗

0 will be compatible with C1 which, in

particular, implies that FΓ∗
0 is locally the graph of a function of x. Then we need

to decompose the image FΓ∗
0 in curves of the required length; in doing so we are

possibly left with a piece of curve that is shorter than δ; by requiring δ′ = 2δD−1
1 ,

this piece will necessarily be the image of a portion of curve Γ̂0 ⊂ Γ∗
0 which lies in

Ĉ1. We now define:

Γ0 + Γ∗
0 \ Γ̂0 ρ0 + ρ|Γ0 ℓ0 + (Γ0, ρ0)

Finally we prove that the basic pairs in which we decomposed Fℓ0 are indeed stan-

dard pairs. In fact, we already established that h′ is compatible with C1; further-

more, equations (a1) and (3.1b,d) give:

|ḣ′(x1) − ḣ1(x1, y1)| ≤ 3AD−1
1 Y ′−3/2

|r′(x1)| ≤ 3AD−2
1 + O(Y ′−1/2).

Therefore, by taking D2
1 > 6A, we can decompose Fℓ0 in standard pairs.

Next, let Γ∗
1 + (Γ \ Γ0) \ C∗

2; once more, we try to decompose F 2Γ∗
1 in basic

curves. By (3.7), since (x1, y1) 6∈ C1, we have that h′ ∈ C0(x1, y1), so that h′′ ∈

C1(x2, y2) and F 2Γ∗
1 is locally the graph of a function of x. We now need to cut

the curve into pieces of the required length . By estimate (a3), and requiring δ′′ =
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2δD−1
3 , we can conclude that pieces that are too small will be image of Γ̂1 ⊂ Γ∗

1

which belongs to Ĉ2 by definition. Now let:

Γ1 + Γ∗
1 \ Γ̂∗

1, ρ1 + ρ|Γ1 ℓ1 + (Γ1, ρ1).

We now claim that F 2ℓ1 can in fact be decomposed as a union of standard pairs.

We already obtained that h′′ is compatible with C1; indeed, since any point of ℓ1 is

outside C2, (a2) and (3.1d) yield:

|ḣ′(x1) − ḣ1(x1, y1)| ≤ 3A(D2Y
′)−1

|ḣ′′(x2) − ḣ1(x2, y2)| ≤ 3AD−1
1 Y ′−3/2.

Iterating equation (3.1b) we obtain:

r′′(x2) =
ḣ(x0)

h̃2(x0)h̃′(x1)Y ′2
+

ḣ′(x1)

h̃′(x1)Y ′
+ O(Y ′−1) (3.8)

Since F−1C1∩Ĉ1 ⊂ C∗
2 and D2

1 > 6A, the second term is smaller than 1/2; moreover

using the definition of C2 and (a2) we have that

h̃2(x0)h̃
′(x1)Y

′2 > D2h̃(x0)h̃
′(x1)Y

′ > 3/4K2D2

Therefore taking K2 large enough we can make the first term in (3.8) smaller than

1/4. thus we have that Fℓ1 can be written as a union of curves satisfying the

requirements, which concludes the proof of (b) by letting Z be the image of Γ \

(Γ0 ∪ Γ1).

The following lemma introduces some measure estimates which will be crucial

for our result.

40



Lemma 3.2.3. We have:

Leb(Ĉ1) < ∞ if β > 1 Leb(Ĉ2) < ∞ if β > 3/4.

Moreover, let ℓ = (Γ, ρ) be a standard pair and ŷ = ŷℓ, then:

Pℓ(Ĉ1) ≤ Const · ŷ−β
Pℓ(Ĉ2) ≤ Const · ŷ− 4

3
β

Proof. Given (3.5), the estimate for Leb(Ĉ1) can be obtained in the same way as for

Leb(C1) in proposition 3.2.1 and will be omitted. On the other hand, to estimate

Leb(Ĉ2), we use a more elaborate construction; define the following sets:

Č′
2 + Ĉ1 ∩ {|h̃1(x1, y1)| < ǩY ′−1/3}

Č′′
2 + {|h̃1(x0, y0)| < 2(K2/ǩ)Y ′−2/3}.

By (3.6) we can take ǩ to be large enough so that Ĉ2 ⊂ Č′
2 ∪ Č′′

2. Proceeding as in

proposition 3.2.1 we obtain that:

Leb(Č′
2) ∼

∑

n

n−10β/3γ Leb(Č′′
2) ∼

∫ ∞

1

y−4/3βdy;

it is easy to check that for β > 3/4 both measures are finite.

Let now I be the domain of Γ; and I1 ⊂ I the domain of Γ ∩ Ĉ1. Then, since

ℓ is standard and we have good control on ḣ, (3.5) implies that

|I1| < Const · Y ′−1/2

which in turn gives Pℓ(Ĉ1) ≤ Const · ŷ−β.

Similarly, let us define I ′
2 and I ′′

2 as the domain of Γ ∩ Č′
2 and Γ ∩ Č′′

2 respectively.
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The estimate of |I ′′
2 | is similar to the previous one and yields the expected result.

To estimate |I ′
2| notice that:

∣
∣
∣
∣

dh1

dx0

(x0)

∣
∣
∣
∣
≥ 1

2

∣
∣
∣ḣ1(x1, y1)h̃(x0)Y

′
∣
∣
∣ .

Since ḣ1(x1, y1) is bounded below in Č′
2, we can write

∣
∣
∣
∣

dh1

dx0

∣
∣
∣
∣
≥ 2

3
A|h̃(x0)|Y ′

so that |I ′′
2 ∩ {|h̃| > Y ′−2/3}| ≤ Const · Y ′−2/3 and as for the remaining part we have

the bound:

2

3
AY ′

∫

I′′2

h̃(x)dx < Const · Y ′−1/3

which implies |I ′′
2 | < Const · Y ′−2/3, that in turn yields the required estimate.

We conclude this section with the definition of critical time, which gives the

maximum number n̄ such that, by iterating the decomposition in lemma 3.2.2, F nx

belongs to a non-invalid curve for all n ≤ n̄.

Definition 3.2.4. Let ℓ = (Γ, ρ) be a standard pair. The critical time is a function

τ : Γ → N∪{∞} obtained by means of the following procedure. Define a decreasing

sequence of sets:

Γ = Γ[0] ⊃ Γ[1] ⊃ · · · ⊃ Γ[k] ⊃ · · ·

by induction as follows. Suppose that F n(Γ[n], ρ) can be decomposed exclusively in

standard pairs and stand-by pairs:

F n(Γ[n], ρ) =
⋃

j

ℓj ∪
⋃

k

ℓ̃k.
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For each standard pair ℓj in the decomposition of we can apply lemma 3.2.2b and

obtain:

F (ℓj) =
⋃

l

ℓj,l ∪
⋃

m

ℓ̃j,m ∪ Zj.

We then define

Γ[n+1] = Γ[n] \
(

⋃

j

F−(n+1)Zj

)

,

which satisfies the inductive hypothesis. Finally we let:

τ(x) +

∞∑

j=1

1Γ[j]
(x).

3.3 Riemann sum lemma

In what follows we will very often approximate integrals with Riemann sums

over partitions which are highly non-uniform. Most elements of the partition have

very small size and a much smaller portion have a size which is orders of magnitude

larger. The näıve bound on Riemann sums, which is optimal in the case of uniform

partitions, can be improved in our case. The following lemma allows us to obtain a

much better bound which will be crucial in all our estimates.

Lemma 3.3.1. Let J be a finite index set and {δi}i∈J and {Xi}i∈J be sequences of

positive real numbers such that there exist real numbers a1, a2 > 0, 0 < λ < 1 and

0 < α ≤ 1 satisfying the following properties:

• a1 · λ < Xi < a1 ∀ i ∈ J
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• for κ ∈ (0, 1), define the set Ξκ = {i ∈ J s.t. Xi > a1 · λ1−κ}; then:

∑

i∈Ξκ

δi < a2 · λακ.

Then ∀ ε > 0 sufficiently small there exists Cε ∼ a1a2 · ε−1 such that:

∑

i

Xiδi < Cε · λα−ε

In the previous statement one should think of δk as the length of the k-th

interval in the partition used to compute the Riemann sum; Xk should instead

be thought as a bound for the error given by considering the integrating function

constant on the k-th interval.

Proof. Fix n > 0 and consider any decreasing sequence 1 = κ0 > κ1 > · · · > κn = 0,

so that:

∅ = Ξκ0 ⊂ Ξκ1 ⊂ · · · ⊂ Ξκn = J

Define Ξ̃j = Ξκj
\ Ξκj−1

for j = 1, · · · , n; thus we obtain

a1λ
1−κj < Xi < a1λ

1−κj−1 for i ∈ Ξ̃j,
∑

i∈Ξ̃j

δi < a2λ
ακj ,

moreover:

∑

i∈J

Xiδi =
n∑

j=1

∑

i∈Ξ̃j

Xiδi <
n∑

j=1

a1a2λ
1−κj−1+ακj .

If α < 1 we choose κj satisfying the following relations:

κj =
αj−n − 1

α(αj−n−1 − 1)
κj−1,

in such a way that κj−1 − ακj = κj − ακj+1; we therefore obtain:

1 − κ0 + ακ1 =
α1−n − 1

α−n − 1
= α − ε,
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with ε ∼ 1/n which can therefore be taken arbitrarily small.

The case α = 1 can be obtained as a limit for α → 1; in this setting we choose κj

as follows:

κj = 1 − j

n

hence, again we obtain κj−1 − ακj = κj − ακj+1 = 1/n, which implies

1 − κ0 + ακ1 = 1 − 1/n = α − ε.

3.4 Equidistribution on standard pairs

The invariance lemma 3.2.2 states that the image of a standard pair can be

partitioned in standard pairs, stand-by pairs and invalid pairs. Due to the large

expansion rate in the standard cones, if we had good distortion bounds, the density

on most standard pairs in the image would be very close to the uniform density.

However, close to the critical set we lack good distortion bounds and the density

could have strong dependence on the position.

In this section we will prove a first and a second equidistribution lemma; they

provide an estimate for the expectation of a class of observables on a standard

pair after respectively one and two iterates of F . The observables we consider are

functions of the fast variable x only, constant on the y direction; for convenience

of definition, with a slight abuse of notation we consider them as being functions

on S
1. Moreover notice that the observables need not to enjoy particularly strong

45



smoothness requirements; indeed the Lipschitz property is enough to prove both our

results.

Lemma 3.4.1 (Equidistribution +1). Consider a standard pair ℓ = (Γ, ρ) with

Γ = (x, ψ(x)) and let ŷ = ŷℓ. Then ∀ ε > 0 small there exists Cε such that for all

A ∈ C(S1) with zero average:

|Eℓ (A ◦ F ) | ≤ Cε · ‖A ‖∞ · ŷ−β+ε (3.9)

Moreover we can prove the following auxiliary results:

• if B ∈ C1(Γ), then we have:

|Eℓ (B · (A ◦ F )) | ≤ Cε · ‖A ‖∞‖B‖∗ · ŷ−β+ε (3.10)

where ‖B‖∗ = max{‖B‖∞, ŷ−β‖Ḃ‖∞}.

• let ρ̄ be the uniform density on Γ and ρ̂(x) = ρ(x) − ρ̄; define Êℓ (f) =

∫

Γ
f(x, ψ(x))ρ̂(x)dx, then:

|Êℓ (A ◦ F ) | ≤ Cε · ‖A ‖∞‖r‖∞ · ŷ−β+ε. (3.11)

Proof. Let Θ(x) = x + Y (ψ(x)); cut Γ \C1 in curves Γk such that the endpoints of

FΓk lie on two consecutive vertical lines x ≡ 0 mod 2π. In this process we could

have some leftover pieces of curve; however, their total measure is small:

Pℓ(Γ \
⋃

k

Γk) = O(ŷ−β).
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In fact by lemma 3.2.3 we have Pℓ(C1) = O(ŷ−β) and lemma 3.2.2 guarantees that,

outside C1, the expansion rate along Γ is at least O(ŷβ). Now define:

Jk +

∫

Γk

ρ(x)A (Θ(x))dx.

Then we have

Eℓ (A ◦ F ) =

∫

Γ

ρ(x0)A (x1)dx0 =

=
∑

k

Jk + ‖A ‖∞O(ŷ−β).

where the error term accounts for the leftover pieces and it is compatible with (3.9).

On each Γk, we define an inverse function x(θ) for Θ and push forward the density

as ρ′
k(θ) + ρ(x(θ))/|Θ̇(x(θ))|. Hence:

|Jk| =

∣
∣
∣
∣

∫ 2π

0

ρ′
k(θ)A (θ)dθ

∣
∣
∣
∣
.

Now we write ρ′
k = (2π)−1ck + ρ̃′

k, where ck + Pℓ(Γk). Since A has zero average we

obtain:

|Jk| ≤
∫ 2π

0

|ρ̃′
k(θ)A (θ)|dθ ≤ ‖A ‖∞

∫ 2π

0

|ρ̃′
k(θ)|dθ;

and since for some θ0 ∈ (0, 2π)

|ρ̃′
k(θ)| ≤

∣
∣
∣
∣

∫ θ

θ0

ρ′
k

d log ρ′
k

dθ
ds

∣
∣
∣
∣
≤ ck

∥
∥
∥
∥

d log ρ′
k

dθ

∥
∥
∥
∥
∞

we have

|Jk| ≤ 2π ck‖A ‖∞
∥
∥
∥
∥

d log ρ′
k

dθ

∥
∥
∥
∥
∞

.

Recall that we denote by h(x) the slope ψ̇(x); notice that, since Γk ∩ C1 = ∅, we

know that |h| > Const · ŷ−β on Γk. Using the definition of Θ we can therefore write
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:
∥
∥
∥
∥

d log ρ′
k

dθ

∥
∥
∥
∥
∞

≤
∥
∥
∥
∥

r

h̃Y ′

∥
∥
∥
∥

Γk
︸ ︷︷ ︸

Xk

+

∥
∥
∥
∥

ḣ

h̃2Y ′

∥
∥
∥
∥

Γk
︸ ︷︷ ︸

Yk

+

∥
∥
∥
∥

h2Y ′′

(h̃Y ′)2

∥
∥
∥
∥

Γk
︸ ︷︷ ︸

Zk

.

Since ℓ is standard we know that r and ḣ are bounded, moreover

h

h̃
=

(

1 − 1

h̃Y ′

)

so that if |h| > ŷ−λβ on Γk we obtain:

Xk ≤ Const · ŷ−2β+λβ

Yk ≤ Const · ŷ−2β+2λβ

Zk ≤ Const · ŷ−2β−1
(
1 + ŷ−2β+λβ

)2
.

Therefore we have Xk < O(ŷ−β) and Zk < O(ŷ−2β−1) which are good enough for

estimate (3.9). We now use lemma 3.3.1 to bound
∑

k ckYk taking:

δk = ck, a1, a2 = O(1), λ = ŷ−2β and α = 1/2.

We conclude that ∀ ε > 0 small there exists a Cε such that:

∫

Γ

ρ(x0)A (x1)dx0 ≤ ‖A ‖∞Cεŷ
−β+ε + O(ŷ−β).

Notice that we could also apply lemma 3.3.1 to
∑

k ckXk using:

δk = ck, a1 = Const · ŷ−β, a2 = O(1), λ = ŷ−β and α = 1;

in this case we would have obtained the better estimate O(ŷ−2β+ε), which will

indeed be useful later. Also notice that if we had h = O(1), we would obtain

Xk, Yk < O(ŷ−2β) so that
∫

Γ
ρ(x0)A (x1)dx0 = O(ŷ−2β) if Γ does not intersect a
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O(1)-neighbourhood of the critical set.

To prove the first auxiliary result we proceed in the same way:

∫

Γ

B(x0)ρ(x0)A (x1)dx0 =
∑

k

J ′
k + ‖A ‖∞‖B‖∞O(ŷ−β)

where:

J ′
k =

∫ 2π

0

H ′
k(θ)A (θ)dθ

and H ′
k(θ) = B(x(θ))ρ(x(θ))/|Θ̇(x(θ))|; as before we separate H ′

k from its constant

part so that we can write:

|J ′
k| ≤ ‖A ‖∞

∫ 2π

0

|H̃ ′
k(θ)|dθ

and then estimate the integral as:

∫ 2π

0

|H̃ ′
k(θ)|dθ ≤ 2π ck

[∥
∥
∥
∥

Ḃ

h̃Y ′

∥
∥
∥
∥

Γk

+ ‖B‖∞
∥
∥
∥
∥

d log ρ′
k

dθ

∥
∥
∥
∥
∞

]

so that we can directly apply lemma 3.3.1 to the first term, obtaining the bound

Cε‖Ḃ‖∞O(ŷ−2β+ε); the second term is the same as before, multiplied by ‖B‖∞, so

that we obtain (3.13).

To prove the second auxiliary result, first notice that, as we did before with

ρ′
k, there exists a w ∈ I such that ρ(w) = ρ̄, then we can write:

ρ̂(x) = ρ(x) − ρ̄ =

∫ x

w

r(ξ)ρ(ξ)dξ,

so that

|ρ̂(x)| < ‖r‖∞
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consider now:

∫

Γ

ρ̂(x0)A (x1)dx0 =
∑

k

J ′′
k + ‖A ‖∞‖r‖∞O(ŷ−β)

where

J ′′
k =

∫ 2π

0

ρ̂′
k(θ)A (θ)dθ

and ρ̂′
k(θ) + ρ̂(x(θ))/|Θ̇(x(θ))|; again we separate from ρ̂′ its constant part and we

can write:

|J ′′
k | ≤ ‖A ‖∞

∫ 2π

0

| ˜̂ρ′
k(θ)|dθ

To estimate the integral notice that:

| ˜̂ρ′
k(θ)| ≤ ck

∥
∥
∥
∥

r

h̃Y ′

∥
∥
∥
∥

Γk

+ ‖r‖∞
∥
∥
∥
∥
∥

Θ̈

Θ̇3

∥
∥
∥
∥
∥

Γk

The first term is the same as ckXk in the main part; the second term is of the

same order as ck(Yk +Zk) with an additional constant ‖r‖∞ term, so that we finally

obtain:
∣
∣
∣
∣

∫

I

ρ̂(x)A (Θ(x))dx

∣
∣
∣
∣
≤ Cε · ‖A ‖∞‖r‖∞O(ŷ−β+ε).

Corollary 3.4.2. Let ℓ,A and B be as in lemma 3.4.1, then:

|Eℓ

(
B · (A ◦ F k)

)
| ≤ Ck,ε · ‖A ‖∞‖B‖k∗ŷ

−β+ε (3.12)

where

‖B‖k∗ = max

{

‖B‖∞, ŷ−β

∥
∥
∥
∥

dB

dxk−1

∥
∥
∥
∥
∞

}
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Proof. By the invariance lemma 3.2.2 we know that F k−1ℓ can be decomposed in

standard pairs and non-standard pairs; by lemma 3.2.3 we can estimate the proba-

bility of sitting on a non-standard piece as follows:

Pℓ

(
F k−1(x, y) ∈ non-standard pair

)
< Const · (k − 1)ŷ−β.

Since this bound is compatible with (3.12), we can neglect non-standard pieces and

we conclude by applying lemma 3.4.1 to pairs in the standard part of F k−1ℓ.

In fact the ε appearing in estimates (3.9), (3.10) and (3.12) could in principle

be dropped using a Fresnel-type argument, which also shows that the bound is

sharp. This argument, however, is not as robust as the one based on lemma 3.3.1

and it would be less apt to the generalizations we seek.

We now proceed to improve the equidistribution lemma 3.4.1, by directly considering

second iterates of a standard pair:

Lemma 3.4.3 (Equidistribution +2). Let ℓ = (Γ, ρ) be a standard pair and let

ŷ = ŷℓ. Let A ∈ Lip(S1) be a zero-average Lipschitz function (with respect to the

standard metric on S
1). Then ∀ ε > 0 small there exists a Cε such that:

|Eℓ

(
A ◦ F 2

)
| ≤ Cε‖A ‖Lip (ŷ−β⋆

+ o(ŷ−1)) (3.13)

where β⋆ = min(2β − 1/2 + ε, 4/3β) and ‖ · ‖Lip is the standard Lipschitz norm

‖A ‖Lip = max{‖A ‖∞,Lip(A )}, Lip(A ) being the Lipschitz constant of A .

Notice that the first image of ℓ can be decomposed, by means of the invariance

lemma, in a union of invalid pairs, stand-by pairs and standard pairs which are
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allowed to intersect the critical set. To improve estimate 3.4.2 we will need to prove

the fact that by summing over the aforementioned union of curves, we have some

cancellations. First we need to prove a few preliminary results:

Lemma 3.4.4. Fix a zero average function A ∈ Lip(S1).

(a) Let ℓ = (Γ, ρ) be a standard pair with Γ = (x, ψ(x)) on the domain I. Let

∆h(x) + h(x) − h1(x, ψ(x)). Then for all reference pairs ℓ̄ = (Γ̄, ρ̄) on the

same domain I such that Γ̄ ∩ Γ 6= ∅, for all ε sufficiently small we can write:

|Eℓ (A ◦ F ) − Eℓ̄ (A ◦ F ) | ≤ Cε‖A ‖Lip

(
‖r‖∞ŷ−β+ε + Y ′(ŷ)‖∆h‖∞

)
(3.14)

Consider two reference curves Γ1 = {x, ψ1(x)} and Γ2 = {x, ψ2(x)} on the same

domain I such that h̃1 6= 0 on each Γi; let ℓi be the reference pairs on Γi. Let z be the

endpoint of I on which |h̃1| attains its minimum value and define δη = ψ1(z)−ψ2(z).

(b) Assume that Y (ψ1(z)) ≡ Y (ψ2(z)) mod 1; then for all sufficiently small ε >

0:

|Eℓ1 (A ◦ F ) − Eℓ2 (A ◦ F ) | ≤ Cε‖A ‖Lip |δη| ŷ−1−β+ε (3.15)

(c) Assume that |δη| ≪ 1; then for all sufficiently small ε > 0:

|Eℓ1 (A ◦ F ) − Eℓ2 (A ◦ F ) | ≤ Cε‖A ‖Lip |δη| ŷβ. (3.16)

Proof. Fix some w ∈ I and define Γ̄ = (x, ψ̄(x)) as the reference curve over the

domain I passing through the point (w,ψ(w)). Let Θ(x) = x + Y (ψ(x)) and
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Θ̄(x) = x + Y (ψ̄(x)), so that Θ(w) = Θ̄(w); then we have:

∣
∣
∣
∣

∫

I

ρ(x)A (Θ(x))dx −
∫

I

ρ̄A (Θ̄(x))dx

∣
∣
∣
∣
≤

≤
∣
∣
∣
∣

∫

I

(ρ(x) − ρ̄) A (Θ(x))dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

I

ρ̄
(
A (Θ(x)) − A (Θ̄(x))

)
dx

∣
∣
∣
∣

(3.17)

For the first integral we use lemma 3.4.1 to obtain:

∣
∣
∣
∣

∫

Γ

(ρ(x) − ρ̄)A (Θ(x))dx

∣
∣
∣
∣
≤ Cε‖A ‖∞‖r‖∞O(ŷ−β+ε);

For the second integral in (3.17), notice that since Γ is standard, lemma 3.1.4 implies

|ψ(x) − ψ̄(x)| < Const · ‖∆h‖∞, therefore we have:

|Θ(x) − Θ̄(x)| < 2Y ′(ŷ)‖∆h‖∞

and since A is Lipschitz we can conclude that:

∣
∣
∣
∣

∫

I

ρ̄
(
A (Θ(x)) − A (Θ̄(x))

)
dx

∣
∣
∣
∣
≤ 2 Lip(A )Y ′(ŷ)‖∆h‖∞

which concludes the proof of (a).

To prove (b) and (c), define similarly Θi(x) = x + Y (ψi(x)) for i = 1, 2. For

(b) assume without loss of generality that Θi(z) = 0 and that |Θ1| ≥ |Θ2|, then we

can define I∗ ⊂ I as the maximal domain of the functions ξ1 and ξ2 defined in such

a way that Θ1(ξ1) = Θ2(ξ2) (see figure 3.3). Then:

∫

I

A (Θ1(ξ1))dξ1 =

∫

I∗

A (Θ1(ξ1))dξ1 + O(ŷ−2β) =

=

∫

I

A (Θ2(ξ2))
Θ̇2(ξ2)

Θ̇1(ξ1)
dξ2 + O(ŷ−2β).
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Figure 3.3: Definition of ξ1 and ξ2.

We will prove that ‖Θ̇2(ξ2)/Θ̇1(ξ1) − 1‖∗ = O(ŷ−1) and then use lemma 3.4.1 to

conclude. Notice that by definition of Θi we can obtain, for δΘ = Θ2 − Θ1:

δΘ = ν · Θ1

(
1 + O(ŷ−1)

)

δΘ̇ = ν · Θ̇1

(
1 + O(ŷ−1)

)

δΘ̈ = ν · Θ̈1

(
1 + O(ŷ−1)

)

where

ν =
Y ′′(η1)

Y ′(η2)
· δη = δη · O(ŷ−1)

and ηi = ψi(z). Again, we neglect the pieces of Γi inside C1; in fact, since δΘ < O(ν)

inside C1, the contribution would be Lip(A ) O(ŷ−1−β)δη, which is compatible with

(3.15).

To estimate the remainder we will proceed to obtain an expression for δξ = ξ1 − ξ2

by writing the following identity:

Θ1(ξ1) − Θ1(ξ2) = Θ2(ξ2) − Θ1(ξ2)
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Then from the previous estimates and the intermediate value theorem we obtain

Θ̇1 δξ = νΘ1

(
1 + O(ŷ−1)

)

Next we can estimate:

|Θ̇1(ξ1) − Θ̇2(ξ2)| ≤ |Θ̇1(ξ1) − Θ̇1(ξ2)| + |Θ̇1(ξ2) − Θ̇2(ξ2)|

≤
(

|Θ̈1(ξ1)δξ| + |νΘ̇1(ξ1)|
) (

1 + O(ŷ−1)
)

and in the same way:

|Θ̈1(ξ1) − Θ̈2(ξ2)| ≤
(

|...Θ1(ξ1)δξ| + |νΘ̈1(ξ1)|
) (

1 + O(ŷ−1)
)
.

The previous estimates allow to obtain a bound for ‖Θ̇2(ξ2)/Θ̇1(ξ1) − 1‖∗; first,

consider:
∣
∣
∣
∣
∣

Θ̇2(ξ2) − Θ̇1(ξ1)

Θ̇1(ξ1)

∣
∣
∣
∣
∣
≤ 2

(

1 +

∣
∣
∣
∣
∣

Θ̈(ξ1)Θ(ξ1)

Θ̇(ξ1)2

∣
∣
∣
∣
∣

)

ν;

using the definition of Θ we can check that the fraction is bounded on I, so that we

conclude
∥
∥
∥(Θ̇2(ξ2) − Θ̇1(ξ1))/Θ̇1(ξ1)

∥
∥
∥ ≤ Cν.

Next, in order to estimate the derivative:

∣
∣
∣
∣
∣

Θ̈2(ξ2)Θ̇1(ξ1)
2 − Θ̈1(ξ1)Θ̇2(ξ2)

2

Θ̇1(ξ1)3

∣
∣
∣
∣
∣
≤

≤
∣
∣
∣
∣
∣

Θ̈2(ξ2)Θ̇1(ξ1)
2 − Θ̈1(ξ1)Θ̇1(ξ1)

2

Θ̇1(ξ1)3

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

Θ̈1(ξ1)Θ̇1(ξ1)
2 − Θ̈1(ξ1)Θ̇2(ξ2)

2

Θ̇1(ξ1)3

∣
∣
∣
∣
∣

≤
(

Θ̈1(ξ1)

Θ̇1(ξ1)
(1 + 3C) +

...
Θ1(ξ1)Θ1(ξ1)

Θ̇1(ξ1)2

)

ν.

Since we assume the curve does not intersect C1 we have Θ̈1(ξ1)/Θ̇1(ξ1) ≤ O(ŷβ)

and |...Θ1(ξ1)Θ1(ξ1)/Θ̇1(ξ1)
2| ≤ C ′, from which we conclude:

∥
∥
∥Θ̇2(ξ2)/Θ̇1(ξ1) − 1

∥
∥
∥
∗
≤ C ′′ν.
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The proof of part (c) is similar; first of all notice that we have the a priori

bound:

|Eℓ1 (A ◦ F ) − Eℓ2 (A ◦ F ) | ≤ Const · Lip(A )‖Y ◦ ψ1 − Y ◦ ψ2‖I . (3.18)

Moreover, by definition of reference curve, and since Y ′′(y)/Y ′(y) is decreasing we

have:
∣
∣
∣
∣

d

dx
(Y (ψ1(x)) − Y (ψ2(x)))

∣
∣
∣
∣
≤ Y ′′(ŷ)

Y ′(ŷ)2
|Y (ψ1(x)) − Y (ψ2(x))| ;

so that by Grönwall lemma we can conclude for large enough ŷ that

∀x ∈ I |Y (ψ1(x)) − Y (ψ2(x))| < |δY |(1 + O(ŷ−1−2β)),

where δY = Y (ψ1(z))−Y (ψ2(z)). We can thus assume that Y (ψ2(x))−Y (ψ1(x)) =

δY since the error term would be compatible with (3.16) by the a priori estimate

(3.18). We have that Θ2(x) = Θ1(x) + δY . First we deal with the portion of the

curves inside C1. Let I1 be the minimal subset of I such that:

∀x 6∈ I1, (x, ψi(x)) 6∈ C1 for i = 1, 2

then, by lemma 3.2.3:

ρ̄

∫

I1

A (Θ1(x)) − A (Θ2(x))dx ≤ Const · Lip(A ) O(ŷ−β)|δY |,

which is compatible with (3.16); we can therefore neglect the pieces of curves over

I1 and assume Θ̇i ≥ O(ŷβ) by lemma 3.2.2a. Defining ξi as before we can write:

∫

I\I1

A (Θ1(ξ1))dξ1 =

∫

I\I1

A (Θ2(ξ2))
Θ̇2(ξ2)

Θ̇1(ξ1)
dξ2 + Lip(A )O(ŷ−β)|δY |
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We will prove that ‖Θ̇2(ξ2)/Θ̇1(ξ1) − 1‖∗ = O(δY ) and then use lemma 3.4.1 to

conclude. In fact in this case we have:

|δξ| = O(δY/Θ̇1)

so we can easily see that:

∥
∥
∥Θ̇2(ξ2)/Θ̇1(ξ1) − 1

∥
∥
∥
∞

≤ Const · Θ̈1(ξ1)

Θ̇1(ξ1)2
δY ≤ Const · δY

and for the derivative:

∥
∥
∥
∥
∥

...
Θ1(ξ1)Θ̇1(ξ1) − 2Θ̈1(ξ1)

2

Θ̇1(ξ1)3
δY

∥
∥
∥
∥
∥
≤ Const · O(ŷβ)δY,

which concludes the proof.

We also need good shadowing estimates for the image of a standard curve

outside C1:

Lemma 3.4.5. Let Γ = (x, ψ(x)) be a standard curve over I such that Γ ∩ C1 = ∅

and let ŷ = ŷΓ. Then there exists a reference curve Γ̄ = (x, ψ̄(x)) such that:

∀ (x1, y1) ∈ FΓ ∃ ȳ1 s.t. (x1, ȳ1) ∈ F Γ̄, |y1 − ȳ1| = O(ŷ−4β) (3.19)

Proof. Let (x1, y1) ∈ FΓ and consider the vertical line {x = x1} passing through

(x1, y1); the preimage F−1{x = x1} is by definition a curve of slope h−1(x0, y0) =

−Y ′(y0)
−1 and we have:

dy1

dx0

∣
∣
∣
∣
h−1

= −Y ′(y0)
−1. (3.20)

Let z and w denote the two endpoints of I. Without loss of generality we can assume

that

|h̃1(z, ψ(z))| ≤ |h̃1(w,ψ(w))|.
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Let Γ̄ = (x, ψ̄(x)) be the reference curve passing through (z, ψ(z)) and let Π =

F−1{x = w′} where w′ is the x-coordinate of F (w,ψ(w)). Then Γ̄ will intersect Π

at some point (w̄, ψ̄(w̄)); let Ī be the interval bounded by z and w̄ (see figure 3.4)

We claim that Γ̄|Ī satisfies (3.19). In fact let I ′ = I ∩ Ī; lemma 3.1.4 ensures that

Figure 3.4: Construction of the reference curve Γ̄ shadowing Γ.

the vertical distance between Γ and Γ̄ is bounded by 2|I ′|‖∆h‖Γ < O(y−3β) on I ′,

therefore the distance along the slope h−1 is bounded by 2|I ′|‖∆h‖Γ/h̃1 < O(y−2β)

since we are outside C1. Hence, using (3.20), we can conclude that F Γ̄ will be

O(y−4β)-close to FΓ along the vertical direction.

Finally, we will need the following result, which allows us to prove cancellations

when integrating over the second image of a standard pair:

Lemma 3.4.6. Fix I ⊂ S
1 an interval satisfying the hypothesis for being the domain

of a basic curve and such that I ∩ C̄2 = ∅; we define the function ΨI(Y ) as follows;

let z be the endpoint of I such that |h̃1| has a minimum, and consider a family

of reference pairs {ℓI,Y = (ΓI,Y , ρ̄)} where ΓI,Y = (x, ψI,Y (x)), parametrized by
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Y = Y (ψI,Y (z)) and ρ̄ = 1/|I|. Then we define:

ΨI(Y ) + EℓI,Y
(A ◦ F )

Then for large enough ŷ:

∫ Y (ŷ)+1

Y (ŷ)

ΨI(Y )dY = ‖A ‖∞O(ŷ−1−2β) (3.21)

Proof. Let ΘY (x) = x + Y (ψI,Y (x)). Applying the definition of ΨI we have

∫ Y +1

Y

ΨI(Y )dY =

∫ Y +1

Y

∫

I

ρ̄A (ΘY (x))dxdY

Exchanging the order of integration and changing variables we obtain

∫

I

∫ ΘY +1(x)

ΘY (x)

A (θ)Jdθdx

Where J is the Jacobian of the transformation Y 7→ Θ; by explicitly computing

the holonomy map along the reference foliation we obtain J = 1 + O(ŷ−1−2β) and

ΘY +1(x) − ΘY (x) = 2π + O(ŷ−1−2β). This concludes the proof.

Once established the previous results, we now proceed to the proof of the

second equidistribution lemma.

Proof of lemma 3.4.3. By the invariance lemma 3.2.2, Fℓ can be decomposed in a

union of standard pairs, stand-by pairs and invalid pairs:

Fℓ =
⋃

j

ℓ′j

︸︷︷︸

ℓ′std

∪
⋃

k

ℓ̃′k

︸ ︷︷ ︸

ℓ′sb

∪Z.
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Let us also define ℓstd = F−1ℓ′std and similarly ℓsb = F−1ℓ′sb so that we can write:

Eℓ

(
A ◦ F 2

)
=

∫

Γstd

ρ(x0)A (x2)dx0+

∫

Γsb

ρ(x0)A (x2)dx0+‖A ‖∞O(ŷ−4/3β) (3.22)

where the bound for the last term is obtained using proposition 3.2.3. Now let

J = {y = ŷ − 4A} \ C̄2 ⊂ S
1 and cut J in intervals Iα satisfying the hypothesis for

being domains of a basic curve (see figure 3.5):

J =
⋃

α

Iα δ < |Iα| < 2δ

We then cut ℓ′std in standard pairs having Iα as a domain; with abuse of notation

Figure 3.5: Definition of J and of the intervals Iα.

we will denote the standard pairs obtained in this way again by ℓ′j. Notice that by

discarding the intersections with C̄2 we introduce an error of O(ŷ−2β) which is com-

patible with estimate (3.13). We can also discard pieces of ℓ′std with domain smaller

than any of the Iα, since lemma 3.2.2 and 3.4.1 imply that their contribution would

be at most O(ŷ−2β).

The first term of the right hand side of (3.22) can be therefore written as:

∫

Γstd

ρ(x0)A (x2)dx0 =
∑

j

cjEℓ′j
(A ◦ F ) + ‖A ‖∞O(ŷ−2β), (3.23)
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where cj = Pℓ(F
−1Γ′

j). Define now, for all α, the index sets

Jα = {j s.t. Domain(ℓ′j) = Iα}

then we can reorder the sum in (3.23) as follows:

∑

j

cjEℓ′j
(A ◦ F ) =

∑

α

∑

j∈Jα

cjEℓ′j
(A ◦ F )

By the remark at the end of lemma 3.4.1 we have that standard pairs over Iαs which

are not O(1)-close to the critical set will contribute with O(ŷ−2β) to the sum; thus:

∑

α

∑

j∈Jα

cjEℓ′j
(A ◦ F ) =

∑

α⋆

∑

j∈Jα⋆

cjEℓ′j
(A ◦ F ) + ‖A ‖∞O(ŷ−2β)

where the sum in the right hand side ranges only over those Iα⋆ that are contiguous

to C̄2 (marked with a ⋆ in figure 3.5).

Fix now one of such intervals; to simplify notation we will write I = Iα⋆ and we

will re-label {ℓ′j}j∈Iα⋆ as {ℓ′k}. We consider ℓ′k to be ordered in such a way that:

‖h‖F−1Γ′

k
< ‖h‖F−1Γ′

k+1

Using lemma 3.4.4a and that the average density ρ̄′
k = |I|−1 we have that ∀ ε > 0:

∑

k

ck

∫

Γ′

k

ρ′
k(x1)A (x2)dx1 = |I|−1

∑

k

ck

∫

Γ̄′

k

A (x2)dx1 + ‖A ‖LipO(ŷ−2β+ε). (3.24)

In fact by summing over the error term in lemma 3.4.4a we have:

Const · ‖A ‖Lip

∑

k

ck

(

‖r‖Γ′

k
ŷ−β+ε′ + Y ′(ŷ)‖∆h‖Γ′

k

)

(3.25)

by (3.2) we know that:

‖∆h‖Γ′

k
≤ Const · ŷ−3β L

−2
k ,
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Figure 3.6: Cutting the image FΓ along Iα.

where

Lk = inf
h∈C1(x,y)
(x,y)∈Γk

|h̃Y ′(ŷ)| ≥ Const · ŷβ,

which implies that the second part of (3.25) is O(ŷ−3β). To estimate the first term

of (3.25) we apply lemma 3.3.1 with:

δk = ck, a1 = O(ŷ−β+ε′), a2 = O(1), λ = ŷ−2β and α = +1/2,

to obtain the required estimate.

We will now establish a bound for the main term of (3.24):

∑

k

ck

∫

Γ̄′

k

A (x2)dx1. (3.26)

Let z ∈ I be as in lemma 3.4.6 and define ηk such that (z, ηk) ∈ Γ̄′
k. From now on,

to fix ideas, we assume that ηk+1 > ηk; the other case can be treated in the same
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way.

By lemma 3.4.5 we know there exists a reference curve Γ̄ such that FΓ is

O(ŷ−4β)-shadowed by F Γ̄ along the y direction. Let (z, η̄k) ∈ F Γ̄ such that |η̄k−ηk| =

O(ŷ−4β) and Yk + Y (η̄k); using the notation of lemma 3.4.6 and the bound given by

lemma 3.4.4c we can write for (3.26):

∑

k

ck

∫

Γ̄′

k

A (x2)dx1 =
∑

k

ckΨI(Yk) + ‖A ‖LipO(ŷ−3β). (3.27)

We now proceed to find an expression for Yk = Y (η̄k); recall that Γ̄ = (x, ψ̄(x));

then we have:

η̄k = ψ̄(ξk) + 2φ̇(z) where ξk + Y (ψ̄(ξk)) = (K + z) + k

for some K ∈ N. Again to fix ideas we assume ξk+1 ≥ ξk; the other case can be

treated in a similar manner. Therefore

Figure 3.7: Setting for estimating Yk

Yk = Y (Y −1((K + z) + k − ξk) + 2φ̇(z))

= Y0 + (k − (ξk − ξ0))

(

1 +
Y ′′

0

Y ′
0

2φ̇(z) + O(ŷ−2)

)

= Y0 + k − (ξk − ξ0) + k
(
ν + O(ŷ−2)

)
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where Y0 = Y (Y −1(K + z) − ξ0) (and similarly for Y ′
0 and Y ′′

0 ) and

ν =
Y ′′

0

Y ′
0

2φ̇(z) = O(ŷ−1).

If ν = 0 we would have that Yk − Y0 − k ∈ [0, 1]; on the other hand, since νY ′ ≫ 1,

we have that Yk − Y0 − k may cover several times the unit interval in Y (see figure

3.8). In fact define the following sets:

Ki + {k s.t. ⌊Yk − Y0 − k⌋ = i};

thus we can rewrite the sum in (3.27) as:

∑

k

ckΨI(Yk) =
∑

i

∑

k∈Ki

ckΨI(Yk).

Let:

Ψ̂I(Y ) + ΨI(Y0 + (Y mod 1));

lemma 3.4.4b ensures that

∑

i

∑

k∈Ki

ckΨI(Yk) =
∑

i

∑

k∈Ki

ckΨ̂I(Yk − Y0) + ‖A ‖Lip O(ŷ−1−β+ε)

and the error is compatible with (3.13). Next let ı̂ be the least index such that

i ≥ ı̂,∀ k ∈ Ki we have |h̃| > ŷ1/2−β on F−1Γ′
k. Notice that by definition:

∑

i<ı̂

∑

k∈Ki

ck ≤ Pℓ

(

|h̃| < Const · ŷ1/2−β
)

= O(ŷ1/2−β)

so that, by lemma 3.4.1, we can assume ı̂ = 0, since the error we make is compatible

with (3.13). Now for each i, define [c]i +
∑

k∈Ki
ck and for each k ∈ Ki let c̃k =

ck − [c]i/|Ki|. We now prove that the contribution given by the constant part is

64



Figure 3.8: Illustration of the distribution of ck relative to Yk − Y0 − k

negligible; in fact let ki = inf Ki, then ∀ k ∈ Ki:

(Yk − Y0) mod 1 − k − ki

|Ki|
≤ sup

k′,k′′∈Ki

|ξk′ − ξk′′| + O(ŷ−1)

≤ O(ŷ1/2−β + ŷ−1)

therefore, using lemma 3.4.4c we have

[c]i
∑

k∈Ki

1

|Ki|
Ψ̂I(Yk − Y0) =

= [c]i
∑

k∈Ki

1

|Ki|

(

Ψ̂I

(
k − ki

|Ki|

)

+ ‖A ‖LipO(ŷ1/2−2β + ŷ−1−β)

)

(3.28)

The main term of (3.28) can be seen as a Riemann sum of an integral as in lemma

3.4.6:

[c]i
∑

k∈Ki

1

|Ki|
Ψ̂I

(
k − ki

|Ki|

)

= [c]i

(∫ 1

0

Ψ̂I(Y )dY + ‖A ‖∞O(ν · ŷ−β)

)

≤ [c]i‖A ‖∞O(ŷ−1−β)

where we used lemma 3.4.4c to estimate the error and lemma 3.4.6 to bound the

integral. We finally need to estimate the terms containing c̃k:

∑

k∈Ki

c̃kΨ̂I(Yk − Y0) ≤ |Ki|‖c̃k‖i · ‖A ‖∞O(ŷ−β)
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where

‖c̃k‖i = sup
k∈Ki

{|c̃k|}.

Let now [Γ]i be the smallest connected subset of Γ such that

F [Γ]i ⊃
⋃

k∈Ki

Γ′
k

then:

‖c̃k‖i ≤
∣
∣
∣
∣

∫

F [Γ]i

r′ρ′

∣
∣
∣
∣
≤ ‖r′‖F [Γ]iPℓ ([Γ]i) .

Thus we use lemma 3.3.1 to estimate:

∑

i

|Ki|‖r′‖F [Γ]i
︸ ︷︷ ︸

Xi

Pℓ ([Γ]i)
︸ ︷︷ ︸

δi

.

Using:

a1, a2 = O(1), λ = ŷ1−2β and α = +1/2.

we obtain:

∑

i

|Ki|‖r′‖F [Γ]iPℓ ([Γ]i) ≤ Cεŷ
1/2−β+ε.

which concludes the proof for the standard part of FΓ.

For the second term of the right hand side of (3.22), we proceed in a way

similar to the proof of lemma 3.4.1; let Γ̃ + Γsb and consider F 2Γ̃. We can once

more partition Γ̃ in Γ̃k such that the endpoints of F 2Γ̃k lie on two consecutive vertical

lines x ≡ 0 mod 2π:

∫

Γ̃

ρ(x0)A (x2)dx0 =
∑

k

Jk + ‖A ‖∞O(ŷ−2β)
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Again let Θ(x0) = x0 + Y (y0) + Y (y1); on each Γ̃k we can define an inverse function

for Θ and push forward the density as ρ′′
k(θ) + ρ(x(θ))/|Θ̇(x(θ))| Again we can

separate the constant part: ρ′′
k = (2π)−1ck + ρ̃′′

k obtaining:

|Jk| ≤ ‖A ‖∞
∫ 2π

0

|ρ̃′′
k(θ)|dθ ≤ 2π ck‖A ‖∞

∥
∥
∥
∥

d log ρ′′
k

dθ

∥
∥
∥
∥
∞

So now we need to estimate

∥
∥
∥
∥

d log ρ′′
k

dθ

∥
∥
∥
∥
∞

≤
∥
∥
∥
∥

r

h̃h̃′Y ′2

∥
∥
∥
∥

Γk

+

∥
∥
∥
∥

ḣ

h̃2h̃′Y ′2

∥
∥
∥
∥

Γk

+

∥
∥
∥
∥

ḣ′

h̃′2Y ′

∥
∥
∥
∥

Γk

By the invariance lemma we have that h̃h̃′Y ′2 > O(ŷ2β), so that we can neglect the

first term. The second term can be bounded in the following way:

∥
∥
∥
∥

ḣ

h̃2h̃′Y ′2

∥
∥
∥
∥

Γk

<
1

h̃
O(ŷ−2β) = Wk

Notice that since ŷ−β < Wk < 1 and Wk > ŷ−β(1−κ) for a length
∑

k ck ≤ ŷ−β(1+κ),

we can use once more lemma 3.3.1 to obtain O(ŷ−2β+ε) for the second term.

The third term is estimated again using lemma 3.3.1 as it is the same as it would

be for a uniform density on F Γ̃; we can therefore bound it with Pℓ(Γ̃) · O(ŷ−β+ε) ≤

O(ŷ−2β+ε), which concludes the proof since all bounds we obtained are compatible

with (3.13).

3.5 Reduction to a biased random walk

Given a standard pair ℓ = (Γ, ρ), let once more ŷ = ŷℓ and define the following

sequence for k ∈ Z:

Rk + 2kŷ
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Definition 3.5.1. Let ℓ = (Γ, ρ) be a standard pair; we will now give the definition

of two functions:

τ ′ : Γ → N ξ : Γ → {−1, +1}

As in the definition of the critical time τ , define first a decreasing sequence of sets:

Γ = Γ[0] ⊃ Γ[1] ⊃ · · · ⊃ Γ[k] ⊃ · · ·

by induction as follows. Suppose that F n(Γ[n]) can be decomposed in standard pairs

and stand-by pairs only, i.e.:

F n(Γ[n], ρ) =
⋃

j

ℓj ∪
⋃

k

ℓ̃k.

For each standard pair ℓj in the decomposition of we can apply lemma 3.2.2 and

obtain:

F (ℓj) =
⋃

l

ℓj,l ∪
⋃

m

ℓ̃j,m ∪ Zj

Then let

Ξ = {j s.t. Γj ⊂ {R−1 < y < R+1}}

and define

Γ[n+1] = Γ[n] \
(

⋃

j 6∈Ξ

F−nΓj ∪
⋃

j∈Ξ

F−(n+1)Zj

)

,

which satisfies the inductive hypothesis. Finally we define

τ ′(x) +

∞∑

j=1

1Γ[j]
(x).

and

ξ(x) =







+1 if τ ′(x) < τ(x) and F τ ′(x)(x) is close to R+1;

−1 otherwise.
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We will now define two sequences τk : Γ → N and χk : Γ → Z.

Definition 3.5.2. Let χ0(Γ) ≡ 0, τ0(Γ) ≡ 0; suppose we have defined χn, τn we

proceed by induction; if τn(x) = τ(x) then we let

τn+1(x) + τn(x) χn+1(x) + χn(x) − 1.

Otherwise F τn(x)(x) will belong to some standard pair ℓ, on which the functions τ ′

and ξ are defined, so that we let:

τn+1(x) + τn(x) + τ ′(F τn(x)(x)) χn+1(x) + χn(x) + ξ(F τn(x)(x)).

Theorem B will then follow from:

Lemma 3.5.3. If β > 3/4 (γ > 5/2) and D0 is large enough, then:

Leb({(x0, y0) s.t. (xn, yn) 6∈ Ĉ2 ∀n ∈ N}) = 0.

Proof of theorem B. Define F̂ : Ĉ2 → Ĉ2 as the first return map of F on Ĉ2; F̂ is

well defined almost everywhere by lemma 3.5.3; since Leb(Ĉ2) < ∞ by proposition

3.2.3, we can apply Poincaré Recurrence theorem and conclude that almost every

point in Ĉ2 is recurrent, which shows that Leb(E ∩Ĉ2) = 0. This implies theorem B

by lemma 3.5.3, since almost every point will land on Ĉ2 infinitely many times..

In order to prove lemma 3.5.3 it is sufficient to prove that, for every standard

pair ℓ, we have the following bound for the critical time:

Pℓ(τ < ∞) = 1. (3.29)

In fact this implies that ∀ ℓ standard we have:

Pℓ({(x0, y0) s.t. (xn, yn) 6∈ Ĉ2 ∀n ∈ N}) = 0.
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The result follows since for all Borel measurable sets E we can write

Leb(E) =

∫

Pℓ̄α
(E)dλ(α)

where dλ(α) is some factor measure on the set of reference pairs. Given the following

lemma we can obtain (3.29) by following the exact same procedure used in [Do08];

for completeness the argument will be given in the next section.

Lemma 3.5.4. Let ℓ = (Γ, ρ) be a standard pair and let ŷ = ŷℓ. If β > 3/4

(γ > 5/2) then:

(a) Pℓ (ξ = −1) ≥ 0.6;

(b) There exists 0 < θ < 1 such that Pℓ(τ
′ ≥ s) ≤ Cθs/ŷ2

.

Proof. The invariance lemma 3.2.2b implies that:

Eℓ (A ◦ F n · 1τ ′≥n) =
∑

j

cnjEℓnj
(A ) +

∑

k

c̃nkEℓ̃nk
(A ) (3.30)

In fact, by iterating the invariance lemma and discarding the pieces of curve which

do not satisfy τ ′ ≥ n we can write:

F nℓ =
⋃

j

ℓnj ∪
⋃

k

ℓ̃nk ∪ {τ ′ < n},

then:

cnj + Pℓ (F−nΓnj) ρnj = F ∗nρ/cnj

c̃nk + Pℓ

(

F−nΓ̃nk

)

ρnk = F ∗nρ/c̃nk.

Clearly we have:

∑

j

cnj ≤ Pℓ (τ ′ ≥ n) ;
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moreover we claim that:

∑

k

c̃nk ≤ O(ŷ−β).

In fact, if F n(x) belongs to a stand-by pair then, since τ(x) ≥ τ ′(x) ≥ n, we know

that F n−1(x) belongs to some standard pair ℓ(n−1)j and that F n−1(x) ∈ Ĉ1. So by

proposition 3.2.3 we can conclude that

Pℓ(n−1)j
(Ĉ1) ≤ Const · ŷ−β,

which yields the desired estimate and in turns allows us to write:

∑

j

cnj = Pℓ (τ ′ ≥ n) + O(ŷ−β).

Define now

ζn + φ̇(xn+2)1τ ′≥n

Then, using (3.30), lemmata 3.4.1 and 3.4.3, we obtain:

Eℓ (ζn) =
∑

j

cnjEℓnj

(

φ̇(x2)
)

+
∑

k

c̃nkEℓ̃nk

(

φ̇(x2)
)

≤
∑

j

cnjo(ŷ
−1) +

∑

k

c̃nkO(ŷ−β)

= o(ŷ−1), (3.31)

where, to estimate the expectation on stand-by pairs, we just apply lemma 3.4.1 to

F ℓ̃nk which by definition can be cut in standard pairs. Moreover, since β > 3/4 we

have β⋆ > 1 in the statement of lemma 3.4.3.

The same argument shows that

Eℓ

(
ζ2
n

)
= 2A2

Pℓ (τ ′ ≥ n) + O(ŷ−β) + o(ŷ−1). (3.32)
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Next we consider:

Eℓ

(

ζm

m−1∑

i=0

ζi

)

=
∑

j

cmjEℓmj

(

φ̇(x2)
−1∑

i=−m

φ̇(xi+2)

)

+

+
∑

k

c̃mkEℓ̃mk

(

φ̇(x2)
−1∑

i=−m

φ̇(xi+2)

)

. (3.33)

Let

B(x0) =
−1∑

i=−m

φ̇(xi+2);

fix now p > 0 to be determined later; if m > p we define:

B′(x0) +

−p
∑

i=−m

φ̇(xi+2) B′′(x0) +

−1∑

i=−p+1

φ̇(xi+2).

If otherwise m ≤ p, we just let B′ = 0 and B′′ = B. By definition of τ ′ we have

‖B′‖∞ ≤ ŷ + 10A ≤ 2ŷ; since moreover B′ depends only on xi with i < −p + 2, we

have by the invariance lemma 3.2.2a that:

‖Ḃ′‖∞ ≤ ŷ−(p−3)β.

To estimate the contribution of B′, we write B′ = B̄′ + B̃′, where B̄′ is the constant

part of B′ and therefore ‖B̃′‖∞ ≤ ŷ−(p−3)β. Therefore we have, by using lemmata

3.4.1 and 3.4.3 that:

∣
∣
∣Eℓmj

(

B̄′φ̇(x2)
)∣
∣
∣ = o(1)

∣
∣
∣Eℓ̃mk

(

B̄′φ̇(x2)
)∣
∣
∣ ≤ O(ŷ1−β)

By requiring p large enough, we can make the contribution of B̃′ as small as we

need. Thus consider B̂′′ = B̃′ + B′′:

‖B̂′′‖∞ ≤ (p + 1)2A;
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moreover if x0 6∈ C1 we have:
∥
∥
∥
∥
∥

dB̂′′

dx1

∥
∥
∥
∥
∥

= O(1);

on the other hand Pℓ(x0 ∈ C1) ≤ O(ŷ−β) so that we obtain:

∣
∣
∣Eℓmj

(

B̂′′φ̇(x2)
)∣
∣
∣ ≤ O(ŷ−β)

∣
∣
∣Eℓ̃mk

(

B̂′′φ̇(x2)
)∣
∣
∣ ≤ O(ŷ−β).

By linearity of the expectation we can thus write:

∣
∣
∣
∣
∣
Eℓ

(

ζm

m−1∑

i=0

ζj

)∣
∣
∣
∣
∣
= o(1) (3.34)

Now using (3.32) and (3.34) we have:

Eℓ





(
N∑

i=0

ζi

)2


 =
N∑

i=0

(
2A2

Pℓ (τ ′ > i) + o(1)
)

≥ N · 2A2
Pℓ (τ ′ > N) + N · o(1).

But since ‖∑N
i=0 ζi‖ < 2ŷ, by taking N = L · ŷ2 we can write:

L · 2A2
Pℓ

(
τ ′ > Lŷ2

)
≤ 4 + L · o(1)

which proves (b) by taking L large enough.

To prove (a), we write:

Eℓ

(
∞∑

k=1

ζk

)

≤
∑

n

Pℓ (τ ′ ≥ n) o(ŷ−1)

≤ Eℓ (τ ′) o(ŷ−1) = o(ŷ).
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On the other hand:

Eℓ

(
∞∑

k=1

ζk

)

= ŷ · Pℓ (ξ = +1) + λŷ · Pℓ (ξ = −1) ,

where λ ∈ (−1/2, 1); dividing by ŷ we obtain:

Pℓ (ξ = +1) + λPℓ (ξ = −1) = o(1)

which implies:

Pℓ (ξ = −1) =
1

1 − λ
(1 + o(1)) > 0.6

that is (a).

3.6 Conclusion of the proof

In this section we prove that lemma 3.5.4 implies lemma 3.5.3 by a trivial

adaptation to our situation of the analogous argument found in sections 6 and 7

of [Do08]. It is described here for the sake of completeness. We first need a few

preliminary results about biased random walks.

Proposition 3.6.1. Let ξ̃1, ξ̃2, · · · , ξ̃n, · · · be iid random variables such that ξ̃k ∈

{−1, 1} and P(ξ̃n = −1) = p > 1/2. Let χ̃n =
∑n

k=1 ξ̃k. Then

• P(χ̃n ≤ 0 for all n) > 0;

• For each c > 1 − 2p there exist constants C > 0 and θ < 1 such that:

P(χ̃n > cn) ≤ Cθn.
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Proposition 3.6.2. Suppose ξ1, ξ2, · · · , ξn, · · · is a random process such that ξk ∈

{+1,−1} and for all n:

P(ξn = −1|ξ1ξ2 · · · ξn−1) ≥ p > 1/2.

Let ξ̃1, ξ̃2, · · · , ξ̃n, · · · be iid random variables such that ξ̃k ∈ {−1, 1} and P(ξ̃n =

−1) = p; correspondingly define:

χn =
n∑

k=1

ξk χ̃n =
n∑

k=1

ξ̃k

Then for any n,m1,m2:

P(max
k≤n

χ̃k ≤ m1, min
k≤n

χ̃k ≤ m2) ≤ P(max
k≤n

χk ≤ m1, min
k≤n

χk ≤ m2).

The proofs of propositions 3.6.1 and 3.6.2 can be found in section 2 of [Do08]

and references therein.

Proof of lemma 3.5.3. We will prove (3.29) which, as previously noted, implies lemma

3.5.3; fix a standard pair ℓ and let ŷ = ŷℓ. Take n = Q · log2 ŷ and m = − log2 ŷ, for

Q large; then we have:

Pℓ(Ω) = 2κ > 0 Ω = {max
k≤n

χk ≤ 0, min
k≤n

χk < m}.

Notice that for each standard pair ℓ∗ in F τkℓ we have that χk ≤ 0 implies ŷℓ∗ ≤ 2ŷ;

we then use lemma 3.5.4b with s = ŷ5/2 to show that:

∀ k Pℓ(τk+1 − τk > ŷ5/2|χk ≤ 0) ≤ C · θŷ1/2
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notice that if τk = τ for some k we cannot apply lemma 3.5.4, however the previous

inequality still holds true by definition of τk. Therefore:

Pℓ(max
k≤n

(τk+1 − τk) > ŷ5/2|Ω) ≤ Cn · θŷ1/2

;

since n grows only logarithmically in ŷ, the previous expression implies that:

Pℓ(τk ≥ ŷ3|Ω) → 0 as ŷ → ∞

therefore:

Pℓ({τn < ŷ3} ∩ Ω)) > κ.

On the other hand, by our choice of m, we have that ∀ (x0, y0) ∈ Ω there exists a

k ≤ n such that yk ≤ Const and so (xk, yk) ∈ C2 by taking K1 large enough. Hence,

on Ω we have τ = τn, which implies:

Pℓ(τ < ŷ3) > κ.

Then for any k ∈ N we can define functions nk(x0, y0) such that

Pℓ(τ > nk) < (1 − κ)k.

In fact let n1 = ŷ3. Next, if τ(x0, y0) < nk we let nk+1 = nk; otherwise we have that

either F nk−1(x0, y0) or F nk(x0, y0) belongs to a standard pair ℓ∗k. We then define

nk+1 = nk + ŷ3
ℓ∗k

. Since k can be taken to be arbitrarily large, we obtain (3.29) which

concludes the proof of lemma 3.5.3.
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Chapter 4

Existence of elliptic islands for arbitrarily high energy

In this chapter we are going to prove Theorem C:

Theorem C. Assume γ > 1; then:

(a) for almost all values of the parameter A there are elliptic islands of period 2

for arbitrarily high values of y. Moreover if γ > 2 the same result holds true

for all values of A;

(b) the total measure of such islands is infinite if γ ≤ 4/3 and finite if γ > 4/3.

First we recall the definition of elliptic island: if an elliptic fixed point p for a

two-dimensional symplectic map F is surrounded by a invariant set of closed curves

and on each curve the dynamics is conjugated to an irrational rotation on the circle,

we say that p is surrounded by an elliptic island. Such islands are obviously Lya-

punov stable.

The outline of the proof of Theorem C is as follows. In section 4.1 and 4.2 we build

a reversor map by exploiting a symmetry of the system; we recall that a reversor

is an idempotent map that conjugates the dynamics with its inverse. Following a

standard technique in the theory of reversible maps (see e.g. [LR98]), we use the

locus of fixed points of the reversor map to find a number of periodic orbits; most

of them will be hyperbolic but by fine-tuning the amplitude A we can turn some of

them into elliptic periodic orbits. In our case it is quite easy to state the ellipticity
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condition (section 4.3) in terms of A. We can actually state conditions to ensure

that the multiplier of such periodic orbits belong to some given sub-interval of S
1,

which will turn out to be useful to avoid resonances. Such conditions, along with a

non-degeneracy requirement on the Birkhoff normal form that we check in section

4.6, are sufficient to establish the presence of an elliptic island around the periodic

point (see for instance [La93] or [dlL01]). The ellipticity condition (section 4.4) turns

out to be an arithmetic condition on the parameter A; a Borel-Cantelli argument

(section 4.5) shows that this condition is satisfied by infinitely many periodic points

for a set of full measure of A for all γ > 1. The same proof gives the stronger result

that for γ > 2 the statement is true for all parameters A.

Notice that a well-known result due to M. Herman ensures that an elliptic periodic

point with Diophantine multiplier is surrounded by an elliptic island. Since such

multipliers form a full-measure set in S
1, as B. Fayad pointed out to the author,

one could easily modify the Borel-Cantelli argument to prove existence of infinitely

many elliptic islands with Diophantine multiplier for almost all A. However, this

elegant argument does not allow to obtain estimates on the size of the islands; on

the other hand, in proposition 4.5.13 we are able to state conditions on γ which

guarantee that the Lebesgue measure of the elliptic islands obtained with our con-

struction is either infinite or finite.
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4.1 Construction of periodic orbits

Recall once more the definition of F :

F :







x

y







7→







x + Y (y)

y + 2φ̇(x + Y (y))







(1.1)

We are going to obtain periodic orbits by building a set with special dynamical

properties and then considering intersections with its forward and backward images.

Remark 4.1.1. Suppose φ̇ is odd with respect to some point x̄:

φ̇(x̄ + x) = −φ̇(x̄ − x),

then F has a reversor map R such that

R2 = Id RFR = F−1.

We can explicitly write R as follows:

R : (x, y) 7→ (2x̄ − x − Y (y), y) .

Squaring the map R gives the identity map and an easy check shows that R conju-

gates F with its inverse. Notice also that, being defined on the cylinder, if φ̇ is odd

with respect to x̄ it has to be odd also with respect to x̄ + 1/2.

We are going to define the set ℓ of fixed points of R:

ℓ + {(x, y) s.t. R(x, y) = (x, y)}.
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The set ℓ is the disjoint union of the following two curves:

ℓ+(y) =
(
x̄ − 1

2
Y (y), y

)

ℓ−(y) =
(

1
2

+ x̄ − 1
2
Y (y), y

)
.

(4.1)

These curves wind around the cylinder as y increases. It is more convenient to

partition ℓ+ and ℓ− in pieces that wind just once around the cylinder in order to

work with graphs of (single valued) functions of x. This can be easily done by

inverting the 1-1 map y 7→ Y ; let this inverse be y(Y ). Define now:

∀n ∈ N ℓn(x) = (x, y (2 (x̄ − x) + n)) .

The curve ℓ+ corresponds to even values of n while ℓ− to odd values. Subscripts

will always refer to branches and superscripts will always refer to iterates of the set,

i.e. for k ∈ Z, ℓk
n + F kℓn.

The important dynamical property of ℓ is that

∀ p ∈ ℓ F kp = RF−kRp = RF−kp,

therefore, if F kp also belongs to ℓ, we find F kp = F−kp that implies that the orbit of

p is periodic of (possibly not least) period 2k. Hence, points belonging to ℓk ∩ ℓ for

k 6= 0 are periodic points. The issue is now to understand whether the corresponding

periodic orbits are elliptic or hyperbolic. Taking inspiration from [GL00] we work

out from scratch the period 2 case.

4.2 Period 2 orbits

First we classify period 2 orbits. This turns out to be quite simple, as the

following proposition shows. To fix notations, let {p1, p2} be a 2-periodic orbit,
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p1 = (x1, y1) and p2 = (x2, y2); since y0 = y2, we have φ̇(x1) = −φ̇(x2).

Definition 4.2.1. Being φ a sine function, 2-periodic orbits can only be of one of

the following types:

• φ̈(x1) = φ̈(x2), such orbits will be called (+)-orbits ;

• φ̈(x1) = −φ̈(x2), such orbits will be called (−)-orbits ;

Proposition 4.2.2. Let {p1, p2} be a 2-periodic orbit; there can be two cases:

• p1, p2 ∈ ℓ, the orbit is a (+)-orbit;

• Y (y1) ≡ Y (y2) ≡ 1
2

mod 1; the orbit is a (−)-orbit.

Proof. Let us write the condition for p1 = (x1, y1) and p2 = (x2, y2) to be periodic:

x1 7→ x1 + Y (y1) = x2

x2 7→ x1 + Y (y1) + Y (y2) = x1

y1 7→ y1 + 2φ̇(x + Y (y)) = y2

y2 7→ y1 + 2
(

φ̇(x + Y (y1)) + φ̇(x + Y (y1) + Y (y2))
)

= y1.

So that we have the two conditions:

Y (y1) + Y (y2) ≡ 0 mod 1 φ̇(x + Y (y1)) + φ̇(x) = 0.

Since φ̇(x) is a cosine function, the second possibility can be true only under one of

the two following conditions:

• x1 + Y (y1) = 2x0 − x1 therefore p1 ∈ ℓ; the same is true for p2

• x1 + Y (y1) = x1 + 1
2

therefore Y (y1) ≡ Y (y2) ≡ 1
2
.
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Notice moreover that since φ̇ is odd with respect to x̄, φ̈ is even with respect to the

same point x̄, therefore orbits of the first kind are (+)-orbits. On the other hand,

orbits of the second type satisfy the opposite condition φ̈(x1) = −φ̈(x1 + 1/2 = x2)

and so they are (−)-orbits.

4.3 Elliptic locus for period 2 orbits

In this section we find a subset of the phase space such that all 2-orbits that

lie in the set are elliptic.

Proposition 4.3.1. Denote the points of the orbit by (x1, y1) and (x2, y2); let

Y ′
i + Y ′(yi), and φ̇1 + φ̇(x2), φ̇2 + φ̇(x1) and similarly for φ̈ (swapped indices

are intended). Notice that proposition 4.2.2 implies φ̈1 = ±φ̈2. Let νi + φ̈iY
′
i and

−1 ≤ c1 < c2 ≤ 0; define the following sets:

E+
c1c2

+ {(ν1, ν2) s.t. ν1 + ν2 + ν1ν2 ∈ (c1, c2)}

E−
c1c2

+ {(ν1, ν2) s.t. ν1ν2 ∈ (c2, c1)}.

Then (±)-orbits belonging to E±
c1c2

are elliptic and the multiplier λ is such that

ℜλ ∈ (1 + 2c1, 1 + 2c2).

Proof. We start by computing the differential dF on each point on the orbit:

dF1 =







1 Y ′
1

2φ̈1 1 + 2φ̈1Y
′
1







dF2 =







1 Y ′
2

2φ̈2 1 + 2φ̈2Y
′
2







.

The condition for a matrix M to be elliptic is that |TrM | < 2; moreover, for any

elliptic matrix M , 1
2
TrM is the real part of its multiplier. By direct computation of
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the trace of the product of the two differentials and using the (±) relations on φ̈,

we obtain:

1/2 Tr (dF1dF2) = 1 + 2
(

φ̈1Y
′
1 + φ̈2Y

′
2

)

+ 2Y ′
1Y

′
2 φ̈1φ̈2 (+)

1/2 Tr (dF1dF2) = 1 + 2Y ′
1Y

′
2 φ̈1φ̈2. (-)

By direct computation we obtain the following conditions in νi that ensure ellipticity

and the supplementary condition on the multiplier:

ν1 + ν2 + ν1ν2 ∈ (c1, c2) (+)

ν1ν2 ∈ (c1, c2), (-)

that are the defining conditions for the sets E±
c1c2

.

Notice that since φ̈1 = ±φ̈2 we have that

ν1

ν2

=
φ̈1Y

′
1

φ̈2Y ′
2

= ±Y ′
1

Y ′
2

.

Since Y ′ = Y 1−1/γ and
∣
∣
∣Y

1/γ
2 − Y

1/γ
1

∣
∣
∣ ∼ A = max |φ̇| we have:

ν1

ν2

∼ ±
(

Y1

Y2

)1− 1
γ

→ ±1− as Y1 → ∞.

Even if the shape of the sets E±
c1c2

is not very complicated, it is convenient to state

a sufficient condition in terms of just one parameter ν. Fix ε small, then if we let

y1 < y2 big enough, we have (1 − ε)|ν2| < |ν1| < |ν2|; a direct calculation yields the

following sufficient conditions for 2-orbits to be elliptic and satisfying the required

condition on the multiplier:

(+)-orbits: ν2 ∈ (c′1, c
′
2) (−)-orbits: |ν2| ∈ (|c′′1|, |c′′2|) (4.2)

where c′1, c
′
2 and c′′1, c

′′
2 are ε-close respectively to c1 and c2.
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4.4 Description of ℓ1 and ellipticity condition

In this and the subsequent sections all pictures and geometric constructions

are made keeping in mind the coordinates (x, Y (y)). In these coordinates ℓ is rep-

resented by a straight line, and it is much easier to have geometric intuition about

the dynamics. Recall that the simple choice for φ given by equation (1.2) implies

the following expression for φ̇:

φ̇(x) = A cos(2πx).

Proposition 4.4.1. Let y(Y ) be the inverse function of Y (y) and fix −1 ≤ c1 <

c2 ≤ 0. Then there exist real positive numbers C1 < C2 such that, for any n < m ∈ N

the following condition

y

(

m − 1

2
− C2

A

1

m1−1/γ

)

< y

(

n +
1

2

)

+ 2A < y

(

m − 1

2
− C1

A

1

m1−1/γ

)

(4.3)

implies the existence of a 2-periodic elliptic orbit oscillating between Y = n + 1/2

and Y = m + 1/2 such that its multiplier satisfies ℜλ ∈ (1 + 2c1, 1 + 2c2).

Proof. Consider ℓ1
n: let ηk(ξ) + y (2 (ξ − x̄) + k) so that:

ℓ1
n(ξ) =

(

ξ, ηn(ξ) + 2φ̇(ξ)
)

.

So for A = 0 this is just a line in the (x, Y (y))-plane. As A increases, the line

deforms and presents similarities with the shape of φ̇, as we can observe in figure

4.1. As we proved in proposition 4.2.2, 2-orbits obtained by intersecting ℓ and ℓ1 are

(+)-orbits; we now claim that the highest energy point (x2, y2) of the orbit lies where

φ̇ > 0. In fact we know that φ̇(x2) = y2 − y1; since we want that y2 > y1 we need
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Figure 4.1: On the left the reference picture for A = 0, on the right the situation

for A > 0

such quantity to be positive. Having that fixed, ν2 = φ̈(x1)Y
′(y2) = φ̈(x2)Y

′(y2),

therefore we have that condition (4.2) is satisfied if (x2, y2) ∈ ℓ ∩ ℓ1 belongs to this

set:

Ẽ+
c′1c′2

+

{

(x, y) s.t.
c′1

Y ′(y)
< φ̈(x) <

c′2
Y ′(y)

, φ̇(x) > 0

}

.

First notice that this set is an O(1/(A · Y ′(y)))-thin strip that lies O(1/(A · Y ′(y)))

to the right of the vertical line ξ = 0 (that corresponds to c′2 = −1). By direct

inspection we obtain that in (x, Y ) coordinates, each branch of ℓ0 is a straight line

with angular coefficient -2 and each branch of ℓ1 near ξ = 0 is approximated by a

parabola that intersects ξ = 0 with positive derivative (close to 2); the maximum of
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the parabola is given by the equation:

φ̈(ξ) = − 1

Y ′(yn(ξ))
< − 1

Y ′(y)
<

c1

Y ′(y)
.

Figure 4.2 illustrates the properties we just described. The key fact to notice is that

ℓm

ℓ
1
n Ā

c′2 c′1 0−1

ξ = 0

ℓ
1
n A1

ℓ
1
n A2

1
Y ′

1
Y ′

1
Y ′

1
Y ′

Ẽ+
c′1c′2

Figure 4.2: Explicit construction, in (x, Y ) coordinates, of values of the parameter

A for which we have an elliptic periodic point of period 2 with given bounds on the

multiplier.

the values of A we are seeking are close to values Ā of the parameter for which the

intersection lies on the vertical line ξ = 0. Let us compute the intersection of ℓm

and ℓ1
n with the vertical line ξ = 0:

ℓm(0) = (0, y(−1/2 + m)) (4.4)

ℓ1
n(0) = (0, y(1/2 + n) + 2A) (4.5)
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Therefore if we want ℓ and ℓ1 to intersect on the line ξ = 0 we need to find Ā such

that points in (4.4) and (4.5) are equal for some n,m, i.e.:

y

(

n +
1

2

)

+ 2Ā = y

(

m − 1

2

)

(4.6)

Now it is clear that we can find A1 and A2 as in the picture such that the intersection

lies on the boundary of Ẽ+
c′1c′2

. Using the properties we described above it is also clear

that, in (x, Y ) coordinates, the distances between intercepts of ℓ1 corresponding

to each Ai with the vertical ξ = 0 are linear functions of the x coordinates of

the intersections themselves, therefore of order O(1/(A · Y ′(y))). More precisely,

mimicking equation (4.5) and recalling that Y ′ ∼ Y 1−1/γ , we obtain that there exist

C1 and C2 such that if

y

(

m − 1

2
− C2

A

1

m1−1/γ

)

< y

(

n +
1

2

)

+ 2A < y

(

m − 1

2
− C1

A

1

m1−1/γ

)

.

then the intersection (ℓm ∩ ℓ1
n) ∩ Ẽ+

c′1c′2
6= ∅.

Condition 4.3 is essentially an arithmetic condition on A and γ. In the next

section we prove that this condition is satisfied for parameters A as in the statement

of (a) in Theorem C. At that point we will be only left with checking the non-

degeneracy condition and estimating the measure of the islands.

4.5 Arithmetic condition

In this section we are going to prove a result that is of independent interest;

for simplicity we state the arithmetic condition in a slightly simplified form with

respect to the case in consideration. Namely we drop the 1/2 that appears in 4.3
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and we rescale by a factor of −2 both C1 and C2. One can easily verify that this

does not affect the proof in any sense.

The condition is reminiscent of the Khinchin’s theorem on Diophantine approxi-

mation [Kh64]. In fact we want to investigate parameters γ and a such that the

following inclusion is true for infinitely many n and m ∈ N:

(
n1/γ + a

)γ ∈
(

m +
C1

a
m−ξ,m +

C2

a
m−ξ

)

,

for an appropriate (and fixed) choice of C2 > C1 > 0 and ξ > 0. In our case a = 2A

and ξ = 1 − 1/γ.

Let us first introduce some useful definitions:

Definition 4.5.1. Let us fix ξ > 0, γ > 1, C2 > C1 > 0. Then

Ga,m +

(

m +
C1

a
m−ξ,m +

C2

a
m−ξ

)

;

Ga +
⋃

m∈N

Ga,m G̃a + G
1/γ
a ;

Xa +
{
n1/γ + a, n ∈ N

}
.

Using this notation the parameter a satisfies the arithmetic condition if the

cardinality
∣
∣
∣Xa ∩ G̃a

∣
∣
∣ is infinite.

Definition 4.5.2. Let n, k ∈ N:

A +
{

a ∈ R
+ s.t.

∣
∣
∣Xa ∩ G̃a

∣
∣
∣ = ∞

}

;

An +
{

a ∈ R
+ s.t.

(
n1/γ + a

)γ ∈ Ga

}

;

An
k +

{

a ∈ R
+ s.t.

(
n1/γ + a

)γ ∈ Ga,(n+k)

}

;
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Clearly An =
⋃

k An
k , moreover if Ãn0 +

⋃

n≥n0
An, then A =

⋂

n0
Ãn0 =

lim supn→∞ An

Lemma 4.5.3. For all γ > 1, A is a Gδ set dense in R
+.

Proof. Each Ãn0 is open since it is a union of open sets. Moreover it is dense because

the distance between endpoints of consecutive intervals belonging to G̃a goes to 0 as

m → ∞; thus, so do the distances between endpoints of the intervals belonging to

An as n → ∞. As the point a = 0 is accumulated by the left endpoints of the first

interval in An, we conclude that Ãn0 is dense in R
+.

Let us define the following conditions involving ξ and γ:

ξ ≤ 1 (diverging);

ξ <
1

γ
(overlapping).

Notice that, since γ > 1, the overlapping condition implies the diverging condition.

Now we can state the result as follows:

Theorem 4.5.4. If the diverging condition does not hold, then the measure of A is

zero. If the diverging condition holds then A has full measure in R
+; moreover if

the overlapping condition also holds then A is the whole R
+.

Notice that, as in Khinchin’s theorem, we obtain that the required property

is satisfied either by a null set or by a full measure set. This dichotomy seems to be

quite common in approximation problems similar to the one we are studying.

Proof. The proof will be presented in four steps.
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Step one Reduction to a compact set of parameters

Consider a partition of R
+ as follows:

R
+ =

⋃

k

[αk, βk],

such that

∀ k βk/αk < C2/C1. (4.7)

This implies, for all a ∈ [αk, βk] the middle inequality in the following expression:

C1

βk

<
C1

a
<

C1

αk

<
C2

βk

<
C2

a
<

C2

αk

.

Hence we can build a superset G̃
♯
[k] and a subset G̃ ♭

[k] as follows:

G
♯
[k],m +

(

m +
C1

βk

m−ξ,m +
C2

αk

m−ξ

)

G
♭
[k],m +

(

m +
C1

αk

m−ξ,m +
C2

βk

m−ξ

)

then as before:

G
♯
[k] +

⋃

m∈N

G
♯
[k],m G̃

♯
[k] + G

♯
[k]

1/γ

G
♭
[k] +

⋃

m∈N

G
♭
[k],m G̃

♭
[k] + G

♭
[k]

1/γ
,

so that if a ∈ [αk, βk]:

G̃
♯
[k] ⊃ G̃a ⊃ G̃

♭
[k].

Hence, it is enough to prove the result for G̃
♯
[k] (to obtain estimates from above) and

G̃ ♭
[k] (to obtain estimates from below) for all k. To simplify notation we now fix k,

we let α = αk and β = βk; we then redefine A, An, An
k as their intersection with the

interval [α, β]; finally we define A♯,A♭ and their components as we did before for A,

but using in the definition respectively G̃ ♯ and G̃ ♭.
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Step two Structure of the sets An

Define δn
k , ∆̄n

k , ∆n
k , In

k as in figure 4.3. The following lemma provides some useful

estimates:

An+1
k+1 An+1

k+2An+1
k

An
k An

k+1 An
k+2

α βδ n
k

∆̄n
k ∆n

k

In
k

Figure 4.3: Definition of δn
k , ∆̄n

k , ∆n
k , In

k .

Lemma 4.5.5. Define the following positive quantities:

ℓ+ +
C2

α
− C1

β
ℓ− +

C2

β
− C1

α
,

and the set Kn + {k ∈ N s.t. An
k 6= ∅}. Then:

δn
k =

ℓ

γ
(n + k)−ξ−(1−1/γ) + h.o.t. for ℓ ∈ (ℓ+, ℓ−) (E1)

∆n
k =

1

γ
(n + k)−(1−1/γ) + h.o.t. (E2)

∆̄n
k =

1

γ

(

1 − 1

γ

)

kn1/γ−2 + h.o.t. (E3)

Kn ∼ [γα · n1−1/γ + h.o.t., γβ · n1−1/γ + h.o.t.] ∩ N (E4)

Proof. We first bound the length of the intervals An
k :

δn
k <

(

n + k +
C2

α
(n + k)−ξ

)1/γ

−
(

n + k +
C1

β
(n + k)−ξ

)1/γ

=
ℓ+

γ
(n + k)−ξ−(1−1/γ) + h.o.t.
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The bound from below is similar and yields the expected result. Then we estimate

the length of the intervals In
k :

∆n
k = (n + k + 1)1/γ − n1/γ −

(

(n + k)1/γ − n1/γ
)

= (n + k + 1)1/γ − (n + k)1/γ

=
1

γ
(n + k)1/γ−1 + h.o.t.

Next the offset of two subsequent An
k :

∆̄n
k = (n + k + 1)1/γ − (n + 1)1/γ −

(

(n + k)1/γ − n1/γ
)

= (n + k + 1)1/γ − (n + k)1/γ −
(

(n + 1)1/γ − n1/γ
)

=
1

γ

(

(n + k)1/γ−1 − n1/γ−1
)

+ h.o.t.

= −1

γ

(

1 − 1

γ

)

k · n1/γ−2 + h.o.t.

Finally we estimate Kn:

Kn =
[(

n1/γ + α
)γ − n,

(
n1/γ + β

)γ − n
]

∩ N

=
[
γα · n1−1/γ + h.o.t., γβ · n1−1/γ + h.o.t.

]
∩ N;

notice that

|Kn| ∼ γn1−1/γ · (β − α).

Step three Overlapping regime

From the previous estimates we can already obtain the result in the overlapping

regime. In fact (E4) implies that k is O(n1−1/γ), therefore, by (E3), ∆̄n
k is O(n−1).
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This implies that if −ξ − (1 − 1/γ) > −1 (i.e. ξ < 1/γ that is the overlapping

condition) An
k and An+1

k will eventually overlap because, by (E1), the length of the

intervals An
k goes to zero slower than their offset. Since they overlap and they are

moving like 1/n, they will eventually cross the left endpoint so for each fixed k they

are going to cover the whole interval, therefore An is going to cover [α, β] infinitely

many times, and A will contain [α, β].

Step four Non-overlapping regime

We will now focus on the strictly non-overlapping regime i.e. ξ > 1/γ; the critical

case ξ = 1/γ will be considered later as it is just a combination of this and the

previous situation.

Define, for any Borel set E ⊂ [α, β], P(E) = Leb(E)/(β − α) as a probability

measure on [α, β]. We are going to prove that the set A has either full measure or

measure zero using the following strong form of the Borel-Cantelli lemma:

Lemma 4.5.6 (Borel-Cantelli-Erdös-Rényi [ER59]). Let {Ak} be a sequence of

events on a probability space (Ω,F , P). If

∞∑

n=1

P(An) < ∞ (convergence),

then P(lim sup An) = 0. If instead

∞∑

n=1

P(An) = ∞ (divergence)

and

lim inf

∑n
k,l=1 P(AkAl)

(
∑n

k=1 P(Ak))
2 = 1 (weak independence),
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then P(lim sup An) = 1.

We will obtain the result by verifying one of the above conditions for the sets

An. The following two lemmata deal with the estimates of the convergence/divergence

condition and the weak independence condition respectively. They need to be proved

for both A♯ and A♭; however to simplify the exposition we will drop the superscript

and let ℓ = ℓ+ or ℓ = ℓ− according to the case. In this way we simultaneously obtain

a upper and lower bound for the measure of A, from which we obtain any of the

required conditions.

Lemma 4.5.7. Fix n̄ and let N tend to infinity. Then:

N∑

n=n̄

P (An) =
1

1 − ξ
ℓN1−ξ + h.o.t. (4.8)

Proof. Let us first compute:

Leb(An) =
∑

k∈Kn

Leb(An
k) =

∑

k∈Kn

δn
k =

ℓ

γ

∑

k∈Kn

(n + k)−ξ−1+1/γ

=
ℓ

γ

∑

k∈Kn

n−ξ−1+1/γ + h.o.t. = (β − α)ℓn−ξ + h.o.t.

Then normalizing and summing on n yields (4.8):

N∑

n=n̄

P (An) = ℓ
N∑

n=n̄

n−ξ + h.o.t. =
1

1 − ξ
ℓN1−ξ + h.o.t.

Observe that the diverging condition implies that (4.8) diverges as N → ∞,

while the series converges if the condition is not satisfied.
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Lemma 4.5.8. Fix n̄, let N go to infinity, then:

N∑

n=n̄

N∑

m=n̄

P (AnAm) = ℓ2 1

(1 − ξ)2
N2−2ξ + h.o.t.

Proof. First of all, by symmetry we can assume m > n by paying a factor of 2 and

some diagonal higher order terms; then we separate again An in their respective

components An
k

N∑

n=n̄

N∑

m=n̄

P (AnAm) = 2
N∑

n=n̄

N∑

m=n

P (AnAm) + h.o.t. =

= 2
N∑

n=n̄

∑

k∈Kn

N∑

m=n

∑

l∈Km

P (An
kA

m
l ) + h.o.t.

Now let us focus on the last two sums, fixing momentarily n and k. We can write

the following equality:

N∑

m=n

∑

l∈Km

P (An
kA

m
l ) =

P n
k∑

p=1

P
(
An

kB
nk
p

)
+ error term (4.9)

where we define the sets Bnk
p as the p-th wave (see figure 4.4):

Bnk
p +

⊔

r∈N

Ar
k+p ∩ In

k ,

P n
k is an appropriate number that is estimated by the next lemma and the error

term is due to the fact that the last wave could be incomplete.

α β

An
k An

k+1

Ar
k+pBnk

p

Figure 4.4: Relation between waves Bnk
p and sets An

k
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Lemma 4.5.9. The following estimate holds:

P n
k =

(
N1−1/γ

n1−1/γ
− 1

)

· k + O(1).

Proof. As it follows from (E3), the offset between Ar
k+p and Ar+1

k+p is ∆̄r
k+p. Bnk

p is

the union over all r such that Ar
k+p intersects In

k ; for each fixed p there is a wave of

Ar
k+p that will be inside In

k for some time and then leave the set. P n
k is the number

of waves that will pass through In
k in the time N . This means that:

(N + k + P n
k )1/γ − N1/γ ∼ (n + k)1/γ − n1/γ ,

that is:

N1/γ−1 (k + P n
k ) ∼ n1/γ−1k ⇒ P n

k =

(
N1−1/γ

n1−1/γ
− 1

)

· k + O(1).

The error term in (4.9) can be easily bounded by the order of P (An
k), as we

miscount of at most 1 wave. We are left with the computation of P
(
An

kB
nk
p

)
. Each

Bnk
p is the union of intervals that are ∆̄r

k+p apart and δr
k+p long. Their ratio gives

the portion of the interval covered by each wave.

Lemma 4.5.10. Let us introduce the parameter η = (k + p)/k. Then we have:

δr
k+p

∆̄r
k+p

= ℓ
γ

γ − 1

n1−ξ

k
η

1−ξγ
γ−1 + h.o.t. + λn

k(p).

Proof. By definitions of δn
k and ∆̄n

k we have:

δr
k+p

∆̄r
k+p

= ℓ
γ

γ − 1

(r + k + p)−ξ−1+1/γ

(k + p)(r1/γ−2)
.

96



We now need an estimate on r: acting as before for the computation of P we obtain

the following bound:

r1/γ−1 (k + p) ∼ n1/γ−1k ⇒ r = n

(
k + p

k

) γ
γ−1

.

We can rewrite the previous expression as:

ℓ
γ

γ − 1

(nηγ/(γ−1) + ηk)−ξ−1+1/γ

ηk · n1/γ−2 · η(γ/(γ−1))(1/γ−2)
,

that is:

ℓ
γ

γ − 1

((
n + η−1/(γ−1)k

)
ηγ/(γ−1)

)−ξ−1+1/γ

k · n1/γ−2 · η−γ/(γ−1)
+ h.o.t. ≃

≃ℓ
γ

γ − 1

n1−ξ

k
η

1−ξγ
γ−1

Therefore P
(
An

kB
nk
p

)
= λn

k(p) ·P(An
k)+O(∆̄r

k+p/(β−α)), where the error term

comes from the non-uniformity of the set B. Therefore:

P n
k∑

p=1

P
(
An

kB
nk
p

)
= P(An

k)

P n
k∑

p=1

λn
k(p) + h.o.t. ≃

≃ P(An
k)ℓ

γ

γ − 1

n1−ξ

k

P n
k∑

p=1

(
k + p

k

) 1−ξγ
γ−1

=

≃ P(An
k)ℓ

γ

γ − 1

n1−ξ

k
(1−ξ)γ

γ−1

P n
k∑

p=1

(k + p)
1−ξγ
γ−1 =

≃ P(An
k)ℓ

1

1 − ξ

n1−ξ

k
(1−ξ)γ

γ−1

((

(k + P n
k )

(1−ξ)γ
γ−1

)

− k
(1−ξ)γ

γ−1

)

=

≃ P(An
k)ℓ

1

1 − ξ

n1−ξ

k
(1−ξ)γ

γ−1

k
(1−ξ)γ

γ−1





(
N1−1/γ

n1−1/γ

) (1−ξ)γ
γ−1

− 1



 =

≃ P(An
k)ℓ

1

1 − ξ
n1−ξ

(
N1−ξ

n1−ξ
− 1

)
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Now we sum over n and k:

N∑

n=n̄

∑

k∈Kn

P(An
k)ℓ

1

1 − ξ
n1−ξ

(
N1−ξ

n1−ξ
− 1

)

+ h.o.t. =

≃
N∑

n=n̄

ℓ
1

1 − ξ
n1−ξ

(
N1−ξ

n1−ξ
− 1

)
1

β − α

∑

k∈Kn

δn
k =

≃
N∑

n=n̄

ℓ2 1

1 − ξ
n1−2ξ

(
N1−ξ

n1−ξ
− 1

)

=

≃ ℓ2 1

1 − ξ

N∑

n=n̄

(
N1−ξn−ξ − n1−2ξ

)
=

≃ ℓ2 1

2(1 − ξ)2
N2−2ξ

Recalling the factor 2 we had at the beginning of the estimate, the desired result

follows.

The last two lemmata prove that the weak independence condition is always

satisfied regardless of the value of ξ. Therefore we have only to check the diverging

condition. In the diverging regime we can conclude that the set A has full mea-

sure, whereas in the non-diverging regime we can as well conclude that A has zero

measure.

Step five Critical case ξ = 1/γ

For ξ = 1/γ we have that the overlapping condition is satisfied for small enough a,

because δn
k grows bigger as a decreases. As we notice from lemma 4.5.10, we can

find a critical ā such that for a < ā we have overlapping and for a > ā we have no

overlapping.

In our case ξ = 1−1/γ so that the diverging condition is always satisfied, thus
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statement (a) in theorem C is proved up to the non-degeneracy condition.

Remark 4.5.11. For this particular value of ξ the overlapping condition gives γ < 2;

the critical case is therefore γ = 2. In this case it is easy, given a large enough a ∈ N

to find C1 and C2 such that the arithmetic condition is satisfied for only finitely

many n,m. In general, for γ > 2 we still ignore if R
+ \ A is non-empty.

Remark 4.5.12. The technique we developed can be applied to (−)-orbits as well.

The arithmetic condition relative to such orbits turns out to be more restrictive

than the one for (+)-orbits; more precisely it yields ξ = 2 − 2/γ. This implies that

the diverging condition is not anymore guaranteed. In fact it fails for γ > 2, which

means that such orbits appear for arbitrarily high energies for almost all parameters

A only for γ ≤ 2 and for all parameters for γ < 3/2.

Having studied all possible 2-periodic orbits, we notice how the conditions we stated

are actually also necessary conditions for the presence of elliptic 2-periodic orbits.

This implies the following interesting results:

• if γ = 2 we can explicitly check that for A = 3 the system has only finitely

many (+)-elliptic islands of period 2 (no restrictions on the multiplier).

• if γ > 2 we have infinitely many (−)-elliptic islands only for a null-measure

set. Notice however that lemma 4.5.3 does not depend on ξ, therefore such

set is non-empty.

Remark 4.5.12 also allows to prove (b) in theorem C, provided the result given

in proposition 4.6.3, that states that the measure of each (+)-elliptic island is of

order 1/Y ′3. In fact:
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Proposition 4.5.13. If γ > 4/3 the total Lebesgue measure of (+)-elliptic islands

of period 2 is finite. If γ ≤ 4/3 the total Lebesgue measure of elliptic islands is

infinite.

Proof. We first obtain a rough upper bound to the total measure of elliptic island

by summing the measure of a single island over all intersections where an island

could appear regardless of the arithmetic condition. As there could be one for each

Y ∼ n + 1/2 we have the following estimate:

Leb(islands) < Const ·
∞∑

n=1

1

Y ′3
n

= Const ·
∞∑

n=1

n−3(1−1/γ).

The series converges for γ > 3/2. In order to obtain the sharp estimate we need to

take into account that for some of the n we cannot have an elliptic island. For γ < 2

this can be estimated quite easily, because the following expansion holds true:

(n
1
γ + A)γ = n + γAn1−1/γ + o(1).

From the previous expression it is clear that:

{

(n
1
γ + A)γ

}

=
{

γAn1− 1
γ

}

+ o(1).

This function has an infinite number of branches, let us index them by k. Each

branch will start at nk ∼ kγ/(γ−1). The arithmetic condition can be expressed in

terms of k in the following way:

{

n1− 1
γ

}

< O(k−1).

Figure 4.5 illustrates this condition; for each branch k we have elliptic islands until

the fractional part grows too large and the arithmetic condition no longer holds
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Figure 4.5: The arithmetic condition for γ < 2: we have an elliptic island for all

values of n such that
{

γAn1− 1
γ

}

is in the shaded region.

true. Given this fact it is easy to estimate the number of islands belonging to the

k-th branch. We compute the derivative of n1− 1
γ for nk+1, obtaining a linear lower

bound on the growth of n1− 1
γ in the k-th branch:

{

n1− 1
γ

}

> n
− 1

γ

k+1 · (n − nk) ∼ (k + 1)−
1

γ−1 · (n − nk).

The smallest n for which the arithmetic condition fails can therefore be bound from

above by requiring:

(k + 1)−
1

γ−1 · (n − nk) < (k + 1)−1 i.e. n − nk < (k + 1)
2−γ
γ−1 .

therefore for the k-th branch we have at most O(k
2−γ
γ−1 ) elliptic islands. We now

multiply this number by the measure of such islands and sum over all branches k to

find the total measure:

Leb(islands) < C ·
∞∑

k=1

k
2−γ
γ−1 k−3,

which converges for γ > 4/3. Notice that along the same lines we can obtain as

101



well a lower bound of the same order, that means that the total measure of islands

diverges for γ ≤ 4/3.

4.6 Non-degeneracy condition

According to general KAM theory, there exists a stability island around each

point of a periodic orbit provided that generic non-resonance and non-degeneracy

conditions are satisfied. Following [La93]:

Definition 4.6.1. An elliptic fixed point p of a two-dimensional symplectic diffeo-

morphism f is said to be general elliptic if:

• the multiplier λp is such that λk
p 6= 1 for k = 1, 2, 3, 4 (non-resonance up to

order 4);

• the Birkhoff normal form is non-degenerate, i.e. a quantity that can be written

in terms of derivatives up to fourth order is different from zero (see below).

Theorem 4.6.2 (KAM). If p is general elliptic, then it is stable, i.e. for each

neighbourhood U of p there exist another neighbourhood V such that ∀ k, F k(V ) ⊂ U .

Stability around the point implies the presence of an elliptic island. As noted

before, the construction we described yields elliptic points with multiplier which can

be chosen to belong to some prescribed interval; this implies that we can a priori

avoid resonances. The non-degeneracy condition can be explicitly computed by the

following procedure:
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• We perform a linear change of coordinates such that the differential of the

map dF at the fixed point is a rotation in the new coordinate (ξ, η) where

(ξ = 0, η = 0) 7→ p.

• We compute the Taylor expansion coefficients up to order four (excluded) in

the coordinates u = ξ + iη and ū obtaining the following expression:

u 7→ λpu + A3u
2 + A4uū + A5ū

2 + A6u
3 + A7u

2ū + A8uū2 + A9ū
3 + O(4).

• We compute the following expression:

ω = −i

{

iℑ(λ̄pA7) + 3|A3|2
λp + 1

λp − 1
+ |A5|2

λ3
p + 1

λ3
p − 1

}

.

The non-degeneracy condition requires that ω 6= 0. The coefficients Ai contain

derivatives of Y up to order 3 and derivatives of φ up to order 4. As for high energies

we have Y ′
i ≫ 1, instead of computing all Ai exactly, we perform an expansion in

terms of powers of Y ′
i and compute the highest order non-zero term, taking into

account that ellipticity implies φ̈Y ′
i = νi ∼ 1 (i.e. condition (4.2)). We find by

direct computation1 that the highest nonzero term in ω is of order Y ′
i
3. As a further

simplification note that we have Y ′
2 = Y ′

1 +O(Y ′′); this implies that if we compute ω

by setting Y ′
1 = Y ′

2 + Y ′ and find a quantity bounded away from zero in this limit,

it will be bounded away from zero also for all Y ′
i sufficiently large. The coefficient

1Computations were made using the software Mathematica. A printout can be found at

http://www.math.umd.edu/~jacopods/bnf.pdf
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of order 3 turns out to be the following polynomial in ν = φ̈Y ′ ∈ (−1, 0):

ω3 =
(2 + ν)

...
φ

2

64D6/Y ′3

[

2(ν2 + 4ν + 6)+

+

(

−iν(2 + ν)2

(

3
λp + 1

λp − 1
+

λ3
p + 1

λ3
p − 1

(3 + ν)2

)) ]

.

where

D =
√

2 (1 − Re (λp · ∂z (F 2(p)))).

is of order Y ′−1/2 and ∂z (F 2(p)) is the holomorphic derivative of F 2 with respect

to z = x + iy. Notice that the fractions involving the multiplier λp = exp(iθP ) give

respectively i · cot(θp/2) and i · cot(3θp/2). Of course θp is not independent of ν,

but recall that since we can control the multiplier, we can assume both cotangent

functions to be bounded away from zero and positive. It is easy to check that for

a fixed ν ∈ (−1, 0) this polynomial is bounded away from zero, as each term in the

sum is positive. This is enough to establish the presence of an elliptic island around

each periodic point found with the construction, proving Theorem B. Notice that

the expression for ω3 does not involve derivatives of φ of order higher than 3 and

derivatives of order 2 of higher of Y as such terms appear only in terms of lower

order in the expansion in Y ′ (see below). We finally prove an estimate regarding

the size of the elliptic islands we obtained. This estimate concludes the proof of

Theorem B

Proposition 4.6.3. Consider a 2-periodic orbit of type (+), given by the points

(x1, y1) and (x2, y2) and such that the multiplier is bounded away from resonances

of order up to four; we define Y ′ = (Y ′(y1) + Y ′(y2)) /2. Elliptic islands of type (+)

around such points have area of order Y ′−3 for large enough y.
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Proof. We consider the map F 2 expressed in terms of the variables u, ū defined

above, close to a periodic point p; for simplicity we assume p = 0. Recall that the

variables u and ū are related to z = x + iy and z̄ by a linear symplectic transfor-

mation, i.e. z = b1u + b2ū and b1b̄1 − b2b̄2 = 1. In such variables one can write the

map as follows:

u 7→ A1(u, ū)u + A2(u, ū)ū where A1(0, 0) = λp, A2(0, 0) = 0.

One can obtain all terms of the Taylor polynomial of F 2 in such variables by appro-

priately differentiating the functions A1 and A2 with respect to u and ū. We claim

that the term of order n is of order at most Y ′3+(n−1)/2. By direct computation we

find that

A3, A4, A5 ∼ Y ′3/2
A6, A7, A8, A9 ∼ Y ′3.

This, along with the estimate we claim, is sufficient to prove that the area of the

elliptic island is of the required order. In fact, one can perform a rescaling u 7→ Λu,

obtaining the following (symbolic) expression:

u 7→ λpu +
∞∑

n=2

A(n)Λn−1{u, ū}n.

Therefore by choosing Λ such that A(n)Λn−1 . 1 we obtain that the linearized part is

dominant in a disk of radius of order Λ around the origin. The explicit computations

and the claim allows us to take Λ ∼ Y ′−3/2; the result follows by recalling that the

map z 7→ u is symplectic and therefore it preserves the area form.

We are now left with the proof of the claim, i.e. to prove that A(n) . Y ′3+(n−1)/2.

First we obtain by direct computation a relation between the coefficients ai of the
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Taylor expansion in terms of z, z̄ and the coefficients Ai of the expansion in terms

of u, ū

z 7→ a1(z, z̄)z + a2(z, z̄)z̄ z = b1u + b2ū.

A1 = b1b̄1a1 + b̄1b̄2a2 − b1b2ā2 − b2b̄2ā1 A2 = b̄1b2a1 + b̄1b̄1a2 − b2b2ā2 − b̄1b2ā1.

We can obtain all coefficients A(n) by applying the relative differential operator to

the appropriate Ai; the key fact to notice is that, bi being constant, the differential

operator will operate only on the ai. One can express ∂u and ∂ū in terms of ∂x and

∂y in the following way:

∂u =
b1 + b̄2

2
∂x + i

b̄2 − b1

2
∂y ∂ū =

b̄1 + b2

2
∂x − i

b2 − b̄1

2
∂y .

We are going to explicitly compute the coefficients of ∂x and ∂y to check that they

are respectively of order Y ′1/2 and Y ′−(1/2). Then we find a general expression for

the order of arbitrary derivatives of a1 and a2. Explicit calculations provide the

following values for ai:

a1 =
(

1 + 2φ̈(Y ′
1 + Y ′

2) + 2φ̈2Y ′
1Y

′
2

)

+ i

(

2φ̈ + 2φ̈2Y ′
1 −

Y ′
1 + Y ′

2

2
− φ̈Y ′

1Y
′
2

)

a2 =
(

−2φ̈Y ′
2 − 2φ̈2Y ′

1Y
′
2

)

+ i

(

2φ̈ + 2φ̈2Y ′
1 +

Y ′
1 + Y ′

2

2
+ φ̈Y ′

1Y
′
2

)

Where recall that we defined Y ′
i = Y ′(yi); notice than the coefficient of ∂x is of order

Y ′1/2 and the coefficient of ∂y is of order Y ′−(1/2). This reflects the fact that the

symplectic transformation stretches along the y direction and contracts along the x

direction in order to put the differential in normal form. This in turn implies that

the shape of the invariant curves is elongated in the x direction (as we can notice

in figure 4.6). We are left with computing the order of magnitude of derivatives of
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a1 and a2. It is convenient to notice that d(F 2) is close to a square of a matrix, i.e.

if we write Y ′
1 = Y ′(1 − δ) and Y ′

2 = Y ′(1 + δ) we obtain:

α1 + 1 + φ̈Y ′ + i(φ̈ − Y ′/2) α2 + −φ̈Y ′ + i(φ̈ + Y ′/2).

a1 = (α1α1 + α2ᾱ2) − 2φ̈2Y ′2δ2 − 2iφ̈2Y ′δ + iφ̈Y ′2δ2

a2 = (α2α1 + α2ᾱ1) − 2φ̈Y ′δ + 2φ̈Y ′2δ2 − 2iφ̈2Y ′δ − iφ̈Y ′2δ2

As δ is of order 1 (and limiting to 0 as Y ′ → ∞), the error term is of order at most

Y ′, whereas the main term is of order Y ′2. Now we differentiate α1 and α2 with

respect to x and y:

∂xα1 =
...
φ (Y ′ + i) ∂xα2 =

...
φ (−Y ′ + i)

∂yα1 = Y ′∂xα1 + Y ′′(φ̈ − i/2) ∂yα2 = Y ′∂xα2 + Y ′′(−φ̈ + i/2).

In order to obtain an upper bound on such derivatives, we will consider φ(n) ∼ 1

regardless of the fact that even derivatives will be of order Y ′−1. To this extent, we

observe that all terms containing second (and higher) derivatives of Y will appear

in terms of lower order than the dominant Y ′ for ∂x and Y ′2 for ∂y . By direct

inspection, the same statement is true for terms containing δ in the expression for

ai (in fact δ ∼ Y ′′/Y ′). Therefore if we restrict to the maximum order:

∂k
x∂l

yα1

∣
∣
max

= Y ′lφ(k+l+2)(Y ′ + i) ∂k
x∂l

yα2

∣
∣
max

= Y ′lφ(k+l+2)(−Y ′ + i).

Now recall that we were to compute derivatives with respect to the (u, ū) variables

and as such we should recall that the coefficients in front of ∂x and ∂y are of order
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respectively Y ′1/2 and Y ′−1/2. This means that we obtain:

∂k
u∂l

ūα1 . Y ′(k+l)/2+1 ∂k
u∂l

ūα2 . Y ′(k+l)/2+1,

which in turn implies:

∂k
u∂l

ūa1 . Y ′(k+l)/2+2 ∂k
u∂l

ūa2 . Y ′(k+l)/2+2.

Therefore we obtain the required estimate for A(n), i.e.:

A(n) . Y ′∂(n−1)ai . Y ′3+(n−1)/2,

which concludes the proof.

Figure 4.6: Elliptic island of period 2 and type (+); each smaller picture is an

enlarged portion of the previous one. In the big picture we see the 2-periodic islands

(bottom center) at two suitable intersection points of ℓ and ℓ1.
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