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We give quantitative results about the abundance of escaping orbits in a family
of exact twist maps preserving Lebesgue measure on the cylinder T x R; geometrical
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Chapter 1
Preliminaries

1.1 Introduction

In this dissertation we study dynamical properties of a family of exact twist
maps preserving an infinite measure on a non-compact phase space. Our main fo-
cus is to establish results about abundance of escaping orbits, i.e. trajectories that
eventually leave any compact subset of the phase space. The study of the asymp-
totic dynamical features of this family is interesting for a variety of reasons. First
of all, the maps of the family can serve as a model for the high-energy dynamics
of some mechanical problems. Examples include the Fermi-Ulam ping-pong and its
generalizations, which have been the starting point for this dissertation, and that
will be explained in detail in a following section; some n-body problems, such as
the Sitnikov three body configuration or cometary motions, slow-fast systems and
motions close to a resonance also show remarkable similarities with the dynamical
system studied in this work.

Another quite interesting feature of the family under consideration is its affinity with
the Chirikov-Taylor standard map: in fact both systems share essentially the same
geometrical structure. For this reason, most of the difficulties we will encounter
in our work will be directly related to corresponding issues for the standard map

and we can expect that the techniques we use in our case could also be successfully



applied to the more difficult case of the standard map.

The maps we study are given by transformations of the cylinder .# = S' xR >
(z,y) onto itself. Fix ¢ to be a smooth real-valued function on S', let ¢ be its
derivative and Y be a function on R that will be specified below. Then consider the

map given by the following equation:

F: ’ — w+Yl) : (1.1)

y y+20(z +Y(y))

From now on, we assume, unless otherwise specified, that:

o(z) = %sin@m&) (1.2)

where A > 0; we also define for v > 1 the function Y as follows:
Y (y) = Const - |y|. (1.3)

The family of maps we study is generated by the two parameters A and + in (1.2)
and (1.3). As it will be clear later, it turns out that if v ¢ {1, 2}, the value of the
parameter A is almost irrelevant for our results; the only significant parameter of
the map F' will be the exponent . Notice that F'is smooth everywhere except on
the circle {y = 0}; however, since we are only interested in the asymptotic behavior
for y — oo of the map F', we will effectively neglect the singularity line {y = 0} and
treat F' as a smooth (exact) twist map on the cylinder. Furthermore, notice that if

v — 1 the map F' essentially becomes an unfolding of the standard map:

T Tty
Sy —

y Y+ kd(z +y)



Finally, F' has a symmetry given by y — —y, ¢ — —¢, therefore we will restrict

ourselves to consider only positive large values of y.

In the next sections of this introductory chapter we will first explain how the
map F' can be obtained as an asymptotic approximation for one of the aforemen-
tioned mechanical models, and then state the results we are going to prove in this

work.

1.2 Fermi acceleration

The acceleration mechanism known by the name of Fermi acceleration was
originally proposed in 1949 by Enrico Fermi [Fe19] to explain the presence in the
universe of high energy particles called cosmic rays. Such particles are believed to
gain energy by consecutive interactions with irregularities in an otherwise station-
ary magnetic field. Nalvely, one would expect a process of thermalization leading
to a stationary motion of the particle itself; such a reasoning turns out to be too
simplistic and a more refined analysis shows that there is a definite probability of
an average gain in energy.

In 1960, Ulam [UIG0] suggested a simple Hamiltonian system to model such statisti-
cal acceleration behaviour. The model has been thereafter known as the Fermi-Ulam
ping-pong model and consists of a particle moving between two infinitely heavy walls
that are performing an oscillatory motion; the particle changes its velocity only by

elastic collisions with the moving walls and it is not subject to any other force.



The main questions about this problem regarded the existence of trajectories with
unbounded energy: such orbits can either be escaping, i.e. such that the energy of
the particle goes to infinity with time, or oscillating, meaning that the limsup of
energy is infinite while the lim inf remains bounded. Fermi and Ulam, supported by
some numerical evidence, conjectured the existence of unbounded orbits for their
model. In 1977, however, KAM theory provided [Pu77, Pu95] a negative answer to
such questions: for sufficiently smooth motions of the walls, all orbits are bounded,
because for high energies there are invariant tori that prevent diffusion. It is inter-
esting to note that the smoothness condition is not a mere technical issue, as for less
regular motions one can indeed construct unbounded orbits [Zh97]. As an histori-
cal remark, it is perhaps worth mentioning that, despite using the most advanced
computer machines of their age, Fermi and Ulam were forced to perform very crude
approximations in order to obtain numerical results in a reasonable time. In partic-
ular, in their simulations, the position of the walls was given by a saw-tooth function
of time, which is precisely the function that has been used in the construction of
unbounded orbits in the non-smooth case.

A wvariazione sul tema involves a single oscillating wall and introduces a poten-
tial U(x) = x, @ > 0 which serves the purpose of bringing the particle back to the
wall. By considering different values of the exponent v one obtains a one-parameter
family of models; all such models preserve a measure (Liouville measure) that will be
the relevant measure in all results that follow. The case of gravity potential (o = 1)
has been the first to be investigated [Pu77] and the study yielded the following,

indeed quite surprising, result:



Theorem 1.2.1 (Pustylnikov). There is an open set of wall motions ¢(t) (in the
space of periodic analytic functions admitting an analytic continuation to a given

strip |Sz| < e) such that the measure of the escaping orbits is infinite.

The case of elastic potential (o = 2) has been studied in [Or99], [Or02]; abun-
dance of unbounded escaping orbits has been proved under some resonance condition
between the motion of the wall and the potential.

In a more general setting we can again use KAM theory [Do0g] to prove the following

result:

Theorem 1.2.2 (Dolgopyat). If @ > 1 but o # 2 and the motion of the wall
15 smooth enough, then the set of escaping and oscillatory motions is empty since

wmvariant tori persist for high energies.

On the other hand, KAM theory do not forbid orbits with unbounded energy
for weak potentials. However, it is conjectured that for all potentials weaker than
gravity (i.e. for & < 1) the measure of escaping motions is zero. The conjecture is

substantiated by the following

Theorem 1.2.3 (Dolgopyat). If a < 1/3 and the motion of the wall is a sinusoid,

then the set of escaping orbits has zero measure.

The above results leave several open questions regarding the largeness of the

following sets:

e The escaping set & i.e. the set of orbits such that the energy E tends to

infinity as time ¢ grows;



e The set of orbits with bounded energy;

e The oscillatory set i.e. the set of orbits such that limsup E(t) = oo and

liminf E(t) < oo.

The maps considered in this dissertation can be regarded as the static wall approzi-
mation of the bouncing ball system. This approximation, described in more detail in
section 1.3, is widely used in physics literature. It has the advantage of being given
by simpler and more explicit formulae whereas keeping the essential geometrical

structure of the complete model.

1.3 Static wall approximation of the bouncing ball system

This section closely follows section 3 in [Do08]. Consider the problem of a point
mass bouncing vertically on an infinitely heavy horizontal plate which oscillates with
period 1 in the vertical direction and interacts with the particle by the law of elastic
reflection. The particle is moving in a potential U(z) = %, where z is the vertical
position and « is some positive real number.

Let ¢(t) be the vertical position of the plate at time ¢, periodic of period 1; for

simplicity we will consider the case:

A A
o(t) =B+ o sin(27t). B> o

It is natural to associate to the system a discrete time map defined as follows. Let
t, be the time of the n + 1st collision between the plate and the particle and v,

its velocity (pointing upwards) immediately after the collision. Since the position



of the plate is a 1-periodic function of time ¢, we can consider ¢, on S! = R/Z. In
this way the phase space is a half cylinder; in fact the velocity immediately after a
collision at time ¢ has to satisfy the inequality v > ¢(t).

An approximation common to this kind of problems is the so-called static wall
approximation, in which we consider the plate fixed at position zy but exchanging
momentum with the particle as if it were moving. Notice that, since the displacement
of the plate is a bounded quantity, we are neglecting terms of order at most 1/v;
the approximation is hence suitable for studying the high energy dynamics of the
mechanical system.

Fix 29 > 0, then define T'(v) : Rt — R* as the time taken by a ball leaving x = x
with upward velocity v to return on x = x( subject to the potential U(z). In our
case T'(v) ~ v7, where it is easy to check that v = 2/a — 1. In fact, let Ey be the

energy of the particle after the collision:

——dz =

Tmax Tmax 1
T =2 / _
T U(l’) x0 V EO —x®

dr Ty = ES/O‘.

/

Performing the change of variable © = xé “y we obtain:

' 1 1/a i1 IL‘S 2 _q
T—/ I/Q—EO dy=E§ *Const- | 1+0(— ]| ~ve .
woBy Ve By TN/ T —y® Ey

Notice that the asymptotic expression is exact for zo =0 or a = 1.
Using the static wall approximation and considering 7" = C' - v7, the map F :

(tn, Un) = (tni1, Ung1) can be written as follows:

t t+T(v)

v v+ 20 (t+T(v))



which is (1.1) if we let (t,v) — (x,y) and T — Y. In the following, when useful, we
will borrow the terminology from the physical problem also when referring to the
model map (1.1). In particular we will often refer to the variable y as the energy of
the system.

The map F' defined in (1.1) is the composition of two translations, therefore it
preserves the Lebesgue measure dzdy; by considering Y (y) rather than y as the

fundamental variable, we would obtain:
v\Yr . ! .
Y—C (5) +20(z+Y)| ~Y+Y"VC G (z+Y) +hot.

Thus, the map F' appears to be similar to a standard map with perturbation pa-
rameter k = Y'1/7C" that depends on y. We can distinguish between the following

regimes:

e weak potentials (v > 1) - the perturbation parameter grows as energy grows;

we can expect diffusion to high energies;

e gravity or standard (v = 1) - the system is equivalent to the standard map

(unfolded on a semi-cylinder along y);

e strong potentials (0 < v < 1) - the perturbation parameter decreases as we
increase the value of y; there is persistence of invariant tori for large y and

therefore we do not have diffusion to arbitrarily high energies;

e clastic potential (v = 0) - the function Y is constant, this is an exceptional

case;



e strong potentials (1I) (—1 < v < 0) - large values of y correspond to small

values of Y'; we recover once more invariant tori bounding energies from above;

e Fermi-Ulam ping pong (v = —1) - once more we have invariant tori for high
energies. Notice that in this case the static wall approximation ceases to be a

good approximation because we neglect terms of the same order as Y.

Notice that, in order for the last two cases to make sense, we have to consider a
slightly different function Y = Const - |y — y*|* for some fixed y* > 0. The situation
we will study in this dissertation is given by the first case; for each v > 1 we can see
the corresponding map as a realization of an anti-integrable limit for the standard

map.

1.4 Statement of the results

The purpose of this dissertation is to obtain results about abundance of un-
bounded orbits under iteration of the map F. Let (zx,yr) = F*(xo,%0), then the

escaping set can be defined as:
& = {(xo,y) s.t. lim y, = oo}.

The first result ensures that, provided v > 1, the escaping set is not only non-empty;,

but it is also topologically large.
Theorem A. If v > 1 then the escaping set & has full Hausdorff dimension.

The theorem is proved in chapter 2 and the proof involves the construction of a

full dimensional subset of the escaping set using hyperbolic dynamics. On the other



hand, the conjecture for the bouncing balls system suggests that results analogous
to theorem 1.2.3 should be valid for all v > 1. In fact, theorem 1.2.3 can be easily
adapted to our situation; the key ingredient for the proof is showing that the z-
component of most trajectories approaches equidistribution. In the proof, valid up
to v > 5, the equidistribution estimates are obtained by bounding the expansion
and distortion rates after a single iteration of I’ outside a so-called critical set .
The idea to improve the condition on v is to consider further iterates of the map:
this allows to obtain stronger estimates outside a smaller critical set and leads us

to prove:

Theorem B. Let v > 5/2, then the escaping set & has zero Lebesque measure.

The proof of the theorem, given in chapter 3, relies on establishing two-step
estimates and defining a suitable critical set. Establishing good equidistribution
bounds in this case is considerably more complicated than in the one-step case.
Nevertheless, we believe we can further optimize the process and be able to obtain
better estimates by considering n-step estimates along with smaller critical sets. An
obvious obstruction to equidistribution, however, is given by the presence of elliptic
islands. Our last result deals with abundance of elliptic islands inside the critical

set.

Theorem C. Let v > 1. Then:

a) for almost all values of the parameter A there are elliptic islands of period 2
for arbitrarily high energies. Moreover, if v > 2 the same result holds for all
values of A;

10



b) the total measure of such islands is infinite if v > 4/3 and finite if v < 4/3.

This theorem is proved in chapter 4; we find such islands near homoclinic
tangencies which enjoy particular symmetries and for which we can find relations in
the parameter space that ensure their existence. This argument involves parameter
exclusion techniques that show connections with the work of Young-Wang [YWO0S].

Theorems A and C will soon be published as a paper [D09].

1.5 Remarks

The techniques we developed in order to achieve our objective could be used
to answer further natural questions which arise in the model, for instance to study
abundance of oscillatory motions, or more optimistically, to establish the presence
an ergodic component of infinite measure. In fact, as suggested by B. Fayad, one
should be able to adapt the proof of theorem A to prove that the set of oscillatory
orbits has also full Hausdorff dimension. Moreover it is likely that, either by a di-
rect application of the results, or by applying the same techniques to the systems
which are modeled by the transformation F', one could prove similar results for the
concrete examples mentioned earlier.

The finite-step mixing bounds turn out to be the most sophisticate estimates we
obtain in this work; however, they can be probably improved, but substantially
more work has to be done in order to achieve better bounds. One problem that will
surely arise is the given by abundance of elliptic islands, which prevents a priori

good equidistribution estimates; in theorem C we only consider islands of period 2,

11



whereas we would need to control islands of higher period and more complicated
combinatorics. We believe that this task can be accomplished by a suitable adapta-
tion of the techniques developed by Gorodetsky-Kaloshin [GI<07]. Such effort could
be rewarded with a quite deep understanding of the dynamics of the standard map
in the anti-integrable regime. In fact, as it is well known, in spite of all efforts, the
existence of a positive measure set of orbits with positive entropy for the standard
map has so far eluded all attempts of a proof. Improving the techniques developed in
this work could possibly shed some light upon this very resistant problem. Finally,
we have shown that questions about abundance of elliptic islands are related to cer-
tain questions of Diophantine approximations and it would be interesting to further
explore this connection. For instance, in the case v = 2, Elkies-McMullen[ENM04]

found and investigated a striking relation with flows on homogeneous spaces.

I wish to express my gratitude to my thesis advisor Dmitry Dolgopyat, who
introduced me to the problem and followed me through the development of this
work with interest and curiosity. I also want to thank Bassam Fayad and Carlangelo

Liverani for their most precious comments and suggestions.
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Chapter 2
Hausdorff Dimension of the escaping set

2.1 Main definitions

We recall the definition of Hausdorff dimension of a metric space. First we

define the Hausdorff s-measure of a metric space E as:

H*(F) = limsu inf diam (A4;)° 5 .
( ) 6—>0p(s A{Ai}fE{Z ( ) }
—covering o

Then we define the Hausdorff dimension of E as that critical s such that:
dimy F = inf{s s.t. H*(F) =0} = sup{s s.t. H*(E) > 0}.

It can be actually proved that if s < dimpy (F) then H*(E) = oo; moreover, Hausdorff
dimension is a bilipschitz invariant of metric spaces.

We recall the definition of the escaping set; let (xy, yr) = F*(20,%0) and define
& = {(xo,%0) s.t. y, — 00 as n — oo}.

Theorem A. Assume v > 1, then dimy & = 2.

The proof will be given in the next two sections. In the first one we prove
an auxiliary result for a model system given by a sequence of expanding map on
the circle. In the second part we reduce the proof of theorem A to the previously

established result.

13



2.2 Model system
Fix ¥ € (0,1) and let Jy € S' be a closed interval of length 9. Fix two
increasing sequences of positive real numbers {m,} and {m,} such that:
VneN 207'<m, <m,; m,,m, " oo.

Definition 2.2.1. A continuous function f : S' — S! is said to be n-admissible if

a lift f : St — R satisfies the following inequalities for all z, 2" € S*:
m,d(w, ') <|f(x) = f(2')] < Mpd(, '),
where d is the standard Euclidean distance on S' = R/Z.
Then we can prove the following

Lemma 2.2.2. Let J, C S! be a decreasing sequence of sets and let F,, be a sequence
of continuous functions F,, : J,_1 — S'. Assume for convenience Fy : S' — S! to be

the identity map and that ¥Vn € N:
o J, = |, Jur where each J,j is a closed interval such that the restriction
F, : Ju — S' is one to one;

o Iy, . = foro F, where f, 1 is a n-admissible map

® Jn+1 = Fn_+11<JO>
and finally let

J = u;

If there exists C' € R such that for all large enough n we have m, < Cm,, then

14



Proof. In order to compute dimy J we construct a subset J' obtained as a limit of
a decreasing sequence of sets J! C J, that we define as follows: J! =| |, J,,x where
the union ranges only on those k such that F,, : J, , — Jy is one-to-one and onto.

We now introduce inductively what we will refer to as the natural indezing for the
sets J, r contained in J,. Let J{ =| |, Jix; we arbitrarily define ‘][/jl] = Ji i, for each
J1 C Ji. Then suppose we have already defined a natural indexing J[/j1~-- il for J;
we label all J},,, C ‘][/j1-~~jn} as ‘][/j1~~~jnjn+1] by arbitrarily choosing the index 7j,1.
Notice that we purposefully avoided to specify a range for the j;s; in fact each ji
ranges on an index set which depends on the previous choice of j; - -- jp_1. Finally

we let J' =, J}. Define now k,, € N according to the relation:

k,+1<m, 0 <k,+2 k, > 1. (2.1)

mn

For each n € N let K,, be the number of intervals J[/jl.__ jn I J!; by definition of

n-admissible function we have:
Ky > Kok, > ]k =K,
j=1

We will now show that the set J’ has Hausdorff dimension s = 1. First of all it is
obvious that s < 1 since J C S', therefore it suffices to show that for all s < 1 we

have dimg(J') > s. To simplify the notation we will from now on write J! for

Ji-Jn
Sy

Definition 2.2.3. The running Hausdorff dimension of {j; - - - jn } is the real number
Sj,...j, satisfying

|7

1S9y dn — -1
il K.

15



The running Hausdorff dimension can be bounded using {m,,,m,} and ¥ ac-

cording to the following estimate:
Lemma 2.2.4. Suppose that the following holds for all large enough n:
m, < Cm,,.

Then we obtain the following lower bound for the running Hausdorff dimension:

logv +n (logg — log C’)
log M,, — log ¥

Sjpegn > 1+ =1—-¢, " 1asn— co. (2.2)

Proof. Using (2.1) we obtain the following estimates:

k, <dm, <k, +2 <3k,

K, <9"M, <3"K,

Now since we know that [J} ;| > ¥/M,,, for all possible choices of ji - - - j,, we can

1
write:

K, (9/M,)""7" < K, (9/M,)""7" < K,|J]

Sgq..4
. J1°In ]_
1"'.7n| ’

and taking logarithms we establish the following inequality:
log K,, — sj,...j, (log M, —log ) < 0.

Therefore we obtain the bound:

log M. +nlog?
Sj1vdn > g__n gg.
log M,, — log v

Now by hypothesis we know that eventually M, < C"M, , thus log M, < nlogC +
log M,, that in turn implies:

- logM,, +n (logg — log C)
Sjyonj —
s log M, — log ¥

?

16



that yields estimate (2.2) provided that we show that €, is going to 0. In fact

n
log M,

En — 0,

as log M, /n is the average of the diverging sequence log 7. O]

To obtain a lower bound on the Hausdorff dimension of J' we are going to use

the following two propositions:

Proposition 2.2.5. Suppose there exists a probability measure p on a metric space

X on the o-algebra of Borel sets such that for all sufficiently small balls B we have:
w(B) < Cdiam(B)?, (2.3)
then dimg X > s.

Proposition 2.2.6. There ezists a probability measure p on J' satisfying (2.3) for

all s < 1.

Propositions 2.2.5 and 2.2.6 imply that dimg J’ > s for all s < 1, which

concludes the proof of lemma 2.2.2. O

Proposition 2.2.5 is a classical result, hence the proof will be omitted (see e.g.

[Fa86)).

Proof of proposition 2.2.6. We first build a probability measure x4 on J’, and then
check that u satisfies (2.3) for every s < 1. For each n and choice of a natural index

J1 -+ jn, fix a point z;,..;, € J! Then define the following sequence of positive

Jign”
functionals acting on C(S*, R):
1
Vo eCSLR) D,(p) = Z ?90(3%--%)-
jl?”' 7jn n

17



We now argue that this sequence of functionals has a weak limit for n — co. In fact
any continuous function ¢ on S! is also uniformly continuous; therefore Ve 3§ such

that d(x,2') < ¢ implies [p(z) —p(2')| < e. Now take n such that max;,..j, |/ <

vl

6. Then for each m > n:

1 1
o) = Pum()| = | > 70 % (@iga) = > 7o P (@) | =
jlv"'v.j?’b " .jlv"'zj’m m
1 1
- Z 7%0 (ZL‘JI ]n) Z K_ <x]1]m) S
J1y5dn n jn-&-ly"',jm m
1
< Z K_|90(3731 in) = @ (Tjrgn)| <
Ji, '7jm m
< Z Le—os
- 4~ K,
J1y s Jm

In the above inequalities we used the fact that by definition

Y K.JKn=1

Jnt1Jm

and that J . < J! . whichimplies z,..j,, Zj ...;,, € J/

im C Jin s thevefore d(x, ., 2j,.5,,) <

0. The sequence ®,, weakly converges to a positive functional ® i.e. to a Borel mea-
sure p via the Riesz representation theorem. Moreover p is a probability measure
(it suffices to compute the limit of ®,, against the function ¢ = 1).

At this point for any Borel set ' and n € N we can write:

) 1
p(B) = lim 7o XE (1)

Jis s dm

1
= Z nlbl_{noo Z K_mXE ($j1~~~jnjn+1'~jm)

INA
M
|
3
ks
1
=

18



By definition of running Hausdorff dimension this implies the following estimate for
n(E):

WE) < D g (2.4)

1 n
lemjnmE;é(Z)

In order to obtain estimate (2.3), fix a ball B of radius r = pf. Then 2p €
(M ' M1 for some n. Now subdivide [M ' M ') in m, — 1 intervals each

of length M *. Let [ > 0 be such that 2p € [IM ', (I + 1)M,"). This means that

1 1
— < Mt < =2p.
e N el

Using the previous estimate we know that each interval of J; contains a ball of
radius p/(l 4+ 1), therefore a ball of radius p can intersect at most [ + 1 + 2 such
intervals. Using (2.2) and (2.4) we obtain:

pB)< > T > T

7jn jl?-..
ﬁB#@ J;lmjn

e
J!

7j77«
ein NB#0

< Z (ﬁMn)*(lfsn) < (l + 3)(19Mn)7(175n)

jl’”' )jn
J! o NB#D

J1In
2\ 143
<(i+3) (TT) = B

If n is large enough, the fraction equals [*» + O(1), which a priori may be not

bounded; but we have:

< myr < My,

19



and:

logd +n (1 —log C
M =exp | log M, o8 n(og o8 )
log M,, — log?
log M, log19+log19< ( 9 )>>
= logd +n ( log = —log C
eXp( log M, — log 0 eV {logg 08
log v 9
<e log? +n ( log = —logC
- p(( IOgM IOgﬁ)(Og n(0g3 % )))
log log ¥ ) log¥ +n (logg — logC’)
= ex —
P log M, — log ¥ log M,,_,
#—n 1

with €/, — 0 as n — oo. Then
< M, < (2p) 75

So we finally obtain p(B) < C|B|'~*»~%». This estimate still depends on n therefore
on | B|, but notice that ¢, + ¢/, is monotone decreasing to 0, therefore if we fix n the
inequality will hold for all B such that |B| < M_*,. At this point it is easy to see

that Ve > 0 3§ such that any d-ball B with 6 < & will satisfy inequality (2.3):

u(B) < Cdiam(B)' .

2.3 Reduction to the model system

In this section we show that lemma 2.2.2 can be applied to our dynamical
system to prove theorem A. We first build a set such that the dynamics of orbits that

never leave this set is hyperbolic; a quite more elaborate version of this construction
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will be introduced in the next chapter. For a > 0 small we define the set

Bo % {(r.) st [8(a)] > a}

we write for reference the differential d [

1 Y'(y)
dF =

20(x +Y(y)) 142Y'(y)o(z +Y(y))
Lemma 2.3.1. Ify is large enough and F(x,y) € B, then dF is hyperbolic.

Proof. 1t suffices to check that Tr(dF) = 2(1+Y'(y)¢(x + Y (y))) > 2, but for large
enough y, Y’'(y) > 1, therefore, since by hypothesis ]¢(x + Y(y))| > a we have

hyperbolicity. O]

We now want to find an invariant cone field. In order to do so we consider
the direction corresponding to the expanding eigenvector in the limit Y/ — oo,
corresponding to high energies. We claim that a small cone around this direction is

invariant for large enough y. In fact the eigenvectors of dF' in the above limit are

Vi = (62,0y) = (1,26(z + Y (y)))

V_ = (0x,dy) = (1,0)

Therefore, having fixed a small 0 < ¢ < a, the cone field defined by the following
expression:

s .
Clay) = {(dz,dy) s.t. ’% —2¢(x)| < ¢} (2.5)

is invariant on F~!'B, for large enough y because V. and V_ are well separated on

F~1B, and the expanding eigenvalue grows arbitrarily large. This means that if we
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take a curve whose tangent vectors lie in € and we apply F' we are going to obtain
(on the hyperbolic set) a curve whose tangent vectors again lie in the cone field;
moreover since the vectors tangent to the curve are close to the expanding direction
of the map, the dynamics along the curve will also be expanding. For such reasons

we now define
Lo = {(z,y) = (z,C +26(x))}.

By the cone condition, orbits that never leave the set B, are hyperbolic; more-
over each curve I'c will be transversal to the stable direction at each point of the

hyperbolic set. Now define the following set:

A = {(@n,Yn) 8t Yn — Yno1 > €}

Since yp — Yn_1 = 2¢(,), we have that {2¢(z) > e} = A.. We can therefore select

values of a, € and 7 such that there exists an interval Jy C S! satisfying:
Jox {y >y} C A. N By,

and g is large enough for lemma 2.3.1 to hold true and for the cone field in (2.5) to
be invariant for any y > y. We now define a sequence of sets .J,, and of functions F},
satisfying the hypotheses of lemma 2.2.2. Let 7 : .# — S!' be the projection onto

the z-component, fix I'c = {z,¢¥(x)} and let:
F,=noF"o:xy+— x,

I = ﬁ E'Jo.
k=0
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Lemma 2.3.2. For large enough C' there exist positive constants Cy,Cs,C,C such

that:

Fin (@)

Veed, C(C+ek) < |-

' < Gy (T 434K
Proof. We know that zy,1 = x; + Y (yx), thus:

d
=1 + Y/(yk)d—zz‘

dwgiq
dl’k

If x € J, and C' is large enough, we know that the cone field € is invariant i.e.

(1, dd%’;) € C, therefore

W o4y

<c
dxk ’

that implies

21— 9(1) 4 Const i (9xn) +0(c)).
dxk

and since (xy,yx) € B, and ¢ < a we can find positive C’l and C~’2 such that

< 642ny1 .

~ dx
Cuyi™ <' dif

Now since each (xy,yx) € A. we have the following bounds on yy:
C + ek <y, < C + 3Ak,

where C and C' are respectively the minimum and the maximum y of the curve I’

and by (1.2), A is the maximum of ¢(z). Therefore

- d ~ _
Gy (C+ek) ™' < ‘% <G, (C+34kK)""

Lk

which is the required inequality. O

23



The previous lemma shows that each function f : xp — xp,4 is k-adapted with

respect to the sequences m,, My, defined as:
my = Cy (C+ k)™ =Gy (C+34k)" .

Finally we can take C' big enough so that we have m,|Jy| > 2 and notice that
eventually my < 6’2/6'1(%)7_1 -my. Thus we can apply lemma 2.2.2 to J and

conclude that for large enough C' all curves I'c are such that
dimy Te N[\ F™(A-NB,) =1.

On the other hand we have that orbits belonging to I'c N (), F"(A. N B,) are
uniformly hyperbolic and escaping. Since ' is transversal to the stable direction

we conclude that dimy & = 2.
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Chapter 3

Measure of the escaping set
In this section we will prove that the Lebesgue measure of the set of escaping
points is zero under some assumptions on the parameter 7. In what follows, to

simplify the notation, we again let (zy, yx) = F*(z0,y0). Recall that:

o(x) = %sin(?ms) (1.2)

and that the escaping set is defined as :
& = {(wo, yo) s-t. nh_{{.loyn = oo}
The main result of this chapter is the following
Theorem B. Let v > 5/2; then the escaping set & has zero Lebesque measure.

The idea behind the proof is to consider the system as a slow-fast system,
the slow variable being the y-coordinate. Since the map F' is exact, sufficiently fast
equidistribution along the z-coordinate should imply recurrence by comparison with
a one-dimensional random walk. However, we cannot obtain good equidistribution
estimates on orbits passing through a so-called critical set. For + big enough we
can define a finite measure critical set which contains all points of the phase space
with small enough energy. Orbits that land on the critical set infinitely many times
can are thus recurrent by means of the Poincaré recurrence theorem. We then prove
that such orbits form a full-measure set in the phase space by using the previous
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comparison argument. To obtain good equidistribution estimates we decompose the
invariant Lebesgue measure into suitably defined measures over expanding curves.
Such objects are called standard pairs; studying the induced dynamics on standard
pairs outside the critical set allows us to prove equidistribution bounds along the x
coordinate for F'.

The strategy of the proof of theorem B closely follows the one used in [Do0g];
several estimates, however, need to be quite substantially improved. In particular
we need to establish two-step equidistribution estimates (lemma 3.4.3); we believe
that such bounds can be the first step to obtain sharper n-step estimates that should

in principle allow us to prove theorem B for smaller values of ~.

3.1 Induced dynamics

It is convenient to define the set of basic pairs, which are a pair of a curve of

length O(1) and a probability density over the curve.

Definition 3.1.1. A basic curve is a curve I' C .# which is a graph of a smooth
function ¥ (z) over an interval I C S! of length § < |I| < 26 for some § > 0 to
be fixed. A basic pair is given by a basic curve I' and a strictly positive smooth
probability density p(x) on I'; we denote a basic pair by ¢ = (T, p).

Given a real valued Borel measurable function <7 (z,y) we define:
Bi() = [ o pds = [ (o, 0(@)pla)is,
r I
and given a Borel measurable set E:

P(FE) =E,(1g).
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A dot will denote differentiation with respect to the variable x; the slope of a
basic curve will be denoted by h(z) = v(z) and for convenience we will consider
h € RU{oc}; the logarithmic derivative of p will be denoted by r(z) = p~!(x)p(z).

Finally, given a basic pair ¢ = (T, p) we define:

We require 20 to be smaller than the minimum distance between the critical
points of ¢. In our case (1.2) implies that it is enough to require § < 1/10.
For future reference, we introduce here the formulae for the push-forward F* at the
point (z,y) of all relevant quantities associated to a basic pair; they can be readily

computed from definition (1.1).

1
p— zp (3.1a)
C R Y 1Y
Fay) - 1 1
h—2¢(x +Y) + v (1 — E) (3.1c)
. LY 1\?3

in the above expressions (3.1), we consider Y = Y (y) (similarly for Y’ and Y"”) and
L = L(z,y) defined as 1 + h(x,y)Y’(y). Notice that if I" is a curve of slope h we

have:

d(lfl
dl’o r

L(xo,10) = (0);

for convenience we also define the adapted slope h:

h(z,y) = h(x,y) +1/Y'(y)
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so that we can conveniently write £(z,y) = h(x,y)Y’(y). We will consider (3.1b-d)
as the defining equations for an induced map on the fiber bundle over .Z given by
F > (x,y,r,h, h), this observation allows us to use a natural and convenient geo-
metrical terminology in what follows. In particular we will be able to define “nice”
pairs by specifying “nice” sections of the bundle .. Notice that we do not include
the density p as a coordinate in the bundle .# because it is a non local quantity; on
the other hand r,h, h are all local quantities associated respectively to distortion,
slope and curvature.

We now proceed to the definition of standard curves, which will be given in order

for them to enjoy good averaging and invariance properties.

Let V' be the constant unit vertical vector field and hy be the associated slope

field, i.e.

V(z,y) = ho(z,y) = o0;

fix Dy € RT to be specified later and let Gy be the cone field around V' defined as

follows:

Co(z,y) = v € Tyt st. vx 7|E| > Doy’(y)—l/Q ;
h

with a slight abuse of notation, we will often consider the set Cy(x,y) as the inter-

section of the following subset of .7:

Co = {(Lyﬂ“,h,h) e.Z st. |h| > Doyl(w_m}
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with the fiber of .Z over (z,vy).
For each k € Z define a slope field h; and a cone field €, given at any point

(x,y) = (zk, yx) by the following expressions:

hi (g, yr) = F*’&O,yo)ho(xoa Yo)
Col@r Yr) = F* oy 4oy Col(To0, Y0)-
By definition it is clear that, for [ > k, we have the following compatibility condition:
Ci(wr, yk) C Cr(ar, yr) <= Cr_i(70,%0) C Co(Zo,v0)-

Given a cone C, define its cone width at (z,y) as:

C(z,y)|= sup |h—H].
h,h'€C(z,y)
Notice that, by definition, |Cy| = oo; moreover from the formula for the induced

slope (3.1c) we obtain, for k& > 0:

Chn(@n o) = o s X

X, - up = — =

k+1\T1, Y1 Y’(y0)2 B/ € C (20,0 B
< L7 [Crlzo, yo)| (1 + O(|Crlzo, yo)| /L)), (3.2)

where

L= inf ]ﬁY’(y0)|

h€eCy(x0,y0)

is the least expansion rate at the point (z,yy) of a curve compatible with Cj in

(20, yo); by direct computation we have |Cy(x1,y;)| < 2(D0Y’(y0)3/2)*1.

Definition 3.1.2. We define a reference section as a section on .%:

o:(x,y) — (x,y,r,h,h)
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given by the following equations:

h(zo,yo) = hi(zo,v0) = Qé(xo) + Y/(;1> (3.3a)
h(wo, o) = (0, y0) = 2¢ (o) — % (3.3b)
r(zo,y0) = 0 (3.3¢)

A reference curve is defined as an integral curve of the reference slope field hq, i.e

it can be written as (z,1(x)) where:

P1(x) = 2¢(2) + Y1 (z +¢)

for some ¢ € RT. A reference pair is a basic pair given by a reference curve I' over

I and the uniform probability density p(x) = |I|~* over T

We now can proceed to define standard sections; standard sections are to the
reference section as the unstable cone is to the unstable direction in a uniformly

hyperbolic setting.

Definition 3.1.3. A section o on .% is said to be standard if it is close to the the

reference section in the following sense:

. o A
a(x,y)e{(:c,y,r,h,h)eel s.t. ‘h—hl <10 ]r]<1}

A standard pair is a basic pair £ = (I, p) such that (z,, h, h, ) is a standard section
over I', which will be called a standard curve. The next lemma ensures that standard

curves are globally close to reference curves.

Lemma 3.1.4. Let I' = (z,%(x)) be a curve over I such that |I| < 1, let T =
(z,%(x)) be a reference curve over I which intersects T'. Define ||Ah|r = sup,c; |h(z')—
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hy(2',9(2"))|; then:
Veel  |p(x)—¢()| < 2]An|rl].

Proof. Let § = min{gr, yr} and let

ohy , .
n = a—y(?/)

I

by definition we have y < Const-Y”(¢)/Y’(4)?, moreover Vy > ¢ we have

oh
a—yl(y)‘ <
1 and we can write:

d _

- (@) - 1;(:5))‘ < [h(x) = bz, (@) + [ (2, 9 (@) — ha(@, (2))|

< [AR|lr + pli(z) — ¥ ()],

Let J C I be the connected component of the set {|i)(x) — ¥(x)| < 2||Ah|r}

containing the xz-coordinate of a point in I' N T'; for all z € J we have then:

% ((@) = d(@))| < (1+ 20| ARr < 2| AR

for large enough y. This implies that J = I, thus:
() = P(x)| < 2| Ah|p|1]

which concludes the proof. O

3.2 Critical sets

We want to establish results regarding invariance properties of standard sec-
tions; in order to do so we need to obtain good geometrical and distortion bounds (to
control r, h and h) for the map F'. Such bounds cannot be established everywhere;
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points where this is not possible will belong to a set that we will call critical set.
Clearly the definition of the critical sets depends on what we consider as a “good”
bound, and therefore it is far from being unique. We define a first and a second

critical set as follows:
Cr = { (w0, w0) st [Pn(wo,10)] < K1Y (50) 2}
C,=Cin {(xoyyo) s-t. B (o, 90)| < K2|Bl(371,yl)Y/(yo)mY/(yl)l/er}

where we require K; > 2Dy and K, > 2K?. Notice that by definition, if a standard

curve lies outside Cy, then it is compatible with Cy. Now let K3 < D2/A and define:
C, = {(xo,yo) s.t. |hai (2o, yo)| < KgY/(yo)_l}-
For convenience we will often use the following notation:
Cy*) =Cn{y =y}, for C = Cy, Cy, Cs.

The following observation

Y'(yr) =Y (o) (1 + O(|klyg 1))

implies that, given k:
Ve>03yst. yo>15= (1—2)Y (y0) <Y'(yr) < (142)Y (o). (3.4)

This simple but useful remark allows us, for instance, to show that for large enough

y:

Ca(y) € Ca(y)

in fact this easily follows from (3.4) and the fact that |k| is bounded by 34 for large
enough y. We require that all standard curves are expanded outside C, for large

32



enough vy, therefore we assume K3 > 2. The set Cy we just defined will be called
the core of the critical set C,. Moreover, from the definitions it easy to check that
C,NF~'C; C C,. Finally notice that Vy, there exists a D such that if Dy > D we

have

Cio{y<uy}, Cod{y<uy,l}

S

Figure 3.1: On the left picture we see C; as the shaded set; on the right picture we
see for large enough y a detail of C; (the light-shaded set) and the structure of Cy

(dark-shaded set).

Lemma 3.2.1. Recall that Y <y and let 3 = 1(y —1); then we have:
(a) Leb(Cy) is finite if and only if § > 1;

(b) Leb(Cy) is finite if and only if § > 1/2.

Proof. To prove (a) notice that by definition:
Vll(ﬂﬁmyo)’ = ‘%5(%) +1/Y'(y-1) +1/Y (o) |
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using (3.4) we can write, for large enough y:

Ci(y) C {(a:,y) s.t. ’2&5@)’ < 2K1Y/(y)_1/2}

C {|z| < Const - Y'(y)"*} U {|& — 1/2| < Const - Y'(y)""/*}.

Denote the two sets that appear in the last expression by Cgo) and Cgl) respectively;
the Lebesgue measure of Cgi) is finite if the function Y’~'/2 is integrable at oo, i.e.
if 5 > 1. In the same way we can obtain a lower bound, so that if 5 < 1 then the
measure Leb(C;) = oo.

In order to prove (b), first define, for ¢ € {0,1} and n € N:
Cim = ConCY N {(z,y) st. 2+ Y(y) € [n/2, (n+1)/2]}:

also let g, = inf . comy ~ n'/7. Then, for each C{™, consider the following
2

)

decomposition (see also figure 3.2):

Clz(zvn)
Clzl(”'vn)

Clzll(z,n)

C;(zvn) ( )
Cy’

Figure 3.2: Decomposition of C{"™ = "™ u ¢y y .
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C;“’”) = {(fl‘o,yo) € Céi’") s.t. )ill(xlvyl)’ < (K2/K1)Y/(y1)_1/2}

cym = {(mo,yo) e ™ sit.

ﬁl(xl’yl) < A} \ C;(M)

C/Q//(z',n) - Cg,n) \ (C/Z(i,n) U C/Q/(i,n)) .

First consider (z,y) € Cy"™; by definition we have:

= 2Ky
hl (ZL’,y)‘ < Ayl(y)

which is a bound for z of order O(y~27), so that:

Leb(C4“™) < Const - 4.

i,m)

The measure of C;( and Cg(i’") can be estimated using the following change of

variables:
(0, y0) — (§,m) = (ill(ﬂfoayo)jll(xl?yl)) ;
this map is an invertible diffeomorphism and its Jacobian determinant is of order

Y'(,); for convenience let Y, = Y'(y,). Therefore, for C;(M) we obtain:

/(i,n) o [rRK/KNYTHYE ppera YT
Leb(Cy"™) < _/ / dedn = O, %9)

/
Y, 2(Ka/K1)Y, ~1/? 2K, Y, /2

and for Cj";
i) 1 A 12Ky /7Y, ,
Leb(C}) < o, [ [ gy = 0, oz
n J 3Ky /K)Y, Y2 S 2K, Iy,

Therefore we finally have:
Leb(CY™) < Const - 9% log g,
and summing over ¢ and n we obtain
Leb(Cy) < o0 if Zn_% logn < oo,
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where the series converges if § > 1/2.
To conclude, notice that if 3 < 1/2 then C, has infinite measure; since for large

enough y we have Cy(y) D Cy(y), statement (b) follows. ]

For convenience we will now define neighbourhoods of the critical sets; first fix

0" > 0 small, to be determined later and define the following neighbourhood of Cj:

C1 = { (@0, 30) st d((0, ), C1) < 0¥ (o) *}

where d is the standard Euclidean distance. Let us define K such that the following
inclusion holds:

Cy C {[ha(wo, 90)| < K1Y (o) ™"/} (3.5)

We now extend Cs to CI:
C:=Cn {(Io,yo) s.t. |hi(zo, y0)| < Kzlle(xl,yl)Y’(yo)l/zY’(yl)l/Ql‘l} :

Notice that, as we did before, we require that Ky > 2K1f(1, so that the inclusion
F~'C, N C, C C; holds true.
To define the corresponding neighbourhood for C, we need to be more careful; fix

0" > 0 small, also to be determined later:

Co=Cin{(z,y):3(2,y) € C; and I standard s.t.

(z,y), («",y) €T and |z — /| <8"Y"(y) "}

From the definition of C; and C;, and using lemma 3.1.4 we can easily prove the
following;:
CQ - Cl n {($7y> s.t. d*<<I,y), C;) < 5//Y/(y)_1} (36)
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where d* is an adapted distance defined as:

d*((z,y), (') = max(|z — '], 2(K1Y"(y) /)y — /)

As we mentioned at the beginning of this section, on critical sets we lack good
geometrical and distortion estimates that can instead be achieved on the comple-
mentary set. In particular, outside C; standard pairs will be mapped to standard
pairs; pieces of standard pairs passing through the first critical set will possibly be
mapped to non-standard pairs. However, pieces of standard pairs that lie in C; \ Cy
will be standard after one more iteration. In the following lemma we prove the pre-
vious statements and moreover we establish some expansion bounds which will be

crucial for proving equidistribution properties of F' along the horizontal direction.

Lemma 3.2.2 (Invariance). Let ¢ = (', p) be a standard pair; let g = 9,, Y =Y (9)

and similarly for Y'. Then for large enough g:

(a) there exist positive constants Dy, Dy and D3 such that:

dl’l

d_gjo > Dlyll/2 it (IL‘O;?JO) g Cl (al)
dl’l .

o Dy > 1 if (z0,%0) € Co (a2)
dl’g ’ .

d_l'o > DY if (l’o,yo) c Cy \ C, (33)

(b) we have the following almost Markov decomposition in respectively standard,

stand-by and invalid pairs:
Fe=Juul ooz
j k
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where {; are standard pairs and each Zk 18 a pair such that we have ng = U, lr

where Ly are standard pairs.

Proof. To simplify notation we will write b/ = F*h, b’ = F*?h (and similarly for h
and 7). We will once more use (3.4); additionally we consider ¢ to be large enough

for all the estimates below to be true. Now, recall that by definition:

d[L‘l le dyg ’ ’ ~ ’
= Y =1+h Y ~h Y
ds ~ 020 T duy (o) = 1+ h(x0)Y (yo) = h(zo)

dx ~ ~
d_xz ~ b/ (21) h(zo)Y"

If (20, y0) € I'\ C; we have |y (20, y0)| > K1Y (yo)~/?; since € is standard, |h(zq) —

ha(zo,y0)| < Ci(x0, yo)| = O(Y'"*2), hence we obtain:
|h(z0)| > 3/4K,Y'~1/2,

which implies (al) with D; = 2/3K].
Similarly, if (zo,5) € T'\ Cy we have |hy(xo,50)| > KsY'(yo)~" and, since £ is
standard, |h(z)| > 3/4K5Y'"! so estimate (a2) follows with Dy = 2/3K5 > 1.

Using (a2) and (3.1c) we now obtain:
B (z1) = ho(z1,y1) + Ah, |AR| < (DY) (3.7)
hence, by definition of standard pair and of C, we obtain the following bound:
| (o) (1)| > B/4K,Y"

which implies (a3) with D3 = 2/3K5.
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To prove part (b), first let us define:
Ig=I\C;.

First of all we want to decompose F'T'; into basic curves; by definition of C; we have
that I'j is compatible with €y, therefore FI'j will be compatible with €; which, in
particular, implies that FI'; is locally the graph of a function of x. Then we need
to decompose the image FTj in curves of the required length; in doing so we are
possibly left with a piece of curve that is shorter than §; by requiring & = 26D; !,
this piece will necessarily be the image of a portion of curve Iy C I'i; which lies in

Cl. We now define:
Lo=T%\ T po = plr, o = (To, po)

Finally we prove that the basic pairs in which we decomposed F{;, are indeed stan-
dard pairs. In fact, we already established that A’ is compatible with C;; further-

more, equations (al) and (3.1b,d) give:

W (1) — by (21, 11)| < BADle’_?’/2

' (x1)] < 3AD;? + O(Y'71/?).

Therefore, by taking D} > 6A, we can decompose F/; in standard pairs.

Next, let T% = (' \ I'p) \ C3; once more, we try to decompose F?I'% in basic
curves. By (3.7), since (z1,y1) ¢ Ci, we have that ' € Cy(x1,1), so that b” €
Cy(w2,y2) and F?T7% is locally the graph of a function of z. We now need to cut

the curve into pieces of the required length . By estimate (a3), and requiring 6" =
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26D; ", we can conclude that pieces that are too small will be image of Iy, C I

which belongs to Cs by definition. Now let:
=TT, pizpln b= Tnp)

We now claim that F2¢; can in fact be decomposed as a union of standard pairs.
We already obtained that h” is compatible with C;; indeed, since any point of ¢ is

outside Cy, (a2) and (3.1d) yield:

W (1) — by (21, 01)| < BA(DyY") ™

W (22) — ha(22,2)] < BADIY' /2,

[terating equation (3.1b) we obtain:

il .Z'()) i h’(xl)

(
Ry ey O (3.8)

7“”(1}2) _

Since F~'C,NC; € C; and D? > 6A, the second term is smaller than 1/2; moreover

using the definition of Cy and (a2) we have that
W2 (x0) (21)Y"? > Doh(ao)h (21)Y" > 3/4K,D,

Therefore taking K, large enough we can make the first term in (3.8) smaller than
1/4. thus we have that F'¢; can be written as a union of curves satisfying the
requirements, which concludes the proof of (b) by letting Z be the image of '\

(CoUT). O

The following lemma introduces some measure estimates which will be crucial

for our result.
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Lemma 3.2.3. We have:
Leb(Cy) < oo if B>1  Leb(Cy) < o0 if § > 3/4.
Moreover, let £ = (T, p) be a standard pair and § = g, then:
P,(Cy) < Const - 7 P,(Cs) < Const - g 3b

Proof. Given (3.5), the estimate for Leb(C;) can be obtained in the same way as for

Leb(Cy) in proposition 3.2.1 and will be omitted. On the other hand, to estimate

A

Leb(Cy), we use a more elaborate construction; define the following sets:

Clz = C1 N {’ill(xbyl)‘ < ifY/_l/g}

Cy = {|hu (o, yo)| < 2(Ka/k)Y"*}.

By (3.6) we can take k to be large enough so that C, C C}, U CY. Proceeding as in

proposition 3.2.1 we obtain that:

Leb(C)) ~ Zn_loﬁ/% Leb(CY) ~ / y =3By,
- 1

it is easy to check that for § > 3/4 both measures are finite.
Let now I be the domain of I'; and I; C I the domain of I' N C.. Then, since

¢ is standard and we have good control on h, (3.5) implies that
|I,] < Const - Y'~1/2
which in turn gives Py(C;) < Const - 7.

Similarly, let us define I} and I} as the domain of I' N C}, and I' N CY respectively.
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The estimate of |I}| is similar to the previous one and yields the expected result.

To estimate |I}] notice that:

dhy

—(wo)| >

1 .
4z 3 ‘h1($1 y1)h ()Y’

Since hy(x1,%1) is bounded below in C), we can write

dh

so that [IZ N {|h| > Y'2/3}| < Const - Y'~*/3 and as for the remaining part we have
the bound:
2

§AY’/ h(x)dz < Const - Y'71/3
I//

which implies |I5| < Const - Y'~2/3 that in turn yields the required estimate. [

We conclude this section with the definition of critical time, which gives the
maximum number n such that, by iterating the decomposition in lemma 3.2.2, F"z

belongs to a non-invalid curve for all n < n.

Definition 3.2.4. Let ¢ = (L', p) be a standard pair. The critical time is a function
7: ' = NU{oco} obtained by means of the following procedure. Define a decreasing
sequence of sets:

F:F[O}DF[HD“'DF[HD“-

by induction as follows. Suppose that F"(I'j,, p) can be decomposed exclusively in

standard pairs and stand-by pairs:
F [n]» p U é U U fk
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For each standard pair ¢; in the decomposition of we can apply lemma 3.2.2b and
obtain:
F(t) = JtulJbmu z;.
! m
We then define

J

which satisfies the inductive hypothesis. Finally we let:

() = Z Ir,, ().

3.3 Riemann sum lemma

In what follows we will very often approximate integrals with Riemann sums
over partitions which are highly non-uniform. Most elements of the partition have
very small size and a much smaller portion have a size which is orders of magnitude
larger. The naive bound on Riemann sums, which is optimal in the case of uniform
partitions, can be improved in our case. The following lemma allows us to obtain a

much better bound which will be crucial in all our estimates.

Lemma 3.3.1. Let J be a finite index set and {0;}icg and {X;}icg be sequences of
positive real numbers such that there exist real numbers ai,as > 0, 0 < A < 1 and

0 < a < 1 satisfying the following properties:

e a1 A< X; < Vie]
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o for k € (0,1), define the set 2, = {i € J s.t. X; > ay - \'="}; then:
Z (52 < ag - A",
i€Z,

Then Ve > 0 sufficiently small there exists C. ~ ajay -~ such that:
> O Xib < Coo X E

In the previous statement one should think of d; as the length of the k-th
interval in the partition used to compute the Riemann sum; X should instead
be thought as a bound for the error given by considering the integrating function

constant on the k-th interval.

Proof. Fix n > 0 and consider any decreasing sequence 1 = kg > k1 > -+ - > Kk, = 0,
so that:

==, CZ, C--CE,, =1

Define éj =Eg,; \ Ex,;_, for j =1,---,n; thus we obtain
al)\l_”j < X; < alAl_“J"l for ¢ € éj, Z 51 < CLQ)\CMj,
iGéj

moreover:

n n

ZXz(Sl = Z Z Xlél < Z alag)\lf’”*ﬁa”i.

If o <1 we choose k; satisfying the following relations:

ol —1

i = alad—n=t — 1)

Kj—1,

in such a way that x;_; — ar; = k; — akj1; we therefore obtain:

al™m —1
l—ko+arki=——=a—¢,
a"—1
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with € ~ 1/n which can therefore be taken arbitrarily small.
The case o = 1 can be obtained as a limit for o — 1; in this setting we choose &;
as follows:

Iijzl—

hence, again we obtain k;_y — ar; = k; — arjr; = 1/n, which implies

l—kot+ark=1—-1/n=a—c¢.

3.4 Equidistribution on standard pairs

The invariance lemma 3.2.2 states that the image of a standard pair can be
partitioned in standard pairs, stand-by pairs and invalid pairs. Due to the large
expansion rate in the standard cones, if we had good distortion bounds, the density
on most standard pairs in the image would be very close to the uniform density.
However, close to the critical set we lack good distortion bounds and the density
could have strong dependence on the position.

In this section we will prove a first and a second equidistribution lemma; they
provide an estimate for the expectation of a class of observables on a standard
pair after respectively one and two iterates of F'. The observables we consider are
functions of the fast variable x only, constant on the y direction; for convenience
of definition, with a slight abuse of notation we consider them as being functions

on S'. Moreover notice that the observables need not to enjoy particularly strong
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smoothness requirements; indeed the Lipschitz property is enough to prove both our

results.

Lemma 3.4.1 (Equidistribution +1). Consider a standard pair ¢ = (I, p) with
I'= (z,¢(z)) and let g = §y. Then ¥Ye > 0 small there exists C. such that for all

o € C(S') with zero average:

B (o 0 F)| < Ce || [loo - 774 (3.9)

Moreover we can prove the following auziliary results:

e if B € CYT), then we have:
By (B - (o 0 F))| < C.- | ||l Bl - 5774 (3.10)
where || Bl = max{|| Blloo, §°||Bll}-

o let p be the uniform density on T and p(z) = p(x) — p; define By (f) =

fp fz,¥(x))p(x)dx, then:

[Ee (o7 0 F)| < Ce - | ool lloc - 777 (3.11)

Proof. Let ©O(xz) =z + Y (¢(x)); cut I'\ Cy in curves I'y such that the endpoints of
FT, lie on two consecutive vertical lines x+ = 0 mod 27. In this process we could

have some leftover pieces of curve; however, their total measure is small:

P (" \ Urk) =0(57").
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In fact by lemma 3.2.3 we have P,(C;) = O(§~") and lemma 3.2.2 guarantees that,

outside C;, the expansion rate along I' is at least O(¢°). Now define:

Jki/r p(x) (O(z))dx.

Then we have

E, (o o F) = / (o) (1) =

r

=D I+ 1110057,
k

where the error term accounts for the leftover pieces and it is compatible with (3.9).

On each I'y, we define an inverse function z(6) for © and push forward the density

as p(0) = p(«(6))/10(x(6))|. Hence:

|Jk| =

/0 " p;(e)gf(e)de' |

Now we write p, = (2m) ey + p),, where ¢ = Py(T'y). Since </ has zero average we

obtain:

27 27
< [ RO O < | [ 170

0

and since for some 6y € (0, 27)

0 / /
_ dlogp dlogp
(0] < / kd < k
o) < | [ A <o S
we have
dlog p,
A gzmkumymH o )

Recall that we denote by h(z) the slope ¢)(x); notice that, since Ty N C; = ), we

know that |h| > Const - =" on I'y. Using the definition of © we can therefore write

47



228 <[], <), [
do |l ~ ey lly,  IR2Y e, II(RY")2lp,
Xk 3"; Zc

Since ¢ is standard we know that r and i are bounded, moreover

h—(l— 1)
ho nY!

so that if |h| > 7~ on I}, we obtain:

X, < Const - =20+
Y: < Const - 2024

7, < Const - 2771 (1 + g)_ZB’L)‘/B)Q )

Therefore we have X, < O(§7°) and Z, < O(§2°~1) which are good enough for

estimate (3.9). We now use lemma 3.3.1 to bound ), ¢ Y} taking:
Op = Cry, a1,a5=0(1), A=¢ % and a = 1/2.
We conclude that Ve > 0 small there exists a C. such that:
[ plan)at )z < 1o o Coi e+ 0 2).
Notice that we could also apply lemma 3.3.1 to >, ¢, X} using:
op =cp, a1 =Const-97” a;=0(1), A=g " anda=1;

in this case we would have obtained the better estimate O(j~2°*%), which will
indeed be useful later. Also notice that if we had h = O(1), we would obtain
X, Yy < O(57%) so that [ p(xo)e (z1)dzg = O(§~?°) if T does not intersect a
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O(1)-neighbourhood of the critical set.

To prove the first auxiliary result we proceed in the same way:

[ Bl (wr)dag = 3 5+ 1ol B0
r k
where:

2

Jp, = / H;.(0)<7(0)d0

0
and Hj,(0) = B(x(0))p(x(0))/|0(x(6))]; as before we separate Hj, from its constant
part so that we can write:

2
R Ny I LACT

and then estimate the integral as:

dlog p),
6

1B H
I

|

so that we can directly apply lemma 3.3.1 to the first term, obtaining the bound

21 B B
H (0)|do < 2 i
/0 (L(0)|d6 < 27 ¢ th,

C.||BllO(5727%%); the second term is the same as before, multiplied by ||B]|s, so
that we obtain (3.13).
To prove the second auxiliary result, first notice that, as we did before with

P, there exists a w € I such that p(w) = p, then we can write:

ple) = pla) — p= / " HE)p(E)de,

so that
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consider now:

/ﬁ(xo)ﬂ(fﬂl)dl’o =D T llirllc 0
r k
where

2T

Jy = / 0,.(0)27 (6)d6
0

and p,(0) = p(z(6))/|©(z(0))|; again we separate from 7 its constant part and we
can write:

2
T < [ oo / 7(0)]d0

To estimate the integral notice that:

0:(0)] < e

+ Irflo
Iy

o3

hY’

T
The first term is the same as ¢, X}, in the main part; the second term is of the

same order as ¢ (Y) + Z;) with an additional constant ||r||o term, so that we finally

obtain:

[ @)@ < €. o0,

1

O
Corollary 3.4.2. Let 0, o/ and B be as in lemma 3./4.1, then:
[Ee (B~ (o 0 F*)) | < Cre - [l |lool| Bl (3.12)
where
11k, = max {80, 7 | 5]
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Proof. By the invariance lemma 3.2.2 we know that F*~'¢ can be decomposed in
standard pairs and non-standard pairs; by lemma 3.2.3 we can estimate the proba-

bility of sitting on a non-standard piece as follows:
Py (F"*'(2,y) € non-standard pair) < Const - (k — 1)5 .

Since this bound is compatible with (3.12), we can neglect non-standard pieces and

we conclude by applying lemma 3.4.1 to pairs in the standard part of F*~1/. O]

In fact the € appearing in estimates (3.9), (3.10) and (3.12) could in principle
be dropped using a Fresnel-type argument, which also shows that the bound is
sharp. This argument, however, is not as robust as the one based on lemma 3.3.1
and it would be less apt to the generalizations we seek.

We now proceed to improve the equidistribution lemma 3.4.1, by directly considering

second iterates of a standard pair:

Lemma 3.4.3 (Equidistribution +2). Let ¢ = (I',p) be a standard pair and let
9 = 9o Let o € Lip(S') be a zero-average Lipschitz function (with respect to the

standard metric on S'). Then Ve > 0 small there exists a C. such that:
B¢ (o 0 F?) | < Cell ||y (577 + 0(571)) (3.13)

where f* = min(26 — 1/2 + ¢€,4/30) and || - ||Lip s the standard Lipschitz norm

||| Lip = max{||.% ||, Lip(e/)}, Lip(e/) being the Lipschitz constant of < .

Notice that the first image of ¢ can be decomposed, by means of the invariance

lemma, in a union of invalid pairs, stand-by pairs and standard pairs which are
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allowed to intersect the critical set. To improve estimate 3.4.2 we will need to prove
the fact that by summing over the aforementioned union of curves, we have some

cancellations. First we need to prove a few preliminary results:
Lemma 3.4.4. Fiz a zero average function </ € Lip(S').

(a) Let ¢ = (T, p) be a standard pair with I' = (z,¢(x)) on the domain I. Let

Ah(z) = h(x) — hi(z,¥(x)). Then for all reference pairs { = (T, p) on the

same domain I such that T NT # 0, for all ¢ sufficiently small we can write:

B¢ (o 0 F) = Eg(of 0 F) | < Cel| |l (I7llocd™ +Y'(9)[|AR] ) (3.14)

Consider two reference curves I'y = {x,¥1(x)} and Ty = {x,12(x)} on the same
domain I such that le # 0 on each T';; let U; be the reference pairs on I';. Let z be the

endpoint of I on which |hy| attains its minimum value and define 6n = by (2) —a(2).

(b) Assume that Y (11(2)) = Y (¢(2)) mod 1; then for all sufficiently small & >
0:

[E, (o 0 F) =By, (o 0 F) | < Ccl|-o || iy || 5777 (3.15)
(c) Assume that |dn| < 1; then for all sufficiently small € > 0:

[Ee, (o 0 F) = Eqg, (o 0 F) | < Cc|| |y |00] 7. (3.16)

Proof. Fix some w € I and define I' = (z,(z)) as the reference curve over the

domain [ passing through the point (w,v(w)). Let O(z) = x + Y(¢(z)) and
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O(z) =2 + Y ((x)), so that ©(w) = O(w); then we have:

<

/ o) (6(x))dr — / 5t (O())da

I 1

<

_|_

/ (p(z) — p) #(O(x))dz

I

/p(@f(@(x)) — o (0(z))) dz (3.17)

1

For the first integral we use lemma 3.4.1 to obtain:

< Ce]| o [looIr [l O (575

/F (p(z) — p)# (O(x))dz

For the second integral in (3.17), notice that since I is standard, lemma 3.1.4 implies

[v(x) — ()] < Const - || Ah| s, therefore we have:
6(z) = O(z)| < 2Y"(9)[| ARl
and since .o/ is Lipschitz we can conclude that:

/Iﬁ(ﬂf(@(:v)) — o/ (0(x))) dz| < 2Lip(«)Y'(§) | Ah|

which concludes the proof of (a).

To prove (b) and (c), define similarly ©;(z) = « + Y (¢;(x)) for ¢ = 1,2. For
(b) assume without loss of generality that ©;(z) = 0 and that |©| > |©,], then we

can define I, C I as the maximal domain of the functions & and & defined in such

a way that ©1(&;) = O3(&) (see figure 3.3). Then:

/1%(@1(&))0151 = | #(01(&))d& +0(5) =

- [eue) ()

d O(5%).
. 1(61) §&+ 0w )
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K—\A_,_ﬁ 1

e

€6

Figure 3.3: Definition of & and &;.

We will prove that ||©4(£)/01(&) — 1], = O(y~") and then use lemma 3.4.1 to

conclude. Notice that by definition of ©; we can obtain, for 60 = Oy — O:

0 =v-0;(1+0@F ")
0 =v-0,(1+0@F ")
0=v-0,(1+0@F™))

where

_Y"(m)
Y7 (12)

on=106n-0(57")

v

and 7; = ¢;(z). Again, we neglect the pieces of I'; inside Cy; in fact, since 60 < O(v)
inside Cy, the contribution would be Lip(«?) O(§~177)dn, which is compatible with
(3.15).

To estimate the remainder we will proceed to obtain an expression for 6§ = & — &

by writing the following identity:

01(£1) — ©1(§2) = 02(&2) — O1(&2)
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Then from the previous estimates and the intermediate value theorem we obtain
0, 66 =v0; (1+0(7h)
Next we can estimate:

101(&1) — O2(&)] < [01(&) — ©1(&)] +01(&) — O2(&)]
< (16u(en)de] + n(en)l) (1+0(™)

and in the same way:

01(61) = 62(&)] < (161(603¢] + ¥ (€)]) (1+0(57))

consider:

The previous estimates allow to obtain a bound for ||©4(&)/01(&) — 1]|,; first,
6:(&) — 61(6)| _, ( SIGIEIGY

61()) (6,2 ) A

using the definition of © we can check that the fraction is bounded on I, so that we

conclude H(@(@) —0.(6))/6,(&) ‘ <Cv.

Next, in order to estimate the derivative:

@2(52)@1( )2 é1(§1)92(§2>2

O1(&1)? B
- 02(£2)01(£1)? — 01(£1)01(&1)? n @1(51)91(51)2—61(51)92(52)2
- O1(&)? ©1(61)3
01(&) 01(£)61(41) ,
: (91@1)(”30” 61(6) )

Since we assume the curve does not intersect C; we have 0,(&)/01(€,) < O(3°)

and |01(£1)01(£)/61(£1)?| < €', from which we conclude:

|62(&21/61(6) -1 <
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The proof of part (c¢) is similar; first of all notice that we have the a priori

bound:

By, (o o F) — Ey, (o o F)| < Const - Lip()|Y oty — Y otbs|;.  (3.18)

Moreover, by definition of reference curve, and since Y"(y)/Y’(y) is decreasing we

have:
Yl/ (g)
Y'(9)?

(W1 0) — Y (Wal))| € S [¥ () — Y (wa())]

so that by Gronwall lemma we can conclude for large enough g that
Vo€l [V(ii(r) =Y (¥a(x))] <[6Y|(1+0(F7),

where 0Y = Y (¢1(z)) — Y (¢2(z)). We can thus assume that Y (¢q(z)) =Y (¢1(2)) =
JY since the error term would be compatible with (3.16) by the a priori estimate
(3.18). We have that O(z) = ©1(x) + JY. First we deal with the portion of the

curves inside C;. Let I; be the minimal subset of I such that:
Va € [17 (%%(ﬂf)) ¢ Cl for i = 1a2
then, by lemma 3.2.3:

p| (01(x)) = (Os(x))dr < Const - Lip(«/) O(5 )6V,

I
which is compatible with (3.16); we can therefore neglect the pieces of curves over

I, and assume ©; > O(j°) by lemma 3.2.2a. Defining &; as before we can write:

SO (N = [ #(O:6)

d&; + Lip(«)0(§77)[6Y |
JAVA! JAVS] 1(61)
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We will prove that [[©5(&)/01(&) — 1], = O(8Y) and then use lemma 3.4.1 to

conclude. In fact in this case we have:
|6¢] = O(5Y/01)

so we can easily see that:

”@2(52)/@1(51) - 1HOO < Const - .@lﬁéY < Const - §Y

©1(&)?

and for the derivative:

01(£)01(&) —20,(61)

2
- oY
01(&1)?

< Const - O(”)dY,

which concludes the proof. O]

We also need good shadowing estimates for the image of a standard curve

outside Cj:

Lemma 3.4.5. Let ' = (2,9 (x)) be a standard curve over I such that T N Cy =)

and let ) = gr. Then there exists a reference curve T = (z,1)(x)) such that:
V(z1,51) € FT 34 s.t. (z1,51) € FT, [y1 — | = 0(5~*) (3.19)

Proof. Let (z1,y1) € FT' and consider the vertical line {z = x;} passing through
(z1,71); the preimage F~'{x = x,} is by definition a curve of slope h_;(zo,yo) =

—Y"(y9) ! and we have:

dy

=—Y"(yo) " 2
dzo), | (40) (3.20)

Let z and w denote the two endpoints of /. Without loss of generality we can assume

that

(2, 9(2))] < [ha(w, & (w))].
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Let I' = (x,9(z)) be the reference curve passing through (z,1(z)) and let I =
F~Yax = w'} where w' is the x-coordinate of F(w,v(w)). Then I' will intersect IT
at some point (w,(w)); let I be the interval bounded by z and w (see figure 3.4)

We claim that T'|; satisfies (3.19). In fact let I’ = I N [; lemma 3.1.4 ensures that

Figure 3.4: Construction of the reference curve I' shadowing I

the vertical distance between I' and I' is bounded by 2|I’|[|Ah||r < O(y~3F) on I,
therefore the distance along the slope h_; is bounded by 2|I'[||AR||r/h1 < O(y~2F)
since we are outside C;. Hence, using (3.20), we can conclude that F [ will be

O(y=*%)-close to FT along the vertical direction. O

Finally, we will need the following result, which allows us to prove cancellations

when integrating over the second image of a standard pair:

Lemma 3.4.6. Fiz I C S' an interval satisfying the hypothesis for being the domain
of a basic curve and such that I N Cy = 0; we define the function ¥;(Y) as follows;
let z be the endpoint of I such that |l~11] has a minimum, and consider a family

of reference pairs {{ry = (Ury,p)} where 'ty = (x,¢ry(x)), parametrized by
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=Y (ry(2)) and p=1/|I|. Then we define:
‘P[(Yj i: E&IJ,(£{<DJT)
Then for large enough 1:

Y (9)+1
/ Ty (V)Y = [ |06 (3.21)

Y(9)

Proof. Let Oy (x) =« + Y (¢ry(z)). Applying the definition of ¥; we have

/ vy /Y o /] 5/ (Oy (2))dzdY

Y

Exchanging the order of integration and changing variables we obtain

Oy 41(x
/ / 0)Jdodx
Oy (z)

Where J is the Jacobian of the transformation Y — ©:; by explicitly computing
the holonomy map along the reference foliation we obtain J = 1 + O(§717%%) and

Oy i1(z) — Oy (x) = 27 + O(§~1727). This concludes the proof. O

Once established the previous results, we now proceed to the proof of the

second equidistribution lemma.

Proof of lemma 3./.3. By the invariance lemma 3.2.2, F'¢ can be decomposed in a

union of standard pairs, stand-by pairs and invalid pairs:
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Let us also define lgq = F~'0.,, and similarly ¢y, = F~'¢/, so that we can write:

E, (o o F?) :/r p(xo)ﬂ(xg)dmo—i—/ p(x0) (x2)dzo+ || 7 || O (5~ 437) (3.22)

l—‘sb
where the bound for the last term is obtained using proposition 3.2.3. Now let
J={y=19—4A}\ Cy C S! and cut J in intervals I, satisfying the hypothesis for

being domains of a basic curve (see figure 3.5):
J:U]a § < || <20

We then cut £, in standard pairs having I, as a domain; with abuse of notation

C, J Ca J Ce
. .
- I M
] Lzl ] ] L1 ]
*x 1 177 T Tx o s a O .
I, I

Figure 3.5: Definition of J and of the intervals I,.

we will denote the standard pairs obtained in this way again by ;. Notice that by
discarding the intersections with C, we introduce an error of O(§~2%) which is com-
patible with estimate (3.13). We can also discard pieces of £, with domain smaller

than any of the I, since lemma 3.2.2 and 3.4.1 imply that their contribution would

be at most O(§~%).

The first term of the right hand side of (3.22) can be therefore written as:

| plan)etedan = 3 By (o 0 )+ <0G ), (323)

J
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where ¢; = P,(F~'T";). Define now, for all o, the index sets
Jo = {j s.t. Domain((}) = I,}

then we can reorder the sum in (3.23) as follows:

ZCJ‘EQ(%OF)ZZZ%EQ(WOF)

a jEJa

By the remark at the end of lemma 3.4.1 we have that standard pairs over I,s which
are not O(1)-close to the critical set will contribute with O(§~2%) to the sum; thus:

SN By (Ao F) =" 3" B (o 0 F) + ||/ 0(57*7)

a jEda a* jEJqx

where the sum in the right hand side ranges only over those I, that are contiguous
to Cy (marked with a x in figure 3.5).
Fix now one of such intervals; to simplify notation we will write I = [~ and we

will re-label {}} e . as {£}.}. We consider £} to be ordered in such a way that:
17l =1, < [|AllF-1ry,,
Using lemma 3.4.4a and that the average density p), = |I|~! we have that Ve > 0:

Do [ et e =117 Sew [ o7 dn + 10, (029

In fact by summing over the error term in lemma 3.4.4a we have:

Const - || |1y Y ek (Irlley g™ + V'@ AhIry ) (3.25)

k

by (3.2) we know that:
| AR|lr, < Const - 5= £,
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Nke+1
Nk

Figure 3.6: Cutting the image FT' along [,.

where

L, = inf |fLY’(gj)| > Const - §°,
heCi(x,y)
which implies that the second part of (3.25) is O(§73%). To estimate the first term

of (3.25) we apply lemma 3.3.1 with:
Or=cr, a1 =0F ), aa=0(1), A=9 % and a = +1/2,

to obtain the required estimate.

We will now establish a bound for the main term of (3.24):

Z g | o (xg)da. (3.26)
K T

Let z € I be as in lemma 3.4.6 and define 7, such that (z,7;) € T';,. From now on,

to fix ideas, we assume that 7,1 > 7x; the other case can be treated in the same

=
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way.

By lemma 3.4.5 we know there exists a reference curve I' such that FT is
O(§~*%)-shadowed by FT along the y direction. Let (z,7;) € FT such that |7y —mnx| =
O(y~*) and Y, = Y (i)); using the notation of lemma 3.4.6 and the bound given by

lemma 3.4.4¢ we can write for (3.26):

ch o (x)day :chxpl<yk)+WHMPO@*’%. (3.27)
k T k

We now proceed to find an expression for Y, = Y (7;); recall that [' = (=, (z));

then we have:

e = V(&) +26(2) where & + Y (d(&)) = (K +2) + k

for some K € N. Again to fix ideas we assume &1 > &; the other case can be

treated in a similar manner. Therefore

F Yz =2}

T T
\
\
\

RIS

Figure 3.7: Setting for estimating Y}

Y = V(YUK +2) + k — &) + 26(2))
=%+ (- 6~ &) (1 + 2200 + 072
=Yo+k—(&—&)+k(v+0H2)
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where Yy = Y (Y 1(K + z) — &) (and similarly for Y and Y{’) and

Y0"2¢< )= 0).

If v = 0 we would have that Y;, — Yy — k € [0, 1]; on the other hand, since vY’ > 1,
we have that Y, — Yy — k may cover several times the unit interval in Y (see figure

3.8). In fact define the following sets:
K, ={kst |Vi—Yy—k] =i}

thus we can rewrite the sum in (3.27) as

ch\lfj Yk Z Z Ck\I’] Yk

i keK;
Let:

U (Y) =¥ (Yo + (Y mod 1));

lemma 3.4.4b ensures that

D02 i) =30 3 enli (V= o) + [ sy 057 )
i keK; i keK;
and the error is compatible with (3.13). Next let 1 be the least index such that
i >1,YVk € K; we have |h| > §/?~% on F~'T",. Notice that by definition:
Z Z o <Py (|iL| < Const - g)lﬂ_ﬁ) = O(y/?*7P)
i<i keK;
so that, by lemma 3.4.1, we can assume 1 = 0, since the error we make is compatible

with (3.13). Now for each i, define [c]; = >, i ¢ and for each k € K; let ¢, =

cr — [c]i/|K;|. We now prove that the contribution given by the constant part is
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Ck

K
T

..'. Jl

1 i z+1 Yk—Yo—k

Figure 3.8: Illustration of the distribution of ¢, relative to Y, — Yy — &

negligible; in fact let k;, = inf K;, then Vk € K;:

k—k, .
(Ve —Yy) mod 1— = < sup & — & +0(57)
K| K k€K,

<07+

therefore, using lemma 3.4.4¢ we have

Z| ~-Yy) =

keK;

Y \é| (q, (S5r) + 1o +57) @29

keK;

The main term of (3.28) can be seen as a Riemann sum of an integral as in lemma

3.4.6:

95 gt () = ([ ooy s hton- i)

0

< [efill [0 (5™

where we used lemma 3.4.4c to estimate the error and lemma 3.4.6 to bound the

integral. We finally need to estimate the terms containing ¢:

Z ék\ijl(Yk —Yo) < [Kil[lGlls - |9 O(577)

keK;
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where
1€k[li = sup {[éx[}.
keK;
Let now [[']; be the smallest connected subset of I' such that

P> | Tk

keK;
then:

[exl: < < 1"l iy, Pe ([Ts) -

/ T/p,
F[I;

Thus we use lemma 3.3.1 to estimate:

> Kl ey, P (1))
——— ——

Using:
ar,as =0(1), A=¢"* and a = +1/2.
we obtain:

ST UKl e Pe (IT)) < Ca /2542,

which concludes the proof for the standard part of FT'.

For the second term of the right hand side of (3.22), we proceed in a way
similar to the proof of lemma 3.4.1; let I' = Ty, and consider F2T'. We can once
more partition I in I'), such that the endpoints of F2T, lie on two consecutive vertical

lines = 0 mod 27

[ ol (aa)dan = 3 o+ 1 00
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Again let ©(z0) = 20+ Y (30) + Y (31); on each I'y, we can define an inverse function
for © and push forward the density as p}(8) = p(x(0))/|O(z(0))| Again we can

separate the constant part: p} = (27) ¢, + pf obtaining:

o dlog p!!
< el [ 018 < 27 o o | 5
O o0
So now we need to estimate
H dlog p}l H r ' h ‘ h'
do o hh Y72 r, 2Ry "2 I B2y I

By the invariance lemma we have that hA/Y"2 > O(42%), so that we can neglect the

first term. The second term can be bounded in the following way:

Notice that since §7% < Wy, < 1 and W, > 5771 for a length 3, ¢, < =0+~

h

s <30 =W

1
< =
r, h

we can use once more lemma 3.3.1 to obtain O(§~277¢) for the second term.
The third term is estimated again using lemma 3.3.1 as it is the same as it would
be for a uniform density on FT; we can therefore bound it with P,(T") - O(5~9+¢) <

O(y~2°+¢), which concludes the proof since all bounds we obtained are compatible

with (3.13). 0

3.5 Reduction to a biased random walk

Given a standard pair ¢ = (I, p), let once more y = ¢, and define the following

sequence for k € Z:

Ry = 2k@
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Definition 3.5.1. Let ¢ = (I', p) be a standard pair; we will now give the definition
of two functions:

7:T—N T —{-1,+1}
As in the definition of the critical time 7, define first a decreasing sequence of sets:
P:F[o} DF[” DR Dr[k] IDIERE

by induction as follows. Suppose that F"(I',) can be decomposed in standard pairs

and stand-by pairs only, i.e.:

F”(F[n],p) = Ugj U ng
J k

For each standard pair ¢; in the decomposition of we can apply lemma 3.2.2 and

obtain:
F;)=JtulJbmuz
! m
Then let
E={jst. I C{R.1 <y<Ru}}
and define

Loty = T \ (U Frul F_("“)Zj) :

J€E JEE

which satisfies the inductive hypothesis. Finally we define

7(x) = Z Ir,, (2).

and

+1 if 7(2) < 7(z) and F7®)(z) is close to R,y;

—1  otherwise.
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We will now define two sequences 7, : I' = N and x; : ' — Z.
Definition 3.5.2. Let xo(I') = 0, 79(I') = 0; suppose we have defined x,,, 7, we
proceed by induction; if 7,(z) = 7(z) then we let
Tas1(®) = T0l(2) X1 (®) = Xalz) — 1.

Otherwise F™(®)(x) will belong to some standard pair ¢, on which the functions 7/

and £ are defined, so that we let:
To1(2) = 70(2) + 7' (F™)(2))  Xonr(2) = xu(@) + E(F™F) (2)).
Theorem B will then follow from:

Lemma 3.5.3. If 6 > 3/4 (v > 5/2) and Dy is large enough, then:

Leb({(xo, o) s.t. (2, yn) & Co ¥V € N}) = 0.

Proof of theorem B. Define F: Cy — Cy as the first return map of F' on Co: I is
well defined almost everywhere by lemma 3.5.3; since Leb(Cg) < 00 by proposition
3.2.3, we can apply Poincaré Recurrence theorem and conclude that almost every
point in Cy is recurrent, which shows that Leb(& ﬂég) = 0. This implies theorem B

by lemma 3.5.3, since almost every point will land on C, infinitely many times.. [

In order to prove lemma 3.5.3 it is sufficient to prove that, for every standard

pair ¢, we have the following bound for the critical time:
Py(T < 00) = 1. (3.29)
In fact this implies that V ¢ standard we have:

Po({(20,y0) s.t. (@n,yn) € Cy ¥n € N}) = 0.
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The result follows since for all Borel measurable sets £ we can write

Leb(E) = / P, (E)dA(a)

where dA(«) is some factor measure on the set of reference pairs. Given the following
lemma we can obtain (3.29) by following the exact same procedure used in [Do0g];

for completeness the argument will be given in the next section.

Lemma 3.5.4. Let { = (T',p) be a standard pair and let § = §,. If B > 3/4

(v > 5/2) then:
(a) Pp (£ =—1) = 0.6;

(b) There exists 0 < 6 < 1 such that Py(1' > s) < C65/7.

Proof. The invariance lemma 3.2.2b implies that:
By (o 0 F"  1psn) = Y njBe,, () + > By () (3.30)
J k

In fact, by iterating the invariance lemma and discarding the pieces of curve which

do not satisfy 7/ > n we can write:
™" = Ufnj U UZ”’“ u{r <n},
J k
then:
Cnj =P (F"T0j)  puj = F"p/c;
Gk = P (F"To)  po = F*"p .

Clearly we have:

D nj <Pu(F = m);

J
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moreover we claim that:
Zénk < O(@_ﬁ)'
k
In fact, if F"(z) belongs to a stand-by pair then, since 7(x) > 7'(z) > n, we know

that F"~(x) belongs to some standard pair £, 1); and that F"~'(z) € C,. So by

proposition 3.2.3 we can conclude that
Py, ,),(C1) < Const - g7,
which yields the desired estimate and in turns allows us to write:

e =B (7' 2 ) + 0 )

J

Define now

(n : ¢(xn+2)17—’2n
Then, using (3.30), lemmata 3.4.1 and 3.4.3, we obtain:

Ee(Gn) = Y enia,y (9a2)) + D ey, ((a2))

< Z%‘O@_I) + ijénw@—%
— (g, (3.31)

where, to estimate the expectation on stand-by pairs, we just apply lemma 3.4.1 to
Fi,; which by definition can be cut in standard pairs. Moreover, since § > 3/4 we
have #* > 1 in the statement of lemma 3.4.3.

The same argument shows that

E, (¢Z) = 2A°P, (7' > n) + 0§ 7) +o(g7 ). (3.32)
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Next we consider:

E, (Cm Z_: Ci) = Zcijemj <¢($2) i ¢(33'z+2)> +

+ D iy, (925(962) i ¢3($i+2)) . (3.33)
k i=—m

Let

-1

B(xz) = Z ¢($i+2);

t=—m

fix now p > 0 to be determined later; if m > p we define:

-1

B'xo) = Y d(wipa)  B'(z0) = D b(wi42).

i=—m i=—p+1

If otherwise m < p, we just let B = 0 and B” = B. By definition of 7/ we have
| B'||« < 7+ 10A < 2g; since moreover B’ depends only on z; with i < —p + 2, we

have by the invariance lemma 3.2.2a that:
1Bl < g7,

To estimate the contribution of B’, we write B’ = B’ + B’, where B’ is the constant

part of B’ and therefore ||B'||o < §~®~37. Therefore we have, by using lemmata

3.4.1 and 3.4.3 that:

By requiring p large enough, we can make the contribution of B’ as small as we

need. Thus consider B” = B’ + B":

1B"lloo < (p+ 1)24;
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moreover if o ¢ C; we have:

d B//
d[L‘l

= 0(1);

on the other hand Py(zy € C;) < O(§~") so that we obtain:

1=0

E, (Zg) =Y (24°P (7' > i) + o(1))

> N -24°P, (7' > N) + N -o(1).

But since || Z@']\io Gl < 29, by taking N = L - j? we can write:
L-2AP, (7' > L§?) <4+ L-o(1)

which proves (b) by taking L large enough.

To prove (a), we write:

E, (2 ck) DR ACED O
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On the other hand:
E, (i@) =7 Pe(§=+1)+A5-Pp(§=-1),
k=1
where A € (—1/2,1); dividing by § we obtain:
Pe(€ = +1) + APy (€ = —1) = o(1)
which implies:

Py (€ = —1) = %(1 +o(1) > 0.6

that is (a). O

3.6 Conclusion of the proof

In this section we prove that lemma 3.5.4 implies lemma 3.5.3 by a trivial
adaptation to our situation of the analogous argument found in sections 6 and 7
of [Do0g]. Tt is described here for the sake of completeness. We first need a few

preliminary results about biased random walks.

Proposition 3.6.1. Let 51,52, e ,én, -+ be 1d random wvariables such that fk €

(1,1} and P(&, = —1) =p > 1/2. Let Xn = Sop_, & Then
o P(xn <0 foralln) > 0;
e [or each ¢ > 1 — 2p there exist constants C' > 0 and 6 < 1 such that:

P(x,, > cn) < CH".
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Proposition 3.6.2. Suppose &1,&, -+ &, - -+ is a random process such that &, €

{+1, -1} and for all n:

P& = —1]6160 - €n1) > p > 1/2.

Let &,&, -+ &n, -+ be @d random variables such that &, € {—1,1} and P(§, =
—1) = p; correspondingly define:
k=1 k=1
Then for any n,my, my:
P(max xx < my, Igl<in>~<k < my) < P(max yx < my, IkIl<iIle < my).

k<n k<n

The proofs of propositions 3.6.1 and 3.6.2 can be found in section 2 of [Do08g]

and references therein.

Proof of lemma 3.5.3. We will prove (3.29) which, as previously noted, implies lemma
3.5.3; fix a standard pair ¢ and let y = g,. Take n = @ -log, y and m = —log, y, for

@ large; then we have:
Py(Q2) =2k >0 Q:{Iilgi);};()(k <0, Ikllglilxk < m}.

Notice that for each standard pair ¢* in F7+¢ we have that y; < 0 implies g, < 2y;

we then use lemma 3.5.4b with s = §°/? to show that:

Yk Po(tipr — 7> 97 xx <0) < C- 67"’
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notice that if 7, = 7 for some k we cannot apply lemma 3.5.4, however the previous

inequality still holds true by definition of 75,. Therefore:
P (max(risr = 7e) > PRQ) < Cn - 07"
since n grows only logarithmically in ¢, the previous expression implies that:
Py(7. > 9°|Q) — 0 as § — oo

therefore:

P,({r, <9°} NQ)) > k.

On the other hand, by our choice of m, we have that ¥ (z¢,yo) € € there exists a
k < n such that y; < Const and so (xg,yx) € Cs by taking K large enough. Hence,

on ) we have 7 = 7,,, which implies:
]Pg(T < Qg) > K.

Then for any k& € N we can define functions ng(zo, yo) such that

Po(1 > ni) < (1 — k)~

In fact let ny = §°. Next, if 7(zg,y0) < ng we let ngy1 = ng; otherwise we have that
either F™~!(zq,y0) or F™(zq,yo) belongs to a standard pair ;. We then define
Np1 = N —i—g)?z. Since k can be taken to be arbitrarily large, we obtain (3.29) which

concludes the proof of lemma 3.5.3. O
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Chapter 4

Existence of elliptic islands for arbitrarily high energy

In this chapter we are going to prove Theorem C:
Theorem C. Assume v > 1; then:

(a) for almost all values of the parameter A there are elliptic islands of period 2
for arbitrarily high values of y. Moreover if v > 2 the same result holds true

for all values of A;

(b) the total measure of such islands is infinite if v < 4/3 and finite if v > 4/3.

First we recall the definition of elliptic island: if an elliptic fixed point p for a
two-dimensional symplectic map F' is surrounded by a invariant set of closed curves
and on each curve the dynamics is conjugated to an irrational rotation on the circle,
we say that p is surrounded by an elliptic island. Such islands are obviously Lya-
punov stable.

The outline of the proof of Theorem C is as follows. In section 4.1 and 4.2 we build
a reversor map by exploiting a symmetry of the system; we recall that a reversor
is an idempotent map that conjugates the dynamics with its inverse. Following a
standard technique in the theory of reversible maps (see e.g. [LR98]), we use the
locus of fixed points of the reversor map to find a number of periodic orbits; most
of them will be hyperbolic but by fine-tuning the amplitude A we can turn some of
them into elliptic periodic orbits. In our case it is quite easy to state the ellipticity
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condition (section 4.3) in terms of A. We can actually state conditions to ensure
that the multiplier of such periodic orbits belong to some given sub-interval of S*,
which will turn out to be useful to avoid resonances. Such conditions, along with a
non-degeneracy requirement on the Birkhoff normal form that we check in section
4.6, are sufficient to establish the presence of an elliptic island around the periodic
point (see for instance [La93] or [d1L01]). The ellipticity condition (section 4.4) turns
out to be an arithmetic condition on the parameter A; a Borel-Cantelli argument
(section 4.5) shows that this condition is satisfied by infinitely many periodic points
for a set of full measure of A for all ¥ > 1. The same proof gives the stronger result
that for v > 2 the statement is true for all parameters A.

Notice that a well-known result due to M. Herman ensures that an elliptic periodic
point with Diophantine multiplier is surrounded by an elliptic island. Since such
multipliers form a full-measure set in S!, as B. Fayad pointed out to the author,
one could easily modify the Borel-Cantelli argument to prove existence of infinitely
many elliptic islands with Diophantine multiplier for almost all A. However, this
elegant argument does not allow to obtain estimates on the size of the islands; on
the other hand, in proposition 4.5.13 we are able to state conditions on ~ which
guarantee that the Lebesgue measure of the elliptic islands obtained with our con-

struction is either infinite or finite.
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4.1 Construction of periodic orbits

Recall once more the definition of F*:

R z+Y(y) (L.1)

Y y+20(x +Y(y))
We are going to obtain periodic orbits by building a set with special dynamical

properties and then considering intersections with its forward and backward images.

Remark 4.1.1. Suppose ¢ is odd with respect to some point Z:

then F' has a reversor map R such that
R*=1d RFR=F"
We can explicitly write R as follows:
R:(z,y)— (22 —z =Y (y),y).

Squaring the map R gives the identity map and an easy check shows that R conju-
gates F' with its inverse. Notice also that, being defined on the cylinder, if é is odd

with respect to z it has to be odd also with respect to z + 1/2.

We are going to define the set ¢ of fixed points of R:

C={(z,y) st. R(z,y)=(x,y)}
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The set ¢ is the disjoint union of the following two curves:
le(y) = (2-3Y(1).y)

((y) = G3+72—-3Y@W)y).

These curves wind around the cylinder as y increases. It is more convenient to

(4.1)

partition ¢, and ¢_ in pieces that wind just once around the cylinder in order to
work with graphs of (single valued) functions of x. This can be easily done by

inverting the 1-1 map y — Y’; let this inverse be y(Y’). Define now:
VneN l(x)=(x,y(2(x—2)+n)).

The curve ¢, corresponds to even values of n while /_ to odd values. Subscripts
will always refer to branches and superscripts will always refer to iterates of the set,
ie. for k € Z, (¥ = F*¢,.

The important dynamical property of ¢ is that
Vpel F¥p=RF *Rp=RF *p,

therefore, if F*¥p also belongs to ¢, we find F*p = F~*p that implies that the orbit of
p is periodic of (possibly not least) period 2k. Hence, points belonging to £* N ¢ for
k # 0 are periodic points. The issue is now to understand whether the corresponding
periodic orbits are elliptic or hyperbolic. Taking inspiration from [GL0O0] we work

out from scratch the period 2 case.

4.2 Period 2 orbits

First we classify period 2 orbits. This turns out to be quite simple, as the
following proposition shows. To fix notations, let {p;,p2} be a 2-periodic orbit,

80



pP1 = (3317191) and p; = (55271/2); since 3o = ¥z, we have <Z5(371) = —é(@)-

Definition 4.2.1. Being ¢ a sine function, 2-periodic orbits can only be of one of

the following types:

o ¢(x1) = P(xq), such orbits will be called (+)-orbits;
o ¢(x1) = —¢(x,), such orbits will be called (—)-orbits;
Proposition 4.2.2. Let {p1,p2} be a 2-periodic orbit; there can be two cases:
e p1,p2 € L, the orbit is a (+)-orbit;
o Y(y1) =Y (y2) =3 mod 1; the orbit is a (—)-orbit.
Proof. Let us write the condition for p; = (z1,y1) and py = (22, y2) to be periodic:

r1 = 1+ Y () = a9
vy = 21+ Y(y) +Y () =11
Y1 — o+ 2¢(»’U +Y () =1

v = 2 (9 + Y () + @+ Y () + Y (1)) = v

So that we have the two conditions:
Y()+Y(p)=0 modl é(z+Y(y)) + ) =0.

Since ¢(:U) is a cosine function, the second possibility can be true only under one of

the two following conditions:
e 11+ Y(y1) = 229 — x; therefore p; € ¢; the same is true for py

o x1+Y(y1) =z + 5 therefore Y (y;) = Y (y2) = L.
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Notice moreover that since qb is odd with respect to z, (;5 is even with respect to the
same point Z, therefore orbits of the first kind are (4)-orbits. On the other hand,

orbits of the second type satisfy the opposite condition qﬁ(xl) = —¢(r1+1/2 = z9)

and so they are (—)-orbits. O

4.3 Elliptic locus for period 2 orbits

In this section we find a subset of the phase space such that all 2-orbits that

lie in the set are elliptic.

Proposition 4.3.1. Denote the points of the orbit by (x1,y1) and (xq,ys); let
Y! = Y'(y), and b1 = O(xy), do = (xy) and similarly for ¢ (swapped indices
are intended). Notice that proposition 4.2.2 implies (ﬁl = j:(ﬁQ. Let v; = (szZ’ and

—1 <1 < g <0; define the following sets:

EZ;CQ = {<V17V2> s.t. v+ e+ 1n € (CLCZ)}

E.,, = {(v1,12) s.t. g € (ca,c1)}-

Then (£)-orbits belonging to Ecim are elliptic and the multiplier \ is such that

RA € (1+2c1,1 4 2¢5).

Proof. We start by computing the differential dF' on each point on the orbit:

1 Y/ 1 Y,
dFl — dF2 =
201 1+20,Y/ 205 1+ 20,Y;
The condition for a matrix M to be elliptic is that |TrM| < 2; moreover, for any

elliptic matrix M, %TrM is the real part of its multiplier. By direct computation of
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the trace of the product of the two differentials and using the (&) relations on ¢,
we obtain:
1/2Tr (AFdR) =142 (6] + 627 ) + 2¥{Yi iy (+)
1/2Tr (dFdFy) = 1+ 2Y]Y361 6. (-)

By direct computation we obtain the following conditions in v; that ensure ellipticity

and the supplementary condition on the multiplier:

Vi + Ve + 11y € (c1, ) (+)
vy S (01762>7 (_>
that are the defining conditions for the sets E-_ . O

Notice that since g'zél = :l:q'ég we have that

v gy in
V2 ¢2Y2/ Yy

Since Y/ = Y'~Y/7 and ‘Y;M - Yll/y ~ A = max|¢| we have:

Vi
5
ﬂN:I:(—1> — +1" as Y] — oo.
1%} }/2

Even if the shape of the sets Eim is not very complicated, it is convenient to state
a sufficient condition in terms of just one parameter v. Fix e small, then if we let
y1 < y2 big enough, we have (1 — €)|1a| < |11| < |1»]; a direct calculation yields the
following sufficient conditions for 2-orbits to be elliptic and satisfying the required

condition on the multiplier:
(+)-orbits: vy € (¢}, ) (—)-orbits: |v] € (|]], |c5]) (4.2)

where ¢}, ¢, and ], ¢j are e-close respectively to ¢; and cs.
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4.4 Description of /! and ellipticity condition

In this and the subsequent sections all pictures and geometric constructions
are made keeping in mind the coordinates (z,Y (y)). In these coordinates ¢ is rep-
resented by a straight line, and it is much easier to have geometric intuition about
the dynamics. Recall that the simple choice for ¢ given by equation (1.2) implies

the following expression for <;5
d(x) = Acos(2mx).

Proposition 4.4.1. Let y(Y) be the inverse function of Y (y) and fix —1 < ¢ <
co < 0. Then there exist real positive numbers Cy < Cy such that, for anyn <m € N

the following condition

1 Cy 1 1 1 G 1
(== Gmr) <o () o (ng - Grm) @

implies the existence of a 2-periodic elliptic orbit oscillating between Y = n + 1/2

and Y = m + 1/2 such that its multiplier satisfies RX € (1 + 2¢1, 1 + 2¢9).

Proof. Consider £1: let n(£) =y (2(€ — Z) + k) so that:

£,6) = (&m(©) +26(9))

So for A = 0 this is just a line in the (z,Y(y))-plane. As A increases, the line
deforms and presents similarities with the shape of qB, as we can observe in figure
4.1. As we proved in proposition 4.2.2, 2-orbits obtained by intersecting ¢ and ¢! are
(4)-orbits; we now claim that the highest energy point (x2, y2) of the orbit lies where
¢ > 0. In fact we know that ¢(x) = yo — y1; since we want that y5 > 11 we need
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Figure 4.1: On the left the reference picture for A = 0, on the right the situation

for A >0

such quantity to be positive. Having that fixed, vy = ¢(21)Y"(1y2) = d(x2)Y" (),
therefore we have that condition (4.2) is satisfied if (x9,72) € £ N ¢! belongs to this

set:
4
Y'(y)

First notice that this set is an O(1/(A - Y’(y)))-thin strip that lies O(1/(A-Y"(y)))

/
~+ . . 02 .
E. ., = {(m,y) s.t. < ¢(x) < Vi) () > 0}.
to the right of the vertical line & = 0 (that corresponds to ¢, = —1). By direct
inspection we obtain that in (z,Y’) coordinates, each branch of ¢V is a straight line

with angular coefficient -2 and each branch of ¢! near £ = 0 is approximated by a

parabola that intersects & = 0 with positive derivative (close to 2); the maximum of
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the parabola is given by the equation:

- 1 1 C1
YO = @) S V) S V)

Figure 4.2 illustrates the properties we just described. The key fact to notice is that

Figure 4.2: Explicit construction, in (x,Y") coordinates, of values of the parameter
A for which we have an elliptic periodic point of period 2 with given bounds on the

multiplier.

the values of A we are seeking are close to values A of the parameter for which the
intersection lies on the vertical line & = 0. Let us compute the intersection of /¢,

and ¢} with the vertical line £ = 0:

(0 (0) = (0,y(—=1/2 +m)) (4.4)

21(0) = (0,y(1/2 4+ n) + 24) (4.5)
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Therefore if we want ¢ and ¢' to intersect on the line £ = 0 we need to find A such

that points in (4.4) and (4.5) are equal for some n,m, i.e.:

y<n+%)+2/‘1=y(m—%) (4.6)

Now it is clear that we can find A; and A, as in the picture such that the intersection
lies on the boundary of ENCJZC,Q. Using the properties we described above it is also clear
that, in (z,Y) coordinates, the distances between intercepts of ¢! corresponding
to each A; with the vertical & = 0 are linear functions of the z coordinates of
the intersections themselves, therefore of order O(1/(A - Y'(y))). More precisely,
mimicking equation (4.5) and recalling that Y’ ~ Y'=1/7 we obtain that there exist

C4 and C5 such that if

1 Oy 1 1 54 1 C; 1
Y\ T T A ) SV Ty TS\ Ty T s )

then the intersection (£, N L) N E:ch £ 0. O

Condition 4.3 is essentially an arithmetic condition on A and 7. In the next
section we prove that this condition is satisfied for parameters A as in the statement
of (a) in Theorem C. At that point we will be only left with checking the non-

degeneracy condition and estimating the measure of the islands.

4.5 Arithmetic condition

In this section we are going to prove a result that is of independent interest;
for simplicity we state the arithmetic condition in a slightly simplified form with
respect to the case in consideration. Namely we drop the 1/2 that appears in 4.3
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and we rescale by a factor of —2 both C and C5. One can easily verify that this
does not affect the proof in any sense.

The condition is reminiscent of the Khinchin’s theorem on Diophantine approxi-
mation [[Kh64]. In fact we want to investigate parameters v and a such that the

following inclusion is true for infinitely many n and m € N:
C C
(' +a)" € <m +mE m+ —Qm_5> :
a a
for an appropriate (and fixed) choice of Cy > C7 > 0 and £ > 0. In our case a = 24

and £ =1—1/7.

Let us first introduce some useful definitions:

Definition 4.5.1. Let us fix £ > 0,y > 1, Cy > C; > 0. Then

C C
Gom = (m + AmEm+ —Zm_5> :
a a

=) Y%m =90

meN

Xai{n1/7+a, nEN}.

Using this notation the parameter a satisfies the arithmetic condition if the

cardinality ‘Xa N4,| is infinite.

Definition 4.5.2. Let n, k € N:

A#{aéR* st )Xamg;

A" = {a € R" s.t. (nl/7 + a)7 € g{z} ;
Ar = {a eR"st. (n'/7+a) € %,<n+k)} ;
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A", then A = ), A™ =

no

Clearly A" = |J, A}, moreover if Amo = U

n>ng

lim sup,,_,,, A"
Lemma 4.5.3. For ally > 1, A is a Gs set dense in R*.

Proof. Each A™ is open since it is a union of open sets. Moreover it is dense because
the distance between endpoints of consecutive intervals belonging to <, goes to 0 as
m — 00; thus, so do the distances between endpoints of the intervals belonging to
A" as n — o0o. As the point a = 0 is accumulated by the left endpoints of the first

interval in A", we conclude that A™ is dense in RY. O

Let us define the following conditions involving £ and ~:
¢ <1 (diverging);

1
¢ < — (overlapping).
Y

Notice that, since v > 1, the overlapping condition implies the diverging condition.

Now we can state the result as follows:

Theorem 4.5.4. If the diverging condition does not hold, then the measure of A is
zero. If the diverging condition holds then A has full measure in R™; moreover if

the overlapping condition also holds then A is the whole RT.

Notice that, as in Khinchin’s theorem, we obtain that the required property
is satisfied either by a null set or by a full measure set. This dichotomy seems to be

quite common in approximation problems similar to the one we are studying.

Proof. The proof will be presented in four steps.
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Step one  Reduction to a compact set of parameters

Consider a partition of RT as follows:

R+ — U[OélmﬁkL
k
such that
VEk ﬁk/ak < 02/01. (47)

This implies, for all a € [ay, k] the middle inequality in the following expression:

C
G _a_ 6 _ & G G
B o o B a o

Hence we can build a superset %}% and a subset %]?ﬁ] as follows:

%[i]m = (m + %mg, m + @mé)

k Q
C C
b . 1 ¢ 2 ¢
%[kLmT(m—i-a—km ,m—i—Em )

then as before:

1/v

LA # ot - gt
G = U G G = %

meN
G = U % Gasa"

meN

so that if a € [ay, Okl:
Gy 2 9> Gy

Hence, it is enough to prove the result for ff[i] (to obtain estimates from above) and
gﬁﬁ] (to obtain estimates from below) for all k. To simplify notation we now fix k,
we let @ = oy, and 3 = (B;; we then redefine A, A", A} as their intersection with the
interval [, (]; finally we define Af, A" and their components as we did before for A,

but using in the definition respectively 4% and 4.
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Step two  Structure of the sets A"
Define 67, Ap, A? I as in figure 4.3. The following lemma provides some useful
estimates:

n n n
An+l 'Ak An+1 ‘Ak+1 An+1 ‘Ak+2

K k+1 k+2
e
a L% | B
I ~—= I
I
R |
Figure 4.3: Definition of 67, AF, A? I7.
Lemma 4.5.5. Define the following positive quantities:
, .G G, LG G
« 16} 15} Q
and the set K, = {k € N s.t. A} #0}. Then:
14
of = —(n+ k)0 phot. for b e (0F,07) (E1)
g
1
AP = Z(n+k)" V) Lot (E2)
Y
AN 1 1 1/v—2
Al =—(1——=|kn/"""+ho.t. (E3)
Y g
K, ~ya-n' Y 4 hot y8-n'"Y7" 4 hot]NN (E4)

Proof. We first bound the length of the intervals Aj}:

s 1/ o 1/
o< (n—i—k—l—g(n—l—k)g) —(n—l—k—l—g(n—l—k)f)
+
_ = (n+ k)07 L hot.
f)/
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The bound from below is similar and yields the expected result. Then we estimate

the length of the intervals I

AT = (ntk+ 1)V -t - ((n ) nl/v>
= (n+k+D)Y = (n+ k)
1

= —(n+k)"" " +hot.
5

Next the offset of two subsequent Aj:

Al = (n+k+DY = (1) - (<n R - nl/"*)
— (kD) = (k)T - ((n L)Y - nl/7>
_ ! <(n + k)Y - nl/v_l) +h.o.t.

v

1 1
= —— (1 - —) k-n'77? + ho.t.
Y Y

Finally we estimate K,:

K, = [(nl/A’Jroz)v—n,(n1/7+ﬁ)7—n]ﬂN

= hoz Y £ hot,y6 - nt YT 4 h.o.t.} NN;

notice that

(K| ~ om0 (8 = ).

Step three  Owerlapping regime
From the previous estimates we can already obtain the result in the overlapping

regime. In fact (E4) implies that k is O(n'~/7), therefore, by (E3), Al is O(n™1).
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This implies that if = — (1 —1/7) > —1 (i.e. & < 1/ that is the overlapping
condition) A? and A} will eventually overlap because, by (E1), the length of the
intervals A} goes to zero slower than their offset. Since they overlap and they are
moving like 1/n, they will eventually cross the left endpoint so for each fixed k they
are going to cover the whole interval, therefore A" is going to cover [a, 5] infinitely

many times, and A will contain [«, (].

Step four Non-overlapping regime

We will now focus on the strictly non-overlapping regime i.e. & > 1/; the critical
case £ = 1/~ will be considered later as it is just a combination of this and the
previous situation.

Define, for any Borel set £ C [a, 3], P(E) = Leb(E)/(8 — a) as a probability
measure on |«, 3]. We are going to prove that the set A has either full measure or

measure zero using the following strong form of the Borel-Cantelli lemma:
Lemma 4.5.6 (Borel-Cantelli-Erdés-Rényi [ER59]). Let {Ax} be a sequence of
events on a probability space (2, % ,P). If
i]?(fln) < oo (convergence),
n=1
then P(limsup A,) = 0. If instead
i P(A,) = o0 (divergence)
n=1

and
> kit P(ARAD)
(Ohy P(Ar))

lim inf =1 (weak independence),
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then P(limsup A,) = 1.

We will obtain the result by verifying one of the above conditions for the sets
A™. The following two lemmata deal with the estimates of the convergence/divergence
condition and the weak independence condition respectively. They need to be proved
for both Af and A°; however to simplify the exposition we will drop the superscript
and let ¢ = ¢, or ¢ = {_ according to the case. In this way we simultaneously obtain
a upper and lower bound for the measure of A, from which we obtain any of the

required conditions.

Lemma 4.5.7. Fix n and let N tend to infinity. Then:

N
1
> P(A") = HENH + h.o.t. (4.8)

Proof. Let us first compute:

Leb(A") = > Leb(A}) =) o = t S (n4 k)

keKn, keKn, v keKn,

14
= - Z n Y L hot. = (B — a)fn~® +hot.
7 KK,

Then normalizing and summing on n yields (4.8):

N N
1
E ny _— E = — 1-¢

n=n n=n

]

Observe that the diverging condition implies that (4.8) diverges as N — oo,

while the series converges if the condition is not satisfied.
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Lemma 4.5.8. Fixz n, let N go to infinity, then:

N N 1
n m 2 2-2¢

Proof. First of all, by symmetry we can assume m > n by paying a factor of 2 and

some diagonal higher order terms; then we separate again A" in their respective

components A}

XN:ZN:IP’(A”A”L _2ZZIP’ (A"A™) +h.o.t. =
=23 > )Y P(ARA!) +hot.

Now let us focus on the last two sums, fixing momentarily n and k. We can write

the following equality:

P'IL
Z > P(ARATY ZIP (ARBEF) + error term (4.9)
m=nleK,, p=1

where we define the sets B7* as the p-th wave (see figure 4.4):

nk _. r n
Bp ;I_'Ak+pﬂ[k,

reN

P’ is an appropriate number that is estimated by the next lemma and the error

term is due to the fact that the last wave could be incomplete.

T AN \An

| M—— -
|

i

a | |

nk r
Bp Akrp

Figure 4.4: Relation between waves B;}k and sets A}
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Lemma 4.5.9. The following estimate holds:

N1=1/v
P = (——1) k4 0(1).

nl_l/W

Proof. As it follows from (E3), the offset between Aj, and A} is Ap, . Bk is

the union over all » such that A’

r+p intersects [j7; for each fixed p there is a wave of

Al that will be inside [}? for some time and then leave the set. P’ is the number

of waves that will pass through /' in the time N. This means that:
(N +k+P)Y = NV~ (n+ k)Y — 0/,

that is:

NV (k4 P =1} P! = Ll/7—1 k4001
( + k)Nn = k nl_l/,y + ()

]

The error term in (4.9) can be easily bounded by the order of P (A}), as we
miscount of at most 1 wave. We are left with the computation of P (AZB;}’“). Each

sz is the union of intervals that are A7 +p apart and o, long. Their ratio gives

the portion of the interval covered by each wave.

Lemma 4.5.10. Let us introduce the parameter n = (k + p)/k. Then we have:

T e
= =/ Nt + h.o.t. = A (p).
Ar, -1k g

Proof. By definitions of d7 and A} we have:

by _, 1 (rth+p)
By -1 (+p)77)
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We now need an estimate on r: acting as before for the computation of P we obtain

the following bound:
0

y—1
P/t (k’+p)~n1/“’_1k = r:n<_/€—]:p) .

We can rewrite the previous expression as:

g /Y (nrr]’Y/( 71) + nk‘)fgfl‘i’l/'y
1k -0 g0lG-D)(/A-2)

that is:

_ _ _ —£—1+41/
E ¥ ((n+n 1/(’7 1)k) 77’7/(7 1)) v
v—1 k-nl/r=2.np=/0-1)
Yy nlf& 1-¢y

~f—T

vy—1 k

+ h.o.t. ~

]

Therefore P (ApBpF) = Xi(p) - P(A})+O(A;,,/(6—)), where the error term

comes from the non-uniformity of the set B. Therefore:

ZIP ALBIF) = P(A}) Z)\" +h.ot. ~

Y nlié % 1= Ev
~PAN—— 7 ) (k+p)7 T =
,y - 1 k’ ~y—1 p:1

I B e (-6

EP(‘AkWTgﬁ (((k+Pk) =1 ) — ko ) -
=&y

" 1 n'=¢ a-o NI=1/AN =1
ZP(-Ak)eﬁﬁk 71 (n11/7> —1| =

n Lo N'=¢

P —¢n <n1—§ -



Now we sum over n and k:

N'-¢
ZZIP’A” e—n —1) +hot. =
keK, ni=¢
n=n k&
N
1 (N'¢ 1 .
=D tr—n (nlg 1) g, %=
N
1 N1-¢
~ 2 - o 1=20 (- _
_261_571 (nl—f 1>—

N
o~ —5 Z Nl’%’£ — nk%) =
1

~ 2T N2
ST

Recalling the factor 2 we had at the beginning of the estimate, the desired result

follows. L

The last two lemmata prove that the weak independence condition is always
satisfied regardless of the value of £&. Therefore we have only to check the diverging
condition. In the diverging regime we can conclude that the set A has full mea-
sure, whereas in the non-diverging regime we can as well conclude that A has zero

measure.

Step five  Critical case & =1/~

For £ = 1/~ we have that the overlapping condition is satisfied for small enough a,
because 0} grows bigger as a decreases. As we notice from lemma 4.5.10, we can
find a critical @ such that for a < a we have overlapping and for a > a we have no

overlapping. O

In our case £ = 1 —1/~ so that the diverging condition is always satisfied, thus
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statement (a) in theorem C is proved up to the non-degeneracy condition.

Remark 4.5.11. For this particular value of £ the overlapping condition gives v < 2;
the critical case is therefore v = 2. In this case it is easy, given a large enough a € N
to find C} and C5 such that the arithmetic condition is satisfied for only finitely

many n,m. In general, for v > 2 we still ignore if R* \ A is non-empty.

Remark 4.5.12. The technique we developed can be applied to (—)-orbits as well.
The arithmetic condition relative to such orbits turns out to be more restrictive
than the one for (+)-orbits; more precisely it yields £ = 2 — 2/~. This implies that
the diverging condition is not anymore guaranteed. In fact it fails for v > 2, which
means that such orbits appear for arbitrarily high energies for almost all parameters
A only for v < 2 and for all parameters for v < 3/2.

Having studied all possible 2-periodic orbits, we notice how the conditions we stated
are actually also necessary conditions for the presence of elliptic 2-periodic orbits.

This implies the following interesting results:

e if v = 2 we can explicitly check that for A = 3 the system has only finitely

many (+)-elliptic islands of period 2 (no restrictions on the multiplier).

e if v > 2 we have infinitely many (—)-elliptic islands only for a null-measure
set. Notice however that lemma 4.5.3 does not depend on &, therefore such

set is non-empty.

Remark 4.5.12 also allows to prove (b) in theorem C, provided the result given
in proposition 4.6.3, that states that the measure of each (+)-elliptic island is of
order 1/Y". In fact:
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Proposition 4.5.13. If v > 4/3 the total Lebesgue measure of (+)-elliptic islands
of period 2 is finite. If v < 4/3 the total Lebesque measure of elliptic islands is

infinite.

Proof. We first obtain a rough upper bound to the total measure of elliptic island
by summing the measure of a single island over all intersections where an island
could appear regardless of the arithmetic condition. As there could be one for each

Y ~n+1/2 we have the following estimate:

o0 1 o0
Leb(islands) < Const - Z vE = Const - Z n 30—/,

n=1"" n=1

The series converges for v > 3/2. In order to obtain the sharp estimate we need to
take into account that for some of the n we cannot have an elliptic island. For v < 2

this can be estimated quite easily, because the following expansion holds true:
(n% + A) =n—+~yAn' Y7 4 o(1).

From the previous expression it is clear that:

1

{(n% + A)V} = {yAnlfv} + o(1).

This function has an infinite number of branches, let us index them by k. Each
branch will start at ny ~ k70~Y. The arithmetic condition can be expressed in

terms of k in the following way:
{nl-%} < O®kY).

Figure 4.5 illustrates this condition; for each branch k& we have elliptic islands until
the fractional part grows too large and the arithmetic condition no longer holds
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Figure 4.5: The arithmetic condition for v < 2: we have an elliptic island for all

values of n such that {vAnlf%} is in the shaded region.

true. Given this fact it is easy to estimate the number of islands belonging to the
k-th branch. We compute the derivative of n'"7 for Nng.1, obtaining a linear lower

bound on the growth of n'"% in the k-th branch:

1

) Mty (n =) ~ (k41777 - (=),

The smallest n for which the arithmetic condition fails can therefore be bound from

above by requiring:

2—y
=1,

(k+1)777-(n—my) < (k+1) " ie n—ny< (k+1)

therefore for the k-th branch we have at most O(k‘%) elliptic islands. We now
multiply this number by the measure of such islands and sum over all branches £ to
find the total measure:
Leb(islands) < C - Y ko1&,
k=1

which converges for v > 4/3. Notice that along the same lines we can obtain as
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well a lower bound of the same order, that means that the total measure of islands

diverges for v < 4/3. O

4.6 Non-degeneracy condition

According to general KAM theory, there exists a stability island around each
point of a periodic orbit provided that generic non-resonance and non-degeneracy

conditions are satisfied. Following [[.a93]:

Definition 4.6.1. An elliptic fixed point p of a two-dimensional symplectic diffeo-

morphism f is said to be general elliptic if:

e the multiplier A, is such that )\’; # 1 for k = 1,2,3,4 (non-resonance up to

order 4);

e the Birkhoff normal form is non-degenerate, i.e. a quantity that can be written

in terms of derivatives up to fourth order is different from zero (see below).

Theorem 4.6.2 (KAM). If p is general elliptic, then it is stable, i.e. for each

neighbourhood U of p there exist another neighbourhood V such that¥ k, F*(V) C U.

Stability around the point implies the presence of an elliptic island. As noted
before, the construction we described yields elliptic points with multiplier which can
be chosen to belong to some prescribed interval; this implies that we can a priori
avoid resonances. The non-degeneracy condition can be explicitly computed by the

following procedure:

102



e We perform a linear change of coordinates such that the differential of the

map dF' at the fixed point is a rotation in the new coordinate (£,7) where

e We compute the Taylor expansion coefficients up to order four (excluded) in

the coordinates u = £ + in and @ obtaining the following expression:
u— A\pu + Azu® + Aquti + Aza® + Agu® + AquPa + Agui® + Ag® + O(4).

e We compute the following expression:

Ap+1
AQ
Ap—1+| ’

_ A+
w=—i {i%()\p/h) + 3|45/ L } :

A —1

The non-degeneracy condition requires that w # 0. The coefficients A; contain
derivatives of Y up to order 3 and derivatives of ¢ up to order 4. As for high energies
we have Y/ > 1, instead of computing all A; exactly, we perform an expansion in
terms of powers of Y/ and compute the highest order non-zero term, taking into
account that ellipticity implies ¢Y/ = v; ~ 1 (i.e. condition (4.2)). We find by
direct computation' that the highest nonzero term in w is of order Y7*. As a further
simplification note that we have Y, = Y/ + O(Y"); this implies that if we compute w

by setting Y/ =Y, = Y’ and find a quantity bounded away from zero in this limit,

it will be bounded away from zero also for all Y, sufficiently large. The coefficient

!Computations were made using the software Mathematica. A printout can be found at

http://www.math.umd.edu/~jacopods/bnf.pdf
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of order 3 turns out to be the following polynomial in v = ¢Y” € (—1,0):

(24 0)§”

2
w3 = 61D5/Y"7 2(v° +4v 4 6)+

+ <—iu(2+u)2 <3§p+ = A5‘5’+1(3+u)2)>].

-1 N1

where

D =/2(1=Re (A, - 0. (F2(p)))).
is of order Y'7'/2 and 0, (F?(p)) is the holomorphic derivative of F? with respect
to z = = +dy. Notice that the fractions involving the multiplier A\, = exp(ifp) give
respectively i - cot(6,/2) and 7 - cot(36,/2). Of course 6, is not independent of v,
but recall that since we can control the multiplier, we can assume both cotangent
functions to be bounded away from zero and positive. It is easy to check that for
a fixed v € (—1,0) this polynomial is bounded away from zero, as each term in the
sum is positive. This is enough to establish the presence of an elliptic island around
each periodic point found with the construction, proving Theorem B. Notice that
the expression for w3 does not involve derivatives of ¢ of order higher than 3 and
derivatives of order 2 of higher of Y as such terms appear only in terms of lower
order in the expansion in Y’ (see below). We finally prove an estimate regarding

the size of the elliptic islands we obtained. This estimate concludes the proof of

Theorem B

Proposition 4.6.3. Consider a 2-periodic orbit of type (+), given by the points
(x1,y1) and (z2,y2) and such that the multiplier is bounded away from resonances
of order up to four; we define Y' = (Y'(y1) + Y'(y2)) /2. Elliptic islands of type (+)
around such points have area of order Y'™* for large enough y.
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Proof. We consider the map F? expressed in terms of the variables u, 4 defined
above, close to a periodic point p; for simplicity we assume p = 0. Recall that the
variables u and u are related to z = x 4+ 1y and z by a linear symplectic transfor-
mation, i.e. z = byu + by and byb; — byby = 1. In such variables one can write the

map as follows:
u— Ay (u, w)u + As(u, w)u where A;(0,0) = Ay, A2(0,0) = 0.

One can obtain all terms of the Taylor polynomial of £ in such variables by appro-
priately differentiating the functions A; and Ay with respect to w and u. We claim
that the term of order n is of order at most Y’3T"~1/2, By direct computation we
find that

As, Ag, As = Y2 Ag, Ag, Ag, Ag ~ Y7
This, along with the estimate we claim, is sufficient to prove that the area of the
elliptic island is of the required order. In fact, one can perform a rescaling u +— Au,
obtaining the following (symbolic) expression:

U AU+ Z A(n)An—l{u’ a}".

n=2
Therefore by choosing A such that AM™ A" < 1 we obtain that the linearized part is
dominant in a disk of radius of order A around the origin. The explicit computations
and the claim allows us to take A ~ Y’™3/ ?: the result follows by recalling that the
map z +— u is symplectic and therefore it preserves the area form.
We are now left with the proof of the claim, i.e. to prove that A®™ < Y3072,

First we obtain by direct computation a relation between the coefficients a; of the
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Taylor expansion in terms of z, zZ and the coefficients A; of the expansion in terms
of u,u

zray(z,2)z +as(z,2)2 2z = byu + byti.
Al = b151a1 -+ Blggag — blbgag — bggzal Ag = Blbgal + Blglag - b2b2&2 — Blbgdl.

We can obtain all coefficients A™ by applying the relative differential operator to
the appropriate A;; the key fact to notice is that, b; being constant, the differential
operator will operate only on the a;. One can express 0, and J; in terms of 0, and

0y in the following way:

by + b by — b
:1+2(9m+i2 1

_1_71-1—52 by — by
2 2 N Or =t

Ou
2 2

0, O 9.

We are going to explicitly compute the coefficients of 0, and 9, to check that they
are respectively of order Y'*/? and Y'~(1/2. Then we find a general expression for
the order of arbitrary derivatives of a; and as. Explicit calculations provide the

following values for a;:

; - ; ; Y/ +Y! .
o = (1 230+ )+ 2000g) (264 20 - T - gy
. ) ; . Y/ Ly, .
ay = (—2¢>Y2’ - 2¢2Y{Y2’) +i (2<z> +207Y] + % + ¢Y{Y2’>

Where recall that we defined Y/ = Y”(y;); notice than the coefficient of 0, is of order
Y""? and the coefficient of 0, is of order Y'=(1/2) This reflects the fact that the
symplectic transformation stretches along the y direction and contracts along the x
direction in order to put the differential in normal form. This in turn implies that
the shape of the invariant curves is elongated in the z direction (as we can notice
in figure 4.6). We are left with computing the order of magnitude of derivatives of
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a; and ay. Tt is convenient to notice that d(F?) is close to a square of a matrix, i.e.

if we write Y/ =Y’'(1 — ) and Y] = Y’'(1 + §) we obtain:

a1 =1+4+¢Y' +i(p—Y'/2) = —gY +i(d+Y/2).

a; = (a1a1 + 042@2) — 2Q.ZSQY,252 — 2Z¢2Y,5 + Z'g.b.le(SQ

Ay = (Oégal + 042071) — 2¢Y/5 + 2Q.QY,2(52 — 22¢2Y,(5 — Z'g.ZéY/252

As § is of order 1 (and limiting to 0 as Y — o00), the error term is of order at most
Y’ whereas the main term is of order Y’2. Now we differentiate a; and ay with

respect to x and y:

aszl = qb(Y, + Z) 85,;042 = QS(—YI + Z)

dyon =Y'0,00 +Y"(§—i/2)  Oyas = Y'Dy00 +Y" (= +i/2).

In order to obtain an upper bound on such derivatives, we will consider ¢ ~ 1
regardless of the fact that even derivatives will be of order Y’~!. To this extent, we
observe that all terms containing second (and higher) derivatives of Y will appear
in terms of lower order than the dominant Y’ for 0, and Y’ for 9,. By direct
inspection, the same statement is true for terms containing ¢ in the expression for

a; (in fact 0 ~ Y"”/Y"). Therefore if we restrict to the maximum order:
al;a;al ‘max _ Y,l¢(k+l+2) (Y/ + Z) al;azl/az‘max _ Y/l¢(k+l+2)(_yl + Z)

Now recall that we were to compute derivatives with respect to the (u,u) variables

and as such we should recall that the coefficients in front of d, and 9, are of order
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respectively Y’ /2 and Y'~Y2. This means that we obtain:
akal_al < Yl(k+l)/2+1 akal_a2 < Y/(k+l)/2+1
which in turn implies:
Ofohay SY' IR Ggrglay S YD,
Therefore we obtain the required estimate for A™ | i.e.:
A(n) < Y/a(n—l)ai < Y'/3+(n—1)/27

which concludes the proof. O]

Figure 4.6: Elliptic island of period 2 and type (+); each smaller picture is an
enlarged portion of the previous one. In the big picture we see the 2-periodic islands

(bottom center) at two suitable intersection points of £ and £!.
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