TecHNIcAL RESEARCH REPORT

Call Rerouting in an ATM Environment
by M.O. Ball, A. Vakhutinsky

CSHCN T.R. 95-22
(ISR T.R. 95-58)

. CENTER FOR SATELLITE AND HYBRID
COMMUNICATION NETWORKS

4

The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the
University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

Call Rerouting in an ATM Environment

Michael O. Ball*, Andrew Vakhutinsky”
College of Business and Management and Institute for Systems Research
University of Maryland
College Park, MD 20742
and
Phil Chimento, Levent Gun, Ted Tedijanto
IBM, Networking Systems Architecture
Research Triangle Park, NC 27709

June 1995

Abstract

ATM networks must handle multiclass traffic with diverse quality of service requirements. We
consider a multiclass routing model in which routes are calculated in a distributed fashion by the call
origination nodes. Within this general context, we address the problem of rerouting a set of previously
routed calls to avoid a failed link. Under the approach we propose, a single node executes an aggregate,
global rerouting of all affected calls and then converts the set of aggregate routes into an allocation of
bandwidth on each link to call origination nades for the purpose of rerouting. The bandwidth allocation
is distributed to each origination node, which in turn then calculates routes for the individual calls. The
problem faced by each call origination node is a variant of the so-called bandwidth packing problem.
We develop and analyze an approximate algorithm for solving this problem in the specific context that

arises in our setting.

“The research of these authors was supported by IBM Corporation and by NSF grant No. CDR-8803012.

Introduction

In this paper we present mechanisms for rerouting around faults in multiclass traffic environments which
will be encountered in most of the future ubiquitous broadband integrated service digital networks (B-
ISDN). These networks should deliver service for the calls with widely varying bandwidth and quality of
service (QOS) requirements. In order to provide high service availability, it is necessary for the networks
to react in real-time to network faults, the topic of our research.

We assume a distributed routing environment in which the node at which the call originates calculates
a route for the call. The node’s calculations are based on link load information passed to it periodically by
other nodes. Under normal conditions, the node selects a route for each call as each individual call request
is received by the node. We associate a fixed bandwidth requirement with each call. Thus our mode] most
directly applies to circuit switched networks where each call may have an arbitrary bandwidth requirement.
However, the principal application intended for our model is ATM. ATM networks have a number of unique
characteristics. Specifically, they should be designed to handle calls with widely varying characteristics and
QOS requirements [11, 4]. Since varying traffic types must be handled, there can be wide variations in peak-
to-average bandwidth requirements. For the purposes of routing we propose to make use of the existing
research on the determination of a bandwidth allocation, or effective bandwidth, (see [11],pp 97 - 147) for
each call based on its projected traffic characteristics. Thus, we would use the effective bandwidth as the
call bandwidth value required by our model. Our model can be extended to allow for the possibility that
the effective bandwidth of each call may vary from link to link. Thus the effective bandwidth can depend
on the capacity of the link. This approach can be considered as a simplification of the “equivalent capacity”
method proposed in [6, 7]. We recognize that most of the offective bandwidth theory to date has been in
the context of a single link (and not a more general network). However, many feel that applying these ideas
within a network context represents a reasonable approximation. Calls will also have an associated delay
requirement varying from call to call. This is also included in our model. The requirement for handling
multi-cast routes is one novel routing requirement which changes the underlying route selection structure
from one of determining a simple path to determining a Steiner tree. In the analysis presented here we do

not consider multi-cast routes, although we intend to do so in subsequent papers. A further complicating

factor especially in ATM networks is the two layer route structure consisting of call-level virtual circuits
(VCs) and the higher level virtual paths (VPs).

The rerouting problems treated in this paper involve the simultaneous calculation of routes for several
calls. Since calls with varying bandwidth requirements must be handled, the underlying optimization prob-
lem has a “packing” component. That is, calls with varying bandwidth must be packed into bandwidth
limited links. The “bandwidth packing problem” has been studied in the literature [9, 12, 13]. Previous
research has concentrated on finding an optimum or near-optimum solution by applying off-line algorithms.
In this paper we develop a model and associated algorithmns designed to operate in a distributed environ-
ment. Specifically, a two phase process is described. In the first phase, a centralized algorithm calculates
a capacity allocation. This allocation is then distributed to each node. In the second phase, each node
calculates paths, in parallel, for the calls it originated. The version of the problem we consider has certain
unique characteristics including allowing the possibility of preempting existing calls.

The paper is structured as follows: section 1 gives a model description and general approach. The
algorithms are described in section 2, computational experiments are presented in section 3 and section 4

deals with delay requirements and more general way of handling effective bandwidths.

1 Problem Formulation

1.1 Assumptions and Fault Scenario

The basic scenario we are presented with is the failure of a network link, e', in an environment in which
we may assume all network elements, including €', are currently handling significant amounts of traffic. In
general, at the time of its failure, several calls will be routed over e'. We denote the set of these calls by
K. The problem to be addressed is the determination of new routes for all calls in K. Due to the dynamics
of the network information used by the originating node when setting up the call, it is possible that when
the call setup is actually carried out, it will be refused by an intermediate node due to the unavailability
of sufficient resources on a link. We call this phenomenon a call refusal. Alternatively, it is possible that

in order to set up the incoming call it is necessary to take down the route of an existing lower priority call.

We call this phenomenon call preemption. In such cases, the originating node of the preempted call would
try to find a new route for that call. We note that each intermediate node along a call’s path contains a
limited amount of information concerning the call, including a call id, the originating node, call bandwidth
and outgoing link. Certain rerouting strategies might require that this information be augmented.

We consider two failure scenarios for a network link, ¢/. Under the first scenario, the network’s health
monitoring system anticipates the failure of e’ and the system has sufficient time to plan route adjustinents
accordingly. Under the second scenario, link e’ experiences a sudden failure. In the first case, we could
asswmne that the network management system has a “reasonable amount” of time to react to the failure
and in the second, the network must react much more quickly. In either case, we assume that several calls
are routed over €'

For carrier networks (see [8, 2]) it appears that rerouting in the event of element failures can be restricted
to the VP level. The strategy of setting up a backup VP with a 0 bandwidth allocation and then allocating
bandwidth and switching to the backup VP at the time of a node or link failure appears to be a very effective
one [8]. The effectiveness of this approach depends on the ability to reserve a certain amount of backup
bandwidth. In lower speed (e.g. T1) private networks (our primary focus), we envision an environment
in which backup bandwidth will not be reserved necessitating the preemption of lower priority calls in the
event of element failures. To carry out the appropriate restoration, VC level rerouting together with call
preemption will be required.

Our approach makes use of a certain capacity allocation scheme. Specifically, each call origination node
is given its own capacity allocation for each link in the network. The capacity allocated to a particular
call origination node will typically be substantially less then the total capacity available on the link. The
path selection algorithms that the call origination node uses will penalize any violation of the capacity
allocation. When a link fails a designated node will compute the capacity allocation for all call origination
nodes that have routed calls over the failed link. This capacity allocation will be based on an aggregate
rerouting of all affected traffic. The capacity allocation will then be transmitted to each origination node
which will use the allocation when determining new routes for all calls previously routed over the failed

link. The motivation for this approach is to reduce the incidence of call preemption and call refusal that

would normally take place when failures occurs. Specifically, it is anticipated that, when failures occur,
since the origination nodes are trying to carry out “bulk” call setup, the information they would have on
the traffic load on links would be inaccurate. Thus, it would be much more likely that call setups would
be attempted on links that did not have sufficient capacity. The intent is to reduce the occurrence of this
phenomenon by effectively allocating the link capacity ahead of time.

In this paper, we describe the underlying optimization problems, propose basic solution approaches for
each and evaluate the merits of the two phase approach in determining high quality routes. We understand

that several additional issues must be addressed in order to make this approach practical. These include:
e determination of what additional information must be stored by each node;

e thorough analysis of capacity allocation step, specifically — evaluation of alternative locations for
computing the allocation, protocols for distributing the allocation information and determination of

time required to carry out distribution;
e consideration of pre-calculation and storage-for-fast-retrieval of the bandwidth allocation;

o the development of a hybrid approach which reroutes as many calls as possible by switching to backup

VPs, and then executes the algorithms presented here to carry out VC level rerouting.

In section 1.2 and 1.3 we present formulations of the rerouting problems. The purpose of these is to
describe the fundamental problem structure. These formulations can not be used directly, since for the
target environment distributed, real-time algorithms are required. In Section 2, when specific algorithms

are presented, the telecommunications environment is taken into account.

1.2 Notation

Let G = (N, L) be the undirected graph representing a telecommunication network; A is the set of nodes,
[is the set of links. Since each link carries different calls in each of its two directions, we consider each link
[i,5] € L consisting of two directed arcs: (i,7) and (j,7). The set of all arcs is denoted by A, A CN x N.
Residual (free) capacity of the arc is defined as the difference between the total link capacity and the

total bandwidth of the calls carried by the arc. In general, the arcs (i,7) and (J, i) have different residual

[}

capacities B;; and Bj; since different calls are routed over these arcs. We will also introduce the following
notation for the network: IN(i) = set of arcs directed into node i; OUT (i) = set of arcs directed out of
node 1.

As indicated previously, we let K denote the set of calls to be rerouted. For each call k& € K, the
following set of parameters is defined: origin O(k) € N, destination D(k) € N, bandwidth by and priority
class h(k) € H. Additionally, we assoclate a revenue ép(ybr with call k. Thus & can be considered as a
revenue obtained from routing each unit bandwidth of class ¢ (We note that the requirement that revenue
is a linear function of bandwidth is not essential to the overall approach). Notice, that the revenue is
received only after routing the “entire” call.

For the purposes of the exact problem formulation, we assume the set of all active calls M is known

explicitly. This assumption will be replaced with a reasonable, practical approximation in section 2. Let

1 if call mn is carried by arc e
forallmeM,e€ A dem = (1)

0 otherwise

and let &, (m)bm be the cost of preempting active call m with priority class h(m) and bandwidth b,.
Similarly to routing revenue, & can be considered as a cost of bumping each unit bandwidth of class £.

A path through the network for the call k is defined as a sequence of arcs (i, 1), (i1,92), - - - (im—1, im)
where iy = O(k) and i,, = D(k). We will denote the path by py. The set of all feasible paths for call k € K

will be denoted as P(k).

1.3 Problem Formulation

In this section, we present an integer programming (IP) formulation of the problem. This formulation
is probably the most natural. It includes embedded “flow” problems for each call to be routed. The

formulation uses the following 0/1 and continuous variables:

—_

if call k is routed
forall ke K: yr =

0 otherwise

1 if call k is routed over the arc e
forallke Kandee A: z

o

0 otherwise

1 if call m is preempted
foralmeM: z, =
0 otherwise

The exact IP formulation is given by:

(IPR):

Maximize Z Chikybryr — Z Chrim)bmazm — Z Z s’ecx’; (2)

kEK meM keK ec A
subject to
Sk S ok = ye ifO(k) =i foralli€ N and k € K, (3)
ecOQUT(3) ecIN(i)

0 otherwise

> beat < Be + > Gembinzm for all e € A, (4)
kek meM
0<y <1 and integer for all k € K, (5)
0< 2z, <1 and integer for all m € M, (6)
k>0 and integer foralle e Aand k € K. (7)

Objective function (2) maximizes the revenue received by routing the calls (the first term), minimizes
the capacity violation (the second term) and a cost which encourages shorter routes to be chosen (the
last term). Coefficients sk are chosen to be relatively small in comparison to cost/revenue coefficients.
Constraints (3) are imposed upon each call k are the usual network flow conservation equations. Since
variables z* are integral and the flow value for each call is 0 or 1 (the y variable restriction), the call can
be routed over at most one, non-split path. Constraints (4) enforce the capacity restriction on each arc
where the upper bound on the capacity is a “soft” constraint — it may be violated by preempting the calls.

We now present an alternate formulation, which uses a 0/1 variable for each feasible path. Thus,
conceptually it potentially requires a very large number of variables/data. In general, this should be not
deter one from considering it since formulations of this type can be quite practical if one generates variables
and their associated columns dynamically. Specifically, for problems of this type “column generation”
approaches are used, which generate columns of the constraint matrix only as they are required. It is

typical that the number of columns generated is of a very manageable size and is much less then the total

number which appear in the problem statement. Although, initially we do not intend to use formal column
generation approaches, our approximate algorithms will be similar in spirit to column generation and will
use many of the same concepts.

The new variables for this formulation are path variables defined as follows:

1 if call k is routed over the path p
Jrp = for all k € K and p € P(k)
0 otherwise

Flow-Path Formulation with Aggregate Call Preemption Costs:

(FPAB):

Maximize: Z ffh(k)bkyk - Z Eh(m)bmzm - Z Z sf;fkp (8)

ke, meM kEK pcP(k)
subject to
> fep=r for all k € K, (9)
peP (k)

SThe D fir<Bet Y Sembmim for all e € A (10)

kEK pecpeP(k) meM
0<yF <1 for all k € K, (11)
Jip =0 and integer forall k € K and p € P(k) (12)
0< 2z, <1 and integer for all m € M, (13)

Constraints (9) state there is exactly one path for the call if it is routed and no paths if it is not.
Constraints (10) are similar to those of (4).

The path formulation and associated column generation approaches provide a general framework for
the development of a class of approximate and exact algorithms. Specifically, the process can be viewed
as starting with a set of calls to be routed. A list of paths is built up dynamically over time. At any given

time there exists:
e 2 list of calls
e a list of paths

e a “matrix” of path/call compatibilities and assignment costs (e.g. sk)

e a (possibly partial) assignment of calls to paths

An any given iteration the algorithm could improve the assignment of calls to paths or alternatively,
generate one or more new paths. Of course, these two options are clearly linked. If it did not seem possible
to generate a good assignment of calls to paths using the current set of paths, then this would signal to need
to generate additional paths. Furthermore, paths could be generated specifically to try to accommodate

certain unassigned or poorly assigned calls.

2 Algorithms

In the previous section, we presented exact IP formulations of the problem. Theoretically, we could have
plugged those formulations into an IP solver and obtained an optimal solution. Such an approach would
not be appropriate in a real-time distributed setting. We propose a two-phase approach in which the final
decision on, and calculation of, a call’s path remains with the call origination node.

In this section we outline the design of the algorithms and overall problem structure and derive some
theoretical running time bounds for the algorithm. The next section gives an experimental evaluation of
the quality of these algorithms.

Subsection 2.1 gives a formulation of the Phase I capacity allocation problem. This problem is a
linear program which can be solved using standard commercial software. The solution provides a global
capacity allocation. In calculating this allocation, the total bandwidth allocated to all call origination
nodes on a given link might include both bandwidth currently available and bandwidth that must be freed
by preempting existing calls. In the second phase, each call origination node sets up calls “assuming” all
allocated bandwidth is available. When each individual call is actually set up the nodes along the call’s
path will preempt existing calls if necessary. The Phase I problem must be solved once by a single central
node. Possible candidate locations for solving this problem include one of the two nodes adjacent to the
failed link and the network control/management center.

Subsection 2.2 presents an approximate algorithm for solving the bulk path selection problem that

must be solved, in parallel, by each call origination node. The problem is variant of the bandwidth packing

problem. The algorithm presented involves the iterative solution of shortest path problems and is motivated

by first-fit-decreasing bin packing heuristics

2.1 Phase I: Capacity Allocation

Below, we give a linear programming formulation of the capacity allocation problem. We introduce the

following variables:
for all (i,j) e N x N, L€ H: ﬂfj is total amount of priority ¢ capacity
assigned from node 7 to node j;
foralle€ A, i€ N': # is total amount of capacity assigned

to origination node ¢ on arc e.

The Z! variable values are the capacity allocations that are passed from Phase I to Phase IL
The LP problem is obtained from problem (IPR) by aggregating » and y variables and relaxing the

integrality constraints.

(CA):

Maximize Z Co Z 175] - Z Eh(m)bmzm - Z Z 92% (14)

teH (i,j)EN XN meM iEN e€ A
subject to

—Yien ¥ Hi#1
e foralli,j €N, (15)

i mi
> E-) B

ecOUT(5) ecIN(5) ZmEN ZZEH @fm ifj=i
S E<Be+ Y Sembmim for all e € A, (16)
iEN meM
gt < > by foralli,jeN,lcH, (17)
k:O(k):i,D(k):j,h(k):é
2,55 >0 foralli,jeN,e€ A £ € H. (18)
0<z, <1 for all m € M, (19)

Tt can be easily seen that the formulation (CA) immediately follows from (IPR) if we performn the

substitutions:
=Y bzt (20)
k:O(k)=i

10

Ji; = > bk Yk (21)
k:O(k):i,D(k):j,h(k):f

and relax the integrality constraints.

Because of the discrete nature of calls (they are not allowed to be split), it is not likely the calls can be
“packed” within the capacity allocated if the amount of the capacity is exactly equal to the total bandwidth
of the calls. To override this problem at least partially, we introduce an additional, “virtual” priority class
¢, update the set of priority classes: H' = HJ{¢'}, and define év < min{ée : £ € H}. Then the objective
function (14) becomes:

Maximize Z Co z :’jfj - Z &h(m)bmzm - Z Z Siii (22)

teH' (i,j)EN XN meM iEN eCA

A new upper bound for y-variables is added:

gt <e S b for all i,j € N, ' (23)
k:O(k)=1,D(k)=j
¢ = .1 is a heuristically set parameter,

and the flow conservation constraints (15) are changed to:

(A ey U g A
Y oa- Yy @= tet e for alli,j € N, (24)
ecOUT(j) e€IN() S N 2otcH? gt ifj=i
(ie. H is replaced by H ') and we obtain a new formulation (CA') which is a slight modification of (CA).

Till now, it was assumed the set of currently active calls to be known explicitly. It might not be the

case in the real-life situations since
1. this set of calls is enormously large;

2. the algorithm will be executed by each individual source node and these nodes generally will not have

global call information available.

Instead, we will assume that for each link, in addition to the residual capacity, the amount of bandwidth
allocated to each priority class of calls is known. Specifically, we have for each link, e € A, and priority

class £ € H,

Bﬁ — the amount of bandwidth along link e occupied by calls of priority class £.

11

We then define variables for each e € A and fe H,

z* = the amount of bandwidth preempted from priority class £ on link e,

Note that we have made a rather significant simplifying assumption that the cost of preempted traffic is a
linear function of the total bandwidth freed on each link. This assumption represents an approximation for

two reasons:

1. bandwidth is freed in discrete increments corresponding to the bandwidth associated with the calls

that must be preempted.
2. preempting of a single call will, in general, free bandwidth on several links.

While there are certainly circumstances under which this assumption clearly leads to significant cost dis-
tortions, we feel that this simplification (or another similar one) is necessary in order to derive a practical
approach to routing.

Using definitions for z variables and 8.m, One can express Bf and ¢ as follows:

Bﬁ = Z Sormbm

m: meM, h(m)=~¢

-6
Ze — E Sembmzm

m: mEM, h(m)=~¢

Next, we use 7 variables to formulate the LP which can be used in practical computations.

(CAP):
Maximize Sa Yy gl —p D) @ - SN sid (25)
tcH (i,j))eEN XN ec ALcH iEN ec A
subject to

—Sien ¥ HiFd

SoE- > @i= foralli,je N, (26)
ecOUT(j) ecIN(5) ZmeNZeeH gfm ifj=1
S & <B.+ > for all e € A, (27)
iEN (eH
i < Z by for alli,j € N, L€ H, (28)
k:O(k):i,D(k):j,h(k):/f
7t < B! foralle € A, £ € H, (29)
#i,95,28 20 foralli,j e N,ee A, L€ H. (30)

Notice that the cost of call preemption in this formulation may be overcounted since it is summed up
over several links the call’s bandwidth was freed. To compensate this effect, a corrective coefficient p was

applied. Theoretically,

1
number of hops in the max hop route of the existing call

<p<l

After some experimentation, we choose p = 0.5.

Similar to defining problem (CA’), substitution of priority set H with H' can be performed and then
we obtain formulation (CAP')

Problems (CA) (or (CA’)) and (CAP) (or (CAP’)) were solved with a linear programming solver for
the variety of instances. The solutions obtained indicated that the approximation was sufficiently accurate.

Observe that, since problems formulated in this section are essentially multicommodity flow problems,
specialized algorithms could have been used. Exploration of such approaches lies beyond the scope of our
current study.

As a result of solving the problem (CAP'), we assign arc capacities to each origination node. Those

capacities are input into the algorithm described in the next section.

2.2 Phase II: Bulk Routing

In this section, we consider an algorithm which works independently for all origination nodes. Each node
must receive a capacity allocation from the Phase I algorithm. That capacity allocation for call origination
node ig, for each link e, is denoted by Be(ig). This link capacity is set equal to the value of variable #
computed in Phase I. The problem that must be solved in Phase I1 is a variant of FPAB (given in Section
1.3) in which the ¢ (call preemption) variables are not present. That is, each call origination must carry out
path selection using only the capacity allocated in Phase I. The paths calculated by each call origination
node will automatically lead to appropriate call preemption since this was planned in determining the
Phase T allocations.

Two considerations are critical in designing the routing algorithm: first, calls should be routed over

shortest paths and, second, care should be taken in “packing” the calls into the constructed routes as tightly

13

as possible. In addition, the running time should be small enough to allow for real-time use. To address
these issues, the algorithm designed makes use of shortest path algorithms (see e.g. [1]) and handles the
calls in the spirit of the so-called first fit decreasing (FFD) heuristic which is known to be quite effective
for the bin packing problem (see e.g. [10]).

We arrange the calls within the same priority class in descending order of their bandwidth. As the
algorithm proceeds, we keep a pointer to the first unrouted call, k. Focusing on k, we execute a special
shortest path algorithm which constructs a shortest path tree (SPT) rooted at node 4o using only those
arcs which have enough capacity to handle k. Afterwards, we try to route as many calls as possible over
that SPT taking them in the order they appear in the list (descending by bandwidth). The process iterates
using the new first unrouted call. When we can not route anymore calls within the same priority class,
we proceed to the next priority class. Clearly, this approach is similar to the FFD algorithm for the bin
packing problem. Indeed, the computational results presented in the next section indicate that it is quite
effective in practice.

Input parameters of the algorithm are network (N, A), the origination node ig, allocated capacities
on the arcs B.(ig), e € A and set of calls Ky, = {k € K|O(k) = 1o}, output is the set of routes.
We suppose the priority levels are ordered in the descending order: I; > ly > ... > [z and denote
A(w) = {e | e € A,B. > w}. To better access the largest bandwidth calls, all calls are grouped by their
destinations and stored at corresponding binary trees. Another set of internal lata consists of capacity
availability labels at each node which show the maximum amount of capacity that can be used to route a

call to the node.

1. for priority level £ = £y, £a,...,¢ gy do

2. Initialize binary trees T;, Vj € N:

3. 7; contains items {k € Ky, | h(k) = £, D(k) = j} with keys b;

4. while there is a non-empty tree 7; do

5. find call k : b = maxjen MaXkcT; b;

6. Construct an SPT rooted at ig for the network (N, A(by));

7. if there is a path from ip to D(lAc), route the call ¥ and update the labels wj;

14

8. Remove the call k from its tree: T}, ¢ Togy — {k};

9. do

10. find call k& : bj, = max;cn MaXkeT; {b | bk < wjks

11. if k£ was found,

12. route the call k in the current SPT;

13.. remove the call k from its tree: T Tk ~ {k};
14. update the labels w; Vj € N;

15. while there is a call k;

The next issue we want to discuss here is the running time of the algorithm. All operations we perform
with binary trees require time logarithmic on the size of the tree. These operations are: removing the items
(lines & and 13) and finding the max key item (lines 5 and 10). Clearly, each call is considered only once.
Indeed, if there is enough bandwidth in the existing SPT for the call (line 11), it is routed and removed
(lines 12-13); if there are no calls which can be routed over the existing SPT (line 15), a shortest path
algorithm is run to route the largest bandwidth unrouted call (line 6). If there is a path for that call, it
is routed and removed, otherwise, it is removed anyway, since there is no chance for the call to be routed
later. Capacity availability labels w; are updated in time O(JN]) (lines 7 and 14). The time required to
extract the largest bandwidth call is O(|V|log |K]). If we denote the time required to construct an SP'T by
Tspr, the worst case running time of the algorithm is O(K|(INM|log |K| + Tspr)). The average should be
significantly better since, in general, several calls will be routed over each SPT constructed. The running
time for the shortest path algorithm can vary depending on the approach used and the exact nature of the
cost function. In the specific context we considered, since the objective was a pure “min-hop”, a breadth

first search algorithm could be used which runs in time O(|A)).

3 Experimental Results

The purposes of our experiments were:

1. estimate the quality of our solution

Call | Bandwidth Priority Percentage

Type | Distribution Distribution Mix 1 | Mix 2 } Mix 3
voice | all are .064 Mb/s 10% are 1, 90% are 2 | 54% | 47% | 41%
data | 50% are .0096 Mb/s, 50% are | uniformly, 1-4 43% 47% 53%

uniformly from .01 to 1. Mb/s

video | uniformly, 1 to 3 Mb/s uniformly, 1-3 3% 6 % 6%

Table 1: Call Types

2. estimate the time required to perform the computations

First, we needed to obtain a reasonable distribution of calls in the network. That was done by runniug a
basic simulation of call routing where calls where randomly generated according to the specified distribution
and routed one by one through the network using the shortest path criteria. The generated calls are of three
different types: voice, data and video. Table 1 gives bandwidth and priority characteristics for the calls.
Each call of priority class 1, 2, 3 and 4 was assumed to have revenue 1.0, 0.1, 0.01 and 0.001 respectively.
Table 1 also presents three different mixes of calls which were considered.

The network used for our simulation had a topology similar to ARPA net with 59 nodes, 71 undirected
links (respectively, 142 directed arcs). Each link had a full duplex capacity of 154 Mb/s. The overall
parameter setting was chosen so that after a link failure the total number of calls to be rerouted would be
between 300 and 1,600.

We evaluate our approach in two general areas. First, there are the value/cost components reflected
in the objective functions previously described, i.e. the value of all calls rerouted minus lost value of
calls preempted. The second criterion to be considered involves call refusal. A call refusal occurs when
the initial setup attempt fails. A call refusal causes a substantial cost in overall network overhead as
well as delay associated with reestablishing the call. To accurately evaluate these concerns a detailed
simulation is required. In lieu of such an analysis, we carried out certain experiments which indicate how
alternate approaches would perform under “extreme” conditions. These were sufficient to derive definitive

conclusions.

16

The experimental evaluation consisted of two parts. In the first part the quality of the call routing
algorithm was estimated without considering call preemption. In the second part the evaluation of call
preempting capabilities was performed. These parts of the experiment are described below in sections 3.1

and 3.2 respectively.

3.1 Evaluation of the Call Rerouting Algorithm

In this section, we consider two alternate approaches to routing as a basis for evaluating the call rerouting
without preemption. In both approaches, each call is rerouted by an independent execution of a path
selection (shortest path) algorithm. For the first approach, which can be considered a “worst case” scenario,
we assume that each call origination node reroutes its calls but receives no updated information about link
status during the rerouting process. Thus, all nodes assume that they have full access to all available
bandwidth capacity. This is called “fast” rerouting. This approach will necessarily lead to high levels of
call refusal in that competing call origination nodes will try to setup calls over the same sets of links. If a
call is refused we do not attempt to reroute it — another very pessimistic assumption.

Under the second approach, we assume that a central node with perfect information reroutes all calls.
That is, whenever a route is calculated the precise status of all links is known so that there will no call
refusal. The central node uses a first fit decreasing heuristic approach, by ordering calls in decreasing
order of bandwidth. We call this method “slow” rerouting since time would be required to propagate the
information about the state of the network and since the actual implementation of this approach would
require the distribution of all routes from the central node. The two approaches constitute two extremes

in that

e the fast approach requires the minimal amount of information exchange, but generally would achieve

low quality routes;

e the slow approach should achieve the highest quality results (subject to the limitations of the first
fit decreasing approach to packing) but is impractical due to the extreme information exchange

requirements.

17

Mix 1 Mix 2 Mix 3

30% | 50% 65% | 30% | 50% 65% | 30% 50% 65%

Total call value | 32.46 | 79.50 | 115.28 | 49.79 | 97.65 | 124.99 | 38.29 | 114.40 | 139.38

Number of calls 357 897 1566 305 646 1414 287 670 1375

Table 2: Call Characteristics

Our approach can be viewed as a compromise which executes an approximate global rerouting with modest
information exchange requirements while keeping final path selection in the hands of the call origination
nodes.

Two sets of results are presented. The first is aimed at evaluating the effectiveness of the overall two
phase approach and the second specifically addresses the Phase II packing algorithm. Table 2 gives the
characteristics of the calls to be rerouted. For each utilization and call mix combination the number of
calls to be rerouted and their value are given. The results given in Table 3 address the overall approach.
The first four rows give the results of the fast and slow rerouting algorithins respectively. The fifth and
sixth rows give the results of the two phase approach applied to the same problems. Note that it shows
significant improvement over the slow approach and comes close to achieving the quality levels of the
fast approach. Note that the results do degrade somewhat for the highest utilization level. This can be
expected since for these levels packing becomes more difficult. In the next two rows results are given when
preemption is allowed. This gives an indication of the rather significant potential improvements provided
by preemption. However, since we do not have a base case to compare our algorithm against, we cannot
evaluate its effectiveness with preemption. The final row gives the running times in seconds. We temper
the discussion given below by noting that the experiments were run on a Sun Sparc 10 which may or may
not be similar to the hardware environment anticipated in an actual telecommunications network. The
running time of the first phase is always lies between 20 seconds and 1 minute. This would certainly not
be fast enough for real time operation but is not unreasonable for the scenario where the network’s health
monitoring system had provided advance warning of a failure. In order to achieve real-time response, -

alternate approaches, including heuristics, for solving the LP could be considered. The running times for

18

Calls Rerouted Mix 1 Mix 2 Mix 3

30% | 50% 65% | 30% | 50% 65% | 30% 50% 65%

“Fast” value 13.76 | 33.73 | 13.67 | 32.37 | 42.44 | 10.66 | 16.67 | 52.78 | 15.61

Scenario number 237 503 227 229 360 162 191 359 227
“Slow” value 3246 | 79.48 | 56.25 | 49.79 | 97.64 | 32.72 | 38.29 | 114.26 48.72
Scenario number 357 869 148 305 630 171 287 636 179

2-Phase w/out value 32.18 | 78.03 | 47.76 | 49.56 | 95.83 | 32.07 | 38.03 | 109.25 | 40.54

preemption number 355 882 306 304 620 254 284 648 280

2-Phase with value 32.18 | 79.16 | 110.05 | 49.56 | 95.83 | 119.53 | 38.28 | 110.80 | 135.02

preemption number 355 882 1287 304 620 1118 286 653 1076
Running Phase I 26.8 | 28.5 306 | 25.1| 67.1 34.7 | 24.5 55.2 39.7
Time Phase IT | 0.25 | 0.60 096 | 0.256 | 0.53 0.88 | 0.25 0.48 0.88

Table 3: Evaluation of the Two-Phase Approach

the second phase algorithm were always less than 1 second. The times reported consisted of the time
used to execute sequentially the Phase IT algorithm at each call origination node. Of course, in an actual
implementation these calculations would be carried out in parallel leading to much smaller times. We feel
these times are quite encouraging in that they would seem to allow for real-time operation.

Table 4 presents results concerning the quality of the Phase II algorithm. Three sets of experiments
were carried out. In the first two, the fast and slow rerouting algorithms were each run. The capaci.ty
taken up on each link for calls associated with each call origination node were then allocated to that node.
The Phase II algorithm was then given the job of routing calls using only the capacity allocated. This
tested the ability of the phase II algorithm to choose a good set of calls and also to pack them into the
bandwidth restricted links. The results for this experiment are given in the first 8 rows of Table 4. Note
that the phase II algorithin generally did significantly better than the fast algorithm and generally came
close to achieving the results of the phase II approach. In the 9th and 10th rows, the LP value is compared

with the value achieved in Phase II (the Phase I value is an upper bound on the Phase II value). Note

19

Calls Rerouted Mix 1 Mix 2 Mix 3

30% | 50% | 65% | 30% | 50% | 65% | 30% 50% | 65%
“Fast” value | 13.76 | 33.73 | 13.67 32.37‘ 42.44 | 10.66 | 16.67 | 52.78 | 15.61
Scenario number 237 503 227 229 360 162 191 359 227
Phase II value | 14.90 | 37.67 | 16.54 | 32.19 | 46.35 | 10.68 | 18.14 | 60.64 | 20.53
Algorithm | number 228 496 234 220 353 167 172 388 226
“Slow” value | 32.46 | 79.48 | 56.25 | 49.79 | 97.64 | 32.72 | 38.29 | 114.26 | 48.72
Scenario number 357 869 148 305 630 171 287 636 179
Phase II value | 32.20 | 76.41 | 56.21 | 48.95 | 96.33 | 32.07 | 38.03 | 109.25 | 48.42
Algorithm | number 312 802 161 271 582 176 252 597 183
Phase I LP value 32.46 | 79.50 | 56.29 | 49.79 | 97.65 | 32.77 | 38.29 | 114.40 | 50.27
Phase II value 32.18 | 78.03 | 47.76 | 49.56 | 95.83 | 26.21 | 37.35 | 106.80 | 40.54

that for the medium and low utilization cases, the Phase II algorithm came very close to achieving the LP
value. For the high utilization it was not as close. This, again, can be explained by the fact that for these
levels packing becomes more difficult. Of course, further investigations would be required to determine

* how much of the gap is due to the quality of the relaxation and how much is due to the quality of the

heuristic.

Table 4: Effectiveness of the Phase II Packing Algorithm

3.2 Evaluation of the Call Preemption

In this section we present an evaluation of call preemption algorithm. Suppose after the work of the two-

phase algorithm was completed a set of rerouted calls Ky was obtained together with their routes. Clearly,

K, C K. The set of the new routes can be described by introducing notation similar to (1):

forall ke K,, e € A:

Oem =

1 if call k is carried by arc e

0 otherwise

20

Calls Rerouted Mix 1 Mix 2 Mix 3
30% | 50% 65% | 30% | 50% 65% | 30% 50% 65%
Upper Bound 32.46 | 79.50 | 113.24 | 49.79 97.65 121.64 | 38.29 | 114.40 | 136.27
Lower value | 31.58 | 74.94 | 109.34 | 47.49 | 93.89 | 112.59 | 37.54 | 106.40 | 132.93
Bound | number 318 835 1245 276 588 1084 254 604 1033
Gap 2.8% | 6.1% 3.6% | 4.8% | 4.0% | 8.0% | 2.0% 7.5% 2.5%

Table 5: Preemption Evaluation

Now, consider the following IP formulation:

Maximize

subject to

Z éh(k)bkyk - Z éh(m)b'mzrn

ke,

meM

> oerbryr — > Gembmzm < B. foralle € A,
meM

keK,

0<ye <1

0<z2z,<1

and integer

and integer

for all k € K,.,

for all m ¢ M,

(32)

It can be easily seen that solution to (32-35) is a feasible suboptimal solution to (IPR) corresponding to

the call rerouting and preemption given by the two-phase algorithm. The output of this integer programn

(32-35) consists of decisions regarding call refusal (the y, variables) and call preemption (the z,, variables).

Thus, in a certain sense, it gives the optimal solution to to the call setup process which is carried in a

distributed fashion by the network nodes. Then the quality of the two-phase algorithm can be estimated

by how close solution of (32-35) is to that of (IPR). As it was noted above, the latter problem can not

be solved explicitly but it is possible to estimate the value of its solution from above by solving its LP

relaxation which is essentially (CA). The results of the comparison for the previously described set of calls

are presented in the table 5. We consider these results to be quite encouraging.

21

4 Extensions

In this section we consider two extensions of the basic model discussed in the paper. The first one deals
with call delays in the network. This issue arises frequently when there are delay-sensitive calls and/or
high-delay links such as satellite links.

The second extension deals with ATM networks. One characteristic feature of these networks is sta-
tistical multiplexing which, in the context of our model, means that the same call might require different

effective bandwidth on different links.

4.1 Delay Requirements

In the preceding discussion of rerouting, call delay was not considered. Below we show how delay require-
ments can be incorporated into the call rerouting approach presented in the paper.

Suppose each call k, k € K has a maximum delay limit dy which cannot be exceeded and each arc e,
e € A has an associated delay L.. Then, using variables x’g introduced in section 1.3, the maximum delay

requirement over the path taken by the call k can be expressed as

> Leak < di for all k € K. (36)
ec A

The constraint (36) can be then added to the (IPR) formulation to make it handle the delay requirements.
After defining aggregate variables #¢ as in (20), a new aggregate constraint can be derived from (36)
and (20):

> Le# < > bids for all i € N. (37)

ecA k:O(k)=1

Equation (37) can be interpreted as the upper bound on the total “volume” occupied by all calls originated
at node i. This constraint is added to the (CAP) (or (CAP’)) formulation which is solved to obtain the
capacity allocation on Phase L.

During Phase II the specific path chosen for the call must be delay feasible. It makes sense to consider

calls. As with the existing algorithm, among the calls with the same delay, the FFD criterion indicates

that calls with larger bandwidth should be processed first. On the other hand, among the calls with the

22

same bandwidth, those with the smallest delay limitations should be routed first, since it is more difficult
to find a path for those calls in the network. This leads to the idea of designing a heuristic, where calls are
processed in order by decreasing value of a special weight function. This weight should increase with the
call’s bandwidth and decrease with its delay limit. Possible examples are a weighted sum of bandwidth
and delay (delay coefficient should be negative) or bandwidth/delay ratio. Additional experiments are
necessary to test the heuristics.

After the calls are ordered, the shortest path tree is constructed for the first call in the sorted list to
find the min hop path to the destination from the origin satisfying the delay requirement. It can be done
by an appropriate implementation of the Bellman-Ford algorithm. Other calls are routed over the same
tree (according to their order in the sorted list) if the path from the root (origin) to the destination is

feasible for both delay and bandwidth.

4.2 More General Handling of Effective Bandwidths

In this section, we consider more specific properties of effective bandwidths. In general it is possible that
the effective bandwidth of the call can depend on which link it is routed over (specifically on the link
capacity and the number of calls carried by the link). For each call k, instead of bandwidth b which is
the same for all links, we consider bandwidth b§ dependent on a link e carrying ‘e call. Thus our starting
formulation (IP) can be easily changed to accommodate this more generic model.

The two-phase approximation algorithm cannot directly handle this case. However, with certain mod-
ifications/approximations it can be treated. Since phase I assumes a call’s bandwidth is the same for all
links, we must use a single surrogate bandwidth for all links to allocate the capacity. This bandwidth could
be computed as an average of all real effective bandwidths. The phase II bulk routing algorithin could
use the surrogate bandwidth to order the calls. Since the bandwidth labels at the destination nodes can
not be used anymore, the algorithm should be modified to recognize whether the call can be routed to its

destination. This could result in the increase in the theoretical running time.

23

References

(1]

Ahuja, R., T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-

Hall, Englewood Cliffs, NJ (1993).

Anderson, J., B. Doshi, S. Dravida and P. Harshavardhana, “Fast Restoration of ATM Networks”,

IEEE Journal on Selected Areas in Communications, 12, No.1, 128-138 (1993).
Bertsekas, D. and R. Gallagher, Data Networks, Prentice-Hall, Englewood Cliffs, N.J (1987).

LeBoudec, J.Y., “The Asynchronous Transfer Mode: a tutorial”, Computer Networks and ISDN Sys-

tems, 24, 279-309 (1992).

L.A. Cox, L. Davis, and Y.Qiu, 1991. Dynamic Anticipatory Routing in Circuit- Switched Telecom-
nunication Networks, in Handbook of Genetic Algorithms, L.Davis ed., Van Nostrand Reinhold, New

York, 1991.

Gun, L., and R. Guerin. «A Unified Approach to Bandwidth Allocation and Access Control in Fast

Packet Switching Networks,” INFOCOM 92, 1-12, Ttaly, 1992.

Gun, L., and R. Guerin. “A Framework for Bandwidth Management and Congestion Control in High-

Speed Networks,” to appear in Computer Networks and ISDN.

Kawamura, R., K. Sato, and I. Tokizawa, “Self-Healing ATM Networks Based on Virtual Path Con-

cept”, IEEE Journal on Selected Areas in Communications, 12, No.1, 120-127 (1993).

M. Laguna, F. Glover, 1993. Bandwidth Packing: A Tabu Search Approach, Management Science 39,

492-500.
S. Martello, P. Toth, 1990. Knapsack Problems, John Wiley & Souns, 1990.

R.O. Onvural, Asynchronous Transfer Mode Networks: Performance Issues, Artech House, Inc., 1994.

Park, K., S. Kang, S. Park, “An Integer Programming Approach to the Bandwidth Packing Problem”,

manuscript, (1994).

Parker, M. and J. Ryan, “A Column Generation Algorithm for Bandwidth Packing”, Telecommunica-

tion Systems, 2, 185-195 (1994).

24

