
A characterization of the general protocol conformance testsequence generation problem for EFSM'sRaymond E. Miller and Junehwa SongDepartment of Computer ScienceUniversity of Marylandemail : fmiller,junesongg@cs.umd.eduJune 9, 1998
AbstractWe discuss the problems which arise in conformance testing when using the EFSM modelas well as the problems which arise when extending the concepts used in FSM testing toEFSM. We characterize the problems of stability and executability of transitions, and seewhat these mean for generating test sequences. Also, we extend the concept of UIO sequencesto EFSM, calling them identifying sequences, and discuss the problems which arise in thisextension. Finally, we extend the concept of converging transitions to the EFSM model, whichcan aid in reducing the length of the test sequences.

1

1 IntroductionProtocol conformance testing has been extensively studied using the �nite state machine (FSM)model [9, 10, 11, 14, 17, 20, 24]. Research using this approach take advantage of the simplicity ofthe speci�cation formulation and its structure to derive techniques for obtaining test sequenceswith various desirable properties. The speci�cation does not involve complex algebraic problems,and the types of faults studied are very limited. One of the very important developments inFSM conformance testing was the introduction of UIO sequences [14], which are used to identifythe state reached after testing a transition. Many test sequence generation techniques use UIOsequences in one way or another.There has also been some e�orts to develop conformance test sequences using the extended�nite state machine(EFSM) model [19, 25, 26]. Some of these approaches are discussed in thecontext of Estelle, which is a protocol speci�cation language based on the EFSM model [19], andothers are discussed more abstractly.The EFSM model is an extension of a FSM, augmented with variables. These variables, andhow they change during transitions, make it necessary to consider the algebraic properties ofthe modules in testing. The similarity of EFSM's to FSM's, i.e., describing protocols with statetransitions and using transition diagrams to specify state transitions, enables one to adapt the testtechniques developed for FSM to EFSM, especially to test the
ow of control. But this adaptationis more complicated than it appears on the surface. First, it is not simple to separate the transitionbehavior from the algebraic properties introduced by the variables. Second, transitions interactwith each other through actions and properties involving the variables. Moreover, this interactionis not fully observable when internal (or context) variables are involved.In this paper, we discuss the problems which arise in conformance testing when using theEFSM model as well as the problems which arise when extending the concepts used in FSMtesting to EFSM. We characterize the problems of stability and executability of transitions,and see what these mean for generating test sequences. Also, we extend the concept of UIOsequences to EFSM, calling them identifying sequences, and discuss the problems which arisein this extension. Finally, we extend the concept of converging transitions to the EFSM model,which can aid to reduce the length of the test sequences.One of the basic problems in the conformance testing of a protocol module speci�ed as anEFSM is the selection of an input value which satis�es an enabling predicate for the transitionunder test. To test satis�ability of a �rst order predicate is, in general, a semi-decidable problem.This semi-decidability cannot be avoided as long as we try to select input values for testing.We might, however, use some approximation or other simplifying assumption which gives somebound on the di�culty of searching for an input value satisfying the enabling predicate. In thispaper, we do not try to overcome that semi-decidability, nor give an approximation method.Rather, we present formulations which characterize those problems mentioned in the previousparagraph in the form of predicates. Thus, the usefulness of our formulation lies in presenting ageneral characterization of the problem to which simplifying assumptions can be applied, therebyallowing one to study how the complexity of the test generation problem is reduced by particularassumptions.The rest of this paper is organized as follows. In section 2, we describe our model. Theproblem of stability is discussed in section 3. Each of the succeeding sections are devoted to the1

discussion of executability, identifying sequences, and converging transitions. Section 7 concludesthis paper.2 ModelA protocol module is a triple, <S, V, T>.� S is a tuple < s0; S0 >, where s0 is the initial state, and S 0 is a set of states.� V is a triple < I, CV, O >, where I is the set of input variables, O the set of output variables,and CV the set of context variables:{ Input variables are variables controllable by the tester,{ Output variables are variables observable by the tester,{ Context variables are variables neither observable nor controllable.Some variables can be used as both an input variable and an output variable. From now on,we use I to denote the vector of input variables (not a set), O for that of output variables,and CV for that of context variables.� T is a set of transitions, where a transition t is a quadruple <Head(t), Tail(t), P(t), A(t)>.{ Head(t) is the starting state of the transition t{ Tail(t) is the ending state of the transition t{ P(t) is the enabling predicate of t.1{ A(t) is the action associated with a transition t. It is composed of a sequence ofassignment statements.We assume that the transitions from each state are deterministically de�ned. For each pairof transitions ti and tj , such that Head(ti) = Head(tj), there are no assignments of values to thevariables in (I,CV,O) which enable both ti and tj.The behavior of a protocol module depends not only on the state it is in but also on thevalues of variables. So a global state in an EFSM is a pair, consisting of a state and a tupleof variable values. We call such a tuple of variable values a variable state. A variable state iscomposed of an instance of (I, CV,O). Since I is selected and set at each step of testing, we areusually interested in tracing only (CV,O).An action is a sequence of assignment statements, which changes the variable states. Oncewe represent the state of the variables as three vectors, i.e., (I, CV, O), we can calculate the func-tional notation for an action by performing its symbolic evaluation2. We specify this functionalrepresentation of action A(t) by gA(t). 3 Thus, if a transition t is taken, the module changes froma global state (Head(t); (I;CV;O)) to a global state (Tail(t); gA(t)(I; CV;O)).1P(t) is a boolean expression over variables (I, CV, O). If we need to specify the names of variables involved inthe predicate, we specify them as P(t)(I, CV, O)2Details about the symbolic evaluation can be found in [22] and [23]3This function is composed of three parts, for de�ning new value of I, CV, and O. We can denote it as gA(t)(I,CV, O) �! (I', CV', O'). Since most times, we are not interested in tracing the I value, we usually write gA(t)(I,2

3 Stability of transitions and Augmentation of the speci�cationConsider a transition t from some state si to state sj. Suppose that we can set the input variablesin such a way to make the enabling predicate for transition t, i.e., P(t) is true. Then, assumingthat no other predicate is true for this setting of input variables(i.e., assuming deterministicbehavior), transition t will be taken to reach state sj and the action for transition t will possiblychange the values of some variables. Now, if no transition is enabled from state sj with thecurrent variable values, then sj is called stable under this condition. However, it is possible thata transition leaving sj is enabled, taking the protocol to a second state. This would mean that wecould not test that we reached state sj , nor test that the output variables reached their intendedvalues{since the transition leaving sj could change these variable values as well. This describesthe stability problem.To simplify the testing procedure, we attempt to apply inputs so after transition t, the systemstops at sj until a new set of inputs is applied. Since there is limited control of the variables,with the output and context variables not under control of the tester, achieving stability may notbe possible in some cases, and a sequence of transitions may actually occur rather than just one.In the discussion below, we formulate the condition under which a transition stops withoutany further successive transitions. This is called stopping predicate. We call a transition whichhas a satis�able stopping predicate a stopping transition. Further, we formulate the conditionunder which a sequence of transitions, t1; t2; :::; ti, is enabled successively by one input setting.We call such a sequence of transitions a composite transition.De�nition 1 A stopping predicate of a transition t is the predicate of (I, CV,O), which, if sat-is�ed, enables transition t only once and does not automatically enable any successive transitions.We can formulate the stopping predicate, SP, as follows. 4SP (t) = P (t)^:wp(A(t); P); where (1)P = _8 t0;Tail(t)=Head(t0)P (t0)De�nition 2 A stopping transition is a transition whose stopping predicate has at least oneassignment of variables, (I, CV, O), that makes it true.CV, O) �! (CV', O'). Also we use gACV (t) to denote the part which de�nes CV' only and gAO(t) that whichde�nes O'.4The concept of the weakest precondition was developed by Dijkstra [21]. Let S be a statement in someprogramming language and let Q be a predicate. wp(S,Q) is the set of states (described by a predicate) for which Sterminates and Q is true on termination. Several axioms were developed related to the weakest precondition. Wecan use the rule of assignment and the rule of composition for A(t), which is a sequence of assignment statement.� Assignment : wp(x = e, Q) = Qxe� Composition : wp(S1;S2, Q) = wp(S1, wp(S2,Q))Qxe represents the predicate Q where all free occurrences of x has been replaced by e.3

De�nition 3 A composite transition of length i, i > 1, is a sequence of transitions, t1; t2; :::; ti,such that Tail(tj) = Head(tj+1), 1 � j < i, and t1; t2; :::; ti can be enabled successively by settingvariable values only once (i.e., only for t1).We now formulate a new set of transitions, Tnew, from the set of transitions, T, of the originalspeci�cation. In the new speci�cation of the protocol module, where T is replaced by Tnew, thestability of transition is guaranteed.We recursively formulate Ti, before we form Tnew.� T1 = f<Head(t), Tail(t), SP(t), A(t)> j t 2 T and SP(t) is satis�able g5� Ti+1 = f< Head(t0); Tail(t); P (t0)Vwp(A(t0); P (t)); A(t0);A(t) >j t 2 Ti; t0 2 T; Tail(t0) = Head(t); P (t0)Vwp(A(t0); P (t))is satis�able g6� Tnew = ft j t 2 Ti; 1 � igThe transitions in T1 are the stopping transitions in T, but the enabling predicates are replacedby stopping predicates. The transitions in Ti, i > 1, are those which were not in T, but formedfrom the composite transitions of length i. We can consider them as hidden transitions. Notethat the enabling predicates are formed in a way that guarantees the stability of the transitions.With Ti, i�1, we have all transitions, originally speci�ed or hidden, and all are stable. 7Let's say we have a transition t, and t is a stopping transition as well as the �rst transitionof a composite transition. Given a test requirement over t, enabling the stopping transition andenabling the composite transition have di�erent meanings in the test requirement. The case ofenabling the composite transition is not solely testing transition t. We believe that the statementabout the test requirement should re
ect this fact.4 ExecutabilitySome researchers have discussed the test sequence generation problem as producing a sequenceof transitions over the transition diagram of the EFSM. A transition diagram shows the globaltransition behavior of the protocol. In deriving a transition sequence from a transition diagram,we can take advantage of its similarity to the FSM, and adapt some ideas of FSM's test sequencegeneration. A transition sequence is, however, not only a sequence of input/output pairs as isthe case for a test sequence for an FSM.In [16], a test sequence was derived re
ecting the functional behavior of a protocol module.This test sequence consists of a sequence of transitions of the transition diagram. [10] pointedout such a test sequence may not be executable. In [10], def-ob paths and conditional pathsare generated from the data
ow graph. These are converted to expanded def-ob paths andexpanded conditional paths, which are also sequences of transitions of the the transition diagram.5This satis�ability is semi-decidable as we mentioned in the introduction6; represents the sequencing of statements.7Sometimes, it is possible to have a transition T1. This means that we have an in�nite enabled loop in thespeci�cation. This can be considered as an error in the speci�cation. This problem should be detected in thevalidation process, rather than in conformance testing 4

The authors said that their expanded def-ob paths and conditional paths should be generatedconsidering the executability of transitions, however they did not propose how this was to bedone.A transition sequence of a transition diagrammay not be executable, because the executabilitydepends not only on the sequence of transitions, which is represented on the transition diagram,but also on the enabling predicate of each transition. Consider a transition sequence t1@t2, whereTail(t1) = Head(t2). Even though they are speci�ed as successive transitions on the transitiondiagram, it is not guaranteed that t2 can always be executed after t1 : it may not be possible toassign the variable values for t2 such that P(t2) is satis�ed. Furthermore, the executability of t2is a�ected by the input selection for t1 through the action, A(t1).Let's say D = (I, CV, O) is the space of variable values which satis�es P (t1). D can bepartitioned into D0 = (I 0; CV 0; O0) and D00 = (I 00; CV 00; O00), where value settings from D0 fort1 makes t2 be enabled with proper input selection after t1 is executed and value setting fromD" for t1 prevents t2 from being enabled no matter what inputs are selected for t2. Solving theexecutability problem of the sequence, t1@t2, reduces to �nding the partition D' and D".To guarantee the executability of a transition sequence, it is not su�cient to consider theenabling predicate of each transition in the sequence separately. The actions of the transitionsin the initial part of a sequence a�ect the satis�ability of the transitions in the latter part bychanging the values of CV and O, which cannot be directly controlled by the tester in each stepof a sequence. Thus, we need to consider the executability of the whole sequence globally bytracing the interactions of transitions. Below, we formulate the enabling condition of a transitionsequence, by which we can test the executability of the transition sequence. In the formulation, weuse gA(t), the functional representation of A(t), to trace the e�ect of the action of t to the contextvariables and output variables. In the discussion below, we use the new transition set, Tnew, toavoid the complications introduced by the stability problem. By doing this, each transition ti,1 � i � n, causes a state changes from one stable state to a next stable state.De�nition 4 The enabling condition, EC, of a sequence of transitions t1; t2; :::; tn, such thatti 2 Tnew, 1 � i � n, and Head(tj+1) = Tail(tj), 1 � j < n, is de�ned as follows.EC(t1; t2; :::; tn) := P (t1)(I1; CV0; O0) V f gA(t1)(I1; CV0; O0) = (O1; CV1)gV P (t2)(I2; CV1; O1) V f gA(t2)(I2; CV1; O1) = (O2; CV2gV :::V P (tn�1)(In�1; CVn�2; On�2) V f gA(tn�1)(In�1; CVn�2; On�2) = (On�1; CVn�1)gV P (tn)(In; CVn�1; On�1)Given a sequence of transitions, we can use this enabling condition to test whether the se-quence is executable. If EC is satis�able, then the given transition sequence will be executable.The values of variables which satisfy EC will consist of input values which should be set, andoutput variables to be observed. To start a transition sequence, the state should be in Head(t1)with variable state (CV0, O0)8 and the tester should set input values to I1. Successively settinginput values to I2; I3; :::, the sequence of transition continues with output sequence of O1; O2; :::.8The value of CV can not be observed. The testing process should keep track of the CV value from thespeci�cation at each stage of the testing to �gure out what the current value of CV is.5

We can apply EC to slightly di�erent situations as well. For example, we can use it to connecttwo executable sequences, i.e., getting a transfer sequence9. (We assume the availability of analgorithm to �nd all the paths between two vertices of a graph and enumerate them accordingto their length.) Given two executable sequences of transitions, seq1 and seq2, we take a path10between Tail(t) and Head(t'), where t is the last transition in seq1 and t' is the �rst transitionof seq2, in terms of transitions. Let's call this TS. We, then, form a new transition sequence,seq1@TS@seq2, and test the satis�ability of EC of the new sequence. If it is not satis�able, wetake the next path as TS and repeat the same process until we get an executable connection.A similar but slightly di�erent situation, which we call a navigation problem, may arise asfollows. Assume that the current state is s with (CV0; O0) and the next transition to test is t. Totest t, we need to navigate to Head(t), make the enabling predicate of t satis�able, and executet. This can be done using EC as follows.1. Get the next path t1; :::; ti from s to Head(t) from the transition diagram, and let it be TS.2. If EC(TS@t) is satis�able with CV0 and O0, return (I1; :::; Ii; I 0=O1; :::; Oi; O0).If not goto step 1.If the current state s is the same as Head(t), the paths from s to Head(t) will form loops. In thiscase, the sequence of I1=O1; :::; Ii=Oi may be used just to change the variable state.5 The Identifying Sequence of a stateIn many approaches to generate a conformance test sequence in the FSM model, a UIO sequenceis attached to the test segment of a transition under test to see if the transition ended in thecorrect tail state. [10] introduced the UIO sequences in the conformance test of EFSM's. Thisis done by transforming the speci�cation into a FSM form and then obtaining the UIO from theFSM.Getting a UIO sequence in an EFSM is not straightforward, because of the introduction ofthe variables. In this section, we de�ne the Identifying Sequence, IS, which is the counterpart ofa UIO sequence in a FSM, and describe an approach for generating identifying sequences.De�nition 5 An Identifying Sequence, IS, of a state s in a variable state (CV, O) is a sequenceof inputs and outputs, I1=O1; :::; In=On, such that(1) s generates O1; :::; On if I1; :::; In is applied to s in (CV,O),(2) but no other state shows the same input output behavior in (CV, O),(3) no pre�x of the sequence displays this unique behavior.Note that an IS is di�erent from a UIO sequence, in that it depends not only on the state inwhich a protocol module is, but also on the variable state, (CV,O).We explain a basic algorithm to get an IS. The algorithm is shown in Figure 1. Basically, theproblem is a graph search. The goal of the search is the IS of s0 in (CV,O). We search the goal9transfer sequence was introduced in [10]10We may order the paths in some way, for example, shortest path �rst, and pick the paths in that order6

from all the possible input sequences applicable to s0 in (CV,O). We use the following notationsin the description.� i : i is used to index the current length of the partial input sequence. Being at the stage imeans that we have generated a partial input sequence of length i-1 and are going to selecti th input.� I(1..i) : The input sequence selected from the �rst stage to i th stage. Also we use I(i) tomean the input selected at stage i.� S(i) : S(i) means the set of states which we did not successfully distinguish from s0 till thecurrent stage i-1. Initially, S(1) is the set of all states except s0. If we have generated thecomplete identifying sequence and its length is j, then S(j+1) should be empty.� state(s, i) : state(s,i) designates the state after executing i steps of transitions by settingthe input sequence I(1..i) to state s. That is, state(s,i) is used to trace the state changes.� context(s, i) : context(s,i) designates the value of context variables after executing i stepsof transitions by setting the input sequence I(1..i) to state s.� output(s, i) : same as context(s, i), but designates the value of output variables.A state in the search is represented by (1) the partial input sequence generated so far, I(1..i),(2) the set of states which we should still distinguish s0 from S(i). In the beginning, we aim atdistinguishing s0 from all other states, (i.e., S(1) includes all the states except s0). At each stepof the search, say stage i, we select an input, I(i), and calculate the outputs for s0 and all s's inS(i). We remove the s which shows a di�erent output from that of s0. For calculations, we needto keep track of the changes of state and variable values, both context and output. This is doneby state(s, i) , context(s, i) and output(s, i).One obvious question about the algorithm is the selection criteria for I(i). The wrong selectionof I(i) value will not lead to a generation of an identifying sequence, even though there existsone. That is checked by the function BackTrack. BackTrack checks if a loop has been formedin the history of the search process so far without reducing the size of S(i). If so, we backtrackand choose a di�erent value of I(i). It will assure that the algorithm generates an identifyingsequence if one exists and reports the non-existence of the identifying sequence, when there isnone, assuming the �nite domain of variables.The selection of I(i) will also a�ect the length of the sequence if there exist more than one. Itis di�cult to have a selection criteria which will guarantee the shortest sequence without knowingall the correct identifying sequences a priori. To get the minimal length identifying sequence, wemay use a brute force method. We search if there is an identifying sequence of length 1. If not,we search one of length 2, and so on.A local optimization criteria or a greedy algorithm approach can be used for the selection ofI(i). For example, we can use the following method. For each possible value of I(i), we assign anumber to designate the amount of reduction of size of S(i), i.e., jS(i)j - jS(i+1)j, and choose thevalue with the greatest number. In some cases, we cannot reduce the size of S(i) with whatever7

Algorithm Identifying Sequence(s0, (CV,O))S(1) = all states except s0context(s0, 0) = CV, output(s0, 0) = Ocontext(s, 0) = CV, output(s, 0) = O for all s in S(1).At stage i, do the following.At each calculation, refer to the current variable states stored in (context(s, i-1), output(s,i-1)).1. Select a values for I(i) which enables one of the transitions de�ned from state(s0, i)If there are no more such values, go back to stage i-1.2. Calculate output(s, i) for all s in S(i) and output(s0, i).3. Form S(i+1) by removing from S(i) all s, such that output(s, i) is not equal to out-put(s0, i).4. Calculate context(s, i) for all s in S(i+1) and context(s0, i).5. If S(i+1) is empty, return I(1,i)else if BackTrack(i), backtrack to step 1 and choose a di�erent value of I(i)else go to stage i+1.BackTrack(i)return true if there exists a j, 1 � j < i, such that1. S(i+1) = S(j)2. state(s0, i) = state(s0, j),context(s0, i) = context(s0, j), andoutput(s0, i) = output(s0, j)3. for all s in S(i+1), there is a s' in S(j), such that context(s, i) = context(s', j) andoutput(s, i) = output(s', j)Figure 1: Algorithm to generate an identifying sequence of a state8

value of I(i). This situation may continue for some number of stages. In this case, we may restrictthe maximum number of stages where the procedure goes on without reducing the size of S(i). Ifwe confront this maximum number, we backtrack and choose a di�erent input value. Since thisjust optimizes the local selection of I(i), it does not guarantee the minimal sequence.So far, we discussed the general idea of getting an Identifying Sequence. We can easily noticethat the process of getting an Identifying Sequence is computationally costly, since it involvestracing all the histories of state and variable values as well as having to consider all possible inputvalues.6 Convergence of transitionsOne of the important issues in the research of conformance testing is the reduction of the lengthof the test sequence. The reduction can be achieved by using overlap in a test sequence. [24]proposed some approaches to utilize overlap among test subsequences. [9] proposed a techniqueto achieve optimality under certain conditions. The main idea they used is \if there are noconverging transitions, then any path of edges followed by a UIO sequence for the tail state ofthe path tests each transition in the path."In an EFSM, the same idea can be used to improve the length of test sequence. But theconcept of converging transitions should be de�ned in a di�erent way from that of FSM's, sinceeach transition is associated with an enabling predicate and an action instead of only an inputoutput pair. Di�erent from the case of FSM's, it is not su�cient to consider only the transitiondiagram to identify converging transitions in EFSM. We formulate a condition under which atransition does not show a converging behavior and de�ne a converging transition with it.De�nition 6 A Non-Converging Predicate of a transition t, NC(t), is a predicate of (I, CV,O)which, if satis�ed by (I0; CV0; O0), enables transition t, but there is no transition t', such thatTail(t') = Tail(t), which is enabled with the same variable values, (I0; CV0; O0), and shows thesame output.We formulate the non-converging predicate of a transition t as follows.NC(t) = ^Tail(t0)=Tail(t)fP (t0) =) (gAo(t) 6= gAo(t0))g^P (t) (2)De�nition 7 A converging transition is a transition whose non-converging predicate is unsatis-�able.Convergence of a transition depends on the variable values, (I, CV, O), as well as the
ow oftransitions. Given (I, CV, O) which satis�es a non-converging predicate of t, setting I as the inputvalue with (CV, O) as the variable state will uniquely lead to the tail state, a non-convergingbehavior. A converging transition is a transition which cannot show this non-converging behaviorwith any variable values.There are di�erent classes of non-converging behaviors. The simplest class will be whenthe tail state of a transition does not have any other incoming transitions. This case can be9

identi�ed directly from the transition diagram without evaluating the non-converging predicates(or equivalently, the non-converging predicate is just the enabling predicate). We may call thisstructural non-convergence. The second class is when some transitions share the same tail state,but the sets of variable values which enable each transition have some non-overlapping values. Wemay call this algebraic non-convergency. Taking one of these values will enable only one transition.In this case, we don't have to consider the output behavior of each transition to identify the non-convergency. The non-converging predicate in this case is P(t) V :(WTail(t0)=Tail(t) P (t0)). In thelast and most general class, we should consider both the enabling predicates and output behaviorsas speci�ed in the de�nition above.If we want to test if each transition ended in the correct tail state in our test procedure, wecan use the concept of non-converging predicate to improve the length of test sequence as in [9].Di�erent classes of non-convergence behaviors will require di�erent costs to identify, as explainedabove. We may use di�erent classes of non-converging behavior in our test process according towhat costs are considered a�ordable.7 Conclusion and future researchIn this paper, we discussed some problems in test sequence generation for a protocol modulespeci�ed as an EFSM. We discussed the problems of stability and executability of transitions.We also de�ned new types of identifying sequences and converging transitions for EFSM's.The EFSM model has better expressive power than FSM's. But the test sequence generationprocedure is much more complicated. This complication primarily comes from two facts. First,the test data selection process should go through the evaluation of the enabling predicate, which isin a �rst order predicate form. This is a well known semi-decidable problem. Second, transitionsinteract through variables. This is hard to handle when this interaction occurs through theunobservable and uncontrollable context variables.Some approximations may give useful and practical results. But these approximations shouldbe justi�ed in the frame of a general characterization of the model. We hope our presentationcan be used as the basis for such an approximation e�ort.A possible approach to the research may be to classify the speci�ed protocol modules accordingto the complexity of predicates or interactions between transitions through variables. With thisclassi�cation, we can start the study of the problem from the simplest class. For example, thesimplest class, when classi�ed by the complexity of context variables, is the protocol moduleswith no context variables, next those with some but only of �nite domain, etc.A di�erent approach will be to transform the EFSM speci�cation to FSM speci�cation in theprocess of test sequence generation. We can combine the state and variable state, (CV, O), andmake it an explicit state of a FSM. We may classify the speci�ed EFSMs in this approach, too.The simplest case is when the domains of both I and (CV, O) are �nite. In this case, we can getan FSM easily. If the domain of (CV, O) is �nite but the domain of I is in�nite, the result willbe a machine with a �nite number of states but possibly with an in�nite number of transitions.However, in this case, we may get the �nite partition of input space and form the FSM withthese partitions rather than input values. A more general case is when the domain of (CV, O) isin�nite, which will result in an in�nite number of states. This case will be hard to characterize in10

a general way. We may be able to �nd and utilize some speci�c patterns, like �nite partitioningof an in�nite number of states or the looping structure if one exists.References[1] G. V. Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi, and G. Luo, "Fault Modelsin Testing," Protocol Test Systems IV, pp.17-31, North Holland, 1992.[2] S. Budkowski and P. Dembinski, "An introduction to Estelle: A speci�cation language fordistributed systems," Comput. Networks and ISDN Syst., vol. 14, no.1, pp.3-23, 1987.[3] T. Chow, "Testing Software Design Modeled by Finite State Machines," IEEE Transactionson Software Engineering, vol. SE-4, pp.178-187, March 1978[4] L. A. Clarke and D. J. Richardson, "Symbolic evaluation methods for program analysis,"in Program Flow Analysis, S. S. Muchnick and N. D. Jones, Eds. Englewood Cli�s, NJ:Prentice-Hall, 1981.[5] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. O�utt, "An extendedoverview of the Mothra software testing environment," Proc. 2nd Workshop on SoftwareTesting, Veri�cation, and Analysis (Ban�, AB, Can.), July 1988. Los Alamitos, CA: IEEEComputer Soc., pp.142-151, 1988.[6] R. A. DeMillo and A. J. O�utt, "Constraint-Based Automatic Test Data Generation," IEEETransactions on Software Engineering, vol.17, No. 9, pp.900-910, September 1991.[7] G. Gonenc, "A method for the design of fault detection experiments," IEEE Transactionson Computers, vol. C-19, pp.551-558, June 1970.[8] Raymond E. Miller and G. M. Lundy, "Testing Protocol Implementations Based on a FormalSpeci�cation", Protocol Test SystemsIII, North Holland, pp.289-304, 1991.[9] Raymond E. Miller and Sanjoy Paul, "On the Generation of Minimal Length ConformanceTests for Communication Protocols", IEEE/ACM Trans. on Networking, Vol. 1, No. 1, Feb.1993.[10] Raymond E. Miller and Sanjoy Paul, "On Generating Test Sequences for Combined Controland Data Flow for Conformance Testing of Communication Protocols," Protocol Speci�ca-tion, Testing, and Veri�cation XII, June 1992, pp 13-27.[11] Raymond E. Miller and Sanjoy Paul, "Structural Analysis of a Protocol Speci�cations andGeneration of a Maximal Fault Coverage Conformance Test Sequences," IEEE/ACM Trans.on Networking, Vol. 2, No. 5, October, 1994, pp 457-470.[12] S. Rapps and E. J. Weyuker, "Selecting software test data using data
ow information,"IEEE Transactions on Software Engineering, vol. SE-11, No. 4, April 1985.11

[13] D. J. Richardson and L. A. Clarke, "Partition Analysis: A Method Combining Testing andVeri�cation," IEEE Transactions on Software Engineering, vol. SE-11, No. 12, pp.1477-1490,December 1985.[14] K. Sabnani and A. Dahbura,"A Protocol Test Generation Procedure and its Fault Coverage",Computer Networks and ISDN System 15, pp.285-297, 1988.[15] B. Sarikaya and G.V. Bochmann, "Obtaining normal form speci�cations for protocols," inProc. COMNET'85, Budapest, Hungary, pp.6.113-6.149, 1985.[16] B. Sarikaya, G. V. Bochmann and E. Cerny, "A Test Design Methodology for ProtocolTesting," IEEE Transactions on Software Engineering, vol. SE-13, no. 5, pp. 518-539, May1987.[17] Hasan Ural and Bo Yang, "A Test Sequence Selection Method for Protocol Testing," IEEETransactions on Communications, vol. 39, No.4, pp.514-523, April 1991.[18] M. R. Woodward, M. A. Hennell, and D. Hedley, "Experience with path analysis and testingof programs," IEEE Trans. Software Eng., vol. SE-6, pp.278-286, May 1980.[19] W. Chun and Paul Amer, "Testing case generation for protocols speci�ed in Estelle", FORTE'90, Madrid, Nov. 1990.[20] Samuel T. Chanson and Jinsong Zhu, "A Uni�ed Approach to Protocol Test Sequence Gen-eration," Proceedings of IEEE INFOCOM '93.[21] E. W. Dijkstra, \Guarded commands, nondeterminacy and formal derivation of programs,"Communications of the ACM, vol.18, 1975, pp.453-458.[22] R. C. Linger, H. D. Mills and B. I. Witt, Structured Programming : Theory and Practice,Addison-Wesley, Reading, MA, 1979, Chapter 6.[23] H. D. Mills, \The New Math of Computer Programming", Communications of the ACM,vol 18, No.1, 1975, pp. 43-48.[24] M. S. Chen, Y. Choi, A. Kershenbaum, "Approaches Utilizing Segment Overlap to MinimizeTest Sequences," Tenth International IFIP WG 6.1 Symposium on Protocol Speci�cation,Testing, and Veri�cation[25] Chang-Jia Wang and Ming T. Liu, \Generating Test Cases for EFSM with Given FaultModels", IEEE INFOCOM, 1993, pp 774-781.[26] Chang-Jia Wang andMing T. Liu, \Axiomatic Test Sequence Generation for Extended FiniteState Machines", Proc. 12th International Conference on Distributed Computing Systems,pp. 252-259, June, 1992. 12

