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1. Introduction

Optimization problems arising in engineering design often exhibit specific features which,
in the interest of computational efficiency, ought to be exploited. Such is the possible presence
of ‘functional’ specifications, i.e., specifications that are to be met over an interval of values
of an independent parameter such as time or frequency. Problems in circuit design or control
system design often include many such specifications. While, at the expense of repeatedly
solving univariate optimization subproblems, these constraints could be handled by general
purpose nondifferentiable optimization algorithms (see, e.g., [1,2,3]), the particular structure
of functional constraints calls for specific techniques. In this paper, such techniques are iden-
tified, leading to a class of computationally efficient algorithms enjoying global convergence
properties.

For the sake of exposition, we consider the simple problem
(P) minimize f(z) s.t. ¢(z,w) KOVweN

where f : R™ — R is continuously differentiable, ¢ : R™ x 2 — IR is continuous and is
continuously differentiable with respect to its first argument, and } C R is a compact interval.
Polak et al. [4,5] have proposed two globally convergent algorithms for solving such problems,
both using an adaptively refined discretization of 2. In the first algorithm [4], a feasible
direction scheme is used that yields an approximate solution to a problem P, obtained by
replacing 0 by a finite subset {2,. The search direction is based on gradients of ¢ at all e-active
discretization points. The discretization is then progressively refined and the corresponding

problem is solved to a progressively better accuracy. Convergence of the overall algorithm to
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stationary points of P is proven. The second algorithm [5] achieves substantial computational
savings over the first one by better exploiting the regularity properties of ¢ as a function of
w. The key observation is that, when the discretization is fine enough, the critical sensitivity
information is essentially carried by the gradients of ¢ at the e-active local mazimizers. The
algorithm proposed in [5] makes use of the latter only, and convergence to stationary points

is preserved provided the initial discretization is fine enough.

In this paper we first note that, while the latter algorithm performs well with a small dis-
cretization mesh, convergence problems may arise in the early stages, when the discretization
is still coarse. The reason is that the gradients at the local maximizers for the current iterate
may not carry enough information on the local behavior of the constraints. This is illustrated
by two examples where the discretization is never refined and the sequence of iterates con-
verges to a nonstationary point. It is then shown how this problem can be avoided by using
a standard idea of nondifferentiable optimization (see, e.g., [3,6,7,8]) that consists in using a
search direction based not only on function and gradient information evaluated at the current
iterate, but also on significant function and gradient information (i) ‘remembered’ from past

iterates or (ii) gathered during suitably devised line searches.

The balance of this paper is organized as follows. In Section 2, the adaptive discretization
scheme proposed in [5] is outlined and examples are exhibited where this scheme fails to
converge when the initial discretization is too coarse. In Section 3, a class of algorithms is
presented. There, the line search procedure, left undefined, is merely required to satisfy a

certain condition motivated by the failure just observed. In Section 4 it is proven that all
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algorithms in the given class exhibit global convergence properties, irrespective of the size of
the initial discretization mesh. Two types of line search satisfying the required condition are

suggested in Section 5. Finally, Section 6 is dedicated to concluding remarks.

2. Preliminaries

In this section, after briefly outlining the algorithm of [5], we show by two examples that
difficulties can arise when the initial discretization is coarse. The notations, terminology and
assumptions to be used throughout this paper, essentially borrowed from [5], are introduced
first.

For ease of reference, we restate the regularity assumptions for problem P.

Assumption 1.! Q = [wo,w,] is a compact interval of R, f : R® — R is continuously
differentiable, ¢ : R™ x } — R is continuous and is differentiable with respect to its first

argument z, and V¢ is continuous.

Assumption 1 implies that the function ¢ : R™ — R given by
¥(z) = max ¢(z,w)
is well defined, so that problem P can be reformulated as
minimize f(z) s.t. ¥(z) <O0.
Given z € R"™, the set of indices of active constraints at z is defined by

0(z) = {w € 0| ¢(z,w) = ¥(2)}

! The regularity assumption on ¢ can be weakened so as to allow functions that are merely

piecewise continuous in w (a frequent occurrence in engineering design problems.)
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and the set of gradients of active constraints at z by
S(z) = {V.é(z,w) | w € Q(2)}.

The convex hull of the latter is denoted by coS(z). One more assumption will be made
throughout.

Assumption 2. There exists no z € R" satisfying ¥(z) > 0 and 0 €coS(z).

A point z* € R" is called a Kuhn-Tucker point for P if ¥(z*) < 0 and there exist a finite

number [ of points w; € 1, j =1,...,l and some coefficients A} 20, j=1,...,1 satisfying

l
Vi(z*)+ ) AjVe(z*,w}) =0

i=1
and

Ajp(z",wi) =0, j=1,...L

It is easily checked that, under the stated assumptions, every local solution of P is a Kuhn-

Tucker point for P.

Given any ¢ € IN\ {0}, referred to below as discretization indez, the set {1 is now discretized

into

ﬂq={weﬂlw=wo+liwc—;&l, l=0,1,...,q}.

The constraint function is approximated accordingly by
¥(z) = max ¢(z,w)

and we define

7 (z) = max{0, 9, () }.



For any ¢ > 0, the set of e-active points of the discretization £, is defined by

Ng,e(2) = {w € 0 | d(z,w) 2 ¥ (z) — €}

A left local mazimizer of ¢ over {1, at z is a point w € 0, satisfying one of the three following
properties.

$. w, < w < w, and the two inequalities

We — Wy

b(2,0) > d(z,w + ) (2.1)

and

d(z,w) > ¢(z,w — 22 ;“"’) (2.2)

hold.
#f. w = w, and (2.1)holds.
##i. w = w, and (2.2) holds.

The set of e-active left local mazimizers associated with the discretization is given by
{,c(z) = {w € Q,,e(x) | w is a left local maximizer of ¢ over 0, at z}

and we define

0g,e(z) = Qg,e(2) U Qg 0(2).

Finally, the discretized problem is

(P;) minimize f(z) s.t. ¥4(z) <O0.
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For a given discretization, an initial precision ¢ and a current iterate z;, the algorithm in

[5] computes a search direction d; by solving the quadratic program

st < Vf(zi),d > -9 () <v (2.3)

{ minimize }||d||? + v
< Vad(ziw)d >< v Vwe Ny o(z:).

where 4 > 0 is given. If the optimal value 7; of this problem satisfies ; > —6¢, § > 0 given,
€ is halfed and the search direction is recomputed accordingly. This process is repeated until
the condition 7; < —ée holds. If € is decreased below a given threshold, the discretization is
refined. The stepsize ¢; along d; is then determined by the following Armijo-like rule, which

makes use of two scalars a, 8 € (0,1). If ¥} (z;) > 0 (Phase 1), ¢; is the first number ¢ in the

sequence {1, 8, 8%,...} satisfying
g (2 + td;) — Yq(zi) < —atbe. (2.4)
If Y} (z;) = O (Phase 2), ¢; is the first number ¢ in the sequence {1, 3, 32,...} satisfying
f(zi +td;) — f(z:) < —atbe

Y, (= + td;) <0.

Consider now the following problem.

Problem 1.

Problem P with @ = [0,1] and functions f : R? » R and ¢ : R? x [0,1] — R respectively

given by

I
™

/(=)



and

¢(z,w) = (2w - )n +w(1 -w)(1 - n) -

where ¢ and n are the components of z.

It can be checked that

ifg>1/3
¥(z) = 5—"4—6—2""-")1 ¢ otherwise

and that the solution of Problem 1 is given by (v5—2,1—2 lg)T, the only Kuhn-Tucker point

for this problem. On the other hand, for ¢ = 1 (i.e., two points in the discretization),

Ya(z) = [n| -

and the solution of the corresponding discretized problem is (0,0)7. Consider now attempting
to solve Problem 1 using the algorithm just outlined and suppose that ¢ = 1 initially. Since
two adjacent mesh points cannot both be left local maximizers, it is clear that for any iteration
i, irrespective of the value of ¢, {1 ,(z;) will be {0}, {1} or the empty set. It is then easily

checked that, if & >

|no| (so that vg(z0) < 0), 7 will always be —1/10 or —1/2. Once
de < 1/10, assuming that ¢ has remained unchanged, € will never be further decreased, the
discretization will never be refined, and convergence to (0,0)7, the solution of the discretized
problem, will occur. Note that the distinctive feature of Problem 1 is that the solution of
the discretized problem is located on a ‘corner’ corresponding to two adjacent mesh points.
Since such occurrences are fairly common when the discretization is coarse, failures such as

the above should be expected to frequently take place.
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Difficulty of the type just discussed can easily be overcome by refining the discretization
whenever the step length ||z;41 — ;|| falls below a given threshold. However in many cases such
refinements may be wasteful as short steps can occur away from the solution of the discretized
problem when the step is truncated due to the presence of a constraint that was not taken
into account in the direction computation. A particularly acute such case is illustrated by the
next example, where arbitrarily small steps are taken away from any stationary point of the
discretized problem. For this example the algorithm outlined above fails again.

Problem 2.
Problem P with {1 = [0,1] and functions f : R? —» R and ¢ : R? x [0,1] — R respectively
given by
3
f(z) = -3¢
and?

$lz,w) = w(w = 1) + (L - ) (- 36+ 1) +w(€+n).

Here again, ¢ and n are the components of z.

Note that
9(2) = max($(2,0), (@ 1)) = max(~3€ + 1, +1) = y(2)

for any ¢ € IN\{0}, and thus that P, is equivalent to P for any ¢ € IN\{0}. Also, this problem

is convex and satisfies Assumptions 1 and 2. Since (§,7) is feasible for £ > 7/3 with £€+7 <0

2 The first term in ¢(z,w) is introduced so as to satisfy assumption made in [5] that V z €

R"™, 1(z) is finite.



and since f(z) — —oo as { — oo, there is no Kuhn-Tucker point. However, the following
result holds.

Proposition 2.1.

Suppose the algorithm just outlined is used on Problem 2. Suppose that ¢ = 1 initially
and that zo = (0,0)7. Also suppose that the parameters values a, §, § and ¢ satisfy the
relationships & = 1/2, § = 1/4, 6¢ = 1/4 and that v is any positive number. Then ¢ is never
decreased (so that the discretization is never refined) and the successive iterates are given by

z; = (1 - 47%,0)T. The limit point (1,0)7 is not feasible for P (or F,).

Proof
By induction. Clearly the result holds for { = 0. Thus suppose that z; = (1 — 47%,0)T and
that ¢ has not been decreased in any of the first ¢ iterations. Since ¢ = 1, there are two mesh

points, with corresponding constraint values

$(2:,0) = 143 x 470+

and

#(zi1) =1-47¢

so that

telzs) =143 x 406+,

Thus clearly w = 0 is the only left local maximizer and, irrespective of the value of ¢, the only
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e-active left local maximizer. Since V. ¢(zi,0) = Vf(z;) = (—3/4,0)7, the search direction is
d; = (3/4,0)T

and the optimal value of problem (2.3) is —9/32. Thus, since ¢ = 1/4, ¢ is not decreased at
Step +. Since the iterate z; is not feasible, the line search performs a Phase 1 iteration and
the next iterate is given by

Tit1 = z; + B d;

where j; is the smallest nonnegative integer 7 such that
o(zi + Bids) < hg(z:) — af?be

It is easily checked that j; =+. Thus,
Tit1 = (1 - 4_i, O)T + 4_"(3/4’ O)T

= (1-4"06+1) )7,

O

Thus convergence occurs to a point that is not even a solution for the discretized problem.
This failure can be explained as follows (see Fig. 2.1). At z* = (1,0)T the set of indices of
active constraintsis ((z*) = {0,1}. However, along the constructed sequence, w = 1 is never a
local maximizer for ¢(z;, ) over {1, (although it is one over (1), so that {1, .(z;) = {0} for all 1.
Thus, although the step performed by the line search is always truncated due to the presence
of the constraint at w = 1, this constraint is never taken into account in the search direction

1

computation, and consequently the sequence {z;} never leaves the subspace {z | n = 0}.
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1 7 |
4 ,

$(cgoM0) |

X = (8,0} ‘ 3. (gc:")

Figure 2.1. ¥(z) from Problem 2 with n =0
Obviously, in Problems 1 and 2, satisfactory performance will not be achieved unless
computation of the search direction takes into account simultaneously the gradients V ,¢(z,w)
at both w = 0 and w = 1. It should be clear that similar considerations apply to a large class
of problems. Thus one could use, in addition to the gradients at the left local maximizers
for the current iterate, the gradient at the last point rejected by the Armijo rule (point Z;
in Fig. 2.1 for Problem 2). Alternatively, one could combine a memory mechanism with

the requirement that the line search yield a point not only satisfying (2.4) but also resulting
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in a directional derivative %} (zi+1,d;) sufficiently larger than ¥ (i, d;), indicating that the
gradients of active constraints at the new iterate are significantly different from those at the
previous iterate. Such considerations motivate the line search framework (Condition C) and
the updating scheme (Step 6) associated with the class of algorithms described in the next

section. In Section 5 line search procedures of the types just suggested will be considered.

3. A Class of Algorithms

The idea of making use, in the computation of the search direction, of gradients evaluated
at points other than the current iterate has been widely used in the nonsmooth optimization
literature (see, e.g., [1,3,8]). For our purpose, a set J of pairs (y,w) € R™ x Q1 that carry
relevant information will be maintained and updated at each iteration. For a current iterate z

and a discretization index g, a ‘weight’ W,(z, y,w) will be associated to each pair (y,w) € J,

given by 3
W, (2, y,w) = max{||z — y||; ¥} (¥) — é(v,w); ||z — yl| ||V2d(y,w)|]} = 0.

A low value of this weight indicates that V. ¢(y,w) carries information that is highly
relevant at z. The search direction d,(z,J) and an ‘optimality function’ vg(z, J) will then be

obtained by solving the quadratic program (cf. (2.3))

min Z||d||* +v
(@Py(@d)) { st < Vi(a)d> b3 (@) <v (5.1
< Ved(y,w),d > -Wy(z,y,w) <v V (y,w) €. (3.2)

3 The last term in the weight is introduced for purely technical reasons. It does not intro-

duce any computational overhead since V.¢(y,w) already appears in QF,(z,J) below.
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The optimal value of QFP,(z,J) is
1
Te(z,J) = '2'”dq(9’a D12 + vo(z, ).

The multipliers associated with the constraints of QP,(z,J) of type (3.1) and (3.2) will be
represented by Az ¢(z,J) and Ay, 4(2, J), respectively. These multipliers, which are not nec-
essarily unique, are chosen in such a way that at most n + 1 multipliers of the second type are
different from 0.

In Algorithm A below, the line search is only partly specified. It will be required to satisfy
a certain Condition C, which expresses that it should tend to gather significant information
on the potentially binding constraints. The algorithm is inspired from the one in [5].4
Algorithm A.
Parameters. § > 0; v> 0.
Data. €g > 0; My > 0; No > 0; g0 € N\{0}; Xo € R".
Step 0. Instialization of the outer loop. Set k = 0.

Step 1. Instialization of the inner loop. Set s = 0, zg = X} and
Jo = {(Xe,w) | w € gy (X)}-

Step 2. Search direction computation. Compute d; = dg, (2, J;) and v; = vy, (25, J;) by solving

QFy, (s, Ji)-

4 Note however that, as W,(z;, z;,w) is positive for w ¢ ﬁq,o(zg), it becomes unnecessary

to iteratively reduce ¢. In order to limit the number of gradient evaluations, such reduction is

nevertheless performed when the discretization is refined.
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Step 8. Optimality test. If v; > —bex or ||zi|| > Nk, go to Step 4. If ¢y, (2:) < 0 and
f(z:) < —Mgy, go to Step 4. Otherwise, go to Step 5.

Step 4. Discretization update. If v; > —bex, set €x41 = €x/2. Otherwise, set x4 = €. If
|zl > Nk, set Ni41 = 2||z;]|. Otherwise, set Niyy = Ny. If Yg (z:) < 0 and f(z:) < —M;,
set Myy1 = —2f(z;). Otherwise, set Miy1 = Mg. Set gry1 = 24k; Xiy1 = T35 Diy1 =
di; Vie1 =53 Irq1=Ji. Set k=k+1 and go back to Step 1.

Step 5. Line search. Find a stepsize t; = tq, M, (i, di, vs) and a set ¥; = Yo, m, (zi, di, v5)

using the line search model given below.

Step 6. Updates. Set z;41 = ; + tid; and

Jir1 = I\{(#:w) € i | Apuar (i Js) = 0} U{(zi+1,w) | w € Qgp 0 (2i41)} U Yi:

Set 1 =1 + 1 and go back to Step 2.

Line search model.
The following model is inspired from the line search procedure used in [5]. It depends on
a parameter a € (0,1). Suppose the current discretization index is ¢ and let M > 0. Then

given a point z, a direction d and a scalar v < 0 satisfying

< Vf(z),d> -] (z) <v (3.3)

and

< Vioé(z,w),d > <v VweNgo(z), (3.4)
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the line search yields a step ¢t = 4 ar(z,d, v) satisfying the following conditions (essentially

those in [5]). If ¢} (z) > 0 (Phase 1), either

Yo(z+1d) <0 (3.5)

or

Yq(z + td) — ¢¥q(2z) < atv (3.6)

holds and if ¥ (z) = 0 (Phase 2), either

J(z+td) < —M; Yo(z+td) <0 (3.7)
or both
[(z+td) — f(z) < atv (3.8.a)
and
Ye(z +1d) <O (3.8.b)

hold. In addition, the line search must return a set ¥ = Y, apr(z,d,v) C R"™ X )y (possibly

empty) and it is required that Condition C below be satisfied.

Condition C. There exists a scalar § < 1 such that the following holds for every discretization
index ¢ and for every positive value M: for every compact set S C R" and for every 4 < 0,
there exist ¢ > 0 and 5 > 0 such that for every z, d € S and v < ¥ at which the line search is

performed, the step ¢t = ¢4 a(z,d,v) and the set Y = Y m(z, d,v) are such that

vl <5 Y (y,w)€Y;
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and such that either

or

< Vié(y,w),d > ~W,(z + td,y,w) > v (3.9)

for some (y,w) € Y U{(z+td,w) | w € Qg,0(z+td)}, unless one of the following two conditions
holds:
( i) ¥*(z) > 0 and ¥(z + td) < O (transition from Phase 1 to Phase 2)

( ii) (8.7) (detection of a feasible point where the objective function value is very small).

Condition C and the updating scheme in Step 6 may be interpreted as follows. Suppose
that at some point z; in Algorithm A the step ¢; becomes very small due to the presence
of a constraint not taken into account in the search direction. Since (3.9) must then hold,
the updated set J;,; will contain a new pair (y,w) significantly different from the pairs used
in computing the current search direction (compare (3.9) with (3.2)), and the new search
direction d;41 will be significantly different from d;, thus avoiding the problem encountered in
Problem 2. By keeping in J;+; the constraints that affected the current search direction (those
with nonzero multipliers), the updated scheme of Step 6 will then ensure that zigzagging (as

encountered in Problem 1) is avoided.

4. Convergence Analysis.

If the solution (dq(z, J),ve(z, J)) of QP,(z, J) is always well defined, Algorithm A will be well
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defined, provided the line search is. The latter will be discussed in Section 5. The following
proposition establishes the former and gives a characterization of (d,(z, J),vq(z,J)) that will
be used extensively below.

Proposition 4.1.

Problem QP,(z,J) has a unique solution (d,v) = (dg(z,J), vq(z,J)), with v < 0. Moreover,

(d,v) is the unique pair satisfying Relationships (4.1)-(4.4):

d+ Vi) + Y. AwVad(y,w) =0 (4.1)
{(yw)es
< Vf(z),d>-ypf(z)-v<0 (4.2)
(with equality if Ay # 0)
< Vé(y,w),d > -Wy(z,y,w) —v <0 V (y,w)eJ (4.3)

(with equality for (y,w) such that A, , # 0)

Ar20, 4w 20 Y(yw)ed, A+ D Au=1, (4.4)
(yw)es

where the multipliers Ay = As4(z,J) and Ay, = Ay u (2, J), for all (y,w) € J, are as defined

in Section 3. Finally

v=—[ld? — (@) - D MuWelzyw) (4.5)
(yw)eJ

Proof.

(d,v) solves QP,(z,J) if and only if d is solution of the problem in d

minimize -;—Hd”2 + max{< V{(z),d > -9 (z); < Vad(y,w),d > -W,(z,y,w) | (y,w) € J}
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and
v = max{< Vf(z),d > -9} (z); < Vad(y,w),d > -Wy(z,y,w) | (y,w) € J}.

Since the objective function associated with this problem is strictly convex and radially un-
bounded, d and v are always uniquely defined. Moreover, since the optimal value may not
exceed the value obtained for d = 0, the value v is nonpositive. Next, Relationships (4.1)-(4.4)
come directly from the optimality conditions associated with the solution of QF, (z,J). Since,
from convexity, those optimality conditions are also sufficient, it follows, from the unique-
ness of the solution of QP,(z,J) that (d,v) is the unique pair satisfying (4.1)-(4.4). Finally,

Relationships (4.2) and (4.3) yield

Af(< Vi(z),d > -y (z) —v) + E Ay w(< Vod(y,w),d > —W,(z,y,w) —v) = 0.
(viw)eJs

Using (4.4), we get

v=2X; < Vf(z),d>+ Z Ayw < Vzd(y,w),d > _’7’\f¢':(z) - Z AywWo(2, 9, w)
(yw)es (yw)ed

and since (4.1) implies

A< VE@hd>+ Y. Ayw < Vad(y,w),d >=—[ld|%,
(y,w)eJ

(4.5) holds.
O
In the remainder of this section, it is shown that Algorithm A is convergent in the sense

that it generates an infinite sequence {X4} and that every accumulation point of that sequence

is a Kuhn-Tucker point for P. We first prove the latter.
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Proposition 4.2.

If the algorithm generates an infinite sequence {X}}, then, every accumulation point of that
sequence is a Kuhn-Tucker point for P.

Proof.

Consider an accumulation point X* and a subsequence {Xj}rex converging to X*. The
inequalities || Xk|| > Ni—1 and f(Xi) < —Mj_; may only occur finitely many times on K.
So, the inequality Vi > —6ex—~1 is always satisfied for k € K large enough. Since the numbers
€x—1 converge to zero, the numbers Vj, which are nonpositive in view of Proposition 4.1,
must also tend to zero. It will be assumed, without loss of generality that I} contains exactly
I < n+1 elements (! possibly zero, indicating that I is empty). Let us now denote those
elements by (y;,k,wjk)s J=1,...,l. Let the multiplier associated with the first constraint of
QP,, (X, I) and the multipliers associated with the other constraints be respectively denoted
by Ask = Afqu(Xky I&) and Ajx = Ay, p 0,000 (Xks Ik), 7 =1,...,1. Using these notations,

Relationships (4.1), (4.4) and (4.5) yield

{
Dy + AraVI(Xe) + D Ak Vad(ys e wik) =0 (4.6)
i=1
1
Af k20, A; k20 5= 1,...,1, Af,k+zxj,k=1 (4.7)
i=t
and
I
Vi = —[|Dklf? = WA r a0k (Xi) = D X aWay (X, ¥, ws k)- (4.8)
i=1

Reducing K, if necessary, to a subset of indices, it may be assumed, in view of (4.7), that the

subsequences of coefficients Asx and A\jx, J=1,...,], converge on K to some numbers A}
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and A}, 7 =1,...,l satisfying
i
X520, 2520, A5+ A =1 (4.9)
i=1

Since 2 is compact, it may also be assumed that the numbers w; g, J =1,...,l, converge
on K to some numbers w; € {1, 7 =1,...,l. Convergence to zero on K of the sequence

{Vi} implies, in view of (4.8), the definition of the weights W, (X}, ¥;,k,wj,), and continuity

of V.9,
Dy—0,keK, k— oo (4.10)
At (Xe) =0, k€K, k- o (4.11)
Xkl V2o(yi ks wik)]| 0, k€ K, k> o0 (4.12)
for all 5 such that A} =0 and
1 Xk — ikl = 0, ¥ (vik) — S(¥s e, wik) = 0, k€ K, k— o0 (4.13)

for all § such that A} # 0. In particular, from (4.13), the vectors y;,; corresponding to nonzero
multipliers, converge to X* on K so that, taking the limit in (4.6) we obtain, in view of

regularity Assumption 1, and Relationships (4.10) and (4.12),

4
LVFXY) + )25 Va(X*,w)) =0, (4.14)
=1

Now, regularity Assumption 1 implies that

l‘/};l—;(Xk) - ¢+(X*), keK, k— o
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so that (4.11) yields

At (X*) =0.

Now, in view of (4.9), (4.14) and Assumption 2, ¥(X*) < 0. Finally, using (4.13), the feasibility

of X* and regularity Assumption 1, we obtain,

Aj(X*,w]) =0, ¥ j. (4.15)

Finally, remark that A} cannot be 0. Indeed, if it were the case, there would exist, in view of
(4.9), an index j for which A} # 0. This would imply, from (4.15) and the feasibility of X*,
%(X*) = 0. But, it would also hold, in view of (4.14), 0 € coS(X*), in contradiction with
Assumption 2.
O
It now remains to show that Algorithm A generates an infinite sequence {X:}. We will
suppose by contradiction that there exists an iteration k such that, for the corresponding
discretized problem, the algorithm performs an infinite number of steps, thus generating an
infinite sequence {z;}. If the discretization is never changed, the following three conditions

hold for all ¢:

either ¥g, (z:) > 0 or f(z;) > —M;i (4.16)
llz:ll < N (4.17)

and
v; < —b¢eg. (4.18)
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Lemma 4.3.

If there is an index k for which the discretization is never refined, then all the directions d;

constructed on the corresponding discretization satisfy ||d;|| > d, for some d > 0.

Proof.

The solutions (d;,v;) of QP (zi,J;) satisfy, in view of (4.18), < Vf(z:),d; >< v; < —bex

if ¥g, (2:) < 0 and < V. (i, w;),di >< vi < —bex for some w; € 04, ,0(z:) otherwise. The

result then follows from Relationship (4.17), compactness of {1, and regularity Assumption 1.
O

Lemma 4.4.

If there is an index k for which the discretization is never refined, then the sequence {z:} of

iterates constructed on the corresponding discretization converges to some vector z*,

Proof.

In case %, (z;) > O V i, Relationships (3.6) and (4.5) imply that

Yo (Zit1) < Pau () — atilldi]|?
and, from Lemma 4.3,
Yau (Ti41) < Vgp (25) — edl|zivr — 2.

Thus for any given s € IN, we have,

Vo (Zar1) — Yau (20) = DO _ (Yau (@it1) = P (%)) £ —od)  |lzisr — il

=0 +=0

Therefore

z.: |zit1 — 2l < ¥ax (20) ;zqk (Z541)

=0
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so that,

L ]
E HZigr — || < _____%;(;o)

1=0
so that {z;} is a Cauchy sequence, which proves the claim. If z; eventually becomes feasible,

the result follows similarly from Relationships (3.8.a) and (4.5).

Lemma 4.5.
If there is an index k for which the discretization is never refined then the sequence {¢;} of

stepsizes constructed on the corresponding discretization converges to zero.
Proof.

The result follows directly from Lemmas 4.3 and 4.4.

O

Proposition 4.6. Suppose Condition C holds. Then Algorithm A constructs an infinite
sequence {Xj}.

Proof.

Let us show that we get a contradiction if we assume that k remains fixed. Let us denote by

7; = 74, (2i, Ji) the optimal values of the quadratic problems QFP,, (z:, J;) and let
r* = lim sup 7.

In view of Lemma 4.4, the sequence {z;} is bounded and it is easily shown, using the optimality

conditions (4.1)-(4.5) that the sequence of directions {d;} and the sequence of values {v;} are
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also bounded. Indeed, the values d; and v; satisfy, in view of (4.2),
< Vf(z:),di > -yt (z:) —vi <0 (4.19)

and, from (4.5),

vi < —[lds|%
These two inequalities yield
Nesll(lldsll = IV £ (2:)]) < v (22)

which, in view of the convergence of the sequence {z;}, ensures the boundedness of the sequence
{d:}. Boundedness of the sequence of negative values {v;} follows immediately from (4.19).
From Condition C and compactness of (1, the sequence {J;} is bounded as well. A subset of
indices I C IN can thus be extracted such that {r;}ier — v*, {di}icr — d*, {vi}icr — v*,
{dit1}ier = @'*, {vit1}ier — v1* for some d*, v*, d'*, v!* and such that, for some [ < n+1,
possibly zero, exactly ! constraints corresponding to points of J;, ¢+ € I have a multiplier
different from zero in QP,, (z:, J;). Let us denote by (y;:,w;,i), J=1,...,! the points of J;
corresponding to the nonzero multipliers. It may be assumed, without loss of generality, that
{vi:}ier — v} and, {wj;}ier — wj, for some y3, wi, j=1,...,l. Then, foralli € I, (d;,v;)

solves,
minimize ||d||? + v
(QF) st < Vf(2:),d > =y () <v
< Vb (¥5,6,wji5), d > —Wo (2, ¥5,6,wi5) <v, F=1,...,1

where only those constraints of nonzero multipliers appear, since clearly (d;,v;) satisfies the
optimality conditions associated with QP; and since, in view of Proposition 4.1, the solution
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to those optimality conditions is unique. Now, since v; < —8¢; for all ¢, in view of Condition
C and Lemma 4.5, it may be assumed, without loss of generality, that there exists a sequence

{(#:,@:)} of points in J;41 converging on I to some vector (y*,w*) and satisfying,
< Vz¢(gs" (Di)’ dt’ > _qu (xi+1s gi’ &1) 2 0vi° (4-20)

Next, (ds+1,vi+1) solves the quadratic problem QP;y; = QP,, (Zi+1,Ji+1),

( minimize 1||d||? + v

s.t. < Vf(Ziv1),d > —v9F (zig1) < v

(RQPiv1) | < Vad(¥5rwji)rd > —Wou (Tig1, Y50, wi) Sv, F=1,...,1
< Ved(§i, @)y d > —Wo, (Tig1, ¥, @5) S v

\ + other inequalities

and we suppose, without loss of generality that, for ¢+ € I, the number of ‘other inequalities’ is
fixed. The limit pair (d*,v*) is solution of the limit problem

minimize }||d||? + v
(QP*) { st. <Vf(z*),d>—ypf(z*) <v
< Vad(y},w]),d > ~We, (2*,y],w])

<v, 7=1,...,L

This is because, for all ¢ in I, (d;,v;) is solution of QP; and thus satisfies the optimality
conditions associated with QP;. The limit d* therefore satisfies the optimality conditions
associated with QP* and, in view of Proposition 4.1, (d*,v*) is the unique solution of QP*.
Similarly, (d'*,v'*) is solution of QP1*,

( minimize 1||d||? +v

s.t. < Vf(z*),d> -yt (z*) <v

(QP') J < Vad(y},wi),d > Wy, (2,9, w}) < v, 7=1,...,1
< V.é(y*,w*),d > Wy, (z*,9*,w*) v

\ +other limit inequalities
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where the ‘limit’ inequalities correspond to a suitable subsequence. In view of (4.20), the

unique solution (d*,v*) of QP* satisfies
< Vz¢(y*’w“)ad* > _qu (z‘,y*’w*) > fv*.

Therefore, one constraint in QP!* is not satisfied by (d*,v*). Thus, since all constraints
in QP* are included in QP**, 7** = J||d'*||? + v!* satisfies r'* > 7*, in contradiction with

the definition of 7*.

We conclude this section with a theorem that combines Propositions 4.2 and 4.6.
Theorem 4.7.
Suppose Condition C holds. Then Algorithm A constructs an infinite sequence {Xj} and

every accumulation point of this sequence is a Kuhn-Tucker point for P.

5. Two Line Search Procedures

In this section, two line search procedures satisfying Condition C are introduced and
discussed. They are described for a given discretization index g, a scalar M < 0 and for some
z, d € R™ and v < 0 satisfying Relationships (3.3) and (3.4).

Line search LS1. (Armijo-like)

The following is a simple modification of the line search in [5]. Here, at each iteration, the

last unsuccessful trial point in the Armijo-like test is ‘remembered’. The step t = ¢, rr(z,d,v)

is computed through the following procedure for some a, 8 € (0,1). If ¥} (z) > 0 (Phase 1),
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t = B where J is the smallest nonnegative integer j satisfying either

Yo(z +B7d) <0

or
Yol + B7d) — Po() < afv.

If ¥ (2) = 0 (Phase 2), t; = B where J is the smallest nonnegative integer j satisfying
Ye(z+p7d) <0

and either

fz+pd)<-M

or
f(@+Bid) - £(a) < apiv

and the set Y = Y rr(z,d,v) is taken as the empty set if 7 =0 and as a singleton
Y = {(z + L "'d,w) where w is any element in 0, o(z + i"1d)}

otherwise.

Proposition 5.1.

Line search LS1 is well defined and satisfies Condition C.

Proof.

The proof of the first statement, can be found elsewhere (see, e.g., [4]). It thus remains to show

that Condition C is satisfied by the line search. We show by contradiction that Condition C
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is satisfied with 8 = 2c. It is easily checked that the sets Y are bounded on compact sets.
Therefore, if Condition C does not hold, there is a fixed discretization index ¢, a compact set
S, a scalar ¥ < 0, some sequences {z;} and {d;} with elements in S, and some numbers v; < &

such that the corresponding steps t; = ¢, ar(2i, ds, v;) converge to zero and such that

< Vf(2i),di > =y (2:) < s ) (5.1)

and

< Vad(yi,wi), di > —Wo (i + tids, 4i, wi) < 2aw;. (5.2)

for some w; € N4,0(y;) (the one chosen by the line search), with y; = 2; + %d;. The negative
numbers v; are bounded, in view of (5.1), the boundedness of the sequences {z;} and {d;}
and regularity Assumption 1. Therefore, it is possible to extract a subset I of indices such
that, on that subset, the sequences {z;}, {d:}, {vi}, and {w;} converge respectively to some
values z*, d*, v*, and w*. Then, clearly, the sequence {y;} converges, on I, to the point z*
and w* € f1g,0(2*). On the other hand, since the step %— was not accepted by the line search,
a subset of indices I’ C I can be extracted so that, on that subset, one of the following three

inequalities is always satisfied:

Pq(z:) > 0 and ¥, (z; + %d.-) — tg(zs) > a%v; (5.3)
o(2:) < 0 and f(z: + % ) — f(z:) > a%v; (5.4)
e (2:) < 0 and g (z: + %d;) > 0. (5.5)
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Relationship (5.4) cannot occur infinitely many times on I'. Otherwise, taking the limit of
(5.4) on I' would yield < Vf(z*),d* > > av* > v*, in contradiction with the fact that, in
view of (5.1), since 4(z;) < 0, the pair (d;,v;) satisfies < V f(z;),d; >< v;. If Relationship
(5.3) is always satisfied, it also holds, since w; € 04,0(%s),

]
B

t.
diyw;) — d(zi, wi) > a—v;.

¢z + 3

Taking the limit on I’ yields < V,¢(z*,w*),d* > > av*. Now, since the iterates z; are
not feasible and w* belongs to f1,,0(z*), the limit weight W,(z*,z*,w*) is zero. So that,
for ¢ € I' large enough, (5.2) is never satisfied.® In case Relationship (5.5) always holds,
< V¢(z*,w*),d* > > 0 so that, again, inequality (5.2) never holds for ¢ € I' large enough.

O
Line search LS2. (Wolfe-like)

The second line search to be introduced is of the Wolfe type. This kind of line search is
widely used in nondifferentiable optimization. Besides a € (0, 1), a number & € (a, 1) is given.
The set Y = Y, (2, d,v) is taken as the empty set and a stepsize t = tq,rr(7,d,v) satisfying
the following conditions (see below for an explicit procedure for computing such t) is obtained.

(a. Phase 1.) If ¢ (z) > O, either (al) or (a2) holds.

(a1)

Ye(z+1d) <0 (5.6)

5 Note that, possibly, w; & Q4,0(%:) V %, so that the arguments used in connection with

(5.4) cannot be repeated for (5.3).
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(a2)

ez + td) — Pqe(z) < atv

and

< Vip(z+td,w),d > > av

for some w € Q4 o(z + td).
(b. Phase 2.) If ¢ (z) = 0, either (b1) or (b2) holds.
(b1)

f(z+td) < —M; Yy(z+1td) <0

(b2) (5.10.a-b) holds and either (5.11) or (5.12) holds.

f(z+td) — f(z) < atv

Yo(z +td) <0

< Vf(z+td),d> > av

< Ved(z +td,w),d > +¢(z + td,w) > av

for some w € 0, o(z + td).

(5.7)

(5.8)

(5.9)

(5.10.a)

(5.10.b)

(5.11)

(5.12)

Let us now describe a procedure for finding such stepsize. The method presented below is

a modification of a line search due to Mifflin [1]. To limit the number of gradient evaluations,

(5.8) and (5.12) are tested for only one arbitrarily selected w € Qg o(z+td). It is shown below

that this will not hinder termination of the procedure. The exit of the line search depends on

whether or not the current iterate is feasible. The method is described for a point z satisfying
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%3 () > 0 (resp. # ¢ (z) = 0). The procedure is as follows. Set t =0, t* = +o00. Pick tt > 0.
Loop.

If ¢t satisfies all required conditions, set ¢ = ¢t* and stop.

If tt satisfies (5.7) (resp.(5.10)), set ¢! = t*. Otherwise, set t* = t*.

If t* = 400, set t* = 2t¢.

If t* < +oo, set tf = (¢! +¢*).

Go back to loop.

Proposition 5.2.

Line search LS2 is well defined and Condition C is satisfied.

Proof.

We show by contradiction that Condition C is satisfied with § = @. If Condition C does not
hold, there is a fixed discretization index g, a compact set S, a scalar < 0, some sequences
{z;} and {d;} with elements in S, and some numbers v; < ¥ such that the corresponding steps

t; = tq,m(2i, di, v;) converge to zero and such that
< Vf(z:),di >< v; (5.13)
and
< Vi(z; +tidi),di > 2> @v;. (5.14)
In view of (5.13) and regularity Assumption 1, the values v; are bounded. Therefore, it is

possible to extract a subset I of indices such that, on that subset, the sequences {z;}, {d:}
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and {v;} converge respectively to some values z*, d* and v* < ©. Taking the limit in (5.13)
and (5.14) gives

< Vf(z*),d* >< v*

and

< Vf(z*),d* > > av*.

Those last two inequalities yield (1 — @)v* > 0, a contradiction with the relationships @ < 1
and v* < 7 < 0. Let us now show that the line search is always well defined. We will suppose
that z is feasible for the current discretization {14, i.e., that ¢ (z) = 0. The proof for the case
when z is not feasible is very similar and is thus omitted. Assuming, by contradiction, that
the procedure does not terminate, two cases are to be considered. In the first case, (5.10) is

always satisfied (so that t* remains infinite). In that case, the step t* generated by the line

search procedure satisfies

f(z +ttd) — f(z) < at®v

and

Yq(z+1'd) <0

and t' keeps increasing. Since v < 0, (5.9) will eventually hold, and the procedure will
terminate, a contradiction. In the second case, (5.10) is not always satisfied, so that ¢*
becomes finite and a binary search takes place. Suppose by contradiction that the line search
does not terminate. In that case, the entire interval [t’,t“] converges to some nonnegative

value t*. Let us first show that, in that case, the value t! does not remain equal to 0. Indeed,
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if ¢! is always O, the values t* converge to 0 and satisfy either f(z + t*d) — f(z) > at®v or

9q(z+t*d) > 0. This contradicts the fact that z is feasible and that, whenever the line search

is performed, in view of (3.3) and (3.4), the direction d satisfies < Vf(z),d >< vif ¢J(z) =0

and < V,¢(z,w),d >< 0 Vw € Qg o(z). Therefore t! becomes different from 0, and, since

the line search does not terminate, t! always satisfies

f(z+t'd) - f(z) < atly,

Yo(z +1t'd) <0,

and

< Vf(z+td),d> < av,

and there exists a point w of the discretization {l,, depending on t!, satisfying

w € Qg,0(z + t'd); < Vzo(z+ t’d,w), d> +¢(z+ tld, w) < av

and, for t%, it holds either

f(z+t*d) — f(z) > at®v

or

Yq(z +t*d) > 0.

If (5.19) is satisfied infinitely often, it holds, in view of (5.15),

flz+t*d) — f(z+t'd) > a(t* — t)v
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and therefore, < Vf(z+t*d),d > > av, in contradiction with (5.17) and the inequality o < &.

On the other hand, if (5.20) is always satisfied, it follows from (5.16) that

Ye(z +t°d) =0 (5.21)

and, since {1, is finite, there exist a mesh point & € Q; and a subsequence of points ! such
that 9, (z + t'd) is strictly increasing and (5.18) is always satisfied with &. In particular,
& € N4,0(z + t'd) so that

Yo(z +t'd) = ¢(z + t'd, d)

on the entire subsequence and thus

< Vo¢(z+t*d,d),d > > 0.

However, in view of (5.21)

d(z+1td,&)=0

so that (5.18) implies

< Vp(z+t*d,d),d >< av,

a contradiction.

6. Discussion
A class of globally convergent algorithms has been presented and two corresponding line

search procedures have been discussed. These two procedures, while conceptually simple,
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may be impeded by an excessive number of function evaluations per iteration due to repeated
violation of a constraint not taken into account in the search direction. Such a problem
will likely not occur when the discretization is fine, as the global maximizers of ¢(z,-) are
typically well approximated by points in {14,(z). When the discretization is coarse, it may
be appropriate to use a more sophisticated line search such as the one proposed by Mifflin
in [10] in the context univariate nonsmooth optimization. This could essentially amount to
replacing the binary search in Line search LS2 by an interpolation scheme based on derivative
information. Yet another possibility would be that of not requiring that (5.8) (or (5.12)) be
satisfied by the next iterate provided it is satisfied at some pair (y,w) to be included in the
set Y. A similar idea has been widely used in nondifferentiable optimization (see, e.g., [1,3]).

Other refinements may be appropriate in the interest of computational efficiency. First, in
Step 1 of Algorithm A, initialization of the set Jo for a given discretization level & (inner loop)
could take into account information contained in Ix_j, collected at the previous discretization
level. Also, inside the inner loop, it may be desirable to systematically drop from the set J;
pairs (y,w) with a high value Wy, (x;,y,w). Second, although we have assumed throughout
that the discretization was uniformed, all our convergence results still hold if it is merely
assumed that the partition ‘grows dense’ as k goes to infinity. Correspondingly, nonuniform
discretization patterns could be used to take advantage of a priori (or acquired) information
on the ‘shape’ of ¢(z,). Finally, it is clear that proper scaling should be introduced at various

places in Algorithm A.

35



References

[1] R. Mifflin, “An Algorithm for Constrained Optimization with Semismooth Functions,”
Math. Oper. Res., 2, no. 2, pp. 19i—207, 1977.

[2] E. Polak, D. Q. Mayne and Y. Wardi, “On the Extension of Constrained Optimization
Algorithms from Differentiable to Nondifferentiable Problems,” SIAM J. Control Optim.,
21, no. 2, pp. 179-203, 1983.

[3] K. C. Kiwiel, Methods of Descent in Nondifferentiable Optimization (Lecture Notes in
Mathematics). Berlin, Heidelberg, Springer-Verlag, 1985.

[4] E. Polak and D. Q. Mayne, “An Algorithm for Optimization Problems with Functional
Inequality Constraints,” IEEE Trans. Automat. Control, 21, no. 2, pp. 184-193, 1976.

(5] C. Gonzaga, E. Polak and R. Trahan, “An Improved Algorithm for Optimization Problems
with Functional Inequality Constraints,” IEEE Trans. Automat. Control, AC-25, no. 1,
pp. 49-54, 1980.

[6] K. C. Kiwiel, An Aggregate Subgradient Method for Nonsmooth Convex Minimization.
System Research Institute of the Polish Academy of Sciences, 1983.

[7] ———, A Linearization Algorithm for Nonsmooth Minimization. System Research In-
stitute of the Polish Academy of Sciences.

[8] C. Lemaréchal, J. J. Strodiot and A. Bihain, “On a Bundle Algorithm for Nonsmooth Op-
timization,” in Nonlinear Programming 4. Academic Press, New York-London , pp. 245-

282, 1981.

36



[9] P. Wolfe, “On the Convergence of Gradient Methods Under Constraints,” IBM Yorktown

Research Facility, Yorktown Heights, N.Y., IBM Research Report RC 1752, 1967.

[10] R. Mifflin, “Stationarity and Superlinear Convergence of an Algorithm for Univariate Lo-

cally Lipschitz Constrained Minimization,” Math. Programming, 28, pp. 50-71, 1984.

37



