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Abstract

Based on experimental results presented in [ Vranié-Sowers and Shamma, 1993], and
on further physiological and psychoacoustical evidence, it is argued that the auditory
system analyzes a spectral profile along two largely independent dimensions. They
correspond to the magnitude and phase of a localized Fourier transformation of the
profile, closely analogous to the spatial frequency transformations described in the
visual system. Within this general framework, a model of profile analysis is proposed in
which a spectral profile is assumed to be represented by a weighted sum of sinusoidally
modulated spectra (ripples). The analysis is performed by a bank of bandpass filters,
each tuned to a particular ripple frequency and ripple phase. The parameters of the
model are estimated using data from ripple detection experiments in [Green, 1986;
Hillier, 1991]. Perceptual thresholds are then computed from the filter outputs and
compared with thresholds measured for peak profile experiments, and for detection
tasks with step, single component increment, and the alternating profiles.

INTRODUCTION

In characterizing the perception of spectral profiles, a basic objective is to select a
model representation upon which an appropriate metric can be defined. Several such
models have been proposed to account for data from a wide range of psychoacousti-
cal tests, including profile analysis experiments and discriminations of sirnultaneous
vowels. Examples are the independent channel model [Durlach, Braida and Ito, 1986],
the maximum difference model [Bernstein and Green, 1987], the spectral slope model
[Klatt, 1982], and the spectral peak model [Assmann and Summerfield, 1989]. Despite
their unique characteristics, all models share the same fundamental starting point,
that the spectral profile is represented by the acoustic spectrum on a logarithmic fre-
quency axis. Relative to this profile, various operations are then defined to predict the
measured perceptual thresholds.

However, based on experiments with peak profiles, and analysis of the results us-
ing two models [Bernstein and Green, 1987; Durlach, Braida and [to, 1936], it was
suggested that a more parsimonious explanation of the results emerges if the spectral
profile is assumed to be represented in the auditory system by its Fourier transfor-
mation [ Vranié-Sowers and Shamma, 1993]. Specifically, such a representation implies
that an arbitrary complex profile is analyzed into a collection of elementary sinusoidal
profiles of different frequencies (called ripples). This is accomplished via a bank of
filters, each independently tuned to a different ripple frequency (and possibly to a
specific phase of the ripple). Detection thresholds would then be computed from this
representation of the profile.

The idea that the brain analyzes and perceives its sensory patterns in this manner
is relatively common, especially in the vision literature where it has been variously
called multi-resolution or multi-scale representation, and spatial frequency analysis
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[Campbell and Robson, 1968; Levine, 1985]. It is, however, the elegant anatomical and
physiological work of [Valois and Valois, 1990] that has provided the most immediate
inspiration to pursue this type of model for the auditory system.

Recent neurophysiological recordings in the auditory cortex have confirmed that
cortical cells are indeed tuned to specific ripple frequencies and phases [Calhoun and
Schreiner, 1993; Shamma, Versnel and Kowalski, 1993]. Furthermore, that the ordered
mappings of response area bandwidths and asymmetries along the isofrequency planes
of Al [Schreiner and Mendelson, 1990; Shamma et al., 1993] are just a different man-
ifestation of these two ripple response properties. These findings support the notion
that auditory cortical cells are able to perform the necessary ripple analysis.

Essential to the development of an auditory ripple analysis model, however, are basic
psychoacoustical sensitivity measures using simple rippled spectra. A few such exper-
iments have already been performed [Green, 1986; Hillier, 1991; Houtgast and Veen,
1982]. Using these data, and the conceptual framework outlined above, an explicit
computational model is developed to interpret the results of various profile analysis ex-
periments, including the peak profiles described in Part I of this paper [ Vranié-Sowers
and Shamma, 1993]. In the following sections, we first restate the results of the peak
profile experiments in the context of the ripple analysis view. The basic outlines of the
computational model are presented in Sec. II. Its various parameters are estimated in
Sec. III using detection thresholds reported in [Green, 1986; Hillier, 1991]. The model
is used in Secs. IV and V to predict the results of several profile analysis experiments.
Finally, the model is discussed in relation to auditory percepts such as timbre and
pitch, and in contrast to other profile analysis prediction models.

A. Terminology and notation

Several terms will be frequently used in this paper to describe the ripple analysis
representation of profiles. These are:

Ripple: refers to a sinusoidal spectral profile (e.g., p(w) = sin(27Qw + @)), on the
logarithmic frequency axis, w. A ripple has a ripple frequency § (in cycle/octave), and
a ripple phase @ (in radians or degrees).

Ripple spectrum, P(Q): refers strictly to the Fourier transform of the profile p(w).

Ripple analysis filter, H(;Q,, ®,): refers to a bandpass filter that is tuned around
a characteristic ripple frequency (£2,) and phase (®,).

Ripple transform, r(-): refers to the output of a bank of ripple analysis filters.
I. RESTATEMENT OF SPECTRAL PEAK RESULTS

As discussed earlier in [Vranié-Sowers and Shamma, 1993} (Sec. V), changing the
bandwidth factor (BWF) and symmetry factor (SF) of a peak profile is equivalent to
a shift in the magnitude and the phase of its ripple spectrum. In this section, the 6SF
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and BWF/BWF detection thresholds are restated in the context of the ripple analysis
model.

A. SBWF as a shift in the magnitude of the peak’s ripple spectrum

A BWF change represents a dilation of the profile p(w) along the w axis. Thus,
changing the BWF by a factor «, changes the profile to p(aw), and its ripple spectrum
from P(Q) to 1/a P(2/a). Therefore, on a logarithmic §) axis, the dilation causes
P(9) to translate by log, o octaves without changing its shape (see Figs. 10(a) and (b)
in [Vranié-Sowers and Shamma, 1993]).

Consequently, the §BWF/BWF thresholds from Figs. 6 in [Vranié-Sowers and
Shamma, 1993] can be restated as follows: Regardless of the shape of the peuk, subjects
detect approximately a 22% change in BWF, or a profile dilation factor o 72 0.8. This
corresponds to 0.29 octave translation of the ripple spectrum.

For a single ripple profile, a dilation simply changes the frequency of the ripple.
Thus, a dilation threshold in this case measures sensitivity to ripple frequency changes,
or the so-called frequency-difference-limen (fdl). Such measurements were recently
reported in a Ph.D. Dissertation by [Hillier, 1991]. These are discussed in detail and
related to our measurements later in Sec. IV A.

B. §SF as a shift in the phase of the peak’s ripple spectrum

As discussed earlier (Sec. V, Figs. 10(c) and (d), in [Vranié-Sowers and Shamma,
1993]), small §SF’s (or tilts) in the peak profile p(w) can be equivalently produced by
adding a constant phase angle to all components of its ripple spectrum P({}), leaving
the magnitude of the ripple spectrum unaltered.

Therefore, §SF thresholds are in effect a measure of the subjects’ ripple phase
sensitivity, and as such, one may restate the results from Figs. 3 in [ Vranié-Sowers and
Shamma, 1993] as follows: For broad peak profiles (BWF > 0.2), subjects detect a 0SF
~ 0.11, which corresponds approzimately to a 6° shift in the phase of the ripple spectrum
of the profile. Thresholds increase to about 0.16 or 10° for the narrowest peak (BWF
= 0.1). (See Appendix III in [Vranié-Sowers and Shamma, 1993] for computational
details).

For single ripple profiles, this task is exactly equivalent to measuring the sensitivity
to ripple phase shifts, termed here phase-difference-limen (pdl). Such measurements
are reported in [ Vranié-Sowers and Shamma, 1993] (Sec. V1), and will be discussed in
relation to the éSF thresholds later in Sec. V.

II. GENERAL DESCRIPTION OF THE RIPPLE ANALYSIS MODEL

The ripple analysis model can be conceptually divided into two stages: (1) A ripple
transformation stage modeled as a filter bank which simply converts the input spectral
profile into its corresponding ripple transform; (2) A detection model which operates



on the magnitude or phase of the ripple transform, or on selected features of 1t such as
its maxima and edges.

A. Computing the ripple transform of a spectral profile

This stage consists of a bank of ripple selective filters analogous to the frequency
selective filters of the cochlea. Each filter H({2,(),) is assumed to be Gaussian shaped
and centered around a particular ripple frequency Q, (Figs. 1(a) and (c)). Therefore,

H(Q0,) = GO - Q) + G +0,), (1)

where, G(Q£8,) = €~ T , and o determines the width of the ripple filter centered at
Q,. The inverse transform (impulse response) of G( £ Q,) is g(w) = go(w) ¥,

where g,(w) = 270 e_Q#ﬁ. The inverse transform of the H();€,) filter, A(-)
(Fig. 1(b)), is a Gaussian weighted sinusoid known as the Gabor-function ([Gabor,
1946]), given by:

h(w; Q) = 2 go(w) cos(27,w),

In general, the weighted sinusoid can have an arbitrary phase, ®,, such that:
h(w; Q,, D) = 2 go(w) cos(2mQow — @,). (2)

Therefore the output of any given filter can be computed by convolving its impulse
response h(w;§,, ®,) with the input profile p(w):

r(woy o, D) /h — w0 QB )p(w)dw

_ /H(Q; Qo, B, wo) P(Q)e™ 0 dQ). (3)

Note that each ripple filter is indexed by three parameters (§2,, ®,,w,) reflecting the
ripple frequency and phase selectivity of the filter, and the location along the tonotopic
axis around which the analysis is performed. Further details on the computations of
r(-) are found in Appendix I.

In the remainder of this paper, Eq. (3) will be simplified to focus on the magnitude
(rather than the phase) of the ripple filter outputs. This is justified for profile ma-
nipulations which affect only the magnitude of the ripple transform, e.g., changing the
BWTF of peak profiles. Another simplification of Eq. (3) is to compute the filter outputs
only around the center of the profile (w, = 0), i.e., to suppress the index w,. Finally,
all profiles considered will be even or odd symmetric around their center, so that their
ripple spectra P() have constant phase as a function of . These shuplifications lead
to:

_ /H(Q — Q) |P(Q)]dO. (4)
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Figure 1: (a) Magnitude of three ripple filters centered at Q, = 1,3, and 8 cycle/octave.

(b) Inverse Fourier transforms for the three filters in (a) centered at w, = 0, with

®, = 0 The inverse is computed as h(w;§),) = 2v/270(Q,)e” Amacifte cos(2rQ,w), for

a(2,) = 0.3 Q..
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Figure 1: (c) Same as (a) but plotted on a logarithmic Q axis. (d) Three input
representations of a symmetric peak profile with BWF = 0.2 and A,,,, = 15 dB (left),
and their corresponding ripple spectra (right). There are little differences between the
three representations or their ripple spectra. The solid line is the normalized linear
representation of the peak (right ordinate). The dotted line is the same pealk profile
represented on a logarithmic amplitude scale. The dashed line depicts the output of

the excitation pattern model (no corrections were applied in the model, and the base
was 0 dB amplitude; see [Glasberg and Moore, 1990] for details).



The two profile experiments that do not satisfy the above assumptions are the
detection of ripple phase shifts, and detection of SF changes of the peak profiles. Both
tasks are discussed separately in Sec. V.

Finally, the filter bank depicted in Figs. 1(a) and (c) is assumed to be a constant ¢
bank, i.e., its filters have constant widths on a log Q axis, or equivalently have linearly
increasing widths (o’s) with Q,. This choice is primarily justified by adaptation exper-
iments (both with ripples [Hillier, 1991] and visual gratings [ Valois and Valois, 1990]),
and neurophysiological experiments [ Valois, Albrecht and Thorell, 1982] in which filter
tuning was estimated around various 2,’s to be approximately 1 octave (measured at
the 3 dB points). This corresponds approximately to choosing o’s as o(£),) = 0.3 €1,.

B. The representation of the input spectral profile

Another important issue to consider here is how the auditory system represents the
input spectral profile. For example, is the profile represented on a linear or logarithmic
(dB) amplitude scale? There are only a few psychoacoustical studies that explicitly con-
trast these two representations, and their results are somewhat contradictory [Hillier,
1991; Shannon, 1992]. The logarithmic amplitude spectrum has been the most widely
assumed representation in profile analysis experiments. It is a scale-normalized spec-
trum in that it preserves only level-independent features of the spectrum. A linear,
but similarly level-tolerant representation, would result if the amplitude spectrum 1is
normalized by the total energy or average power or some other level-sensitive quantity
such as the height of the base profile. Other representations can be used that range
from a simple scale-normalized power spectrum, to more complicated biologically and
psychoacoustically inspired representations such as the excitation pattern model [Glas-
berg and Moore, 1990], and the auditory filter models of [Chadwick et al., 1986; Hillier,
1991; Patterson, 1986; Slaney and Lyon, 1990; Yang, Wang and Shamma, 1992].

In general, an inappropriate profile representation distorts its intended ripple spec-
trum P(Q). In some cases, the distortions are rather small, as with low amplitude
ripples where linear and logarithmic ripples look very similar, and their perceptual
thresholds are closely matched [Green, 1986; Hillier, 1991; Houtgast and Veen, 1982].
Similarly, peak profiles exhibit similar ripple spectra regardless of whether they are rep-
resented on a logarithmic or linear scale, or via a more complicated model (Fig. 1(d)).
In other cases, the distortion is large but inconsequential in the context of the ripple
analysis model as will be discussed in more detail in Sec. VI A.

In summary, for most profiles considered here, the choice of the input representation
does not alter the basic conclusions. Therefore, p(w) is taken to be the linear amplitude
spectrum of the stimulus, normalized by the amplitude of the base, i.e., p(w) is the
profile amplitude relative to its base.

C. Different types of detection procedures

Figs. 2 illustrate the output of the filter bank (according to Eq. (4)) for a two ripple
profile. The input ripple spectrum P() is a pair of impulses, and r(-) therefore reflects
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the filter shapes. Since the model is linear, the output amplitude is proportional to the
amplitude of the ripple. For a ripple that is just detectable against a flat base (e.g., at
1), one can define a critical level (K) of the output pattern at perceptual threshold.
Therefore, for a loud ripple (e.g., at Q) r(-) exceeds K significantly.

In order to account for perceptual data based on such outputs, two types of tests
will be distinguished. The first are those in which the profile is to be detected against
a flat standard, i.e., the task is to detect the existence of the profile. In this case,
a small portion near the maximum of r(-) exceeds K at threshold, and hence other
details of r(-) do not play a role in the detection. The second type of experiments are
those for which the standard is not flat. Instead, the subject is to detect a change in
some parameter of an audible profile, for instance in the phase or frequency of a ripple.
In this case, r(-) is well above K and a change in the profile affects a global change in
r(-). Consequently, the change in shape or some feature of the r(-) pattern must be
taken into account.

Almost all previously reported profile detection experiments fall in the first cate-
gory. They include those described by [Bernstein and Green, 1987; Bernstein, Richards
and Green, 1987], and the ripple detection experiments (called here ripple intensity-
difference-limen experiments, or ripple-idl) by [Green, 1986; Hillier, 1991].

Examples of the second category are: The pedestal-type of experiments, such as
increments on a single component pedestal [Green, 1988] or on a peak profile pedestal
(Sec. IV B. in [ Vranié-Sowers and Shamma, 1993]); The 6SI and ripple-pdl detection
(Secs. Il and VI, in [Vranié-Sowers and Shamma, 1993]); The sBWF and ripple-fdl
tests [Hillier, 1991; Vranié-Sowers and Shamma, 1993).

The detection procedures for these two types of experimeuts are slightly different:

1. Detection of profiles with flat standards

We first use the results of the ripple-idl thresholds [Hillier, 1991] to determine A’
(Sec. IITA.). For other profiles with flat standards, the r(-) at perceptual thresholds
are computed and are compared to K in order to evaluate the model performance

(Sec. IV).
2. Detection of profiles with non-flat standards

The procedure is slightly more elaborate for the second type of experiments. It is
best illustrated by the ripple-fdl example in Fig. 3. Here, the filter outputs are well
above K. A change of the ripple frequency (from Q; to €y + 6Q) simply translates or
shifts r(-) along the logarithmic §, axis. In such an experiment, it is presumed that the
subject detects the amount of shift in r(-) [ Vranié-Sowers and Shamma, 1993]. Since
all r(-) points translate the same amount, the shift can be measured anywhere on the
pattern, e.g., at its maximum, or at its right or left edges. We shall always detect and
measure the shift in the steepest lowpass edge in (). These points are marked by
the two dashed lines in r(-) of Fig. 3. While other features of +(-) are theoretically
equivalent, our choice is motivated by the fact that the ripple transforms of arbitrary
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Figure 2: (a) Two single ripple profiles with ripple frequencies Q; = 2 and Q, = 4
cycle/octave, and amplitudes 0.1 and 0.3, respectively. The Q; ripple is at its just
detectable level ({Hillier, 1991]). (b) Ripple spectrum of the two ripples. (c) Ripple
transform for the profiles in (a) (according to Eq. (4)). The K = 0.05 value corresponds
to the detection threshold of the €, ripple at the output r(-).



complex profiles are necessarily bandlimited (i.e., have lowpass edges), but may not
always exhibit clear maxima. Therefore, to estimate detection thresholds in non-flat
standard tasks, the shift in r() is measured and compared to a just detectable change
A which is determined from the ripple-fdl measurements in [Hillier, 1991] (Fig. 3 and
Sec. III B).
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Figure 3: A two ripple spectrum and its ripple transform. The ripple frequencies are
80 = 20% apart (fdl-threshold, [Hillier, 1991]), with Q; = 2 and Q + 602 = 2.4
cycle/octave. The amplitudes are well above K. The (vertical) dashed lines mark the
locations of the steepest lowpass edges of r(-).

The filter output, r(-), as computed from Eq. (4) above, reflects only the magnitude
of ripple transform as a function of 2 (see Appendix I). Therefore, it is insensitive to
the ripple phase and cannot be used to predict SF and ripple-pdl thresholds. Instead,
these are briefly related to the model in Sec. V (and can be explicitly computed as in
Appendix I).

Finally, in the pedestal-type experiments mentioned above, an audible profile is
increased in amplitude until the change is detected. In the linear model, the corre-
sponding r(-) output becomes proportionately larger. Threshold is simply taken to be
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the percentage increase in r(-) needed for detection. In Sec. IV E, the model predictions
for the two pedestal-type experiments mentioned above will be discussed.

3. Stochastic detection procedures

The filter bank of the ripple analysis model can be viewed as a set of independent
channels conveying information about the ripple spectrum of the profile (P()). In
this sense, it is analogous to the classical view of the critical band channels operating
upon the spectral profile. Hence, the independent channel model of [Durlach, Braida
and Ito, 1986] and the more specific model of [Bernstein and Green, 1987] can be
formally adapted and applied to the outputs of the ripple filter bank. This strategy
is not pursued here because of the lack of sufficient data on such parameters of the
channels as their variances. While one may postulate various hypotheses to explain
threshold changes with level or ripple frequency, it is best at present to adopt simpler
approaches as discussed below in Sec. IV B.

III. DETERMINING THE PERCEPTUAL THRESHOLD PARAMETERS
OF THE RIPPLE ANALYSIS MODEL

In this section, the results of the ripple-idl and -fdl experiments by [Green, 1986;
Hillier, 1991] are used to compute the model’s perceptual thresholds K and A. The
model consists of a bank of equal amplitude constant @) filters H(Q,Q,) with parameter
a(Q,) = 0.3 Q,, implying a constant width along the logarithmic Q axis (& | octave).
The filter outputs r(-) are computed as in Eq. (4).

A. Ripple idl’s

Fig. 4(a) illustrates r(-) for two just detectable ripples §; and 2,. The amplitudes
of the ripples (0.05) are derived from the idl curve reported in [Hillier, 1991] and
reproduced in Fig. 4(b). Since the two ripples are simple dilations of each other, their
ripple spectra are related by a translation, and the constant ) filter bank preserves
this relationship in r(-). To detect them, it is assumed that r(-) must exceed K. In a
stochastic detection procedure, d’ threshold is defined as K/, where o2 is the variance
of the noisy channel located at the maximum of r(-).

To obtain the same idl results from the model, the simplest approach is to assume
that K directly reflects the idl curve, i.e., K(£,) = idl(€,). Alternatively, one may
assume K to be constant and instead weight the input profile or the filter heights by
the inverse of the idl bowl. While all these assumptions are equivalent with respect to
the single ripple idl’s, they generally have different consequences for arbitrary input
profiles. In the absence of additional supporting data, we shall adopt the simplest
approach, taking K to be a function of {2, as shown in Fig. 4(b). Note that this is
equivalent to assuming a variable o, analogous to the model of [Bernstein and Green,

1987].
B. Ripple fdl’s
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Figure 4: (a) A two ripple spectrum and (b) its ripple transform. Both ripples are
at their idl-threshold values. The dashed line is a polynomial approximation to the
measured data points (denoted by circles) reproduced from Fig. 3.27 in [Hillier, 1991].
The detection threshold K(€,) reflects the shape of the perceptual threshold, idl(£,).
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In fdl tests, input ripples are large enough such that r(+) is well above the perceptual
threshold K(-). As demonstrated earlier (Sec. II C.2, Fig. 3), a shift in the ripple
frequency from @, to £; + 6Q causes the corresponding r(-) to translate by the same
amount along the log ), axis. This is a direct consequence of the dilation relation
among the filters, i.e., the choice of the filter widths (o) to be a linear function of (2.
No other parameters in the model affect this shift.

Measured fdl’s are reproduced from [Hillier, 1991] in Fig. 5. To obtain the same
results from the model, the minimal detectable shifts along the £, axis, A(,), are
assumed to be equal to the fdl curve (the ordinate on the right in Fig. 5), i.e.:

A(Q,) = logy(1 4+ £d1(Q,)) (octave). (5)

In the intermediate range of ripple frequencies (0.7-6 cycle/octave), the fdl’s are con-
stant at approximately 20%, or A(Q,) = log,(1.2) & 0.26 octave. The fdl’s rise outside
of this range.

1.5 AQ0)

1
,0.77
0.58

0.26
0

fdl

0.3.......1 . 8
Qo, cycle/octave

Figure 5: Interpolated fdl-thresholds (denoted by circles) reproduced from Fig. 3.30
in [Hillier, 1991]. The corresponding A(f2,) values (Eq. (5)) are shown on the right

scale.

More elaborate schemes can be used to incorporate the fdl curve into the model.
For instance, it can be partially encoded into the observed shifts of the output patterns
by adding a constant to the o, e.g., 0(Q,) = 0.3 Q, + 0.05. This increases the filter
widths substantially only in the low €, region (< 1 cycle/octave), in effect increasing
the fdl’s in this range as observed in the data. Similarly, the fdl increase in the high {2,
region (> 6 cycle/octave) may be related to the increasing idl ’s there, and hence can
be accounted for by introducing level-sensitive procedures for the detection of shifts in
r(-).

In the absence of further definitive data in favor of any of the above approaches,
we shall adopt the simplest and assume A (in octaves) to be a function of €, in the

shape of the fdl curve as in Fig. 5 (Eq. (5)).
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C. Summary of the ripple analysis model

The ripple analysis model consists of the following computational steps:

(1) Compute P(2), the ripple spectrum of the input profile p(w): P(Q) = [ p(w)e 2™ du.

(2) Compute r(f2,), the output of the filter bank using Eq. (4). The width of the
filter H(,€,) centered at , is determined from o(£,) = 0.3 €,.

(3) For flat standard profile experiments, compare r({,) to the perceptual threshold
curve K(f,) as given in Fig. 4(b).

(4) For fdl-type tests, compute r(,) and compare its shifts (at the location of the
maximal lowpass slope) to A(f,) (defined by Eq. (5) and Fig. 5). For pedestal-type
ezperiments, thresholds are computed from the percentage scale change of r(-)).

IV. PREDICTIONS OF THE RIPPLE ANALYSIS MODEL FOR VARI-
OUS INPUT PROFILES

In this section, the model is used to account for the perceptual thresholds measured
in a wide range of profile analysis experiments. First, the SBWEF/BWF thresholds of
spectral peaks are considered. Then, detection thresholds for three profiles against a
flat standard: the alternating, the step, and the single component increment profiles;
are computed and compared to the perceptual thresholds reported in [Richards, Onsan
and Green, 1989]. Finally, two pedestal-type experiments are compared.

A. Predicting the {BWF/BWF thresholds for peak profiles

As explained earlier in Sec. I A, a change in the BWF of a spectral peak is equiva-
lent to a dilation of the peak, which in turn causes its ripple transform r(-) to translate
laterally. This is similar to a change in the frequency of a ripple profile, i.e., an fdl-type
experiment. In Figs. 6 the ripple profile and corresponding 7(-) for peaks with BWF =
0.1 and 0.4 are shown (solid lines) together with their 20% (or a & 0.8) dilated versions
(dashed lines). Since the location of the maximal lowpass slopes for these profiles fall
within the range 0.7 — 6 cycle/octave, then the model predicts approximately constant
dilation thresholds of 0.8 (20%), or A(Q,) & 1/4 octave shift!. These estimates com-
pare well with the §BWF/BWF thresholds measured at approximately 0.22 (Sec. [ A).
Finally, the model also predicts that BWF/BWF thresholds are independent of SF
(Fig. 6(a) in [Vranié-Sowers and Shamma, 1993]), since the symmetry (SF) of a peak
does not affect the magnitude of its ripple transform.

Two conclusions can be drawn from the above analysis. First, the constancy of
the BWF/BWF thresholds in the peak profiles is directly related to the constancy
of the fdl’s in the 0.7 — 6 cycle/octave range. If broader or narrower peaks are used
such that their (-) lie outside of this range, then the model predicts that SBWF/BWF

thresholds would also rise reflecting the fdl increase. The second conclusion is that

'Note that if (-) in 0.7—6 cycle/octave region is well above K (-), then thresholds will be determined
by r(-) shifts in this (most sensitive) range.
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Figure 6: (a) Ripple spectra of symmetric peak profiles with BWEF’s = 0.1 and 0.4 (solid
lines), and the corresponding profiles at BWF/BWF = 20% perceptual thresholds
(dashed lines). (b) The ripple transforms of the peak profiles in (a). The locations of
the steepest lowpass edges are, for both cases, 1/4 octaves apart.
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the above trends in dilation thresholds hold regardless of the exact details of the profile
shape since it is the shift in the profile that is being detected. Clearly, this only holds
if r(-) is well above the perceptual threshold K{(:).

B. Predicting detection thresholds for an alternating profile

The alternating profile [Bernstein and Green, 1987] consists of 21 uniformly dis-
tributed components (0.2-5 kHz) that alternate above and below a flat (unit) base
(Figs. 7).
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Figure 7: (a) The alternating profile at threshold amplitude (0.08, or —21.7 dB). (b)
Ripple spectrum of the alternating profile in (a). (c) Ripple transforin of the ripple
spectrum in (b). The detection threshold K(€,) in (c) is reached near 2.2 cycle/octave.

Thresholds for detection of such a profile are reported at —21.7 dB (= 20log(éa) =
201log 0.08), where éa is the amplitude of an alternating component relative to the
unit base. Such a profile can be considered approximately a ripple at the highest
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possible frequency representable by this complex, i.e., at 10 cycles per 4.64 octaves, or
approximately 2.15 cycle/octave. The amplitude da of the just detectable ripple at this
frequency can be predicted from the idl curve as da = 2K(2.15 cycle/octave) ~ 0.1
(or —20.0 dB), which is close to the measured amplitude (Fig. 7(c)).

C. Predicting detection thresholds for a step profile

The task in this experiment is to detect the presence of a (linear) step in a 21
component flat standard [Bernstein and Green, 1987] (Fig. 8(a)).

For a step-up that is centralized (located at 1 kHz), threshold is reached at -23.1
dB (= 20log da = 201og 0.07), where da is the height of the step (relative to the unit
base). Figure 8(b) illustrates the ripple spectrum of this (idealized) profile (P((2)). The
corresponding model output r(-) is a constant because of the dilation relation of the
filters? (Fig. 8(c), solid line). The predicted threshold is smaller than measured (0.05
versus 0.07, or —26 dB wversus -23.1 dB). However, a more realistic representation of
the step is with a gradual (or ramped) transition because of cochlear filter smoothing
(dashed lines in Figs. 8). The smoothing of the ideal profile lowers the P(Q) (Fig. 8(b)),
and the corresponding r(-) is more lowpass filtered (Fig. 8(c)) and just detectable near
2 cycle/octave, or at —24.8 dB.

Since the phase of the ripple spectrum does not play a role here, predicted thresholds
remain the same for the reversed (step-down) profile, as is indeed measured. Finally,
the simplified model cannot account for the rise in thresholds as the step is moved
towards the edges of the spectrum [Bernstein and Green, 1987]. It may be possible,
however, to account for this trend by including the effects of the base edge in p(w),
and using the complete model (i.e., Eq. (3)).

D. Predicting detection thresholds for a single component increment profile

In this experiment, a single component in the profile is incremented relative to the
base [Green, 1988] (Fig. 9(a)). The threshold is approximately —20.1 dB (= 20log 6« =
201og 0.09), where éa is the height of component relative to the (unit) base. In order to
apply this profile to the ripple analysis model, it is assumed that the finite bandwidth of
the cochlear filters broadens the impulse-like profile, making it appear as a narrow peak
profile (e.g., with BWF = 0.1 and SF = 0) with same height as before (= 0.09). Figure
9(c) illustrates that for such a peak the corresponding output r(-) reaches perceptual
threshold K(,) near Q, = 2.3 cycle/octave, or at -25.5 dB. Note that approximating

2For a constant @ factor filter (o(£2,) = ore1 §2,, and in particular o,.; = 0.3). For a step profile
input (with magnitude of ripple spectrum |P(Q)| = 1/Q), filter outputs r(-) are iudependent of ,.

r(')—/w 1-Shia- [© LS 0 / S
— e Q o, Q TE

— 00

where, Q' = Q/Q,, and r(-) is a function of a,.; only.
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Figure 8: (a) Profile of a step function (solid line) at threshold amplitude (0.07, or -23.1
dB), and its smoothed version (dashed line). (The smoothed version is obtained by
convolving the step with the narrow symmetric peak profile of BWF = 0.1 and A0 =
—30 dB). The ripple spectra and ripple transforms are in (b) and (c), respectively. The
magnitude of the ripple spectra is computed as: |P(Q1)| = 2a/|y 2xrQ M|, where a is
the amplitude at threshold. The ripple transform of the profile is above the detection
threshold, K'(£1,), between 1.3 — 4.4 cycle/octave, while its smoothed version reaches
the threshold near 2 cycle/octave.
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the increment by a peak with slightly different BWF’s causes correspondingly small
shifts in the broad r(-), without affecting the estimated thresholds significantly.

E. Comparing detection thresholds for two pedestal experiments

A clearly audible profile serves as the standard (the pedestal) in these experiments.
The profile is then increased in amplitude until the change is detected. Results from
two such profile experiments are compared here: The first is the control experiment
C reported in [Vranié-Sowers and Shamma, 1993] (Sec. IV B., Fig. 9(a)) in which the
pedestal is a peak profile. The second employs a single component pedestal (Fig. 5.4 in
[Green, 1988]). In both cases, the pedestal profiles produce r(€2,) outputs that are far
above the perceptual threshold curve K(€,). Threshold is defined here as the relative
change (i.e., in dB or percentage) of the model outputs r(-) needed for detection.
Because of the linearity of the model, this relative change is directly related to the
relative change in the input profiles, and hence thresholds can be directly compared
without reference to the model.

Threshold for the narrowest symmetric peak profile (BWF = 0.1 and SF = 0),
expressed as a peak level difference between the signal and standard, is 2.8 dB (Fig. 9(b)
and Table II(c) in [ Vranié-Sowers and Shamma, 1993]). This is equivalently expressed
as 20log(6a/a) = 201log0.26 ~ —12 dB where a is the pedestal (or peak) height and
8a is the detectable increment. Comparable detection thresholds (= —14 dB) were
obtained for a single component pedestal of roughly an equivalent height (16 dB) and
a complex of similar density (Fig. 5.4. in [Green, 1988]).

Therefore, the model predicts that regardless of the exact shape of the profile,
pedestal experiments with “loud” standard profiles, and reasonably dense complexs
should exhibit similar thresholds as computed above. What is not accounted for here
is the dependence of thresholds on such parameters as the density of the complex and
the height of the pedestal at low levels. Such variabilities presumably involve consid-
ering the effects of masking and adjusting detection strategies for r(-) near perceptual

threshold levels.
V. SENSITIVITY TO RIPPLE PHASE SHIFTS

So far, only the magnitude of the outputs of the ripple analysis model has been
considered. The other major representational axis is the phase axis. Two sets of data
are relevant to this issue: (1) pdl thresholds for single ripple stimuli, and (2) éSF
thresholds for peak profiles.

Ripple phase is explicitly included in the model in Eqs. (2) and (3), and Appendix I,
where each ripple filter is assumed to be selective both to a ripple frequency and phase
(9, and ®,). In all profiles discussed in the previous section, profile manipulations were
such that the phase of its ripple spectrum was not affected, hence it was justifyably
ignored in the analysis. In the following, no explicit computations of the response
phase are carried out. Instead, we compare the phase thresholds obtained from two
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Figure 9: (a) Profile of a single increment on a flat base is at its perceptual thresh-
old (0.09, or ~20.1 dB). The ripple spectrum and ripple transform are shown in (b)
and (c), respectively. The single increment is approximated with the BWFEF = 0.1
symmetric peak of -20.1 dB amplitude (see text). The detection threshold is reached
approximately at 2.3 cycle/octave.
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experiments, in which the magnitude of the ripple spectrum is held constant while its
phase is changed.

The most direct measurement of the phase sensitivity is provided by the ripple-pdl
measurements in Sec. VI (Figs. 12 and Table II(d)) of [Vranié-Sowers and Shamma,
1993]. Results from these experiments reveal that for low frequency ripples (< 2 cy-
cle/octave), subjects exhibit a constant phase shift of approximately 6°. Thresholds
increase for low amplitude ripples. They also increase linearly against the logarithmic
ripple frequency axis above about 2 cycle/octave, i.e., subjects switch from a constant
phase detection mode to a constant positional shift of the ripple peaks along the tono-
topic axis®. Viewed in the context of the ripple analysis model, these data suggest that
only the lower ripple frequency filters exhibit fine ripple phase selectivity.

Thresholds measured with single ripple stimuli are supported well by éSF mea-
surements in peak profiles (Sec. II and Appendix IIL, in [ Vranié-Sowers and Shamma,
1993]). As discussed earlier (Sec. I B), §SF changes in the peak profiles can be equiv-
alently described as constant phase shifts in the ripple transform of the peaks. Thus,
consistent with single ripple data, subjects detect a 0.11 change in SF, which is equiv-
alent to a 6° phase shift, the same threshold obtained from lower frequency ripples.
Furthermore, this threshold increases to 10° for the narrowest peak (BWF = 0.1),
reflecting its higher ripple frequency spectrum.

These results suggest a general prediction of the model: For arbitrary input profiles
with strong components at lower ripple frequencies, subjects should exhibit similar
ripple phase sensitivities as those observed for broader peaks and single lower frequency
ripples. For instance skewing the profile of a vowel or a musical note by adding a
constant phase shift to their ripple transforms would be detectable at approximately

6°.
VI. DISCUSSION

A. Summary of the ripple analysis model and underlying assumptions

A simplified ripple analysis model is presented to integrate findings from various
profile analysis experiments. The basic operation implied by the model is a trans-
formation of the profile into its ripple transform domain. Various manipulations on
the profile are then interpreted and detected in this domain. Two sets of assump-
tions underlie the model: the nature and linearity of the input representation, and the
parameters of the ripple analysis filters.

3To see this argument more clearly, consider the case of a sinusoidal profile. Then, detecting a 6°
phase shift corresponds to detecting a certain horizontal shift of the pattern. For higher frequencies of
the ripple, the horizontal (positional) shift corresponding to this phase sensitivity decreases. Eventu-
ally, at some high ripple frequency, the system reaches its detection limit and the observed phase shift
at threshold begins to increase. The constant positional shift can be estimated from the slope of the
detection threshold curves for ripples > 2 cycle/octave (Fig. 12(a) and Table II(d) in [Vranié-Sowers
and Shamma, 1993]) to be 3.8%ctave, or approximately 0.73% in Hz (which corresponds to 0.011
octaves).
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1. The representation and linearity of the input profiles

It is assumed in this model that the auditory system analyzes the amplitude spec-
trum on a linear, rather than on a logarithmic, scale. Neither is known to be the
true auditory representation, and other representations such as the power spectrum or
some output of a cochlear filter model might be more appropriate. The effects of using
a distorted representation are minimal in the cases examined in this paper, because
it usually creates distortion components of smaller amplitudes that, for idl tests, are
effectively sub-threshold at their corresponding filters. For fdl-type tests where the
input is large, the pattern is dilated as a whole, and hence all distortion components
are shifted consistently with the fundamental.

The exact nature of the input profile is more consequential in cases where metrics
between different complex profiles are considered (see discussion later) or when profiles
are added linearly. This brings up a fundamental assumption of the ripple analysis
model, that the auditory system analyzes linearly a profile in terms of ripples. How
does the cochlea with all of its nonlinearities preserve the principle of superposition of
spectral ripples? And if not, in what form is the linearity preserved so as to permit this
type of ripple analysis? Hillier ([Hillier, 1991], Sec. 4.4) attempted to address this issue
using adaptive experiments. Recent models of cochlear processing have also tackled this
question [Wang and Shamma, 1993]. However, the validation of linearity hypothesis
must await direct tests from psychoacoustical and neurophysiological experiments in
search of systematic interactions among a small number of simultaneously presented
ripples.

2. The parameters of the ripple analysis filters

The filters determine the shape of the ripple transform r(£2,), and hence the inter-
pretation of the results. The choices made here regarding the parameters and shape of
these filters satisfy two basic experimental findings, reported in [Hillier, 1991] (Secs. 4.4
and 4.5) and in psychophysical experiments in vision using analogous stimuli (summa-
rized in [Valois and Valois, 1990]). These are: (1) the filters are roughly of a constant
@ factor, and (2) their width is approximately 1 octave (i.e., o(,) = 0.3 ). It
might be argued that other details of the filter shapes (such as their heights and form)
can be inferred from the idl and fdl measurements. Such an inference, however, as
discussed in Sec. III, is uncertain since other parameters can be readily adjusted with
similar effects on the model outputs. To avoid making such specific commitments in
the model, the filters are defined in as general a form as possible.

B. Distinguishing the ripple analysis model from other profile analysis mod-
els

The computations outlined in this paper served to illustrate the competence of the
ripple analysis model in accounting for many previous profile analysis measurements.
However, other models such as the maximum difference model [Bernstein and Green,
1987] and the independent channel models can account for a significaut portion of the
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same data [Durlach, Braida and Ito, 1986]. It is, therefore, important to come up
with specific tests that can distinguish these models. Two such tests follow from the
fundamental predictions which emerge from the ripple analysis model:

Given any arbitrary spectral profile whose ripple transform (r(§1,)) is large relative
to the perceptual threshold K(Q,), then:

(1) the dilation threshold is constant, and is due to the most sensitive ripple com-
ponent in the transform (e.g., 20-30% if it contains ripples in the range 0.7-6 cy-
cle/octave).

(2) the ripple phase threshold for the profile is constant at approzimately 6°, if v(£2,)
contains at least some large low frequency ripples (< 2 cycle/octave).

Both of these predictions are unintuitive and hence their future confirmation re-
flects well on the model. Both tests, however, are not of the idl-type the maximum
difference model was developed to predict. A more direct idl-type test might be to
measure the detection threshold of a profile composed of several ripples that do not
appreciably interact within the same filter (e.g., separated by more than an octave).
For different phases of the ripples, the shape of the profile changes and so too the
predicted thresholds of the maximum difference model. In contrast, the ripple analysis
model predicts that detection thresholds are independent of the relative phases of the
ripples. A specific example of such a profile is the square wave, which is composed of a
large fundamental ripple and smaller odd harmonics. The maximum difference model
predicts the threshold based on the amplitude of the square wave, whereas the ripple
analysis model predicts it based on the amplitude of the fundamental (largest) ripple
component. The two amplitudes differ by a small (hopefully measurable) factor of 4 /7.

C. The complete model and its relevance to timbre perception

The simplified ripple analysis model ignores the explicit depiction of two axes of
the complete model: The tonotopic axis (w) and the ripple phase axis (®). In its full
version (Egs. (1), (2), and (3)), a profile would be analyzed by a bank of filters at
each point along the profile. Similarly, each filter of the bank would be repeated many
times, each selective to one phase of the ripple. As such, a spectral profile would be
expanded into a three-dimensional representation.

An important aspect of the complete representation is that it is local with respect
to the profile. This is emphasized by the preservation of the tonotopic axis in the
output, i.e., the filter outputs change as a function of location along the tonotopic axis.
The above statements are exactly analogous to the locality in time of a spectrogram
of running speech. They simply indicate that the profile is (in effect) first windowed
prior to the application of the ripple transformation. Computationally, the locality of
the ripple analysis is implied by the relatively broad bandwidths of the ripple filters,
or equivalently, the limited extent of the impulse response of the filters (Fig. 1(b)).

Since changes along any of the three axes are perceptually detectable, comparing
two arbitrary profiles must be done along all three dimensions of the ripple representa-
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tion. Such a metric might be considerably simpler in this domain (e.g., simple Eucle-
dian distance), than metrics based on the profiles in the usual spectral domain, since
the model transformations imply many of the “conditioning” operations often required
in these metrics. For example, the metric suggested by [Assmann and Summerfield,
1989] applies (among other things) a second derivative upon the profile, effectively
de-emphasizing the slow variations (or equivalently, the low frequency ripples) of the
profile. Such an operation is implied in the model by the highpass edge of the idl
curve.

D. Relation to rippled noise stimuli and the pitch of complex sounds

A different rippled spectrum stimulus that has been widely used in studies of pitch
perception is the so-called rippled noise [ Yost, Hill and Perez-Falcon, 1978]. Tt has a si-
nusoidal spectral envelope defined against a linear, rather than a logarithmic, frequency
axis, i.e., is similar to a harmonic spectrum. On a logarithmic frequency axis, however,
a harmonic spectrum appears to have an exponentially increasing ripple frequency.

The representation of harmonic spectra in the ripple analysis model leads to many
interesting hypotheses regarding the encoding of complex pitch in the auditory system.
Of immediate relevance to the focus of this paper, however, is the interpretation of
the “dominance region” in pitch models. Specifically, it has long been known that
the 27¢,3", and 4** harmonics in a series are dominant in conveying the pitch of the
complex [ Wilson, 1970]. From a computational point of view, pitch models have taken
this phenomenon into account by emphasizing (or weighting more heavily) these regions
of the spectral profile prior to estimating the pitch strength and value [ Yost and Hill,
1979].

The dominance region can be viewed in the context of the ripple analysis model as a
correlate of the ripple idl sensitivity curve (Fig. 4(b)), which has its lowest thresholds
for ripples around 2 cycle/octave. In a harmonic spectrum defined against a loga-
rithmic axis, the spectral profile around the 2"¢ — 4" harmonics has this same ripple
frequency. Thus, the emergence of the ripple idl curve may share the same origins as
those responsible for the dominance region, namely a combination of suppressive and
other interactions at relatively peripheral stages of the auditory system [Bilsen et al.,

1975; Yost and Hill, 1979)].

E. Relation to visual processing

An appealing aspect of the ripple analysis model is that it shares identically the
conceptual framework of spatial frequency analysis that has long been prevalent in
visual processing. While having its critics (see reviews in [Valois and Valois, 1990]),
this approach has been supported by substantial anatomical, neurophysiological, and
psychophysical evidence, elegantly detailed in [ Valois and Valois, 1990]. Interestingly,
in the vision community, the idea that the brain performs a local Fourier transformation
1s motivated by its similarity to the cochlear transformations of the auditory system!
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From the perspective of the auditory system, however, the cochlea simply trans-
forms sound into an input spectral profile. The auditory nervous system then treats
this profile the same way the visual system treats its retinal image. The notion of a
Fourier transformation of a spectrum is common in engineering speech applications,
and is known as convolutional homomorphic processing. It involves computing Fourier-
like coefficients of the spectral profile, known as cepstral coefficients [Oppenheim and
Schafer, 1990]. While quite different in details, the cepstral coefficients encode roughly
similar types of information about the shape of the spectrum as the ripple transform,
and have been found especially useful in automatic speech recognition systems.

Finally, the correspondence between auditory ripple analysis and visual spatial fre-
quency analysis goes deeper than a mere analogy. As evidence to this claim, consider
the closely matched values of the filter parameters and detection thresholds measured
in the visual system, e.g., roughly constant ¢) and 1 octave wide filters, with constant
6° phase sensitivity increasing at higher ripple frequencies (Table 6.1, and Figs. 6.11
and 8.3 in [Valois and Valois, 1990]). These remarkable equivalences may simply re-
flect modality-independent limitations imposed by identically structured sensory areas
in the central nervous system. For instance, the resolution of the analysis filters may
simply be dictated by developmental rules limiting the minimum divergence or conver-
gence of dendritic fields along the sensory epithelium (be it auditory or visual). Clearly,
exploring further equivalences (and differences) between similarly defined psychophys-
ical measures, e.g., fdl’s for ripples versus gratings (which apparently have not been
reported in the literature), would shed considerable light on the underlying functional
organization of both systems.
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Appendix I: Ripple filter response

Consider the impulse response of the ripple filter ~(w; £, ®,) = 2 g,(w) cos(27Qw—
®,), centered at w, = 0. Its Fourier transform is given by:

H(Q;9,,9,) = (G =)+ G(Q+ Q) cos(P,) — 7 (G(Q—Q,,) — G(Q+€,)) sin(D,)
= H(; Q) cos(®,) + H(Q; Q) sin(B,),

where, )
H(Q;Q,) =HH(Q;Q,),

(£0,)?
and H is a Hilbert transformer defined as H = —j sign(f2). Since G(X£8Q,) =™ 22

(see text), H(£;0,) is pure real and H(Q;(Q,) is pure imaginary. Then:
H(Q;9,,0,) = H(Q;Q,) cos(P,) — g segn(Q)H(; Q) sin(P,)
— H(Q,QO) e~? sign(§2)®,

The ripple transform response to an arbitrary (real) input profile with ripple spectrum
P(Q) = |P(Q)]e?® is:

r(Q, ®,) = / Y H(;9Q,, 8,)P(Q)d = / T H(Q; Q)| P(Q)] el -sian@@ato() g0

— 00

_2/ H(S; 2,)|P()] cos(®, — 0(2))dS2.

There are two important observations to make here:

1) The ripple transform is a (sinusoidal) function of the characteristic phase of the
filter. Thus, there is a particular @, for which the response will be a maximum. Its
value depends on the 8(Q) of the input profile.

2) If the input profile is dilated by factor «, i.e., P(Q) — 1/aP(Q2/a), then »(Q,, @)
becomes:

(0,0 = [ “H(Q: 0,)|P(Q/a)| cos(@, — () a))d/a.
Evaluating r(-) at ,/a (= ), and letting Q/a = ', we get:
(L, ®,) = / C QD) P(QY)] cos(@, — H(Q))dSY,

which is identical to r(2,,®,) prior to dilation. Therefore, a dilation simply trans-
lates the filter outputs by log a octaves, preserving their shape against a log 2, axis.
Furthermore, the response as a function of @, remains unaltered.

Depending on the input profile and the type of manipulations applied to it, it
is possible to simplify the above expression for r(:). For example, in the case when
6(2) = sign(Q)0, (e.g., for symmetric or antisymmetric profiles), the response becomes:

(0, ®,) = cos(®, — a(,)/ H(Q; Q,)|P()]d€.
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Depending on the phase (asymmetry) of the input profile 8,, the maximal response
(computed in Eq. (4)) is at &, = 0,

r(@) = [ H@Q0)IP@)] 40
Once again, for a pure dilation manipulation of an input profile (e.g., éBWF test for
peaks at any SF such that 8(Q) = sign(Q)0,), the ripple filter response r({),) translates

along the log Q, axis, but remains unchanged along the ®, axis (i.e., it is largest at
¢, = 0, as before).
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