
End-to-End Design of Real-Time Systems �Richard Gerber, Dong-in Kang Seongsoo Hong Manas SaksenaDept. of Computer Science Silicon Graphics Inc. Dept. of Computer ScienceUniversity of Maryland 2011 N. Shoreline Blvd. Concordia UniversityCollege Park, MD 20742 Mountain View, CA 94039 Montreal, Quebec H3G 1M8, Canadafrich,dikangg@cs.umd.edu sshong@engr.sgi.com manas@cs.concordia.caApril 20, 1995AbstractThis chapter presents a comprehensive design methodology for guaranteeing end-to-end re-quirements of real-time systems. Applications are structured as a set of process componentsconnected by asynchronous channels, in which the endpoints are the system's external inputsand outputs. Timing constraints are then postulated between these inputs and outputs; theyexpress properties such as end-to-end propagation delay, temporal input-sampling correlation,and allowable separation times between updated output values.The automated design method works as follows: First new tasks are created to correlaterelated inputs, and an optimization algorithm, whose objective is to minimize CPU utilization,transforms the end-to-end requirements into a set of intermediate rate constraints on the tasks.If the algorithm fails, a restructuring tool attempts to eliminate bottlenecks by transformingthe application, which is then re-submitted into the assignment algorithm. The �nal result is aschedulable set of fully periodic tasks, which collaborativelymaintain the end-to-end constraints.
�This research is supported in part by ONR grant N00014-94-10228, NSF grant CCR-9209333, and NSF YoungInvestigator Award CCR-9357850. 1

1 IntroductionMost real-time systems possess only a small handful of inherent timing constraints which will \makeor break" their correctness. These are called end-to-end constraints, and they are established onthe systems' external inputs and outputs. Two examples are:(1) Temperature updates rely on pressure and temperature readings correlated within 10�s.(2) Navigation coordinates are updated at a minimum rate of 40ms, and a maximum rate 80ms.But while such end-to-end timing parameters may indeed be few in number, maintaining function-ally correct end-to-end values may involve a large set of interacting components. Thus, to ensurethat the end-to-end constraints are satis�ed, each of these components will, in turn, be subject totheir own intermediate timing constraints. In this manner a small handful of end-to-end constraintsmay { in even a modest system { yield a great many intermediate constraints.The task of imposing timing parameters on the functional components is a complex one, and itmandates some careful engineering. Consider example (2) above. In an avionics system, a \naviga-tion update" may require such inputs as \current heading," airspeed, pitch, roll, etc; each sampledwithin varying degrees of accuracy. Moreover, these attributes are used by other subsystems, eachof which imposes its own tolerance to delay, and possesses its own output rate. Further, the nav-igation unit may itself have other outputs, which may have to be delivered at rates faster than40ms, or perhaps slower than 80ms. And to top it o�, subsystems may share limited computerresources. A good engineer balances such factors, performs extensive trade-o� analysis, simulationsand sensitivity analysis, and proceeds to assign the constraints.These intermediate constraints are inevitably on the conservative side, and moreover, they areconveyed to the programmers in terms of constant values. Thus a scenario like the following isoften played out: The design engineers mandate that functional units A, B and C execute withperiods 65ms, 22ms and 27ms, respectively. The programmers code up the system, and �nd that Cgrossly over-utilizes its CPU; further, they discover that most of C's outputs are not being read bythe other subsystems. And so, they go back to the engineers and \negotiate" for new periods { forexample 60ms, 10ms and 32ms. This process may continue for many iterations, until the system�nally gets fabricated.This scenario is due to a simple fact: the end-to-end requirements allow many possibilities forthe intermediate constraints, and engineers make what they consider to be a rational selection.However, the basis for this selection can only include rough notions of software structuring andscheduling policies { after all, many times the hardware is not even fabricated at this point!Our Approach. In this chapter we present an alternative strategy, which maintains the timingconstraints in their end-to-end form for as long as possible. Our design method iteratively in-stantiates the intermediate constraints, all the while taking advantage of the leeway inherent inthe end-to-end constraints. If the assignment algorithm fails to produce a full set of intermediateconstraints, potential bottlenecks are identi�ed. At this point an application analysis tool takesover, determines potential solutions to the bottleneck, and if possible, restructures the application1

to avoid it. The result is then re-submitted into the assignment algorithm.We have implemented a signi�cant portion of our approach as part of integrated design tooldevelopment e�ort at the University of Maryland. The tool, named TimeWare/DesignAssistant,graphically and textually captures both a system design and its end-to-end requirements, and thenproduces intermediate constraints. Throughout the chapter, we use examples we take from thetool's graphical interface.Scope of Examples. Due to the complexity of the general problem, in this chapter we con�neour discussion to systems possessing the following characteristics.1: We assume our applications possess three classes of timing constraints which we call freshness,correlation and separation.� A freshness constraint (sometimes called propagation delay) bounds the time it takes for data to
ow through the system. For example, assume that an external output Y is a function of somesystem input X . Then a freshness relationship between X and Y might be: \If Y is deliveredat time t, then the X-value used to compute Y is sampled no earlier than t � 10ms." We usethe following notation to denote this constraint: \F (Y jX) = 10."� A correlation constraint limits the maximum time-skew between several inputs used to producean output. For example, if X1 and X2 are used to produce Y , then a correlation relationshipmay be \if Y is delivered at time t, then the X1 and X2 values used to compute Y are sampledno more than within 2ms of each other." We denote this constraint as \C(Y jX1; X2) = 2."� A separation constraint constrains the jitter between consecutive values on a single outputchannel, say Y . For example, \Y is delivered at a minimum rate of 3ms, and a maximum rateof 13ms," denoted as l(Y) = 3 and u(Y) = 13, respectively.While this constraint classi�cation is not complete, it is su�ciently powerful to represent manytiming properties one �nds in a requirements document. (Our initial examples (1) and (2) arecorrelation and separation constraints, respectively.) Note that a single output Y1 may { eitherdirectly or indirectly { be subject to several interdependent constraints. For example, Y1 mightrequire tightly correlated inputs, but may abide with relatively lax freshness constraints. However,perhaps Y1 also requires data from an intermediate subsystem which is, in turn, shared with a veryhigh-rate output Y2.2: Subsystems execute on a single CPU. Our approach can be extended for use in distributedsystems, a topic we revisit in Section 8. For the sake of presenting the intermediate constraint-assignment technique, in this chapter we limit ourselves to uniprocessor systems.3: The entity-relationships within a subsystem are already speci�ed. For example, if a high-ratevideo stream passes through a monolithic, compute-intensive �lter task, this situation may easilycause a bottleneck. If our algorithm fails to �nd a proper intermediate timing constraint for the�lter, the tool will attempt to restructure it to optimize it as much as possible. In the end, however,it cannot redesign the system. 2

Finally, we stress that we are not o�ering a completely automatic solution. Even with a fullyperiodic task model, assigning periods to the intermediate components is a complex, nonlinearoptimization problem which { at worst { can become combinatorially expensive. As for softwarerestructuring, the speci�c tactics used to remove bottlenecks will often require user interaction.Problem and Solution Strategy. We note the above restrictions, and tackle the intermediateconstraint-assignment problem, as rendered by the following ingredients:� A set of external inputs fX1; : : : ; Xng, outputs fY1; : : : ; Ymg, and the end-to-end constraintsbetween them.� A set of intermediate component tasks fP1; : : : ; Plg.� A task graph, denoting the communication paths from the inputs, through the tasks, and tooutputs.Solving the problem requires setting timing constraints for the intermediate components, so thatall end-to-end constraints are met. Moreover, during any interval of time utilization may neverexceed 100%.Our solution employs the following ingredients: (1) A periodic, preemptive tasking model (whereit is the our algorithm's duty to assign the rates); (2) a bu�ered, asynchronous communicationscheme, allowing us to keep down IPC times; (3) the period-assignment, optimization algorithm,which forms the heart of the approach; and (4) the software-restructuring tool, which takes overwhen period-assignment fails.Related Work. This research was, in large part, inspired by the real-time transaction modelproposed by Burns et. al. in [3]. While the model was formulated to express database applications,it can easily incorporate variants of our freshness and correlation constraints. In the analogue tofreshness, a persistent object has \absolute consistency within t" when it corresponds to real-worldsamples taken within maximum drift of t. In the analogue to correlation, a set of data objectspossesses \relative consistency within t" when all of the set's elements are sampled within aninterval of time t.We believe that in output-driven applications of the variety we address, separation constraintsare also necessary. Without postulating a minimum rate requirement, the freshness and correlationconstraints can be vacuously satis�ed { by never outputting any values! Thus the separationconstraints enforce the system's progress over time.Burns et. al. also propose a method for deriving the intermediate constraints; as in the datamodel, this approach was our departure point. Here the high-level requirements are re-written asa set of constraints on task periods and deadlines, and the transformed constraints can hopefullybe solved. There is a big drawback, however: the correlation and freshness constraints can inordi-nately tighten deadlines. E.g., if a task's inputs must be correlated within a very tight degree ofaccuracy { say, several nanoseconds { the task's deadline has to be tightened accordingly. Similarproblems accrue for freshness constraints. The net result may be an over-constrained system, anda potentially unschedulable one. 3

Our approach is di�erent. With respect to tightly correlated samples, we put the emphasis onsimply getting the data into the system, and then passing through in due time. However, sincethis in turn causes many di�erent samples
owing through the system at varying rates, we perform\tra�c control" via a novel use of \virtual sequence numbering." This results in signi�cantly looserperiods, constrained mainly by the freshness and separation requirements. We also present a periodassignment problem which is optimal { though quite expensive in the worst case.This work was also in
uenced by Je�ay's \real-time producer/consumer model" [11], whichpossesses a task-graph structure similar to ours. In this model rates are chosen so that all messages\produced" are eventually \consumed." This semantics leads to a tight coupling between theexecution of a consumer to that of its producers; thus it seems di�cult to accommodate relativeconstraints such as those based on freshness.Klein et. al. surveys the current engineering practice used in developing industrial real-timesystems [12]. As is stressed, the intermediate constraints should be primarily a function of theend-to-end constraints, but should, if possible, take into account sound real-time scheduling tech-niques. At this point, however, the \state-of-the-art" is the practice of trial and error, as guidedby engineering experience. And this is exactly the problem we address in this chapter.Organization of this Chapter. The remainder of the chapter is organized as follows. In Sec-tion 2 we introduce the application model and formally de�ne our problem. In Section 3 we showour method of transforming the end-to-end constraints into intermediate constraints on the tasks.In Section 4 we describe the constraint-solver in detail, and push through a small example. InSection 5 we describe the application transformer, and in Section 6 we show how the executableapplication is �nally built. In Section 7 we discuss the prototype implementation of our tool.2 Problem Description and Overview of SolutionWe re-state our problem as follows:� Given a task graph with end-to-end timing constraints on its inputs and outputs,� Derive periods, o�sets and deadlines for every task,� Such that the end-to-end requirements are met.In this section we de�ne these terms, and present the techniques behind our solution strategy. Wealso privide an overview of our tool, named the TimeWare/DesignAssistant, which is based on theon the solutions described in this chapter. The tool consists of several components (see Figure 1),including an interactive, graphical interface for structuring the system componenets, and a set oftoolbox functions which help automate the assignment of the intermediate process constraints.4

Constraints

Binding Info.
(Channel, Task)

Makefile

Period,Offset,
Deadline of
each Task

Code Transformer
(Macro Expansion)

C source code

Transformed Code

Scheduler

Timing
Analyzer

Interactive
Graph
Editor

TimeWare/DesignAssistant

Asynchronous
Task Graph

Constraint Parser

Constraint Solver

Figure 1: The structure of the TimeWare/DesignAssistant2.1 The Asynchronous Task GraphAn application is rendered in an asynchronous task graph (ATG) format. Figure 2(A) shows anexample ATG, drawn using the TimeWare/DesignAssistant interface. In general, an ATG G(V;E)possesses the following attributes.� V = P [D, where P = fP1; : : : ; Png, i.e., the set of tasks; and D = fd1; : : : ; dmg, a set ofasynchronous, bu�ered channels. In Figure 2(A) tasks are drawn as a circles around theirassociated names. The bu�ered channels are drawn as small rectangles, the inputs as whitebold rectangles and the outputs as gray bold rectangles. We note that the external outputsand inputs are simply typed nodes in D.� E � (P �D) [(D�P) is a set of directed edges, such that if Pi ! dj and Pl ! dj are bothin E, then Pi = Pl. That is, each channel has a single-writer/multi-reader restriction.� All Pi 2 P have the following attributes: a period Ti, an o�set Oi � 0 (denoting the earlieststart-time from the start-of-period), a deadline Di � Ti (denoting the latest �nish-time rela-tive to the start-of-period), and a maximum execution time ei. The interval [Oi; Di] constrainsthe window Wi of execution, where Wi = Di � Oi.Note that initially the Ti's, Oi's and Di's are open variables, and they get instantiated by theconstraint-solver. 5

The semantics of an ATG is as follows. Whenever a task Pi executes, it reads data from allincoming channels dj corresponding to the edges dj ! Pi, and writes to all channels dl correspondingto the edges Pi ! dl. The actual ordering imposed on the reads and writes is inferred by the taskPi's structure.The tool binds these abstract task and channel names to real code. Consider the ATG inFigure 2(A), whose node P4 is \blown up" in Figure 2(B). As the Figure 2(B,Top) shows, thefunction \foo" in the �le \code.c" is bound to the node \P4." The programmer must also bind theabstract channel names to the corresponding identi�ers in the module. The lower window of theFigure 2(B) shows the C code within code.c, and the stylistic conventons used for channel binding.As far as the programmer is concerned the task P4 has a (yet-to-be-determined) period T4, anda set of asynchronous channels, accessible via generic operations such as \Read" and \Write." Allreads and writes on channels are asynchronous and non-blocking. While a writer always inserts avalue onto the end of the channel, a reader can (and many times will) read data from any location.For example, perhaps a writer runs at a period of 20ms, with two readers running at 120ms and40ms, respectively. The �rst reader may use every sixth value (and neglect the others), whereasthe second reader may use every other value.But this scheme raises a \chicken and egg" issue, one of many that we faced in this work. Oneof our objectives is to support software reuse, in which functional components may be deployedin di�erent systems { and have their timing parameters automatically calibrated to the physicallimitations of each. But this objective would be hindered if a designer had to employ the followingtedious method: (1) to �rst run the constraint-solver, which would �nd the Ti's, and then, basedon the results; (2) to hand-patch all of the modules with specialized IPC code, ensuring that theintermediate tasks correctly correlate their input samples.
Figure 2: (A) A task graph and (B) code for P4.6

Figure 3: Constraints description �le of the sample task graphWe solve this problem as follows: after the constraint-assignment algorithm determines the taskrates, a post-processing phase determines the actual space required for each channel. Then theyare automatically implemented as circular, slotted bu�ers. With the channel size information, thetool's Code Transformer automatically generates code to allocate and initialize each channel. Thenit patches the user's C code, instantiating each \Read" and \Write" operation to select the correctinput value.This type of scheme allows us to minimize the overhead incurred when blocking communicationis used, and to concentrate exclusively on the assignment problem. In fact { as we show in thesequel { communication can be completely unconditional, in that we do not even require shortlocking for consistency. However, we pay a price for avoiding this overhead; namely, that theperiod assignments must ensure that no writer can overtake a reader currently accessing its slot.Moreover, we note that our timing constraints de�ne a system driven by time and output re-quirements. This is in contrast to reactive paradigms such as ESTEREL [4], which are input-driven.Analogous to the \conceptually in�nite bu�ering" assumptions, the rate assignment algorithm as-sumes that the external inputs are always fresh and available. The derived input-sampling ratesthen determine the true requirements on input-availability. And since an input X can be connectedto another ATG's output Y , these requirements would be imposed on Y 's timing constraints.2.2 A Small ExampleAs a simple illustration, consider again the system whose ATG is shown in Figure 2(A). It iscomposed of six interacting tasks with three external inputs and two external outputs. Figure 3shows the application's end-to-end constraints, which the DesignAssistant treats as attributes of theATG at hand. 7

While the system is small, it serves to illustrate several facets of the problem: (1) There maybe many possible choices of rates for each task; (2) correlation constraints may be tight comparedto the allowable end-to-end delay; (3) data streams may be shared by several outputs (in this casethat originating at X2); and (4) outputs with the tightest separation constraints may incur thehighest execution-time costs (in this case Y1, which exclusively requires P1).2.3 Problem ComponentsGuaranteeing the end-to-end constraints actually poses three sub-problems, which we de�ne asfollows.Correctness: Let C be the set of derived, intermediate constraints and E be the set of end-to-endconstraints. Then all system behaviors that satisfy C also satisfy E .Feasibility: The task executions inferred by C never demand an interval of time during whichutilization exceeds 100%.Schedulability: There is a scheduling algorithm which can e�ciently maintain the intermediateconstraints C, and preserve feasibility.In the problem we address, the three issues cannot be decoupled. Correctness, for example, is oftentreated as veri�cation problem using a logic such as RTL [10]. Certainly, given the ATG we couldformulate E in RTL and query whether the constraint set is satis�able. However, a \yes" answerwould give us little insight into �nding a good choice for C { which must, after all, be simple enoughto schedule. Or, in the case of methods like model-checking ([1], etc.), we could determine whetherC)E is invariant with respect to the system. But again, this would be an a posteriori solution, andassume that we already possess C. On the other hand, a system that is feasible may still not beschedulable under a known algorithm; i.e., one that can be e�ciently managed by a realistic kernel.In this chapter we put our emphasis on the �rst two issues. However, we have also imposeda task model for which the greatest number of e�cient scheduling algorithms are known: simple,periodic dispatching with o�sets and deadlines. In essence, by restricting C's free variables to theTi's, Oi's and Di's, we ensure that feasible solutions to C can be easily checked for schedulability.The problem of scheduling a set of periodic real-time tasks on a single CPU has been studiedfor many years. Such a task set can be dispatched by a calendar-based, non-preemptive schedule(e.g., [18, 19, 20]), or by a preemptive, static-priority scheme (e.g., [5, 13, 15, 17]). For the mostpart our results are independent of any particular scheduling strategy, and can be used in concertwith either non-preemptive or preemptive dispatching.However, in the sequel we frequently assume an underlying static-priority architecture. This isfor two reasons. First, a straightforward priority assignment can often capture most of the ATG'sprecedence relationships, which obviates the need for super
uous o�set and deadline variables.Thus the space of feasible solutions can be simpli�ed, which in turn reduces the constraint-solver'swork. Second, priority-based scheduling has recently been shown to support all of the ATG'sinherent timing requirements: pre-period deadlines [2], precedence constrained sub-tasks [9], ando�sets [16]. A good overview to static priority scheduling may be found in [5].8

failure

Constraint
Derivation

Asynchronous
 Task Graph

New ATG &
Constraints

 Constraint
Satisfaction

Feasible
Task Set

 Buffer
Allocation

 Final
Task Set

TimeWare/DesignAssistant

Restructure

Application Structure.End-to-end Constraints.Task Libraries.
Figure 4: Overview of the approach.2.4 Overview of the SolutionOur solution is carried out in a four-step process, as shown in Figure 4. In Step 1, the intermediateconstraints C are derived, which postulates the periods, deadlines and o�sets as free variables. Thechallenge here is to balance several factors { correctness, feasibility and simplicity. That is, werequire that any solution to C will enforce the end-to-end constraints E , and that any solution mustalso be feasible. At the same time, we want to keep C as simple as possible, and to ensure that�nding a solution is a relatively straightforward venture. This is particularly important since thefeasibility criterion { de�ned by CPU utilization { introduces non-linearities into the constraintset. In balancing our goals we impose additional structure on the application; e.g., by creating newsampler tasks to get tightly correlated inputs into the system.In Step 2 the constraint-solver �nds a solution to C, which is done in several steps. First C issolved for the period variables, the Ti's, and then the resulting system is solved for the o�sets anddeadlines. Throughout this process we use several heuristics, which exploit the ATG's structure.If a solution to C cannot be found, the problem often lies in the original design itself. Forexample, perhaps a single, stateless server handles inputs from multiple clients, all of which run atwildly di�erent rates. Step 3's restructuring tool helps the programmer eliminate such bottlenecks,by automatically replicating strategic parts of the ATG.In Step 4, the derived rates are used to reserve memory for the channels, and to instantiatethe \Read" and \Write" operations. For example, consider P4 in Figure 2(A), which reads fromchannels d1 and d2.Now, assume that the constraint-solver assigns P4 and P2 periods of 30ms and 10ms, respec-tively. Then P4's Read operation on d2 would be replaced by a macro, which would read everythird data item in the bu�er { and would skip over the other two.Harmonicity. The above scheme works only if a producer can always ensure that it is notovertaking its consumers, and if the consumers can always determine which data item is the correctone to read. For example, P4's job in managing d2 is easy { since T2 = 10ms and T4 = 30ms, P4will read every third item out of the channel. 9

But P4 has another input channel, d1; moreover, temporally correlated samples from the twochannels have to be used to produce a result. What would happen if the solver assigned P1 a periodof 30ms, but gave P2 a period of 7ms?If the tasks are scheduled in rate-monotonic order, then d2 is �lled �ve times during P4's �rstframe, four times during the second frame, etc. In fact since 30 and 7 are relatively prime, P4'sselection logic to correlate inputs would be rather complicated. One solution would be to time-stamp each input X1 and X2, and then pass these stamps along with all intermediate results. Butthis would assume access to a precise hardware timer; moreover, time-stamps for multiple inputswould have to be composed in some manner. Worst of all, each small data value (e.g., an integer)would carry a large amount of reference information.The obvious solution is the one that we adopt: to ensure that every \chain" possesses a commonbase clock-rate, which is exactly the rate of the task at the head of the chain. In other words, weimpose a harmonicity constraint between (producer, consumer) pairs; (i.e., pairs (Pp; Pc) wherethere are edges Pp ! d and d! Pc.)De�nition 2.1 (Harmonicity) A task P2 is harmonic with respect to a task P1 if T2 is exactlydivisible by T1 (represented as T2jT11).Consider Figure 2(A), in which there are three chains imposing harmonic relationships. In thistightly coupled system we have that T4jT1, T4jT2, T5jT2, T6jT5 and T6jT3.3 Step 1: Deriving the ConstraintsIn this section we show the derivation process of intermediate constraints, and how they (conser-vatively) guarantee the end-to-end requirements. We start the process by synthesizing the inter-mediate correlation constraints, and then proceed to treat freshness and separation.3.1 Synthesizing Correlation ConstraintsLet's revisit our example task graph (now in Figure 5(A)), where the three inputs X1; X2 and X3are sampled by three separate tasks. If we wish to guarantee that P1's sampling of X1 is correctlycorrelated to P2's sampling of X2, we must pick short periods for both P1 and P2. Indeed, inmany practical real-time systems, the correlation requirements may very well be tight, and way outof proportion with the freshness constraints. This typically results in periods that get tightenedexclusively to accommodate correlation, which can easily lead to gross over-utilization. Engineersoften call this problem \over-sampling," which is somewhat of a misnomer, since sampling ratesmay be tuned expressly for coordinating inputs. Instead, the problem arises from poor coupling ofthe sampling and computational activities.1xjy i� 9� :: �y = x and � � 1, where � is an integer.10

Figure 5: (A) Original task graph and (B) transformed task graph.Thus our approach is to decouple these components as much as possible, and to create specializedsamplers for related inputs. For a given ATG, the sampler derivation is performed in the followingmanner. foreach Correlation constraint Cl(Yk jXl1; : : : ; Xlm)Create the set of all input-output pairs associated with Cl, i.e.,Tl := f(Xli; Yk)jXli 2 fXl1; : : : ; Xlmggforeach Tl, foreach TkIf there's a common input X such that there exist outputs Yi; Yjwith (X; Yi) 2 Tl, (X; Yj) 2 Tk, andif chains from X to Yl and X to Yk share a common task, thenSet Tl := Tl [Tk; Tk := ;foreach Tl, identify all associated sampling tasks, i.e.,Sl := fP j(X; Y) 2 Tl ^ X ! PgIf jSlj > 1, create a periodic sampler Psl to take samples for inputs in TlThus the incoming channels from inputs Tl to tasks in Sl are \intercepted" by the new samplertask Psl .Returning to our original example, which we repeat in Figure 5(A). Since both correlated inputsshare the center stream, the result is a single group of correlated inputs f(X1; X2; X3)g. This, inturn, results in the formation of the single sampler Ps. We assume Ps has a low execution cost of1. The new, transformed graph is shown at the right column of Figure 5(B).11

As for the deadline-o�set requirements, a sampler Psl is constrained by the following trivialrelationship Dsl �Osl � tcorwhere tcor is the maximum allowable time-drift on all correlated inputs read by Psl .The sampler tasks ensure that correlated inputs are read into the system within their appropriatetime bounds. This allows us to solve for process rates as a function of both the freshness andseparation constraints, which vastly reduces the search space.However we cannot ignore correlation altogether, since merely sampling the inputs at the sametime does not guarantee that they will remain correlated as they pass through the system. Theinput samples may be processed by di�erent streams (running at di�erent rates), and thus theymay still reach their join points at di�erent absolute times.For example, refer back to Figure 5, in which F (Y2jX2) > F (Y2jX3). This disparity is the resultof an under-speci�ed system, and may have to be tightened. The reason is simple: if P6's periodis derived by using correlation as a dominant metric, the resulting solution may violate the tighterfreshness constraints. On the other hand, if freshness is the dominant metric, then the correlationconstraints may not be achieved.We solve this problem by eliminating the \noise" that exists between the di�erent set of require-ments. Thus, whenever a fresh output is required, we ensure that there are correlated data sets toproduce it. In our example this leads to tightening the original freshness requirement F (Y2jX2) toF (Y2jX3).Thus we invoke this technique as a general principle. For an output Y with correlated inputsets X1; : : : ; Xm, the associated freshness constraints are adjusted accordingly:F (Y jX1); : : : ; F (Y jXm) := minfF (Y jX1); : : : ; F (Y jXm)g3.2 Synthesizing Freshness ConstraintsConsider a freshness constraint F (Y jX) = tf , and recall its de�nition:For every output of Y at some time t, the value of X used to compute Y must havebeen read no earlier that time t� tf .As data
ows through a task chain from X to Y , each task P adds two types of delay overhead tothe data's end-to-end response time. One type is execution time, i.e., the time required for P toprocess the data, produce outputs, etc. In this chapter we assume that P 's maximum executiontime is �xed, and has already been optimized as much as possible by a good compiler.The other type of delay is transmission latency, which is imposed while P waits for its correlatedinputs to arrive for processing. Transmission time is not �xed; rather, it is largely dependent onour derived process-based constraints. Thus minimizing transmission time is our goal in achievingtight freshness constraints.Fortunately, the harmonicity relationship between producers and consumers allows us to accom-plish this goal. Consider a chain P1; P2; : : : ; Pn, where Pn is the output task, and P1 is the input12

XP1d1P2d2P3Y P2P1 D3 � O1 � F (Y jX)D2D1 D3P3 O1 O2 O3 1. Harmonicity: T2jT1; T3jT22. Precedence: P1 � P2 � P33. Chain Size: D3 �O1 � F (Y jX)
(A) ATG (B) Time Line (C) ConstraintsFigure 6: Freshness constraints with coupled tasks.task. From the harmonicity constraints we get Ti+1jTi, for 1 � i < n. Assuming that all tasks arestarted at time 0, whenever there is an invocation of the output task Pn, there are simultaneousinvocations of every task in the freshness chain.Consider Figure 6 in which there are three tasks P1; P2 and P3 in a freshness chain. From theharmonicity assumption we have T3jT2 and T2jT1.The other constraints are derived for the entire chain, under the scenario that within each task'sminor frame, input data gets read in, it gets processed, and output data is produced. Under theseconstraints, the worst case end-to-end delay is given by Dn �O1, and the freshness requirement isguaranteed if the following holds: Dn �O1 � tfNote that we also require a precedence between each producer/consumer task pair. As we show inFigure 6, this can be accomplished via the o�set and deadline variables { i.e., by mandating thatDi � Oi+1, for 1 � i < n.But this approach has the following obvious drawback: The end-to-end freshness tf must bedivided into �xed portions of slack at each node. On a global system-wide level, this type of rigid
ow control is not the best solution. It is not clear how to distribute the slack between intermediatetasks, without over-constraining the system. More importantly, with a rigid slack distribution, a13

F (Y1jX1) F (Y1jX2) F (Y2jX2) F (Y2jX3)D4 � Os � 30 D4 � Os � 30 D6 � Os � 15 D6 �Os � 15Os + es + e1 � D1 Os + es + e2 � D2 Os + es + e2 + e5 � D5 Os + es + e3 � D3D1 � O4 D2 � O4 D5 � O6 D3 � O6T4jT1; T1jTs T4jT2; T2jT1 T6jT5; T5jT2; T2jTs T6jT3; T3jTsTable 1: Constraints due to freshness requirements.consumer task would not be allowed to execute before its o�set, even if its input data is available.2Rather, we make a straightforward priority assignment for the tasks in each chain, and letthe scheduler enforce the precedence between them. In this manner, we can do away with theintermediate deadline and o�set variables. This leads to the following rule of thumb:If the consumer task is not the head or tail of a chain, then its precedence requirementis deferred to the scheduler. Otherwise, the precedence requirement is satis�ed throughassignment of o�sets.Example. Consider the freshness constraints for our example in Figure 5(A), F (Y1jX1) = 30,F (Y1jX2) = 30, F (Y2jX2) = 15, and F (Y2jX3) = 15. The requirement F (Y1jX1) = 30 speci�es achain window size of D4 �Os � 30. Since P1 is an intermediate task we now have the precedencePs � P1, which will be handled by the scheduler. However, according to our \rule of thumb," weuse the o�set for P4 to handle the precedence P1 � P4. This leads to the constraints D1 � O4 andDs � D1 � e1. Similar inequalities are derived for the remaining freshness constraints, the resultof which is shown in Table 1.3.3 Output Separation ConstraintsConsider the separation constraints for an output Y , generated by some task Pi. As shown inFigure 7, the window of execution de�ned by Oi and Di constrains the time variability within aperiod. Consider two frames of Pi's execution. The widest separation for two successive Y 's canoccur when the �rst frame starts as early as possible, and the second starts as late as possible.Conversely, the opposite situation leads to the smallest separation.Thus, the separation constraints will be satis�ed if the following holds true:(Ti +Di)�Oi � u(Y) and (Ti �Di) + Oi � l(Y)2Note that corresponding issues arise in real-time rate-control in high-speed networks.14

DiOi DiOiY Y TiTi Ylatestu(Y)l(Y)YlatestYearliest YearliestFigure 7: Separation constraints for two frames.Example. Consider the constraints that arise from output separation requirements, which areinduced on the output tasks P4 and P6. The derived constraints are presented below:(T4 +D4)� O4 � u(Y1) (T4 �D4) +O4 � l(Y1)(T6 +D6)� O6 � u(Y2) (T6 �D6) +O6 � l(Y2)3.4 Execution Constraints:Clearly, each task needs su�cient time to execute. This simple fact imposes additional constraints,that ensure that each task's maximum execution time can �t into its window. Recall that (1) weuse o�set, deadline and period variables for tasks handling external input and output; and (2) weuse period variables and precedence constraints for the intermediate constraints.We can easily preserve these restrictions when dealing with execution time. For each externaltask Pi, the following inequalities ensure that window-size is su�ciently large for the CPU demand:Oi + ei � Di; Oi � 0 Di � TiOn the other hand, the intermediate tasks can be handled by imposing restrictions on their con-stituent chains. For a single chain, let E denote the chain's total execution time. Then thechain-wise execution constraints are:Oh +E � Dt; Dt � Ttwhere Oh is the head's o�set, and where Dt and Tt are the tail's deadline and period, respectively.15

Example. Revisiting the example, we have the following execution-time constraints.Os + es � Ds; Os � 0; Ds � Ts; sampler taskOi + ei � Di; Oi � 0; Di � Ti; i = f4; 6gOs + es + ei � Di; Di � Ti i = f1; 2; 3gOs + es + e2 + e5 � D5; D5 � T5This completes the set of task-wise constraints C imposed on our ATG. Thus far we have shownonly one part of the problem { how C can derived from the end-to-end constraints. The end-to-end requirements will be maintained during runtime (1) if a solution to C is found, and (2) if thescheduler dispatches the tasks according to the solution's periods, o�sets and deadlines. Sincethere are many existing schedulers that can handle problem (2), we now turn our attention toproblem (1).4 Step 2: Constraint SolverThe constraint solver generates instantiations for the periods, deadlines and o�sets. In doing so,it addresses the notion of feasibility by using objective functions which (1) minimize the overallsystem utilization; and (2) maximize the window of execution for each task. Unfortunately, thenon-linearities in the optimization criteria { as well as the harmonicity assumptions { lead to avery complex search problem.We present a solution which decomposes the problem into relatively tractable parts. Ourdecomposition is motivated by the fact that the non-linear constraints are con�ned to the periodvariables, and do not involve deadlines or o�sets. This suggests a straightforward approach, whichis presented in Figure 8.1. The entire constraint set C is projected onto its subspace Ĉ, constraining only the Ti's.2. The constraint set Ĉ is optimized for minimum utilization.3. Since we now have values for the Ti's, we can instantiate them in the original constraint setC. This forms a new, reduced set of constraints �C, all of whose functions are a�ne in the Oi'sand Di's. Hence solutions can be found via linear optimization.The back-edge in Figure 8 refers to the case where the nonlinear optimizer �nds values for theTi's, but no corresponding solution exists for the Oi's and Di's. Hence, a new instantiation for theperiods must be obtained { a process that continues until either a solution is found, or all possiblevalues for the Ti's are exhausted.4.1 Elimination of O�set and Deadline VariablesWe use an extension of Fourier variable elimination [6] to simplify our system of constraints. Intu-itively, this step may be viewed as the projection of an n dimensional polytope (described by theconstraints) onto its lower-dimensional shadow. 16

Non-Linear Constraints on:T1; T2; : : : ; TnO1; O2; : : : ; OnD1; D2; : : : ; Dn
Linear Constraints on:O1; O2; : : : ; OnD1; D2; : : : ; DnNon-linear Constraints on:T1; T2; : : : ; TnĈC�C Eliminate Oi and Di.Optimize w.r.t. min(U).Optimize w.r.t. min(Di �Oi).SolutionFigure 8: Top level algorithm to obtain task characteristics.In our case, the n-dimensional polytope is the object described by the initial constraint setC, and the shadow is the subspace Ĉ, in which only the Ti's are free. The shadow is derived byeliminating one o�set (or deadline) variable at a time, until only period variables remain. At eachstage the new set of constraints is checked for inconsistencies (e.g., 0 > 5). Such a situation meansthat the original system was over-speci�ed { and the method terminates with failure.The technique can best be illustrated by a small example. Consider the following two inequalitieson W4 = D4 �O4: W4 � T4 + 18 W4 � 31� T4Each constraint de�nes a line; when W4 and T4 are restricted to nonzero solutions, the result is a2-dimensional polygon. Eliminating the variable W4 is simple, and is carried out as follows:T4 + 18 � W4; W4 � 31� T4) T4 + 18 � 31� T4) 2T4 � 31� 18) T4 � 6:5Since we are searching for integral, nonzero solutions to T4, any integer in [0 : : :6] can be considereda candidate.When there are multiple constraints onW4 { perhaps involving many other variables { the same17

X

Y

Figure 9: Variable elimination for integer solutions { A deviant case.process is used. Every constraint \W4 � : : :" is combined with every other constraint \W4 � : : :,"until W4 has been eliminated. The correctness of the method follows simply from the polytope'sconvexity, i.e., if the original set of constraints has a solution, then the solution is preserved in theshadow.Unfortunately, the opposite is not true; hence the the requirement for the back-edge in Figure 8.As we have stated, the re�ned constraint set Ĉ may possess a solution for the Ti's that do notcorrespond to any integral-valued Oi's and Di's. This situation occasionally arises from our questfor integer solutions to the Ti's { which is essential in preserving our harmonicity assumptions.For example, consider the triangle in Figure 9. The X-axis projection of the triangle has seveninteger-solutions. On the other hand, none exist for Y , since all of the corresponding real-valuedsolutions are \trapped" between 1 and 2.If, after obtaining a full set of Ti's, we are left without integer values for the Oi's and Di's, wecan resort to two possible alternatives:1. Search for rational solutions to the o�sets and deadlines, and reduce the clock-granularityaccordingly, or2. Try to �nd new values for the Ti's, which will hopefully lead to a full integer solution.The Example Application { From C to Ĉ. We illustrate the e�ect of variable elimination onthe example application presented earlier. The derived constraints impose lower and upper boundson task periods, and are shown below. Also remaining are the original harmonicity constraints.LinearConstraints Ps P1 P2 P3 P4 P5 P61 � Ts 7 � T1 4 � T2 4 � T3 20 � T4 � 29 7 � T5 31 � T6 � 39HarmonicityConstraints T4jT1; T1jTs; T4jT2; T2jT1; T6jT5; T5jT2; T2jTs; T6jT3; T3jTs18

Here the constraints on the output tasks (P4 and P6) stem from the separation constraints, whichimpose upper and lower bounds on the periods.4.2 From Ĉ to �C: Deriving the PeriodsOnce the deadlines and o�sets have been eliminated, we have a set of constraints involving onlythe task periods. The objective at this point is to obtain a feasible period assignment which (1)satis�es the derived linear equations; (2) satis�es the harmonicity assumptions; and (3) is subjectto a realizable utilization, i.e., U =P eiTi � 1.As in the example above, the maximum separation constraints will typically mandate that thesolution-space for each Ti be bounded from above. Thus we are faced with a decidable problem {albeit a complex one. In fact there are cases which will defeat all known algorithms. In such casesthere is no alternative to traversing the entire Cartesian-space[l1; u1] � [l2; u2] � : : : [ln; un]where there are n tasks, and where each Ti may range within [li; ui]. Fortunately the ATG'sstructure gives rise to a heuristics which can aggressively prune the search space. We call itharmonic chain merging.Let Pred(i) (Succ(i)) denote the set of tasks which are predecessors (successors) of task Pi,i.e., those tasks from (to) which there is a directed path to (from) Pi. Since the harmonicityrelationship is transitive, we have that if Pj 2 Succ(Pi), it follows that Tj jTi. This simple fact leadsto the following observation: we do not have to solve for each Ti as if it is an arbitrary variable inan arbitrary function. Rather, we can combine chains of processes, and then solve for their baseperiods. This dramatically reduces the number of free variables.For our purposes, this translates into the following rule:If a task Pi executes with period Ti, and if some Pj 2 Pred(Pi) has the property thatSucc(Pj) = fPig, then Pj should also execute with period Ti.In other words, we will never run a task faster than it needs to be run. In designs where theperiods are ad-hoc artifacts, tuned to achieve the end-to-end constraints, such an approach wouldbe highly unsafe. Here the rate constraints are analytically derived directly from the end-to-endrequirements. We know \how fast" a task needs to be run, and it makes no sense to run it faster.This allows us to simplify the ATG by merging nodes, and to limit the number of free variablesin the problem. The method is summed up in the following steps:(1) If Pi 2 Pred(Pj), then Tj jTi and consequently, Ti � Tj . The �rst pruning takes place bypropagating this information to tighten the period bounds. Thus, for each task Pi, the bounds aretightened as follows: li = maxflk j Pk 2 Pred(Pi)gui = minfuk j Pk 2 Succ(Pi)g19

Ps(1)P2(3) Ps;2(4)P3(3)P4(2) P1;4(8)P5(3) P6(2) P3;5;6(8)P1(6) P1;4(8)Ps(1) P3;5;6(8)P2(3)RULE 1 RULE 2
Figure 10: Task graph for harmonicity and its simpli�cation.(2) The second step in the algorithm is to simplify the task graph. Consider a task Pi, whichhas an outgoing edge Pi ! Pj . Suppose ui � uj . Then the maximum value of Ti is constrainedonly by harmonicity restrictions. The simpli�cation is done by merging Pi and Pj , whenever it issafe to set Ti = Tj , i.e., the restricted solution space contains the optimal solution. The followingtwo rules give the condition when it safe to perform this simpli�cation.Rule 1: If a vertex Pi has a single outgoing edge Pi ! Pj , then Pi is merged with Pj .Rule 2: If Succ(Pi) � (Succ(Pj) [fPjg) for some edge Pi ! Pj , then Pi is mergedwith Pj .Consider the graph in Figure 10. The parenthesized numbers denote the costs of correspondingnodes. In the graph, the nodes P3, P5, and P1 have a single outgoing edge. Using Rule 1, wemerge P3 and P5 with P6, and P1 with P4. In the simpli�ed graph, Succ(Ps) = fP4; P6; P2g andSucc(P2) = fP4; P6g. Thus, we can invoke Rule 2 to merge Ps with P2. Also, our three mergedtasks have the following allowable ranges:Ps;2 : fTs;2 j 4 � Ts;2 � 29gP1;4 : fT1;4 j 20 � T1;4 � 29gP3;5;6 : fT3;5;6 j 31 � T3;5;6 � 39gThis scheme manages to reduce our original seven tasks to three sets of tasks, where each setcan be represented as a pseudo-task with its own period, and an execution time equal to the sumof its constituent tasks.At this point we have reduced the structure of the ATG as much as possible, and we turn toexamining the search process. But the size of the search space can still be enormous, even fora modest ATG. For example, 10 free period variables, each of which contains 10 possible values20

constitute a space of 1010 solutions. Fortunately, harmonicity requirements play a signi�cant rollto reduce the search e�ort, since we need to look at only those period values that are integralmultiples of certain base periods. In [8] we presented a graph-theoretic algorithm which is capableof �nding a feasible solution relying on backward and forward traversal of a task graph. Here wesketch the idea behind the algorithm; interested readers should consult [8] for the technical details.To sum up, the algorithm has the following properties.(1) Period assignment is done in topological order. For a chain of tasks \P1 ! P2 ! � � � ! Pk ,"each Ti must be an integral multiple of T1, and thus Ti can be written as aiT1 for some ai � 1.Whenever such a solution for Ti cannot be found, new periods for the immediate predecessorsare determined.(2) Whenever the system utilization approaches 100%, the current solution is rejected.The algorithm can best be illustrated by our task graph in Figure 10: The Ti's are rewritten asbelow: Ps;2 : Ts;2P1;4 : T1;4 = a1Ts;2P3;5;6 : T3;5;6 = a2Ts;2Now, feasible values are investigated for Ts;2, a1 and a2. First, Ts;2 is assigned its maximumallowable value 29, with leads to setting a1 = 1. But with this assignment, no feasible value can befound for a2. So a smaller value is tried for Ts;2, and so on. This process repeats until the algorithmterminates with a valuation of Ts;2 = 13, a1 = 2 and a2 = 3 { which forms a feasible solution.4.3 Deriving O�sets and DeadlinesOnce the task periods are determined, we need to revisit the constraints to �nd a solution to thedeadlines and o�sets of the periods. Here, the residue of variable elimination allows us to selectvalues in the reverse order in which they are eliminated. Suppose we performed elimination on thefollowing variables, in order: x1; x2; : : : ; xn. When xi is eliminated, the remaining free variables are[xi+1; : : : ; xn]. Since [xi+1; : : : ; xn] are already bound to values, the constraints immediately give alower and an upper bound on xi.We use this fact in assigning o�sets and deadlines to the tasks. As the variables are assignedvalues, each variable can be individually optimized. Recall that the feasibility of a task set requiresthat the task set never demand a utilization greater than 1 in any time interval. We use a greedyheuristic, which attempts to maximize the window of execution for each task. For tasks whichdo not have an o�set, this is straightforward, and can be achieved by maximizing the deadline.For input/output tasks which have o�sets, we also need to �x the position of the window on thetime-line. We do this by minimizing the o�set for input tasks, and maximizing the deadline foroutput tasks.The order in which the variables are assigned is given by the following strategy: First, we assignthe windows for each input task, followed by the windows for each output task. Then, we assign21

0 13 26 39

39 52 65 78

Ps P2 P2 P2Ps PsPs PsPs P2P2P2 P4 P4 P4P3P3 P5P5 P5 P6P6P1 P1 P1P1 P1Figure 11: Feasible schedule for example application.the o�sets for each task followed by deadline for each output task. Finally, the deadlines for theremaining tasks are assigned in a reverse topological order of the task graph. Thus, an assignmentordering for the example application is given as fWs;W4;W6; Os; D4; D6; D5; D3; D1; D2g. The �nalparameters, derived as a result of this ordering, are shown below.Ps P1 P2 P3 P4 P5 P6Period 13 26 13 39 26 39 39O�set 0 0 0 0 21 0 13Deadline 3 21 13 13 26 13 15Exec. Time 1 6 3 3 2 3 2A feasible schedule for the task set is shown in Figure 11. We note that the feasible schedule canbe generated using the �xed priority ordering P6; Ps; P4; P2; P3; P5; P1.5 Step 3: Graph TransformationWhen the constraint-solver fails, replicating part of a task graph may often prove useful in reducingthe system's utilization. This bene�t is realized by eliminating some of the tight harmonicityrequirements, mainly by decoupling the tasks that possess common producers. As a result, theconstraint derivation algorithm has more freedom in choosing looser periods for those tasks.Recall the example application from Figure 5(B), and the constraints derived in Section 4. Inthe resulting system, the producer/consumer pair (P2; P5) has the largest period di�erence (T2 = 13and T5 = 39). Note that the constraint solver mandated a tight period for P2, due to the coupledharmonicity requirements T4jT2 and T5jT2. Thus, we choose to replicate the chain including P2from the sampler (Ps) to data object d2. This decouples the data
ow to Y1 from that to Y2.Figure 12 shows the result of the replication.Running the constraint derivation algorithm again with the transformed graph in Figure 12, weobtain the following result. The transformed system has a utilization of 0.7215, which is signi�cantlylower than that of the original task graph (0.8215).22

Figure 12: The replicated task graph.Ps1 P1 P2 P4 Ps2 P 02 P3 P5 P6Periods 29 29 29 29 39 39 39 39 39Exec: Time 1 6 3 2 1 3 3 3 2The subgraph replication technique begins with selecting a producer/consumer pair which re-quires replication. There exist two criteria in selecting a pair, depending on the desired goal. Ifthe goal is reducing expected utilization, a producer/consumer pair with the maximum period dif-ference is chosen �rst. On the other hand, if the goal is achieving feasibility, then we rely on thefeedback from the constraint solver in determining the point of infeasibility.After a producer/consumer pair is selected, the algorithm constructs a subgraph using a back-ward traversal of the task graph from the consumer. In order to avoid excessive replication, thetraversal is terminated at the �rst con
uence point. The resulting subgraph is then replicated andattached to the original graph.The producer task in a replication may, in turn, be further specialized for the output it serves.For example, consider a task graph with two consumers Pc1 and Pc2 and a common producer Pp.If we replicate the producer, we have two independent producer/consumer pairs, namely (Pp; Pc1)and (P 0p; Pc2). Since P 0p only serves Pc2, we can eliminate all operations that only contribute to theoutput for Pc1. This is done by dead code elimination, a common compiler optimization. The samespecialization is done for Pp. 23

6 Step 4: Bu�er AllocationBu�er allocation is the �nal step of our approach, and hence applied to the feasible task graphwhose timing characteristics are completely derived. During this step, the compiler tool determinesthe bu�er space required by each data object, and replaces its associated reads and writes withsimple macros. The macros ensure that each consumer reads temporally correlated data fromseveral data objects { even when these objects are produced at vastly di�erent rates. The readsand writes are nonblocking and asynchronous, and hence we consider each bu�er to have a \virtualsequence number."Combining a set of correlated data at a given con
uence point appears to be a nontrivialventure. After all, (1) producers and the consumers may be running at di�erent rates; and (2) the
ow delays from a common sampler to the distinct producers may also be di�erent. However, dueto the harmonicity assumption the solution strategy is quite simple. Given that there are su�cientbu�ers for a data object, the following rule is used:\Whenever a consumer reads from a channel, it uses the �rst item that was generatedwithin its current period."For example, let Pp be a producer of a data object d, let Pc1 ; : : : ; Pcn be the consumers thatread d. Then the communication mechanism is realized by the following techniques (where L =LCM1�i�n(Tci) is the least common multiple of the periods):(1) The data object d is implemented with s = L=Tp bu�ers.(2) The producer Pp circularly writes into each bu�er, one at a time.(3) The consumer Pci reads circularly from slots (0; Tci=Tp; : : : ; m �Tci=Tp) where m = L=Tci � 1.
0
1
2
3
4
5

P2P4 P5Figure 13: A task graph with bu�ers.Consider three tasks P2, P4 and P5 in our example, before we performed graph replication. Thetwo consumer tasks P4 and P5 run with periods 26 and 39, respectively, while the producer P2 runswith period 13. Thus, the data object requires a 6 place bu�er (6 = LCM(26; 39)=13), and P424

Figure 14: Instantiated code with copy-in/copy-out channels and memory-mapped IO.reads from slots (0, 2, 4) while P5 reads from slots (0, 3). Figure 13 shows the relevant part of thetask graph after the bu�er allocation.After the bu�er allocation, the compiler tool expands each data object into a multiple placebu�er, and replaces each read and write operations with macros that perform proper pointer up-dates. Figure 14 shows the results of the macro-expansion, after it is applied to P4's code fromFigure 2(B). Note that P1, P2 and P4 run at periods of 26, 13 and 26, respectively.7 The Prototype ImplementationThe objectives of the DesignAssistant are as follows.(1) To provide a rapid prototyping tool for real-time system designers, so they can quickly builda running system for various analyses and optimizations.(2) To let developers easily pin-point bottlenecks in the system.(3) To help developers transform faulty components in their systems.(4) To provide traceability between the entity-relationships in the high-level system design, andtheir manifestation in the low-level module code.To achieve the the fourth goal, the DesignAssistant runs all tests from the same user interface inwhich the system topology is designed. The result is toolkit driver, whose operations allow drawingthe system structure, binding code modules to task nodes, solving the constraints, and producinga Make�le to generate the application. 25

Figure 15: TimeWare/DesignAssistant Tool Screen.7.1 Graphical User InterfaceFigure 15 shows three of tool screens, all of which were implemented using Tcl/Tk toolkits [14]. Theinteractive graph editor (Figure 15(Left)) supports drawing and structuring the ATGs, and it allowshierarchical decomposition of ATGs based on black-box abstraction. That is, a sub-module nodein an ATG can then be expanded into another ATG, with its inner structure drawn on a separatewindow. Figure 16 shows a hierarchical design equivalent to the \
at ATG" in Figure 15(Left). Thesub-module's interfaces are drawn as small eclipses tagged by the connecting channels' names. Forexample, Figure 16(Right) shows that the bu�er \dX1" is an external connection to the submodule\Sub M1".Each task node in an ATG must be associated with a piece of code which actually carries itscomputation. Since a single code module may be used for multiple task nodes in a number ofdistinct ATGs, it is necessary to support binding the abstract names in the ATG to associatednames within the code modules. Task and channel binding are shown in the top and bottom rightwindows of Figure 15, respectively. In Figure 15, node \P4" is bound to the function \foo" in the�le \code.c," and channels B1, B2, and B3 are bound to d1, d2, and Y1 respectively.7.2 Constraint SolvingAfter accepting an ATG and associated attributes, our tool is ready to compute the task-speci�cparameters, using the algorithms we presented above. Computing the parameters consists of twoparts: parsing and solving. Constraints accepted by the DesignAssistant are stored in a text �le, as26

Figure 16: TimeWare/DesignAssistant Hierarchical Design Support.shown in Figure 3. Clicking the Solve button invokes parsing the constraints �le, and generatingan intermediate form for the solver to use. The solver's job is then to derive the periods, o�sets,and deadlines, and to determine the size of each channel. If no such solution exists, an error isreported, and restructuring of the ATG is required.7.3 Code GenerationWhen the analysis ensures that the design is consistent, the tool will produce compilable code viaa Make�le. Clicking Build Makefile in within the Code menu (Figure 15(Left)) results in the thefollowing three actions.(1) An initialization module for the application is created, and bu�er allocation code is insertedwithin it.(2) Bu�er pointers are instantiated for each producer-consumer relationship, and the\Read" and\Write" operations are replaced by specialized access code.(3) A Make�le is produced to compile executable applications.7.4 Current Limitations and Future ExtensionsEven within the scope of single-CPU applications, the implementation still possesses several limi-tations. First, nodes in an ATG can only be instantiated by source code and not, for example, a27

binary application which uses standard-input and output to communicate. The reason is obvious:our bu�er allocation and instantiation is realized by source code translation.Another limitation is that the Make�le, when executed, generates a monolithic compiled kernelwhich implements the given ATG.But these two problems are induced by the properties of most existing runtime system, andare not inherent to our design methodology. The problem is simple: there exist many di�erentkernel models, each of which possesses its own native input-output mechanisms. Nonetheless, weare currently investigating speci�c real-time operating systems, and associated threads packages,which should allow us to relax these limitations.8 ConclusionWe have presented a four-step design methodology to help synthesize end-to-end requirements intofull-blown real-time systems. Our framework can be used as long as the following ingredients areprovided: (1) the entity-relationships, as speci�ed by an asynchronous task graph abstraction; and(2) end-to-end constraints imposed on freshness, input correlation and allowable output separation.This model is su�ciently expressive to capture the temporal requirements { as well as the mod-ular structure { of many interesting systems from the domains of avionics, robotics, control andmultimedia computing.However, the asynchronous, fully periodic model does have its limitations; for example, wecannot support high-level blocking primitives such as RPCs. On the other hand this de�cit yieldssigni�cant gains; e.g., handling streamed, tightly correlated data solely via the \virtual sequencenumbers" a�orded by the rate-assignments.There is much work to be carried out. First, the constraint derivation algorithm can be extendedto take full advantage of a wider spectrum of timing constraints, such as those encountered ininput-driven, reactive systems. Also, we can harness �ner-grained compiler transformations suchas program slicing to help transform tasks into read-compute-write-compute phases, which will evenfurther enhance schedulability. We have used this approach in a real-time compiler tool [7], andthere is reason to believe that its use would be even more e�ective here.We are also streamlining our search algorithm, by incorporating scheduling-speci�c decisionsinto the constraint solver. We believe that when used properly, such policy-speci�c strategies willhelp signi�cantly in pruning the search space.But the greatest challenge lies in extending the technique to distributed systems. The outputand its inputs do not necessarily reside in the same processor in distributed systems, and theremay be arbitrary numbers of network links from an input to the output. The characteristicsof the network should be considered in conjunction with those constraints presented earlier on.Accordingly, constraints solving strategy should be changed to re
ect the network characteristic asanother constraints. Certainly a global optimization is impractical, since the search-space is muchtoo large. Rather, we are taking a compositional approach { by �nding approximate solutions foreach node, and then re�ning each node's solution-space to accommodate the system's bound on28

network utilization. AcknowledgementsThe authors gratefully acknowledge Bill Pugh, Je� Fischer, Ladan Gharai and Tefvik Bultan,whose valuable suggestions greatly enhanced the quality of this work.References[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Proc. of IEEESymposium on Logic in Computer Science, 1990.[2] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-time scheduling: Thedeadline-monotonic approach. In Proceedings of IEEE Workshop on Real-Time OperatingSystems and Software, pages 133{137, May 1991.[3] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Data consistency in hard real-timesystems. Technical Report YCS 203 (1993), Department of Computer Science, University ofYork, England, June 1993.[4] G. Berry, S. Moisan, and J. Rigault. ESTEREL: Towards a synchronous and semanticallysound high level language for real time applications. In Proceedings of IEEE Real-Time SystemsSymposium, pages 30{37. IEEE Computer Society Press, December 1983.[5] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. InS. Son, editor, Principles of Real-Time Systems. Prentice Hall, 1994.[6] G. Dantzig and B. Eaves. Fourier-Motzkin Elimination and its Dual. Journal of CombinatorialTheory (A), 14:288{297, 1973.[7] R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedulabil-ity. In Proceedings of IEEE Real-Time Systems Symposium, pages 232{242. IEEE ComputerSociety Press, December 1993.[8] R. Gerber, S. Hong, and M. Saksena. Guaranteeing end-to-end timing constraints by cali-brating intermediate processes. In Proceedings of IEEE Real-Time Systems Symposium, pages192{203. IEEE Computer Society Press, December 1994. Also to appear in IEEE Transactionson Software Engineering.[9] M. Harbour, M. Klein, and J. Lehoczky. Fixed Priority Scheduling of Periodic Tasks withVarying Execution Priority. In Proceedings, IEEE Real-Time Systems Symposium, pages 116{128, December 1991.[10] F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems. IEEETransactions on Software Engineering, 12(9):890{904, September 1986.29

[11] K. Je�ay. The real-time producer/consumer paradigm: A paradigm for the construction ofe�cient, predictable real-time systems. In ACM/SIGAPP Symposium on Applied Computing,pages 796{804. ACM Press, February 1983.[12] M. Klein, J. Lehoczky, and R. Rajkumar. Rate-monotonic analysis for real-time industrialcomputing. IEEE Computer, pages 24{33, January 1994.[13] C. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-time envi-ronment. Journal of the ACM, 20(1):46{61, January 1973.[14] J. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.[15] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-time synchronization. IEEE Transactions on Software Engineering, 39:1175{1185, September1990.[16] K. Tindell. Using o�set information to analyse static priority pre-emptively scheduled tasksets. Technical Report YCS 182 (1992), Department of Computer Science, University of York,England, August 1992.[17] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing �xed priorityhard real-time tasks. The Journal of Real-Time Systems, 6(2):133{152, March 1994.[18] J. Xu and D. Parnas. Scheduling processes with release times, deadlines, precedence andexclusion relations. IEEE Transactions on Software Engineering, 16(3):360{369, March 1990.[19] X. Yuan, M. Saksena, and A. Agrawala. A Decomposition Approach to Real-Time Scheduling.Real-Time Systems, 6(1), 1994.[20] W. Zhao, K. Ramamritham, and J. Stankovic. Scheduling Tasks with Resource requirementsin a Hard Real-Time System. IEEE Transactions on Software Engineering, SE-13(5):564{577,May 1987.
30

