End-to-End Design of Real-Time Systems *

Richard Gerber, Dong-in Kang Seongsoo Hong Manas Saksena
Dept. of Computer Science Silicon Graphics Inc. Dept. of Computer Science
University of Maryland 2011 N. Shoreline Blvd. Concordia University
College Park, MD 20742 Mountain View, CA 94039 Montreal, Quebec H3G 1MS8, Canada
{rich,dikang}@cs.umd.edu sshong@engr.sgi.com manas@cs.concordia.ca

April 20, 1995

Abstract

This chapter presents a comprehensive design methodology for guaranteeing end-to-end re-
quirements of real-time systems. Applications are structured as a set of process components
connected by asynchronous channels, in which the endpoints are the system’s external inputs
and outputs. Timing constraints are then postulated between these inputs and outputs; they
express properties such as end-to-end propagation delay, temporal input-sampling correlation,
and allowable separation times between updated output values.

The automated design method works as follows: First new tasks are created to correlate
related inputs, and an optimization algorithm, whose objective is to minimize CPU utilization,
transforms the end-to-end requirements into a set of intermediate rate constraints on the tasks.
If the algorithm fails, a restructuring tool attempts to eliminate bottlenecks by transforming
the application, which is then re-submitted into the assignment algorithm. The final result is a

schedulable set of fully periodic tasks, which collaboratively maintain the end-to-end constraints.

*This research is supported in part by ONR grant N00014-94-10228, NSF grant CCR-9209333, and NSF Young
Investigator Award CCR-9357850.

1 Introduction

Most real-time systems possess only a small handful of inherent timing constraints which will “make
or break” their correctness. These are called end-to-end constraints, and they are established on

the systems’ external inputs and outputs. Two examples are:

(1) Temperature updates rely on pressure and temperature readings correlated within 10us.

(2) Navigation coordinates are updated at a minimum rate of J0ms, and a maximum rate 80ms.

But while such end-to-end timing parameters may indeed be few in number, maintaining function-
ally correct end-to-end values may involve a large set of interacting components. Thus, to ensure
that the end-to-end constraints are satisfied, each of these components will, in turn, be subject to
their own intermediate timing constraints. In this manner a small handful of end-to-end constraints
may — in even a modest system — yield a great many intermediate constraints.

The task of imposing timing parameters on the functional components is a complex one, and it
mandates some careful engineering. Consider example (2) above. In an avionics system, a “naviga-
tion update” may require such inputs as “current heading,” airspeed, pitch, roll, etc; each sampled
within varying degrees of accuracy. Moreover, these attributes are used by other subsystems, each
of which imposes its own tolerance to delay, and possesses its own output rate. Further, the nav-
igation unit may itself have other outputs, which may have to be delivered at rates faster than
40ms, or perhaps slower than 80ms. And to top it off, subsystems may share limited computer
resources. A good engineer balances such factors, performs extensive trade-off analysis, simulations
and sensitivity analysis, and proceeds to assign the constraints.

These intermediate constraints are inevitably on the conservative side, and moreover, they are
conveyed to the programmers in terms of constant values. Thus a scenario like the following is
often played out: The design engineers mandate that functional units A, B and C execute with
periods 65ms, 22ms and 27ms, respectively. The programmers code up the system, and find that C'
grossly over-utilizes its CPU; further, they discover that most of C'’s outputs are not being read by
the other subsystems. And so, they go back to the engineers and “negotiate” for new periods — for
example 60ms, 10ms and 32ms. This process may continue for many iterations, until the system
finally gets fabricated.

This scenario is due to a simple fact: the end-to-end requirements allow many possibilities for
the intermediate constraints, and engineers make what they consider to be a rational selection.
However, the basis for this selection can only include rough notions of software structuring and

scheduling policies — after all, many times the hardware is not even fabricated at this point!

Our Approach. In this chapter we present an alternative strategy, which maintains the timing
constraints in their end-to-end form for as long as possible. Our design method iteratively in-
stantiates the intermediate constraints, all the while taking advantage of the leeway inherent in
the end-to-end constraints. If the assignment algorithm fails to produce a full set of intermediate
constraints, potential bottlenecks are identified. At this point an application analysis tool takes

over, determines potential solutions to the bottleneck, and if possible, restructures the application

to avoid it. The result is then re-submitted into the assignment algorithm.

We have implemented a significant portion of our approach as part of integrated design tool
development effort at the University of Maryland. The tool, named TimeWare/DesignAssistant,
graphically and textually captures both a system design and its end-to-end requirements, and then
produces intermediate constraints. Throughout the chapter, we use examples we take from the

tool’s graphical interface.

Scope of Examples. Due to the complexity of the general problem, in this chapter we confine

our discussion to systems possessing the following characteristics.

1: We assume our applications possess three classes of timing constraints which we call freshness,

correlation and separation.

o A freshness constraint (sometimes called propagation delay) bounds the time it takes for data to
flow through the system. For example, assume that an external output Y is a function of some
system input X. Then a freshness relationship between X and Y might be: “If Y is delivered
at time ¢, then the X-value used to compute Y is sampled no earlier than ¢ — 10ms.” We use
the following notation to denote this constraint: “F(Y|X) = 10.”

e A correlation constraint limits the maximum time-skew between several inputs used to produce
an output. For example, if X7 and X, are used to produce Y, then a correlation relationship
may be “if Y is delivered at time ¢, then the Xy and X5 values used to compute Y are sampled

no more than within 2ms of each other.” We denote this constraint as “C(Y|X, X3) = 2.7

o A separation constraint constrains the jitter between consecutive values on a single output
channel, say Y. For example, “Y is delivered at a minimum rate of 3ms, and a maximum rate
of 13ms,” denoted as [(Y) = 3 and u(Y) = 13, respectively.

While this constraint classification is not complete, it is sufliciently powerful to represent many
timing properties one finds in a requirements document. (Our initial examples (1) and (2) are
correlation and separation constraints, respectively.) Note that a single output Y; may — either
directly or indirectly — be subject to several interdependent constraints. For example, Y; might
require tightly correlated inputs, but may abide with relatively lax freshness constraints. However,
perhaps Y7 also requires data from an intermediate subsystem which is, in turn, shared with a very

high-rate output Y5.

2: Subsystems execute on a single CPU. Our approach can be extended for use in distributed
systems, a topic we revisit in Section 8. For the sake of presenting the intermediate constraint-

assignment technique, in this chapter we limit ourselves to uniprocessor systems.

3: The entity-relationships within a subsystem are already specified. For example, if a high-rate
video stream passes through a monolithic, compute-intensive filter task, this situation may easily
cause a bottleneck. If our algorithm fails to find a proper intermediate timing constraint for the
filter, the tool will attempt to restructure it to optimize it as much as possible. In the end, however,

it cannot redesign the system.

Finally, we stress that we are not offering a completely automatic solution. Even with a fully
periodic task model, assigning periods to the intermediate components is a complex, nonlinear
optimization problem which — at worst — can become combinatorially expensive. As for software
restructuring, the specific tactics used to remove bottlenecks will often require user interaction.
Problem and Solution Strategy. We note the above restrictions, and tackle the intermediate

constraint-assignment problem, as rendered by the following ingredients:

e A set of external inputs {Xy,...,X,}, outputs {Yy,...,Y,,}, and the end-to-end constraints

between them.
e A set of intermediate component tasks {Py,..., P}.

o A task graph, denoting the communication paths from the inputs, through the tasks, and to

outputs.

Solving the problem requires setting timing constraints for the intermediate components, so that
all end-to-end constraints are met. Moreover, during any interval of time utilization may never
exceed 100%.

Our solution employs the following ingredients: (1) A periodic, preemptive tasking model (where
it is the our algorithm’s duty to assign the rates); (2) a buffered, asynchronous communication
scheme, allowing us to keep down IPC times; (3) the period-assignment, optimization algorithm,
which forms the heart of the approach; and (4) the software-restructuring tool, which takes over

when period-assignment fails.

Related Work. This research was, in large part, inspired by the real-time transaction model
proposed by Burns et. al. in [3]. While the model was formulated to express database applications,
it can easily incorporate variants of our freshness and correlation constraints. In the analogue to
freshness, a persistent object has “absolute consistency within ¢” when it corresponds to real-world
samples taken within maximum drift of ¢{. In the analogue to correlation, a set of data objects
possesses “relative consistency within ¢t” when all of the set’s elements are sampled within an
interval of time ¢.

We believe that in output-driven applications of the variety we address, separation constraints
are also necessary. Without postulating a minimum rate requirement, the freshness and correlation
constraints can be vacuously satisfied — by never outputting any values! Thus the separation
constraints enforce the system’s progress over time.

Burns et. al. also propose a method for deriving the intermediate constraints; as in the data
model, this approach was our departure point. Here the high-level requirements are re-written as
a set of constraints on task periods and deadlines, and the transformed constraints can hopefully
be solved. There is a big drawback, however: the correlation and freshness constraints can inordi-
nately tighten deadlines. E.g., if a task’s inputs must be correlated within a very tight degree of
accuracy — say, several nanoseconds — the task’s deadline has to be tightened accordingly. Similar
problems accrue for freshness constraints. The net result may be an over-constrained system, and

a potentially unschedulable one.

Our approach is different. With respect to tightly correlated samples, we put the emphasis on
simply getting the data into the system, and then passing through in due time. However, since
this in turn causes many different samples flowing through the system at varying rates, we perform
“traffic control” via a novel use of “virtual sequence numbering.” This results in significantly looser
periods, constrained mainly by the freshness and separation requirements. We also present a period
assignment problem which is optimal — though quite expensive in the worst case.

This work was also influenced by Jeffay’s “real-time producer/consumer model” [11], which
possesses a task-graph structure similar to ours. In this model rates are chosen so that all messages
“produced” are eventually “consumed.” This semantics leads to a tight coupling between the
execution of a consumer to that of its producers; thus it seems difficult to accommodate relative
constraints such as those based on freshness.

Klein et. al. surveys the current engineering practice used in developing industrial real-time
systems [12]. As is stressed, the intermediate constraints should be primarily a function of the
end-to-end constraints, but should, if possible, take into account sound real-time scheduling tech-
niques. At this point, however, the “state-of-the-art” is the practice of trial and error, as guided

by engineering experience. And this is exactly the problem we address in this chapter.

Organization of this Chapter. The remainder of the chapter is organized as follows. In Sec-
tion 2 we introduce the application model and formally define our problem. In Section 3 we show
our method of transforming the end-to-end constraints into intermediate constraints on the tasks.
In Section 4 we describe the constraint-solver in detail, and push through a small example. In
Section 5 we describe the application transformer, and in Section 6 we show how the executable

application is finally built. In Section 7 we discuss the prototype implementation of our tool.

2 Problem Description and Overview of Solution

We re-state our problem as follows:
e Given a task graph with end-to-end timing constraints on its inputs and outputs,
e Derive periods, offsets and deadlines for every task,
e Such that the end-to-end requirements are met.

In this section we define these terms, and present the techniques behind our solution strategy. We
also privide an overview of our tool, named the TimeWare/DesignAssistant, which is based on the
on the solutions described in this chapter. The tool consists of several components (see Figure 1),
including an interactive, graphical interface for structuring the system componenets, and a set of

toolbox functions which help automate the assignment of the intermediate process constraints.

Asynchronous
Task Graph

Binding Info.
(Channel, Task) C source code

Interactive
Graph
Editor

Timing

Constraints
Analyzer

Constraint Solver

Code Transformer
(Macro Expansion)

|
|
|
|
|
|
|
|
| | Constraint Parser
|
|
|
|
|
|
|
|
|

LTSS
7~ Period,Offset,
[Deadline of —_—- -
\ each Task / 7 Makefile (¢ Transformed Code)
No // __/) ~

-

Scheduler

e —_

~— —

Figure 1: The structure of the TimeWare/DesignAssistant

2.1 The Asynchronous Task Graph

An application is rendered in an asynchronous task graph (ATG) format. Figure 2(A) shows an
example ATG, drawn using the TimeWare/DesignAssistant interface. In general, an ATG G(V, F)

possesses the following attributes.

o V=PUD, where P = {Py,..., P}, i.e., the set of tasks; and D = {dy,...,d,,}, a set of
asynchronous, buffered channels. In Figure 2(A) tasks are drawn as a circles around their
associated names. The buffered channels are drawn as small rectangles, the inputs as white
bold rectangles and the outputs as gray bold rectangles. We note that the external outputs
and inputs are simply typed nodes in D.

o FEC(PxD)U(DxP)is aset of directed edges, such that if P; — d; and P — d; are both
in F, then P, = P;. That is, each channel has a single-writer /multi-reader restriction.

e All P; € P have the following attributes: a period Tj, an offset O; > 0 (denoting the earliest
start-time from the start-of-period), a deadline D; < T; (denoting the latest finish-time rela-
tive to the start-of-period), and a maximum execution time e;. The interval [O;, D;] constrains

the window W; of execution, where W; = D; — O;.

Note that initially the T;’s, O;’s and D,;’s are open variables, and they get instantiated by the

constraint-solver.

The semantics of an ATG is as follows. Whenever a task P; executes, it reads data from all
incoming channels d; corresponding to the edges d; — P;, and writes to all channels d; corresponding
to the edges P; — d;. The actual ordering imposed on the reads and writes is inferred by the task
P;’s structure.

The tool binds these abstract task and channel names to real code. Consider the ATG in
Figure 2(A), whose node Py is “blown up” in Figure 2(B). As the Figure 2(B,Top) shows, the
function “foo” in the file “code.c” is bound to the node “P4.” The programmer must also bind the
abstract channel names to the corresponding identifiers in the module. The lower window of the
Figure 2(B) shows the C code within code.c, and the stylistic conventons used for channel binding.

As far as the programmer is concerned the task P, has a (yet-to-be-determined) period Ty, and
a set of asynchronous channels, accessible via generic operations such as “Read” and “Write.” All
reads and writes on channels are asynchronous and non-blocking. While a writer always inserts a
value onto the end of the channel, a reader can (and many times will) read data from any location.
For example, perhaps a writer runs at a period of 20ms, with two readers running at 120ms and
40ms, respectively. The first reader may use every sixth value (and neglect the others), whereas
the second reader may use every other value.

But this scheme raises a “chicken and egg” issue, one of many that we faced in this work. One
of our objectives is to support software reuse, in which functional components may be deployed
in different systems — and have their timing parameters automatically calibrated to the physical
limitations of each. But this objective would be hindered if a designer had to employ the following
tedious method: (1) to first run the constraint-solver, which would find the T}’s, and then, based
on the results; (2) to hand-patch all of the modules with specialized IPC code, ensuring that the

intermediate tasks correctly correlate their input samples.

[#] demoy.g

Files Insert Objects Edit Constraints Code : ding a function to a task

File Name : codec

Function Name : |foo

0K SEARCH SHOW & CHANMEL BIND

hannel

C Binding :
foo" --> Task(P4) int fao()
[Source] --> [Graph] int *B1,"B2," B3;
int x1, %2, y1, res;
Incomming Channels :
Read(B1, &x1);
B2 - |2 y1 = F{x1);
_ Read(B2, 8x2);
EL > [res = G{y1, ®2);
Outgoing Channels : uhite(B3, res);
B3 . i

I 0K Edit Cancel

Figure 2: (A) A task graph and (B) code for Pj.

[¢] emacs: Emacs @ roach.cs.umd.edu

/4 Freshhness */

FOWL 1KLY =30 ¢ FOYL I %2 3 = 30 ¢
F{W2 | K2 3 =20 ¢ FE¥2 | %33 =15 ¢
A% Correlation %/
COVL LKL, %2 0 =2
COVE | K2, K30 = 4
/% Separation %7
L{ ¥l) =18 3 UYL » =31
Li¥e » =29 U Y2 » =41
A% Max Execution Times */
E{PL)=6¢ E{(PZ)=3: E{(P3)=3:
E{P4d =2+ E(P5»=3: E{(PE}=2¢:

—-—-Fmacs: constraint

Figure 3: Constraints description file of the sample task graph

We solve this problem as follows: after the constraint-assignment algorithm determines the task
rates, a post-processing phase determines the actual space required for each channel. Then they
are automatically implemented as circular, slotted buffers. With the channel size information, the
tool’s Code Transformer automatically generates code to allocate and initialize each channel. Then
it patches the user’s C code, instantiating each “Read” and “Write” operation to select the correct
input value.

This type of scheme allows us to minimize the overhead incurred when blocking communication
is used, and to concentrate exclusively on the assignment problem. In fact — as we show in the
sequel — communication can be completely unconditional, in that we do not even require short
locking for consistency. However, we pay a price for avoiding this overhead; namely, that the
period assignments must ensure that no writer can overtake a reader currently accessing its slot.

Moreover, we note that our timing constraints define a system driven by time and oulput re-
quirements. This is in contrast to reactive paradigms such as ESTEREL [4], which are input-driven.
Analogous to the “conceptually infinite buffering” assumptions, the rate assignment algorithm as-
sumes that the external inputs are always fresh and available. The derived input-sampling rates
then determine the true requirements on input-availability. And since an input X can be connected

to another ATG’s output Y, these requirements would be imposed on Y’s timing constraints.

2.2 A Small Example

As a simple illustration, consider again the system whose ATG is shown in Figure 2(A). It is
composed of six interacting tasks with three external inputs and two external outputs. Figure 3

shows the application’s end-to-end constraints, which the DesignAssistant treats as attributes of the

ATG at hand.

While the system is small, it serves to illustrate several facets of the problem: (1) There may
be many possible choices of rates for each task; (2) correlation constraints may be tight compared
to the allowable end-to-end delay; (3) data streams may be shared by several outputs (in this case
that originating at X3); and (4) outputs with the tightest separation constraints may incur the

highest execution-time costs (in this case Y7, which exclusively requires Py).

2.3 Problem Components

Guaranteeing the end-to-end constraints actually poses three sub-problems, which we define as

follows.

Correctness: Let C be the set of derived, intermediate constraints and £ be the set of end-to-end

constraints. Then all system behaviors that satisfy C also satisfy £.

Feasibility: The task executions inferred by C never demand an interval of time during which

utilization exceeds 100%.

Schedulability: There is a scheduling algorithm which can efficiently maintain the intermediate

constraints C, and preserve feasibility.

In the problem we address, the three issues cannot be decoupled. Correctness, for example, is often
treated as verification problem using a logic such as RTL [10]. Certainly, given the ATG we could
formulate £ in RTL and query whether the constraint set is satisfiable. However, a “yes” answer
would give us little insight into finding a good choice for C — which must, after all, be simple enough
to schedule. Or, in the case of methods like model-checking ([1], etc.), we could determine whether
C=-& is invariant with respect to the system. But again, this would be an a posteriori solution, and
assume that we already possess C. On the other hand, a system that is feasible may still not be
schedulable under a known algorithm; i.e., one that can be efficiently managed by a realistic kernel.

In this chapter we put our emphasis on the first two issues. However, we have also imposed
a task model for which the greatest number of efficient scheduling algorithms are known: simple,
periodic dispatching with offsets and deadlines. In essence, by restricting C’s free variables to the
T;’s, O;’s and D;’s, we ensure that feasible solutions to C can be easily checked for schedulability.

The problem of scheduling a set of periodic real-time tasks on a single CPU has been studied
for many years. Such a task set can be dispatched by a calendar-based, non-preemptive schedule
(e.g., [18, 19, 20]), or by a preemptive, static-priority scheme (e.g., [5, 13, 15, 17]). For the most
part our results are independent of any particular scheduling strategy, and can be used in concert
with either non-preemptive or preemptive dispatching.

However, in the sequel we frequently assume an underlying static-priority architecture. This is
for two reasons. First, a straightforward priority assignment can often capture most of the ATG’s
precedence relationships, which obviates the need for superfluous offset and deadline variables.
Thus the space of feasible solutions can be simplified, which in turn reduces the constraint-solver’s
work. Second, priority-based scheduling has recently been shown to support all of the ATG’s
inherent timing requirements: pre-period deadlines [2], precedence constrained sub-tasks [9], and

offsets [16]. A good overview to static priority scheduling may be found in [5].

Application Structure.
End-to-end Constraints.

Task Libraries. TimeWare/DesignAssistant

1
|
Constraint I
|
|
|

Derivation
New ATG & Buffer 1 Final
Allocation
Feasible
Task Set

Constraint

Restructure o |
failure

Satisfaction

Figure 4: Overview of the approach.

2.4 Overview of the Solution

Our solution is carried out in a four-step process, as shown in Figure 4. In Step 1, the intermediate
constraints C are derived, which postulates the periods, deadlines and offsets as free variables. The
challenge here is to balance several factors — correctness, feasibility and simplicity. That is, we
require that any solution to C will enforce the end-to-end constraints &£, and that any solution must
also be feasible. At the same time, we want to keep C as simple as possible, and to ensure that
finding a solution is a relatively straightforward venture. This is particularly important since the
feasibility criterion — defined by CPU utilization — introduces non-linearities into the constraint
set. In balancing our goals we impose additional structure on the application; e.g., by creating new
sampler tasks to get tightly correlated inputs into the system.

In Step 2 the constraint-solver finds a solution to C, which is done in several steps. First C is
solved for the period variables, the T;’s, and then the resulting system is solved for the offsets and
deadlines. Throughout this process we use several heuristics, which exploit the ATG’s structure.

If a solution to C cannot be found, the problem often lies in the original design itself. For
example, perhaps a single, stateless server handles inputs from multiple clients, all of which run at
wildly different rates. Step 3’s restructuring tool helps the programmer eliminate such bottlenecks,
by automatically replicating strategic parts of the ATG.

In Step 4, the derived rates are used to reserve memory for the channels, and to instantiate
the “Read” and “Write” operations. For example, consider Py in Figure 2(A), which reads from
channels d; and d5.

Now, assume that the constraint-solver assigns P, and P, periods of 30ms and 10ms, respec-
tively. Then P;’s Read operation on dy would be replaced by a macro, which would read every

third data item in the buffer — and would skip over the other two.

Harmonicity. The above scheme works only if a producer can always ensure that it is not
overtaking its consumers, and if the consumers can always determine which data item is the correct
one to read. For example, Py’s job in managing ds is easy — since Ty = 10ms and Ty = 30ms, P,

will read every third item out of the channel.

But P, has another input channel, di; moreover, temporally correlated samples from the two
channels have to be used to produce a result. What would happen if the solver assigned P; a period
of 30ms, but gave P, a period of 7ms?

If the tasks are scheduled in rate-monotonic order, then d; is filled five times during P,’s first
frame, four times during the second frame, etc. In fact since 30 and 7 are relatively prime, Py’s
selection logic to correlate inputs would be rather complicated. One solution would be to time-
stamp each input X; and Xy, and then pass these stamps along with all intermediate results. But
this would assume access to a precise hardware timer; moreover, time-stamps for multiple inputs
would have to be composed in some manner. Worst of all, each small data value (e.g., an integer)
would carry a large amount of reference information.

The obvious solution is the one that we adopt: to ensure that every “chain” possesses a common
base clock-rate, which is exactly the rate of the task at the head of the chain. In other words, we
impose a harmonicity constraint between (producer, consumer) pairs; (i.e., pairs (P,, P;) where
there are edges P, — d and d — P..)

Definition 2.1 (Harmonicity) A task P, is harmonic with respect to a task Py if Ty is exactly
divisible by Ty (represented as To|Ty!).

Consider Figure 2(A), in which there are three chains imposing harmonic relationships. In this
tightly coupled system we have that Ty|Ty, T4|Ts, T5|Ts, Te|Ts and Tg|T5.

3 Step 1: Deriving the Constraints

In this section we show the derivation process of intermediate constraints, and how they (conser-
vatively) guarantee the end-to-end requirements. We start the process by synthesizing the inter-

mediate correlation constraints, and then proceed to treat freshness and separation.

3.1 Synthesizing Correlation Constraints

Let’s revisit our example task graph (now in Figure 5(A)), where the three inputs X1, Xy and X3
are sampled by three separate tasks. If we wish to guarantee that P;’s sampling of X5 is correctly
correlated to Py’s sampling of X5, we must pick short periods for both P; and P,. Indeed, in
many practical real-time systems, the correlation requirements may very well be tight, and way out
of proportion with the freshness constraints. This typically results in periods that get tightened
exclusively to accommodate correlation, which can easily lead to gross over-utilization. Engineers

" which is somewhat of a misnomer, since sampling rates

often call this problem “over-sampling,’
may be tuned expressly for coordinating inputs. Instead, the problem arises from poor coupling of

the sampling and computational activities.

'¢|y iff Ja:: ay =« and o > 1, where o is an integer.

10

[¢] demo3.y
Hies Insert Objects Edit Constraints Code

[#] demoy.g

Files Insert Objects Edit Constraints Code

Figure 5: (A) Original task graph and (B) transformed task graph.

Thus our approach is to decouple these components as much as possible, and to create specialized
samplers for related inputs. For a given ATG, the sampler derivation is performed in the following

manner.

foreach Correlation constraint C(Yy|Xy,, ..., X,,)
Create the set of all input-output pairs associated with (', i.e.,
T ={(Xy,,Ye)| Xi, € {X1,-.., X1, 1}
foreach T}, foreach T}
If there’s a common input X such that there exist outputs Y;,Y;
with (X,Y;) € T}, (X,Y;) € Ty, and
if chains from X to Y; and X to Y} share a common task, then
Set T =Ty UTy; Ty .= 0
foreach T}, identify all associated sampling tasks, i.e.,
Si={P|(X,Y)eTi AN X — P}

If |.5;] > 1, create a periodic sampler Ps, to take samples for inputs in 77

Thus the incoming channels from inputs 7} to tasks in 5; are “intercepted” by the new sampler
task Ps,.

Returning to our original example, which we repeat in Figure 5(A). Since both correlated inputs
share the center stream, the result is a single group of correlated inputs {(X1, X2, X3)}. This, in
turn, results in the formation of the single sampler P;. We assume P; has a low execution cost of

1. The new, transformed graph is shown at the right column of Figure 5(B).

11

As for the deadline-offset requirements, a sampler P, is constrained by the following trivial
relationship

Ds - Osl S tcor

14

where t.,, is the maximum allowable time-drift on all correlated inputs read by Ps,.

The sampler tasks ensure that correlated inputs are read into the system within their appropriate
time bounds. This allows us to solve for process rates as a function of both the freshness and
separation constraints, which vastly reduces the search space.

However we cannot ignore correlation altogether, since merely sampling the inputs at the same
time does not guarantee that they will remain correlated as they pass through the system. The
input samples may be processed by different streams (running at different rates), and thus they
may still reach their join points at different absolute times.

For example, refer back to Figure 5, in which F(Y3]|X2) > F(Y2|X3). This disparity is the result
of an under-specified system, and may have to be tightened. The reason is simple: if Fs’s period
is derived by using correlation as a dominant metric, the resulting solution may violate the tighter
freshness constraints. On the other hand, if freshness is the dominant metric, then the correlation
constraints may not be achieved.

We solve this problem by eliminating the “noise” that exists between the different set of require-
ments. Thus, whenever a fresh output is required, we ensure that there are correlated data sets to
produce it. In our example this leads to tightening the original freshness requirement F(Y3]|X3) to
F(Y3] X3).

Thus we invoke this technique as a general principle. For an output Y with correlated input

sets Xq,..., X, the associated freshness constraints are adjusted accordingly:

3.2 Synthesizing Freshness Constraints

Consider a freshness constraint F(Y|X) = ¢s, and recall its definition:

For every output of Y at some time t, the value of X used to compute Y must have

been read no earlier that time t — t;.

As data flows through a task chain from X to Y, each task P adds two types of delay overhead to
the data’s end-to-end response time. One type is ezecution time, i.e., the time required for P to
process the data, produce outputs, etc. In this chapter we assume that P’s maximum execution
time is fixed, and has already been optimized as much as possible by a good compiler.

The other type of delay is transmission latency, which is imposed while P waits for its correlated
inputs to arrive for processing. Transmission time is not fixed; rather, it is largely dependent on
our derived process-based constraints. Thus minimizing transmission time is our goal in achieving
tight freshness constraints.

Fortunately, the harmonicity relationship between producers and consumers allows us to accom-

plish this goal. Consider a chain Py, Ps,..., P,, where P, is the output task, and P; is the input

12

1. Harmonicity: T3|Ty, 15|13
Py | Dy | 2. Precedence: P < P, < Ps

G- - -&-[=]

—_—————— - —————— — — — — —

L

;01 3. Chain Size: D3 —0; < F(Y]X)
P2 ‘ ! D2 ‘
O
Py L Dy |
: 03 [
_ | :
Ds— 01 < F(Y|X)
(A) ATG (B) Time Line (C) Constraints

Figure 6: Freshness constraints with coupled tasks.

task. From the harmonicity constraints we get T;41|7T;, for 1 < i < n. Assuming that all tasks are
started at time 0, whenever there is an invocation of the output task P,, there are simultaneous
invocations of every task in the freshness chain.

Consider Figure 6 in which there are three tasks Py, P, and Ps in a freshness chain. From the
harmonicity assumption we have T5|T3 and T3|T}.

The other constraints are derived for the entire chain, under the scenario that within each task’s
minor frame, input data gets read in, it gets processed, and output data is produced. Under these
constraints, the worst case end-to-end delay is given by D, — Oq, and the freshness requirement is
guaranteed if the following holds:

D, —0; <ty

Note that we also require a precedence between each producer/consumer task pair. As we show in
Figure 6, this can be accomplished via the offset and deadline variables — i.e., by mandating that
D; < 0jyq, for 1 <o < n.

But this approach has the following obvious drawback: The end-to-end freshness t; must be
divided into fixed portions of slack at each node. On a global system-wide level, this type of rigid
flow control is not the best solution. It is not clear how to distribute the slack between intermediate

tasks, without over-constraining the system. More importantly, with a rigid slack distribution, a

13

\ F(Y1]X1) F(Y1|X2) \ F(Y,|X3) \ F(Y,| X3) |
Dy—0,<30 Dy—0,<30 Dg— 0, <15 Dg— 0, <15
Os+e;+er <D |Oste,+ea< Dy | Os+e,+eates <Dy | Oy+es+e3< Dy
Dy <04 Dy <04 D5 < Og D3 < Og
Ty|Ty, T|T, T4|Ty, To|Th Ts|Ts, 15Ty, To|T, T|T5, T5|T,

Table 1: Constraints due to freshness requirements.

consumer task would not be allowed to execute before its offset, even if its input data is available.?
Rather, we make a straightforward priority assignment for the tasks in each chain, and let
the scheduler enforce the precedence between them. In this manner, we can do away with the

intermediate deadline and offset variables. This leads to the following rule of thumb:

If the consumer task is not the head or tail of a chain, then its precedence requirement
s deferred to the scheduler. Otherwise, the precedence requirement is satisfied through

assignment of offsets.

Example. Consider the freshness constraints for our example in Figure 5(A), F(Y7]X1) = 30,
F(Y1|X2) = 30, F(Y2|X3) = 15, and F(Y3]|X3) = 15. The requirement F(Y;|X1) = 30 specifies a
chain window size of Dy — O, < 30. Since P; is an intermediate task we now have the precedence
P; < Py, which will be handled by the scheduler. However, according to our “rule of thumb,” we
use the offset for P; to handle the precedence P; < P;. This leads to the constraints Dy < 04 and
D, < Dy — e7. Similar inequalities are derived for the remaining freshness constraints, the result

of which is shown in Table 1.

3.3 Output Separation Constraints

Consider the separation constraints for an output Y, generated by some task P;. As shown in
Figure 7, the window of execution defined by O; and D; constrains the time variability within a
period. Consider two frames of P;’s execution. The widest separation for two successive Y’s can
occur when the first frame starts as early as possible, and the second starts as late as possible.
Conversely, the opposite situation leads to the smallest separation.

Thus, the separation constraints will be satisfied if the following holds true:

(Ti + DZ) -0; < U(Y) and (Ti — DZ) + O0; > l(Y)

?Note that corresponding issues arise in real-time rate-control in high-speed networks.

14

yo
i <

B
<

D; T D; T
P
- iflatest Z(Y) Yearliest
u(Y
Yearliest () iflatest

Figure 7: Separation constraints for two frames.

Example. Consider the constraints that arise from output separation requirements, which are

induced on the output tasks P, and Ps. The derived constraints are presented below:

(T4 D4) — O4 < u(Yy) (Ty — Dg)+ 04 > (Y1)
(T6 4+ Dg) — Og < u(Yy) (176 — Dg) + O¢ > U(Y2)

3.4 Execution Constraints:

Clearly, each task needs sufficient time to execute. This simple fact imposes additional constraints,
that ensure that each task’s maximum execution time can fit into its window. Recall that (1) we
use offset, deadline and period variables for tasks handling external input and output; and (2) we
use period variables and precedence constraints for the intermediate constraints.

We can easily preserve these restrictions when dealing with execution time. For each external

task P;, the following inequalities ensure that window-size is sufficiently large for the CPU demand:

On the other hand, the intermediate tasks can be handled by imposing restrictions on their con-
stituent chains. For a single chain, let F denote the chain’s total execution time. Then the

chain-wise execution constraints are:
On+E < Dy, Di<Ty

where Oy, is the head’s offset, and where D; and Ty are the tail’s deadline and period, respectively.

15

Example. Revisiting the example, we have the following execution-time constraints.

Os +es < st Os > 07 D, < T57 sampler task
Os+€s‘|’ei§Di7 D; <T; 22{17273}

Os+es+ex+es < Ds, Ds <Tj

This completes the set of task-wise constraints C imposed on our ATG. Thus far we have shown
only one part of the problem — how C can derived from the end-to-end constraints. The end-to-
end requirements will be maintained during runtime (1) if a solution to C is found, and (2) if the
scheduler dispatches the tasks according to the solution’s periods, offsets and deadlines. Since
there are many existing schedulers that can handle problem (2), we now turn our attention to
problem (1).

4 Step 2: Constraint Solver

The constraint solver generates instantiations for the periods, deadlines and offsets. In doing so,
it addresses the notion of feasibility by using objective functions which (1) minimize the overall
system utilization; and (2) maximize the window of execution for each task. Unfortunately, the
non-linearities in the optimization criteria — as well as the harmonicity assumptions — lead to a
very complex search problem.

We present a solution which decomposes the problem into relatively tractable parts. Our
decomposition is motivated by the fact that the non-linear constraints are confined to the period
variables, and do not involve deadlines or offsets. This suggests a straightforward approach, which

is presented in Figure 8.

1. The entire constraint set C is projected onto its subspace C, constraining only the T;’s.
2. The constraint set € is optimized for minimum utilization.

3. Since we now have values for the T}’s, we can instantiate them in the original constraint set
C. This forms a new, reduced set of constraints C, all of whose functions are affine in the O;’s

and D;’s. Hence solutions can be found via linear optimization.

The back-edge in Figure 8 refers to the case where the nonlinear optimizer finds values for the
T;’s, but no corresponding solution exists for the O;’s and D,;’s. Hence, a new instantiation for the
periods must be obtained — a process that continues until either a solution is found, or all possible

values for the T;’s are exhausted.

4.1 Elimination of Offset and Deadline Variables

We use an extension of Fourier variable elimination [6] to simplify our system of constraints. Intu-
itively, this step may be viewed as the projection of an n dimensional polytope (described by the

constraints) onto its lower-dimensional shadow.

16

Non-Linear Constraints on:

C T17T27"'7Tn

017027' . '7On

D17D27"'7Dn

Eliminate O; and D;.
. Non-linear Constraints on:
¢ T 1y, T,
Optimize w.r.t. min(U).
Linear Constraints on:

é 017027"'7On

Dy,Dg,...,D,

Optimize w.r.t. min(D; — O;).

Figure 8: Top level algorithm to obtain task characteristics.

In our case, the n-dimensional polytope is the object described by the initial constraint set
C, and the shadow is the subspace é, in which only the T;’s are free. The shadow is derived by
eliminating one offset (or deadline) variable at a time, until only period variables remain. At each
stage the new set of constraints is checked for inconsistencies (e.g., 0 > 5). Such a situation means
that the original system was over-specified — and the method terminates with failure.

The technique can best be illustrated by a small example. Consider the following two inequalities
on Wy = Dy — Oy

Wy >Ty+ 18 Wy <31 -1T4

Each constraint defines a line; when W, and T} are restricted to nonzero solutions, the result is a

2-dimensional polygon. Eliminating the variable Wy is simple, and is carried out as follows:

Ty +18 < Wy, Wy<31-Ty
= Ty+18<31-Ty

= 2T, <3118

= T,<65

Since we are searching for integral, nonzero solutions to T4, any integer in [0...6] can be considered

a candidate.

When there are multiple constraints on Wy — perhaps involving many other variables — the same

17

Figure 9: Variable elimination for integer solutions — A deviant case.

2 2

process is used. Every constraint “Wy < ...” is combined with every other constraint “W, > ..,
until Wy has been eliminated. The correctness of the method follows simply from the polytope’s
convexity, i.e., if the original set of constraints has a solution, then the solution is preserved in the
shadow.

Unfortunately, the opposite is not true; hence the the requirement for the back-edge in Figure 8.
As we have stated, the refined constraint set C may possess a solution for the T;’s that do not
correspond to any integral-valued O;’s and D;’s. This situation occasionally arises from our quest
for integer solutions to the T;’s — which is essential in preserving our harmonicity assumptions.

For example, consider the triangle in Figure 9. The X-axis projection of the triangle has seven
integer-solutions. On the other hand, none exist for Y, since all of the corresponding real-valued
solutions are “trapped” between 1 and 2.

If, after obtaining a full set of T;’s, we are left without integer values for the O;’s and D;’s, we

can resort to two possible alternatives:

1. Search for rational solutions to the offsets and deadlines, and reduce the clock-granularity

accordingly, or
2. Try to find new values for the T;’s, which will hopefully lead to a full integer solution.
The Example Application — From C to C. We illustrate the effect of variable elimination on

the example application presented earlier. The derived constraints impose lower and upper bounds

on task periods, and are shown below. Also remaining are the original harmonicity constraints.

Linear PS P1 P2 P3 P4 P5 P6
Constraints | 1 <7, | 7T<T |4< T [4<T3[20<T,<29|7<Ts|31<Tg<39
Harmonicity

. T4|T17 T1|T57 T4|T27 T2|T17 T6|T57 T5|T27 T2|T57 T6|T37 T3|Ts
Constraints

18

Here the constraints on the output tasks (Py and Ps) stem from the separation constraints, which

impose upper and lower bounds on the periods.

4.2 From C to C: Deriving the Periods

Once the deadlines and offsets have been eliminated, we have a set of constraints involving only
the task periods. The objective at this point is to obtain a feasible period assignment which (1)
satisfies the derived linear equations; (2) satisfies the harmonicity assumptions; and (3) is subject
to a realizable utilization, i.e., U = 3 % <1.

As in the example above, the maximum separation constraints will typically mandate that the
solution-space for each T; be bounded from above. Thus we are faced with a decidable problem —
albeit a complex one. In fact there are cases which will defeat all known algorithms. In such cases

there is no alternative to traversing the entire Cartesian-space
[ll,ul] X [ZQ,UQ] X ... [ln,un]

where there are n tasks, and where each T; may range within [/;,u;]. Fortunately the ATG’s
structure gives rise to a heuristics which can aggressively prune the search space. We call it
harmonic chain merging.

Let Pred(i) (Succ(i)) denote the set of tasks which are predecessors (successors) of task P,
i.e., those tasks from (to) which there is a directed path to (from) P;. Since the harmonicity
relationship is transitive, we have that if P; € Suce(F;), it follows that 7;|7;. This simple fact leads
to the following observation: we do not have to solve for each T; as if it is an arbitrary variable in
an arbitrary function. Rather, we can combine chains of processes, and then solve for their base
periods. This dramatically reduces the number of free variables.

For our purposes, this translates into the following rule:

If a task P; executes with period T;, and if some P; € Pred(F;) has the property that
Suce(P;) = {F;}, then P; should also execute with period 7.

In other words, we will never run a task faster than it needs to be run. In designs where the
periods are ad-hoc artifacts, tuned to achieve the end-to-end constraints, such an approach would
be highly unsafe. Here the rate constraints are analytically derived directly from the end-to-end
requirements. We know “how fast” a task needs to be run, and it makes no sense to run it faster.

This allows us to simplify the ATG by merging nodes, and to limit the number of free variables

in the problem. The method is summed up in the following steps:

(1) If P; € Pred(P;), then T;|T; and consequently, 7; < T;. The first pruning takes place by
propagating this information to tighten the period bounds. Thus, for each task P;, the bounds are
tightened as follows:

l; = max{l, | Py € Pred(F;)}
w; = minf{uy | Py € Suce(P;)}

19

n6) hB) B3 /+\ Pya(4)
RULE F2(3) RULE 2

Py 4(8) P356(8)
Py 4(8) Ps56(8)
\V

Ps(2)

Figure 10: Task graph for harmonicity and its simplification.

(2) The second step in the algorithm is to simplify the task graph. Consider a task P;, which
has an outgoing edge P; — P;. Suppose u; > u;. Then the maximum value of 7} is constrained
only by harmonicity restrictions. The simplification is done by merging P; and P;, whenever it is
safe to set T; = T}, i.e., the restricted solution space contains the optimal solution. The following

two rules give the condition when it safe to perform this simplification.

Rule 1: If a vertex P; has a single outgoing edge P; — P;, then P; is merged with P;.

Rule 2: If Suce(P;) C (Suce(P;) U {P;}) for some edge P; — P;, then P; is merged
with P;.

Consider the graph in Figure 10. The parenthesized numbers denote the costs of corresponding
nodes. In the graph, the nodes Ps, P5, and P, have a single outgoing edge. Using Rule 1, we
merge Ps and Ps with Ps, and Py with Py. In the simplified graph, Suce(Ps) = { P4, Ps, P2} and
Suce(Py) = {Py, Ps}. Thus, we can invoke Rule 2 to merge Ps with P,. Also, our three merged

tasks have the following allowable ranges:

Ps,2 : {TS,Q | 4 S Ts,2 S 29}
Py 0 {11420 <714 <29}

)

Psse @ {I556|31 <T556<39}

This scheme manages to reduce our original seven tasks to three sets of tasks, where each set
can be represented as a pseudo-task with its own period, and an execution time equal to the sum
of its constituent tasks.

At this point we have reduced the structure of the ATG as much as possible, and we turn to
examining the search process. But the size of the search space can still be enormous, even for

a modest ATG. For example, 10 free period variables, each of which contains 10 possible values

20

constitute a space of 10'° solutions. Fortunately, harmonicity requirements play a significant roll
to reduce the search effort, since we need to look at only those period values that are integral
multiples of certain base periods. In [8] we presented a graph-theoretic algorithm which is capable
of finding a feasible solution relying on backward and forward traversal of a task graph. Here we
sketch the idea behind the algorithm; interested readers should consult [8] for the technical details.

To sum up, the algorithm has the following properties.

(1) Period assignment is done in topological order. For a chain of tasks “P; — Py — --- — P;,”
each T; must be an integral multiple of Ty, and thus T; can be written as a; T} for some a; > 1.
Whenever such a solution for T; cannot be found, new periods for the immediate predecessors

are determined.

(2) Whenever the system utilization approaches 100%, the current solution is rejected.

The algorithm can best be illustrated by our task graph in Figure 10: The T}’s are rewritten as

below:
Ps,2 : Ts,2
P1,4 : T1,4 = alTs,z
P3,5,6 : T3,5,6 = asz,z

Now, feasible values are investigated for Ts,, a1 and ay. First, Tso is assigned its maximum
allowable value 29, with leads to setting a; = 1. But with this assignment, no feasible value can be
found for ay. So a smaller value is tried for T 5, and so on. This process repeats until the algorithm

terminates with a valuation of T2 = 13, a; = 2 and ay = 3 — which forms a feasible solution.

4.3 Deriving Offsets and Deadlines

Once the task periods are determined, we need to revisit the constraints to find a solution to the
deadlines and offsets of the periods. Here, the residue of variable elimination allows us to select
values in the reverse order in which they are eliminated. Suppose we performed elimination on the
following variables, in order: z1,z9,...,2,. When z; is eliminated, the remaining free variables are
[Tig1y- .., 2p). Since [@i11,...,2,] are already bound to values, the constraints immediately give a
lower and an upper bound on z;.

We use this fact in assigning offsets and deadlines to the tasks. As the variables are assigned
values, each variable can be individually optimized. Recall that the feasibility of a task set requires
that the task set never demand a utilization greater than 1 in any time interval. We use a greedy
heuristic, which attempts to maximize the window of execution for each task. For tasks which
do not have an offset, this is straightforward, and can be achieved by maximizing the deadline.
For input/output tasks which have offsets, we also need to fix the position of the window on the
time-line. We do this by minimizing the offset for input tasks, and maximizing the deadline for
output tasks.

The order in which the variables are assigned is given by the following strategy: First, we assign

the windows for each input task, followed by the windows for each output task. Then, we assign

21

| |
AT T N B O O B N 0 Y e I |

0 13 26 39
| | |

Pl [P PlA]R] [P P] P | Py | P[] P Py ‘
39 52 65 78

Figure 11: Feasible schedule for example application.

the offsets for each task followed by deadline for each output task. Finally, the deadlines for the
remaining tasks are assigned in a reverse topological order of the task graph. Thus, an assignment
ordering for the example application is given as {Wy, Wy, W, Oy, Dy, Dg, D5, D3, D1, D3}. The final

parameters, derived as a result of this ordering, are shown below.

P, |\ P | Py | P3| Py | Ps | Ps
Period 13126 13(39|26 39|39
Offset 000] 0121|013

Deadline 3121113113 (26|13]15

Fxec. Time| 1 | 6 | 3 | 3| 2|3 |2

A feasible schedule for the task set is shown in Figure 11. We note that the feasible schedule can
be generated using the fixed priority ordering Fs, Ps, Py, P, P5, Ps, Py.

5 Step 3: Graph Transformation

When the constraint-solver fails, replicating part of a task graph may often prove useful in reducing
the system’s utilization. This benefit is realized by eliminating some of the tight harmonicity
requirements, mainly by decoupling the tasks that possess common producers. As a result, the
constraint derivation algorithm has more freedom in choosing looser periods for those tasks.

Recall the example application from Figure 5(B), and the constraints derived in Section 4. In
the resulting system, the producer/consumer pair (P, P5) has the largest period difference (75 = 13
and T5 = 39). Note that the constraint solver mandated a tight period for P, due to the coupled
harmonicity requirements Ty|T> and T5|T%. Thus, we choose to replicate the chain including P,
from the sampler (Ps) to data object dy. This decouples the data flow to Y; from that to Y;.
Figure 12 shows the result of the replication.

Running the constraint derivation algorithm again with the transformed graph in Figure 12, we
obtain the following result. The transformed system has a utilization of 0.7215, which is significantly
lower than that of the original task graph (0.8215).

22

[#] demoz.g

Hiles Insert Objects Edit Constraints Code

Figure 12: The replicated task graph.

Py | Py | Py | Py | Py | Py | P3| P5 | B
Periods 29 129129129139 139139(39] 39
Exec. Time | 1 6 3|2 1 3 31 3 2

The subgraph replication technique begins with selecting a producer/consumer pair which re-
quires replication. There exist two criteria in selecting a pair, depending on the desired goal. If
the goal is reducing expected utilization, a producer/consumer pair with the maximum period dif-
ference is chosen first. On the other hand, if the goal is achieving feasibility, then we rely on the
feedback from the constraint solver in determining the point of infeasibility.

After a producer/consumer pair is selected, the algorithm constructs a subgraph using a back-
ward traversal of the task graph from the consumer. In order to avoid excessive replication, the
traversal is terminated at the first confluence point. The resulting subgraph is then replicated and
attached to the original graph.

The producer task in a replication may, in turn, be further specialized for the output it serves.
For example, consider a task graph with two consumers P.; and P, and a common producer F,.
If we replicate the producer, we have two independent producer/consumer pairs, namely (P, Pey)
and (Pzg, P.3). Since Pzg only serves P.y, we can eliminate all operations that only contribute to the
output for P.;. This is done by dead code elimination, a common compiler optimization. The same

specialization is done for P,.

23

6 Step 4: Buffer Allocation

Buffer allocation is the final step of our approach, and hence applied to the feasible task graph
whose timing characteristics are completely derived. During this step, the compiler tool determines
the buffer space required by each data object, and replaces its associated reads and writes with
simple macros. The macros ensure that each consumer reads temporally correlated data from
several data objects — even when these objects are produced at vastly different rates. The reads
and writes are nonblocking and asynchronous, and hence we consider each buffer to have a “virtual
sequence number.”

Combining a set of correlated data at a given confluence point appears to be a nontrivial
venture. After all, (1) producers and the consumers may be running at different rates; and (2) the
flow delays from a common sampler to the distinct producers may also be different. However, due
to the harmonicity assumption the solution strategy is quite simple. Given that there are sufficient

buffers for a data object, the following rule is used:

“Whenever a consumer reads from a channel, it uses the first item that was generated

within #ts current period.”

For example, let P, be a producer of a data object d, let P, ,...,P., be the consumers that
read d. Then the communication mechanism is realized by the following techniques (where I =

LOM,<i<n(T.,) is the least common multiple of the periods):

(1) The data object d is implemented with s = L /T, buffers.
(2) The producer P, circularly writes into each buffer, one at a time.

(3) The consumer P, reads circularly from slots (0,7%,/1,,...,m -1, /T,) where m = L/T,, — 1.

($21 14 (3] (N] O] (]

Figure 13: A task graph with buffers.

Consider three tasks P5, Py and Ps in our example, before we performed graph replication. The
two consumer tasks Py and Ps run with periods 26 and 39, respectively, while the producer P, runs
with period 13. Thus, the data object requires a 6 place buffer (6 = LC'M(26,39)/13), and Py

24

[®] emacs: Emacs @ roach.cs.umd.edu

int ul
int P

int offzet_1 = 1
int offeet_2 = 2

zize_of _Bufferl = 1:
zize_of _Buffer? = B:

int fool}
{

int * B1, % B2, * E3:
int x1, xZ. yl, rest

Bl = &Buffer_1[pd_11:
xl =% Bl:
pd_1 = {pd_1 + offzet_1} ¥ =size_of _Bufferl:
yl = Fixlyz

B2 = &Buffer_Z[p4_21:

%2 = % B2:

pd_2 = {pd_2 + offzet_2) % size_of _Buffer?:
res = Giyl, =2):

B3 = &1
* BS = res:

————Emacs: expand.a.c

Figure 14: Instantiated code with copy-in/copy-out channels and memory-mapped I10.

reads from slots (0, 2, 4) while P5 reads from slots (0, 3). Figure 13 shows the relevant part of the
task graph after the buffer allocation.

After the buffer allocation, the compiler tool expands each data object into a multiple place
buffer, and replaces each read and write operations with macros that perform proper pointer up-
dates. Figure 14 shows the results of the macro-expansion, after it is applied to P,’s code from

Figure 2(B). Note that Py, P, and P4 run at periods of 26, 13 and 26, respectively.

7 The Prototype Implementation

The objectives of the DesignAssistant are as follows.
(1) To provide a rapid prototyping tool for real-time system designers, so they can quickly build
a running system for various analyses and optimizations.
(2) To let developers easily pin-point bottlenecks in the system.
(3) To help developers transform faulty components in their systems.
(4) To provide traceability between the entity-relationships in the high-level system design, and

their manifestation in the low-level module code.

To achieve the the fourth goal, the DesignAssistant runs all tests from the same user interface in
which the system topology is designed. The result is toolkit driver, whose operations allow drawing
the system structure, binding code modules to task nodes, solving the constraints, and producing

a Makefile to generate the application.

25

Hiles Insert Objects Edit Constraints Code
[0 ST Binding a function to a task "P4

File Hame : code.c

Function Name : |foo

0K SEARCH SHOW & CHAMNEL BIND Cancel

1 "froachidikang/projfzinter/Cfiesticode.c”

Channel Binding :
neom
foo" --» Task{P4) int foo()
[Source] --= [Graph] int *B1,* B2, * B3;
int %1, x2, y1, res;
Incomming Channels : Read(B1, 8x1);
1=F{x1};
B2 — |z y1=Fixl)
Read (B2, 8x2};
El --» |dl res = G{y1, x2);
Outgoing Channels :) Write (B3, res);
Bl -—= |¥1
OK Edit Cancel

Figure 15: TimeWare/DesignAssistant Tool Screen.

7.1 Graphical User Interface

Figure 15 shows three of tool screens, all of which were implemented using Tcl/ Tk toolkits [14]. The
interactive graph editor (Figure 15(Left)) supports drawing and structuring the ATGs, and it allows
hierarchical decomposition of ATGs based on black-box abstraction. That is, a sub-module node
in an ATG can then be expanded into another ATG, with its inner structure drawn on a separate
window. Figure 16 shows a hierarchical design equivalent to the “flat ATG” in Figure 15(Left). The
sub-module’s interfaces are drawn as small eclipses tagged by the connecting channels’ names. For
example, Figure 16(Right) shows that the buffer “dX1” is an external connection to the submodule
“Sub_M1”.

Each task node in an ATG must be associated with a piece of code which actually carries its
computation. Since a single code module may be used for multiple task nodes in a number of
distinct ATGs, it is necessary to support binding the abstract names in the ATG to associated
names within the code modules. Task and channel binding are shown in the top and bottom right
windows of Figure 15, respectively. In Figure 15, node “P4” is bound to the function “foo” in the
file “code.c,” and channels B1, B2, and B3 are bound to d1, d2, and Y1 respectively.

7.2 Constraint Solving

After accepting an ATG and associated attributes, our tool is ready to compute the task-specific
parameters, using the algorithms we presented above. Computing the parameters consists of two

parts: parsing and solving. Constraints accepted by the DesignAssistant are stored in a text file, as

26

Unknown.gr [®] Sub_M1 - file : Unknown.gr

X1 ®2 ®3
[ax1 | [ax2 | [ax3 | a a

Figure 16: TimeWare/DesignAssistant Hierarchical Design Support.

shown in Figure 3. Clicking the Solve button invokes parsing the constraints file, and generating
an intermediate form for the solver to use. The solver’s job is then to derive the periods, offsets,
and deadlines, and to determine the size of each channel. If no such solution exists, an error is

reported, and restructuring of the ATG is required.

7.8 Code Generation

When the analysis ensures that the design is consistent, the tool will produce compilable code via
a Makefile. Clicking Build Makefile in within the Code menu (Figure 15(Left)) results in the the

following three actions.

(1) An initialization module for the application is created, and buffer allocation code is inserted
within it.
(2) Buffer pointers are instantiated for each producer-consumer relationship, and the*Read” and

“Write” operations are replaced by specialized access code.

(3) A Makefile is produced to compile executable applications.

7.4 Current Limitations and Future Extensions

Even within the scope of single-CPU applications, the implementation still possesses several limi-

tations. First, nodes in an ATG can only be instantiated by source code and not, for example, a

27

binary application which uses standard-input and output to communicate. The reason is obvious:
our buffer allocation and instantiation is realized by source code translation.

Another limitation is that the Makefile, when executed, generates a monolithic compiled kernel
which implements the given ATG.

But these two problems are induced by the properties of most existing runtime system, and
are not inherent to our design methodology. The problem is simple: there exist many different
kernel models, each of which possesses its own native input-output mechanisms. Nonetheless, we
are currently investigating specific real-time operating systems, and associated threads packages,

which should allow us to relax these limitations.

8 Conclusion

We have presented a four-step design methodology to help synthesize end-to-end requirements into
full-blown real-time systems. Our framework can be used as long as the following ingredients are
provided: (1) the entity-relationships, as specified by an asynchronous task graph abstraction; and
(2) end-to-end constraints imposed on freshness, input correlation and allowable output separation.
This model is sufficiently expressive to capture the temporal requirements — as well as the mod-
ular structure — of many interesting systems from the domains of avionics, robotics, control and
multimedia computing.

However, the asynchronous, fully periodic model does have its limitations; for example, we
cannot support high-level blocking primitives such as RPCs. On the other hand this deficit yields
significant gains; e.g., handling streamed, tightly correlated data solely via the “virtual sequence
numbers” afforded by the rate-assignments.

There is much work to be carried out. First, the constraint derivation algorithm can be extended
to take full advantage of a wider spectrum of timing constraints, such as those encountered in
input-driven, reactive systems. Also, we can harness finer-grained compiler transformations such
as program slicing to help transform tasks into read-compute-write-compute phases, which will even
further enhance schedulability. We have used this approach in a real-time compiler tool [7], and
there is reason to believe that its use would be even more effective here.

We are also streamlining our search algorithm, by incorporating scheduling-specific decisions
into the constraint solver. We believe that when used properly, such policy-specific strategies will
help significantly in pruning the search space.

But the greatest challenge lies in extending the technique to distributed systems. The output
and its inputs do not necessarily reside in the same processor in distributed systems, and there
may be arbitrary numbers of network links from an input to the output. The characteristics
of the network should be considered in conjunction with those constraints presented earlier on.
Accordingly, constraints solving strategy should be changed to reflect the network characteristic as
another constraints. Certainly a global optimization is impractical, since the search-space is much
too large. Rather, we are taking a compositional approach — by finding approximate solutions for

each node, and then refining each node’s solution-space to accommodate the system’s bound on

28

network utilization.

Acknowledgements
The authors gratefully acknowledge Bill Pugh, Jeff Fischer, Ladan Gharai and Tefvik Bultan,

whose valuable suggestions greatly enhanced the quality of this work.

References

[1]

[2]

[10]

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Proc. of IFEF

Symposium on Logic in Computer Science, 1990.

N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-time scheduling: The
deadline-monotonic approach. In Proceedings of IEEE Workshop on Real-Time Operating
Systems and Software, pages 133-137, May 1991.

N. Audsley, A. Burns, M. Richardson, and A. Wellings. Data consistency in hard real-time
systems. Technical Report YCS 203 (1993), Department of Computer Science, University of
York, England, June 1993.

G. Berry, S. Moisan, and J. Rigault. ESTEREL: Towards a synchronous and semantically
sound high level language for real time applications. In Proceedings of IEEFE Real-Time Systems
Symposium, pages 30-37. IEEE Computer Society Press, December 1983.

A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. In
S. Son, editor, Principles of Real-Time Systems. Prentice Hall, 1994.

G. Dantzig and B. Eaves. Fourier-Motzkin Elimination and its Dual. Journal of Combinatorial
Theory (A), 14:288-297, 1973.

R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedulabil-
ity. In Proceedings of IEFE Real-Time Systems Symposium, pages 232-242. IEEE Computer
Society Press, December 1993.

R. Gerber, S. Hong, and M. Saksena. Guaranteeing end-to-end timing constraints by cali-
brating intermediate processes. In Proceedings of IEFE Real-Time Systems Symposium, pages
192-203. IEEE Computer Society Press, December 1994. Also to appear in IEFE Transactions

on Software Engineering.

M. Harbour, M. Klein, and J. Lehoczky. Fixed Priority Scheduling of Periodic Tasks with
Varying Execution Priority. In Proceedings, IEFE Real-Time Systems Symposium, pages 116—
128, December 1991.

F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems. [FEF
Transactions on Software Engineering, 12(9):890-904, September 1986.

29

[11] K. Jeffay. The real-time producer/consumer paradigm: A paradigm for the construction of
efficient, predictable real-time systems. In ACM/SIGAPP Symposium on Applied Computing,
pages 796-804. ACM Press, February 1983.

[12] M. Klein, J. Lehoczky, and R. Rajkumar. Rate-monotonic analysis for real-time industrial

computing. IEFFFE Computer, pages 24-33, January 1994.

[13] C. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-time envi-
ronment. Journal of the ACM, 20(1):46-61, January 1973.

[14] J. Ousterhout. Tecl and the Tk Toolkit. Addison Wesley, 1994.

[15] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-
time synchronization. IEFE Transactions on Software Engineering, 39:1175-1185, September
1990.

[16] K. Tindell. Using offset information to analyse static priority pre-emptively scheduled task
sets. Technical Report YCS 182 (1992), Department of Computer Science, University of York,
England, August 1992.

[17] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing fixed priority
hard real-time tasks. The Journal of Real-Time Systems, 6(2):133-152, March 1994.

[18] J. Xu and D. Parnas. Scheduling processes with release times, deadlines, precedence and
exclusion relations. I[EFFE Transactions on Software Engineering, 16(3):360-369, March 1990.

[19] X. Yuan, M. Saksena, and A. Agrawala. A Decomposition Approach to Real-Time Scheduling.
Real-Time Systems, 6(1), 1994.

[20] W. Zhao, K. Ramamritham, and J. Stankovic. Scheduling Tasks with Resource requirements
in a Hard Real-Time System. IFEE Transactions on Software Engineering, SE-13(5):564-577,
May 1987.

30

