
ABSTRACT

Title of Thesis:  NITROGEN FIXATION IN BENTHIC 
MICROALGAL MATS: AN IMPORTANT, 
INTERNAL SOURCE OF “NEW” NITROGEN TO 
BENTHIC COMMUNITIES IN FLORIDA BAY

Eric Dale Nagel, Master of Science, 2004

Thesis Directed by: Professor Jeffrey Cornwell
Department of Marine, Estuarine and Environmental 
Science

The introduction of “new” nitrogen via nitrogen fixation may have a 

significant effect on nitrogen availability in estuaries and other partially enclosed 

aquatic systems.  This thesis examines rates of nitrogen fixation associated with 

benthic microalgal communities in Florida Bay to determine the relative importance 

of this source as compared to external loads of nitrogen to the system.  

Nitrogen fixation was measured using a number of experimental techniques to 

calibrate the use of the acetylene reduction assay and to determine the suitability of 

the N2:Ar comparison technique for measuring rates of nitrogen fixation.  Nitrogen 

fixation was found to be mediated by benthic microalgae at the surface of the 

sediments in Florida Bay, and higher rates of fixation were measured in areas 

dominated by benthic microalgal mats.  Nitrogen fixation was highest in the relatively 

phosphorus-rich western basins and was stimulated by experimental phosphorus 

additions, suggesting that nitrogen fixation is partially phosphorus-limited.



NITROGEN FIXATION IN BENTHIC MICROALGAL MATS: AN IMPORTANT, 
INTERNAL SOURCE OF “NEW” NITROGEN TO BENTHIC COMMUNITIES IN 

FLORIDA BAY

by

Eric Dale Nagel

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Advisory Committee:

Professor Jeffrey Cornwell, Chair
Professor W. Michael Kemp
Professor Judith M. O’Neil



©Copyright by
Eric Dale Nagel

2004



ii

ACKNOWLEDGEMENTS

I would like to first thank my graduate committee; Dr. Jeff Cornwell, Dr. W. 
Michael Kemp, and Dr. Judy O’Neil; for their guidance, patience and at times 
criticism.  I would like to thank everyone who assisted me in the collection and 
analysis of samples, including Mike Owens, Becky Holyoke, Jessie Burton, Debbie 
Hinkle, Erica Kiss, Chris Chick, and Janet Krenn.  Thanks to Tom Frankovich and 
Art Schwarzschild for the use of their microscope at the Key Largo lab.  Thank you to 
Laurie van Heukelem and Crystal Thomas at Analytical Services for their help in 
analyzing the chlorophyll samples and to the folks at the Stable Isotope Laboratory at 
the University of California-Davis for their work to analyze 15N fractionation 
samples. Thank you to my colleagues at the Subcommittee on Coast Guard and 
Maritime Transportation in the U.S. House of Representatives for their understanding 
in allowing me time to complete and defend this thesis. Thank you to everyone at 
HPL for their friendship and encouragement.  

Funding for this research was made possible by a grant as part of the South 
Florida Ecosystem Research and Monitoring Program of NOAA Coastal Ocean 
Program and a grant from Horn Point Laboratory. 

I’d like to say thank you to my family and friends who, though far away, were 
always there for me.  Lastly, thank you to Jessica Davis for the hours of work that she 
put into editing this work and everything else that has made everything so much more 
bearable over the last few years.  I look forward to repaying the favor in the near 
future.



iii

TABLE OF CONTENTS

Acknowledgements………………………………………………………………….ii
Table of Contents……………………………………………………………………iii
List of Tables………………………………………………………………………..iv
List of Figures………………………………………………………………………..v

Chapter 1: Building a case for benthic nitrogen fixation as a significant nitrogen      
source……………………………………………………………….. 1

Background and Description of Study Site…………………………………. 2

Chapter 2: An analysis of methods………………………………………………6 
Introduction…………………………………………………………………. 6
Materials and methods………………………………………………………13

Study site…………………………………………………………… 13
Sampling…………………………………………………………… 15
Whole cores and slurries…………………………………………… 17
Acetylene reduction assay (ARA)………………………………….. 19
15N amendment……………………………………………………... 21
N2:Ar comparison….. ……………………………………………… 22

Results……………………………………………………………………… 24
Discussion………………………………………………………………….. 30
Conclusions………………………………………………………………….46

Chapter 3: Magnitudes, patterns and factors of limitation……………………... 48
Introduction………………………………………………………………… 48
Methods.……………………………………………………………………. 52

Study site…………………………………………………………… 52
Sampling…………………………………………………………… 56
Acetylene reduction assay………………………………………….. 57
Inhibitors…………………………………………………………… 59
Nutrient amendments………………………………………………. 61
Sediment chlorophyll measurements………………………………. 61
Other measurements………………………………………………... 62

Results……………………………………………………………………… 63
Description of nitrogen fixation: magnitudes, annual and 
   spatial patterns…………………………………………………… 63
Factors controlling nitrogen fixation………………………………. 66

Discussion………………………………………………………………….. 75
Conclusions………………………………………………………………… 95

Bibliography………………………………………………………………………... 97



iv

LIST OF TABLES

Table 1:  Review of nitrogen fixation rates measured by the acetylene reduction assay 
and 15N amendment techniques that have been reported in the 
scientific literature………………………………………………………….. 10 

Table 2:  Identification and description of study sites……………………………… 16

Table 3:  Experimentally-determined ratios of nitrogen fixation measured by the 
15N amendment and acetylene reduction assay techniques..………………... 31

Table 4:  Summary of average nitrogen fixation rates by basin and by season…….. 68

Table 5:  Comparison of nitrogen fixation rates measures in this study to rates   
reported in the scientific literature………………………………………….. 89

Table 6:  Comparison of internal inputs of nitrogen calculated by this study to   
reported external inputs of nitrogen………………………………………… 94



v

LIST OF FIGURES

Figure 1:  Comprehensive Everglades Restoration Plan…………………………….. 4

Figure 2:  Map of Florida Bay including location of the study sites……………….. 14

Figure 3:  Diagram of whole core assays…………………………………………… 18

Figure 4:  Characteristic regression curve used to determine nitrogen fixation rate.. 26

Figure 5:  Comparison of nitrogen fixation rates measured in whole cores and 
slurries……………………………………………………………………… 27

Figure 6:  Comparison of nitrogen fixation rates measured in seagrass-dominated and 
BMA-dominated areas……………………………………………… 28

Figure 7:  Nitrogen fixation in the dark as compared to rates measured in the   
photoperiod…………………………………………………………. 32

Figure 8:  Variation in the rate of nitrogen fixation over a multiple day incubation.. 33

Figure 9:  Oxic/anoxic effects on nitrogen fixation………………………………… 34

Figure 10:  15N enrichment as a means of determining nitrogen fixation…………... 35

Figure 11:  Comparison of nitrogen fixation rates measured by the acetylene    
reduction assay versus 15N enrichment……………………………... 36

Figure 12:  Comparison of nitrogen fixation rates measured by the acetylene  
reduction assay versus the N2:Ar comparison technique…………… 38  

Figure 13:  Map of Florida Bay including location of the study sites……………… 54

Figure 14: Map of Taylor Slough…………………………………………………... 55

Figure 15:  Diagram of whole core assays………………………………………….. 60

Figure 16:  Photograph of the benthic microalgal assemblage under microscopy…. 65



vi

Figure 17:  Histogram displaying the frequency of measured rates of nitrogen 
Fixation...…………………………………………………………… 67

Figure 18:  Annual profile of nitrogen fixation rates at site 5……………………… 69

Figure 19:  Comparison of nitrogen fixation rates along an east-west transect…….. 70

Figure 20:  Comparison of water column ammonium concentrations along an east-
west transect………………………………………………………… 71

Figure 21:  Comparison of pore water ammonium concentrations along an east-west  
transect……………………………………………………………… 72

Figure 22:  Linear regression relating rates of nitrogen fixation and measurements of 
sediment chlorophyll………………………………………………... 74

Figure 23:  Effects of specific inhibitors on nitrogen fixation rates………………... 76

Figure 24:  Effect of sodium molybdate……………………………………………. 77

Figure 25:  Effect of ammonium amendments on nitrogen fixation rates………….. 78

Figure 26:  Effect of phosphorus amendments on nitrogen fixation rates………….. 79

Figure 27:  Effects of nutrient amendments on rates of nitrogen fixation………….. 81



1

Nitrogen fixation in benthic microalgal mats: an important, internal source of 

“new” nitrogen to benthic communities in Florida Bay

Chapter 1 – Background and Introduction: Building a case for benthic nitrogen 

fixation as a significant nitrogen source

Benthic nitrogen fixation has been identified as a significant internal source of 

“new” nitrogen (sensu Dugdale and Goering 1967) in numerous subtropical and 

tropical estuaries worldwide (Patriquin and Knowles 1972, Capone et al. 1979, 

Charpy-Roubaud et al. 2001).  Nitrogen availability in these estuarine systems can be 

described as a function of numerous internal and external processes that increase and 

consume available concentrations of nitrogen.  Introductions of “new” nitrogen 

through processes such as nitrogen fixation have been shown to increase rates of 

primary production (sensu Dugdale and Goering 1967) and have been identified as 

major nitrogen sources to satisfy, in part, the nitrogen demand within estuarine 

systems (Charpy-Roubaud et al. 2001).  This thesis examines rates and patterns of 

nitrogen fixation in Florida Bay and attempts to determine the relative significance of 

this nitrogen source to overall nitrogen availability. 

Nutrient availability in Florida Bay appears to be heavily influenced by 

internal processes, as compared to other subtropical estuarine systems.  Florida Bay is 

a very shallow system (~ 1 m on average) and is sectioned by numerous, natural 

carbonate mud-bank formations that partially impede the movement of water 

(Holmquist et al. 1989).  These mud banks subdivide the bay into a series of partially 
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isolated basins that often display differences in salinities and other parameters from 

adjacent basins.  The observation of these differences between waters located so close 

to each other suggests that there may also be distinct differences in concentrations of 

nitrogen, phosphorus and other nutrients that result from internal processes that 

govern the generation and consumption of these nutrients.

Background and Description of the Study Site

Large-scale modifications to the flow of water through the Kissimmee-

Okeechobee-Everglades system over the past century have combined with the natural 

geography of Florida Bay to further isolate the system from potential nutrient sources 

both upstream and downstream of the bay.  Under natural conditions, freshwater 

moved south from the Florida peninsula as sheetflow through the Taylor Slough 

system into northeastern reaches of Florida Bay.  This flow has, however, been 

interrupted by the construction of numerous canals and flow control structures that 

have resulted in the diversion of large volumes of freshwater to agricultural areas, 

municipalities and to sea.  Freshwater flow rates into Florida Bay from 1940-1986 

decreased 59% from the levels measured in 1881-1939 (Smith et al. 1989). This 

reduction in the amount of freshwater flowing into Florida Bay lessens the effect of 

external loading from upstream systems as a source of nutrients to the waters of 

Florida Bay.  Furthermore, natural impediments to water flow in the form of the 

carbonate mud-banks, diminish the effects of these upstream sources on waters in the 

central and western parts of the bay even more.
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Concurrent with these changes in water flow has been the increasing 

incidence and duration of hypersalinity events in Florida Bay (greater than 50 psu) 

and seagrass die-back (Zieman et al. 1999).  These events have spawned great interest 

in both the research and management communities in understanding the current state 

of Florida Bay and what strategies can be taken (if there are any) to restore Florida 

Bay to the “healthy” state that was observed only decades ago.  

The Federal government, in cooperation with the State of Florida and local 

entities, has recently initiated the Comprehensive Everglades Restoration Plan 

(CERP) (Figure 1).  CERP is a multi-year, large-scale project that will restore water 

flow through the Florida Everglades and eventually into Florida Bay in order to return 

the overall system to a more natural state.  However, one of the consequences of 

returning water flows to historical (or nearer to historical) conditions may be an 

influx of nutrients from areas that support significant agriculture at the northern 

margin of the present-day Everglades.  In order to determine the possible effect of 

this influx, it is necessary to understand the present state of nutrient availability 

within Florida Bay. 

Previous investigations into nitrogen cycling within Florida Bay have 

observed a high influx of nitrogen via advection of waters from the Gulf of Mexico 

across the western reaches of Florida Bay (Rudnick et al. 1999).  Inputs of nitrogen 

from the Florida peninsula, the islands of the Florida Keys, advection from the 

Florida Strait and via precipitation were orders of magnitude lower.  However, the 

effect that inputs from the Gulf of Mexico may have on overall nitrogen availability 

in Florida Bay is very much uncertain since much of the water that enters western



4

Courtesy U.S. Army Corps of Engineers, CERP

Figure 1.  The Comprehensive Everglades Restoration Plan (CERP) is a multi-year, 
multi-million dollar federal-state partnership to restore water flow through the 
Kissimmee-Okeechobee-Everglades system.  The project includes more than 40 
restoration projects and is designed to bring about environmental improvements in the 
Florida Everglades and Florida Bay by 2010.
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Florida Bay quickly moves to the Atlantic Ocean via a gap in the Florida Keys 

(Rudnick et al. 1999).  Therefore, internal processes, such as nitrogen fixation, are 

hypothesized to have a significant role in determining overall nitrogen availability in 

the system.

Placing the Focus on Internal Processes

Preliminary investigations into internal cycling processes in Florida Bay have 

observed very high rates of denitrification throughout the bay and have suggested that 

rates of nitrogen fixation may also be extremely high (Cornwell et al. in prep).  These 

measurements were made by employing the N2:Ar comparison technique (Kana et al. 

1994, 1998) which measures nitrogen fixation indirectly by analyzing the 

disappearance of dinitrogen from the water column, presumably due to nitrogen 

fixation that occurs in the sediments.  

This thesis seeks to directly measure rates of benthic nitrogen fixation in 

Florida Bay, to determine the significance of this source to overall nitrogen loading in 

the system, and to verify the accuracy of measurements of nitrogen fixation rates as 

determined by the N2:Ar comparison technique.  In addition, investigations were 

made to describe seasonal patterns of nitrogen fixation as well as additional factors 

that exert control over benthic nitrogen fixation in Florida Bay.
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Nitrogen fixation in benthic microalgal mats: an important, internal source of 

bioavailable nitrogen to benthic communities in Florida Bay

Chapter 2 – A methods comparison  

Introduction

Nitrogen is often identified as the most limiting nutrient required for aquatic 

vegetative growth and production in estuarine and marine systems (Ryther and 

Dunstan 1971, Howarth et al. 1988a).  The size of the available nitrogen pool within 

these systems is controlled by nitrogen loading from external sources and the internal 

generation of nitrogen by internal processes (Kemp and Cornwell 2002).  Fixation of 

atmospheric dinitrogen (N2) by microbial organisms is one internal process that may 

significantly increase the availability of this necessary resource to biota.  Nitrogen 

fixation has been recognized as a significant source of “new” nitrogen (sensu Dugdale 

and Goering 1967) that can support high rates of production in numerous estuarine 

and marine systems worldwide (Capone 1988). 

In shallow, subtropical systems such as Florida Bay, sufficient light penetrates 

to the sediments year-round to support large communities of seagrass and benthic 

microalgae (sometimes referred to as microphytobethos).  Oligotrophic conditions in 

the water column do not support abundant phytoplankton populations, resulting in 

low turbidity and little attenuation of light prior to reaching the sediment surface.  

Rates of primary production in Florida Bay are dominated by benthic vegetation as 
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opposed to organisms within the water column (Forqurean et al. 1992).  The 

predominance of benthic productivity over productivity within the water column 

leads to an increased significance in nutrient cycling processes at the sediment-water 

interface (Kemp and Cornwell 2002).  In systems dominated by benthic vegetation 

such as Florida Bay, sediment pore waters have been identified as the dominant 

source of nutrients (Short 1987).  Thus, processes that increase the availability of 

necessary nutrients near and within the sediments likely have an important role in 

sustaining growth of seagrasses and other aquatic vegetation.  Nitrogen fixation 

within the benthos has been identified as a major internal source of “new” nitrogen in 

other systems (Smith 1984, Charpy-Roubaud et al. 2001) and may be responsible, in 

part, for supporting the abundant benthic vegetation observed in Florida Bay.  

Nitrogen fixation is a common feature in marine and estuarine systems 

worldwide and has been partially credited with supporting high rates of vegetative 

growth and production in oligotrophic estuarine and marine systems in the tropics and 

subtropics (Capone 1988, Howarth et al. 1988a, Paerl et al. 1994).  The process of 

nitrogen fixation involves the reduction of triple-bonded atmospheric dinitrogen to a 

simple amine form (NHx) which can then be incorporated into cellular material 

(Postgate 1982, Capone 1988).  This chemical reaction is mediated by the enzyme, 

nitrogenase, and is an energy-consuming process.  The energy required to run the 

reaction is derived from the respiration of photosynthetically or chemosynthetically-

produced organic matter (Capone 1988).  Nitrogen fixation is a process that is carried 

out only by prokaryotic organisms including numerous bacterial classes and 

photoautotrophic cyanobacteria (Postgate 1982, Capone 1988).  
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Rates of benthic nitrogen fixation have been assessed using numerous 

techniques in marine and estuarine systems worldwide over the past half-century.  

However, the methods for determining nitrogen fixation rates are fraught with 

methodological drawbacks and assumptions that make the assessment of nitrogen 

fixation under natural conditions a difficult endeavor (Seitzinger and Garber 1988).  

The two most prevalent techniques found within the literature are 15N addition, a 

technique that measures the production of reduced nitrogen (15NHx), and the 

acetylene reduction assay (ARA), an approach that measures the activity of the 

nitrogenase enzyme.  

Much of the literature describing nitrogen fixation is based on rates calculated 

using the acetylene reduction assay (ARA) as first described by Stewart et al. (1967) 

and Hardy et al. (1968).  ARA takes advantage of the non-specificity of the nitrogen 

fixing enzyme, nitrogenase, to triple-bonded molecules.  The reduction of the triple-

bonded acetylene (C2H2) molecule to ethylene (C2H4) is measured as a proxy indicator 

for the rate of dinitrogen reduction to ammonia (Capone 1988).  The technique 

assumes a 3:1 ratio between the total moles of acetylene reduced to moles of N2

reduced based on the number of electrons transferred in each reaction.

However, the theoretical 3:1 ratio has been examined in a number of studies 

(Patriquin and Knowles 1972, Carpenter et al 1978, Seitzinger and Garber 1987, 

O’Donohue et al 1991, and Charpy-Roubaud et al. 2001) using concurrent 15N 

addition experiments and experimentally-determined ratios have been found to vary 

somewhat from the theoretical value.  These observed variations range from slight to 

significant differences from the theoretical ratio and have led to a call by some 
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authors for calibration of the ARA with simultaneous 15N amendment assays in all 

studies (Table 1).  

15N amendment assays have the advantage of directly measuring the process 

of nitrogen fixation as opposed to a measurement of nitrogenase activity, ARA.  

However, 15N amendments are much more expensive to analyze than ARA and 

require the “sacrifice” of cores at prescribed time points in order to assess the relative 

15N enrichment over time.  In contrast, ARA assays can be repeatedly sampled by 

removing small volumes of the gas headspace without adversely affecting the core or 

living biomass and are analyzed rapidly and cost-effectively by gas chromatography.  

The approach of calculating fixation rates within single cores rather than across a 

series of cores, as is the case in 15N amendment, may result in more accurate 

measurements of nitrogen fixation over time.  Single cores may also be useful in the 

identification and description of the effects of small variations observed between 

individual cores (e.g. BMA biomass, sediment column height etc.) on rates of 

nitrogen fixation.  

Over the last decade, rates of benthic nitrogen fixation have also been 

measured by membrane-inlet mass spectrometry (MIMS) as described in Kana et al. 

(1994).  This method of N2:Ar comparison has been used to describe patterns of 

nitrogen and oxygen cycling between the sediments and water columns in numerous 

estuarine systems (Kana et al. 1998, Sundback et al. 2000, Newell et al. 2002, Bernot 

et al. 2003).  N2:Ar ratios are a measure of the net appearance/disappearance of N2

relative to argon concentrations from the water phase as a function of denitrification 

and nitrogen fixation.  Denitrification results in a net increase in the appearance of N2
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System Reported C2H2 : N2 value Source

Benthic Microalgal Mats
  Salt marsh        3.6 Patriquin et al. (1978)
  Intertidal mud flats     4.7-6.9 Potts et al. (1978)
  Benthic Microalgae     1.8-4.8 Charpy-Roubaud et al. (2001) 

1.2-5.9 This Study

Seagrass Rhizospheres
Zostera marina     0.5-6.2 Patriquin and Knowles (1972)

1.7-4.1 Capone and Budin (1982), 
Capone (1983)

Zostera capricorni         3.1 O’Donohue et al. (1991)
Syringodium filiforme     0.8-15.5 Patriquin and Knowles (1972)
Thalassia testudinum     2.0-3.3 Patriquin and Knowles (1972)

 Subtidal sediments
  Anaerobic      12-94  Seitzinger et al. (1987)

adapted from Seizinger et al. (1987)

Table 1.  A table listing experimentally-determined ratios of nitrogen fixation as 
determined by use of the acetylene reduction assay and 15N amendment techniques.  
Nitrogen fixation rates were determined using both methods contemporaneously and 
results were compared to calculate a ratio describing the relationship between 
nitrogenase activity (as measured by ARA) and direct measurements of nitrogen 
fixation (as measured by 15N amendment).  ARA assumes a theoretical ratio of 3:1 to 
relate the reduction of acetylene to the reduction of dinitrogen.  In some case, 
experimentally-calculated ratios have been found to vary greatly from this ratio; 
however, the majority of calculations have been found in the vicinity of the 
theoretical 3:1 ratio.
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while nitrogen fixation causes a net decrease of water phase dinitrogen.  The final 

figure calculated by N2:Ar comparison is a net estimate and gives a comparative 

magnitude of nitrogen fixation in terms of denitrification rather than a true rate of 

nitrogen fixation.  However, periods and magnitudes of net nitrogen inputs (via 

fixation as compared to denitrification) can be calculated using N2:Ar comparison 

and, thus, it can be a useful instrument when investigating nitrogen fixation.  

Assessments of nitrogen fixation rates in benthic regimes have also differed in 

terms of the treatment of the sediments during the duration of the experiment.  

Slurries were formed for ARA analysis by mixing a sediment column of known depth 

and a volume of overlying water.  The homogenization of the sediments allows for 

complete introduction of the amended gases in the headspace to all parts of the 

sediments.  However, slurry formation also results in the destruction of vertical 

structure within the sediment column as well as possible burial of photoautotrophic 

organisms that may be diazotrophic.  Treatment of the sediment in the form of a 

whole core allows for the structural integrity and vertical zonation within the 

sediment column to remain intact.  The use of whole cores also has the advantage of 

being directly comparable to whole cores analyzed by the N2:Ar comparison 

techniques.

However, analysis of nitrogen fixation via ARA in intact cores may 

underestimate total values of nitrogen fixation.  Incomplete diffusion into  and out of 

the sediments may preclude the penetration of sample gases to nitrogen fixing zones 

at depth (Patriquin and Denike 1978) or may lead to the incomplete recovery of signal 

of reduced compounds from the sediments (Flett et al. 1975).  Conversely, slurry 
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formation likely results in the release of organic substrates and other nutrients from 

deep in the sediment column to surficial nitrogen fixing organisms and, thus, may 

represent more of a potential rate of nitrogen fixation than that seen under natural 

conditions (Welsh et al. 1996a; 1996b).  

This study focused on three objectives: 1) to calibrate the use of the acetylene 

reduction assay by simultaneously measuring nitrogen fixation via 15N amendment; 2) 

to determine the accuracy of nitrogen fixation measured via the acetylene reduction 

assay in whole cores; and 3) to compare measurements of nitrogen fixation as 

determined by the N2:Ar comparison technique with simultaneous measurements 

using other analyses.

In this study, several techniques and treatments; acetylene reduction assays in 

intact cores and sediment slurries, 15N amendment to whole cores and the N2:Ar 

comparison method; were used concurrently to determine rates of benthic nitrogen 

fixation in Florida Bay from August 2002-August 2003.  To account for potential 

sources of error associated with each procedure, intact cores and slurries were 

assayed simultaneously in order to accurately portray rates of BMA-mediated 

nitrogen fixation in Florida Bay.  Incubations were done over numerous natural diel 

cycles to ensure sufficient diffusion of acetylene and 15N.  
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Materials and Methods

Study site

The study was set in Florida Bay (Fig. 2), a subtropical estuary situated 

between the Florida peninsula and the nearly-solid line of islands that make up the 

Florida Keys.  Florida Bay is a shallow body of water (< 3 m) partitioned by 

numerous natural carbonate mud bank formations that divide the bay into a series of 

smaller basins.  Adjacent basins often show distinct differences in salinity and 

nutrient profiles as a result of diminished water exchange over the banks and, thus, 

were treated and sampled separately to determine overall patterns of benthic nitrogen 

fixation throughout the bay.  

Intact sediment cores and bulk sediment samples were collected in 5 basins 

located throughout Florida Bay (Fig. 2).  These sites were numbered along a transect 

from the mouth to the head of the bay (roughly a southwest to northeast direction) 

(Table 2).  These sites were selected to give the greatest spatial coverage over discrete 

zones identified by previous studies (Turney and Perkins 1972, Wanless and Tagett 

1989, Zieman et al. 1989, and Boyer et al. 1997).  These locations were also sampled 

in previous projects to describe patterns of nitrogen cycling (Cornwell unpublished 

data).  

All sites were shallow in depth (maximum depth ~ 2 m) and were generally 

covered with well-developed seagrass beds dominated by Thalassia testudinum.  

Interspersed within seagrass meadows were smaller patches completely devoid of 

macrophytes.  These patches, termed “BMA-dominated” in this paper, are marked by 
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Modified from Forqurean and Robblee (1999)
Inset graphic courtesy of the Integration and Application Network’s, 
University of Maryland Center for Environmental Science, symbol library

Figure 2 – Map of Florida Bay showing the five sample areas: Rabbit Key Basin (Site 
1), Barnes Key (Site 2), Rankin Key (Site 3), Little Madeira Bay (Site 4), and Sunset 
Cove (Site 5).  The sampling areas were located so as to measure rates of nitrogen 
fixation in a number of discrete zones described in previous studies (Zieman et al. 
1989).  
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the presence of a well-developed mat consisting of numerous classes of benthic 

microalgae and associated microorganisms, hereafter termed “BMA.”  BMA 

communities were found throughout the bay in both seagrass-dominated and BMA-

dominated areas at the sediment-water interface.  The five sites differed in relative 

coverage by seagrass and BMA with two basins, Sites 1 and 4 being completely 

dominated by seagrasses and devoid of any BMA-dominated zones (Table 2).  

Sampling

All samples were taken via SCUBA and transported to the laboratory for 

analysis.  Experiments with sediment samples were initiated no more than 12 h after 

collection.  Samples were collected as intact cores in clear acrylic plastic tubes (15 

cm height, 3.75 cm inner diameter or 30 cm height, 6.25 cm inner diameter) or cutoff 

60 mL plastic syringes (5 cm height, 1.6 cm inner diameter) for slurrying with water 

collected at from each site.  Replicate cores and sediment samples for slurries were 

collected (N = 2-5, nearly all experiments consisted of at least triplicate samples) to 

account for natural variability.  
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Table 2:  Five sites were sampled throughout Florida Bay.  The sites were numbered 
as above.  All sites contained areas that were dominated by seagrasses (seagrass-
dominated) and three of the five sites contained significant areas that were dominated 
by benthic microalgae (BMA-dominated) and marked by the complete absence of 
seagrasses.  The spatial extent of BMA-dominated areas varied between sampling 
periods; however BMA-dominated zones were consistently present.  Site 4 was 
observed to alternate between seagrass-dominated and BMA-dominated states; 
however the site was completely seagrass-dominated during the only season that 
nitrogen fixation was measured.

Site Basin Location Vegetation Type

1 Rabbit Key Basin 24o 58.355’N, 80o 50.736’ W
100% seagrass-dominated

0% BMA-dominated

2 Barnes Key Basin 24o 58.368’ N, 80o 47.234’ W
75% seagrass-dominated

25% BMA-dominated

3 Rankin Key 25o 07.410’ N, 80o 47.524’ W
50% seagrass-dominated

50% BMA-dominated

4 Little Madeira Bay 25o 11.447 N, 80o 38.169’ W
100% seagrass-dominated

0% BMA-dominated

5 Sunset Cove 25o 05.737’ N, 80o 27.476’ W
50% seagrass-dominated

50% BMA-dominated
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Whole cores and slurries

Intact cores consisted of ~ 7.5 cm height of sediment overlain by a short water 

phase and 29 mL gas headspace (Fig. 3).  Cores were sealed with a gas-tight clear 

acrylic lid and bottom stopper.  Suspended from the lid was a short, magnetic stir bar 

to gently stir the water phase without physically disturbing the surficial BMA layer.

A rubber septum was placed into the plastic lid as an injection port through which the 

gas head space could be amended and sampled.  

Sediment slurries were made in glass serum vials (72 and 145 mL total 

volume) by adding approximately 10 mL of site water to a 5 cm high sediment 

column (~ 40 mL of wet sediment).  The sediment/water mixture was sealed in a gas-

tight serum vial with a rubber septum held in place by a crimped aluminum seal (22 

mL headspace) or Erlenmeyer flask capped with a gas-tight rubber stopper (90 mL 

headspace).  

Both cores and slurries were incubated in a water bath held inside clear, 

acrylic manifolds that allowed light to reach sediment surfaces.  The experimental 

setup was located under full ambient sunlight and the water bath was intermittently 

replaced to maintain a natural temperature range (25-32 oC) throughout the course of 

the experiment.   Experiments were conducted over one or multiple natural diel cycles 

and manifolds were completely covered during overnight periods to negate any 

possible stimulatory effects from artificial lights located near the experimental setup.  

Samples were then incubated according to one of three treatments to obtain rates of 

nitrogen fixation: the acetylene reduction assay, 15N amendment or N2:Ar comparison 

techniques.
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Image courtesy of the Integration and Application Network, 
University of Maryland Center for Environmental Science 

Figure 3 – Diagram of whole cores showing the air headspace, water phase, and 
sediment column.  The benthic microalgal mat was found at the surface of the 
sediment column and was generally 0.5 – 1 cm thick.  A magnetic stir bar created 
flow within the water phase to bring about a more complete diffusion in the water 
phase and into and out of the sediment column.  Gas samples were obtained through a 
rubber septum set into the top of the core.

  Gas headspace 
 (~ 2.5 cm height)

  Water phase 
 (~ 5 cm height)

Sediment Column 
 (~ 7.5 cm height)

3.75 cm

BMA mat ~ 0.5 – 1 cm
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Acetylene Reduction Assay (ARA)

Intact sediment cores and sediment slurries were analyzed using the acetylene 

reduction assay (Stewart et al. 1967, Hardy et al. 1968 as modified by Bebout et al. 

1987).  Acetylene was generated by reacting calcium carbide (CaC2) with deionized 

water.  Assays were initiated by adding a volume of acetylene equal to ten percent of 

the total headspace to cores and slurries following the removal of an equal volume of 

air from the headspace.  Assays were initiated during the dark period and allowed to 

incubate approximately 6-7 hours before the first sample was taken.  The first sample 

was always taken just prior to the beginning of the photoperiod (sunrise) or shortly 

thereafter.  The headspace of each core/slurry was sampled by removing a 0.5 mL air 

volume via a Hamilton gas-tight syringe approximately 7-8 times per 24-hour cycle.  

Air samples were injected into pre-evacuated Exetainer (Labco Ltd. UK) vials 

(2 mL volume) and diluted with air to a final volume of 2 mL.  Samples were diluted 

to minimize the amount of gas that was removed from the headspace from each 

experiment during each sampling period.  Dilution effects were tested using a known 

concentration of ethylene gas and diluted samples were consistently found to have 

one quarter of the signal strength from undiluted samples.  Blanks using air were also 

analyzed and no ethylene signal was observed, suggesting that the dilution had no 

effect on the ethylene concentration that was measured.

Gas samples were transported to Horn Point Laboratory, Cambridge, MD, 

USA for analysis by gas chromatography.  A Shimadzu GC-8A instrument (flame 

ionization detector and HayeSep A column) was used to measure ethylene levels as 

calibrated by the use of a known ethylene standard.  Gas analyses were done within 
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one month of sampling.  Separate experiments showed that no appreciable ethylene 

signal was lost from the Exetainer vials during this time (data not shown).  Ultra-pure 

carrier (UPC) grade Helium was used as the carrier gas.   

Concentrations of dissolved ethylene in liquid phase were determined based 

on recorded water temperatures and ethylene solubility coefficients in water (Larkum 

et al. 1988), in addition to concentrations of ethylene in the headspace to obtain total 

ethylene measurements for each core/slurry.  Total ethylene values were converted to 

total concentrations of fixed nitrogen by applying the theoretical 3:1 ratio (moles 

acetylene reduced : moles dinitrogen fixed) assumed by the acetylene reduction assay.  

Total micromoles of nitrogen were calculated on an areal basis (using surface area 

enclosed by the acrylic core) and plotted against incubation time.  The linear

regression was then reported as the rate of nitrogen fixation for each core or slurry.  

A series of slurries were treated anaerobically to investigate rates of nitrogen 

fixation beyond the oxygen penetration depth within the sediment column.  Anaerobic 

headspaces were created by placing slurry mixtures in a sealed glove bag and 

removing air by vacuum.  Slurries were then amended with nitrogen (N2) gas and 

subsequently evacuated before again amending the slurries with N2 gas in order to 

establish a completely oxygen-free head space.  Anaerobic slurries were then treated 

with acetylene and monitored for ethylene production as mentioned above.

Blank cores were employed to account for the possible production of ethylene 

that could not be attributed to nitrogenase activity.  Blanks consisted of water phase 

with and without additions of acetylene and sediment cores/slurries with and without 

acetylene amendments.  No production of ethylene was observed under any of the 
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blank treatments leading to the conclusion that all ethylene produced in cores and 

slurries was the result of the reduction of acetylene by nitrogenase.  

15N Amendment

A series of whole cores (15 cm height, 3.75 cm inner diameter) was amended 

with volumes of 98 %+ 15N2 gas (Cambridge Isotope Laboratories, Inc.) to directly 

measure rates of nitrogen fixation in relation to simultaneous ARA experiments.  To 

initiate amendment assays, approximately half of the headspace (15 mL) was 

removed by syringe through a septum set into a gas tight lid and replaced with an 

equal volume of 15N2 gas.  Cores were incubated as described above (ARA section) in 

a water bath under natural light conditions with continuous water movement created 

within each core by a rotating magnetic stir bar.  

Duplicate cores were sacrificed at set time points to investigate nitrogen 

fixation over time.  The top 0.5 cm of the sediment column (composed primarily of 

the BMA assemblage) were removed manually and quickly frozen.  The frozen 

samples were then thawed to room temperature, dried, and ground manually before 

being sent for 15N/14N fractionation analysis by mass spectroscopy (Stable Isotope 

Facility, University of California at Davis).  Total moles of 15N were calculated from 

total masses of nitrogen and δ15N values observed in each sample.  The relative 

enrichment of BMA and associated sediment material over natural occurrences of 15N 

(as measured in separate cores sampled prior to 15N incubation) was wholly attributed 

to nitrogen fixation and was plotted in relation to incubation time.  
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N2:Ar Comparison

A series of whole cores (30 cm height, 6.25 cm inner diameter) were sampled 

at the same sites as described above to estimate the magnitude of nitrogen fixation as 

determined by the relative ratio of N2:Ar gas dissolved in the liquid phase of the 

experiment (N2:Ar comparison) (Kana et al. 1994, 1998).  Cores consisted of an intact 

sediment column and BMA mats overlain by a volume of water (no air headspace).  

After sampling, cores were placed in a water bath consisting of surface seawater from 

the appropriate site and bubbled overnight to encourage full oxygenation of the water 

phase.  In addition, bubbling resulted in the exchange of water within cores with 

surface water added to the incubator.  This action decreased any effect of 

nutrients/materials that were released from the pore waters during the process of 

coring on N2:Ar measurements.  Cores were covered overnight and allowed to 

equilibrate before sampling commenced the next morning.

After bubbling overnight, cores were carefully sealed with acrylic plastic lids 

to exclude any air or bubbles from the core.  Once sealed, water phases within cores 

were mixed continually by a magnetic stir-bar that was rotated by a motor-driven 

turntable.  

Water phase samples were collected by displacing a small volume of water 

within the core with site water.  The displaced volume was placed into an 8 mL glass 

vial, immediately fixed with a volume of mercury chloride (HgCl2), sealed with a 

glass stopper and stored in a water bath until analysis.  Water samples were analyzed 

within 2 weeks of collection.  Cores were first sampled in the dark (opaque cover 

wrapped around and over the incubator) for a series of time points and then placed 
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under natural light conditions (cover off) for a series of “light” measurements.  Total 

incubation time averaged 6-7 hours and was completed in one day.

Samples were analyzed for N2 appearance/disappearance from the water phase 

over time within and between light and dark treatments.  N2 concentrations were 

measured in relation to argon (Ar) concentrations via membrane-inlet mass 

spectroscopy (Kana et al. 1994, 1998) to describe the production or consumption of 

dinitrogen in the assays.  Due to the absence of any air headspace, all processes 

relating to the consumption and release of N2 in these cores was attributed to 

processes within the sediment and water phases.  Apparent decreases in N2 

concentrations within the water phase were recognized as uptake by the sediments 

(nitrogen fixation) and increased water phase concentrations were used to signify 

denitrification.  In separate experiments, denitrification was inhibited by the addition 

of methylfluoride (CH3F), a specific inhibitor of nitrification (Miller et al. 1993, 

Caffrey and Miller 1995) and thus denitrification, in order to accurately measure 

nitrogen fixation as measured by N2:Ar comparison without the lessening effect of 

denitrification.  

The total release/consumption of N2 as measured by N2:Ar comparison is a net 

figure (denitrification – nitrogen fixation) and cannot be compared directly to 

measurements of nitrogen fixation as described above.  However, the direction and 

magnitude of N2 appearance/disappearance as measured by the N2:Ar comparison 

method was compared qualitatively to other methods of determining rates of nitrogen 

fixation in this study.    
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Results

Acetylene reduction was observed in all intact core and sediment slurry assays 

indicating that nitrogen was being actively fixed in all basins that were investigated 

throughout the year.  Nitrogen fixation (as calculated from ethylene production) was 

generally linear over time (Fig. 4) and did not show a significant lag period before the 

initiation of ethylene production.  Blanks consisting of acetylene-amended water

phases and non-amended sediments and water phases showed no evolution of 

ethylene resulting in the conclusion that all observed ethylene had been generated via 

nitrogenase activity.  

Measured rates of nitrogen fixation ranged from 1-11 µmol N fixed  m-2  h-1 in 

slurry assays and from 0.5-14 µmol N fixed  m-2  h-1 in whole core assays (Fig. 5).  

Sediments dominated by benthic microalgal mats (BMA-dominated) showed much 

higher rates of nitrogen fixation than assays taken from within seagrass beds 

(seagrass-dominated) when treated as whole cores (Fig. 6).  Nitrogen fixation rates 

calculated in slurry assays showed much more similarity between seagrass-dominated 

and BMA-dominated assays.  Assays of nitrogen fixation at depth (depth fractions of 

the sediment column treated as slurries) revealed that rates of nitrogen fixation were 

highest within the top most centimeter of the sediment column suggesting that the 

highest rates of nitrogen fixation were occurring within the benthic microalgal 

community.  Highest rates of nitrogen fixation were observed during the photoperiod 

(Fig. 7) in both whole cores and slurries while slightly lower rates were found during 

the overnight hours for all seasons except late summer (August) when “dark” fixation 
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appeared to be more of an important component of overall BMA-mediated fixation 

(Fig. 8).

Sediment slurries showed similar to very high rates of nitrogen fixation as 

compared to rates derived from contemporaneous whole-core assays (Fig. 5).  The 

observed differences between the two techniques varied in magnitude by season and 

sample site.  The largest discrepancies between rates of nitrogen fixation as measured 

by the two techniques occurred in the summer (June).  Rates calculated from both 

techniques in the winter (January) and early spring (March), however, showed more 

similar magnitudes and in one case were opposite the observed summer trend as rates 

measured by whole cores at Site 3 were higher than those calculated from slurries.  

Slurries incubated under oxic conditions fixed nitrogen at similar to slightly higher 

rates than anoxic slurries (Fig. 9).

Profiles of benthic microalgal-mediated nitrogen fixation determined by 15N 

amendment showed a linear trend over the first light period (Fig. 10).  This initial 

trend was followed by a stochastic array of high and low measurements of 15N levels  

within the surficial BMA mat.  The magnitude and rate of nitrogen fixation calculated 

from the linear trend observed during the first diel period in 15N-amended cores 

agreed well with nitrogen fixation rates calculated from acetylene-amended whole 

cores (Fig. 11).  Measurements of nitrogen fixation from 15N amended cores were 

compared to measurements from ARA assayed cores, resulting in an average 

ARA:15N amendment of 3.40 (Table 3). 
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Figure 4 – Example of a linear regression curve (y = 4.47x – 20.8; r2 = 0.96) used to 
determine nitrogen fixation rates over in whole cores and slurries over time.  
Measurements over numerous time points were plotted at their time of sampling to 
generate a linear relationship.  The slope of the regression was reported as the rate of 
nitrogen fixation.  Incubations were carried over multiple diel periods and the dark 
(night) periods are designated by the black boxes at the top of the panel.  
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Figure 5 – Nitrogen fixation rates were measured in whole core assays and in 
sediment slurry assays.  Sediments from BMA-dominated (BMA) and seagrass-
dominated (SG) sediments were analyzed to determine rates of nitrogen fixation in 
slurry and whole core assays.  In general, rates measured in slurry assays were equal 
or greater than rates measured in whole cores.  Nitrogen fixation rates measured in 
slurries may reflect the effects of mixing the sediment column and increasing the 
availability of organic matter and nutrients to benthic microalgae at the sediment-
water interface.  
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Figure 6 – Nitrogen fixation rates were measured in whole core assays obtained from 
seagrass-dominated regions (whole cores - SG) and areas dominated by benthic 
microalgae (whole cores - BMA) in five basins of Florida Bay in June 2003.  
Nitrogen fixation rates were consistently higher in areas dominated by benthic 
microalgae.  An apparent trend of decreasing nitrogen fixation rates along a transect 
from the mouth of the bay (Site 1) to the head of the bay (Sites 4 and 5) was also 
observed.  The sediments at two sites (Sites 1 and 4) were completely colonized by 
stands of seagrass; therefore no nitrogen fixation rates in BMA-dominated sediments 
were measured in these sites. 
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Nitrogen fixation rates calculated by acetylene reduction ranged from 0.4-1.9 

times the rate as reported from 15N-amended cores with nitrogen fixation rates as 

determined by ARA being an average of 1.3 times higher than rates as measured by 

15N amendment.  This relative agreement between rates measured simultaneously by 

two separate techniques suggests that the 3:1 ratio (moles acetylene reduced to moles 

dinitrogen fixed) assumed by the acetylene reduction method is appropriate for 

benthic microalgal-mediated nitrogen fixation in Florida Bay.  

Whole cores assayed by N2:Ar comparison, showed a general pattern of net 

denitrification when incubated in the dark and net nitrogen fixation when exposed to 

ambient light conditions.  Variations in this pattern were observed, as denitrification 

was at times the dominant process during the photoperiod in certain basins.  

Variations in the magnitude of the nitrogen flux were also observed between basins 

and seasons and, in each case, were found to be much larger than measured rates of 

nitrogen fixation as determined by acetylene reduction and 15N amendment.  In June 

2003, measurements of net nitrogen fixation by N2:Ar comparison (determined by the 

disappearance of N2 from the water phase when exposed to light) overestimated 

measured rates of nitrogen fixation by a factor of 3-100 times (Fig. 12).  This estimate 

of nitrogen fixation via N2:Ar comparison is a net figure that subtracts the magnitude 

of denitrification and, therefore, intimates a much higher apparent rate of fixation.  

Cores treated with methylfuoride, an inhibitor of nitrification, also showed very high 

rates of apparent nitrogen fixation (120-544 µmol N fixed m-2 h-1) in the light as 

calculated by the N2:Ar comparison method (data not shown).  However, this high 

estimate of nitrogen fixation contradicts the relatively low rates (1-10 µmol N fixed 
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m-2 h-1) found by acetylene reduction and 15N amendment and may be an artifact of 

the N2:Ar comparison method rather than a true assessment of benthic nitrogen 

fixation.  

Discussion

Nitrogen fixation was measured simultaneously using multiple methods in 

order to more accurately determine rates of benthic microalgal-mediated nitrogen 

fixation within Florida Bay.  Rates calculated by the acetylene reduction assay (ARA) 

and 15N amendment showed similar estimates of nitrogen fixation.  Results obtained 

by N2:Ar comparison, however, consistently suggested rates of nitrogen fixation that 

were at least an order of magnitude higher than those found using other methods.  

Previous studies have described rates of nitrogen fixation using a variety of 

techniques.  The accuracy and validity of some of these methods have come into 

question, however, due to relationships and conditions assumed by each procedure.  

The accuracy of ARA, in particular, as a method of determining rates of nitrogen 

fixation has been a source of discussion within the scientific literature (Seitzinger and 

Garber 1987, Capone 1988, O’Donohue et al. 1991).  Acetylene reduction has been 

the preferred method for measuring rates of nitrogen fixation in many studies due to 

the ability to calculate nitrogen fixation in real time and the relative low cost of 

analysis associated with the technique.  However, acetylene reduction is an indirect 

measurement of nitrogen fixation because it describes the reduction of a similar 

triple-bonded substrate and assumes certain conditions to relate the magnitude and 

rate of reduced acetylene to nitrogen fixation.
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Site     Date ARA:15N amendment

Site 3 January 2003 1.20
2.13
3.74

Site 5 November 2002 2.34
5.17
5.82

Average 3.40

Table 3.  Experimentally determined ratios of nitrogen fixation rates as measured by 
the Acetylene Reduction Assay (ARA) and 15N amendment.  Nitrogen fixation was 
determined via the ARA technique in three replicate cores for each site.  Rates of 
fixation were compared to measurements of nitrogen fixation as determined by the 
linear regression of 15N enrichment in the BMA assemblage over time.  Individual 
comparisons varied from the theoretical 3:1 ratio (moles acetylene : moles nitrogen 
reduced by the nitrogenase enzyme per unit energy) assumed by the ARA method; 
however, the average value compared favorably to the expected ratio. 
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Figure 7 – A representative plot of nitrogen fixation over 1+ diel periods, showing a 
significant slowdown in the rate of fixation during the overnight period (designated 
by dark boxes at the top of the panel).  Regression line shows the rate of fixation 
overnight as compared to points measured during the first and second light periods.
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Figure 8 – A representative plot of nitrogen fixation over multiple diel periods 
displaying variable rates of fixation for each light period.  Rates of nitrogen fixation 
were reported as the slope of the linear regression; however these slopes occasionally 
included noticeable deviations from the linear relationship.  In this graph, nitrogen 
fixation during the overnight hours appears to have a significant effect on the overall 
relationship.
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Figure 9 – Comparison of nitrogen fixation rates measured in both oxic and anoxic 
slurry assays using sediments obtained from several basins in Florida Bay.  Nitrogen 
fixation was generally observed to occur at a similar rank when measured under oxic 
and anoxic conditions.  In a few cases, anoxic conditions appeared to inhibit nitrogen 
fixation as compared to slurries incubated under oxic conditions.  
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Figure 10 – A plot displaying 15N enrichment (nitrogen fixation) in the benthic 
microalgal assemblage in whole core assays over time.  15N enrichment progressed in 
a nearly linear fashion for the first complete diel cycle after which this trend appears 
to dissipate.  The breakdown in the linear trend likely reflects regeneration and 
cycling mechanisms that removed the newly-fixed nitrogen from the BMA 
assemblage.
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Figure 11 – Contemporaneous investigations into nitrogen fixation rates using the 
acetylene reduction assay (solid circle, square and inverted triangle) and the 15N 
enrichment technique (dotted triangle) over multiple diel periods using whole cores 
obtained from site 5 (top) and site 3 (bottom) in January 2003.  Regression lines 
accompany measurements of nitrogen fixation by acetylene reduction.  

The equations for the regression lines at site 5 are as follows (from top to bottom):

y = 1.66x + 3.02; r2 = 0.99
y = 1.14x + 5.01; r2 = 0.98
y = 0.72x + 5.59; r2 = 0.99

The equations for the regression lines at site 3 are as follows (from top to bottom):

y = 5.29x – 31.19; r2 = 0.88
y = 3.01x – 24.69; r2 = 0.99
y = 1.70x – 11.38; r2 = 0.91
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Figure 12 – Comparison of measured nitrogen fixation rates from whole cores and 
slurries analyzed contemporaneously via acetylene reduction assay (ARA) and the 
N2:Ar comparison technique.  In all cases rates of nitrogen fixation as measured by 
N2:Ar comparison were orders of magnitude higher than those measured by ARA.
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One of these assumptions is that acetylene and its reduced form, ethylene, 

diffuse freely and rapidly between gas and aqueous phases.  In this study acetylene 

reduction was observed in all cores and slurries throughout incubation periods lasting 

up to 60 hours.  No significant lag period was observed in ethylene production in 

slurry incubations suggesting that acetylene supply to the fixing organisms within the 

benthic microalgal community was sufficient and diffusion of ethylene to the gas 

phase was adequate to observe ethylene production.  Rates of nitrogen fixation in 

whole core assays were generally very low during the first 8-10 hours of incubation.  

This period, however, was always during the overnight hours when apparent nitrogen 

fixation rates were generally lower than during the photoperiod (Nagel Chapter 3).  In 

a few cases, nighttime nitrogen fixation was very high during this initial period and 

showed no evidence of a lag as would result from insufficient diffusion into and out 

of the sediments.  Observations of high nitrogen fixation during the overnight hours 

may be representative of a change in species composition within the BMA 

assemblage between seasons.  

Certain cyanobacteria species (especially Lyngbya spp.) have been shown to 

primarily fix nitrogen during dark periods (Bebout et al. 1993; Omoregie et al. 2004) 

and this could have been the source of the observed increase in overnight nitrogen 

fixation.  Lyngbya was observed in the BMA assemblage during the summer 

sampling period; however no attempts were made to quantify the population size in 

this or other seasons.

Slurries were vigorously shaken following the addition of acetylene to each 

individual assay as well as immediately prior to each sampling time.  This action 
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likely increased diffusive transport and resulted in equilibrium of ethylene between 

aqueous and gas phases within slurry assays (Pinckney et al. 1995, Welsh et al. 

1996b).  Whole cores, on the other hand, were shaken very gently prior to sampling to 

equilibrate gas and aqueous phases without disturbing the structural integrity of the 

sediments and benthic microalgal mats.  Therefore, it is likely that there could have 

been incomplete diffusion of ethylene into the gas phase (headspace) in whole core 

assays as compared to well-mixed slurries.    

However, the effect of partial or incomplete diffusion within whole cores 

assays is diminished due to the suggestion that most nitrogen is fixed within the BMA 

community at the sediment-water interface.  Vertical surveys of nitrogen fixation 

within the sediment column suggest that nitrogen fixation primarily occurred within 

the topmost 1 cm of the sediment column.  This depth was consistently colonized by 

abundant populations of benthic microalgal communities.  While slurry formation 

addressed the uncertainty related to the diffusion of acetylene to al parts of the assay, 

it also likely resulted in a disruption of the BMA community structure and the 

burying of BMA community components.  Measurements of nitrogen fixation under 

normal oxic conditions were observed to be similar to higher than rates of nitrogen 

fixation measured under anoxic conditions, further supporting the role of the BMA 

community at the sediment-water interface as the dominant source of nitrogen 

fixation.  Therefore, although the degree to which acetylene diffused into the 

sediment column was not directly investigated, it does not reason that this unknown 

had a great effect at the surface of the sediments where the BMA community was 

found.
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Rates of nitrogen fixation in slurry assays were generally higher than rates 

calculated from intact cores.  This was especially true in the late summer (August) 

when rates derived from slurries were observed at 3 to 5 times higher than rates found 

in whole cores.  While the disparity between rates derived from whole cores and 

slurries may be suggestive of lower diffusion of ethylene to the gas headspace in 

whole core assays, it may also be explained as a result of the homogenization of the 

sediment column in slurry assays (Welsh et al. 1996a, b).  Slurry formation disrupts 

the vertical zonation of the sediments and results in the introduction of nutrients 

(DOC, ammonia and phosphorus) from senescing organic matter deep within the 

sediment column into contact with nitrogen fixing organisms in the surficial BMA 

assemblage.  Therefore, rates of nitrogen fixation calculated within slurry assays may 

reflect the potential rate of nitrogen fixation at each sample site while whole cores 

provide a more accurate description of in situ rates of nitrogen fixation as proposed 

by Welsh et al. (1996a, b).  

This hypothesis is supported by observations of nitrogen fixation in 15N-

amended cores.  Nitrogen fixation was assayed simultaneously in intact cores by 

ARA and 15N amendments in two basins in the fall and winter.  Nitrogen fixation 

rates were calculated from rates of ethylene production in ARA cores using the 

standard 3:1 ratio (moles acetylene reduced to moles dinitrogen fixed) and compared 

to estimates of nitrogen fixation in 15N-amended cores.  Rates of ethylene production 

in acetylene-amended cores ranged from 1.2-5.9 times higher than rates of nitrogen 

fixation measured in 15N-amended cores (Table 3).  The average of the 

experimentally found ratios was 3.4; very similar to the theoretical 3:1 ratio assumed 
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by ARA.  It appears that acetylene reduction generates accurate assessments of 

benthic microalgal-mediated nitrogen fixation within Florida Bay.  Likewise, the 

similarity in rates of nitrogen fixation between acetylene and 15N-amended whole 

cores suggests that acetylene reduction in whole cores is an appropriate method for 

measuring in situ rates of nitrogen fixation.  

Rates of nitrogen fixation in 15N-amended cores were calculated using the 

initial linear trend in 15N accumulation within the BMA assemblage over time.  This 

regression remained linear and significant over the first diel cycle (24 hours) in all 

incubations before degenerating into a series of high and low points observed further 

within the incubation (see Fig 10).  The breakdown in the linear relationship likely 

reflects the impacts of regenerative and cycling processes that removed newly-fixed 

nitrogen from the BMA assemblage.  For this reason measurements of nitrogen 

fixation as assayed by 15N addition incorporated samples taken only during the first 

24-hour period.

Measurements taken from duplicate cores at each sampling point agreed well 

with each other suggesting that the mass of 15N within the solid phase in the BMA 

assemblage was reduced at times during the incubation.  Measurements of labeled 

nitrogen within the water phase and pore waters would have likely accounted for this 

missing mass of 15N (Glibert and Bronk 1994), however these assays were not 

performed.  The possibility of extracellular release of newly fixed 15N into phases not 

examined by this study may be a source of uncertainty regarding the reported values 

of total nitrogen fixation in 15N-amended cores within this study.  However, the 

reported rate of nitrogen fixation was a product of the first diel cycle only when such 
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loss of newly-fixed 15N appeared to be at a minimum (judging from the continued 

linearity of the trend during this period).  Therefore, while measurements of labeled 

nitrogen would result in a more complete estimate of nitrogen fixation it is likely that 

the reported values from the first diel period represent a very good estimate of 

nitrogen fixation by the BMA assemblage.  Likewise, the observed similarity between 

estimates of nitrogen fixation determined by ARA and 15N amendment suggests that 

calculated rates of nitrogen fixation via acetylene reduction also are sufficient 

measurements of BMA-mediated fixation.  

Rates of nitrogen fixation as derived from acetylene reduction and 15N 

amendment were compared to estimates of nitrogen fixation from whole cores 

analyzed by N2:Ar comparison.  N2:Ar comparison has generally been used to 

describe patterns and magnitudes of denitrification within the upper sediment column 

(Kana et al. 1994, 1998).  Results derived from N2:Ar comparison reflect a net 

appearance or disappearance of dinitrogen within the water phase as a result of 

dinitrogen consumption and production within the sediments.  Trends of increasing 

N2 within the water phase over the incubation period are described as periods of net 

denitrification while patterns of decreasing N2 concentrations within the water phase 

are attributed to net nitrogen fixation.  Both net figures indiscriminately incorporate 

rates of denitrification and nitrogen fixation within the final estimate of the N2 flux 

and do not give finite estimates of either process.  For this reason, N2:Ar comparison 

estimates of nitrogen fixation are not directly comparable to estimates of nitrogen 

fixation as derived from ARA and 15N analysis.  
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However, periods when nitrogen fixation is the dominant process may result 

in quantitative estimates of nitrogen fixation (albeit diminished by some rate of 

contemporaneous denitrification) that can be compared to estimates of fixation 

derived from other methods.  Rates of dinitrogen flux generally showed a net 

disappearance of N2 from the water phase during the photoperiod, suggesting high 

rates of nitrogen fixation during the day.  Therefore, the linear regression of N2

disappearance over time was used to determine rates of nitrogen fixation within N2:Ar 

comparison cores with the caveat that these rates carried a degree of uncertainty due 

to the presence of simultaneous denitrification that likely resulted in a lower overall 

estimate of total nitrogen fixation.  

Cores analyzed by N2:Ar comparison suggest rates of nitrogen fixation that 

are more than one order of magnitude higher than those calculated from simultaneous 

incubations of acetylene and 15N-treated cores and slurries.  Estimates of nitrogen 

fixation as analyzed by N2:Ar comparison also incorporate some component of 

denitrification suggesting that the disparity between actual rates of nitrogen fixation 

as determined by N2:Ar comparison and those calculated from ARA and 15N 

amendment is even larger.  This is supported by results from cores where nitrification 

and, thus, coupled denitrification were inhibited by methylfluoride amendments.  

Nitrogen fixation rates as calculated by N2:Ar comparison in CH3F-amended cores 

were 10-50 times higher than high-end estimates of nitrogen fixation from acetylene 

and 15N-amended cores.  Additionally, no clear pattern or correlation was observed 

between nitrogen fixation rates derived from N2:Ar comparison treated cores and 
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other methods suggesting that changes in the N2:Ar ratio in the water phase offer a 

poor estimation of BMA-mediated nitrogen fixation.  

The estimates reported by N2:Ar comparison may be a function of a number 

of processes that combine to create such high, apparent rates of nitrogen fixation.  Net 

nitrogen fixation was generally observed during the photoperiod and therefore, was 

concurrent with photosynthesis.  The production of oxygen bubbles by photosynthetic 

processes is a major concern in cores analyzed via N2:Ar comparison as aqueous N2 is 

preferentially stripped from the water phase into the newly-formed bubbles (Cornwell 

pers. comm.).  Argon is stripped from the water phase at much lower rates than 

nitrogen resulting in a skewed N2:Ar ratio and a large effect on apparent N2

concentrations in the water phase (An et al. 2001, Cornwell pers. comm.).  High rates 

of oxygen production that result from high rates of photosynthesis within the benthic 

microalgal mat would likely result in much higher rates of apparent N2 disappearance 

and, therefore, apparent nitrogen fixation within these cores.  Such bubble formation 

was a regular occurrence in all incubated whole cores (personal observation) and, as 

such, N2:Ar comparison cores were incubated in the light for a maximum of 3 hours 

in order to lessen the effect of photosynthetically-produced oxygen on the assay.  

Nitrogen fixation rates derived from such short incubation periods may not 

compare well to rates determined over longer incubations and may result in some of 

the large differences observed between rates of nitrogen fixation as estimated by 

N2:Ar comparison and estimates from other methods.  In multiple-day ARA 

incubations, short-term variations in the rate of nitrogen fixation were observed with 

somewhat higher rates of fixation apparent in the first hours of the photoperiod 
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(Nagel Chapter 3).  These short-term variations, however, were for the most part lost, 

as a linear daily rate was observed over the whole of the incubation.  The rates 

described by N2:Ar comparison may be similar to the short-term increases observed 

in the rate of nitrogen fixation as the whole of the incubation period in N2:Ar 

comparison assays encompasses only this initial exposure to sunlight.  If this were the 

case, short-term measurements of a slightly elevated rate of fixation would be much 

higher than rates calculated over a much longer incubation period (24-60 hours) as 

was the case in ARA and 15N-amended cores.  However, even when compared to 

nitrogen fixation rates calculated over the first three hours of the photoperiod, rates 

described by N2:Ar comparison are more than an order of magnitude higher than 

those calculated from other methods.  

Conclusions

 Estimates of nitrogen fixation were calculated using numerous methods in 

order to determine an appropriate procedure for accurately describing rates of benthic 

microalgal-mediated nitrogen fixation in Florida Bay.  Cores and slurries were 

analyzed by the acetylene reduction assay (ARA) and 15N amendment and were found 

to be very similar in magnitude and pattern.  Nitrogen fixation rates derived from 

slurry assays were slightly higher than those calculated from intact cores.  Differences 

between slurries and whole cores were significant in the summer yet less than one 

order of magnitude in all cases and may be more indicative of procedural differences 
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rather than real differences in the level of nitrogen fixation.  Good replication 

between 15N-amended cores and ARA treated whole cores suggests that the 

theoretical 3:1 ratio (moles acetylene reduced : moles dinitrogen fixed) is reasonable 

for calculating benthic microalgal-mediated nitrogen fixation in Florida Bay.  Also, 

treatment of the sediments as an intact core appears to be an appropriate method for 

determining in situ rates of nitrogen fixation.  However, intact cores likely do not 

account for rates of nitrogen fixation that can be attributed to rhizosphere-associated 

bacteria.  Further investigation into nitrogen fixation within the rhizosphere is 

necessary to determine the overall significance of nitrogen fixation as a source of 

nitrogen in Florida Bay.  

Nitrogen fixation as assayed by N2:Ar comparison did not correlate well with 

rates of nitrogen fixation calculated from cores and slurries analyzed simultaneously 

by other methods.  For this reason, descriptions of nitrogen fixation by N2:Ar 

comparison alone should be treated with caution when directly compared to published 

rates of nitrogen fixation as determined by acetylene reduction and 15N amendment.
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Nitrogen fixation in benthic microalgal mats: an important, internal source of 

“new” nitrogen to benthic communities in Florida Bay

Chapter 3 – Magnitudes, patterns, and factors of limitation 

Introduction

The availability of fixed nitrogen is generally cited as one of the factors most 

responsible in limiting rates of primary production in marine and estuarine systems 

worldwide (Ryther and Dunstan 1971, Howarth et al. 1998a).  The largest global pool 

of nitrogen, atmospheric dinitrogen (N2), is largely unavailable to biological 

processes unless first reduced to a bioavailable form (NH3) via nitrogen fixation.  

Fixation is wholly mediated by a diverse array of bacteria found in both the water 

column and sediments in aquatic systems.  Nitrogen fixing bacteria include 

photoautotrophic, chemoautotrophic and heterotrophic types and are found both free-

living and associated with higher organisms in aquatic environments (Capone 1998).  

Nitrogen fixed by diazotrophic organisms may be introduced to higher trophic levels 

via extracellular release or direct grazing and can lead to increased ambient water 

column and pore water nitrogen concentrations (Glibert and Bronk 1994, O’Neil et al. 

1996, O’Neil 1999).  
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Benthic nitrogen fixation is a potentially important nutrient source that can 

support high rates of vegetative growth and production in oligotrophic tropical 

estuarine and marine systems (Capone 1988, Howarth et al. 1988a, Paerl et al. 1994).  

Tropical estuaries and coastal bays are often characterized by high rates of biological 

production despite low nutrient concentrations in the water column and sediment pore 

waters (O’Neil and Capone 1989).  This apparent contradiction in high rates of uptake 

and low rates of supply necessitates other sources of bioavailable nitrogen to support 

primary production in these systems.  Rates of benthic nitrogen fixation have been 

calculated in coral reef (Larkum et al. 1988, O’Neil and Capone 1989), seagrass bed 

(Patriquin and Knowles 1972, Capone et al. 1979, O’Donohue et al. 1992, Moriarty 

and O’Donohue 1993), and benthic microalgal (BMA) mat (Capone 1983, Charpy-

Roubaud et al. 2001) communities worldwide.  Nitrogen fixation has been estimated 

to account for up to 50% of the total nitrogen requirements in seagrass beds and 

microbial mat systems (Patriquin and Knowles 1972, Capone et al. 1979, Charpy-

Roubaud et al. 2001) and may be a poorly-understood nitrogen input term in many 

coastal systems worldwide.

Florida Bay is an oligotrophic estuary (Forqurean et al. 1992) that is 

dominated by seagrass communities that covered approximately 90-95% of the bay’s 

sediments during recent surveys (Zieman et al. 1989, 1999).  Over the past 20 years, 

numerous basins within Florida Bay have experienced seagrass die-back (Zieman et 

al. 1989, 1999) resulting in patches marked by the presence of well-defined mats 

consisting of benthic microalgae and associated microbial communities.  Similar 

communities of benthic microalgae and cyanobacteria were termed 
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microphytobenthos by Macintyre et al. (1996) and Miller et al. (1996).  Benthic 

microalgal (BMA) mats are a regular feature throughout the bay and are found where 

seagrass is present as well as in areas devoid of macrophytes (Brand 1999).  BMA 

communities have been identified as sources of “new” nitrogen (Sensu, Dugdale and 

Goering 1967) via nitrogen fixation in shallow, estuarine and marine systems 

worldwide (Capone 1983, Paerl et al. 1991, 1996; Welsh et al. 1996a, b; Charpy-

Roubaud et al. 2001).  BMA are present in high abundances throughout Florida Bay 

and may represent a significant internal source of nitrogen to the benthic communities 

within the system that has not yet been accounted for in the literature.

Recent attempts to describe nitrogen cycling patterns in Florida Bay (Rudnick 

et al. 1999) have omitted values of nitrogen fixation and other potentially important 

internal processes.  Internal nitrogen sources and sinks may be especially important in 

Florida Bay due to geological and anthropogenic factors that combine to isolate 

waters within Florida Bay from adjacent ecosystems and external nutrient loads.  

Florida Bay (Fig. 13) is a shallow (< 3 m) partially, enclosed estuary with one major 

source of freshwater inputs, Taylor Slough (Fig. 14).  The bay is partitioned into 

discrete basins by natural carbonate mud banks that restrict the eastward advection of 

waters from the Gulf of Mexico into the bay as well as restricting exchange between 

individual basins (Holmquist et al. 1989, Forqurean and Robblee 1999).  Freshwater 

inputs through Taylor Slough into the head of the bay have also been highly reduced 

by man-made water management structures that divert freshwater from the 

Everglades to sea (Forqurean and Robblee 1999).  As a result, the impact of external 

sources of nitrogen on Florida Bay is likely diminished as compared to other 
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estuarine systems and may lead to an increased importance of internal nitrogen 

sources (recycling and nitrogen fixation) in supporting high rates of primary 

production.  

Nitrogen fixation is often inhibited by high concentrations of labile nitrogen, 

generally in the form of ammonium (NH4
+), due to the high metabolic costs 

associated with obtaining nitrogen via fixation (Postgate 1982, Capone 1998).  

Nitrogen fixation may also be limited by the availability of iron and molybdenum.  

Both of these micronutrients are essential components of the nitrogenase enzyme that 

reduces dinitrogen and have been identified as possible limiting factors on rates of 

nitrogen fixation (Capone 1988).  Similarly, phosphorus availability may control rates 

of nitrogen fixation as high phosphorus concentrations may lead to increased nitrogen 

demand and create a more favorable environment for nitrogen-fixing organisms.  

Florida Bay is considered to be a relatively nitrogen-replete system.  

Vegetative growth in Florida Bay has been shown to be stimulated by the additions of 

phosphorus and other micronutrients (Forqurean et al. 1992, Koch et al. 2001).  

However, previous investigations into internal nitrogen cycling processes have 

suggested very high rates of sediment-associated nitrogen fixation and denitrification 

in the system (Rudnick et al. 1999, Kemp and Cornwell 2001, Cornwell et al. in prep) 

suggesting that nitrogen availability is likely an important factor in supporting 

seagrass and BMA production in the system.  

This project sought to quantify rates of benthic nitrogen fixation in Florida 

Bay and describe factors that may control the process in situ.  Annual inputs of 

bioavailable nitrogen via fixation were estimated to assess the relative importance of 
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nitrogen fixation as compared to other nitrogen input terms as described in previously 

constructed system-wide budgets.  Rates of nitrogen fixation were also measured in 

experimental manipulations designed to examine possible limitation by the 

availability of other nutrients and organic substrates.  

Methods

Study site

The study was set in Florida Bay, a subtropical estuary located between the 

Florida peninsula and the nearly-solid line of islands that make up the Florida Keys 

(Fig. 13).  The system is a partially-enclosed, shallow (average depth ~ 1 m) coastal 

bay and is characterized by clear water columns and carbonate mud sediments.  

Extensive populations of benthic vegetation (seagrasses and benthic microalgae) are 

prevalent throughout the bay and dominate total primary production within the 

system (Zieman et al. 1989, Forqurean et al. 1992).  Tidal influence is minimal as 

geological formations partially impede landward flow of Gulf of Mexico waters 

(Holmquist et al. 1989).  Inputs of freshwater from terrestrial regions (Florida 

Everglades through Taylor Slough and C-111 Canal) are also small due to upstream 

water management structures that divert freshwater from moving into the head of the 

bay (Forqurean and Robblee 1999).  In addition to relatively low rates of exchange 

with adjacent systems, interior Florida Bay is sectioned by numerous, natural 

carbonate mud bank formations that reduce water advection within the system 

(Holmquist et al. 1989, Forqurean and Robblee 1999).  These banks divide the bay 
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into a series of smaller basins that often show distinct differences in salinity and 

nutrient profiles from adjacent basins.  Thus, basins were treated and sampled 

separately to determine overall patterns of benthic nitrogen fixation throughout the 

bay.  

Intact sediment cores were collected in 5 basins located throughout Florida 

Bay (Table 2).  These sites were selected to provide the greatest spatial coverage in 

discrete zones identified by previous studies (Turney and Perkins 1972, Wanless and 

Tagett 1989, Zieman et al. 1989, and Boyer et al. 1997) and to investigate nitrogen 

fixation along an east-west transect within Florida Bay.

Water column concentrations of nitrogen and phosphorus show strong 

gradients along an east-west transect within the bay (Forqurean et al. 1992).  Eastern 

Florida Bay (characterized by site 4) is highly influenced by the input of nitrogen-

replete freshwater from Taylor Slough (Fig. 14) into Little Madeira Bay and 

surroundings (Boyer et al. 1999).  Freshwater in Taylor Slough flows through a dense 

patchwork of marshes in the southern Florida Everglades where phosphorus is readily 

removed, leaving waters with high N: P ratios (Rudnick et al. 1999).  Western Florida 

Bay (characterized by sites 1 and 2) experiences much higher phosphorus 

concentrations due to advective exchange with relatively nutrient-rich Gulf of Mexico 

waters (Rudnick et al. 1999).  Central Florida Bay (characterized by site 3) appears to 

be intermediate between the nutrient profiles seen in the eastern and western portions 

of the bay (Boyer et al. 1999).   
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Modified from Forqurean and Robblee (1999)
Inset graphic courtesy of the Integration and Application Network’s, 
University of Maryland Center for Environmental Science, symbol library

Fig.13 – Map of Florida Bay showing the five sample sites where nitrogen fixation 
was measured.  The sampling areas were located to provide rates of nitrogen fixation 
in a number of discrete zones that have been described in previous studies (Zieman et 
al. 1989).
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Modified from USGS – SOFIA project
http://sflwww.er.usgs.gov/publications/fs/taylor_slough/

Fig. 14 – Map of Taylor Slough in Florida Everglades National Park.  The Slough 
drains a large portion of the Eastern Everglades including some areas that are highly 
developed and others that are the site of significant agricultural activities.  The slough 
drains into Little Madeira Bay at the head of Florida Bay through a number of 
shallow creeks.  Site 4 was situated in this basin at a short distance from the mouth of 
Taylor Creek, the largest of the five major creeks that drain into the bay.  Taylor 
Creek is noted on the map.
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An additional site (site 5) was investigated to ascertain possible impacts of 

anthropogenic nutrient inputs on rates of nitrogen fixation as compared to rates 

observed along the main east-west transect.  The sampling station at site 5 was 

located near a heavily developed residential area on the island of Key Largo.  As a 

result, nutrient profiles in Sunset Cove may be more affected by terrestrial inputs 

(runoff and sewage inputs) than the other 4 sites located further from land.     

All sites were shallow in depth (maximum depth ~ 2 m) and were generally 

covered with well-developed seagrass beds dominated by Thalassia testudinum.  

Interspersed within seagrass meadows were smaller patches (1-15 m diameter) that 

were marked by the complete absence of macrophytes.  These patches, termed 

“benthic microalgal-dominated” in this project, were marked by the presence of a 

well-developed mat consisting of numerous classes of benthic microalgae (BMA) and 

associated microorganisms.   Benthic microalgal communities were found throughout 

the bay in both seagrass- dominated (seagrass present) and BMA-dominated (seagrass 

absent) areas at the sediment-water interface (Brand and Suzuki 1999).  

Sampling

Whole cores (15 cm height, 3.75 cm inner diameter) and bulk sediment for 

slurry formation were sampled manually by SCUBA and transported to the laboratory 

for incubation.  Experiments were initiated with sediment samples no more than 12 h 

after collection.  Replicate samples (n = 3) were taken at each site.  Samples were 

taken from both seagrass-dominated and BMA-dominated zones to ascertain the 

effect of dominant vegetation type on BMA-mediated nitrogen fixation.  However, 
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due to the possibility of seagrass interactions affecting observed BMA-mediated 

nitrogen cycling processes, seagrass-dominated sediment cores were collected 

between plants so as to not include any aboveground macrophyte biomass.

Intact cores consisted of an approximately 7.5 cm height of sediment overlain 

by a short water phase and 29 mL gas headspace (Fig. 15).  Cores were sealed with a 

gas-tight clear acrylic plastic lid and bottom stopper.  A short magnetic stir bar was 

suspended from the lid of the acrylic core and gently stirred the water phase to 

increase diffusion without physically disturbing the surficial BMA layer.  A rubber 

septum was placed into the plastic lid to provide an injection port through which the 

gas headspace could be amended and sampled.  

Sediment slurries were created in glass serum vials (72 and 145 mL total 

volume) by adding approximately 10 mL of site water and a 5 cm height, 1.6 cm 

diameter sediment column (~ 40 mL of wet sediment) that was collected in a cut-off 

plastic syringe.  The sediment/water mixture was sealed in a gas-tight serum vial with 

a rubber septum held in place by a crimped aluminum seal (22 mL headspace) or 

Erlenmeyer flask capped with a gas-tight rubber stopper (90 mL headspace).  

Acetylene Reduction Assay

Intact sediment cores and slurried sediment mixtures were analyzed using the 

acetylene reduction assay (Stewart et al. 1967, Hardy et al. 1968 as modified by 

Bebout et al. 1987).  Acetylene was generated by reacting calcium carbide (CaC2) 

with deionized water.  Assays were initiated by adding a volume of acetylene equal to 

10% of the total headspace to cores and slurries after removal of the same volume of 
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air from the headspace.  Cores were amended with acetylene during the dark period 

and allowed to incubate before the first sample was taken just prior to the beginning 

of the photoperiod (sunrise) or shortly thereafter.  The headspace was sampled by 

removing a 0.5 mL air volume via a gas-tight syringe (Hamilton Co., USA) 

approximately 7-8 times per 24-hour cycle.  Air samples were then injected into

pre-evacuated Exetainer (Labco Ltd. UK) vials and diluted with air to a final volume 

of 2 mL.  Samples were diluted so as to minimize the amount of gas that was 

removed from the headspace from each experiment during each sampling period.  

Dilution effects were tested using a known concentration of ethylene gas and diluted 

samples were consistently found to have one quarter of the signal strength from 

undiluted samples.  Blanks using air were also analyzed and no ethylene signal was 

observed, suggesting that the dilution had no effect on the ethylene concentration that 

was measured.

Gas samples were then transported to Horn Point Laboratory, Cambridge, 

MD, USA for analysis by gas chromatography.  A Shimadzu GC-8A instrument 

(flame ionization detector and HayeSep A column) was used to determine ethylene 

levels as calibrated by the use of a known ethylene gas mixture.  Ultra-pure carrier 

(UPC) Helium was used as the carrier gas.   

Volumes of ethylene in the water phase, as calculated from recorded water 

temperatures and ethylene solubility coefficients in sea water (Larkum et al. 1988), 

were added to measured volumes of ethylene in the headspace to obtain total ethylene 

volumes for each core/slurry.  Due to the low solubility of ethylene in aqueous 

solution these volumes were quite low as compared to measurements of ethylene in 
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the headspace.  However, estimates of ethylene in solution were added to gaseous-

phase measurements in order to obtain a more complete measurement of total 

ethylene production.  Total ethylene volumes were converted to total volumes of 

fixed nitrogen by applying the theoretical 3:1 ratio (moles acetylene reduced: moles 

dinitrogen fixed) assumed by the acetylene reduction assay.  Total micromoles of 

nitrogen were calculated on an areal basis (using surface area of the BMA mat) and 

plotted against incubation time.  The linear regression was then reported as the rate of 

nitrogen fixation for each core/slurry.  

Blank cores were employed to account for the possible production of ethylene 

that could not be attributed to nitrogenase activity.  Blanks consisted of water phases 

with and without injections of acetylene and sediment cores/slurries without acetylene 

amendments.  No production of ethylene was observed under any of the blank 

treatments leading to the conclusion that all ethylene present in cores and slurries was 

the result of the reduction of acetylene by the nitrogenase enzyme. 

Inhibitors

Whole cores were treated in several experiments with aqueous solutions of 

DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) or sodium molybdate (Na2MoO4) 

to investigate the effects of inhibiting photosynthesis (Paerl et al. 1991) and sulfate-

reduction (Oremland and Capone 1988, Welsh et al, 1996a,b), respectively, on rates 

of sediment nitrogen fixation.  Inhibitor solutions were added to the water phase of 

individual whole cores to bring final concentrations to 20 µM DCMU and 10 mM 

molybdate (Pinckney and Paerl 1997, Welsh et al, 1996, Steppe and Paerl 2002).  
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Image courtesy of the Integration and Application Network, 
University of Maryland Center for Environmental Science 

Figure 15 – Diagram of whole cores showing the air headspace, liquid phase, and 
sediment column.  The benthic microalgal mat was found at the surface of the 
sediment column and was generally 0.5 – 1 cm thick.  A magnetic stir bar turned the 
liquid phase to create flow and more complete diffusion in the liquid phase and into 
and out of the sediment column.  Gas samples were obtained through a rubber septum 
set into the top of the core.

  Gas headspace 
  (~ 2.5 cm height)

  Liquid phase 
 (~ 5 cm height)

Sediment Column 
 (~ 7.5 cm height)

3.75 cm

BMA mat ~ 0.5 – 1 cm
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Nutrient Amendments

Select cores were amended with solutions of inorganic nutrients to determine 

possible controls on nitrogen fixation.  Triplicate cores were treated with additions of 

ammonium [NH4Cl] (100 µM) to the liquid phase to investigate possible inhibition of 

nitrogen fixation under N-replete conditions.  Inorganic phosphorus [NaH2PO4] (25 

µM), iron [FeCl3] (20 nM & 10 µM), EDTA [C10H14N2Na2O8] (20 nM & 10 µM), and 

acetate [CH3COONa] (100 µM) were added to the water phases within experimental 

cores to explore possible stimulation of nitrogen fixation under conditions of high 

micronutrient or high organic carbon availability.  Combinations of the 

aforementioned nutrients (P + Fe 25 µM/20 nM; P + Fe + EDTA 25 µM/20 

nM/20nM; and Fe + EDTA 20 nM/20 nM) were also added to assess possible co-

stimulatory effects.  

Nutrients were added to cores in aqueous solutions and placed directly into the 

water phase above the sediments and BMA layer.  Nutrient solutions were added 

approximately 30-60 minutes before initiation of the experiment (injection of 

acetylene) to allow for more complete mixing and diffusion within the water phase.  

Nutrient amendment cores were incubated simultaneously with non-amended cores 

and nitrogen fixation rates were determined by ARA in both sets of cores.  

Sediment Chlorophyll Measurements

Sediment chlorophyll-α (chl-α) was measured in each whole core assay using 

HPLC methods (Sun et al. 1991).  Values of chl-α were used as proxy measurements 

of total BMA biomass in each core.  A 1 cm depth column of sediment was removed 
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in a cut-off 10 mL plastic syringe (1.4 cm inner diameter) wrapped in aluminum foil 

and frozen immediately.  Samples were thawed within 1-2 months for chl-α analysis.  

Sediment samples were amended with 9 mL of 100% acetone to create 10 mL total 

slurries with 90% acetone as the extracting solvent.  Samples were vigorously shaken 

and placed in a freezer overnight to allow for the extraction of photopigments into the 

acetone solution.  Samples were shaken again and then centrifuged for 10 min at 3000 

rpm to separate the chlorophyll-containing acetone solvent from sediment and MPN 

solids.  The liquid phase was then passed through a 25 µm Teflon-cased filter (0.45 

µm pore size) and analyzed by high performance liquid chromatography (Van 

Heukelem et al. 1994).  A subsample of extracts was analyzed for all photopigments 

in order to describe significant components of the BMA community.  

Other Measurements

Ammonium concentrations in the water phase and sediment pore waters were 

analyzed colorimetrically (Parsons et al. 1984).  Levels of incident light were 

measured using a Li-Cor data logger that was placed in the vicinity of the incubating 

samples.  All statistical analyses were computed using SAS version 8.0 (SAS 

Institutes, Cary, NC).
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Results

Magnitudes, Seasonal and Spatial Patterns of Nitrogen Fixation

Benthic microalgal communities consisted of a loosely-connected assemblage 

of living organisms and detrital material that covered the surface of the sediments in 

each of the five sampled basins.  BMA mats in Florida Bay were dominated by 

benthic diatoms and filamentous cyanobacteria (Fig. 16).  Purple sulfur bacteria were 

also found within the topmost centimeter suggesting that there were hypoxic, sulfide 

rich microzones present in parts of the mat.  Visual observations of the BMA 

assemblage showed high concentrations of diatoms species with lesser numbers of 

cyanobacteria. These observations were corroborated by HPLC analyses of BMA mat 

samples; however no attempt was made to calculate the relative population size of 

benthic microalgal classes during each season or between each season.

Nitrogen fixation was investigated at depths up to 10 cm within the sediment 

column via the formation of sediment slurries.  Slurries composed of surface 

sediments (with BMA mats) showed much higher rates of nitrogen fixation than those 

seen in slurries made with all other segments of the sediment column (results not 

shown) from both seagrass-dominated and BMA-dominated sites.  

Rates of benthic microalgal-mediated nitrogen fixation ranged from 0.5-20 

µmol N  m-2  h-1 with the vast majority of readings ranging from 1-6 µmol N  m-2  h-1 

(Fig. 17), (Table 4).  Nitrogen was fixed primarily during the photoperiod with lower 

rates of fixation observed during the overnight hours in all seasons except for late 

summer (August) when “dark” fixation became a more significant component of 
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overall fixation.  Accelerations in the rate of nitrogen fixation were often seen shortly 

after sunrise and continued at a high rate for a number of hours.  The impact of these 

short-term variations on the linear rate observed throughout the time course, however, 

was generally muted in multiple-day experiments.   This suggests that longer 

incubations may give more accurate estimates of nitrogen fixation rates as opposed to 

short-term “snapshots” of rates that may or may not persist past a period of a few 

hours.  

An annual profile at site 5 revealed significant seasonal differences in rates of 

nitrogen fixation.  Nitrogen was fixed at significantly higher rates (p < 0.05) in 

August than any other season at that site (Fig. 18).  Total BMA biomass as measured 

by sediment chlorophyll was also observed to be highest in August as compared to 

other seasons.  

Significant (p < 0.05) variations in rates of nitrogen fixation were found 

between the 5 sampled basins within Florida Bay (Fig. 19).  Magnitudes of nitrogen 

fixation decreased along a transect from sites 1 and 2 to sites 5 (from the mouth to the 

head of the bay; roughly from west to east).  Ammonium (NH4
+) concentrations in the 

top 1 cm of the sediment column, likewise, decreased along a west-east transect (Fig. 

20) while water column ammonium concentrations showed the opposite trend; an 

increase from west to east (Fig. 21).  
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Figure 16 – Photograph of the benthic microalgal assemblage as observed under 
microscopy.  BMA mats were dominated by benthic diatom species with sizeable 
populations of cyanobacteria also being present.
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Factors Controlling Nitrogen Fixation 

Higher rates of nitrogen fixation were observed in BMA-dominated cores than 

in those taken from seagrass-dominated sediments likely reflecting the effect of BMA 

biomass on magnitude of fixation.  Benthic microalgae biomass (as determined by 

chlorophyll-α) was significantly higher in BMA-dominated sediments as compared to 

sediments covered by seagrass beds (seagrass-dominated).  Rates of fixation were 

positively correlated with BMA biomass for sites 1, 2, 3, and 5 in January, June and 

August 2003 (Fig. 22).  Rates of nitrogen fixation at site 4 were very low (0.46 + 0.05 

micromoles N m-2  h-1) in all incubations despite slight differences in chlorophyll and, 

therefore, were not included in the dataset.  

Nitrogen fixation rates and total sediment chlorophyll were positively 

correlated for all sampling periods.  However, the data appeared to fall into two 

distinct groupings with nitrogen fixation to BMA biomass ratios in June being more 

than three times greater than those observed during the rest of the year (in November, 

June and August) (Fig. 22).  This observed shift in the relationship between BMA 

biomass and BMA-mediated nitrogen fixation may reflect a change in the 

composition of the microbial community toward the late spring or, perhaps, an 

increased nitrogen demand resulting from high rates of vegetative growth.

In select experiments, inhibitors were added to assess the extent of total BMA 

nitrogen fixation that could be attributed to photoautotrophic and sulfate-reducing 

communities within the BMA assemblage.  Additions of DCMU, an inhibitor of 

photosystem II, and sodium molybdate, an inhibitor of sulfate reduction, to BMA-

dominated cores each resulted in significant declines in total nitrogen fixation 
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Figure 17 – Histogram displaying the frequency of measured rates of nitrogen 
fixation in whole core experiments (as rounded to the nearest whole number).  The 
great majority of rates were measured between 1-5 micromoles N m-2 hr –1.
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Basin Season N fix rate
(micromoles N m-2 hr-1)

Site 1 June 2003 1.03 + 0.24
August2003 0.99 + 0.09

Site 2 June 2003 7.60 + 2.23
August 2003 2.60 + 0.61

Site 3 January 2003 3.35 + 0.85
June 2003 3.87 + 1.20

Site 4 June 2003 0.46 + 0.05

Site 5 November 2002 0.80 + 0.03
January 2003 2.64 + 0.73
June 2003 1.75 + 0.52
August 2003 6.08 + 2.48

Table 4.  Rates of nitrogen fixation were measured in 5 sites located throughout 
Florida Bay.  Rates of nitrogen fixation are reported for each season that a particular 
site was sampled.  The rates reported in this table represent an average of replicate 
unamended whole cores plus or minus one standard error.
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Figure 18 – An annual profile of nitrogen fixation rate as measured in whole cores 
taken from regions that were BMA-dominated at site 5.  Rates of fixation were 
generally variable between seasons; however rates measured in August 2003 were 
significantly higher (p < 0.05) than rates measured in the same site during other 
seasons.
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Figure 19 – Comparison of nitrogen fixation rates measured in whole cores extracted 
from seagrass-dominated areas (seagrass) and BMA-dominated areas (BMA) in five 
basins of Florida Bay in June 2003.  Higher rates of nitrogen fixation were 
consistently observed in assays of BMA-dominated sediments as compared to 
seagrass-dominated sediments.  A trend of decreasing rates of nitrogen fixation along 
a west to east transect was also observed.  Sites are listed from west to east in this and 
the following figures.
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Figure 20:  Ammonium concentrations were measured in the water column above 
seagrass-dominated areas (seagrass) and BMA-dominated areas (BMA) at 5 sites 
throughout Florida Bay in June 2003.  Ammonium concentrations increased along a 
transect from west to east.
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Figure 21.  Ammonium concentrations were measured in the top 0.5 cm of the 
sediments at five sites within Florida Bay in June 2003 to determine the size of the 
ammonium pool within the BMA assemblage.  BMA communities were consistently 
found within the top 1 cm of both seagrass and BMA-dominated sediments.  
Ammonium concentrations in the sediments decreased along a transect from west to 
east.  This trend is negatively correlated with the trend observed within the water 
column. 
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as compared to non-amended BMA-dominated cores (Fig. 23).  Total BMA biomass 

was also lower in DCMU- and molybdate-treated cores following a 36-hour 

incubation period.  Total sediment chlorophyll-α and rates of nitrogen fixation were 

positively correlated by linear regression in seagrass-dominated, BMA-dominated, 

and DCMU-treated cores (Fig. 24).  However, molybdate-amended cores displayed 

less than half the rate of nitrogen fixation expected by the linear regression based on 

measurements of total sediment chlorophyll-α.     

Availability of ammonium and other nutrients were examined as a possible 

limiting control on BMA-mediated nitrogen fixation via nutrient amendment 

experiments.  Aqueous solutions of 100 µM ammonium (~ 20-50 times greater than 

natural levels) were added to increase water phase NH4
+ concentrations in intact core 

assays.  Nitrogen amendments, however, did not elicit an inhibitory effect on the 

process of nitrogen fixation despite the high energy demands associated with fixation 

relative to ammonium uptake.  Rates of nitrogen fixation in ammonium-amended 

cores were not significantly different than those calculated from cores incubated 

under natural conditions in all 5 basins (Fig. 25).  Separate additions of iron and 

EDTA resulted in significant (p < 0.05) increases in rates of nitrogen fixation in only 

one basin (Sunset Cove) while acetate (DOC) and Fe/EDTA amendments did not 

result in increased rates of nitrogen fixation in any of the five basins (Fig. 26).  

Phosphorus amended cores, however, showed significantly higher nitrogen fixation 

rates (Fig. 27) than non-amended cores in the three western-most basins (sites 1, 2, 

and 3) suggesting phosphorus limiting conditions in these areas of Florida Bay.  
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Figure 22 – Linear regression displaying a significant (p < 0.05), positive relationship 
between measured rates of nitrogen fixation and measurements of sediment 
chlorophyll-α (termed BMA biomass) for whole cores measures in basins of Florida 
Bay.  Measurements made in June 2003 (filled circles) appear to have a slightly 
different relationship (y = 0.13x – 0.71; r2 = 0.81) than the relationship observed 
(inverted triangles) during all other sampling periods (y = 0.04x + 0.26; r2 = 0.82).
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Discussion

Acetylene reduction was observed in every sample that was analyzed over a 

period from June 2002-August 2003, suggesting that nitrogen fixation is a common 

feature in the benthic environments of Florida Bay.  Nitrogen fixation was surveyed 

within the sediment column up to a depth of 10 cm in order to determine the location 

of fixation on a vertical scale as well as the microbial communities that might be 

responsible for this process.  The highest rates of nitrogen fixation were consistently 

observed within the 0-1 cm section.  This fraction of the sediment column was 

characterized by the existence of a flocculent microbial mat consisting of benthic 

microalgae and associated microorganisms.  

Estimates of benthic microalgal-mediated nitrogen fixation in Florida Bay 

were similar to results found in temperate and tropical coastal systems worldwide 

(Carpenter et al. 1978, Capone 1983, Stal et al. 1984, Paerl et al. 1996, Charpy-

Roubaud et al. 2001).  Higher rates of nitrogen fixation were observed in whole cores 

taken from BMA-dominated areas as opposed to those taken from sediments 

colonized by seagrasses.  This is in contrast to the results of many studies that found 

much higher rates of nitrogen fixation in the rhizosphere of seagrass-dominated 

samples than those found in “uncolonized” sediments (Patriquin and Knowles 1972, 

O’Donohue et al. 1991, Moriarty and O’Donohue 1993, Welsh et al. 1996a, b, 

McGlathery et al. 1998).  Preliminary attempts were made to measure rates of 

nitrogen fixation during this study using slurries composed of non-rinsed Thalassia 

testudinum roots and rhizomes as well as bulk sediment samples from the 
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Figure 23 – Comparison of benthic nitrogen fixation rates measured in assays of 
unamended whole cores with whole cores amended with DCMU and sodium 
molybdate, inhibitors of photosynthesis II and sulfate reduction, respectively.  Rates 
measured in unamended cores were significantly greater than rates measured in both 
DCMU and sodium molybdate-amended cores.  All cores were sampled from a 
BMA-dominated region at Site 2 in June 2003.
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Figure 24 — Linear regression (top) and bar graph (bottom) showing a significant           
(p < 0.05), positive relationship (y = 0.15x – 0.48; r2 = 0.96) between measurements 
of nitrogen fixation rates and measurements of sediment chlorophyll in whole core 
assays obtained from both seagrass-dominated (SG) and benthic microalgae-
dominated (BMA) regions from numerous basins in Florida Bay.  Cores treated with 
sodium molybdate (open circles), a specific inhibitor of sulfate reduction, fall outside 
of this relationship while cores treated with DCMU do not.
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Figure 25 – Comparison of measured rates of nitrogen fixation in unamended BMA-
dominated whole cores with rates measured in ammonium-amended BMA-dominated 
whole cores in numerous basins of Florida Bay over several seasons.  Ammonium 
amendments did not result in significantly diminished rates of nitrogen fixation.  This 
graph displays the average rate of nitrogen fixation measured in replicate cores with 
one standard error.
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Figure 26 – Measurements of nitrogen fixation rates in unamended BMA-dominated 
whole cores with assays amended by the addition of ammonium (N), phosphorus (P), 
Iron (Fe), EDTA and Iron/EDTA (Fe + EDTA) at Site 5 in June 2003 (top) and 
August 2003 (bottom).  
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rhizosphere.  Acetylene reduction was observed in these slurries suggesting that the 

rhizosphere likely is a significant source of nitrogen to the benthic communities of 

Florida Bay.  These rates were, however, lower than those measured in slurries that 

incorporated samples of the BMA mat.  

This observation of low rates of nitrogen fixation in the rhizosphere samples 

may have resulted from the separation of the bacterial community from seagrass roots 

and rhizomes.  The sampling process excluded macrophyte biomass and physically 

removed heterotrophic bacteria from plant material as well as from the source of 

labile organic carbon necessary to fuel nitrogen fixation (O’Donohue et al. 1991, 

Moriarty and O’Donohue 1993).  To fully describe nitrogen fixation within the 

rhizosphere, it would have been necessary to collect and incubate sediment samples

together with intact Thalassia plants.  However, this was not possible with the 

incubation cores utilized in this study and therefore, all reported values of nitrogen 

fixation in this study refer to the process within the benthic microalgal community 

alone.  

BMA-mediated nitrogen fixation likely accounts for nearly all of the nitrogen 

fixed in areas of Florida Bay marked by the presence of BMA-dominated patches.  

These sediments were devoid of seagrasses and would not likely be the site of high 
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Figure 27 – Comparison of measured rates of nitrogen fixation in whole cores with 
rates measured from phosphorus-amended assays from numerous basins over several 
seasons.  Phosphorus amendments were observed to significantly (p < 0.05) stimulate 
nitrogen fixation as compared to unamended assays in the western and central basins 
of Florida Bay (sites 1, 2, and 3) [signified by double asterisk].  The values shown in 
the figure represent the average of replicate cores with one standard error.

 *  *

 *  * *  *

 *  *



82

rhizosphere-associated nitrogen fixation due to the absence of living roots and 

rhizomes.  While measurements of BMA-mediated nitrogen fixation likely 

underestimate, to some degree, total fixation in seagrass-dominated zones, 

measurements of fixation within the BMA community showed significant production 

of bioavailable nitrogen in samples taken from both seagrass-dominated areas (within 

seagrass beds) and BMA-dominated areas.  Therefore, descriptions of the rates and 

magnitudes of nitrogen fixation by benthic microalgae are essential to better describe 

overall patterns of nitrogen availability within Florida Bay.  

The ability to fix nitrogen (diazotrophy) has been observed in numerous 

classes of both autotrophic and heterotrophic bacteria commonly found in microbial 

mats and underlying marine sediments (Postgate 1982, Capone 1988).  In each case 

the magnitude of nitrogen fixation appears to be closely coupled to the availability of 

photosynthetically-derived organic matter (Bebout et al. 1993, Paerl et al. 1996).  

Visual examination of the benthic microalgal mats in Florida Bay revealed abundant 

communities of filamentous cyanobacteria as well as numerous photosynthetic sulfur 

bacteria.  Diazotrophy is common in many cyanobacteria and purple sulfur bacteria 

species (Capone 1988 and references within), and it is likely that these organisms 

composed a large fraction of the nitrogen fixing community within the benthic 

microalgal mats.  Nitrogen fixation by heterotrophic, sulfate-reducing bacteria was 

also likely present within the sediments of Florida Bay based on the results of studies 

in similar systems (Postgate 1982, Bebout et al. 1993, Paerl et al. 1996).    

Inhibitors of photosynthesis (photosystem II – DCMU) and sulfate reduction 

(molybdate) were employed to investigate the relative fraction of total nitrogen 
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fixation that could be attributed to photoautotrophic and sulfate-reducing bacteria, 

respectively.  Additions of DCMU and molybdate both resulted in significantly 

decreased rates of nitrogen fixation and BMA abundance as compared to non-

amended cores.   Taken together the rates of nitrogen fixation from cores that were 

treated with molybdate or DCMU were less than half the rates found in untreated 

cores, suggesting that inhibition of both photosynthesis and sulfate reduction repress 

rates of BMA-mediated nitrogen fixation in Florida Bay.  It appears that the addition 

of specific inhibitors may have had an effect on the interactions between the various 

components of the benthic microalgal assemblage and the overall magnitude of 

nitrogen fixation that occurs within the BMA community.  

Samples taken from both seagrass-dominated and BMA-dominated sediments 

as well as samples treated with DCMU showed a very strong correlation between 

BMA biomass and nitrogen fixation rates.  The linearity of the relationship suggests 

that nitrogen fixation is either 1) carried out overwhelmingly by oxygenic 

photoautotrophic cyanobacteria or 2) that nitrogen is fixed, in part, by associated 

heterotrophic or anoxygenic phototrophic organisms that are significantly limited by 

the availability of labile organic carbon derived from photosynthesis within the BMA 

community.  The addition of DCMU seems to support both limiting possibilities as 

DCMU amendments resulted in highly reduced levels of BMA biomass and rates of 

nitrogen fixation as compared to non-amended cores.  

However, molybdate-amended samples consistently fell outside of the linear 

relationship between fixation and BMA biomass with much lower rates of nitrogen 

fixation observed in relation to levels of BMA abundance found within each core.  
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Molybdate is a specific inhibitor of sulfate-reduction (Oremland and Capone 1989) 

which has no direct effect on photosynthesis and the production of organic carbon.  

Therefore, the observed discrepancy between rates of nitrogen fixation in molybdate-

treated cores and non-amended cores must be attributed to sulfate reducing bacteria 

within the BMA mat and the sediments or some effect that sulfate reducing bacteria 

have on the BMA community’s ability to fix nitrogen as a whole.   

Declines in the rate of sulfate reduction may have affected nitrogen fixation in 

the BMA community in a number of ways.  The inhibition of sulfate reduction may 

have had a direct effect on diazotrophic, sulfate-reducing bacteria by shutting down 

the respirative pathway by which energy is derived.  Without available energy, 

nitrogen fixation, an energy-consuming process, is not likely to have occurred at rates 

similar to those in uninhibited communities.  Inhibition of sulfate-reduction may also 

have brought about diminished sulfide levels within the microbial mat.  Decreases in 

sulfide may have elicited lower rates of nitrogen fixation from sulfide-dependent 

photoautotrophs such as purple sulfur bacteria (Bebout et al. 1993, Steppe and Paerl 

2002).  Low production of sulfide may also have led to increased oxygen 

concentrations within the microbial mat and underlying sediments (Jorgensen et al. 

1979, Stal et al. 1984).  Increased oxygen availability may have resulted in an 

inhibitory effect on nitrogen fixation due to the sensitivity of the nitrogenase enzyme 

to the presence of oxygen (Capone 1988).  However, this is not likely to be the factor 

most limiting nitrogen fixation in Florida Bay as low oxygen conditions in DCMU-

amended cores displayed even lower rates of nitrogen fixation than those observed in 

molybdate-amended samples.  Rates of sulfate reduction and sulfide availability were 
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not directly measured in this study, however, the inhibitor-treated cores suggest that 

sulfate reducing bacteria and/or purple sulfur bacteria are important nitrogen fixers in 

addition to benthic cyanobacteria within the BMA community of Florida Bay.

While the specifics of interactions between the photoautotrophic and 

anoxygenic autotrophic communities within the BMA assemblage remain 

unexplained, there appears to be significant interactions within the assemblage that 

affect rates of nitrogen fixation.  For this reason, rates of nitrogen fixation are 

attributed to the community as a whole by this study.  However, further study may 

further explain some of these relationships and may allow further insight into the role 

of the many components of the BMA assemblage in the fixation of nitrogen in Florida 

Bay.

Rates of benthic microalgal-mediated nitrogen fixation were measured 

between 0.3-20 µmol N  m-2  h-1 (0.1-6.7 mg N  m-2  d-1) in Florida Bay.  These rates 

agree well with the range of estimates found in other temperate and tropical systems 

worldwide (Table 5).  Estimates of nitrogen fixation in seagrass-dominated areas of 

Florida Bay are much lower than previously reported rates of nitrogen fixation in 

seagrass beds.  However, this is likely due to the inclusion of rhizosphere-associated 

nitrogen fixation in other studies, while this projected reported rates of fixation only 

within the benthic microalgal community.  

Rates of benthic microalgal-mediated nitrogen fixation were calculated over 

multiple days and reported on an hourly scale in conjunction with measurements of 

other nitrogen cycling processes in associated projects.  However, estimates of 

nitrogen fixation in this study likely are more reflective of the average daily rate of 
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nitrogen fixation rather than ephemeral variations that were observed over shorter 

time scales.  Nitrogen fixation was significantly linear over the entirety of the 

incubation with short periods of variability generally occurring in the early morning 

and overnight hours.  Slight accelerations in the rate of nitrogen fixation were 

observed in the early morning hours before settling back into a linear trend 

throughout the rest of the photoperiod.  

Stimulation of nitrogen fixation in the early morning hours has been observed 

in other microbial-mat systems and was attributed to the introduction of newly-

produced labile organic matter at oxygen concentrations below the threshold that 

would inhibit nitrogenase activity (Stal et al. 1984).  Bebout et al. (1993) speculated 

that anoxygenic photoautotrophs may be responsible for this increase in the rate of 

nitrogen fixation due to the high availability of sulfide, low concentrations of oxygen 

and presence of photoactive radiation.  Whatever component or components of the 

BMA community are responsible for the observed changed in the rate of nitrogen 

fixation, these effects are relatively small when considered over longer time scales.  

Additionally, scaling up short-term measurements to a daily or longer time scale may 

capture moments that are not necessarily indicative of overall fixation patterns.  For 

this reason, estimates of nitrogen fixation on the daily time scale (one complete diel 

cycle or longer) likely provide more complete and accurate descriptions of in situ 

benthic microalgal-mediated nitrogen fixation.   

Daily rates also incorporate patterns of nitrogen fixation in the dark (overnight 

hours), which were consistently lower than rates observed in the light.  Such light-

associated patterns of nitrogen fixation have been described by many studies and 
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further suggest the limitation of nitrogen fixation by the availability of organic carbon 

generated by photosynthesis (Carpenter et al. 1978, Stal et al. 1984, Bautista and 

Paerl 1985, Bebout et al. 1993, Charpy-Roubaud et al. 2001, Miyajima et al. 2001).  

No direct measurements of primary production were made in this study, however the 

presence of small bubbles, presumably oxygen generated by photosynthesis, was 

commonly observed at the surface of the microbial mat.    

Rates of nitrogen fixation were investigated at five locations throughout 

Florida Bay and revealed differing patterns between the basins sampled in this 

project.  Highest levels of nitrogen fixation were observed in the western-most basins 

with lower levels seen in the central and northeastern parts of the bay.  This trend of 

decreasing nitrogen fixation along a roughly west to east transect was directly in 

contrast to concentrations of ammonium (NH4
+) measured within the water column.  

High water column ammonium levels in the eastern and central areas of Florida Bay 

were likely the result of external loading of nitrogen via terrestrial runoff from the 

Everglades and Florida Keys (Rudnick et al. 1999).  These high concentrations of 

relatively labile nitrogen may have created conditions in the eastern bay where 

nitrogen fixation would not have been favored as a mechanism for satisfying the 

nitrogen demands within the BMA community.  

In the western-most reaches of Florida Bay, however, ammonium 

concentrations were lower as these basins were much further removed from terrestrial 

inputs of nitrogen.  Additionally, phosphorus availability was higher at the western 

margin due to the advection of relatively phosphorus-rich waters into the bay from 

the Gulf of Mexico (Forqurean et al. 1992, Rudnick et al. 1999).  Primary production 
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spurred by higher concentrations of available phosphorus likely resulted in a further 

drawdown of nitrogen from the water phase.  Such conditions suggest that the 

western part of the bay is more nitrogen-limited than central and northeastern basins.  

Measurements of nitrogen fixation by this study appear to support the idea of 

increasing nitrogen demand in the western bay as a clear gradient in the magnitude of 

nitrogen fixation was observed along an east-west transect with highest rates 

measured in the westernmost basins.  

The trend of increasing rates of nitrogen fixation from east to west was also 

observed in measurements of pore water ammonium concentrations within the top 

half centimeter (0-0.5 cm fraction) of the sediment column.  Pore water ammonium 

profiles from BMA-dominated and seagrass-dominated cores generally approximated 

the patterns of nitrogen fixation from similar samples.  This correlation suggests that 

nitrogen fixation by the benthic microalgal community is the major source of 

ammonium present within the upper fraction of the sediment column in the vicinity of 

the microbial mat. High rates of nitrogen fixation coupled with relative isolation from 

terrestrial nitrogen loads suggest that benthic microalgal-mediated nitrogen fixation is 

an important nitrogen loading term for a large area of Florida Bay.  

Nutrient amendments were added to samples to further examine the effects of 

nutrient availability within the water phase on rates of nitrogen fixation in the benthic 

microalgal community.  Previous examinations of BMA-mediated nitrogen fixation 

under artificially high nitrogen conditions have reported both an inhibitory effect of 

ammonium amendments (Pinckney et al. 1995) and the absence of any such effect 

(O’Neil and Capone 1989).  
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Table 5.  A survey of nitrogen fixation rates that have been reported in the literature.

Site Nitrogen Fixation Source
(mg N * m-2 * d-1)

BMA-dominated Sediments

Australia      0.20-1.41 O’Neil and Capone 1989
       0–4.33 Capone et al. 1992

Bermuda      0.13-3.85 O’Neil and Capone 1989

Bassin d’Arcachon      0.02-3.7 Welsh et al. 1996a
France

Card Sound (Florida)          0.37 Bunt et al. 1971

Florida Bay        0.1-6.7 This Study

Ishigaki Island      1.38-2.28 Miyajima et al. 2001
   Japan
Puerto Rico      0.71-5.17 O’Neil and Capone 1989

San Salvador      0.07-0.69 O’Neil and Capone 1989

Tikehau Lagoon        0.4-3.9 Charpy-Roubaud et al. 2001
    French Polynesia

Seagrass-dominated Sediments

Australia         10-40 O’Donohue et al. 1991
        16-47 Moriarty and O’Donohue 1993
        16-166 Perry (1997)

Bahamas         14-41 Oremland et al. 1976
6.0-9.0 Capone et al. 1979

Barbados         27-140 Patriquin and Knowles 1972

Bassin d’Archachon    0.1-7.3 Welsh et al. 1996
   France
Florida           0.03 McRoy et al. 1973

        5.0-24 Capone and Taylor 1980
      0.15-0.75 Perry (1997)

Florida Bay         0.1-0.9 This Study

Ishigaki Island         2.4-4.4 Miyajima et al. 2001
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Ammonium-amended cores showed very similar rates of nitrogen fixation to 

rates measures in non-amended cores.  Water phase ammonium concentrations were 

augmented to approximately 100 µM, more than 20-50 times higher than natural 

levels.  No measurements of ammonium in the pore water were made, yet it is likely 

that pore water concentrations rose appreciably in response to increased water phase 

values.  However, no inhibition of nitrogen fixation was observed under these 

nitrogen-replete conditions despite the energy costs associated with the process.  

These results indicate that rates of nitrogen fixation in Florida Bay are relatively 

unaffected by changes in ammonium availability on the short term and suggest the 

presence of continued nitrogen demand in this system.      

Phosphorus amendments, however, generally did result in increased rates of 

nitrogen fixation.  Primary production in Florida Bay has been described as 

phosphorus-limited (Forqurean et al. 1992).  Enhanced phosphorus availability likely 

created favorable conditions for the growth of diazotrophic cyanobacteria due to their 

ability to supply sufficient amounts of nitrogen to support increased rates of 

production (Paerl et al. 1994, Pinckney et al. 1995).  Additions of iron (alone and in 

combination with EDTA) and dissolved organic carbon both failed to bring about 

consistent increases in nitrogen fixation over non-amended samples of the BMA 

assemblage (Figure 26).  Thus, it appears that BMA-mediated nitrogen fixation is a 

major component in supporting the production and growth of cyanobacteria and is 

constrained by outside mechanisms (such as phosphorus availability) that limit these 

processes.  
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   The results of this study indicate that the amount of nitrogen fixed by 

diazotrophic organisms in the benthic microalgal mats is a significant input term in 

basins located throughout Florida Bay.  However, it is difficult to accurately estimate 

the total magnitude and impact of nitrogen fixation on scales large enough to compare 

inputs via fixation to previously reported values of external nitrogen loads to the 

system.  Nitrogen fixation was observed at much higher rates in BMA-dominated 

patches as opposed to areas covered by seagrasses.  Rates of nitrogen fixation also 

varied between basins with a strong gradient observed along an east to west tract.  

Therefore, a number of steps were taken to include larger-scale estimates of nitrogen 

fixation in order to construct an improved nitrogen budget for Florida Bay.  

For this budget, the system was divided into five zones that included one of 

the five basins that were sampled in this study.  The location and extent of these five

zones were roughly based on previous divisions of Florida Bay on the basis of benthic 

plant communities as described by Zieman et al. (1989).  Zones were further divided 

according to the relative area within each basin that was dominated by seagrass as 

compared to the area that was dominated by BMA to more accurately describe the 

total amount of BMA-mediated nitrogen fixation occurring within each part of the 

bay.  Both the western bay (site 1) and eastern bay (site 4) were fully seagrass-

dominated during the sampling period and were considered to be 100%  seagrass-

dominated.  The north-central (site 3) and island-associated (site 5) portions of the 

bay were estimated on a 50% seagrass-dominated, 50% BMA-dominated basis and 

the south central (site 2) part of the bay was split 75% seagrass-dominated, 25% 

BMA-dominated.  These estimates of percent vegetative cover were based primarily 
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on personal observations at sampling sites and adjacent basins throughout the 

sampling period.  Measurements of nitrogen fixation from each of the five sampled 

basins were considered to be representative for the entire area of each zone, 

respectively.  Total nitrogen fixation was then calculated as the sum of estimates of 

nitrogen fixation from each of the five basins.  

Estimates of external inputs of total nitrogen (TN) to Florida Bay were 

reported by Rudnick et al. (1999) and have since been further refined by the same 

authors.  These estimates suggest that nitrogen loading is dominated by the advection 

of nitrogen-rich waters into Florida Bay from the Gulf of Mexico at the western 

margin of the system.  Smaller inputs of nitrogen are derived from terrestrial runoff 

from the Florida Everglades and Florida Keys as well as from the atmosphere through 

precipitation directly incident on the waters of the bay.  Suggestions by Rudnick et al. 

(1999) that nitrogen fixation likely has a significant impact on nitrogen availability 

appear to be validated by the results of this study.  

Using the budget with all of the assumptions mentioned above, benthic 

microalgal-mediated nitrogen fixation in Florida Bay was estimated at 382 metric 

tons N km-2 yr-1 (Table 6).  This figure is of similar magnitude to external nitrogen 

loading resulting from terrestrial runoff from the Florida mainland and islands of the 

Florida Keys as well as from the atmosphere via precipitation.  These input terms 

taken together are still far less than the estimated input of nitrogen into Florida Bay 

due to water advection from the Gulf of Mexico and, as such, it would appear that 

nitrogen availability within the system is highly dependent on this one source.  

However, the fate and availability of incoming nitrogen from the Gulf of Mexico is 
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very much in question as the presence of large, shallow mud banks likely prevents the 

introduction of nutrient-replete waters beyond the western-most fringes of the bay 

(Rudnick et al. 1999).  Thus, upstream (terrestrial) and more localized inputs of 

nitrogen, like nitrogen fixation, are likely the most important sources of bioavailable

nitrogen for much of Florida Bay.  

The spatial extent that is impacted by both external and internal nitrogen 

sources is relatively unknown.  Introduction of nitrogen from the Everglades and 

Florida Keys occurs on a fairly localized scale along the northern margin of the 

system, and patterns of water advection that may transport these pools of nitrogen 

between adjacent basins and beyond have not been well described.  Similarly the 

impacts of external nitrogen inputs from the Gulf of Mexico beyond the western-most 

part of Florida Bay are not well known.  This uncertainty surrounding the impacts of 

these external nitrogen sources may create a situation where nitrogen inputs via 

precipitation and nitrogen fixation comprise the largest input terms in interior parts of 

Florida Bay.  
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External Inputs         metric tons TN * yr-1 mg TN * m-2 * d-1 

Everglades         250 0.31
Taylor Slough and C-111

Atmosphere         710 0.88
Florida Keys Wastewater                     170 0.21
Gulf of Mexico                   13000 16.19

Advection across Boundary

Total Inputs (External Sources)                   14000 17.43
from Rudnick et al. 1999

Internal Inputs         metric tons N * yr-1 mg N * m-2 * d-1 

Western Bay (Site 1)           40 0.25
South Central Bay (Site 2)

seagrass-dominated           54 0.45
BMA-dominated          102 2.55

North Central Bay (Site 3)
seagrass-dominated           14 0.17
BMA-dominated       87 1.08

Eastern Bay (Site 4)           24 0.15
Island-Associated Bay (Site 5)

Seagrass-dominated           15 0.19
BMA-dominated           47 0.59

Total Inputs (Internal Sources)                383 0.47   

Table 6.  A comparison between external inputs of nitrogen as reported by Rudnick et 
al. (1999) and estimates of internal inputs based on measurements of nitrogen fixation 
in this study.  Measured rates of nitrogen fixation were assumed to be representative 
of a section of Florida Bay.  Estimates of relative seagrass-dominance vs. BMA-
dominance were based on observations at each of the sample sites and were used to 
determine total nitrogen inputs to each area of the bay.  Two sites (Site 1 and Site 5) 
were completely dominated by seagrass and, therefore, have no inputs of nitrogen 
from BMA-dominated zones.  Estimated inputs of nitrogen compare to external 
inputs from the Everglades, Florida Keys, and atmospheric deposition.  However, 
internal inputs of nitrogen via nitrogen fixation may be very significant to supporting 
productivity in Florida Bay as it is unknown to what extent external inputs of nitrogen 
are available to regions of the bay due to the structures that combine to isolate that 
bay from adjacent ecosystems.
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Conclusions

Nitrogen fixation was a common occurrence in the benthic microalgal 

communities throughout Florida Bay.  Periods of fixation were generally found 

during the photoperiod and were attributed to the availability of labile organic carbon 

produced via oxygenic photosynthesis.  Significant correlations between nitrogen 

fixation and BMA biomass as measured by chlorophyll-α suggest that phototrophic 

cyanobacteria comprise a major fraction of the diazotrophic suite of organisms within 

the benthic microalgal mats.  Sulfate-reducing bacteria and anoxygenic, sulfide-

dependent phototrophs were also identified as likely nitrogen fixers.

A trend of increasing rates of nitrogen fixation was observed along an east to 

west transect which directly contrasted the pattern observed in water column 

ammonium concentrations.  These patterns are likely indicative of increasing 

phosphorus concentrations in the western basins due to the influence of the Gulf of 

Mexico as well as diminished impacts of terrestrial nitrogen sources felt downstream 

as compared to basins located closer to the point of input.   

 Benthic microalgal nitrogen fixation was highest in “BMA-dominated” 

patches due to increased BMA abundance in the absence of competition and shading 

by seagrasses.  BMA-mediated nitrogen fixation was stimulated by phosphorus 

suggesting BMA production was limited by phosphorus availability.  Amendments of 

ammonium did not result in any consistent stimulation or inhibition of rates of 

nitrogen fixation indicating that this process is not affected by increased nitrogen 

loading, at least not on the short-term (multiple days).  Similarly iron and dissolved 
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organic carbon (acetate) failed to bring about consistent changes in the rate of 

nitrogen fixation.  

Benthic microalgal-mediated nitrogen fixation is a significant source of 

bioavailable nitrogen and may be one of the largest nitrogen inputs in interior and 

western basins of Florida Bay.  As such, it is necessary to include rates of nitrogen 

fixation in future budgets and nitrogen cycling models for this system.  Further work 

examining nitrogen fixation within the rhizosphere in seagrass-dominated areas of 

Florida Bay is suggested since this is likely a major source of nitrogen that is yet to be 

described.  
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