Adaptive Runtime Support for Direct Simulation Monte Carlo
Methods on Distributed Memory Architectures *

Bongki Moon Joel Saltz

Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland
College Park, MD 20742
{bkmoon, saltz}@cs.umd.edu

Abstract

In highly adaptive irregular problems such as many Particle-In-Cell (PIC) codes and Direct Sim-
ulation Monte Carlo (DSMC) codes, data access patterns may vary from time step to time step. This
fluctuation may hinder efficient utilization of distributed memory parallel computers because of the
resulting overhead for data redistribution and dynamic load balancing. To efficiently parallelize such
adaptive wrregular problems on distributed memory parallel computers, several issues such as effective
methods for domain partitioning and fast data transportation must be addressed. This paper presents
efficient runtime support methods for such problems. A stmple one-dimensional domain partitioning
method 1s tmplemented and compared with unstructured mesh partitioners such as recursive coordi-
nate bisection and recursive inertial bisection. A remapping decision policy has been investigated for
dynamic load balancing on 3-dimensional DSMC' codes. Performance results are presented.

1 Introduction

In sparse and unstructured problems, patterns of data access cannot be predicted until runtime. Since
this prevents compile time optimization, effective use of distributed memory parallel computers may
be achieved by utilizing a variety of profitable pre-processing strategies at runtime. In this class of
problems, once data access patterns are known, the pre-processing strategies can exploit the knowledge
to partition work, to map global and local data structures and to schedule the movement of data between
the processor memories. The goal of the partitioning is to balance the computational load and reduce
the net communication volume. Once data and work have been partitioned among processors, the prior
knowledge of data access patterns makes it possible to build up a communication schedule that depicts
which data elements need to be exchanged between processors. This communication schedule remains
unchanged as long as the data access patterns remain unchanged.

In past work a PARTI runtime support library has been developed for a class of irregular but
relatively static problems in which data access patterns do not change during computation. [14, 4, 5]
To parallelize such problems, the PARTI runtime primitives coordinate interprocessor data movement,
manage the storage of, and access to, copies of off-processor data, and partition work and data structures.

*This work was supported by NASA under contract No. NAG-11560, by ONR under contract No. SC 292-1-22913 and
by ARPA under contract No. NAG-11485. The authors assume all responsibility for the contents of the paper.

PARTI primitives have been successfully used to port a variety of unstructured mesh single- and multi-
grid codes, molecular dynamics codes onto distributed memory architectures. For these problems it is
enough to perform pre-processing only once or occasionally.

In many irregular problems the data access patterns and computational load change frequently
during computation. While the PARTI runtime primitives are able to handle many highly adaptive
problems in which data access patterns change frequently, efficiency may be hindered by relatively high
pre-processing costs. Thus the runtime primitives for interprocessor data movement and storage man-
agement need to be optimized for problems with varying data access patterns. Since the computational
load may change from time step to time step, data arrays may need to be redistributed frequently to
achieve load balance. This requires efficient methods to compute partitions of problem domain and to
carry out remapping to balance load.

We have recently developed a new runtime support library called CHAOS which aims at parallelizing
highly adaptive problems on distributed memory parallel computers. The runtime support library has
been implemented on the Intel iPSC/860, Touchstone Delta and Paragon, Thinking Machine CM-5,
and IBM SP-1 platforms. It subsumes the previous PARTI library which was mainly targeted at static
irregular problems. The CHAOQS library has been used to parallelize several highly adaptive application
codes including two and three dimensional Direct Simulation Monte Carlo (DSMC) methods. This paper
describes approaches for parallelizing the direct particle simulations on distributed memory parallel
machines, emphasizing efficient data migration strategies, domain partitioning and dynamic remapping
methods for load balance.

The rest of the paper is organized as follows. Section 2 describes general characteristics of DSMC
methods and motivations behind these parallelization approaches. Section 3 introduces a new domain
partitioner and compares it with other unstructured mesh partitioners. Periodic and dynamic remapping
methods for dynamic load balancing issues are presented in Section 4. Communication optimization for
fast and frequent data migration is discussed in Section 5. Fixperimental results are given in Section 6.

2 Motivations for parallelization

2.1 Overview of the DSMC method

The DSMC method is a technique for computer modeling of a real gas by a large number of simulated
particles. It includes movement and collision handling of simulated particles on a spatial flow field
domain overlaid by a Cartesian mesh [12, 18]. The spatial location of each particle is associated with
a Cartesian mesh cell. Fach mesh cell typically contains multiple particles. Physical quantities such
as velocity components, rotational energy and position coordinates are associated with each particle,
and modified with time as the particles are concurrently followed through representative collisions and
boundary interactions in simulated physical space.

The DSMC method is similar to Particle-in-cell (PIC) method in that it tries to simulate the physics
of flows directly through Lagrangian movement and particle interactions. However, the DSMC method
has a unique feature that distinguishes it from PIC method: the movement and collision processes are
completely uncoupled over a time step [13]. McDonald and Dagum have compared implementations of
direct particle simulation on SIMD and MIMD architectures. [7]

2.2 Computational characteristics

Changes in position coordinates may cause the particles to move from current cells to new cells according
to their new position coordinates. This implies that the cost of transmitting particles among cells may
be significant on distributed memory parallel computers since a substantial number of particles migrate

in each time step, and each particle usually has several words of data associated with it. In the particular
3-dimensional DSMC program reported here, each particle consumes about 10 words of storage. On
average, more than 30 percent of the particles change their cell locations every time step. However,
particle movements are very local. In our simulations, we observed that particles only move between
neighboring cells.

Applications which have characteristics like the DSMC computation require runtime support that
provides efficient data transportation mechanisms for particle movement. Computational requirement
tends to depend on the number of particles. Particle movement therefore may lead to variation in work
load distribution among processors. The problem domain overlaid by a Cartesian mesh needs to be
partitioned in such a way that work load is balanced and the number of particles that move across
processors is minimized. It may also need to be repartitioned frequently in order to rebalance the work
load during the computation. These characteristics raise an issue of dynamic load balancing and require

o effective domain partitioning methods, and

o adaptive policy for domain repartitioning decisions.

3 Domain partitioning methods

This section presents some techniques for domain partitioning. It is assumed that work units (e.g.
cells) in the problem domain may require different amounts of computation. Partitioning of the prob-
lem domain is important for parallel computation because efficient utilization of distributed memory
parallel computers may be affected by work load distribution and the amount of communication between
processors.

3.1 Recursive bisection

There have been several theoretical and experimental discussions of partitioning strategies based on
spatial information for many years. Recursive coordinate bisection (RCB) [1] is a well-known algorithm
which bisections a problem domain into two pieces of equal work load recursively until the number
of subdomains is equal to the number of processors. Recursive inertial bisection (RIB) [10] is similar
to RCB in that it bisects a problem domain recursively based on spatial information, but RIB uses
minimum moment of inertia when it selects bisectioning directions, whereas RCB selects bisectioning
directions from x-, y-, or z-dimensions. In other words, RIB bisects a 3- dimensional domain with
a plane at any angle with respect to the coordinate axes, whereas RCB does so only with a plane
perpendicular to one of the z, y and z coordinate axes. Clearly the number of processors has to be a
power of 2 to apply these algorithms on parallel computers.

Recursive bisection algorithms produce partitions of reasonable quality for static irregular prob-
lems, with relatively low overhead when compared with Recursive spectral bisection [11] and Simulated
Annealing [17]. von Hanxleden [16] and Williams [17] discuss the qualities of partitions produced by
the recursive bisection algorithms, and compare their performance with other partitioning methods in
several aspects.

3.2 Chain partitioner

Minimization of partitioning overheads is particularly important in problems that require frequent
repartitioning. We therefore considered low overhead partitioning methods, especially chain partition-
ers. Chain partitioners decompose a chain-structured problem domain whose task graph is a chain of
work units into a set of pieces which satisfies contiguity constraints — each processor has a contiguous

subdomain of work units assigned to it. That is, a problem domain has to be partitioned in such a
way that work units ¢ and ¢+1 are assigned to the same or to adjacent processors. Relatively simple
algorithms for finding the optimal partition of a chain-structured problem have been suggested [2, 8, 3].

While these algorithms are developed to optimize computation and communication costs at the same
time, we have developed and used a new chain partitioning algorithm which considers computation
cost only. This algorithm requires only one step of global communication and a few steps of local
computation. Supposing that P is the number of processors, each processor ¢ (0 < ¢ < P — 1) executes
the same algorithm :

1. Compute 5 = Z}g_:lo Ly and T = ¢B where Lj is the amount of work owned by processor k£ and
B = % Zf:_ol Ly. Then S is a scan sum that indicates the relative position of the subchain owned
by processor ¢ within the current distribution of work. 7T indicates the relative position of the
subchain that processor ¢ has to own under the target distribution of work.

2. If S is less than or equal to T, then find a processor index j such that j = max{j | j < i and
T—5<(i—j)B}. If Sis greater than 7', then find a processor index j such that j = min{j | j > ¢
and S—T < (j—i+1)B}. Then j is the index of the processor that has the smallest index number
among processors some of work units of processor ¢ must be moved into. Note that if 5 =T then

j=1.

3. Compute processor j’s amount of work é that will be moved from processors with index numbers
less than . If S is less than or equal to 1", 6 = (i —j)B— (1" —5), otherwise 6 = (5 —-1)—(j —1)B.

4. Compute m the number of processors to which work of processor ¢ will be moved. m is an integer
such that %§m< %—I—l.

5. Compute A\g (0 < k < m — 1) the amount of work that has to be transferred to processor j + k;
AOIB—(S,Alz ...IAm_QIB,Am_l :LZ—(m—l)B—I—(S

6. Using the Ag, A1, ..., A1, compute a list of processor indices to which each work unit of processor
¢ has to be moved.

In applying our chain partitioner to 3- dimensional problems that have directional biases in commu-
nication requirements, we make two assumptions. First, communication costs may be ignored except
along one direction with the most communication, so that 3- dimensional Cartesian mesh cells can be
viewed as a chain of cells. Second, it is also assumed that communication costs between any pair of
cells are all the same. Then it is not necessary to take the communication costs into account. These
assumptions can be supported by the highly directional nature of particle flow that characterizes some
DSMC communication patterns. In some of our tests, more than 70 percent of particles moved along
the positive z-axis, and the standard deviation of the numbers of particles which moved across cell
boundaries along the positive xz-axis per each cell was less than 2.

3.3 Performance of domain partitioners

We have experimented with the above partitioning methods for a NASA Langley 3-dimensional DSMC
code which simulates a corner flow on Intel iPSC/860 parallel computer with 128 processing nodes.
When we carried out 1000 time steps of DSMC computation using the chain partitioner, the average
number of messages sent by each processor was reduced by about 20 percent, while average volume of
communication was increased by about 32 percent, compared with the use of recursive coordinate bisec-
tion. We measured message traffic required only by DSMC computation and communication incurred
by partitioners themselves were not considered. Since a few long messages are more desirable than

(Time in secs) Partitioning algorithms
Noprocs RCB | RIB | Cham
8 0.4804 | 0.5662 | 0.0058
16 0.6531 | 0.6527 | 0.0035
32 0.9993 | 0.9652 | 0.0029
64 2.3708 | 2.2050 | 0.0030
128 7.1666 | 6.5897 | 0.0036

Table 1: Costs of partitioners on iPSC/860

Figure 1: Domain partitions produced by RCB (left) and Chain partitioner (right)

many short messages on most distributed memory architectures, the chain partitioner, in some cases,
may actually produce partitions with less communication overhead. Figure 1 illustrates the domain
partitions of the 3- dimensional DSMC code. The first partition was produced by recursive coordinate
bisection (RCB) and the second one was done by the chain partitioner.

Table 1 compares the execution time of recursive bisections and chain partitioner which have been
implemented and benchmarked with the NASA Langley 3- dimensional 30 x 18 x 18 Cartesian mesh
cells on the Intel iPSC/860. It can be observed that the overheads associated with recursive bisections
increase with the number of processors in a non-linear manner so that partitioning overheads that are
acceptable on a relatively small number of processors may no longer be acceptable on a very large
number of processors. This can be explained by the fact that our parallel implementations of recursive
bisection algorithms require multiple phases of communication to exchange work load information among
processors whereas the chain partitioning algorithm needs only one step of global communication that
can be efficiently implemented by most message passing parallel computers.

4 Dynamic load balancing

Dynamic load balancing is essential for applications such as DSMC codes and PIC codes where work
load distribution fluctuates as particles move around. This section outlines two remapping decision
policies which determine when a problem domain needs to be repartitioned : a periodic remapping
policy and a dynamic remapping policy. The periodic remapping repartitions the problem domain in
a fixed interval preset by programmers and the dynamic remapping determines whether repartitioning
is required at every time step. A heuristic has been studied and manipulated to help make remapping
decisions dynamically at runtime. A related work that achieves dynamic load balance by monitoring
load imbalance at user specified interval has been reported [6].

4.1 Periodic remapping

DSMC codes can be characterized by statistical calculations involving particles associated with each
cell, particles moved to new cells as a result of calculations, and cells partitioned over the processing
nodes. Each cell may require a different amount of computation and the work load distribution over the
entire Cartesian mesh may change from time step to time step as particles move across cell boundaries.
The combination of these characteristics may lead to system performance which deteriorates over time
if the initial partition of problem domain remains unchanged statically.

We have optimized performance of 3- dimensional DSMC codes with periodic redistribution of com-
putational load by using recursive bisections (RCB and RIB) and the chain partitioner described in
Section 3. Periodic remapping, with a properly chosen inter-remapping frequency, provides signifi-
cantly better performance compared with static partitioning. Fxperiments with the NASA Langley
3-dimensional DSMC code on Intel iPSC/860 with 128 processors show that the degree of load im-
balance ! does not exceed 30 percent of perfect load balance, whereas static partitioning exceeds 400
percent.

4.2 Dynamic remapping

Since the periodic remapping method repartitions Cartesian mesh cells at intervals of a fixed number of
steps, it is insensitive to variations in computational requirements. In addition, the periodic remapping
method requires potentially impractical pre-runtime analysis to determine an optimal periodicity.
Stop-At-Rise (SAR) remapping decision policy has been implemented and experimented, which was
introduced previously [9]. The SAR heuristic trades the cost of problem remapping against time wasted
due to load imbalance. It assumes that processors synchronize globally at every time step, that the
cost of remapping and idle time for each processor since the last remapping are known at runtime.
Supposing that the problem domain was last remapped n steps ago, SAR defines a heuristic function

Z?:l(Tmax(j) B Tavg(j)) +C

n

Win) =

to formulate the average processor idle time per step that could be achieved by remapping immediately
at the current step. In the above heuristic function, T},,4,(7) is the computation time required by a
bottleneck processor to complete the jth step, T5,4(j) is the average computation time required to
complete the jth step, and C' is the time spent in one remapping operation.

The heuristic function W(n) incorporates two cost terms to determine whether remapping the
problem domain is needed; C' is the cost of a single remapping operation and >=7_ (Traz(J) = Tavg(J))

!The degree of load imbalance is defined as the ratio of the computation time of the bottleneck processor to the average
computation time. That is, if ¢; is the computation time of processor i, tmar = max(ti), and taug = Zil t;/ P where P
is the number of processors, then the degree of load imbalance is I = tmas/tavg-

Seconds x 10°3

340.00 [| ‘ | Reost
320.00 [

300.00 [
280.00 |-
260.00 [

240.00 —
220.00 —
200.00 —
180.00 —
160.00 —
140.00 —
120.00 —
100.00 — s —

80.00 — £ —

60.00 — =

40.00 —

ie g {@i Casell
20.00 — &\ 88 L & s .9, -
O O Rt s e e s
0.00 — ¢ =
| | | | | | |
0.00 50.00 100.00 150.00 200.00 250.00 300.00

Steps

Rcost : Time step and cost of remapping
Case [: Idle time without remapping
Case I : Idle time with dynamic remapping

Figure 2: Remapping cost and Idle time

is the idle time cost of not remapping. There is an initial tendency for W(n) to decrease as n increases
because the remapping cost (' is amortized over an increasing number of time steps. Increase in the
cost term 371 (Trnaz(j) = Tavg(j))/m indicates that work load balance is deteriorating. The SAR policy
is to remap when W (n) first begins to rise, i.e. the first time that W(n) > W(n — 1).

Figure 2 presents idle time incurred during each time step of DSMC simulation. Case I and Case II
curves illustrate the idle time of a 3-dimensional DSMC code without and with remapping, respectively.
That is, results of the Case II were obtained by repartitioning the problem domain dynamically with
chain partitioner, whereas those of the Case I were generated by keeping the partition static during the
entire computation process. Both experiments were carried out on a 16-node Intel iPSC/860 parallel
computer. Fach data point on these curves represents idle time wasted during each time step. The
Rcost curve presents time steps when the problem domain is repartitioned and depicts the amount
of time spent in repartitioning. For instance, the 8th data point in the Rcost curve shows that the
Cartesian mesh cells of the DSMC code was repartitioned at the completion of the 103rd time step
and about 114 milliseconds was spent for repartitioning. The idle time wasted in the 104th time step
was reduced from about 292 milliseconds in the Case I to about 8 milliseconds in the Case II. This
demonstrates that a substantial amount of idle time can be reduced by dynamic remapping with the
SAR decision policy.

5 Communication optimization

The cost of transmitting particles between processors tends to be significant in the DSMC codes because
a substantial number of particles change their cell locations in each time step, and each particle usually
has several words of data associated with it. However, a particle’s identity is completely determined by
its state information (spatial position, momentum, etc), and computation depends only on a particle’s

Table 2: Inspector/executor vs. Light-weight schedule (iPSC/860)

48x48 Cells 96x96 Cells
(Time in secs) Processors Processors
16 32 64 128 16 32 64 128

Inspector/executor | 63.74 | 50.50 | 79.58 | 95.50 | 226.89 | 131.99 | 125.64 | 118.89
Light-weight schedule | 20.14 | 11.54 | 7.60 | 6.77 | 79.89 | 40.46 | 21.77 | 14.23

state information and on the cell to which the particle belongs, and not on the particular numbering
scheme for the particles. This implies that communication only need append particle state information
to lists associated with each cell. This avoids the overhead involved in specifying locations within
destination processors to which particle state information must be moved.

This property of the DSMC computation helps build light-weight schedules which are cheaper to
compute than regular communication schedules built by PARTI primitives. A light-weight schedule
for processor p stores the numbers and sizes of inbound and outbound messages, and a data structure
that specifies to where the local particles of p must be moved. A set of data migration primitives
has also been developed which can perform irregular communications efficiently using the light-weight
communication schedules. While the cost of building light-weight schedules is much less than that
of regular schedules, light-weight schedules and data migration primitives still provide communication
optimizations by aggregation and vectorization of messages.

6 Experimental results

This section presents the performance results for the 2-dimensional and the 3-dimensional DSMC codes
implemented on various distributed memory architectures including Intel iPSC/860, Intel Paragon and

IBM SP-1.

6.1 Light-weight schedules

Table 2 presents the elapsed times of 2-dimensional DSMC codes parallelized using light-weight
communication schedules and data migration primitives compared with the results from the same code
parallelized by using regular schedules of PARTI runtime support. Since computational requirements
are uniformly distributed over the whole domain of the 2- dimensional DSMC problem space, we have
used a regular block partitioning method for the 2- dimensional DSMC code reported here. Thus
load balance is not an issue for this problem and we can study the effectiveness of the light-weight
schedule and data migration primitives without interference from other aspects such as partitioning
methods and remapping frequencies. The inspector/executor method of PARTI runtime library [15, 4]
which is applied to the 2-dimensional problem carries out pre-processing of communication patterns
every time step because the reference patterns to off-processor data change from time step to time
step. Consequently preprocessing cost is greater for the inspector/executor method than using light-
weight schedules. Moreover, since the fraction of local particles to the initial distribution becomes
smaller as the computation proceeds, the communication volume tends to grow. The performance of
the inspector/executor method degenerates on a large number of processing nodes, and it actually leads
to a decrease in performance when a large number of processors are used on a small problem.

Even though data migration primitives that use light-weight schedules are invoked in every time step
for the purpose of particle relocation, it still outperforms the inspector/executor method significantly.
This performance benefit is achieved by the aggregated communication which is automatically carried

Measured in (elapsed time) x (no. of processors)
Sec x Nprocs x 103

I RCB
34.00 — i

3200 e qSdtic
30.00 —
28.00 —
26.00 —
24.00 —
22.00 —
20.00 —
18.00
16.00
14.00
12.00
10.00

8.00 —

600 ¥

Nprocs
20.00 40.00 60.00 80.00 100.00 120.00

Figure 3: Performance of periodic remapping

out by the migration primitives, which incurs minimum communication costs. FEach processor aggregates
information of all the moved particles into a single message, and sends and receives at most one message
to and from its neighboring processors. More importantly, the migration primitives allow each processor
to locally own all the particles required for its computation of each time step. Provided workload
is optimally distributed, this feature guarantees the efficient utilization of processors as no further
communication is required to execute remaining computation of the time step.

6.2 Periodic remapping

Figure 3 compares periodic domain remapping methods with static partitioning (i.e. no remapping),
which are applied to 3-dimensional DSMC codes on Intel iPSC/860 with varying numbers of processors.
We have measured performance numbers in a normalized manner by multiplying the elapsed time
and the number of processors used. The Static curve represents the performance numbers produced
by the static partitioning method. Curves RCB, RIB and Chain are produced by repartitioning the
problem domain with recursive coordinate bisection, recursive inertial bisection and chain partitioner
respectively. The problem domain is repartitioned every 40 time steps based on work load information
collected for each Cartesian mesh cell. For an accurate workload estimate, actual computation time
is measured in microseconds for each cell in every time step. Results indicate that all of the periodic
repartitioning methods generate almost the same quality of partitions and significantly outperform static
partitioning on a small number of processors.

Recursive bisection, however, leads to performance degradation when a large number of processors
are used. For instance, the performance of these methods was poorer than that of static partitioning
on iPSC/860 with 128 processors. This performance degradation is a result of large communication
overhead which increases as the number of processors increases. The chain partitioner on the other
hand appears to be very eflicient in partitioning the problem domain with a minimum of additional
overhead for this set of problems.

6.3 Dynamic remapping

Periodic and Dynamic Remapping (RCB;P=128)
Seconds

320.00 — — -7
300.00 — —
280.00 — |
260.00 — |
240.00 — |
220.00 — |
200.00 — |
180.00 — |
160.00 — |
140.00 — |
120.00 — |

| | | | |
100.00 200.00 300.00 400.00 500.00

Intervals

Fixed : remapped periodically in varying intervals
Sar : remapped dynamically with SAR policy

Figure 4: Dynamic remapping with RCB

The dynamic remapping method attempts to minimize the average processor idle time since the last
remapping by trading remapping cost and idle time. Since the SAR remapping decision heuristic uses
runtime information such as remapping cost and processing time of bottleneck processor, it adapts to
the variations in system behavior without any a priori information about computational requirements
and workload distribution.

This series of experiments with varying intervals for periodic remapping compared performance
of optimal periodic remapping with that of dynamic remapping. Figure 4 and Figure 5 represent
performance results measured in elapsed times when the problem domain is remapped by RCB and
the chain partitioner respectively on Intel iPSC/860 with 128 processors. Note that the performance
of dynamic remapping is better than that of periodic remapping with an optimal remapping interval
when RCB is used to repartition the problem domain. When the chain partitioner is applied, dynamic
remapping does not perform better than optimal periodic remapping; however, performance remains
comparable to that of optimal periodic remapping.

In Figures 6 and 7, the performance of the dynamic remapping method is compared when carried out
with each of three domain partitioning algorithms on various distributed memory parallel computers
such as Intel iPSC/860, Intel Paragon and IBM SP-1. 2 Performance numbers are measured in a
normalized manner by multiplying elapsed time by the number of processors used. In the Figure 7
the curves RCB-P, RIB-P and Chain-P represent performance of Intel Paragon, and RCB-S, RIB-S and
Chain-S represent that of IBM SP-1. The chain partitioner outperformed other domain partitioning
algorithms in all cases. Note that the chain partitioner can be applied to any number of processors,
whereas RCB and RIB can be used only when the number of processors is a power of 2.

?Interrupt-driven EUI-H was selected for incoming messages on IBM SP-1.

10

Periodic and Dynamic Remapping (Chain;P=128)
Seconds

98.00 — ez
97.00 — |
96.00 — |
95.00 — |
94.00 — |
93.00 — |
92.00 — |
91.00 — |
90.00 — |
89.00 — |

88.00 — —
87.00 — /\ —
86.00 — —
85.00 — \/ —
84.00

83.00 — —
82.00 — —

81.00 = ! | ! L= Intervals

Fixed : remapped periodically in varying intervals
Sar : remapped dynamically with SAR policy

Figure 5: Dynamic remapping with Chain partitioner

7 Concluding remarks

The results presented here indicate that data transportation procedures optimized for communication
are crucial for irregular problems with fluctuating data access patterns, and effective domain partitioning
methods and remapping decision policies can achieve dynamic load balancing.

Light-weight communication schedules reduced the costs of data transportation dramatically for ap-
plications where the numbering of data elements does not matter. A chain partitioner which partitions
multidimensional problem domains in one-dimensional processor space was easy to implement. The
chain partitioner also produced partitions of almost the same quality at very low cost for applications
with directional biases in communicational requirements when compared with unstructured mesh parti-
tioners such as RCB and RIB. A dynamic remapping method with the SAR policy carried out dynamic
load balancing of DSMC codes without any a priori information about computational requirements on
various distributed memory architectures.

DSMC codes described here employ a uniform mesh structure; however, for many applications
it is necessary to use non-uniform meshes which, in some cases, adapt as computation progresses.
Collaboration will continue with NASA Langley to address some of the many computational challenges
posed by such non-uniform meshes.

Acknowledgements

The authors would like to thank Richard Wilmoth at NASA Langley for his constructive advice and
the use of DSMC production codes. The authors thank Robert Martino at the National Institute of
Health for support and use of NIH iPSC/860. The authors also gratefully acknowledge use of the
Argonne High-Performance Computing Research Facility. The HPCRF is funded principally by the
U.S. Department of Energy Office of Scientific Computing.

11

Measured in (elapsed time) x (no. of processors)
Sec x Nprocs x 103

18.00 - T _|RIB

17.00 —

16.00 —

15.00 —

14.00 —

13.00 —

12.00 —

11.00 —

10.00 —

9.00 —

8.00 —

7.00 —

6.00 — | | | | | |
20.00 40.00 60.00 80.00 100.00 120.00

—! Nprocs

Figure 6: Dynamic remapping on Intel iPSC/860

References

(1]

M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. /TEEE
Trans. on Computers, C-36(5):570-580, May 1987.

S. H. Bokhari. Partitioning problems in parallel, pipelined, and distributed computing. [EEE Trans. on
Computers, 37(1):48-57, January 1988.

Hyeong-Ah Choi and B. Narahari. Efficient algorithms for mapping and partitioning a class of parallel
computations. Journal of Parallel and Distributed Computing, 19:349-363, 1993.

R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation of a parallel
unstructured Euler solver using software primitives, ATAA-92-0562. In Proceedings of the 30th Aerospace
Sciences Meeting, January 1992.

R. Das and J. Saltz. Parallelizing molecular dynamics codes using the Parti software primitives. In Proceedings
of the Sizth SIAM Conference on Parallel Processing for Scientific Computing, pages 187-192. STAM, March
1993.

P. C. Liewer, E. W. Leaver, V. K. Decyk, and J. M. Dawson. Dynamic load balancing in a concurrent
plasma PIC code on the JPL/Caltech Mark IIT hypercube. In Proceedings of the Fifth Distributed Memory
Computing Conference, Vol. II, pages 939-942. IEEE Computer Society Press, April 1990.

J. McDonald and L. Dagum. A comparison of particle simulation implementations on two different parallel
architectures. In Proceedings of the Sizth Distributed Memory Computing Conference, pages 413-419. IEEE
Computer Society Press, April 1991.

David M. Nicol and David R. O’Hallaron. Improved algorithms for mapping pipelined and parallel compu-
tations. JTEEE Trans. on Computers, 40(3):295-306, March 1991.

David M. Nicol and Joel H. Saltz. Dynamic remapping of parallel computations with varying resource

demands. IEEE Trans. on Computers, 37(9):1073-1087, September 1988.

B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent computers. In
Proc. of Symposium on Parallel Computations and their Impact on Mechanics, Boston, December 1987.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. STAM J.
Mat. Anal. Appl., 11(3):430-452, June 1990.

12

[12]

Measured in (elapsed time) x (no. of processors)
Sec x Nprocs x oas
5.80 ‘)
560l
5401
5001
5.00 -
480
260)
440~
220 7
2.00 7
380 7
360 7
340 7
320 | __‘7
3.00 | _
i - _/—uﬂﬂchain_s |

2.60 - e - P -
240 = .- __-- —
220 n

Nprocs

10.00 20.00 30.00 40.00 50.00

Figure 7: Dynamic remapping on SP-1 and Paragon

D. F. G. Rault and M. S. Woronowicz. Spacecraft contamination investigation by direct simulation Monte
Carlo - contamination on UARS/HALOE. In Proceedings AIAA 31th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, January 1993.

Patrick J. Roache. Computational Fluid Dynamics. Hermosa Publishers, Albuquerque, N.M., 1972.

Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and run-time compilation. Concurrency:
Practice and Fxperience, 3(6):573-592, December 1991.

Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, and Harry Berryman. Run-time scheduling and execution
of loops on message passing machines. Journal of Parallel and Distributed Computing, 8(4):303-312, April
1990.

Reinhard v. Hanxleden and L. Riggway Scott. Load balancing on message passing architectures. Journal of
Parallel and Distributed Computing, 13(3):312-324, November 1991.

R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations. Con-
currency, Practice and Experience, 3(5):457-481, October 1991.

M. S. Woronowicz and D. F. G. Rault. On predicting contamination levels of HALOE optics aboard UARS us-
ing direct simulation Monte Carlo. In Proceedings AIAA 28th Thermophysics Conference, Orlando, Florida,
June 1993.

13

