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Fluorescence methods are widely used for investigation of biological materials, and in 

recent years have also been used to monitor food quality and safety.  In this research, 

fluorescence imaging techniques for detecting fecal contamination on cantaloupes 

and strawberries were evaluated.  Fluorescence images at emission peaks were 

examined for fecal classification.  These images were subjected to further analysis 

utilizing band ratios and principal component analysis.  Two-band ratio images and 

principal component images, compared to the single-band images, enhanced the 

contrast between the feces-contaminated spots and untreated sample surfaces.  The 

images exhibited useful results for contamination detection, however, false positives 

resulting from natural color variation on strawberry surfaces present a problem 

throughout the methods. This study confirmed the capability of hyperspectral 

fluorescence imaging in detecting fecal matter on cantaloupes and strawberries and 

the potential for this method to be used for developing on-line applications.
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Chapter 1: Synopsis 

 

 

The Instrumentation and Sensing Laboratory (ISL) of the United States Department 

of Agriculture (USDA), the Biological Resources Engineering Department (BRE) at 

the University of Maryland at College Park (UMCP), and the Food and Drug 

Administration (FDA) jointly worked on research using hyperspectral imaging to 

develop optical sensing techniques capable of instantly detecting fecal contamination 

and defects in fruits and vegetables.  This endeavor was the basis for this master’s 

research. 

1. Importance of Imaging Systems to Ensure Safety and Quality of Fresh 

Produce 

1.1. Contamination of Fresh Produce 

Fruits and vegetables are popular among consumers. Consumers buy fruits and 

vegetables to maintain a healthier diet and because there is year-round availability of 

a large variety of domestic and imported produce.  Reports indicate that over the past 

two decades there has been a significant increase in per capita consumption of raw 

fruits and vegetables in the United States. Fruit and vegetable consumption averaged 

741 pounds per person annually during 1997-99, 25 percent above consumption 

levels during 1977-79 (USDA, 2001a). Simultaneously, outbreaks of foodborne 

illnesses in the U.S. have been frequently associated with the consumption of fresh 

produce (FDA, 1998).  In an effort to address this problem, the FDA issued the 
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“Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables” 

(FDA, 1998).  The guide emphasized animal manure and human fecal matter as major 

harbors of pathogenic contamination. Additionally, Salmonella, Escherichia coli 

0157:H7 and Shigella were mentioned as major pathogens contributing to outbreaks 

of foodborne illness associated with fresh and minimally processed produce. Studies 

investigating factors contributing to these outbreaks have pointed out that a large 

number of variables influence contamination of fresh produce. Contamination points 

can be during production, harvest, processing, during transportation or retailing 

(USDA, 2001). In addition to faulty agricultural practices, fecal contamination can 

also be attributed to random natural events by wild animals. Examples of on-site 

sources of contamination from animal waste include animals pasturing near growing 

areas; manure storage adjacent to crop fields; leaking or overflowing manure lagoons; 

uncontrolled livestock access to surface waters, and high concentrations of wildlife 

(FDA, 1998). Additionally, produce can come into direct contact with human feces 

through poor sanitation practices of workers. 

1.2. Cantaloupes and Strawberries  

Muskmelons, commonly known in the U.S. as cantaloupes, are members of the gourd 

family Curcurbitaceae, which includes squash, pumpkins, cucumbers and 

watermelons. Muskmelons produce a sprawling vine that occupies a large ground 

area and thus exposes the fruit to the soil. Its fruit is characterized by sweet flesh 

within a netted rind (Porter, 1967). At maturity, the rind color changes from green to 

orange/yellow. Cantaloupes (Cucumis melo 'cantaloupensis') that are normally 

available are the Western Shipper. These cantaloupes have no sutures or ribs; they are 
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heavily netted and appear almost perfectly round. They are raised on the West Coast 

and are chosen more for their longer shelf life and perfect appearance than for their 

flavor. 

 

The strawberry is a small plant of the Rosaceae (Rose) family. All varieties of the 

strawberry plant belong to the Fragaria genus (Sauer, 1993).  Strawberries can be 

planted during spring or fall, when the temperatures are not excessively cool or warm. 

Initially, the fruit is greenish-white; but as it ripens, the fruit turns red. The calyx, a 

leafy star-shaped appendage, remains attached to the fruit even after harvest. The 

plant presents a growing pattern that, similar to cantaloupes, exposes the fruit to the 

soil. Its fruit consists of a fleshy receptacle whose surface is covered with achenes 

(commonly referred to as “seeds”) (Winton, 1902). For this research, strawberries 

belonging to the Earliglow variety were used. They are characterized by their 

wonderful flavor, glossy skin, firm flesh and medium size. 

 

Throughout the centuries, cantaloupes and strawberries have been cultivated for their 

nutritional value. These produce have been found to be low in calories, fat and 

cholesterol. They are an excellent source of vitamins A and C, and other valuable 

minerals. They are also a good source of folate and soluble fiber (Wang, 2000, 

Wedge et al., 2001). Today, cantaloupes and strawberries continue to be food 

commodities valued for their natural health benefits and appealing physical 

appearance. 
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1.3. Health Issues Related to Imported Cantaloupes and Strawberries 

International agreements have opened doors to year-round imports of tropical fruits 

from other countries where, unfortunately, strict standards for sanitation procedures 

while growing and handling are not always employed. Therefore, on numerous 

occasions, the USDA and the FDA have issued warnings and even sanctions on these 

imports. In October 2001, the FDA issued an important alert on cantaloupes from 

Mexico. The alert recommended that officials detain cantaloupes imported from 

Mexico (FDA, 2002). Investigations of Salmonella outbreaks in the U.S., responsible 

for two deaths and 18 hospitalizations between 2000 and 2002, revealed unsanitary 

conditions in the growing and packaging of cantaloupes in Mexico (CDC, 2002). This 

eminent risk led to a ban on imported Mexican cantaloupes. FDA investigations point 

out that contamination can be attributed to a broad source of factors such as irrigation 

of fields with water contaminated with sewage, poor hygienic practices of workers 

who harvest the produce, pests in packing facilities, and a lack of adequate cleaning 

and sanitizing of equipment (CFSAN, 2003). Because of the ability of pathogens to 

grow on the rind and flesh of cantaloupe, they are considered a potentially hazardous 

food. 

 

Like cantaloupes, strawberries have traditionally been a popular fruit for fresh use, 

freezing, and processing.  According to the USDA, strawberry consumption has 

doubled since the 1970s and strawberry consumption is second only to apples, among 

all fruits consumed in the U.S. (Cook, 2002). When growing, the strawberry plant 

exposes the fruit to the soil, increasing risk of fecal contamination.  In addition, 
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strawberries are very perishable due to spoilage by fungus (i.e., Botrytis cinerea) 

(Browne et al., 1984), and have a very fragile physiology that makes them vulnerable 

to physical damage and consequently leads to rapid decomposition that could 

potentially harbor pathogens. In April 1997, the FDA announced the recall of about 

1.7 million pounds of frozen strawberries purchased by the USDA for the school 

lunch program after school children in six states may have been exposed to the 

hepatitis A virus by eating the strawberries (GAO, 2000; Hutin et al., 1999). Like the 

cantaloupe case, general concern about the safety of fresh strawberries affected 

demand for berries from all sources, creating estimated financial losses of about $40 

million (Richards and Patterson, 1999).  

 

The harvesting and most of the packaging of strawberries and cantaloupes are still 

done manually. Strawberries and cantaloupes are hand harvested by field workers.  

Cantaloupes are placed in a conveyor system that feeds into a loading vehicle from 

which they can be unloaded by hand, or wet-dumped into tanks of chlorinated water 

to decrease physical damage. Alternatively, field debris can be removed with the use 

of spray washers and wet brushes (UGA, 2006). Finally, cantaloupes are packed into 

bins for store distribution. Strawberries are carefully hand picked from the field, 

directly arranged in boxes and rushed to cooling facilities for prompt delivery to 

stores. Rinsing strawberries before consumption is not recommended because their 

natural protective outer layer can be removed, affecting the quality of the fruit and 

inducing rapid deterioration. Quality control and safety grading operations of both 

produce are done by visual inspection.  Although Good Agriculture Practices (GAP) 

 5 
 



guidelines during the harvesting and packaging to ensure safety of the produce can be 

employed, this process is a difficult and labor-intensive job, in which workers can 

misjudge the appearance of the fruit, especially when dealing with very large amounts 

of produce. Therefore, the elimination of the potentially contaminated produce can be 

faulty.  Mistakes at this level can result in the distribution of contaminated produce 

that may cause foodborne illness outbreaks.  

 

The impacts of the aforementioned problem on the fresh produce industry depend on 

how quickly the contamination problem can be corrected.  These outbreaks not only 

affect consumers but also suppliers, who can no longer export the produce to the U.S. 

In addition, the negative publicity not only affects the country in question but other 

domestic and foreign suppliers selling their product at the time.  Automated imaging 

systems to ensure safety and defect inspection of the produce have been proposed as a 

solution to this problem. In the following sections this technology is introduced. 

 

1.4. Nondestructive Methods to Ensure Safety and Quality 

It has been established that it is essential to reduce microbial or disease-causing 

hazards before fresh produce reaches the consumer.  Since pathogens from fresh 

products cannot be completely removed using current washing/sanitization methods, 

the most effective way to minimize food safety risks is to identify and remove 

contaminated raw materials from the product stream, prior to processing or fresh-cut 

preparation, using noninvasive on-line inspection methods that can identify fecal 

contamination and reduce human error (Tao, 2002). The ability to detect and classify 
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fecal contamination and physical damage in fresh produce could highlight produce 

with a high risk of contamination and alert producers before the product reaches 

consumers.  

 

1.4.1. Hyperspectral and Multispectral Imaging  

Hyperspectral and multispectral sensors are relatively new classes of sensors that are 

based on the principle of imaging spectroscopy. Hyperspectral data includes 

measurements at many different wavelengths; in contrast, multispectral data is limited 

to a small number of selected wavelengths. Unlike other methods that collect a single 

spectrum at one point on a sample, hyperspectral imaging records a volume of data 

that contains a complete spectrum for every point in an image of the sample. The 

resulting characteristic spectrum depends on the composition of the testing material, 

serving as a fingerprint or signature that can be used to identify the material. As a 

result, hyperspectral data offers more detailed information about a sample object. 

These data can be used to generate complex models to discriminate, classify, identify 

and quantify materials present in the image.  
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Figure 1. Hyperspectral Cube. This cube presents the data as a volume, composed of 
the spatial resolution and the number of contiguous spectral bands. In this manner, the 
spectral characteristics of the image can be visualized in a specific region of spectral 

space (Kim, 2000). 
 

Hyperspectral Imaging Systems (HIS) generally include an illumination device, a 

spectrograph, a charge-coupled device (CCD) camera to acquire the images, and a 

computer to store the data.  There are a number of common illumination sources. For 

agricultural produce, light in the visible, ultraviolet (UV), near infrared (NIR), 

infrared (IR), or a combination of these regions is typically used (Chen et al., 2002).  

The spectral region selected depends on the characteristics that the system must be 

able to identify. Subsequently, a few optimal wavelengths are selected to provide the 

most useful information about the characteristics of interest.  These optimal 

wavelengths are then typically used in a multispectral imaging system, or in data 

analysis.  A multispectral imaging system is much faster than a HIS because it 

acquires images only at the specific wavelengths of interest, rather than at many 

wavelengths over a broad spectral range.   
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There are many benefits to using these types of systems to evaluate agricultural 

products.  The systems are non-destructive and, with adequate calibration for the 

product of interest, they can be very accurate.  In addition, because light outside the 

visible spectrum can be used, features that are not visible to the naked eye can be 

detected. This technology has shown promise in detection for bio-terror agents, in 

water safety monitoring, and in food quality and safety control for fecal 

contamination detection on animal carcasses (News release: VerifEyeTM 2002 and 

patent 6,330,064).  Spectral composition presents a wide range of major applications 

such as detecting contaminants in food, grading control for poultry and meat, and 

assorted processes in commercial settings for fresh produce and product quality 

control.  

 

2. Hyperspectral Imaging Used For Food Safety  

Detection systems based on hyperspectral imaging have been used to detect defects 

and diseases on the surfaces of meats, fruits, vegetables, grains and other agricultural 

products.  The system can be used for either reflectance or fluorescence 

measurements.  By observing fluorescence, fecal contamination has been detected on 

a variety of fruits and vegetables.  This is accomplished by taking advantage of the 

fluorescent nature of feces at certain wavelengths.  Similar systems can also identify 

bone fragments in meat (Marks et al., 1998).  Nearly any attribute can be identified 

using HIS as long as a spectral region can be identified in which the feature of interest 

has reflective or fluorescent properties that differ from the surrounding regions.  
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Similar multispectral and machine vision systems have been used to inspect poultry to 

differentiate wholesome from unwholesome carcasses (Chen, 1993; Chen et al., 1998; 

Park et al., 1998).  These systems have shown potential for use in on-line inspection 

systems and research in this area continues at the ISL. 

 

Hyperspectral and multispectral imaging for food safety have been extensively 

studied at the ISL. In the laboratory, research has been conducted to develop imaging 

sensors and techniques to characterize the physical, chemical, biological and aesthetic 

properties of agricultural commodities. Kim et al. (2001) developed a rapid, 

noninvasive laboratory-based system to assess hazardous conditions in fresh produce. 

This Hyperspectral Reflectance and Fluorescence System (HRFIS) was used in this 

study.  

 

The HRFIS utilizes a rapid, non-invasive method to assess hazardous conditions in 

fresh produce and is capable of both reflectance and fluorescence measurements. The 

imaging system covers spectral regions from 425 to 951 nm for reflectance 

measurements and from 425 to 760 nm for fluorescence emissions with 365 nm UV-

A excitation at approximately 2 nm intervals.  The spectral channels are separated at 

approximately 4.5 nm increments resulting in 117 and 79 channels for reflectance and 

fluorescence, respectively. The system is designed to be operated under dark 

conditions. Figure 2 shows the schematic diagram of the HRFIS. The system is 

composed of three modules: the sensor module, the optics module, and the lighting 

and sample module. 
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Figure 2.  Schematic diagram of the USDA-ISL hyperspectral reflectance and 
fluorescence imaging system. 

 

The sensor module includes a 16-bit digital imager containing an electron multiplying 

charge-coupled device (EMCCD) with 288 (V) X 560 (H) pixels. The 288 pixels in 

the spectral dimension are binned by 2 for image processing and analysis. The spatial 

dimension is reduced from 560 pixels to 460 pixels to eliminate the area at the edges 

of the field of view where lighting is non-uniform. In order to reduce noise, the digital 

imager is thermo-electrically cooled.  The optics module contains a Nikon C-mount 

lens that disperses incoming radiation along each spatial location on the scan line into 

the spectral dimension. The lens is attached to the spectrograph, which is composed 

of a Prism Grating Prism (PGP) construction with a spectral resolution of 

approximately 7 nm full width at half maximum (FWHM). Lastly, two halogen lamps 

that provide near-uniform illumination for reflectance measurements and two UV-A 

fluorescence lamps for near-uniform excitation for fluorescence measurements make 

up the lighting and sample module. The UV-A fluorescence lamps are arranged 
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toward the line of field of view (FOV) at 30º backward and forward.  This lighting 

assembly has been equipped with short-pass filters in order to prevent transmittance 

of radiation at wavelengths greater than approximately 400 nm.  The imaging system 

can longitudinally accommodate a range of sample sizes of up to 30 cm wide.  In 

order to displace the samples transversely through the line of the field of view, the 

system is equipped with a programmable positioning table. A more detailed 

description of the system operation is given by Kim et al. (2004), and calibration is 

given by Kim et al. (2001). 

 

In a two-part study, the reflectance and fluorescence applications of multispectral 

detection of fecal contamination on apples using the HRFIS was described (Kim et 

al., 2002). Apple images were acquired in the visible to NIR spectral regions. This 

spectral range has been previously identified as a powerful tool identifying and 

detecting defects and contamination on agricultural produce (Miller et al., 1998; 

Upchurch et al., 1990; Upchurch et al., 1994; Tao, 1997; Throop et al., 1995). In the 

first part of the study, a systematic method for using hyperspectral data to identify 

wavelengths to be used in multispectral detection systems is presented. Additionally, 

spatial and spectral responses captured in hyperspectral reflectance images of apples 

contaminated with feces were evaluated. Specifically, principal component analysis 

(PCA) was used to identify regions of interest in the images and to define several 

optimal wavebands for multispectral detection.  Results indicate that fecal 

contamination can be detected using reflectance imaging; however, in the second 

article, results indicate that fecal contamination detection on apples is more sensitive 
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using fluorescence imaging techniques. Natural spectral emission evaluation and PCA 

identified the same multispectral bands (450, 530, 685, and 735 nm) for 

discrimination of fecal spots. Moreover, simple wavelength ratios were found to 

reduce the variation in apple surfaces and increase the contrast between treated and 

untreated areas. 

 

Fluorescence excitation and emission characteristics of fecal material from cattle, 

deer, swine, chickens, and turkeys were studied (Kim et al., 2003). In the study, 

naturally occurring fluorescent markers in animal feces were evaluated in detecting 

fecal contamination of foodstuffs, including animal carcasses and cut meats. Results 

indicated that fluorescence emission from chlorophyll a and its metabolites are good 

markers for fecal contamination. In contrast to meat tissue, animal feces show a 

distinctive red fluorescence; therefore fluorescence techniques can be used for 

detecting fecal contamination on agricultural meat commodities. 

2.1. Analysis Methods for Hyperspectral Data  

Hyperspectral imaging data analysis is one of the central topics of interest in sensing 

research.  Despite the aforementioned advantages of hyperspectral imaging, the 

ultimate goal of this technology for food safety applications is to develop online 

automated systems that use multispectral techniques.  Different mathematical 

algorithms have been widely used to solve the problems and challenges inherent in 

hyperspectral imaging analysis. A common approach to selecting significant 

wavelength channels in hyperspectral data is to evaluate the spectral response.  The 
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spectral plots typically display the relative response versus the wavelength. Inflection 

points are then examined to detect materials of interest.  

 

Although single waveband images do allow materials of interest to be distinguished, 

the visualization process is made difficult by spectral features of unwanted regions 

(false positives) on the image. In order to identify targets, increase image 

interpretation reliability and improve classification, many data image processing 

techniques have been developed, including image fusion. A general definition of 

image fusion is given by Genderen and Pohn (1994) as the combination of two or 

more images to form a new image by using a certain algorithm.  Image fusion can be 

applied to various types of data sets, including those from single sensor and multi-

sensor systems (Genderen and Pohl 1994), and its main purposes as applied to digital 

imagery are to sharpen images, improve geometric correlation, and enhance certain 

features not visible in either of the single images alone. Image fusion techniques are 

categorized by C. Pohl (1998) into two groups: color related techniques and 

statistical/numerical methods. For this research, we are interested in the second group. 

In general, the mathematical combinations of image channels in addition, subtraction, 

multiplication, and division (ratio) operations, and techniques such as principal 

component analysis (PCA) form a part of the statistical/numerical methods group. 

 

Different mathematical operations provide ground to further enhance detection in the 

images. Linear and non-linear combinations of images, such as ratios, can be used to 

increase the intensity of the object detected and the background. Specifically, the ratio 
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method is useful because of its capability to emphasize slight variations in the 

spectral signature (Pohl and Genderen, 1998).  Kim et al. (2002b) effectively isolated 

fecal regions of interest (ROI) from apples of different varieties using the image ratio 

technique. These band ratios can be performed using images at wavebands showing 

inflections in the spectra.  

 

More mathematically involved methods include PCA, also known as Karhunen-

Loeve Transformation. PCA provides means to identify patterns in images, encoding, 

image data compression, image enhancement, digital change detection, and image 

fusion, among others applications (Pohl and Genderen, 1998). This mathematical 

algorithm computes the best orthogonal basis of the unit vectors of x  points. In the 

process of creating the PCA images, a correlation matrix of the image is calculated. 

This correlation matrix is a diagonal matrix, which is then used to compute the 

eigenvalues. The eigenvalues are equivalent to the variance of each principal 

component (PC) image.  Let represent the scatter matrix (Duda et al., 2001): S
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1 where  is the estimated mean of class k.  It should be 

noted that the eigenvectors of the scatter matrix minimize the quadratic error under 

the restraint that these vectors form an orthogonal basis for a vector space with the 

m
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same dimension of the original data. Thus, the resulting matrix  is diagonalized by 

an orthogonal eigenvectors matrix 

A

E , and  is a diagonal matrix (Lay, 2002). D

tEDEA =  

 

As explained by Pohl and Genderen (1998), PCA transforms the original data set into 

a set of new un-correlated linear combinations of the original variables. In this 

manner, PCA restructures the data so that most of the variance in the original data is 

accounted for in a reduced number of variables.  The images are then ordered in terms 

of its variance, where PC-1 accounts for the largest variance. 

 

Iterative Self-Organizing Data Analysis Technique (ISODATA) is an unsupervised 

classification method that deals with clustering the pixels into a desired number of 

classes; the method does not require any a priori information about the classes (Ball 

and Hall, 1965).  In this algorithm, pixels with similar spectral characteristics are 

grouped into distinct classes by calculating class means evenly distributed in the data 

space; the remaining pixels are then iteratively clustered using minimum distance 

techniques until the number of pixel in each class change by less than the selected 

pixels change threshold. The sum of the square error (SSE) is commonly used as the 

clustering principle (Richards, 1986):  
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Where  is the mean of the ith cluster, im iCx∈  is a pattern assigned to that cluster 

and the outer sum, , is over all the clusters. The number of classes is selected 

based on the number of possible unique features found in the object. 

∑
iC

 

The methods described above have been used successfully in imaging algorithms for 

target detection for different applications. The main intention for the evaluation of 

these methods in this study is to assess their performance when used for fecal 

contamination detection on cantaloupes and strawberries.  Primary questions during 

the utilization of these methods were: What wavelength(s) provides optimal contrast 

between the different features in the image? How are the different sources of spectral 

variation illustrated in the images? What is the best band combination to eliminate 

undesirable areas and isolate fecal matter? What additional information can be 

learned from plots of the fluorescence intensities of ROI?  

 

3. Objectives 

3.1. The Rationale of the Thesis Objective  

Recent studies in spectral imaging have revealed the potential of this technology to 

assess a myriad of conditions in agricultural commodities. Studies of hyperspectral 

sensing data are important to the fresh produce industry to address safety and quality 

control issues. This technology has been previously utilized with apples and other 

produce, including some vegetables, but it has not been explored yet with cantaloupes 

and strawberries. In general terms, the present study contributes to research with 
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relation to spectral imaging used in the development of on-line machine vision and 

multispectal imaging systems to rapidly and non-destructively assess hazardous 

conditions on agricultural commodities. 

 

Recently, fecal contamination detection on fresh produce has become a subject of 

attention for the industry. It has been well established that contamination of fresh 

produce with pathogenic microorganisms can happen through contact with animal 

feces. The spectral contribution of all the biochemical components in feces from 

different animals should be addressed. On the other hand, it is an arduous process 

beyond the scope of this investigation. This research was confined to bovine fecal 

matter, which is widely used in agriculture practices for soil fertilization purposes, 

and it has been previously analyzed in similar research. 

 

3.2. Objective Statement 

The objective of this thesis is to study the potential for using hyperspectral imaging 

techniques to detect fecal contamination on cantaloupes and strawberries.  This 

research is focused on identifying effective wavebands from hyperspectral imaging, 

and subsequently using these wavebands for pattern recognition and detection of fecal 

contamination. The experimental methods used for both commodities are the same; 

however, due to the different physical characteristics of cantaloupes and strawberries, 

such as fruit texture and color, different observations were expected. 
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Chapter 2: Articles 

 

 

1. Detection of Fecal Contamination on Cantaloupes Using Hyperspectral 

Fluorescence Imagery 1 

1.1. Abstract  

To determine if detection of fecal contamination on cantaloupes is possible using 

fluorescence imaging, hyperspectral images of cantaloupes artificially contaminated 

with a range of diluted bovine feces were acquired from 425 to 774 nm in responses 

to ultraviolet-A (320 - 400 nm) excitation.  Evaluation of images at emission peak 

wavelengths indicated that 675 nm exhibited the greatest contrast between feces 

contaminated and untreated surface areas.  Two-band ratios compared to the single-

band images enhanced the contrast between the feces contaminated spots and 

untreated cantaloupe surfaces.  The 595/655, 655/520, and 555/655-nm ratio images 

provided relatively high detection rates ranging from 79 to 96 % across all feces 

dilutions.  However, both single band and ratio methods showed a number of false 

positives caused by such features as scared tissues on cantaloupes.  Principal 

component analysis (PCA) was performed using the entire hyperspectral images data.  

Second and fifth principal component (PC) images exhibited differential responses 

between feces spots and false positives.  The combined use of the two PC images 

                                                 
1 This article is published in the Journal of Food Engineering. Vol.70(8-2005):471-476. It can be found 
in the appendix section. 
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demonstrated the detection of feces spots (e.g., minimum level of 16-µg/ml dry fecal 

matter) with minimal false positives.  Based on the PC weighing coefficients, the 

dominant wavelengths were 465, 487, 531, 607, 643, and 688 nm.  This research 

demonstrated the potential of multispectral-based fluorescence imaging for on-line 

applications for detection of fecal contamination on cantaloupes. 

 

1.2. Introduction 

Spurred by multiple outbreaks of foodborne illness associated with fresh produce and 

the identification of fecal contamination as the major source of pathogens responsible 

for these outbreaks, the United States Department of Agriculture (USDA) has 

instituted a number of programs to attempt to reduce fecal contamination of food 

products.  In general, fruits and vegetables can become contaminated with pathogens 

through contact with soil, animals, or humans during any stage of the food-handling 

chain (FDA, 2001), including growing and harvesting operations as well as while in 

the processing plants (Murdock and Brokaw, 1957).  Since the Food and Drug 

Administration (FDA, 1998) issuance of the “Guide to Minimize Microbial Food 

Safety Hazards for Fresh Fruits and Vegetables,” the food processing industry has 

made concerted efforts to address microbial food safety hazards.  Generally, 

foodborne pathogens originate from the intestinal tracts of animals and humans 

(FDA, 2001), thus making fecal matter a major source of contamination. For 

example, fecal contamination can result from use of manure-based fertilizers, 

unsanitary conditions in packaging plants, or through random natural events.  
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Outbreaks of salmonellosis have been epidemiologically linked to consumption of 

fresh cantaloupes (FDA, 2001); as a consequence, this produce has been targeted as a 

potentially hazardous food.  Contaminated cantaloupes were found responsible for 2 

deaths and 18 hospitalizations due to Salmonella between 2000 and 2002; subsequent 

investigations revealed unsanitary growing and packaging conditions (Anderson et al, 

2002; FDA, 2002).  FDA investigations noted a broad range of potential factors, such 

as field irrigation with sewage-contaminated water, poor hygienic practices of 

workers, pests in packing facilities, and inadequate cleaning and sanitizing of 

equipment (FDA, 2001). 

 

The Instrumentation and Sensing Laboratory of the USDA in Beltsville, Maryland, 

has developed a hyperspectral imaging system (HIS).  The system provides a non-

invasive method to assess hazardous conditions for fresh produce, is capable of 

acquiring reflectance and fluorescence measurements, and has been successfully used 

to demonstrate the detection of fecal contamination on apples and other fresh produce 

(Kim et al, 2001). Hyperspectral imaging systems can simultaneously collect spectral 

data for hundreds of narrow contiguous wavebands over regions of the 

electromagnetic spectrum at every spatial pixel in an image. The resulting spectra can 

serve as fingerprints or signatures for target identification.  For food safety 

applications, a central goal of using hyperspectral imaging data is to find several 

spectral bands that can be implemented to the development of multispectral 

inspection systems for on-line applications at processing plants (Chen et al, 2002).   
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Many image-processing techniques have been developed to identify targets, increase 

image interpretation reliability and improve classification.  Image fusion is one such 

technique, defined by Van Genderen and Pohl (1994) as “the combination of two or 

more images to form a new image by using a certain algorithm”.  Applicable to 

various types of data sets, its main purposes for digital imagery are to sharpen images, 

improve geometric correlation, and enhance certain features not readily apparent in 

single images.  Image fusion includes mathematical combinations of spectral images 

in arithmetic operations, and techniques such as principal component analysis (PCA). 

 

For this investigation, hyperspectral fluorescence images were collected from 

cantaloupes artificially contaminated with bovine feces at varying concentrations. The 

objective of the present study was to identify a few wavelength bands that could be 

used to detect fecal contamination on cantaloupes.  Candidate wavebands were 

subjected to two-band ratio permutations, and to further enhance the detection process 

the band ratio images were subjected to unsupervised classification.   In addition, the 

entire hyperspectral images were subjected to PCA, and principal component (PC) 

images were evaluated for fecal contamination detection and determination of 

multispectral bands. 

 

1.3. Materials and Methods 

1.3.1. Sample preparation 

Forty Western Shipper cantaloupes were purchased from a local supermarket. To 

increase the number of samples and prevent sample movement during HIS scanning, 
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cantaloupes were cut in half and the 80 halves placed cut-side down in batches of 8 

on black trays. Hyperspectral images were first collected for all 80 samples prior to 

any treatment.  Fresh feces from the USDA dairy farm in Beltsville, Maryland were 

diluted by weight to 1:10, 1:50, 1:100, 1:300 and 1:500 with deionized water.  Dry 

fecal matter concentration for 1:100 dilution was 16 µg/ml as determined by drying 

samples to constant weight in a 90˚C oven.  Using a variable pipette, a matrix of 

dilutions was applied to each sample at 40, 30, 20, and 10 µl (Figure 3). 

 

 
 

Figure 3. Schematic illustration of sample treatments. Using a variable pipette, 
dilutions of bovine feces at 1:500, 1:300, 1:100, 1:50 and 1:10 dilutions were applied 
to the cantaloupe halves in volumes of 10, 20, 30 and 40 µl.  Fecal matter content for 
1:100 dilution was 16 µg/ml as determined by drying sample to constant weight in a 

90˚C oven. 
 

Samples were allowed to air dry with the aid of a fan for several hours, until fecal 

spots were completely dried, and then scanned again. It was observed that areas 

contaminated with the 1:10 dilution were usually visible to the human eye. As 

dilutions increased, spots became transparent and less visible. At 1:100 dilutions, 

contaminated spots became difficult to visually identify.  Digital color photos of 

samples were acquired prior to taking hyperspectral images. 
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1.3.2. Hyperspectral Fluorescence Images Acquisition 

A hyperspectral imaging system incorporating a line scan spectrograph with a 

spectral resolution of approximately 7-nm full width at half maximum (FWHM) was 

used to acquire images  (Kim et al, 2001).  A motorized table was used to move 

samples at 1-mm intervals and the zoom lens was adjusted to yield a pixel resolution 

of 1 mm2.  The effective spectral range for fluorescence imaging was from 425 nm to 

774 nm, with about 4.5-nm intervals, which was captured using 79 spectral channels. 

Two continuous wave UV-A (360 nm) fluorescent lamp assemblies provided the 

samples with a near-uniform illumination. The system was operated under dark 

conditions. A more detailed description of the system operation is given by Kim et al 

(2004), and calibration is given by Kim et al (2001).  Each batch of eight cantaloupes 

required approximately 5 minutes to scan.  The line scan data was saved in 16-bit 

binary files and processed later to create hyperspectral image cubes containing spatial 

and spectral data. Software developed in Visual Basic version 6 (Microsoft, Seattle, 

WA) was used to acquire data, and to perform further processing. Additional data 

analyses were done using ENVI version 3.2 (Research System Inc., Boulder, CO). 

 

1.3.3. Data Processing and Analyses 

The spectral dimension was smoothened using a 3-point running average prior to 

image visualization or analyses.  Masks to eliminate background were created 

manually using threshold values determined by evaluating background pixel 

intensities.  The largest possible rectangular region of interest (ROI) within each fecal 

spot was used to extract representative spectral data.  Images taken before treating the 

 24 
 



samples were used to create spectra of uncontaminated surfaces. ROI for untreated 

cantaloupes encompassed the largest rectangular area within the sample. The 

averaged ROI fluorescence spectra were used to characterize fluorescence emission 

of feces and untreated cantaloupe surfaces. Images at individual wavebands where 

spectra showed emission peaks were visually evaluated for efficacy of fecal 

contamination detection.  Fecal spots for all dilutions and volumes were visually 

tallied from the selected single-band images. 

 

All possible ratio permutations of emission peak and valley wavelengths were 

generated. These ratio images were visually assessed for fecal contamination 

detection and the best ratio images were selected.  Subsequently, selected ratio 

images were subjected to an unsupervised classification method, ISODATA (Iterative 

Self-Organizing Data Analysis Technique), which clusters pixels into a desired 

number of classes without any a priory information about the classes (Ball and Hall, 

1965).  Pixels with similar intensities are grouped into distinct classes by calculating 

class means evenly distributed in the data space; the remaining pixels are then 

iteratively clustered using minimum distance techniques until the number of pixel in 

each class change by less than the selected pixels change threshold.  The sum of the 

square error (SSE), commonly used as clustering principle, is expressed as: 
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where  is the mean of the ith cluster, im iCx∈  is a pattern assigned to that cluster and 

the outer sum, ∑
iC

is sum over all the clusters (Richards, 1986).  Only one-iteration 
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was used to recalculate means, and the threshold parameter was set at 5%.  The 

number of classes was selected based on the number of possible features found on the 

surface of cantaloupes, such as rind and vein tracts, bruises, cuts, variations in 

coloration, and fecal spots.  For this study, classes ranged between 5 and 10, with no 

less than 3 pixels per class.  Subsequently, several classes in the resulting images 

were merged to produce a binary image of feces contaminated regions and 

background. 

 

In addition, the entire image data set (79 channels) was subjected to PCA.  In the 

process of creating the PCA images, a correlation matrix of the image is calculated. 

This correlation matrix is a diagonal matrix, which is then used to compute the 

eigenvalues. The eigenvalues are equivalent to the variance of each PC image.  The 

resulting matrix  is diagonalized by an orthogonal eigenvectors matrix (E), and  

is a diagonal matrix (Lay, 2002). 

A D

tEDEA =  

 

As explained by Pohl and Van Genderen (1998), PCA transforms the original data set 

into a set of new un-correlated linear combinations of the original variables. In this 

manner, PCA restructures the data so that most of the variance in the original data is 

accounted for in a reduced number of variables.  The images are then ordered in terms 

of variance sizes, where first PC accounts for the largest variance. 

1.4. Results and Discussion 

 

 26 
 



1.4.1. Spectral Responses 
 

Figure 4 shows the averaged fluorescence spectra for areas treated with 40 µl of fecal 

contamination at 1:10, 1:50, 1:100, and 1:300 dilutions, and for untreated sample 

areas.  For the feces treated spots, the average size of the rectangular ROI was 52 

pixels (with a minimum of 20 and maximum of 99).  For untreated spots, the average 

size of the rectangular ROI was 13,845 pixels (with a minimum of 11,880 and 

maximum of 15,720).  Fecal spots for 1:500 dilutions were difficult to identify, 

suggesting that they were similar to uncontaminated areas.  For this reason, the 

averaged spectrum for dilutions of 1:500 was not shown in (Figure 4). 
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Figure 4. Representative fluorescence spectra obtained from the region of interests 
(ROI). Note that spectrum for 1:500 dilution spot was not included since the spectral 

characteristics were similar to those of the cantaloupe surfaces. 
 

The spectra show fluorescence emission peaks in the green region at 520, 555, and 

595 nm, and an additional peak for the feces treated spots in the red at 675 nm.  At 
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high feces concentrations, 1:10 and 1:50 dilution spots, there was a distinct response 

in the green region due to the presence of feces in that relative fluorescence intensities 

were lower compared to the 1:100, 1:300 and 1:500 dilution spots.  This observation 

was the results of reabsorption characteristics of animal fecal matter existing in 

relatively high concentrations (Kim et al, 2004).  The application of the 1:100 and 

1:300 dilutions resulted transparent feces spots, and the fluorescence responses in the 

green bands resembled those of untreated areas. 

 

Fluorescence emissions in the 650 to 750 nm region from intact green plant materials 

are due to membrane-bound chlorophyll a with emission maxima at 685 nm and 730 

nm (Papageorgiou, 1975).  The averaged spectrum for untreated cantaloupe surfaces 

exhibited very low chlorophyll a fluorescence emission, indicating a well-ripen state 

of the samples.  However, animal fecal matter showed blue-shifted emission peak at 

675 nm, which emanated from chlorophyll a and its by-products such as pheophobide 

a (Kim et al, 2003).  Multiple plant constituents, including phenolic compounds and 

riboflavin, are responsible for the fluorescence emission in the blue-green region of 

the spectrum (Chappelle et al, 1991; Kim et al, 2001).  Other factors that may affect 

fluorescence emissions include changes in accumulation of the anthocyanin pigments 

in association with fruit ripeness (Abbott et al, 1997).  

 

Figure 5 shows representative gray-scale fluorescence images of cantaloupes 

contaminated with feces at 520, 555, 595, and 675 nm. These wavelengths correspond 

to fluorescence emission maxima observed in the representative fluorescence spectra 
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(Figure 2).  In general, the images illustrated progressive decreases in intensities from 

the center portions toward the edges due to the hemispherical shapes of the 

cantaloupe halves.  In addition, intensity variations in localized regions (asides from 

the feces treated spots) were noted, suggesting heterogeneous nature of the cantaloupe 

surfaces in fluorescence responses.  In the green region bands at 520, 555, and 595 

nm, 1:10 and 1:50 dilution spots were shown darker than surrounding cantaloupe 

surfaces.  For 1:300 and 1:500 dilution spots, the visual identification was difficult; as 

these dilutions created transparent feces contaminated spots, the fluorescence 

responses started to blend with those of cantaloupe surfaces.  Fluorescence responses 

at 675 nm were markedly different than those of the green bands in that feces 

contaminated spots were brighter than cantaloupe surfaces.  Similar responses were 

observed on apples contaminated with bovine feces and this observation was 

attributed to additive effects of fluorescent animal feces and apples (Kim et al, 2003). 

 

 

 29 
 



520 nm 555 nm

595 nm 675 nm

520 nm 555 nm

595 nm 675 nm  
 

Figure 5. Fluorescence images of bovine feces treated cantaloupes acquired using the 
ISL hyperspectral imaging system. The wavelengths correspond to fluorescence 
emission maxima observed in the representative spectra.  Arrows indicate some 

potential false positives in the images.  Cantaloupe in the bottom right corner shows a 
physical damage (scared tissues). 

 

Detection results based on the visual assessment of the 520, 555, 595, and 675 nm 

bands for 40 µl spots are shown in Figure 6.  Results for other feces volumes were 

similar and omitted for brevity.  All the wavelength images showed evidence (95-100 

% detection rates) of the 1:10 feces dilution spots.  The 675 nm band demonstrated 

the best potential for detection of feces across the range of volumes and 

concentrations tested (95 to 73 % detection rates for 1:10 to 1:500 dilution spots, 

respectively); although 100 % of the 1:10 dilution spots could be detected at the green 

bands, detection rates for 1:300 and 1:500 dilutions were zero.  Based on the single-

band imaging, most of the cantaloupes exhibited a number of false positives (Figure 

5) which could be attributed to physical damage such as bruises or cuts (scared 
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tissues).  False positives in the red (650 - 700 nm) region of the spectrum may also 

emanate from netted rind and vein tracts that contained chlorophyll a.  For the green 

band images, the relatively lower fluorescence intensities of the edge portions of 

cantaloupes were also potential false positives.  
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Figure 6. Fecal contamination detection rates for 40-µl treatment spots based on the 

single wavelength images at 520 nm, 555 nm, 595, nm, and 675 nm (n = 80 per 
dilution). 

 
1.4.2. Ratio Images 

Although single waveband images showed potential for detection of fecal matters on 

cantaloupes, mathematical combinations of images acquired at different wavelengths 

can enhance fecal contamination detection and reduce false positives. Addition and 

multiplication of images have been shown to enhance contrast, while difference or 

ratio images are suitable for detecting changes (Pohl and Van Genderen, 1998).  Kim 

et al (2002) effectively demonstrated the use of ratio methods to isolated fecal 
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contaminated spots from apples of different varieties.  For this investigation, the most 

promising results were also obtained with two-band ratio images.  Thus, discussion is 

limited to those ratios that resulted in high detection rates for brevity. 

 

Representative gray-scale, two-band ratio images (595/655, 655/520, and 555/655 

nm), and ratio images subjected to the ISODATA method are shown in Figure 7a and 

5b, respectively.  These ratios compared to the single-band images enhanced the 

contrast between the feces treated spots and cantaloupe surfaces and produced more 

uniform responses across the cantaloupe surfaces.  Detection results for 40-µl spots (n 

= 80 per dilution) for 595/655, 655/520, 555/655, and 675/555-nm ratio images are 

shown in Figure 8.  The 595/655-nm ratio image followed by 655/520, 555/655, and 

675/555 achieved relatively high detection rates across all feces concentrations.  Note 

that ratio in Figure 7 images shown excluded the use of the best single band at 675 

nm in the ratio combinations.  
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Figure 7. a) Representative two-band ratio images of 595/655, 655/520, and 555/655 
nm.  Out of all possible two-band ratio permutations of peak and valley wavelengths 
observed in the fluorescence spectra, these ratios provided the best contrast between 
the feces treated spots and cantaloupe surfaces and produced more uniform responses 

across the cantaloupe surfaces. b) Binary images for feces contamination spots 
obtained by subjecting ratio images to the ISODATA method.  Arrows indicate some 

false positives. 595/655 and 555/655 nm ratios were the most effective in reducing 
false positives. 

 

For reducing false positives, the 595/655 and 555/655-nm ratio images 

provided the most satisfactory results (Figure 7b) with detection rates ranging 

80-95 % and 79-91 %, respectively for 1:500 to 1:10 feces dilution spots.  

With the use of ISODATA method, removal of clusters of three pixels or less 

resulted in the exclusions some false positives.  However, false positives 
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were still apparent; the most prominent false positives were due to the scared 

tissues as indicated on the lower-right cantaloupe in Figure 7.  

 

80
89

94 96 95

79

94 93
96 96

79

90 91 91 91

74
84 84 85 84

0

20

40

60

80

100

Pe
rc

en
ta

ge
 D

et
ec

tio
n 

(%
)

595 / 655 655 / 520 555/ 655 675 / 555
Wavelength (nm)

1 to 500 1 to 300 1 to 100 1 to 50 1 to 10  

Figure 8. Fecal contamination detection rates for 40-µl treatment spots for ratio 
images of 595/655, 655/50, 555/655, and 675/555 nm subjected to the ISODATA 

classification method (n = 80 per dilution).  Note that these ratios represent the two-
band ratio combinations with the highest detection rates. 

 

1.4.3. Principal Component Analysis  

 

Figure 9 illustrates representative first PC (PC-1) to sixth PC (PC-6) images obtained 

from the PCA of the entire hyperspectral fluorescence image data.  PC-1 through PC-

6 accounted for 99.94 % of the data variability and images beyond PC-6 contained no 

useful attributes for detection of feces treated spots.  PC-1 image reflects a weighted 

sum of all the spectral bands, and showed features causing the largest variations of 

the data; the intensity decreases from the center portions to the edges of the 
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cantaloupe surfaces.  Subsequent PC images depicted other features affecting 

variations in spectral responses.  For instance, PC-3, PC-4 and PC-6 images showed 

responses that may be attributes of color variations or sides in contact with the 

grounds (ground spots). 
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Figure 9. First to sixth principal component (PC) images of bovine feces treated 
cantaloupes obtained from principal component analysis (PCA) of the entire 

hyperspectral fluorescence image data (79 spectral channels).  Arrows indicate some 
of false positives. 

 

PC-2 and PC-5 images exhibited the evidence of the feces treated spots as darker and 

lighter spots, respectively, in contrast to the cantaloupe surfaces.  In addition, PC-5 

showed the scared tissues (on the lower-right cantaloupe) that were false positives in 
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the single-band and ratio images as non-false positives.  PC-2 and PC-5 images were 

subjected to a simple thresholding method (Kim et al, 2004) to create binary images 

for fecal contamination spots (Figure 10a and 8b).  These images exhibited false 

positives.  However, the PC-2 false positives did not coincide with those of PC-5.  

Figure 10c shows the spots (pixels) where the PC-2 and PC-5 binary images 

overlapped.  Although the combined use of PC-2 and PC-5 compromised the 

detection of some 1:300 and 1:500 spots, the resultant image in Figure 8c illustrated 

the 1:10, 1:50 and 1:100 spots (a minimum of 16-µg/ml dry fecal matter) with 

minimal false positives.  

 

PC-2 PC-5 PC-2 and PC-5

a) b) c)

PC-2 PC-5 PC-2 and PC-5

a) b) c)
 

 
Figure 10. Binary images for feces contamination spots obtained by subjecting a) PC-
2 and b) PC-5 images to a simple thresholding method (Kim et al, 2004).  c) Binary 
image shows where both PC-2 and PC-5 binary results overlapped.  As the resulting 
binary image illustrates, pixel locations of the PC-2 false positives did not coincide 

with those of PC-5. 
 
 

The PCA was performed using the data in entire spectral regions.  However, 

individual PC images could be approximated by the use of few significant 

wavelengths (Kim et al, 2002).   
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Figure 11 shows weighing coefficients (eigenvetors) for the PC-2, and PC-5 images.  

The peaks and valleys indicated the dominant wavelengths, 487 and 607 nm for PC-2, 

and 465, 531, 643 and 688 nm for PC-5.  Weighted sums of the original images at the 

dominant wavelengths can create near identical images comparable to the PC-2 and 

PC-5 images, respectively.  Above wavelengths can be implemented to a 

multispectral imaging system for on-line applications.  Readily available common 

aperture-based, multispectral adaptors can be used to simultaneously capture images 

up to 8 spectral bands (Chen and other, 2002).  Further research is needed to 

incorporate samples with various stages of maturity and to develop automated 

processing and detection methods for on-line applications.   
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Figure 11. Spectral weighing coefficients (eigenvectors) for PC-2, and PC-5.  The 
dominant wavelengths are indicated on the graph. 
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1.5. Conclusion 

In this investigation, hyperspectral fluorescence images were evaluated for detection 

of fecal contamination on cantaloupes.   Single waveband images showed natural 

variations in fluorescence responses of the cantaloupe surfaces, and were not suitable 

for detection of fecal contamination on cantaloupes due to the presence of false 

positives.  Images constructed using two-band ratios enhanced the contrast between 

the fecal contaminated spots and cantaloupe surfaces.  However, ratio images also 

exhibited false positives emanating from features found on cantaloupes such as scared 

tissues.  The PCA of hyperspectral images demonstrated the potential detection of 

feces contaminated spots (a minimum of 16-µg/ml dry fecal matter) on cantaloupes 

with minimal false positives.  Examination of PC weighing coefficients defined 

several dominant wavelengths that can be implemented to a multispectral imaging 

system for on-line applications. 
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2. Hyperspectral Analysis of Fecal Contamination Detection on Strawberries2  

2.1. Abstract  

Spectral imaging has shown potential for assessing quality and safety conditions of 

fresh produce in a rapid, non-invasive manner. In this study, hyperspectral 

fluorescence images between 425 and 775 nm of strawberries artificially 

contaminated with bovine fecal matter and placed under Ultraviolet-A excitation were 

analyzed. Evaluation of the fluorescence spectra using Principal Component Analysis 

(PCA) identified 553, 597 679 and 736 nm as optimal wavelengths to classify small 

areas of diluted feces on the strawberries. Visual assessment and fluorescence 

intensity plots indicated that the image at 679 nm exhibited greatest contrast for all 

diluted feces spots on strawberries.  A major impediment in the fecal spot 

classification process was similar intensity between the fecal spots and the leafy calyx 

of the fruit. The two-band ratio image at 679/730 nm improved the detection rates of 

fecal-contaminated areas by reducing the number of false positives and increasing the 

contrast between the surface, the fecal-contaminated areas and the calyx.  Using PCA 

over the entire spectrum (79 channels), PC images 2 and 3 showed the best responses 

for detecting the fecal-contaminated areas and calyx. The combined use of these two 

PC images increased the detection rates for all concentrations and decreased the 

presence of false positives.  This study confirmed the capability of hyperspectral 

imaging in detecting fecal matter on strawberries and the potential for this method to 

be used for developing on-line applications. 

 
                                                 
2 This article is submitted to the Journal of Food Engineering on 2006 (in peer review)  
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2.2. Introduction 

Fecal matter contamination of produce has become a major concern for the produce 

industry. According to the Food and Drug Administration (FDA), fecal contamination 

is a major source of human pathogens associated with fresh produce (FDA, 1998). 

Strawberries have traditionally been a popular fruit for fresh use, freezing, and 

processing. According to the United States Department of Agriculture (USDA), 

strawberries are the fourth most valuable fruit produced in the United States 

(Bertelsen, 1995). In addition to its appealing flavor, a major stimulus to strawberry 

consumption is its year-round production and its health benefits (Törrönen, 2002). 

The growing pattern of the strawberry plant exposes the fruit to the soil, increasing 

fecal contamination risk.  In April 1997, the FDA announced the recall of about 1.7 

million pounds of frozen strawberries purchased by the USDA for the school lunch 

program after school children in six states were exposed to the hepatitis A virus by 

eating the strawberries (GAO, 2000; Yvan et al, 1999). General concern about the 

safety of fresh strawberries affected the demand for berries from all sources, creating 

estimated financial losses of about $40 million (Richards and Patterson, 1999).  

 

Current methods of strawberry inspection involve visual and manual examination by 

human inspectors.  Research studies addressing quality and safety issues in the fresh 

produce industry have considered the implementation of machine vision based on 

multispectral imaging in processing plants as part of a Hazard-Analysis-and-Critical-

Control-Point (HACCP) inspection process. Online machine vision inspection 

systems to screen and discard unsafe produce in the processing line could improve the 
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effectiveness of the inspection, increase consumers’ confidence about produce safety, 

and increase processing productivity. In particular, machine vision potentially allows 

the handling of large quantities of fresh produce to assess quality issues in a 

nondestructive and rapid manner. Current research at the USDA Instrumentation and 

Sensing Laboratory (ISL) is evaluating hyperspectral and multispectral fluorescence 

imaging systems and techniques for online inspection of apples (Kim et al., 2002), 

cantaloupes (Vargas et al., 2005) and vegetables for fecal and soil contamination, 

diseased surfaces, and open skin cuts and bruising. Hyperspectral fluorescence 

imaging analysis has been used to select a few candidate wavelengths for the 

development of multispectral imaging systems for inspecting contaminated produce. 

The development of methods for identification of fecal matter using hyperspectral 

and multispectral technology has been based on analyses of responses from single 

band intensities, simple two-band ratios and Principal Component Analysis (PCA) 

(Kim et al, 2002).  With the use of hyperspectral fluorescence imaging techniques, 

the objectives of this study are to determine a few suitable wavelength bands that can 

be used to detect bovine fecal contamination on strawberries. 
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2.3. Materials and Methods 

 
2.3.1. Strawberry sample preparation 

 

A total of 162 randomly selected Earliglow strawberries purchased from a local 

supermarket were used for this investigation.  To prevent sample movement during 

the image acquisitions, each batch of 27 samples was placed on a custom-made 

holder covered with non-fluorescent black cloth (in a 3 x 9 sample arrangement).  

Samples of fresh cow feces obtained from the USDA dairy farm in Beltsville, MD 

were diluted 1:2, 1:25, and 1:100 by weight with deionized water (concentration for 

1:25 dilution was 15.78 µg/ml as determined by drying sample to a constant weight in 

a 90˚C oven.  The feces dilutions were applied to the strawberries in 10-µL spots 

(Figure 12), and the samples were allowed to air dry for 30 minutes. Treated spots at 

1:25 and 1:100 dilutions became transparent and difficult to visually identify. An 

additional 27 untreated strawberries were used as control samples. 

10µl

[1:2] [1:25]

[1:100]

10µl

[1:2] [1:25]

[1:100]
 

Figure 12. Schematic illustration of sample treatment. 

 42 
 



2.3.2. Hyperspectral Fluorescence Imaging 

 

Hyperspectral imaging data of strawberries were collected using the ISL 

hyperspectral imaging system. The hyperspectral imaging system incorporates a line 

scan spectrograph with a spectral resolution of approximately 7-nm full width at half 

maximum (FWHM).  A motorized table was used to move samples at 1-mm intervals 

and the zoom lens was adjusted to yield a pixel resolution of 1 mm2.  The effective 

spectral range for fluorescence imaging was from 425 nm to 774 nm, with about 4.5-

nm intervals, which was captured using 79 spectral channels. Two continuous wave 

UV-A (360 nm) fluorescent lamp assemblies provided the samples with a near-

uniform illumination. The system was operated under dark conditions. Additional 

description of the spectral and spatial calibration can be found in Kim et al, 2001. 

Each batch of 27 strawberries took approximately 3 minutes to scan.  Individual line-

scan data were saved in 16-bit binary files and were subsequently processed to create 

hyperspectral image cubes containing spatial and spectral data. Data acquisition, 

processing, and analyses were performed using Software developed in Visual Basic 

version 6 (Microsoft, Seattle, WA). Additional analyses were done using ENVI 

version 3.2 (Research Systems, Inc., Boulder, CO). 

 

2.3.3. Data Processing and Analysis 

All image processing and data analysis was performed on a merged hyperspectral 

image data set containing data for all 135 treated strawberries. Prior to image 

visualization and analyses, the spectral dimension was subjected to a 3-point running 

average for all treated and control batches.  Next, in order to eliminate the 
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background and only visualize the strawberry leaves and the treated and untreated 

regions of the strawberries, a masking image was created by applying a threshold 

based on relative fluorescence intensity at the 679 nm waveband of the control 

sample data set.  Investigators have observed that vegetation, when exposed to UV 

radiation, show maxima fluorescence emission at 440, 525, 685 and 740 (Chappelle 

et al.,., 1984). This information along with visual assessment of the images indicated 

that the image at 679 nm exhibited significant contrast for the leaves and strawberries 

surface. Therefore, this waveband was utilized to generate a background-masking 

image.  Because the histogram of pixel intensities showed a bimodal distribution that 

corresponded well to the two regions to be separated (dark image background vs. 

strawberry surfaces and leaves), a threshold intensity value suitable for separating the 

two regions could be approximated through visual examination of the histogram.  

 

The representative spectra for non-treated strawberries were acquired from three 

random rectangular regions of interest (ROI) of 50 pixels each in the surface of every 

control sample. For the treated samples, spectra were retrieved from ROIs of 30 

pixels per concentration spot. For the leaf areas, ROIs contained 20 pixels each. The 

dimensions of the rectangular ROIs varied from sample to sample, but their areas 

(number of pixels) remained constant. This approach was used to encompass the 

larger rectangular area with identical number of pixels throughout the samples.  To 

construct the representative emission spectra, the averaged response from the ROI for 

the leaves, control, and treated spots (1:2, 1:25 and 1:100) were plotted against the 
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wavelength. Images at maximum and minimum fluorescence emission wavelengths 

were visually evaluated for fecal spot detection. 

 

The spatial profiles crossing features of interest (leaves and treated spots) of 

characteristic wavelengths used for classification were graphed.  This approach was 

used to explore the spatial profile differences between the strawberries surface, 

treated spots and leaves.  The fluorescence intensity measures of quantum yields and 

are expressed in terms of relative fluorescence intensities (RFI) (Kim et al., 2001). 

 

With the objective to further facilitate and enhance contrast for fecal contamination 

detection, all ratio combinations of the wavebands corresponding to the emission 

maxima and minima of the fluorescence spectra were generated. Resulting images 

were visually examined, and representative images were selected for further analysis. 

Unwanted regions were removed by evaluating the RFI and determining minimum 

and maximum values to be masked out. This method renders a binary image were the 

masked pixels appear black. 

 

In addition, the entire unmasked data set (79 channels) was subjected to PCA. 

Individual PC images were evaluated to identify the fecal spots at all concentrations, 

and to identify an image that could provide opposite contrast between the strawberry 

surfaces, the leaves, and the fecal spots. Similarly to the ratio image, PC images with 

opposite contrast characteristics could serve as means to mask out undesirable 

features and positively classify the fecal spots. In PCA, the orthogonal projections 

that maximize the amount of data variance is calculated. This transform is based on 
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the eigen-decomposition of the covariance matrix of the data set (Weeks, 1998). The 

information can be presented in the form of principal component (PC) images, which 

are ordered in terms of decreasing variance, where first PC (PC-1) accounts for the 

largest variance. The maximum and minimum weighing coefficients (eigenvectors) 

inflections are indicative of dominant spectral regions (Kim et al, 2004).  

 

2.3. Results and Discussion 

Figure 13 shows the average fluorescence spectra of control (untreated) ROIs, leaf 

ROIs, and treated ROIs at 1:2, 1:25 and 1:100 concentrations.  All these ROIs 

exhibited a broad fluorescence emission in the green region at 553nm, and three 

distinct red fluorescence emission peaks at 679, 688, and 730 nm. Lawrence et al 

(1997) reported that fluorescence emission near 685 (red) and 740 nm (near-infrared) 

are governed by chlorophyll a concentrations and photosynthetic activity. Note that 

the treated spots compared to the leaf spectra exhibited a blue- shift from 688 to 679 

nm. Fluorescence emission spectra for treated regions is similar in shape for 1:2 and 

1:25 concentrations with relatively high emission, while emission for 1:100 

resembled emission for control ROI. The leaf ROI exhibited higher fluorescence 

emission in the red band (between 675 and 735 nm). The fluorescence emission in the 

blue-green band with emission maximum at 553 nm is in the vicinity emission peak 

observed for riboflavin in plants at 525 nm (Chappelle et al.,, 1991). However, the 

blue-green band fluorescence emission remained relatively low in comparison to the 

red band fluorescence emission. The point at which the treated, control and leaves 

change direction was observed at 597 nm.  
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Figure 13. Representative fluorescence emission spectra for control ROIs, leaf ROIs 
and treated ROIs 

 

Figure 14 shows the histogram for the pixel intensities of the merged florescence 

image at 679 nm containing all the treated samples. At this wavelength, the treated 

and control ROIs show a fluorescence emission maximum. This histogram was used 

to determine a cut off value to create a background mask for images. In the plot, two 

distinctive distribution regions can be observed. The first region corresponds to the 

relative fluorescence intensities (RFI) occurring for the background areas.  In this 

region, there are very high frequencies of lower intensity pixels, within a relatively 

narrow intensity range.  In the second region, there are relatively low frequencies of 

higher-intensity pixels over a much wider range of intensities.  The highly variable 

responses in the second region correspond to pixels in the strawberry surfaces, leaves, 

and fecal contaminated spots.  The cut off value for the background mask was 
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determined to be 180 by approximating the point at which the slopes of the two 

regions change.  
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Figure 14.  Histogram of control samples at 679 nm. The cut off value for the two 
regions at 180 (ROI) was calculated by approximating the point at which the slopes of 

the two regions change. Region 1 is representative of the background of the image 
and Region 2 is representative of the strawberries’ surface and leaves 

 
 

 
Figure 15 shows representative gray-scale images of feces-treated strawberries at 553, 

597, 679 and 730 nm, where these wavelengths were selected based on the evaluation 

of the average fluorescence spectra (Figure 13).  Note that the background was 

masked out using the 679 nm mask image obtained by the histogram threshold. At 

shorter wavelengths (553 and 597 nm), the images appear grainy and lower-

concentration feces spots (1:25 and 1:100) were not clearly distinguishable from the 

strawberry surface. At 597 nm, the second bottom strawberry showed higher 

fluorescence emission from the leaf and upper part of the fruit compared to other 

strawberries and feces spots.  Using these waveband images individually for detection 
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results in the potential for false positives: all fecal spots can be identified, but some 

non-fecal spots will also be misidentified as contaminated spots. In the percentage 

detection graph (Figure 21) high-concentration fecal spots (1:2) present high 

detection rates between 79% and 90% for 553 and 597 nm. Lower-concentration fecal 

spots (1:25 and 1: 100) performed rather poorly with detection rates as low as 21%, 

and not exceeding 56%. The images in the red band and near-infrared bands (679 and 

730 nm) appeared smoother compared to the images at 553 and 597 nm and to all 

feces treated spots regardless of the concentrations that were visible. The contrast 

between the strawberry surfaces and the treated areas is the greatest in the 679 nm 

image compared to the other wavelength images. A major impediment in the 

classification process is similar RFI of the leaves, strawberry surfaces, and feces-

treated spots.  Variations in RFI for the control may be the result of the differences in 

fruit ripeness and constituent concentration. The arrows in the image in point at 

potential false positives. Overall, the 1:2 and 1:25 fecal concentrations exhibited 

brighter fluorescence emission in contrast to the 1:100 fecal spots.  These plots 

demonstrate how the fluorescence emission is dependent upon spectral regions. 
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Figure 15.  Gray-scale images of the strawberries at 553, 597, 679, and 730 nm. For 
each image a horizontal and vertical fluorescence intensity variation across the dash 
line is shown.  The plot to the right of each image corresponds to the vertical profile, 
and the plot below each image corresponds to the horizontal profile. The horizontal 
line crosses the 1:2 and 1:25 fecal concentration spots, and the vertical line crosses 
the leaves, 1:2 and 1:100 fecal concentration spots. Arrows point at potential false 

positives. 
 

The spatial intensity profiles that intersect the surface of the fruit, leaves, and fecal 

spots are shown in the plots adjacent to the four images in Figure 15.  The plots 

illustrate the spatial responses along the vertical and horizontal dated lines.  It was 

observed that on the fruit surface in non-treated regions, not including leaves, 

fluorescence emission was non-uniform indicating the presence of heterogeneous 

constituents concentrations.  These heterogeneous constituents maybe dependent on 

the characteristics of fresh strawberries such as thin shiny fruit surface with abundant 
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moisture underneath, and ripening stage at harvest time.  At their initial stage 

strawberries are greenish-white, but as they ripen, the fruit turns to an intense red 

color. The ripening process in strawberries is blocked if the fruit is harvested before it 

has ripened and the fruit may have not fully developed its uniform red color. When 

comparing the spatial intensity profiles that intersect the contamination spots for each 

of the four images, the 679 nm image more clearly contrasts the high-intensity fecal 

spots against the strawberry surfaces and leaves, with less variation in the surface/leaf 

areas.   Higher fluorescence emissions were registered in the 679 and 730 nm 

wavebands. In all the plots, the fecal spots and leaf regions generally show higher 

emissions than the strawberry surfaces. Some other emission variations may be due to 

achenes, sun exposure side, and natural intensity variations previously discussed. In 

terms of fecal matter concentration, a gradual reduction of fluorescence emission was 

observed as fecal concentration decreased.  Detection rates (Figure 21) for 679 and 

730 nm at high fecal concentration (1:2) ranged between 75% and 78%. In contrast to 

emission on the red band (553 and 597 nm) these two wavelengths present higher 

detection rates (between 73% and 74%) for 1:25 fecal concentration spots, almost 

matching the detection rates for the 1:2 concentration. However, 679 nm presents a 

higher detection rate for low concentrations (1:100) than 730 nm. 679 nm detects 

32% more than 730 nm. At 730 nm, the contrast between the fecal spots and the fruit 

surface is not sufficient to be able to detect low fecal concentration. Another reason 

for this observation can be the presence of false positives that limit the ability to 

discriminate fecal spots. 
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Ratio images of two wavelengths have been previously used to create images that 

improve fecal contamination detection on produce.  Ratio images of red band 

fluorescence images to blue or green band fluorescence images have been shown to 

reduce the variation due to colorations and enhance the contrast between fecal spots 

and fruit surface (Kim et al, 2001, 2002; 2003, Vargas et al, 2005). Two-band ratio 

images using combinations of 553 nm, 597 nm, 679 nm, and 730 nm were tested.  Of 

these combinations, the ratio image of 679/730 nm shown in Figure 16a was found to 

improve the detection of fecal-contaminated spots compared to single-waveband 

detection rates. This ratio image produced significant intensity difference among the 

leaves, fruit surface and the treated spots; therefore, this ratio can be used to create a 

mask to remove the leaves.  Figure 16b was constructed by masking out the leaves 

and as much of the strawberries surface with out affecting the fecal spots in band ratio 

679/730 nm image. The range values to construct the mask were defined by 

inspecting the leaves intensity response and setting mask range with minimum and 

maximum values between 0 and 200 RFI respectively. The image effectively removes 

the leaves from the strawberries; nonetheless, natural intensity variations within the 

fruit become more apparent and hindered the classification process. These false 

positives are indicated with arrows in the image. In some cases, the 1:100 

concentrations can be difficult to identify. In comparison to the single wavelength 

images, the percentage detection in Figure 21 shows a higher detection rate at low 

concentration (1:100). This is not the case for high fecal matter concentrations (1:2 

and 1:25), the percentage detection is only 69% for both of these concentrations.  In 

general, because of the heterogeneous fluorescence responses associated with the 
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various components present in the fruit, the two wavelength ratio approach did not 

provide a mean to emphasize differences between the strawberry surface, false 

positive and the treated spots.  This method may be appropriate to mask the leaves 

from the strawberries surface in the image.  In previous studies PC images have 

exhibited unique features that provide basis for fecal spot and color variation of the 

fruit detection (see below).  

 

 

 
 

 

 
 
 

       
(b) 

      
(a) 

 
Figure 16. Fluorescence ratio images of treated strawberries. (a) 679/730 nm, (b) 

Binary image of masked image of 679/730 nm using the range values. 
 

 

Figure 17a shows the first four Principal Component (PC-1 to PC-4) images which 

accounted for 98.88% variability; higher PC images did not illustrate useful 

information for fecal spots detection.  The PC-2 image provided opposite contrast 

between the leaves and fecal spots; leaves appear dark and treated spots bright. This 

observation suggests that the image may provide the means for discrimination of the 

two classes and classify the fecal spots. Both PC-2 and PC-3 showed, near the leaves 

in the second strawberry in the upper row, a section with brightness intensity similar 

to the fecal spots. 
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7.  First through fourth Principal Component (PC) images for treated 
wberries. The arrow in PC-2 points at a potential false positive. 

 

lustrates the masked PC-2 image.  This mask was built by inspecting the 

trawberries surface score values of PC-2 and setting mask range with 

nimum and maximum values.  The score values for the leaves range were 

d –6000.  In this image the leaves and strawberry surface share the same 

y. However, the method failed to completely eliminate the false positives. 

 

18. Simple threshold image of PC-2. Arrows indicate false positive. 
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Figure 19a, and Figure 19b illustrate the masks created from PC-2 and PC-3 to use 

for removing the leaves and strawberry surface, respectively. The mask score values 

ranges to remove the leaves from PC-2 were 5545-8610 and for PC-3 were 6780-

3006.  The combined result of the masking is shown in Figure 19c. In this image 

more false positives were removed in comparison to the simple threshold image of 

PC-2 (Figure 19); nevertheless, false positives are still present and the detection of 

low fecal concentrations (1:100) was compromised. The concentration detection rates 

(Figure 21) for this method are more promising than for single band and ratio images. 

All three concentrations present high detection rates, ranging from 70% for 1:100 to 

82% for 1:2.  The graph shows an increase of 24% detection for 1:100 concentrations 

and the highest detection rate previously recorded for the 679/736 nm ratio image at 

46%. 

 PC-3 PC-2 and PC-3 

      (c) 

PC-2 
       (a)       (b) 

Figure 19. a) Masks created from PC-2 and b) from PC-3. c) Combined effect of PC-
2 and PC-3 masks. Arrows point at false positives. 

 

Figure 20 shows the weighing coefficients (eigenvectors) for PC-2 and PC-3 of the 

treated strawberries. It has been previously observed that the dominant spectral 

regions (positive or negative peaks) observed in the weighing coefficients plot 
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approximately coincide with the fluorescence emission maxima in Figure 13 (Kim et 

al, 2003). 

 

Figure 20. Spectral weighing coefficients
the entire data set (79 channels) of the fecal contaminated strawberries to PCA. 

 

wo major inflection points at 676 nm and 730 nm closely coincided with the 
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 of PC-2 and PC-3 obtained by subjecting 

Dominant spectral bands are indicated in the image. 

T

emission maxima observed in the fluorescence spectra (Figure 13).  Similarly, a 

negative inflection in PC-3 at 687 nm coincided with one of the leaves emission 

maxima (Figure 13) at 688 nm. In contrast with previous hyperspectral imaging 

studies on apples (Kim et al, 2002) and cantaloupes (Vargas et al, 2005), the 

detection rates of the feces spots on strawberries appeared to have relatively lower 
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detection rates throughout all the methods (e.g., single band, band ratio, PC images) 

under investigation. Color variation of strawberries with abundant moisture 

underneath of the fruit surfaces may have adversely contributed to the fluorescence 

responses and thus hindered fecal spot classification. Additionally, the excitation 

illumination may not have been the best for imaging this produce. Optimal excitation 

could potentially improve contrast for fecal matter detection on strawberries.  

Figure 21. Fecal contamination detection rates for 10-µL treated spots on si
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wavelength, ratio wavelength and combined PC-2 and PC-3 image (n=135). 

 In this study, hyperspectral images of strawberries artificially contaminated 

with bo fferent concentrations were analyzed. Although single 

 

2.4. Conclusion 

vine fecal matter to di

band images show high detection rates for high fecal concentration spots, only a 

fraction of the low fecal concentration spots could be detected. Major impediments in 
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the classification of the fecal spots were the presence of false positives and similar 

contrast between the fecal spots and the leafy calyx of the fruit. Two-band ratio 

images increased the detection rate for low fecal concentration spots, but the results 

were not as satisfactory as expected, from similar studies previously conducted with 

cantaloupes, indicating the lack of sensitivity of the method for strawberries.  

However, the PCA images increased the detection rates for all concentrations and 

decreased the presence of false positives; these results indicated the potential of the 

method for fecal spot classification.  The analysis of both the representative 

fluorescence spectra and the weighing coefficients plot identified the same optimal 

wavebands to use to classify features of interest in the image. The methodology 

developed in this study can serve as a preamble for the use of spectral analysis of 

strawberries; nevertheless, further research is required.  
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Chapter 3: Conclusion 

 

 

This thesis contributes to research in the area of spectral sensing and its application to 

food safety and quality control using imaging systems. The investigation results can 

be considered in the development of multispectral fluorescence imaging for on-line 

use in cantaloupe and strawberry packing plants.  

 

The main question of this study was whether it was possible to classify fecal matter at 

different concentrations on the surface of cantaloupes and strawberries using 

hyperspectral imaging, given that the other chemical and physical aspects of the fruit 

surface may present similar spectral characteristics. Research results reported in two 

different articles for both types of produce indicate that it is feasible to classify fecal 

matter on the surface of cantaloupes and strawberries.  The most important 

conclusions of this study are as follows:  

 

This study showed that the greatest contrast between fecal contaminated and 

uncontaminated surface areas on cantaloupes was attained at 675 nm. Two-band ratio 

images at 595/655, 655/520, and 555/655 nm enhanced the contrast between the fecal 

contaminated spots and untreated cantaloupe surfaces.  These images provided 

relatively high detection rates across all feces dilutions concentrations. PCA 

minimized false positives in the images by exhibiting differential responses between 

fecal spots and false positives. This observation was noted in the PC-2 and PC-5 
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images. The combined use of these two images further enhanced the detection of 

feces spots with minimal false positives. Based on the PC weighing coefficients, the 

dominant wavelengths were 465, 487, 531, 607, 643, and 688 nm.  These 

wavelengths can be implemented in a multispectral imaging system for on-line 

applications.  

 

Evaluation of the fluorescence spectra and principal component weighing coefficients 

of artificially contaminated strawberries identified 553, 597 679 and 736 nm as 

optimal wavelengths to classify fecal spots. Visual assessment and fluorescence 

intensity plots indicated that the image at 679 nm exhibited greatest contrast for all 

fecal spots concentrations detection.  The two-band ratio image at 679/730 nm 

improved the detection rates by reducing the appearance false positive spots and 

providing opposite contrast between the surface, the fecal spots and the calyx.  PCA 

provided differential responses for the fecal spots and calyx in the PC-2 and PC-3 

images. The combined use these two PC images increased the detection rates for all 

concentrations and decreased the presence of false positives. 

 

Evaluation of the strawberry data shows that the greatest contrast between the 

strawberry surfaces and the treated areas is in the 679 nm image. The ratio image of 

679/730 nm was found to improve the detection of fecal-contaminated spots 

compared to single-waveband images. However, because of the heterogeneous 

fluorescence responses associated with the various components present in the fruit, 

the single wavelength and the two-wavelength ratio approaches did not provide 
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means to emphasize differences between the strawberry surface, false positives and 

the treated spots. PCA images improved the detection of the fecal spots by providing 

opposite contrast between the leaves and fecal spots. The detection rates for this 

method were more promising than for single band and ratio images.  Weighing 

coefficients (eigenvectors) plot approximately coincide with the fluorescence 

emission maxima.  

 

In contrast with hyperspectral imaging studies on cantaloupes, the detection rates of 

the feces spots on strawberries appeared to have relatively lower detection rates 

throughout all the methods under investigation. Color variation of strawberries with 

abundant moisture underneath of the fruit surfaces may have adversely contributed to 

the fluorescence responses and thus hindered fecal spot classification.  

 

To improve detection results, it is recommended that appropriate excitation lamps be 

used for each type of produce. It is believed that by the using the correct excitation 

lamps for each commodity, contrast of fecal matter detection can be improved.  
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