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Abstract. A common strategy for achieving global convergence in the solution of semi-infinite
programming (SIP) problems, and in particular of continuous minimax problems, is to (approx-
imately) solve a sequence of discretized problems, with a progressively finer discretization mesh.
Finely discretized minimax and SIP problems, as well as other problems with many more objec-
tives/constraints than variables, call for algorithms in which successive search directions are computed
based on a small but significant subset of the objectives/constraints, with ensuing reduced computing
cost per iteration and decreased risk of numerical difficulties. In this paper, an SQP-type algorithin
is proposed that incorporates this idea in the particular case of minimax problems. The general
case will be considered in a separate paper. The quadratic programming subproblem that yields the
search direction involves only a small subset of the objectives functions. This subset is updated at
each iteration in such a way that global convergence is insured. Heuristics are suggested that take
advantage of a possible close relationship between “adjacent” objective functions. Numerical results
demonstrate the efficiency of the proposed algorithm.
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1. Introduction. Optimization problems that arise in engineering design often
belong to the class of Semi-Infinite Programming (SIP) problems, i.e., they involve
specifications that are to be satisfied over an interval of values of an independent
parameter such as time, frequency, temperature or modeling error (see, e.g., [2], [3].
[27], [30]). A simple example is given by the problem

(ST) minimize f(z) s.t. &pq(z) <0, z € R?,

with

Qpo,1)(2) = sup ¢(x,w).
wel0,1]

An important class of SIP problems is that of “continuous” minimax problems such
as

(CMM) minimize sup ¢(x,w).
w€f0,1]

Note that (CMM) can be equivalently formulated in the form of (SI) as

minimize 29 s.t. sup é(z,w) <z, (x,2°) € R+l
wgl0,1)
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2 JIAN L. ZHOU AND ANDRE L. TITS

The difficulties in solving (SI), and in particular (CMM), stem mostly from the facts
that (i) the accurate evaluation of ®(p 1} for each x involves a potentially time con-
suming global maximization, and (ii) ®[p 1] is nondifferentiable in general, even when
¢ is smooth. Various approaches have been proposed to circumvent these difficulties
(see [16] for a recent survey). Some algorithms are based on the characterization of
maximizers of ¢(z,-) over [0, 1] in the neighborhood of a local solution of (SI) (see,
e.g., [10], [15], [18], [31]). Under mild assumptions, the set of such maximizers con-
tains a “small” number of points (for small n). The solution of the original problem
can then be reduced to the solution of a problem involving approximations to these
maximizers wi(x). Application of Newton’s method, or of a Sequential Quadratic Pro-
gramming (SQP) method to the reduced problem (with constraints ¢(z,w;(z)) < 0)
brings about a fast local rate of convergence. However global convergence, when in-
sured at all, involves a potentially very costly line search ([4], [39]). A large class of
globally convergent algorithms, on the other hand, is based on approximating ®pg 1)
by means of a progressively finer discretization of [0, 1], i.e., substituting for (SI) the
problems

(DSI) minimize f(z) st. ¢(z,w)<0 YweQ
with, for instance,
12 -1
Q= 0) IR Ty ) 1 )
{ q9 49 q J

where ¢, a positive integer, is progressively increased (see, e.g., [8], [11], [14], [24], [28],
[29], [31], [35]). The overall performance of these algorithms largely depends heavily
on the performance at each discretization level, especially when ¢ becomes large.

Problem (DSI) involves finitely many smooth constraints and thus in principle
can be solved by classical constrained optimization techniques. Yet typically, if ¢ is
large compared to the number n of variables, only a small portion of the constraints
are active at the solution. Suitably taking advantage of this situation may lead to
substantial computational savings. Similar considerations arise in connection with
inequality constrained optimization problems of the {form

(MC) minimize f(z) st. ¢i(z) <0 i=0,...,¢,

in which £ > n, i.e., in which constraints far outnumber variables. The minimax
problem (here, with finitely many objective functions) is an important special case of
this problem. Examples of (MC) include mechanical design problems involving trusses
(see, e.g., [34], [40] or papers in [5], [22]). Note that there is no essential difference
between (DSI) and (MC). Their similarity is particularly strong if the constraints in
(MCQ) are “sequentially related” in the sense that the values taken by ¢; are typically
close to those taken by ¢;41.

n [29], [24], (DSI) is solved by means of first order (thus, slow) methods. In
[29], based on ideas of Zoutendijk [43] and Polak [26, Section 4.3], the construction of
the search direction at iteration k makes use of the gradients V¢ (zy,w) at all points
w € Q at which ¢(z,w) > —e (“e-active” constraints), where ¢ > 0 is appropriately
small. When the discretization is fine, however, the set of such points is often unduly
large as it contains entire neighborhoods of local maximizers. In [24], it is shown that
only a small subset of these points need be used, by suitably detecting “critical” values
of w and “remembering” them from iteration to iteration in a manner reminiscent of
bundle type methods in nonsmooth optimization (see, e.g., [19], [21]). Specifically,
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at iteration k, a first order direction dj is computed using a certain subset Qj of
0. After a new iterate xr41 has been obtained, a new set Q41 is constructed by
including (i) all w’s that globally maximize ¢(zy41,-) over ; (ii) all w’s that globally
maximize ¢(Zr41,'), where Zr4q is a trial point that was rejected in the previous
line search; and (iii) all w’s in 2} that affected direction dj. This scheme is shown
in [24] to induce global convergence. It is efficient because, under mild assumptions,
the dimension of the quadratic programming problem that ylelds dj. is moderate, and
gradient evaluations are only required at a few grid points. However, at each level of
discretization (i.e., for each fixed ¢), the algorithm proposed in [24] (like that proposed
in [29]) exhibits at best a linear rate of convergence.

In the context of SQP-type algorithms, Biggs [1] proposed to replace with equal-
ity constraints the active inequality constraints and to ignore all other inequality
constraints in the computation of the search direction. Much later, Powell [33] im-
proved on this idea with his “tolerant” algorithm for linearly constrained problems,
which borrows from the “e-active” concept. Again, however, in the case of finely dis-
cretized SIP problems, the number of constraints may be unduly large. Finally, in
38], Schittkowski proposes modifications of standard SQP methods for the solution
of problems with many constraints. However, no convergence analysis is provided; in
practice global convergence may or may not take place, depending on the heuristics
used to update an active working set of constraints.

In this paper, we propose and analyze an SQP-type algorithm based on the scheme
introduced in [24] for the special case of the discretized minimax problem

(P) minimize maz ¢(z,w),
wen

where Q is again a finite set. The general discretized SIP case involves additional
essential difficulties and will be considered in a separate paper. We define

P =m 2 W)

(z) maz ¢(z,w)

At iteration k, given an iterate zj and a subset € of Q, a search direction dj, is
obtained as the solution of the “quadratic program” QP(ag, Hy, Q).? Here, for any
z € R", H € R™*" symmetric positive definite, and Q C Q, QP(z, H,Q) is defined
by

QP(z, H,Q) minimize %(d, Hd) + P (v,d), st. de R

where

(1.1) @, (z,d) = maz{d(z,w) + (Vo d(2,w), d)} - Pg(2)
weN

is a first order approximation to ®g(x + d) — g (), with

Oq(2) = maz (z,w).
wEeN

2QP(z, H,{) is equivalent to the true quadratic program (over R™+?1)

minimize %(d, Hd)y+d° st ¢{z,w) + (Vad(z,w),d) — Bp(z) — ® <O Vw e Q.
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A line search (e.g., of Armijo type) is performed along direction dj to obtain a next
iterate zpy1 = xp + trdy, with t, € (0,1}; Hy is updated to Hiy1; and a new subset
Q41 of Q is constructed according to a scheme inspired from that used in [24]. In
particular, if £y < 1, Q41 includes a point & that caused the last trial point to
be rejected by the line search. However, in the present context, a difficulty arises.
Suppose @ was not in Q. The rationale for including it in Qg4; is that, had it
been included in €y, a larger step would likely have been accepted (since @y is now
preventing a larger step). In the context of [24] where a first order search direction is
used (i.e., H; = I for all k), it follows that dj41 will likely allow a larger step to be
taken. In the current framework however it is unclear whether wy is of any help in
the new metric Hy41, and global convergence may not occur. One remedy would be
to renounce updating Hj whenever ¢ < 1 and wp & Qy is picked by the algorithm.
As it will be proved that, eventually, @, can only be picked from Qj (Lemma 3.14),
such scheme will not prevent normal updating to eventually take place (thus will not
jeopardize the anticipated superlinear rate of convergence). Yet, disallowing normal
updating of Hy in early iterations can hinder the algorithm effectiveness. To obviate
this effect we will disallow normal updating of H only if the additional condition
t, < & is satisfied, where 6 is a small positive number. Indeed, if ¢} stays bounded
away from zero, then {d;} must go to zero (Lemma 3.3(iv)) and global convergence
takes place in any case (Lemma 3.4(ii)). It is shown below that this overall algorithm
indeed achieves global convergence and maintains a fast rate of local convergence.

A well known possible adverse effect is that the line search may truncate the
unit step even arbitrarily close to a solution, thus preventing superlinear convergence
(Maratos effect). It will be shown that this can be avoided by incorporating in the
basic algorithm standard techniques such as a second order correction (see, e.g., [25],
[41]).

The algorithm stated and analyzed below (Algorithm 2.1) allows that additional
w’s be included in 0, at each iteration. Clever such heuristics may significantly speed
up the algorithm, especially in early iterations. In our implementation (discussed in
a subsequent section) we paid special attention to finely discretized SIP problem in
which ¢(z,w) is continuous in w and to other problems in which “adjacent” objectives
are closely related.

The remainder of paper is organized as follows. The basic algorithm is stated in
§2. A complete convergence analysis is presented in §3. In §4, implementation issues
are discussed, and numerical results are reported. §5 is devoted to final remarks. The
paper ends with an appendix, §6, containing proofs or results in §3.

2. Preliminaries and Algorithm Statement. The following assumption is
made throughout.

Assumption 1. Forevery w € Q, ¢(-,w) : IR" — IR is continuously differentiable.
Let z* be a local minimizer for (P). Then (see, e.g., [13]) it is a KT point for (P),
i.e., there exist KKT multipliers ply, w € § such that

Z HEVeo(z*,w) =10

wesd

(2.1) po20Vw €Q and Y pp =1
weN
Ho =0Vw € Q st. ¢la*,w) < (a*).

It is readily verified that there is a natural correspondence between the KKT points
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of (P) and those of the equivalent constrained minimization problem
(Peq) minimize z0 s.t. ®(z) <2% zeR", z0€¢R.

Specifically, the following holds.

LEMMA 2.1. A point z* is a NK'T point for (P) if and only if (z*,®(2*)) is a
KKT point for (Peg). The associated KK'T multipliers are identical.

Similarly, given « € R*, H = HT > 0 and Q C €, if d solves QP(zx, H,Q), then
it is a KKT point for QP(z, H, Q), i.e., there exist y,, w € € such that

Hd+ > puVep(z,w) =0
wefl

(2.2) pw > 0Vw € Q and Z,uwzl
weﬁ
to =0Vw €Q st. ¢(z,w)+ (Veo(z,w),d) — Pa(z) < <I>§.2(a:, d).

Moreover, since ¢(d) := 3(d, Hd) + @}l(w, d) is strictly convex in d (sum of a strictly
convex function and of a convex function), it has a unique minimizer d*. It follows
that the equivalent quadratic program in R?*! has a unique minimizer (d*, p(d*))
and thus that QP(z, H, Q) has d*, its global minimizer, as its only KKT point.

We are now ready to make precise the rule for updating Q. Following [24], Qg4
contains the union of three sets.3 Given z € R", let

Qe (2) = {w € Q: ¢(z,w) = O(z)}

be the set of maximizers of ¢(x, -). The first component of Q41 is Qe (Zp41). Indeed
if Qae(€r41) were not included, diy1 might not be a direction of descent for ® at
zr+1. The second component of Q1 is obtained from the line search. While the
essence of the ideas put forth in this paper is independent of the specifics of this line
search, for the sake of exposition, we will consider the case of an Armijo-type line
search inspired from the line search used by Han [12], [13]. Thus 234 = 2p + tidy.,
where %, is the largest number ¢ in {1, 8, 32, ...} satisfying

(23) O(xy + i(lk) < O(xy) — at((lk, ffkdk>,

where o € (0,1/2) and 8 € (0,1) are fixed. Suppose the line search at iteration k

results in ¢; < 1, implying that the line search test (2.3) is violated at z) + %dk. A

next search direction taking this into account is called for. Thus, €4 will include
some @y such that

iy _ . tr

d(zp + —dg, @) > () — a—

(a1 + iy 1) > W) = a2

Finally, to avoid zigzagging it is important that key elements in Q; be kept in

Qr41. A natural choice is to preserve all w € § that are binding at the solution

of QP(zx, Hr, ), i.e., those w for which the corresponding multiplier py ., is strictly

positive. Thus, the third component of Q4 is

(dk, dek)‘

Q’i, ={weQ:ppw >0}

3In [24], Qg1 is set to be equal to this union.

41f the multiplier vector associated with Q Pz, Hy, Q1) is not unique, any choice is appropriate.
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Thus the overall algorithm for the solution of (P) is as follows.

Algorithm 2.1.
Parameters. a € (0,3), € (0,1),0< 6 < 1.
Data. zo € R”, Hy € R™*" with Ho = HT > 0.
Step 0. Initialization. Set k = 0 and pick Qo 2 Qmas(z0).
Step 1. Computation of search direction and step length.
(7). Compute dj by solving QP (zy, Hy, Q). If dp = 0, stop.
(7¢). Compute ty, the first number ¢ in the sequence {1, 3, 52, ...} satisfying

(2.4) <I>(xk +td) < CD(JJ;;) — at(dk, dek).

Step 2. Updates. Set xpy1 = 2y + tpdp. If ¢, < 1, pick @y such that

¢(.’Bk + %dk;‘:’k) > (D(xk) — a'%(dk, dek>

Qmaz‘(l’k.{-l) U Qz if tr =1

D) %
(“'5) Qk+1 2 {Qmax($k+l) U QZ U {‘Dk} iftk <l

Ift, <6 and &y & Q, set Hryy = Hy; otherwise, compute a new positive definite
approximation Hy4y to the Hessian of the Lagrangian of (P). Set & = k+ 1. Go back
to Step 1.

O

3. Convergence Analysis. Although (P) takes the form of an ordinary min-
imax problem, the classical convergence analysis for such problems (e.g., [12], [13])
cannot be directly applied to the present situation since, at each iteration, only a
subset of the discretized set Q is employed to construct a search direction.

3.1. Global convergence. The following additional standard assumptions are
made.

Assumption 2. For any 29 € IR", the level set {z € R" : ®(x) < P(xo)} is
compact.

Assumption 3. There exist o1, 03 > 0 such that

o1||d||? < ({d, Hid) < oo||d||2 Vd € R, Vk.

We first show that, owing to the fact that Q always contains Quar(2y), Algo-

rithm 2.1 is well defined.
LEMMA 3.1. At any iteration k there exists { > 0 such that, for allt € [0,{x],

(I>(:Ek + tdk) < (b(.’l}k) - Cvt(dk, Hk(lk).

Proof. Since di solves QP(xr, Hi, ), it yields a lower objective value than d = 0
for that problem, and thus

1
g, (@, di) < — 2 {dy, Hedr).
g 2

In view of (1.1) and Assumption 3, since o < 1/2, it follows that there exists ¢ > 0
such that, for all ¢ € [0, #;],

b, (zk +tdk) < @(%’L) - at(dk,H;\,dk).
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On the other hand, since Qa0 (2r) C U, ¢(z),w) < O(zy) for all w & Q. In view
of the continuity assumptions, this implies that there exists 73 > 0 such that, for all
t € [0,x],

O(xy, + tdy) < ®(ey) — at{dy, Hydy),

proving the claim. ||
Thus the line search is always well defined and Algorithm 2.1 stops only when d;, = 0.
The following lemma implies that, if this occurs, the last point z; must be a KKT
point.
LEMMA 3.2. Let H > 0, z € IR®, and Q C Q with ®4(x) = ®(x). Then the
unique KKT point d of QP(z, H,Q) is zero if and only if z is a KKT point for (P).
Proof. Suppose the unique KKT point of QP(z, H, Q) isd=0andlet {{, 1w €
1} be the associated KKT multipliers. In view of (2.2) and since Pu(2) = ®(x), the
KKT condition (2.1) for (P) holds at  with multipliers pu = fi, forw € Q and p, = 0
for w € Q\Q Thus, x is a KKT point for (P). The converse is proved similarly. [
We now assume that an infinite sequence {z;} is generated by Algorithm 2.1.
The following facts are direct consequences of Lemma 3.1 and of our assumptions.
LEMMA 3.3. (i) The sequence {wy} is bounded; (ii) the sequence {dy} is bounded;
(i11) the sequence {®(x)} converges; and (iv) the sequence {tydy} converges to zero.
Proof. The claims follow directly from Assumptions 1, 2, 3 and the fact that
D(2p41) < B(xr) — atg{dy, Hidy) (since, if {tpdy} does not go to zero, then {d;} does
not go to zero). ]
Now, let v, denote the optimal value of QP(zy, Hy, 1), Le.,

(3.1) v = —(dg, Hedp) + (D'Qk(l’k,dk).

N —

Since d = 0 is feasible for QP(xr, Hg, Qt), vx 1s nonpositive for all k. Tt turns out that
convergence of {di} to zero is equivalent to convergence of {v;} to zero and implies
that accumulation points of {2} are KIXT points. More generally, the following holds.

LEMMA 3.4. Let K C IN be an infinite index set. Then, (i} {dy} converges to
zero on K if and only if {vr} converges to zero on K; (i) if {dr} converges to zero
on K, then all accumulation points of {&}rex are NKT points for (P).

Proof. Since, for all k, ®q,(x;) = ®(xx), it follows from (1.1) and (2.2) with
z =&, H = Hy, 0= Qi, d = dy, that, for all & and some py . > 0,w € Q. with
z:wenk Hkw = 1,

<I>'nk($k, dk) = gé%:i{d)(mk,w) + (V;,,¢>(.'L'k,w), dk>} — q)(:L’k)

= ) prw{d(@rw) + (Vad(ap,w), di)} — B(ax)

welk

<Y ikl Vedler, w), di),

wESk
yielding, again from (2.2),
(3‘;2) q)/ﬂk(ivk)dk) < —<dk,f]k(lk>.

In view of (3.1), it follows that

| =

vp < —5{dy, Hedy).

[
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Thus, the “if” part of (i) follows directly from Assumption 3. On the other hand, if
{dr} goes to zero on K, since {z}} is bounded, it follows from (1.1) that

I / 4 = 0.
pebim @, (e di) =0

The “only if” part of (i) then follows from (3.1).

To prove (ii), suppose {dr} goes to zero on K and let K/ C I be any infinite
index set such that {z;} converges to some # on A’. Without loss of generality, assume
Qp = Q for all k € K/, for some 0 C Q. Then ®g(x;) = (1) for all k € K7 and thus
O (2*) = ®(2*). In view of Assumption 3 and of the boundedness of {y .} for all
w € £, there exists K C K’ such that {H}} converges to some H* on K and, for
each w € Q, there exists ji, such that {u .} converges to fi, on K”. Letting ji, =0
for w € Q\Q, taking limits for & € K in the optimality condition (2.2) associated
with QP(zy, Hy, ) and comparing with (2.1) shows that & is a KKT point for (P).
O

The next lemma, which is the same as Lemma 4.7 in [19, Chapter 3], is central
to the proof of global convergence.

LEMMA 3.5. Let a* € IR™ be such that

liminf maz{|vg|, |Jzr —2*|]} = 0.
00

Then, z* is a KKT point for (P).

Proof. The assumption implies that there exists an infinite index set /' such that
{zr} converges to z* and {v;} converges to zero, both on K. Thus, the conclusion
follows from Lemma 3 4. 1

The establishment of the global convergence of Algorithm 2.1 employs a contra-
diction argument inspired from [19, Chapter 3]. I {x;} has a limit point 2* that is
not a KKT point, v is bounded away from zero on the corresponding subsequence
(Lemma 3.5), with a uniform lower bound e* > 0 for all subsequences over which {z;}
converges to z*. It is shown below (Lemma 3.7) that in such case |vj41| s significantly
smaller than |vg| on any such subsequence K. Since, in view of Lemma 3.3(iv), {zs41}
also converges to 2*, |vy 42| is also significantly smaller than jvg4;]. A careful repeated
application of this argument shows that |v;] becomes smaller than ¢* on a sequence
at “finite distance” from K, a contradiction.

The proof of the following lemma is inspired from that of Lemwma 4.11 in [19,
Chapter 3] (see also the proof of Lemma 3.15 in [41]) and is given in the appendix. It
relies crucially on the assumption that {||Hy41 — Hi||} — 0 whenever {t;} — 0, which
is insured in Algorithm 2.1 by setting Hy4q1 = Hp when {; is small and wj, & Q; 1t
also relies on the inclusion in ;4 of the second and third subsets in (2.5).

LEMMA 3.6. There exisis ¢ > 0 such that, if K is an infinile index sel on which
{dx} is bounded away from zero, then there exists an integer N such that

(3.3) fves1] < fv| = clue]?, VA > Nk € K.

Repeated application of this results yields the following.

LEMMA 3.7. There exists ¢ > 0 such that, if K is an infinite index set on which
{xr} is bounded away from KKT points, then, given any positive integer ig. there
exists an integer N such that

|Uk+i+1| S |Uk+i| —_ CIUk.H'lZ Vk 2 N,k € [X’,VZ. c [0, 10]
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|

Proof. For any integer %, in view of Lemma 3.3(iv), {zx+:} is bounded away from

KKT points for k € K and this in turn implies, in view of Lemma 3.4, that {dg4:} is

bounded away from zero for k € K. Therefore, in view of Lemma 3.6, for each ¢ there
exists N; such that

[k sit1] < Joegs| = cloegil®, VE2 Nk e K.

Choosing N = max {N;} proves the claim. !
0<i<io

LEMMA 3.8. Given > 0 and € > 0, there exists an integer iy depending only on
n and € such that, for any sequence {z;} of real numbers satisfying

0< 241 <z —nzi Vie N,

zi < € for all i > ig.

Proof. See the appendix. Il

We are now ready to establish the global convergence of Algorithm 2.1. The facts
that ¢ in Lemma 3.7 i1s independent of K and that i in Lemma 3.8 is independent of
zo play a crucial role in the proof.

THEOREM 3.9. Let {x)} be the sequence generated by Algorithm 2.1. Then, every
accumulation point of {zy} is a KKT point.

Proof. Let 2* and K be such that {z,} converges to z* on K, an infinite index
set. Proceeding by contradiction, we assume z* is not a KKT point. It follows from
Lemma 3.5 that there exists ¢* > 0 such that

(3.4) liminf maz{|vg|, |z — z*||} > €.
k—oo

Thus, {vg} is bounded away from zero on K. In view of Lemma 3.4, {di} is also
bounded away from zero on K and, in view of Lemima 3.3(iv), {¢1} converges to zero
on K. Let ¢ be as given by Lemma 3.7. Let iy be as given in Lemma 3.8 with € = ¢*
and n = ¢. In view of Lemma 3.7, there exists an integer N such that

|vk+i+1[ < |vk+i| — clvk.H'lQ, Vk> N,k e K,Vie {O,io].

From the definition of ig, it follows from Lemma 3.8 with z; = |vp4], k € K, i =
0,...,%0and z;, =0, k € K, ¢ > ip, that

|vk4io] < €* Yk > N, ke K.

On the other hand, since by assumption 2* is not a KK'T point and since in view of
Lemma 3.3(iv) {Zr4:,} also converges to z* on I, it follows from (3.4) that

liminf |vigio] > €*,
k€K, k— oo

a contradiction. |

3.2. Local convergence. Under additional regularity conditions, it is shown
that, close to a strong local minimizer, Qlit remains constant, say Qg = Q for all k, so

that Algorithm 2.1 behaves as if solving (P) with Q replaced with Q. Further, it is
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shown that Hj will be updated normally, thus will not be prevented from asymptoti-
cally suitably approximating the Hessian of the Lagrangian V2L. If Hj does become
a suitable approximation to V2L and if the full step of one is eventually accepted by
the line search, 2-step superlinear convergence will result.

Assumption 1 is replaced by the following.

Assumption 1’. For every w € Q, the function ¢(-,w) : IR" — IR is three times
continuously differentiable.
Let * be an accumulation point of {z} (thus a KKT point for (P)).

Assumption 4. Any scalars Ay, w € Qunax(2*), satisfying

Z AwVzd(z*,w) =0 and Z Ao =0

WEQmaz(2*) WEQ ac(2*)

must be all zero.
Thus the KKT multipliers %, w € , corresponding to z*, for problem (P), are
unique.

Assumption 5. The second order sufficiency conditions with strict complemen-
tary slackness are satisfied at z*, i.e. (see, e.g., [12]), p& > 0 for all w € Qpac(2*)

and
(d, Vi L(z*, p*)d) >0, Vd€ S . d#0,

with
ViL(z*,p) = Y. piVip(r,w)
WEDmae(r*)

and

8t ={d: (d, Vod(2",w)) = 0 Yoo € Qar (27}

The following result is standard for ordinary constrained problems (see, e.g., [7,
Theorem 2.3.2]). A proof in the minimax case is given in the appendix for sake of
completeness.

LEMMA 3.10. The point z* is an isolated KK'T point for (P).

PROPOSITION 3.11. The entire sequence {&r} converges to z*.

Proof. The claim follows from Theorem 3.9, Lemma 3.10, and Lemma 3.3(iv). [7]

Much of the remainder of this section is devoted to showing that, close to x*, the
right hand side of (2.5) does not change from iteration to iteration, say, it remains
equal to , and no w ¢ Q\Q hinders the line search, 1.e., Algorithm 2.1 eventually
behaves as if solving a minimax problem of the type

minimize maz ¢(r,w)
wEeN

(in fact, Q= Qmaz(2*)). A consequence of this is that rate of convergence results
obtained for such algorithms hold for Algorithm 2.1. The first step is to show that, for
k large enough, Qmaz(2*) C Q4 (Lemuma 3.14). This is first proved on a subsequence
using Lemma 3.7(it).

LEMMA 3.12. There exists an infinite index set K such that

(3.5) Qmac(z*) C QL Vk € K.

Proof. First, there exists an infinite index set A such that {d} converges to zero
on K. Indeed, if {d} were bounded away from zero, it would follow from Lemma 3.6
that
Wet] < loe] = elvg]?, VA> N
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for some ¢ > 0 and some integer N, implying that {vy} converges to zero, in violation
of Lemma 3.4(1). Next, in view of the finite cardinality of Q, without loss of generality,
we may assume that Q¥ = Q for all k € K for some constant set . Let py € RI%
be a vector with components {u o} such that py ., w € Q, are the KKT multipliers
associated with QP(z, Hr, Qi) and pp o = 0, w € Q\Qy. Without loss of generality,
{ur} — fras k — oo, k € K, for some ji. We show that ji together with z* satisfies
the KKT conditions (2.1) of the original problem. In view of Proposition 3.11, since
{dx} converges to zero on K, taking limits in the optimality condition (2.2) associated
with QP(zx, H, ), k € K, yields, since ji, = 0 for all w € Q\Q,

Y i Vad(a*,w) = 0,

weN

flu20Vw €Q and Y jiw = 1,
wWEN

e =0 Yw € Q st ¢(z*,w) < O(a*).

Therefore, 2* with {fiu,w € Q;jt. = 0,0 € Q\Q} satisfies (2.1). Uniqueness of the
multipliers for (P) at £* and strict complementarity (Assumptions 4 and 5) imply that
w € Q for all w such that ¢(x*,w) = ®(2*), i.e., (3.5) holds. 0

The following lemma, on the other hand, establishes that dj is small whenever
(3.5) holds.

LEMMA 3.13. Let K be an infinite index sel such that Quar(z*) C Q for all
ke K. Then, {d} converges to zero on K. A

Proof. Given Q C , let Kog={keK: : Q= Q}. For any Q C Q such that Kg
is an infinite set, we prove by contradiction that {dj} converges to zero on K. Since
€ has only finitely many subsets, the lemma will follow. Thus suppose that for some
infinite index set K’ C Kg, {d} is bounded away from zero on A/ and let K" C N’
be such that {H}.} converges to H* on K" for some H* > () (such K" exists in view of
Assumption 3). Since Qmar(2*) C Q, QP(2*, H*, Q) has d = 0 as its unique solution
(Lemma 3.2). It follows from [36, Theorem 2.1] that {d;} — 0 as k — o, k € K",
contradicting the fact that {d;} is bounded away from zero on L. |

LEMMA 3.14. For k large enough, Qmax(2*) C 5.

Proof. In view of Lemma 3.12, the claim holds on an infinite subsequence. To
complete the proof we show that, given any infinite index set K such that Qpyq(2*) C
Qf for all k € K, it holds that Quaz(2*) C Q) for all k € K, k large enough. In
view of the construction of Qp4,, it is enough to show that pp41, > 0 for all w €
Qmac(2*), k € K, k large enough, where 11 ., w € Qy1, are the KKT mutipliers
associated with QP(xr4+1, Hr41, Qk+1). Thus let K be an infinite index set such that
Qmaz(z*) C Q2 for all k € K (so that Quae(2*) € Qiyq for all k € K). Lemma 3.13
implies that {dy4+1} converges to zero on K. Suppose by contradiction that there
exists w* € Qmar(z*) and an infinite index set K/ C K such that jipy) .« = 0 for
all k € K’ (note that Qmar(2*) is a finite set). An argument similar to that used in
the proof of Lemma 3.12 shows that, in view of Assumption 4, p*. = 0, contradiciing

strict complementarity (Assumption 5). 1
The following result directly follows from Lemmas 3.13 and 3.14.
LEMMA 3.15. The entire sequence {dr} converges to zero. 1

This leads to the main result of this section
PropPoOsITION 3.16. For k large enough,

Qb = Qmax(w*)q
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(36) ¢(.’L‘k + tdk,w) < <I>(:ck) — at(dk, dek> Vie [0, 1], w E Q\Q,71“~(.73*),

and
¢>(mk+1,w) < q)(ilfk+1) Yw € Q\Q,na,;(a:*).

Proof. To prove the first claim, in view of Lemma 3.14, it suffices to show that,
for k large enough, QZ C Qmaz(2*). To this end, let & € Q\Qmaz(2*), Ie., suppose
that ¢(z*,&) < ®(z*). Our continuity assumption and Proposition 3.11 then imply
that, for k large enough, ¢(zr,w) < ®(xy), or equivalently ¢(zy, @) < 77‘13%1’ ey, w),

W€

since by construction Qmar(z*) C Q. This, together with Proposition 3.11 and
Lemma 3.15 and the continuity assumption, implies that, for k£ large enough,

d(zp,w) + (Ved(zr, @), di) < LZ%{W(M,W) + (Ved(zr,w), di)},

so that pro = 0 and @ ¢ Q}, proving the first claim. The second and third claims
directly follow from Proposition 3.11, Lemma 3.15, and the continuity assumption. []

It follows from Proposition 3.16 that, if Qp4; is always picked to be equal to the
right-hand side of (2.4) (rather than to merely contain it), then, for & large enough,
Q = Qmaz(2*). Whether or not this is the case, for & large enough, Algorithm 2.1
will behave exactly as if solving the problem

(3.7 minimize mar  $la,w)
WEStmax (£*)

with Q = Qpaz(2*) selected at each iteration. In particular, for k large enough, if
some wy, is picked by Algorithm 2.1, it must already be in Q. Thus H} 1s eventually
updated at every iteration and the local behavior of Algorithm 2.1 becomes identical
to that of the algorithm proposed by Han [12], [13] (except for a different rule for
selecting ¢y, satisfying (2.4)).

Suppose that, as a result of the updating rule, Hy approaches the Hessian of the
Lagrangian in the sense that

0

(3.8) lim | Pe{Hy — Vo Lz, =)} Prdi|| _
k00 “dk”

where the matrices Pj, are defined by
Py=1- R}“(R{Rk)_lR{

with Ry = [Veo(2,wi) — Ved(z,wi) 1 i=2,...,8],5 wi,...,ws being the elements of
Qmar(z*); and suppose moreover that ¢ = 1 for k large enough. Then (see [12]), the
convergence rate is two-step superlinear, i.e.,

To achieve tp = 1 for k large enouglh, it is necessary to introduce a scheme to
avoid the Maratos effect. One option is to adopt a second order correction such as that
used in [25] and [42] (in the latter, it is combined with a “nonmonotone line search™;

5Note that Pj, remains invariant if in the definition of R}, the role of wy is played by any otherw,.
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using such line search here would entail a more complicated analysis). Specifically,
Step 1(ii) in Algorithm 2.1 is replaced with the following.

Step 1(iiy). If ®(xp +di) < (k) —a(dy, Hidy), set d = 0. Otherwise, compute
a correction dj solution of the problem® in d

min (dk+ci,Hk(dk+cZ))+<i>’(a:k + dy, 21, d)

0|

where

&' (21, + di, 21, d) = L’é%wkw(wk +dp,w) + (Vo(xr,w), d)} — D(zp + di).

If ||di)] > ]|dk]], set dg = 0.
Step 1(iia). Compute i, the first number ¢ in the sequence {1,4,52,...} satis-
fying }
(I)(.’l:k + tdy + tgdk) < @(.’L’L) — at(dk, [{Ldk>

Also, in Step 2 of Algorithm 2.1, x4 is set to 2y + tpdy + tzcik and, if tp < 1, &y 18
any w satisfying

ty 17 i
é(zr + ﬁkdk +—ﬂ£ di,w) > P(ap) — aﬁ(dk,dek).

It is readily checked that such modification does not affect the analysis carried out
in this section, the only necessary changes being to substitute, in the statements of
Lemma 3.1(1) and of Lemma 7.1 and at various places in the proofs, all instances of
Ty + tdy with zp + tdy, + t2d,, (and~similar1y, mutatis mutandis, when t;, or t;./5 is
present instead of t; the fact that ||di|| < ||di|| is enforced in the modified algorithm
is a key to the validity of the modified proofs). Thus the modified algorithm will
eventually behave as if solving (3.7) with, at each iteration, j, selected to be equal to
Qmae(2*) and Hy normally updated. It is shown in [42] that, if (3.8) holds, the step
ty = 1 will always be accepted for k large enough (in fact the proof in [42] makes use
of the weaker assumption

i WL Py = V3eL@ i)} Pudsl] _

; 0).
i AL !

It is also shown in [42] that di = O(||di|?). It follows that two-step superlinear
convergence is preserved when (3.8) holds.

4. Implementation and numerical results. An efficient implementation of
Algorithm 2.1, including the Maratos effect avoidance scheme described at the end of
£3, has been developed as part of a C code dubbed CFsSQP [20].7 Version 2.0 of CFSQP
was used to perform the numerical tests described below.

The specifics of the CFSQP implementation are as follows. In Algorithm 2.1, the
rule for updating Q only specifies that it must contain a certain subset of “critical”
points of Q. In practice, initial convergence is often sped up if additional “potentially
critical” elements of 2 are also included. On the other hand, it is clear that increasing

€ Alternatively, d could be selected as the solution of a linear least squares problem, see [25].
"CFSQP is available from the authors.
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the size of O increases the number of gradient evaluations per iteration and makes
QP(zk, Hi, Q) more complex to solve. Thus a compromise must be struck. Various
heuristics come to mind (see, e.g., [38]). The current CFSQP implementation focusses
on the frequent case where “adjacent” objectives are closely related (objectives are
“sequentially related”). It follows the idea, used in [9], [24], to include in €2 the
set Q™ (zy) of “e-active left local maximizers” at zj, for some € > 0. A point
w; € Q= {wo,...,wg} is c-active if it belongs to

Qe(z) = {wi : o(x,ws) > P(x) — ¢}

It is a left local maximizer of ¢ over Q at 2 if one of the following three conditions
holds: (i) i€ {1,...,¢— 1} and

(4.1) o(z,wi) > ¢(2,wi-1)
and
(4.2) (e, wi) > oz, wip1);

(ii) i = 0 and (4.2); (iii) 7 = ¢ and (4.1). We also found that using Qo = Qmaz(20)
often gave a poor initial search direction and performance could be improved if ad-
ditional points were heuristically selected for the first iteration. For many problems,
the performance was improved if the end points wy and wy were included in £2o. Thus,
for Qo and Q441 (in Steps 0 and 2 of Algorithm 2.1), CFSQP selects respectively

Qo = Qma.v(iﬂo) U Qéem(wo) U {wo} U {wq}

and
Quyy = Qmar(fck'*-l) U Qz U Qéem(wk+1y) ift, =1
k+1 anax(wk+1) U Ql]i U {@k} U Qﬁ“"(a;kﬂ) ift, < 1.

Many problems encountered in practice involve more than one set of “sequentially
related” objectives, e.g., a finely discretized version of the problem

(4.3) minimize max{sup ¢! (z,w), ..., sup¢f(z,w)},
w w

where w ranges over some interval. An important example of this type of problem is
Chebyshev approximation, which has the form

minimize sup |¢(z,w)],
w

or, equivalently
minimize max{sup ¢(z,w), sup—@(z.w)}.
w w

All but the last problem in the numerical tests discussed below are of this type. Note
that Algorithm 2.1 and the analysis of §3 apply without modification to (4.3) by “lin-
early ordering” the discrete objectives as, say, ¢1(-,w}), ..., ¢1(-,wl,), ¢2(-.wi), ...,
#%(+,w§,), where it is assumed that the ith set contains of ¢; objective functions. How-
ever, in its selection of ), the CFSQP implementation takes into account the grouping
of the objectives into subsets. Specifically, Qp and € include the global maximizers
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and the e-active left local maximizers for each of the ¢?’s considered independently;
and €g includes the “end-points” for each of the ¢i's

The following parameter values are used in CFSQP: o = 0.1, 8 = 0.5, 6 is the
square root of the machine precision, and € = 1 (in Q8™ (z)). For the solution of the
QP subproblems, CFSQP invokes QLD, a code due to Powell and Schittkowski [37]. Hj,
is updated using the BFGS formula with Powell’s modification [32] with the following
stipulations: the evaluation of the gradient of the Lagrangian function is based on
the KKT multipliers corresponding to the QP subproblem and multipliers associated
with values of w not used in the QP are set to 0. Assigning the value 0 to multipliers
associated with constraints not considered in the current QP subproblem is equivalent
to considering them inactive, which is consistent with the intuition underlying the
selection of €.

The numerical results reported below were obtained on discretized versions of
nine test problems borrowed from the literature. Problems OET 1 through OET 7 are
taken from [23], HET-Z from [17], and PT from [31]. Problems OET 1 through OET 7
and HET-2Z are of the form

minimize max |¢(z,w)|,
wel

with ¢ and I as follows:
OET 1: ¢(2,w) = w~ — (21w + zaexp(w)), I =[0,2].
OET 2: ¢(z,w) = — z1exp(2aw), I = [—0.5,0.5].
0ET 3: ¢(z,w) = sm(w) — (21 + 2aw + z3w?), I = [0, 1].

OET 4: ¢(x,w) = exp(w) — —11_%”325, I=10,1}
OET 5: ¢(2,w) = Vw — (24 — (210? + zow + 3)?), I = [0.25, 1].
OET 6: ¢(z,w) = l-k;w (z1exp(eaw) + xaexp(zaw)), I = [-0.5,0.5].
OET 7: ¢(z,w) = — (x1exp(zaw) +zoexp(zsw)+rzexp(zew)), I = [-0.
HET-Z: ¢(:c w) = 1—w~) (0.52% — 2zw), I = [-1,1].
Problem PT is of the form

=

5.,0.5].

minimize maz ¢(z,w),
wel

with ¢(z,w) = (2w? — 1)z + w(l —w)(1 —z), and I = [0, 1].

To assess the efficiency of the scheme proposed in this paper, we compared the
CFsQP implementation of Algorithm 2.1 with two algorithms differing from it only in
the selection of 2 at each iteration. In algorithm FULL, 2, = € at each iteration,
which essentially corresponds to Han’s algorithm [12], [13]. In algorithm e-ACT, a
simple “e-active” scheme is used, specifically, Q) = Qc(x}) for all k, with ¢ = 0.1
(both for +¢ and —¢ in the case of the first 8 problems). For all three algorithms, the
optimization process was terminated whenever ||dy|| < 1.E-4 was achieved.

In Tables 1 and 2, results are reported for 101 and 501 uniformly spaced mesh
points, respectively (for a total of, respectively, 202 and 1002 “discrete objectives” in
the case of the first 8 problems); specifically,

Q={a,a+ b_a,a—f- Q(b_a),...,b},
q q
with ¢ = 100 and 500, respectively, where a and b are the end points of the interval
of variation of w for the problem under consideration. In the tables, NF is the number
of evaluations of objective function f,2 IT is the total number of iterations, . |2

8Tor the first eight problems, all numbers in this column are pessimistic by a factor of about 2:
evaluation of +¢ and —~¢ at a given point counts as two function evaluations..
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is the sum over all iterations k of the cardinality of Q; (in case of NEW and FULL, it is
equal to the total number of gradient evaluations), and |Q*| is the number of points in
Qr = Q* at the stopping point #;, = z*. TIME indicates the execution time in seconds,
and OBJECTIVE the value of the objective function at z*. All tests were conducted on
a SUN/SPARC 1 workstation.

The following observations may be made. In most cases, the number of iterations
and the total number of function evaluations are lowest for FULL and highest for NEW.
This is expected though since the search directions in NEW are computed based on a
much simpler QP model. Note, however, that the increase in the number of iterations
and function evaluations when using NEW instead of FULL is typically moderate. In
contrast, NEW provides dramatic savings in terms of number of gradient evaluations and
of size of the QP subproblems (whereas the savings achieved by e-ACT are modest).
Note, in particular, that |Q*| remains essentially unchanged when the number of mesh
points is increased from 101 to 501. The decrease in computational effort achieved by
NEW is clearly evident in the dramatically lower TIME of execution.

PROB  n ALGO NF__ IT 5 |Q] [Q* TIME OBJECTIVE ||d*|]
OET 1 2 NEW 2546 10 56 6 0.88 0.53819574 0.38E-16
FULL 1445 6 1212 202 154 0.53813894 0.97E-14
eACT 2444 8 560 92 1.63  0.53819574 0.38F-16
OET 2 2 NEW 861 4 22 6 053 0.08715336 0.12E-05
FULL 642 3 606 202 1.05 0.08715640 0.47E-05
eACT 842 4 448 202 1.00  0.08716226 0.35E-04
OET 3 3 NEW 1805 7 47 8 096 0.00450481 0.51E-15
FULL 1387 5 1010 202 2.31 0.00450481 0.11E-16
ACT 1905 7 988 202  1.81 0.00450481 0.19E-15
OET ¢4 3 NEW 2805 10 68 8  1.34 0.00429463 0.27B-11
FULL 2472 9 1818 202 4.50 0.00429463 0.76E-11
ACT 3525 12 1494 202  4.51 0.00429463 0.37E-10
OET 5 4 NEW 6727 19 152 8 326 0.00264951 0.23E-05
FULL 5533 18 3636 202 12.2 0.00264951 0.29E-06
¢-ACT 7407 22 3360 202 13.0  0.00264951 0.24E-05
OET 6 4 NEW 4314 14 128 10 254 0.00206863 0.18E-09
FULL 3765 12 2424 202 9.47 0.00206878 0.22E-06
ACT 4035 13 2376 202 10.2  0.00206880 0.39E-06
OET 7 6 NEW 38106 97 1186 12  28.6 0.00006644 0.98E-04
FULL 11887 31 6262 202 55.8 0.00004432 0.18E-12

¢ACT 25974 68 13274 202  124. 0.00004432 0.32E-12
HET-Z 1 NEW 606 2 7 3 0.29  1.00000000 0.22E-15
FULL 1437 7 1414 202 1.63  0.99995000 0
eACT 1010 4 194 64 0.56  0.99995000
PT 1 NEW 1224 7 18 2 0.35 0.23605381
FULL 602 ) 505 101 0.55 0.23605381
e-ACT 986 5 155 66 0.34 0.23605381

Table 1: Numerical Results with Discretization [€2] = 101

jeniien B en] [an
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PROB  n  ALGD NF IT S (] |Q*] TIME OBJECTIVE d*}]

OET 1 2 NEW 13420 11 62 6 4.17 0.53824312 0.38E-16
FULL 7153 6 6012 1002 10.6 0.53824312 0.97E-13
eACT 11919 8 2748 448 746 0.53824312 0.48E-13

OET 2 2 NEW 4207 4 23 6 1.61 0.08716106 0.15E-05
FULL 3155 3 3006 1002 4.40 0.08716395 0.47E-05
eACT 4128 4 2212 1002 3.89 0.08716768 0.31E-04

0OET 3 3 NEW 8920 7 a0 9 3.25 0.00450552 0.25E-05
FULL 6873 5 5010 1002 9.95 0.00450505 0.46E-17
eACT 9829 7 4904 1002 12.2 0.00450505 0.17E-15

OET 4 3 NEW 13886 10 71 9 4.78 0.00429567 0.12E-06
FULL 11998 9 9018 1002 21.6  0.00429543 0.76E-11
eACT 17161 12 7404 1002 215 0.00429543 0.32E-10

OET 56 4 NEW 33441 19 158 8 12.2 0.00265008 0.27E-5
FULL 27460 18 18036 1002 59.6 0.00265008 0.30E-06
eACT 42085 25 19694 1002 57.4 0.00265008 0.16E-04

OET 6 4 NEW 21345 14 131 11 8.63 0.00206998 0.16E-05
FULL 18625 12 12024 1002 50.8 0.00206989 0.22E-06
ACT 19995 13 11856 1002 52.2  0.00206996 0.35E-06

OET 7 6 NEW 54584 30 355 15 27.2  0.00013273 0.32E-04
FULL 60521 32 32064 1002 273. 0.00004446 0.11E-12
eACT 127096 67 64806 1002 383. 0.00006876 0.77E-13

HET-Z 1 NEW 3006 2 7 3 0.89 1.00000000 0.22E-13
FULL 10062 10 10020 1002 10.9 0.99999800 0.14E-13
eACT 7092 7 1910 316 3.35  0.99999800 0.14E-13

PT 1 NEW 7337 8 22 2 1.03  0.23606791 0
FULL 2991 5 2505 501  1.84 0.23606792 0
eACT 3895 5 799 334 0.0 0.23606792 0

Table 2: Numerical Results with Discretization [€2] = 501

5. Conclusion. An SQP-type algorithm has been proposed and analyzed for the
solution of minimax optimization problems with many more objective functions than
variables, in particular, of finely discretized continuous minimax problems. At each
iteration, a quadratic programming problem involving only a small set of constraints
is solved and, correspondingly, only a few gradients are evaluated. Numerical results
indicate that the proposed scheme is cHicient.

There is no conceptual difficulty in extending the algorithm to tackle discretized
versions of continuous minimax problems where the maximization is with respect
to more than one free variables ranging over arbitrary compact sets. The proposed
algorithm, with appropriate modifications, has been implemented in an optimization-
based design package [6] and has proven very successful in solving various types of
engineering design problems.

6. Appendix: Proofs.

1
6.1. Proof of Lemma 3.6. We denote by H; the positive definite square root



18 JIAN L. ZHOU AND ANDRE L. TITS

-1 . .
of Hy, by H, ? its inverse, and we make use of the following notation:

vr(w) = (xp) — Pk, w)
T = Z My (w)

wEN

Tt = D prwVi (@)
WENk

gr(w) = H, * V(g w)
1
pr= ) prwgr(w) = —HZdy

wE

Pit = D Mk wlksr().
WEN

It follows from (3.1), boundedness of {y} and Assumptions 1-3 that, for some M > 1,
(6.1) maz{Joel, Ipesll Mo @)} < A, VEEN, Y€ Q.
We will show that (3.3) holds with

, (1-24)?
.2 - ——
(6:2) STV ER
where & is any number in (a, 1/2).
A few more lemmas are first established.
LEMMA 6.1. Let K be an infinite index sel such that {||Hp41 — Hi{]} converges
to zero on K and {dy} is bounded away from zero on K. Then, given any & > «,

_1 o1 -
$(2pt1,w) + (Vad(@rtr,w), Hy 5 HE dig) — P(apgr) > —a(dy, Hidy)
whenever ty, < 1, for k € K, k large enough, and for all w € Q such that

173

B

Proof. In view of Lemma 3.3(iv), {{1} converges to zero on K. Proceeding by
contradiction, suppose the claim does not hold, I.e., there exists an infinite index set
K' C K such that, for all k € K/, t; < 1 and for some @y € Q

t
QS(.’L‘k + —=di,w) > D(xy) — L)’§k<(lk, ffk(lk>.

123

(6.3) ¢(@x + &dk,wk) > P(zp) — o 3

ﬂ ((1}‘,, dek>

and

(6‘4) ¢($k+l)a)k) + <v$¢(wk+ly@k)v Hk QlH;?([l;> - (I)(.]Jk+1) < —(]’(dk, }]kdl;>~
+

In view of Lemma 3.3(i,ii) and Assumption 3, there exists an infinite index set K C K
such that the sequences {z;}, {di}, {Hi} and {&p} converge on R respectively to
some z*, d*, H* and w*. In view of Lemma 3.3(iv), {zr4+1} also converges to a*
on K’. Furthermore, since {t;} goes to zero on K, it follows from (6.3) and our
continuity assumption that w* € Qper(2*). Also, a simple contradiction argument
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using Assumption 3 shows that {H,:f] H,;%} — I on K. Thus taking the limit of (6.4)
on K yields

(6.5) (Vao(x*,w*),d*) < —a{d*, H*d*) < —a{d*, H*d*).
On the other hand, (6.3) implies that

ir tr

é(xr + ﬁdk,d)k) > ¢(zp, @p) — s (di, Hydy).
Thus,
zp + Bdy, @) — dlag, o
(6.:6) o(ex + Fdx t:) ¢(xr, D) > —a(d, Hedy).
B

Taking the limit of (6.6) as k — oo on K yields
(Vag(a*,w*),d*) > —ald~, H*d*),

which contradicts (6.5). |
As in [19, Chapter 3], using the dual of QP(xy, H}, ) facilitates the analysis.

LEMMA 6.2. Given any xz € R*, H = HT > 0, and Q C Q, the dual quadratic
program QP(x, H,Q) of QP(x, H,Q) is given by

= - - 1 9 / .
QP(z,H,Q) maximize — <§|| Z toy(w)|)? + Z ;zw';(w)) st. pel,

weﬁ wefl
where y(w) = ®(x) — ¢(2,w), g(w) = H- 3V, ¢(x,w), and
U:{uEIRmI:Z/LW:l and p, > 0 Vw € Q).
wefl

Proof. The dual is given by
maximize () s.t. p € U,

where ¢ is the dual functional, i.e.,

(6.7) o(p) = m}n {—;—(d, Hdy+ Z po(P(z,w) + (Ved(z.w),d)) — @(:B)} .

wel
In view of Assumption 3, the unique minimizer d* in (6.7) is given by
dr=—H=13  puVed(e,w) = —HF Y 7 juy(w)
weh w€Q

yielding
Z po{Ved(x,w), d*) = —(d~, Hd*).

weﬂ
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Therefore,
1
p(p) = =5 {d*, Hd) = 3 p{®(x) w)}
weh
1 9
- (§II D eg@F+ uw(w))
wefd W€
and the result follows. M

LEMMA 6.3. There ezxistst > 0 such that
¢(:L’k + tdk,w) < Q(zy) — (Yt((lk, dek)

for all k, allt € [0,1], and all w € Q.
Proof. In view of Assumption 1’ and boundedness of {dy}, here exist ¢; > 0 and
¢2 > 0 such that, for allw € Q, all t € [0, 1] and all £,

¢z + tdy, w) < ¢y, w) + c1t]|dy]

and
¢z + tdy,w) < ¢(xp, w) + (Voo (xr,w), di) + cat?||di|]*.

Thus, it follows from (2.2) applied to Q P(xy, Hy, Qi) that, for allw € Q4, allt € [0, ]
and all k,

qﬁ(xk—{—tdk,w)
<1 =t)g(zp,w) + t{g(zr,w) + (Vad(ar,w), di) } + cat?|[di||?
< (1= D6() + 1 mar 9(re,0) + (Vo ), de)} + ot |

=(1-t)o(xg,w) + 1t Z e wlo(@r, w) + (Vad(zp,w), di) } 4 cat?]|dif]?
wWEN

S (L =1)®(zx) +1D(xy) Z Phw +1 Z P w(Ved(2r,w), di) + cat?|ldy]f?
wEN wEN
= (I>(.’L'k) - i(dk, dek> + CQtQHdk”"?,

where, again, o, w € €, are the KKT multipliers associated with QP(xy, Hi, Q).
Thus, in view of Assumption 3, since « € (0,1/2),

$(ar + td,w) < (xx) — at{dy, Hydp) + o = D){di, Hidi) + cat?]jdi]|”
< ®(xp) — at{dy, Hedi) + t|di || {{a — L)or + cat}
< O(xy) — at(dy, Hidy), Vte (0,4,

for all w € Q, with = (1 — a)oy/c2 > 0. 1

Proof of Lemma 3.6. Since {d;.} is bounded away from zero on K, it follows from
Lemma 3.3(iv) that {tx} goes to zero on K. Without loss of generality assume that
ty < 1forallk € K. For each k € K, let & € Q41 be the value picked in Step 2 of
Algorithm 2.1; &y, satisfies

¢(-17k+ ﬁdl,wk) > (I)(.ZL -—Ci <(1L,f]1\([;'>
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In view of Lemma 6.3, @ & Qi for all k € K. Define Q = Q) U {&r}. Let v},
denote the optimal value of QP(zj41, Hi41,$2,). In view of the construction of Qj 41,
Q@ C Qry1. Thus, |vp4a]| < v, |- Therefore, it suffices to prove (3.3) with the left
hand side replaced by |v} ,,|. Define the quadratic function in v

1
QW) = 5lIvger1(@e) + (1 - v) D tregrrr (@) + vyig @)

wEN
F(1=v) D prwrer(w)
wEN
1 - Yo _
= Sllrges1(@i) + (L= v)pes|* + w7142 (8) + (1= v)mes.

Let v € [0,1]. Let ptg o, w € Q4 be the KKT multipliers associated by QP(2, Hy, Q).

With the (dual feasible) choice pa, = v, p = (1 = v)pp w, for allw € Q% and p, = 0

for all w € Q\Q}, the objective of the dual quadratic program QP(2 4, Hip1,82})

takes value —Q(v). By duality, iy 1s the optimal objective value for both QP(zy41, Hyy1, )
and _Q—P(:vk_,_l,HkH,Q;c). Thus, ‘

[Vegal S QUr), Vv e[0,1].
Thus, it suffices to prove (3.3) with the left hand side replaced by min,ep 13Q(v).
Expanding the quadratic term of Q(v) yields
Q) = 52%llgess @0 + 50— ¥l 4 (0~ ) genr (@), i)
+ vk (@r) + (1= v)mps
= %||Pk+||2 + K;Hgkﬂ(@k) = P+l + v{gks (@i ) prt) + vy (@)
(6.8) = Vlpe+l* + (1 = v)mps.

Note that L,
(gr+1(@1),pr) = ~(Vod(zry1, o), H 2 HE dy).

Since {tx} converges to zero on K, t; < 6 for k € I, k large enough. Since oy ¢ Oz,
it follows from Step 2 in Algorithm 2.1 that Hyyy = Iy, for k € K, k large enough.
Thus, assumptions of Lemma 6.1 are all satisfied. Given & € (o, 1/2), in view of
Lemma 6.1 with w = &y, there exists an integer k; such that, for all £ > k), k € K,

(ge4+1(@1), ) + e 41(@1) < Va1 (@0k) + (2r41.08) — P(2pp1) + a{dy, Hydy).
In view of the definition of v; and of relationships {3.1) and (3.2), it follows thal
(9k+1(@k), Pr) + Ye41(@r) < =260, Yk € K k> ki
Hence, forall k > k1, k€ K,
(941(0k), Pr+) + Yr41(@k) < =260k — (grt1(@k), Pr — Pr+)-

Also,
[lPe+11? = llpe — P + Pr+l]?
= [Ipell? + |lpe — pe+)* — 2{0r, Pk — Pi+)
= lpell* + O(llpr — pr+l)-
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On the other hand, since M > 1, inequality (6.1) implies that
lgr+1(@r) — pe+||? < 4012,
Substituting all these into (6.8) yields, for all k > ki, k€ I, v € [0, 1],

1 ~ 2
Q) < Sllpell? + 2M20® — v(26v; + [|pel|?) + (1 = v)mpr + O(llp — pr+ 1))

1 . Y
= §||pk||2 + T + 2M 202 — v(26wy + ||prl]? + ™) — (1 = v) (7 — 74 )

+ O(llpk — pi+l)-

In view of Lemma 6.2, since duality holds,

l 92
lvel = v = Sllpell® + 7
Thus, for all k > ky, k€ K,

. v
Q) < lvk| +2M202% — v(2avy, + |vi]) — §||Pk||“

+ O(jmr — mp+]) + Olpr — pr+l)
< ok +2M207 — v(1 = 26)|vg| + O(|m — 7+ ]) + Olllpr — pr+l]).

The minimum of the right hand side is achieved at 7y = 4de|vg|, with ¢ = (1 —
2a)/16M?2. Since & < 1/2, |vp] < M and M > 1, it follows that 7, € [0, 1] and
thus, forall k > k1, k€ K,

Vgl[gﬁ]Q(V) < Q) < |vk| = 2¢vr? + O(|7r — T+ |) + O(|pr — i+ l])-

Now, in view of Lemma 3.3(i,iv) and Assumption 1, and since Hyy, = Hy, for k large
enough, k € K, {m; — 4} and {p; — pr+} both tend to zero as k goes to infinity,
k € K. Thus, since v; is bounded away from zero on K (Lemma 3.3(i)), there exists
an positive integer N such that, forall k > N, bk € i

min v) < vl — clepl?.
I/E[O,I]Q( ) < Jug] = clug]

Therefore (3.3) follows from the inequality
vpg1| < Wi | € min Qv).
I k+1| > l 1.‘+1l > ue[o,l]Q( )

|

6.2. Proof of Lemma 3.8. zp — 7z achieves its largest value with zp = X

. . . I’
yielding a largest possible value for z; given by

The mapping
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is monotonic increasing over [0, 9—11;] Thus, given any zo, the sequence defined by

1
4n

9 - P
Zzig1 =z —nz;, t=1,2,...

Z] =

is the largest of all nonnegative sequences satisfying the given inequality condition, in
the sense that given any such sequence {y;},

i<z, t=1,2,...

Let now #o be such that z; < ¢ for all i > ip. It follows that y; < e for alli > io. [

6.3. Proof of Lemma 3.10. We first show that (z*, ®(x*), #*) is an isolated
solution of the nonlinear system of equations in (z, 29, p) (see (2.1))

> puVed(a,w) = 0
we

(6.9) 3 ope =1
wEN
pi(qﬁ(m,w) ~2%9) =0 Ywe Q.

This will result from the Inverse Function Theorem if the Jacobian of the left-hand
side of this system of equations is nonsingular. To show that this is indeed the case,
let (d,d% A) € R* x R x RI% be such that

V%xL($*,ﬂ*) 0 Vx¢>(;1:*,w1) C Ved(a*,we) d
0 0 1 I e
po Ved(z=,w)T  —pi,  ¢(2*,wi) — &(z7) =0,
: : - A
W Vaod(z,we)T —pl, Bla*,we) — D(w*)

where wy, ..., wy are the elements of €2, i.e., suppose that

(6.10) VieL(a®, p)d + Y N Vad(a®,w) =0,
WESL

(6.11) Y A =0,

wESN

(6.12) U (Vad(a®,w),d) = pbd® + Ao(e*,w) — B(a*)) = 0V w € Q.
From (6.12) and the first line in (2.1) it follows that

(6.13) do =0 Vo st ga*w) < &(r*).

Together with (6.11) this implies that

1 ((Ved(a*,w),d) —d%) =0 Yw €Q
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and, in view of the strict complementarily assumption
(Ved(z*,w),d) = d° VYw € Qpar(a*).
From the first two lines in (2.1), it follows that d% = 0, thus
(6.14) (Ved(z*,w),d) =0 VYw € Quaz(a*).

Performing the inner product with d of both sides of (6.10) and using (6.13) and (6.14)
yields
(d, VZ,L(2*, p*)d) = 0.

In view of Assumption 5, this together with (6.14) implies that d = 0. Substituting
this in (6.10) and using (6.11)-(6.13) and Assumption 4, we conclude that A, = 0 for
all w € Qmas(z*). Thus (d,d% ) = 0 and the Jacobian of the left-hand side of (6.9)
at (z*, ®(z*), u*) is nonsingular. Thus (z*, (a*), 4*) is an isolated solution of (6.9)
and therefore (z*, pu*) is an isolated KKT pair for (P). To complete the proof, we now
proceed by contradiction. Thus suppose that there exists a sequence {#7} of KKT
points for (P) that converges to «* as k goes to infinity, with &}, # z* for all k, and let
g} be a KKT multiplier vector associated with z}. Since (z*, pu*) is an isolated KKT
pair for (P), {¢}} must be bounded away from p*. Since {g}} is bounded, we may
assume without loss of generality that {u}} converges to ji as k goes to infinity, with
i # p*. In view of our continuity assumption, taking the limit at k goes to infinity
of both sides of (2.1) shows that (z*, 1) is a KKT pair for (P), in contradiction with
uniqueness of the KKT multiplier vector associated to z*, which is guarantees by
Assumption 4.
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