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Abstract

Research on numerical solution methods for partially observable Markov decision processes (POMDPs)

has primarily focused on discrete-state models, and these algorithms do not generally extend to continuous-

state POMDPs, due to the infinite dimensionality of the belief space. In this paper, we develop a com-

putationally viable and theoretically sound method for solving continuous-state POMDPs by effectively

reducing the dimensionality of the belief space via density projections. The density projection technique

is also incorporated into particle filtering to provide a filtering scheme for online decision making. We

provide an error bound between the value function induced by the policy obtained by our method and

the true value function of the POMDP, and also an error bound between projection particle filtering

and exact filtering. Finally, we illustrate the effectiveness of our method through an inventory control

problem.

I. INTRODUCTION

Partially observable Markov decision processes (POMDPs) model sequential decision making under

uncertainty with partially observed state information. At each stage or period, an action is taken based

on a partial observation of the current state along with the history of observations and actions, and the

state transitions probabilistically. The objective is to minimize (or maximize) a cost (or reward) function,

where costs (or rewards) are accrued in each stage. Clearly, POMDPs suffer from the same curse of
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dimensionality as fully observable MDPs, so efficient numerical solution of problems with large state

spaces is a challenging research area.

A POMDP can be converted to a continuous-state Markov decision process (MDP) by introducing

the notion of the belief state [4], which is the conditional distribution of the current state given the

history of observations and actions. For a discrete-state model, the belief space is finite dimensional

(i.e., a simplex), whereas for a continuous-state model, the belief space is an infinite dimensional space

of continuous probability distributions. This difference suggests that simple generalizations of many of

the discrete-state algorithms to continuous-state models are not appropriate or applicable. For example,

discretization of the continuous-state space may result in a discrete-state POMDP of dimension either too

huge to solve computationally or not sufficiently precise. Taking another example, many algorithms for

solving discrete-state POMDPs (see [13] for a survey) are based on discretization of the finite-dimensional

probability simplex; however, it is usually not feasible to discretize an infinite-dimensional probability

distribution space.

Despite the abundance of algorithms for discrete-state POMDPs, the aforementioned difficulty has

motivated some researchers to look for efficient algorithms for continuous-state POMDPs [20] [25] [22]

[7]. Assuming discrete observation and action spaces, Portal et al. [20] showed that the optimal finite-

horizon value function is defined by a finite set of “α-functions”, and model all functions of interest

by Gaussian mixtures. However, the number of Gaussian mixtures in representing belief states and α-

functions grows exponentially in value iteration as the number of iterations increases. Thrun [25] addressed

continuous-state POMDPs using particle filtering to simulate the propagation of belief states and represent

the belief states by a finite number of samples. The number of samples determines the dimension of the

belief space, and the dimension could be very high in order to approximate the belief states closely.

Roy [22] and Brooks et al. [7] used sufficient statistics to reduce the dimension of the belief space,

which is often referred to as belief compression in the Artificial Intelligence literature. Roy [22] proposed

an augmented MDP (AMDP), using maximum likelihood state and entropy to characterize belief states,

which are usually not sufficient statistics except for the linear Gaussian model. As shown by Roy himself,

the algorithm fails in a simple robot navigation problem, since the two statistics are not sufficient for

distinguishing between a unimodal distribution and a bimodal distribution. Brooks et al. [7] proposed a

parametric POMDP, representing the belief state as a Gaussian distribution with the parameters of mean

and standard deviation, so as to convert the POMDP to a problem of computing the value function over a

two-dimensional continuous space. The restriction to the Gaussian representation has the same problem

as the AMDP. There are some other belief compression algorithms designed for discrete-state POMDP,
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such as value-directed compression [21] and the exponential family principle components analysis (E-

PCA) belief compression [23]. They are not suitable for generalization to continuous-state models, since

they are based on a fixed set of support points.

Motivated by the work of [25], [22], and [7], we develop a computationally tractable algorithm that

effectively reduces the dimension of the belief state and has the flexibility to represent arbitrary belief

states, such as multimodal or heavy tail distributions. The idea is to project the original high/infinite-

dimensional belief space to a low-dimensional family of parameterized distributions by minimizing the

Kullback-Leibler (KL) divergence between the belief state and its projection on that family of distributions.

For an exponential family, the minimization of KL divergence can be carried out in analytical form,

making the method very easy to implement. The belief MDP can then be solved on the parameter space

by using simulation-based algorithms, or can be further approximated by a discrete-state MDP via a

suitable discretization of the parameter space and thus solved by using standard solution techniques such

as value iteration and policy iteration. Our method can be viewed as a generalization of the AMDP

in [22] and the parametric POMDP in [7], where the exponential family is chosen to be the family of

Gaussian distributions. In addition, we will provide theoretical results on the error bound of the value

function and the performance of the near-optimal policy generated by our method.

We also develop a projection particle filter for online filtering and decision making, by incorporating

the density projection technique into particle filtering. The projection particle filter we propose here is a

modification of the projection particle filter in [2]. Unlike in [2] where the predicted conditional density

is projected, we project the updated conditional density, so as to ensure the projected belief state remains

in the given family of densities. Although seemingly a small modification in the algorithm, we prove

under much less restrictive assumptions a similar bound on the error between our projection particle filter

and the exact filter.

The rest of the paper is organized as follows. Section II describes the formulation of a continuous-state

POMDP and its transformation to a belief MDP. Section III describes the density projection technique, and

uses it to develop the projected belief MDP. Section IV develops the projection particle filter. Section V

computes error bounds for the value function approximation and the projection particle filter. Section VI

applies the method to a simulation example of an inventory control problem. Section VII concludes the

paper.
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II. CONTINUOUS-STATE POMDP

A discrete-time continuous-state POMDP can be formulated as a set of system equations and obser-

vation equations [4]:

xk+1 = f(xk, ak, uk), k = 0, 1, . . . , (1)

yk = h(xk, ak−1, vk), k = 1, 2, . . . , y0 = h0(x0, v0), (2)

where for all k, the state xk is in a continuous state space S ∈ Rnx , the action ak is in a finite action space

A ∈ Rna , the observation yk is in a continuous observation space O ∈ Rny , the random disturbances

{uk} ∈ Rnx and {vk} ∈ Rny are sequences of i.i.d. continuous random vectors with known distributions,

and nx, na and ny are the dimensions of xk, ak and yk, respectively. Assume that {uk} and {vk} are

independent of each other, and independent of x0, which follows a distribution p0. Also assume that

f(x, a, u) is continuous in x for every a ∈ A and u ∈ Rnx , h(x, a, v) is continuous in x for every a ∈ A

and v ∈ Rnx , and h0(x, v) is continuous in x for every v ∈ Rnx .

All the information available to the decision maker at time k can be summarized by means of an

information vector Ik, which is defined as

Ik = (y0, y1, . . . , yk, a0, a1, . . . , ak−1), k = 1, 2, . . . ,

I0 = y0.

The objective is to find a policy π consisting of a sequence of functions π = {µ0, µ1, . . .}, where each

function µk maps the information vector Ik onto the action space A, that minimizes the value function

Jπ = Ex0,{uk},{vk}

{ ∞∑

k=0

γkg(xk, µk(Ik))

}
,

where g : S × A → R is the one-step cost function, γ ∈ (0, 1) is the discount factor, and Ex0,{uk},{vk}

denotes the expectation with respect to the joint distribution of x0, {uk}, and {vk}. We assume g is

bounded for all (x, a) ∈ S ×A. The optimal value function is defined by

J∗ = min
π∈Π

Jπ,

where Π is the set of all admissible policies. An optimal policy, denoted by π∗, is an admissible policy

that achieves J∗. A stationary policy is an admissible policy of the form π = {µ, µ, . . .}, referred to as

the stationary policy µ for brevity, and its corresponding value function is denoted by Jµ.

The information vector Ik grows as the history expands. A well-known approach to encode historical

information is the use of the belief state, which is the conditional probability density of the current state
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xk given the past history, i.e.,

bk(·) = pk(·|Ik),

Given our assumptions on (1) and (2), bk exists. bk can be computed recursively via Bayes’ rule:

bk+1(xk+1) = p(xk+1|Ik, ak, yk+1)

∝ p(yk+1|xk+1, ak)
∫

x∈S
p(xk+1|Ik, ak, x)p(x|Ik, ak)dx

∝ p(yk+1|xk+1, ak)
∫

x∈S
p(xk+1|ak, x)bk(x)dx, k = 0, 1, . . . , (3)

b0(x0) = p(x0|y0).

The second line follows from the Markovian property. The third line follows from the Markovian property

of {xk} and the fact that xk does not depend on ak. Hence, the evolution of bk depends on ak and yk+1,

summarized as

bk+1 = ψ(bk, ak, yk+1), (4)

where yk+1 is characterized by a conditional distribution PY (yk+1|bk, uk) (that does not depend on

{y0, . . . , yk}) induced by (1) and (2). Moreover, PY does not depend on time.

A POMDP can be converted to an MDP by conditioning on the information vectors, and the converted

MDP is called the belief MDP. The states of the belief MDP are the belief states, which follow the

system dynamics (4), where yk can be seen as the system noise with the distribution PY . The state space

of the belief MDP is the belief space, denoted by B, which is the set of all belief states, i.e., a set of

probability densities. A policy π is a sequence of functions π = {µ0, µ1, . . .}, where each function µk

maps the belief state bk into the action space A. Notice that

Ex0,{ui}k
i=0,{vi}k

i=0
{g(xk, ak)} = E {Exk

{g(xk, ak)|Ik}} ,

thus the one-step cost function can be written in terms of the belief state as the belief one-step cost

function

g̃(bk, ak) , Exk
{g(xk, ak)|Ik}

=
∫

x∈S
g(x, ak)bk(x)dx

, 〈g(·, a), b〉.

Assuming there exists a stationary optimal policy, we can apply value iteration to solve the belief

MDP, that is, we apply the dynamic programming (DP) mapping to any bounded function J : S → R.

We denote it by

TJ(b) = min
a∈A

[〈g(·, a), b〉+ γEY {J(ψ(b, a, Y ))}], (5)
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where EY denotes the expectation with respect to the distribution PY . The optimal value function is

obtained by

J∗(b) = lim
k→∞

T kJ(b), ∀b ∈ B.

For finite-state POMDPs, the belief state b is a vector with each entry being the probability of being

at one of the states. Hence, the belief space B is a finite-dimensional probability simplex, and the value

function is a piecewise linear convex function after a finite number of iterations, provided that the one-

step cost function is piecewise linear and convex [24]. This feature has been exploited in various exact

and approximate value iteration algorithms such as those found in [13], [18], and [24] .

For continuous-state POMDPs, the belief state b is a continuous density, and thus, the belief space

B is this infinite-dimensional space that contains all sorts of continuous densities. For continuous-state

POMDPs, the value function preserves convexity [26], but value iteration algorithms are not directly

applicable because the belief space is infinite dimensional. The infinite-dimensionality of the belief

space also creates difficulties in applying the approximate algorithms that were developed for finite-

state POMDPs. For example, one straightforward and commonly used approach is to approximate a

continuous-state POMDP by a discrete-state one via discretization of the state space. In practice, this

could lead to computational difficulties, either resulting in a belief space that is of huge dimension or in

a solution that is not accurate enough. In addition, note that even for a relatively nice prior distribution bk

(e.g., a Gaussian distribution), the exact evaluation of the posterior distribution bk+1 is computationally

intractable; moreover, the update bk+1 may not have any structure, and therefore can be very difficult

to handle. Therefore, for practical reasons, we often wish to have a low-dimensional belief space and to

have a posterior distribution bk+1 that stays in the same distribution family as the prior bk.

To address the aforementioned difficulties, we apply the density projection technique to project the

infinite-dimensional belief space onto a finite/low-dimensional parameterized family of densities, so as to

derive a so-called projected belief MDP, which is an MDP with a finite/low-dimensional state space and

therefore can be solved by many existing methods. In the next section, we describe density projection in

details and develop the formulation of a projected belief MDP.

III. PROJECTED BELIEF MDP

We define a projection mapping from the belief space B to a family of parameterized densities Ω,

denoted as ProjΩ : B → Ω, by

ProjΩ(b) , arg min
f∈Ω

DKL(b‖f), b ∈ B, (6)
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where DKL(b‖f) denotes the Kullback-Leibler (KL) divergence (or relative entropy) between b and f ,

which is

DKL(b‖f) ,
∫

log
b(x)
f(x)

b(x)dx. (7)

Hence, the projection of b on Ω has the minimum KL divergence from b among all the densities in Ω.

When Ω is an exponential family of densities, the minimization (6) has an analytical solution and

can be carried out easily. The exponential families include many common families of densities, such as

Gaussian, binomial, Poisson, Gamma, etc. An exponential family of densities is defined as follows:

Definition 1: Let {c1(·), . . . , cm(·)} be affinely independent scalar functions defined on Rn. Assuming

that Θ0 = {θ ∈ Rm : ϕ(θ) = log
∫

exp (θT c(x))dx < ∞} is a convex set with a nonempty interior,

where c(x) = [c1(x), . . . , cm(x)]T , then Ω defined by

Ω = {f(·, θ), θ ∈ Θ},

f(x, θ) = exp [θT c(x)− ϕ(θ)],

where Θ ⊆ Θ0 is open, is called an exponential family of probability densities. θ is called the natural

parameter and c(x) is the sufficient statistic of the probability density.

Substituting f(x) = f(x, θ) into (7) and expressing it further as

DKL(b‖f(·, θ)) =
∫

log
b(x)

f(x, θ)
b(x)dx

=
∫

log b(x)b(x)dx−
∫

log f(x, θ)b(x)dx,

we can see that the first term does not depend on f(·, θ), hence minDKL(b‖f(·, θ)) is equivalent to

max
∫

log f(x, θ)b(x)dx,

which by Definition 1 is the same as

max
∫

(θT c(x)− ϕ(θ))b(x)dx. (8)

Recall the fact that the log-likelihood l(θ) = θT c(x)− ϕ(θ) is strictly concave in θ [17], and therefore,
∫

(θT c(x)− ϕ(θ))b(x)dx is also strictly concave in θ. Hence, (8) has a unique maximum and the

maximum is achieved when the first-order condition is satisfied, i.e.,
∫

(cj(x)−
∫

cj(x) exp (θT c(x))dx∫
exp (θT c(x))dx

)b(x)dx = 0.

Therefore, b and its projection f(·, θ) is related by

Eb[cj(X)] = Eθ[cj(X)], j = 1, . . . , m, (9)
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where Eb and Eθ denote the expectations with respect to b and f(·, θ), respectively.

Density projection is a useful idea to approximate an arbitrary (most likely, infinite-dimensional) density

as accurately as possible by a density in a chosen family that is characterized by only a few parameters.

Using this idea, we can transform the belief MDP to another MDP confined on a low-dimensional belief

space, and then solve this MDP problem. We call such an MDP the projected belief MDP. Its state is

the projected belief state bp
k ∈ Ω that satisfies the system dynamics

bp
0 = ProjΩ(b0),

bp
k+1 = ψ(bp

k, ak, yk+1)p, k = 0, 1, . . . ,

where ψ(bp
k, ak, yk+1)p = ProjΩ(ψ(bp

k, ak, yk+1)), and the dynamic programming mapping on the pro-

jected belief MDP is

T pJ(bp) = min
a∈A

[〈g(·, a), bp〉+ γEY {J(ψ(bp, a, Y )p)}]. (10)

For the projected belief MDP, a policy is denoted as πp = {µp
0, µ

p
1, . . .}, where each function µp

k maps

the projected belief state bp
k into the action space A. Similarly, a stationary policy is denoted as µp; an

optimal stationary policy is denoted as µp
∗; and the optimal value function is denoted as Jp

∗ (bp).

The projected belief MDP is in fact a low-dimensional continuous-state MDP, and can be solved in

numerous ways. One common approach is to use value iteration or policy iteration by converting the

projected belief MDP to a discrete-state MDP problem via a suitable discretization of the projected belief

space (i.e., the parameter space) and then estimating the one-step cost function and transition probabilities

on the discretized mesh. We describe this approach in detail below.

Discretization of the projected belief space Ω is equivalent to discretization of the parameter space Θ,

which yields a set of grid points, denoted by G = {θi, i = 1, . . . , N}. Let g̃(θi, a) denote the one-step

cost function associated with taking action a at the projected belief state bp = f(·, θi). Let P̃ (θi, a)(θj)

denote the transition probability from the current projected belief state bp
k = f(·, θi) to the next projected

belief state bp
k+1 = f(·, θj) by taking action a. g̃(θi, a) and P̃ (θi, a)(θj) can be estimated via Monte-Carlo

simulation as follows:

Algorithm 1: Estimation of the one-step cost function g̃(θi, a).

• Input: θi, a, N ; Output: g̃(θi, a).

• Step 1: Sampling. Sample x1, . . . , xN i.i.d. from p(·, θi).

• Step 2: Estimation. g̃(θi, a) = 1
N

∑N
i=1 g(xi, a).

The following algorithm is adapted from projection particle filtering (Algorithm 4) described in the

next section, so we omit the explanation of the steps here.
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Algorithm 2: Estimation of the transition probabilities P̃ (θi, a)(θj), j = 1, . . . , N .

• Input: θi, a, N ; Output: P̃ (θi, a)(θj), j = 1, . . . , N .

• Step 1. Sampling: Sample x1, . . . , xN from f(·, θi).

• Step 2. Prediction: Compute x̃1, . . . , x̃N by propagating x1, . . . , xN according to the system dynamics

(1) using the action a and randomly generated noise {ui}N
i=1.

• Step 3. Sampling observation: Compute y1, . . . , yN from x̃1, . . . , x̃N according to the observation

equation (2) using randomly generated noise {vi}N
i=1.

• Step 4. Bayes’ updating: For each yk, k = 1, . . . , N , the updated belief state is

b̃k =
N∑

i=1

wk
i δ(x− x̃i),

where

wk
i =

p(yk|x̃i, a)∑N
i=1 p(yk|x̃i, a)

, i = 1, . . . , N.

• Step 5. Projection: For k = 1, . . . , N , project each b̃k to the exponential family, i.e., finding θ̃k that

satisfies (9).

• Step 6. Estimation: For k = 1, . . . , N , find the nearest-neighbor of θ̃k in G. For each θj ∈ G, count

the frequency P̃ (θi, a)(θj) = (number of θj)/N .

Remark 1: The approach for solving the projected belief MDP described here is probably the most

intuitive, but not necessarily the most computationally efficient. Other more efficient techniques for solving

continuous-state MDPs can be used to solve the projected belief MDP, such as the linear programming

approach [12], neuro-dynamic programming methods [5], and simulation-based methods [9].

IV. PROJECTION PARTICLE FILTERING

Solving the projected belief MDP gives us a near-optimal policy, which tells us what action to take

at each projected belief state. In an online implementation, at each time k, the decision maker receives

a new observation yk, estimates the belief state bk, and then chooses his action ak according to bk

and the near-optimal policy. Hence, to make our approach work properly for real-life applications, it is

also important to address the problem of how to estimate the belief state. Estimation of bk, or simply

called filtering, does not have an analytical solution in most cases except linear Gaussian systems, but

it can be solved using many approximation methods, such as the extended Kalman filter and particle

filtering. Here we focus on particle filtering, for 1) it outperforms the extended Kalman filter in many

nonlinear/non-Gaussian systems [1], and 2) we will develop a projection particle filter in particular to be

used in conjunction with the projected belief MDP.
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A. Particle Filtering

Particle filtering is a Monte Carlo simulation-based method that approximates the belief state by a

finite number of particles/samples and mimics the propagation of the belief state [1] [11]. As we have

already shown in (3), the belief state evolves recursively as

bk(xk) ∝ p(yk|xk, ak−1)
∫

p(xk|ak−1, xk−1)bk−1(xk−1)dxk−1. (11)

The integration in (11) can be approximated using Monte Carlo simulation, which is the essence of

particle filtering. Specifically, suppose {xi
k−1}N

i=1 are drawn i.i.d. from bk−1, and xi
k|k−1 is drawn from

p(xk|ak−1, x
i
k−1) for each i; then bk(xk) can be approximated by the probability mass function

b̂k(xk) =
N∑

i=1

wi
kδ(xk − xi

k|k−1), (12)

where

wi
k ∝ p(yk|xi

k|k−1, ak−1), (13)

δ denotes the Kronecker delta function, {xi
k|k−1}N

i=1 are the random support points, and {wi
k}N

i=1 are the

associated probabilities/weights which sum up to 1.

To avoid sample degeneracy, new samples {xi
k}N

i=1 are sampled i.i.d. from the approximate belief state

b̂k. At the next time k + 1, the above steps are repeated to yield {xi
k+1|k}N

i=1 and corresponding weights

{wi
k+1}N

i=1, which are used to approximate bk+1. It is the basic form of particle filtering, which is also

called the bootstrap filter [14]. (Please see [1] for a more rigorous and thorough derivation for a more

general form of particle filtering.) The algorithm is as follows:

Algorithm 3: Particle Filtering (Bootstrap Filter).

• Input: a (stationary) policy µ on the belief MDP; a sequence of observations y1, y2, . . . arriving

sequentially at time k = 1, 2, . . .. Output: a sequence of approximate belief states b̂1, b̂2, . . ..

• Step 1. Initialization: Sample x1
0, . . . , x

N
0 i.i.d. from the approximate initial belief state b̂0. Set k = 1.

• Step 2. Prediction: Compute x1
k|k−1, . . . , x

N
k|k−1 by propagating x1

k−1, . . . , x
N
k−1 according to the

system dynamics (1) using the action ak−1 = µ(b̂k−1) and randomly generated noise {ui
k−1}N

i=1,

i.e., sample xi
k|k−1 from p(·|xi

k−1, ak−1), i = 1, . . . , N . The empirical predicted belief state is

b̂k|k−1(x) =
1
N

N∑

i=1

δ(x− xi
k|k−1).

• Step 3. Bayes’ updating: Receive a new observation yk. The empirical updated belief state is

b̂k(x) =
N∑

i=1

wi
kδ(x− xi

k|k−1),
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where

wi
k =

p(yk|xi
k|k−1, ak−1)

∑N
i=1 p(yk|xi

k|k−1, ak−1)
, i = 1, . . . , N.

• Step 4. Resampling: Sample x1
k, . . . , x

N
k i.i.d. from b̂k.

• Step 5. k ← k + 1 and go to step 2.

It has been proved that the approximate belief state b̂k converges to the true belief state bk in certain

sense as the sample number N increases to infinity [10] [16]. However, uniform convergence in time has

only been proved for the special case, where the system dynamics has a mixing kernel which ensures

that any error is forgotten (exponentially) in time. Usually, as time k increases, an increasing number of

samples is required to ensure a given precision of the approximation b̂k for all k.

B. Projection Particle Filtering

To get a reasonable approximation of the belief state, particle filtering needs a large amount of

samples/particles. Since the number of samples/particles is the dimensionality of the approximate belief

state b̂, particle filtering is not very helpful in reducing the dimensionality of the belief space. Moreover,

the near-optimal policy we obtained by solving the projected belief MDP is a function on the projected

belief space Ω, and hence, the policy is immediately applicable if the approximate belief state is in Ω.

We incorporate the idea of density projection into particle filtering, so as to approximate the belief

state by a density in Ω. The projection particle filter we propose here is a modification of the one in

[2]. Their projection particle filter projects the empirical predicted belief state, not the empirical updated

belief state, onto a parametric family of densities, so after Bayes’ updating, the approximate belief state

might not be in that family. We will the project empirical updated belief state onto a parametric family

by minimizing the KL divergence between the empirical density and the projected one. In addition, we

will need much less restrictive assumptions than [2] to obtain similar error bounds. Since resampling

is from a continuous distribution instead of an empirical (discrete) one, the proposed projection particle

filter also overcomes the difficulty of sample impoverishment [1] that occurs in bootstrap filter.

Applying the density projection technique we described in last section, projecting the empirical belief

state b̂k onto an exponential family Ω is to find a f(·, θ) with the parameter θ satisfying (9). Hence,

letting b = b̂k in (9) and plugging in (12), θ should satisfy
N∑

i=1

wicj(xi
k|k−1) = Eθ[cj ], j = 1, . . . , m. (14)

(14) constitutes the projection step in the projection particle filtering.

Algorithm 4: Projection particle filtering for an exponential family of densities (PPF).
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• Input: a (stationary) policy µp on the projected belief MDP; a family of exponential densities Ω =

{f(·, θ), θ ∈ Θ}; a sequence of observations y1, y2, . . . arriving sequentially at time k = 1, 2, . . ..

Output: a sequence of approximate belief states f(·, θ̂1), f(·, θ̂2), . . ..

• Step 1. Initialization: Sample x1
0, . . . , x

N
0 i.i.d. from the approximate initial belief state f(·, θ̂0). Set

k = 1.

• Step 2. Prediction: Compute x1
k|k−1, . . . , x

N
k|k−1 by propagating x1

k−1, . . . , x
N
k−1 according to the sys-

tem dynamics (1) using the action ak−1 = µp(f(·, θ̂k−1)) and randomly generated noise {ui
k−1}N

i=1,

i.e., sample xi
k|k−1 from p(·|xi

k−1, ak−1), i = 1, . . . , N .

• Step 3. Bayes’ updating: Receive a new observation yk. Calculate weights as

wi
k =

p(yk|xi
k, ak−1)∑N

i=1 p(yk|xi
k, ak−1)

, i = 1, . . . , N.

• Step 4. Projection: The approximate belief state is f(·, θ̂k), where θ̂k satisfies the equations

N∑

i=1

wi
kcj(xi

k|k−1) = Eθ̂k
[cj ], j = 1, . . . , m.

• Step 5. Resampling: Sample x1
k, . . . , x

N
k from f(·, θ̂k).

• Step 6. k ← k + 1 and go to Step 2.

In an online implementation, at each time k, PPF approximates bk by f(·, θ̂k), and then decides an action

ak according to ak = µp(f(·, θ̂k)), where µp is the near-optimal policy solved for the projected belief

MDP.

V. ANALYSIS OF ERROR BOUNDS

A. Value Function Approximation

Our method solves the projected belief MDP instead of the original belief MDP, and that raises two

questions: How well does the optimal value function of the projected belief MDP approximate the optimal

value function of the original belief MDP? How well does the optimal policy obtained by solving the

projected belief MDP perform on the original belief MDP? To answer these questions, we first need to

rephrase them mathematically.

Here we assume perfect computation of the belief states and the projected belief states. We also assume

the stationarity of optimal policies as stated below.

Assumption 1: There is a stationary optimal policy for the belief MDP, denoted by µ∗, and a stationary

optimal policy for the projected belief MDP, denoted by µp
∗.
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Assumption 1 holds under some mild conditions [4], [15]. Using the stationarity, and the dynamic

programming mapping on the belief MDP and the projected belief MDP given by (5) and (10), the

optimal value function J∗(b) for the belief MDP can be obtained by

J∗(b) , Jµ∗(b) = lim
k→∞

T kJ0(b),

and the optimal value function for the projected belief MDP obtained by

Jp
∗ (b

p) , Jp
µp
∗
(bp) = lim

k→∞
(T p)kJ0(bp).

Therefore, the questions posed at the beginning of this section can be formulated mathematically as:

1. How well the optimal value function of the projected belief MDP approximates the true optimal

value function can be measured by

|J∗(b)− Jp
∗ (b

p)|.

2. How well the optimal policy µp
∗ for the projected belief MDP performs on the original belief space

can be measured by

|J∗(b)− Jµ̄p
∗(b)|,

where µ̄p
∗(b) , µp

∗ ◦ ProjΩ(b) = µp
∗(bp).

The next assumption assumes bounds on the difference between the belief state b and its projection bp,

and also the difference between their one-step evolutions ψ(b, a, y) and ψ(bp, a, y)p. It is an assumption

on the projection error.

Assumption 2: There exist ε1 > 0 and δ1 > 0 such that for all a ∈ A, y ∈ O and b ∈ B,

|〈g(·, a), b− bp〉| ≤ ε1,

|〈g(·, a), ψ(b, a, y)− ψ(bp, a, y)p〉| ≤ δ1.

The following assumption can be seen as a continuity property of the value function.

Assumption 3: For all b, b′ ∈ B, if |〈g(·, a), b − b′〉| ≤ δ, then there exists ε > 0 such that |Jk(b) −
Jk(b′)| ≤ ε, ∀k, and there exists ε̃ > 0 such that |Jµ(b)− Jµ(b′)| ≤ ε̃,∀µ ∈ Π.

Now we present our main result.

Theorem 1: Under Assumptions 1, 2 and 3, for all b ∈ B,

|J∗(b)− Jp
∗ (b

p)| ≤ ε1 + γε2
1− γ

, (15)

|J∗(b)− Jµ̄p
∗(b)| ≤ 2ε1 + γ(ε2 + ε3)

1− γ
, (16)
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where ε1 is the constant in Assumption 2, and ε2, ε3 are the constants ε and ε̃, respectively, in Assumption 3

corresponding to δ = δ1.

Remark 2: In (15) and (16), ε1 is a projection error, and ε2 and ε3 are both due to the projection error

δ1. Therefore, as the projection error decreases, Jp
∗ (bp) converges to the optimal value function J∗(b), and

µ̄p
∗ converges to the optimal policy µ∗. Roughly speaking, the projection error decreases as the number

of sufficient statistics in the chosen exponential family increases (for a rigorous result, please see [3]).

B. Projection Particle Filtering

In the above analysis, we assumed perfect computation of the belief states and the projected belief

states. In this section, we consider the filtering error, and compute an error bound on the approximate

belief state generated by the projection particle filter (PPF).

1) Notations: Let Cb(Rn) be the set of all continuous bounded functions on Rn. Let B(Rn) be the

set of all bounded measurable functions on Rn. Let ‖ · ‖ denote the supremum norm on B(Rn), i.e.,

‖φ‖ , supx∈Rn |φ(x)|, φ ∈ B(Rn). Let M+(Rn) and P(Rn) be the sets of nonnegative measures and

probability measures on Rn, respectively. If η ∈ M+(Rn) and φ : Rn → R is an integrable function

with respect to η, then

〈η, φ〉 ,
∫

φdη.

Moreover, if η ∈ P(Rn),

Eη[φ] = 〈η, φ〉,

V arη(φ) = 〈η, φ2〉 − 〈η, φ〉2.

We will use the two representations on the two sides of the above equalities interchangeably in the sequel.

The belief state and the projected belief state are probability densities; however, we will prove our

results in terms of their corresponding probability measures, which we refer as “conditional distributions”

(belief states are conditional densities). The two representations are essentially the same once we assume

the probability measures admit probability densities. Therefore, from now on we use the same notations

for probability densities before to denote the probability measures. Namely, we use b denote a probability

measure on Rnx and assume it admits a probability density, which is the belief state, with respect to

Lebesgue measure. Similarly, we use f(·, θ) to denote a probability measure on Rnx and assume it admits

a probability density with respect to Lebesgue measure in the chosen exponential family with parameter

θ.



15

A probability transition kernel K : P(Rnx)×Rnx → R is defined by

Kη(E) ,
∫

Rnx

η(dx)K(E, x),

where E is a set in the Borel σ-algebra on Rnx . For φ : Rnx → R, an integrable function with respect

to K(·, x),

Kφ(x) ,
∫

Rnx

φ(x′)K(dx′, x).

Let Kk(dxk, xk−1) denote the probability transition kernel of the system (1) at time k, which satisfies

bk|k−1(dxk) = Kkbk−1(dxk|k−1) =
∫

Rnx

bk−1(dxk−1)Kk(dxk|k−1, xk−1).

We let Ψk denote the likelihood function associated with the observation equation (2) at time k, and

assume that Ψk ∈ Cb(Rnx). Hence,

bk =
Ψkbk|k−1

〈bk|k−1, Ψk〉 .

2) Main Idea: The exact filter (EF) at time k can be described as

bk−1 −→ bk|k−1 = Kkbk−1 −→ bk =
Ψkbk|k−1

〈bk|k−1, Ψk〉 .

prediction updating

The PPF at time k can be described as

f̂(·, θ̂k−1) −→ b̂k|k−1 = Kkf(·, θ̂k−1) −→ b̂k =
Ψkb̂k|k−1

〈b̂k|k−1, Ψk〉
−→ f(·, θ̂k) −→ f̂(·, θ̂k).

prediction updating projection resampling

To facilitate our analysis, we introduce a conceptual filter (CF), which at each time k is reinitialized

by f(·, θ̂k−1), performs exact prediction and updating to yield b′k|k−1 and b′k, respectively, and does

projection to get f(·, θ′k). It can be described as

f(·, θ̂k−1) −→ b′k|k−1 = Kkf(·, θ̂k−1) −→ b′k =
Ψkb

′
k|k−1

〈b′k|k−1, Ψk〉 −→ f(·, θ′k).

prediction updating projection

The CF serves as an bridge to connect the EF and PPF, as we describe below.

We are interested in the difference between the true conditional distribution bk and the PPF generated

projected conditional distribution f(·, θ̂k) for each time k. The difference between the two can be

decomposed as follows:

bk − f(·, θ̂k) = (bk − b′k) + (b′k − f(·, θ′k)) + (f(·, θ′k)− f(·, θ̂k)). (17)
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The first term (bk− b′k) is the error due to the inexact initial condition of the CF, i.e., (bk−1− f(·, θ̂k−1),

which is also the total error at time k − 1. The second term (b′k − f(·, θ′k)) evaluates the minimum

deviation from the exponential family generated by one step of exact filtering, since f(·, θ′k) is the

orthogonal projection of b′k. The third term (f(·, θ′k)− f(·, θ̂k)) is purely due to Monte Carlo simulation,

since f(·, θ′k) and f(·, θ̂k) are obtained using the same steps from f(·, θ̂k−1) and its empirical version

f̂(·, θ̂k−1), respectively. We will find error bounds on each of the three terms respectively, and finally

find the total error at time k by induction.

3) Error Bound: We shall look at the the case in which the observation process has an arbitrary

but fixed value y0:k = {y0, . . . , yk}. Hence, all the expectations E in this section are with respect to

the sampling in the algorithm only. We consider the test function φ ∈ B(Rnx). It can be seen that

Kφ ∈ B(Rnx) and ‖Kφ‖ ≤ ‖φ‖, since

|Kφ(x)| = |
∫

Rnx

φ(x′)K(dx′, x)|

≤
∫

Rnx

|φ(x′)K(dx′, x)|

≤ ‖φ‖
∫

Rnx

K(dx′, x)

= ‖φ‖.

Since Ψ ∈ Cb(Rnx), we know that Ψ ∈ B(Rnx) and Ψφ ∈ B(Rnx).

We also need the following assumptions.

Assumption 4: All the projected distributions are in a compact subset of the given exponential family.

In other words, there exists a compact set Θ′ such that θ̂k ∈ Θ′, and θ′k ∈ Θ′, ∀k.

Assumption 5: For all k ∈ N,

〈bk|k−1,Ψk〉 > 0,

〈b′k|k−1,Ψk〉 > 0, w.p.1,

〈b̂k|k−1,Ψk〉 > 0, w.p.1.

Remark 3: Assumption 5 is to guarantee that the normalizing constant in the Bayes’ updating is

nonzero, so that the conditional distribution is well defined. Under Assumption 4, the second inequality

in Assumption 5 can be strengthened using the compactness of Θ′. Since f(·, ak, uk) in (1) is contin-

uous in x, Kk is weakly continuous (pp. 175-177, [15]). Hence, 〈b′k|k−1,Ψk〉 = 〈Kkf(·, θ̂k−1), Ψk〉 =

〈f(·, θ̂k−1),KkΨk〉 is continuous in θ̂k−1, where θ̂k−1 ∈ Θ′. Since Θ′ is compact, there exists a constant
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δ > 0 such that for each k

〈b′k|k−1, Ψk〉 ≥ 1
δ
, w.p.1. (18)

The assumption below is to guarantee that the conditional distribution stays close to the given ex-

ponential family after one step of exact filtering if the initial distribution is in the exponential family.

Recall that starting with initial distribution f(·, θ̂k−1), one step of exact filtering yields b′k, which is then

projected to yield f(·, θ′k), where θ̂k−1 ∈ Θ′, θ′k ∈ Θ′.

Assumption 6: For all φ ∈ B(Rnx) and all k ∈ N, there exists a constant ε > 0 such that

E[|〈b′k, φ〉 − 〈f(·, θ′k), φ〉|] ≤ ε‖φ‖.

Remark 4: Assumption 6 is our main assumption, which essentially assumes an error bound on the

projection error. Our assumptions are much less restrictive than the assumptions in [2], while our

conclusion is similar to but slightly different from that in [2], which will be seen later. Although

Assumption 6 appears similar to Assumption 3 in [2], it is essentially different. Assumption 3 in [2]

says that the optimal conditional density stays close to the given exponential family for all time, whereas

Assumption 6 only assumes that if the exact filter starts in the given exponential family, after one step

the conditional distribution stays close to the family. Moreover, we do not need any assumption like the

restrictive Assumption 4 in [2].

Lemma 1 considers the bound on the first term (bk − b′k) in (17).

Lemma 1: For all φ ∈ B(Rnx) and all k ∈ N, suppose E[|〈bk−1 − f(·, θ̂k−1), φ〉|] ≤ ek−1‖φ‖, where

ek−1 is a positive constant. Then under Assumptions 4 and 5, for all φ ∈ B(Rnx) and all k ∈ N, there

exists a constant ak > 0 such that

E[|〈bk − b′k, φ〉|] ≤ akek−1‖φ‖. (19)

Lemma 2 considers the bound on the third term in (17) before projection, i.e., (〈b̂k, φ〉 − 〈b′k, φ〉).
Lemma 2: Under Assumptions 3 and 5, for all φ ∈ B(Rnx) and all k ∈ N, there exists a constant

τk > 0 such that

E[|〈b̂k − b′k, φ〉|] ≤ τk
‖φ‖√

N
.

Lemma 3 considers the bound on the third term in (17) based on the result of Lemma 2. The key

idea of proof is to connect the errors before and after projection through (9), which we derived for the

density projection that minimizes the KL divergence.
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Lemma 3: Let cj , j = 1, . . . , m be the sufficient statistics of the exponential family as defined in

Definition 1, and assume cj ∈ B(Rnx), j = 1, . . . , m. Then under Assumptions 4 and 5, for all φ ∈
B(Rnx) and all k ∈ N, there exists a constant dk > 0 such that

E[|f(·, θ̂k)− 〈f(·, θ′k), φ〉|] ≤ dk
‖φ‖√

N
. (20)

Now we present our main result on the error bound of the projection particle filter.

Theorem 2: For all φ ∈ B(Rnx), suppose E[|〈b0 − f(·, θ̂0), φ〉] ≤ e0‖φ‖, e0 ≥ 0. Under Assumptions

4, 5 and 6, and assuming that cj ∈ B(Rnx), j = 1, . . . , m, there exist ai > 0, di > 0, i = 1, . . . , k such

that for all φ ∈ B(Rnx) and all k ∈ N,

E[|〈bk − f(·, θ̂k), φ〉|] ≤ ek‖φ‖, k = 1, 2, . . . ,

where

ek = ak
1e0 + (

k∑

i=2

ak
i + 1)ε + (

k∑

i=2

ak
i di−1 + dk)

1√
N

, (21)

ak
i =

∏k
j=i aj for k ≥ i, and ak

i = 0 for k < i, ε is the constant in Assumption 6.

Remark 5: As we mentioned in Remark 2, the projection error e0 and ε decreases as the number of

sufficient statistics in the chosen exponential family, m, increases. The error ek decreases at the rate

of 1√
N

, as we increase the number of samples in the projection particle filter. However, notice that the

coefficient in front of 1√
N

grows as time, so we have to use an increasing number of samples as time

goes on, in order to ensure a uniform error bound with respect to time.

VI. NUMERICAL EXPERIMENTS

We consider an inventory control problem, where the inventory level is reviewed at discrete times, but

the observations are noisy because of, e.g., inventory spoilage, misplacement, distributed storage. At each

period, inventory is either replenished by an order of a fixed amount or not replenished. The customer

demands arrive randomly with known distribution. The demand is filled if there is enough inventory

remaining. Otherwise, in the case of a shortage, excess demand is not satisfied and a penalty is issued on

the lost sales amount. We assume that the demand and the observation noise are both continuous random

variables; hence the state, i.e., the inventory level, and the observation, are continuous random variables.

Let xk denote the inventory level at period k, uk the i.i.d. random demand at period k, ak the replenish

decision at period k (i.e., ak = 0 or 1), Q the fixed order amount, yk the observation of inventory level
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xk, vk the i.i.d. observation noise, h the per period per unit inventory holding cost, s the per period per

unit inventory shortage penalty cost. The system equations are as follows

xk+1 = max(xk + akQ− uk, 0), k = 0, 1, . . . ,

yk = xk + vk, k = 0, 1, . . . .

The cost incurred in period k is

gk(xk, ak, uk) = hmax (xk + akQ− uk, 0) + smax (uk − xk − akQ, 0).

We consider two objective functions: average cost per period and discounted total cost, given by

lim
H→∞

∑H
i=0 E[gi]

H
,

lim
H→∞

H∑

i=0

γiE[gi],

where γ ∈ (0, 1) is the discount factor.

We compare our algorithm to three other algorithms: (1) Certainty equivalence (CE) using the mean

estimate; (2) Certainty equivalence using the maximum likelihood estimate (MLE); (3) Greedy policy.

Our algorithm solves the projected belief MDP via value iteration to yield a policy, and then uses the

policy to determine the action ak online according to the filtered belief state obtained using the projection

particle filter. CE solves the full observation problem first and treats the state estimate as the true state

in the solution to the full observation problem. We use the bootstrap filter to obtain the mean estimate

and the MLE of the states for CE. The greedy policy chooses an action ak that attains the minimum in

the expression

min
ak∈A

Exk,uk
[gk(xk, akQ,uk)|Ik].

Numerical experiments are carried out in the following settings:

• Problem parameters: initial inventory level x0 = 5, holding cost h = 1, shortage penalty cost

s = 10, fixed order amount b = 10, random demand uk ∼ exp(5), discount factor γ = 0.9,

inventory observation noise vk ∼ N(0, σ2) with σ ranging from 0.1 to 3.3 in steps of 0.2.

• Algorithm parameters: The number of particles in both the usual particle filter and the projection

particle filter is N = 200; the exponential family in the projection particle filter is chosen as the

Gaussian family; the set of grids on the projected belief space is G = { mean = [0 : 0.5 : 15], standard

deviation = [0 : 0.2 : 5]}; one run of horizon length H = 105 for each average cost criterion case,

1000 independent runs of horizon length H = 40 for each discounted total cost criterion case.

• Simulation issues: We use common random variables among different policies and different σ’s.
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In order to implement CE, we use Monte Carlo simulation to find the optimal threshold policy for the

fully observed problem (i.e., yk = xk), which means

ak =





0, if xk > L∗;

1, if xk < L∗.
(22)

The simulation result indicates the cost is a convex function of the threshold and the minimum is achieved

at L∗ = 7.7 for both average cost and discounted total cost.

Table I and Table II list the simulated average costs and discounted total cost using different policies

under different observation noises, respectively. Each entry shows the average cost/discounted total

cost, and in the parentheses the percentage error from the average cost/discounted total cost under full

observation using the optimal threshold policy. Our algorithm generally outperforms all other algorithms

under all observation noise levels. CE also performs very well, and slightly outperforms CE-MLE. The

greedy policy is much worse than all other algorithms. For all the algorithms, the average cost/discounted

total cost increases as the observation noise increases. That is consistent with the intuition that we cannot

perform better with less information. Fig.1 shows the actions taken by our algorithm as a function of

the true inventory levels in the average cost case (the discounted total cost case is similar and is omitted

here). The dotted vertical line is the optimal threshold under full observation, so the optimal threshold

policy would yield action a = 1 when the inventory level falls below the threshold and yields a = 0

otherwise when there is no observation noise. Our algorithm yields a policy that picks actions very close

to those of the optimal threshold policy when the observation noise is small (cf. Fig.1(a)), indicating

that our algorithm is indeed finding the optimal policy. As the observation noise increases, more actions

picked by our policy violate the optimal threshold, and that again shows the value of information in

determining the actions.

Although the performance of CE is comparable to that of our method, we should notice that CE with

mean estimate is generally a suboptimal policy except in some special cases (cf. section 6.1 in [4]), and

it does not have a theoretical error bound. Moreover, to use CE requires solving the full observation

problem, which is also very difficult in many cases. In contrast, our algorithm has a proven error bound

on the performance, and works with the belief MDP directly without having to solve the MDP problem

under full observation.

VII. CONCLUSION

In this paper, we developed a method that effectively reduces the dimension of the belief space via

the orthogonal projection of the belief states onto a parameterized family of probability densities. For an
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(c) observation noise σ = 2.1 (d) observation noise σ = 3.1

Fig. 1. Our algorithm: actions taken for different inventory levels under different observation noise variances.

exponential family, the orthogonal projection has an analytical form and can be carried out efficiently. The

exponential family is fully represented by a finite (small) number of parameters, hence the belief space is

mapped to a low-dimensional parameter space and the resultant belief MDP is called the projected belief

MDP. The projected belief MDP can then be solved in numerous ways, such as using standard value

iteration or policy iteration, to generate a policy. This policy is used in conjunction with the projection

particle filter for online decision making.

We analyzed the performance of the policy generated by solving the projected belief MDP in terms

of the difference between the value function associated with this policy and the optimal value function

of the POMDP. We also provided a bound on the error between our projection particle filter and exact

filtering.

We applied our method to an inventory control problem, and it generally outperformed other methods.
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TABLE I

OPTIMAL AVERAGE COST ESTIMATE FOR THE INVENTORY CONTROL PROBLEM USING DIFFERENT POLICIES. EACH ENTRY

REPRESENTS THE AVERAGE COST OF A RUN OF HORIZON 105 (DEVIATION ABOVE OPTIMUM IN PARENTHESES).

observation noise σ Our method CE policy CE-MLE policy Greedy policy

0.1 12.849 (0.12%) 12.842 (0.06%) 12.837 (0.02%) 25.454 (98.34%)

0.3 12.845 (0.08%) 12.857 (0.18%) 12.861 (0.21%) 25.467 (98.43%)

0.5 12.864 (0.23%) 12.867 (0.26%) 12.884 (0.39%) 25.457 (98.36%)

0.7 12.881 (0.37%) 12.882 (0.37%) 12.890 (0.44%) 25.452 (98.31%)

0.9 12.904 (0.55%) 12.908 (0.57%) 12.940 (0.82%) 25.450 (98.30%)

1.1 12.938 (0.81%) 12.945 (0.87%) 12.969 (1.05%) 25.428 (98.13%)

1.3 12.973 (1.08%) 12.977 (1.12%) 12.993 (1.24%) 25.356 (97.57%)

1.5 13.016 (1.41%) 13.034 (1.56%) 13.029 (1.52%) 25.293 (97.08%)

1.7 13.066 (1.81%) 13.100 (2.07%) 13.117 (2.20%) 25.324 (97.32%)

1.9 13.110 (2.15%) 13.159 (2.53%) 13.172 (2.64%) 25.343 (97.47%)

2.1 13.123 (2.25%) 13.183 (2.72%) 13.227 (3.06%) 25.332 (97.38%)

2.3 13.210 (2.93%) 13.263 (3.34%) 13.292 (3.57%) 25.355 (97.56%)

2.5 13.250 (3.24%) 13.314 (3.74%) 13.333 (3.89%) 25.402 (97.92%)

2.7 13.323 (3.81%) 13.382 (4.27%) 13.454 (4.83%) 25.428 (98.13%)

2.9 13.374 (4.21%) 13.458 (4.86%) 13.497 (5.17%) 25.478 (98.52%)

3.1 13.444 (4.75%) 13.527 (5.40%) 13.580 (5.81%) 25.553 (99.10%)

3.3 13.512 (5.28%) 13.603 (6.00%) 13.655 (6.40%) 25.655 (99.90%)

When the observation noise is small, our algorithm yields a policy that picks the actions very closely to

the optimal threshold policy for the fully observed problem. Although we only proved theoretical results

for discounted cost problems, the simulation results indicate that our method also works well on average

cost problems. We should point out that our method is also applicable to finite horizon problems, and is

suitable for large-state POMDPs in addition to continuous-state POMDPs.

VIII. APPENDIX

Proof of Theorem 1: Denote Jk(b) , T kJ0(b), J
p
k (bp) , (T p)kJ0(bp), k = 0, 1, . . ., and define

bk(b, a) = 〈g(·, a), b〉+ γEY {Jk−1(ψ(b, a, Y ))},

µk(b) = arg min
a∈A

Qk(b, a),

bp
k(b, a) = 〈g(·, a), bp〉+ γEY {Jk−1(ψ(bp, a, Y )p)},

µp
k(b) = arg min

a∈A
Qp

k(b, a).



23

TABLE II

OPTIMAL DISCOUNTED COST ESTIMATE FOR THE INVENTORY CONTROL PROBLEM USING DIFFERENT POLICIES. EACH

ENTRY REPRESENTS THE DISCOUNTED COST ON 1000 INDEPENDENT RUNS OF HORIZON 40 (DEVIATION ABOVE OPTIMUM

IN PARENTHESES).

observation noise σ Our method CE policy CE-MLE policy Greedy policy

0.1 129.126 (13.57%) 129.120 (13.56%) 129.090 (13.54%) 241.667 (112.55%)

0.3 129.016 (13.47%) 129.169 (13.61%) 129.105 (13.55%) 242.079 (112.91%)

0.5 129.097 (13.54%) 129.122 (13.57%) 129.164 (13.60%) 242.656 (113.42%)

0.7 129.474 (13.88%) 129.299 (13.72%) 129.623 (14.01%) 243.327 (114.01%)

0.9 129.868 (14.22%) 129.593 (13.98%) 129.762 (14.13%) 244.002 (114.61%)

1.1 129.940 (14.29%) 130.192 (14.51%) 130.229 (14.54%) 244.804 (115.31%)

1.3 130.336 (14.63%) 130.493 (14.77%) 130.543 (14.82%) 245.673 (116.08%)

1.5 130.575 (14.84%) 130.738 (14.99%) 131.085 (15.29%) 246.708 (116.99%)

1.7 130.724 (14.98%) 130.952 (15.18%) 131.446 (15.61%) 247.701 (117.86%)

1.9 131.266 (15.45%) 131.294 (15.48%) 131.595 (15.74%) 248.545 (118.60%)

2.1 131.778 (15.90%) 131.758 (15.88%) 132.235 (16.30%) 249.452 (119.40%)

2.3 132.176 (16.25%) 132.222 (16.29%) 132.763 (16.77%) 250.070 (119.94%)

2.5 132.741 (16.75%) 132.536 (16.57%) 133.467 (17.39%) 250.492 (120.31%)

2.7 133.070 (17.04%) 133.184 (17.14%) 133.978 (17.84%) 250.763 (120.55%)

2.9 133.484 (17.40%) 133.606 (17.51%) 134.558 (18.35%) 250.811 (120.59%)

3.1 133.961 (17.82%) 134.088 (17.93%) 135.827 (19.46%) 250.887 (120.66%)

3.3 134.502 (18.30%) 134.807 (18.57%) 136.117 (19.72%) 250.767 (120.56%)

Hence,

Jk(b) = min
a∈A

Qk(b, a) = Qk(b, µk(b)),

Jp
k (bp) = min

a∈A
Qp

k(b, a) = Qp
k(b, µ

p
k(b)).

Denote errk , maxb∈B |Jk(b)− Jp
k (bp)|, k = 1, 2, . . ..

We consider the first iteration. Initialize with J0(b) = Jp
0 (bp) = 0. By Assumption 2, ∀a ∈ A,

|Q1(b, a)−Qp
1(b, a)| = |〈g(·, a), b− bp〉| ≤ ε1, ∀b ∈ B. (23)

Hence, with a = µp
1(b), the above inequality yields Q1(b, µ

p
1(b)) ≤ Jp

1 (bp) + ε1. Using J1(b) ≤
Q1(b, µ

p
1(b)), we get

J1(b) ≤ Jp
1 (bp) + ε1, ∀b ∈ B. (24)

With a = µ1(b), (23) yields Qp
1(b, µ1(b))− ε1 ≤ J1(b). Using Jp

1 (bp) ≤ Qp
1(b, µ1(b)), we get

Jp
1 (bp)− ε1 ≤ J1(b), ∀b ∈ B. (25)
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From (24) and (25), we conclude

|J1(b)− Jp
1 (bp)| ≤ ε1, ∀b ∈ B.

Taking the maximum over b on both sides of the above inequality yields

err1 ≤ ε1. (26)

Now we consider the (k + 1)th iteration. For a fixed Y = y, by Assumption 2, |〈g(·, a), ψ(b, a, y) −
ψ(bp, a, y)p〉| ≤ δ1. Let δ1 be the δ in Assumption 3 and denote the corresponding ε by ε2. Then

|Jk(ψ(b, a, y))− Jk(ψ(bp, a, y)p)| ≤ ε2, ∀b ∈ B. (27)

Therefore, ∀a ∈ A,

|Qk+1(b, a)−Qp
k+1(b, a)|

≤ |〈g(·, a), b− bp〉|+ γEY {|Jk(ψ(b, a, Y ))− Jp
k (ψ(bp, a, Y )p)|}

≤ ε1 + γEY {|Jk(ψ(b, a, Y ))− Jk(ψ(bp, a, Y )p)|+ |Jk(ψ(bp, a, Y )p)− Jp
k (ψ(bp, a, Y )p)|}

≤ ε1 + γ(ε2 + errk), ∀b ∈ B.

The third inequality follows from (27) and the definition of errk. Using an argument similar to that used

to prove (26) from (23), we conclude that

errk+1 ≤ ε1 + γ(ε2 + errk). (28)

Using induction on (28) with initial condition (26) and taking k →∞, we obtain

|J∗(b)− Jp
∗ (b

p)| ≤
∞∑

k=0

γkε1 +
∞∑

k=1

γkε2

=
ε1 + γε2
1− γ

. (29)

Therefore, (15) is proved.

Fixing a policy µ on the original belief MDP, define the mappings under policy µ on the belief MDP

and the projected belief MDP as

TµJ(b) = 〈g(·, µ(b)), b〉+ γEY {J(ψ(b, µ(b), Y ))}, (30)

T p
µJ(b) = 〈g(·, µ(b)), bp〉+ γEY {J(ψ(bp, µ(b), Y )p)}, (31)

respectively. Since µp
∗ is a stationary policy for the projected belief MDP, µ̄p

∗ = µp
∗ ◦ProjΩ is stationary

for the original belief MDP. Hence,

Jp
∗ (b

p) = T p
µp
∗
Jp
∗ (b

p),

Jµ̄p
∗(b) = Tµ̄p

∗Jµ̄p
∗(b).
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Subtracting both sides of the above two equations, and substituting in the definitions of T p and T (i.e.,

(31) and (30)) for the righthand sides respectively, we get

Jp
∗ (b

p)− Jµ̄p
∗(b) = 〈g(·, µp

∗(b
p)), bp − b〉+ γEY {Jp

∗ (ψ(bp, µp
∗(b

p), Y )p)− Jµ̄p
∗(ψ(b, µp

∗(b
p), Y ))} (32)

For a fixed Y = y,

|Jp
∗ (ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗(ψ(b, µp
∗(b

p), y))|

≤ |Jp
∗ (b̃)− Jµ̄p

∗(b̃)|+ |Jµ̄p
∗(ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗(ψ(b, µp
∗(b

p), y))|,

where b̃ = ψ(bp, µp
∗(bp), y)p ∈ B. Since |〈g(·, a), ψ(bp, µp

∗(bp), y)p−ψ(b, µp
∗(bp), y)〉| ≤ δ1 by Assumption

2, letting δ = δ1 in Assumption 3 and denoting the corresponding ε̃ by ε3, we get the second term

|Jµ̄p
∗(ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗(ψ(b, µp
∗(b

p), y))| ≤ ε3.

Denoting err , maxb∈B |Jp
∗ (bp)− Jµp

∗(b)|, we obtain

|Jp
∗ (ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗(ψ(b, µp
∗(b

p), y))| ≤ err + ε3.

Therefore, (32) becomes

|Jp
∗ (b

p)− Jµ̄p
∗(b)| ≤ ε1 + γ(err + ε3).

Taking the maximum over b on both sides of the above inequality yields

err ≤ ε1 + γ(err + ε3).

Hence,

err ≤ ε1 + γε3
1− γ

. (33)

With (29) and (33), we obtain

|J∗(b)− Jµ̄p
∗(b)| ≤ |J∗(b)− Jp

∗ (b
p)|+ |Jp

∗ (b
p)− Jµ̄p

∗(b)|

≤ 2ε1 + γ(ε2 + ε3)
1− γ

, ∀b ∈ B.

Therefore, (16) is proved. ¤
Proof of Lemma 1: E[|〈bk−1 − f(·, θ̂k−1), φ〉|] is the error from time k − 1, which is also the initial

error for time k. Hence, the prediction step gives

E[|〈bk|k−1 − b′k|k−1, φ〉|] = E[|〈Kk(bk−1 − f(·, θ̂k−1)), φ〉|]

= E[|〈bk−1 − f(·, θ̂k−1), Kkφ〉|]

≤ ek−1‖Kkφ‖

≤ ek−1‖φ‖. (34)
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The Bayes’ updating step gives

E[|〈bk − b′k, φ〉|] = E[| 〈bk|k−1, Ψkφ〉
〈bk|k−1, Ψk〉 −

〈b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 |]

= E[| 〈bk|k−1, Ψkφ〉
〈bk|k−1, Ψk〉 −

〈bk|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 +

〈bk|k−1, Ψkφ〉
〈b′k|k−1,Ψk〉 −

〈b′k|k−1,Ψkφ〉
〈b′k|k−1, Ψk〉 |]

≤ E[|
〈bk|k−1, Ψkφ〉〈bk|k−1 − b′k|k−1, Ψk〉

〈bk|k−1, Ψk〉〈b′k|k−1, Ψk〉 |] + E[|
〈bk|k−1 − b′k|k−1, Ψkφ〉

〈b′k|k−1, Ψk〉 |]

≤ δ
|〈bk|k−1,Ψkφ〉|
〈bk|k−1, Ψk〉 E[|〈bk|k−1 − b′k|k−1, Ψk〉|] + δE[|〈bk|k−1 − b′k|k−1,Ψkφ〉|]

≤ δ‖φ‖ek−1‖Ψk‖+ δek−1‖Ψkφ‖

≤ 2δ‖Ψk‖ek−1‖φ‖

= akek−1‖φ‖,

where ak = 2δ‖Ψk‖. The second inequality follows from (18), and the third inequality follows from

(34). ¤

Proof of Lemma 2: This lemma uses essentially the same proof technique as Lemmas 3 and 4 in [10].

However, it is not quite obvious how these lemmas imply our lemma here. Therefore, we state the proof

to make this paper more accessible. After the resampling step, f̂(·, θ̂k−1) = 1
N

∑N
i=1 δ(x− xi

k−1), where

xi
k−1, i = 1, . . . , N are i.i.d. samples from f(·, θ̂k−1). Using the Cauchy-Schwartz inequality, we have

(E[〈f̂(·, θ̂k−1)− f(·, θ̂k−1), φ〉2])1/2

= (E[(
1
N

N∑

i=1

(φ(xi
k−1)− 〈f(·, θ̂k−1), φ〉))2])1/2

=
1√
N

(E[
1
N

N∑

i=1

(φ(xi
k−1)− 〈f(·, θ̂k−1), φ〉)2])1/2

=
1√
N

(〈f(·, θ̂k−1), φ2〉 − 〈f(·, θ̂k−1), φ〉2)1/2

≤ 1√
N
〈f(·, θ̂k−1), φ2〉1/2

≤ 1√
N
‖φ‖. (35)

The Bayes’ updating step gives

E[|〈b̂k − b′k, φ〉|] = E[| 〈b̂k|k−1, Ψkφ〉
〈b̂k|k−1, Ψk〉

−
〈b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 |]

= E[| 〈b̂k|k−1, Ψkφ〉
〈b̂k|k−1, Ψk〉

− 〈b̂k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 +

〈b̂k|k−1, Ψkφ〉
〈b′k|k−1,Ψk〉 −

〈b′k|k−1,Ψkφ〉
〈b′k|k−1, Ψk〉 |]
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≤ E[|
〈b̂k|k−1, Ψkφ〉〈b̂k|k−1 − b′k|k−1, Ψk〉

〈b̂k|k−1, Ψk〉〈b′k|k−1, Ψk〉
|] + E[|

〈b̂k|k−1 − b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 |].

Using the Cauchy-Schwartz inequality, (18) and (35), the first term can be simplified as

E[|
〈b̂k|k−1, Ψkφ〉〈b̂k|k−1 − b′k|k−1, Ψk〉

〈b̂k|k−1,Ψk〉〈b′k|k−1,Ψk〉
|]

≤ δ(E[
〈b̂k|k−1, Ψkφ〉2
〈b̂k|k−1, Ψk〉2

])1/2(E[〈b̂k|k−1 − b′k|k−1, Ψk〉2])1/2

= δ(E[
〈b̂k|k−1, Ψkφ〉2
〈b̂k|k−1, Ψk〉2

])1/2(E[〈f(·, θ̂′k−1)− f(·, θ′k−1),KkΨk〉2])1/2

≤ δ‖φ‖ 1√
N
‖Ψk‖,

and the second term can be simplified as

E[|
〈b̂k|k−1 − b′k|k−1,Ψkφ〉

〈b′k|k−1,Ψk〉 |]

≤ δ(E[〈b̂k|k−1 − b′k|k−1, Ψkφ〉2])1/2

= δ(E[〈f̂(·, θ̂k−1)− f(·, θ̂k−1),KkΨkφ〉2])1/2

≤ δ
1√
N
‖Ψkφ‖

≤ δ
1√
N
‖Ψk‖‖φ‖.

Therefore, adding these two terms yields

E[|〈b̂k − b′k, φ〉|] ≤ 2δ‖Ψk‖ ‖φ‖√
N

= τk
‖φ‖√

N
,

where τk = 2δ‖Ψk‖. ¤
Proof of Lemma 3: The key idea of the proof for Lemma 4 in [2] is used here. From (9), we know that

Eθ̂k
[cj(X)] = Eb̂k

[cj(X)] and Eθ′k [cj(X)] = Eb′k [cj(X)]. Hence, we obtain

E[|Eθ̂k
(cj(X))−Eθ′k(cj(X))|] = E[|〈b̂k − b′k, cj〉|], j = 1, . . . ,m.

Taking summation over j, we obtain

E[
m∑

j=1

|Eθ̂k
(cj(X))− Eθ′k(cj(X))|] =

m∑

j=1

E[|〈b̂k − b′k, cj〉|].

Since cj ∈ B(Rnx), we apply Lemma 2 with φ = cj and thus obtain

E[|〈b̂k − b′k, cj〉|] ≤ bk
‖cj‖√

N
, j = 1, . . . , m.
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Therefore,

E[‖Eθ̂k
(c(X))−Eθ′k(c(X))‖1] ≤ τ̃k√

N
,

where ‖ · ‖1 denotes the L1 norm on Rnx , c = [c1, . . . , cm]T , and τ̃kτk
∑m

j=1 ‖cj‖. Since Θ′ is compact

and the Fisher information matrix [Eθ[ci(X)cj(X)]−Eθ[ci(X)]Eθ[cj(X)]]ij is positive definite, we get

(cf. Fact 2 in [2] for a detailed proof)

‖θ̂k − θ′k‖1 ≤ α‖Eθ̂k
(c(X))− Eθ′k(c(X))‖1.

Taking the expectation on both sides yields

E[‖θ̂k − θ′k‖1] ≤ αE[‖Eθ̂k
(c(X))−Eθ′k(c(X))‖1]

≤ ατ̃k
1√
N

.

On the other hand, taking derivative of Eθ[φ(X)] with respect to θi yields

| d

dθi
Eθ[φ(X)]| = |Eθ[ci(X)φ(X)]− Eθ[ci(X)]Eθ[φ(X)]|

≤
√

V arθ(ci)V arθ(φ)

≤
√

Eθ(c2
i )Eθ(φ2)

≤ ‖ci‖‖φ‖.

Hence,

‖dEθ[φ(X)]/dθ‖1 ≤ (
m∑

i=1

‖ci‖)‖φ‖.

Since Θ′ is compact, there exists a constant β > 0 such that Eθ[φ(X)] is Lipschitz over θ ∈ Θ′ with

Lipschitz constant β‖φ‖ (cf. the proof of Fact 2 in [2]), i.e.,

|Eθ̂k
[φ]− Eθ′k [φ]| ≤ β‖φ‖‖θ̂k − θ′k‖1.

Taking expectation on both sides yields

E[|f(·, θ̂k)− f(·, θ′k), φ〉|] ≤ β‖φ‖E[‖θ̂k − θ′k‖1]

≤ β‖φ‖ατ̃k
1√
N

= dk
|φ‖√
N

,

where dk = αβτ̃k. ¤
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Proof of Theorem 2: Applying Lemma 1, Assumption 6, and Lemma 3, we have that for all φ ∈ B(Rnx)

and k ∈ N, there exist ai > 0, di > 0, i = 1, . . . , k such that

E[|〈bk − f(·, θ̂k), φ〉|] ≤ E[|〈bk − b′k, φ〉|] + E[|〈b′k − f(·, θ′k), φ〉|] + E[|〈f(·, θ′k)− f(·, θ̂k), φ〉|]

≤ (akek−1 + ε + dk
1√
N

)‖φ‖

= ek‖φ‖.

It is easy to deduce by induction that

ek = ak
1e0 + (

k∑

i=2

ak
i + 1)ε + (

k∑

i=2

ak
i di−1 + dk)

1√
N

. ¤
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