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ABSTRACT

In this paper we propose a family of heuristic approximations for the expected response
time of I{-dimensional symmetric Fork—Join systems in statistical equilibrium with general
inter—arrival and service time distributions. To do this, we rely on the light traffic interpo-
lation technique popularized by Reiman and Simon. Our starting point is a formula for the
heavy traffic limit of two—dimensional Fork—Join queues that was obtained by the authors in
[17,19]. By observing a fortuitous agreement between the light traffic derivative and the heavy
traffic limit for this system under Markovian assumptions, we are able to obtain an approxima-
tion to the heavy traffic limit for \—dimensional systems with general inter—arrival and service
distributions. By combining this heavy traffic limit with light traflic limits, we generate inter-
polation approximations for the Fork—-Join queue, which agree extremely well with simulation
results.

I. INTRODUCTION

Although synchronization constraints are inherent to the operation of many com-
puter, communication and production systems, their impact on system performance is
far from being well understood. This may be partially attributed to a penury of models
which meaningfully incorporate the synchronization constraints of interest, and which
are nevertheless tractable. On the other hand, many interesting applications involving
synchronization are concerned with problems of resource sharing, and can be adequately
described in terms of queueing models which have traditionally provided quantitative
insights into system performance. Unfortunately, the incorporation of synchronization
constraints into a queueing model often destroys important properties, such as the prod-
uct form and insensitivity properties, which have fueled the development of the various
performance methodologies for data networks and earlier computer systems.
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This state of affairs is already well apparent for the so-called Fork-Join queue,
which 1s perhaps one of the simplest queueing systems with a synchronization constraint.
The symmetric Fork—Join queue, which has been proposed as a queueing model for
parallel processing [10], is composed of I{ (> 2) identical servers operating in parallcl,
each with an infinite waiting room. Jobs that arrive to the system are assumed to
consist of exactly K tasks, the service requirements of the tasks being independent and
identically distributed (i.i.d.). Upon arrival, a job is instantaneously decomposed into
its K constituent tasks, with the k'* task routed to the k'* queue where it is served
in FCFS order. As soon as a task completes service, it is put into a synchronization
buffer, and a job leaves the system only when all of its constituent tasks have completed
service.

Under most model assumptions, exact analysis of the K—dimensional Fork—Join
queue appears quite difficult, if not intractable. This is due to the fact that although
each server with its attending buffer can be interpreted as a single server queue, these I\’
GI/GI/1 systems are usually not independent as they are coupled through a common
arrival stream. Notwithstanding this difficulty, results are available in some special cases
when K = 2: For Poisson arrivals and exponentially distributed service times, Flatto
and Hahn [6] determined the stationary joint distribution of the number of customers
in the queues. Additional results were derived in [1] by Baccelli for Poisson arrivals
and more general service time distributions. However, in both these references, the
results were obtained in a form which does not lend itself in a straighforward manner
to parametric performance studies. To remedy this shortcoming, Nelson and Tantawi
set out in [10] to provide an approximate analysis of the expected job response time
in steady state when all U servers are identical, under the Markovian assumptions
of [6]. Their “scaling approximation” was obtained by cleverly combining light traffic
information with extensive simulation work to obtain the numerical value for some of
the constants which appeared in the postulated approximations.

In this paper we revisit the problem of designing approximations to the expected
job response time in symmetric Fork-Join queues, i.e., Fork—Join queues where all the
servers are identical. Our objective is to derive approximations which all flow from
the same “paradigm” without recourse to experimental work as in [10], and which hold
under circumstances far more general than the Markovian setup. We achieve this by
applying the light traffic interpolation technique popularized by Reiman and Simon
[12-14]. Its basic idea is as follows: While analytical results are typically very hard to
come by for the Fork—Join queue, it is, however, possible to obtain asymptotic results
in light and heavy traffic regimes. The light traffic interpolation approximation arises
then by suitably interpolating light and heavy traffic regimes. Light traffic refers to
the situation where the system is lightly loaded, i.e., the arrival rate A to the system is
very small, in which case it is reasonable to seek a Taylor expansion of the performance
measure (as a function of \) near A = 0. This, of course, passes by the computation
of derivatives with respect to A at A = 0, and general methods have been proposed in
the literature for doing just that [12-14]. On the other hand, heavy traffic deals with
the situation where the system operates near capacity; the corresponding behavior of
the performance measures is often studied by means of diffusion limits associated with
a rescaled version of the “process” of interest [9,20]. When the heavy traffic limit is not



available in closed form, we resort to heuristics to generate an appropriate estimate for
it as we explain below.

With this technique, we have been able to obtain simple yet good approximations
to the expected job response time in symmetric Fork-Join queues under a wide set of
assumptions on the statistics of inter-arrival and service times, and this for an arbi-
trary number of servers. The proposed light traffic interpolation technique provides an
economical way to obtain “ballpark” figures for the quantities of interest. As an en-
couraging sign of the potential of this approach, the interpolation approximations have
agreed extremely well with simulation results, even in moderate traffic regime.

Of course the approach is not restricted only to Fork-Join queues. It has been
applied with success in other situations which occur in a wide variety of important
applications: Earlier examples without synchronization constraints are contained in
the references [4,5,7,8,15]. More recently, Varma [18] has used interpolation approxi-
mations to analyze the performance of a time-stamp ordering algorithm for distributed
databases; additional queueing systems with synchronization constraints, including both
resequencing and Fork—Join constructs, are discussed in [17]. Tedijanto has applied the
technique to polling systems in [16].

We now close this introduction with a brief survey of the paper’s organization and
contents: The model is described in Section II. We summarize in Section 11T the needed
elements of light and heavy traffic theories, and how they can be combined to yield
the light traffic interpolations. Central to heavy traffic is the parameter 3 defined by
(3.20). The heavy traffic limit for K-dimensional Fork—Join queues can be obtained

easily for 3 = 0 (deterministic arrivals) and 8 = 1 (deterministic services). For 8 = 1,
when K = 2, we were able to find closed form expressions for the heavy traffic limit

by solving an appropriate second order elliptic PDE with oblique boundary conditions
1

99
we are thus able to produce a light traffic interpolation for two server systems in the
Markovian case. Unfortunately, in order to obtain formulae for the heavy traffic limit
1
9
complicated PDEs in K dimensions, a most difficult task to say the least. Instead

[17,19]. As the case of Poisson arrivals and exponential services corresponds to 3 =

when there are more than two queues, even if 5 = it 1s necessary to solve more
of solving PDEs, we present here a number of heuristic approximations for the heavy
traffic limit, which exploit the exact heavy traffic result obtained for K = 2 in [17,19].
This is done for the Markovian case in Section IV where we propose an estimate to
the heavy traffic limit by extending to arbitrary K the range of validity of a fortuitous
relationship between heavy traffic limit and light traffic derivative observed for Kk =1
and K = 2. In Section V, we take the postulated relationship one step further to
generate the heavy traffic estimate for the case § = -%
We can now attack the problem of designing interpolations for 4 in the full range [0, 1].
We do this in Section VI as follows: Knowing the heavy traffic limit for 5 = 0, % and
1, we carry out a quadratic interpolation to extend it to the entire range [0,1]. This
approximation to the heavy traffic limit is combined with light traffic limits to obtain

without Markovian assumptions.

interpolation approximations for a number of different choices of the arrival and service
distributions, and in each case good agreement with simulation results is observed. For
the sake of completeness, we have relegated to several appendices some intermediary,
and often tedious, calculations.



1I. THE MODEL

We now present the queueing model of interest in this paper, together with the
notation and some of the basic assumptions enforced throughout: For any probability
distribution function F on IR, we denote by m(F) and var(F) its mean and variance,
respectively, whenever these quantities exist. A positive integer K is given and held fixed
hereafter. We start with the square-integrable IRy —valued rvs {741, n = 0,1,...} and
{ok k=1,...,K; n=0,1,...}, which are all defined on some underlying probability
triple (Q, F,P).

These quantities can be given the following interpretation in the context of a I{--
dimensional Fork—Join queue: Such a queueing system is composed of I identical servers
working in parallel. Each one of these servers has its own buffer of infinite capacity and
operates according to the FIFO discipline. Jobs arrive in the system at time epochs

{An, n=0,1,...} defined by

n—1

A4y =0, Ap= > Ty n=1,2...(21)

m=0

In other words, the interarrival time between the n'® and the (n 4 1)"¢ jobs is given by
Tn+1 With the convention that the 0* job arrives at time ¢t = 0. The nt”
of I tasks; the execution of the k' task from the n'* job requires o¥
k=1,...,K. Upon arrival into the Fork—Join system, the n* job is instantancously

decomposed into its I constituent tasks and the k* task is routed to the k" queue
k

n
task completes service, it is put into a synchronization buffer, and a job leaves the system

when all of its constituent tasks have completed service. The 0%* job finds an initial
load already awaiting service in the various buffer areas, with the rv W* representing

Y g ) ! g
the amount of time required by the k** server to clear this initial load from its buffer.

job consists
units of time,

where it is served in FCFS order, requesting service for ¢% units of time. As soon as a

We now define the performance measure of interest for this Fork—Join queue system:
We generate the ]Rf; —valued rvs {(W},... , W2) n=0,1,...} componentwise by the
Lindley recursions

+
Wk =wk, W,’;_*_l = [Wf; + aﬁ — 7',1.{_1] , k=1,...K n=01,...(2.2)
where WF represents the waiting time of the k** task from the n'® job. The correspond-
ing response time RF (through the £** channel) is thus
k — k K - e _ 9
R =W;+o,, k=1,...,K. n=0,1,...(2.3)
The system response time T}, of the n'* job is then given by

_ k
T, = max R_.
1L LLK

n=0,1,...(2.4)

Throughout this discussion, we enforce the following renewal assumptions (R1)—
(R3), where



(R1): The sequences {T41, n=0,1,...}, and {oF, k=1,... K; n=0,1,...} are
mutually independent;

(R2): The Ri-valued rvs {7541, n =0,1,...} form an i.i.d. sequence with common
distribution A; and

(R3): The Ry-valued rvs {¢f, k=1,...,K. n=0,1,...} form an i.i.d. sequence
with common distribution B.

It is well known [2,3] that under the renewal assumptions (R1)—(R3), the -
dimensional Fork-Join queue system reaches statistical equilibrium if and ounly if
m(B) < m(A). This stability condition does not depend on K, the number of pro-
cessors, and can be rewritten in the form

m(B) A

= =—-<1 :
P m(A) /L< (

LS
o

where we have used the usual notation A = m(A)™! and ¢ = m(B)™!. We also find it
convenient in many places to use the notation o* to denote the variance var(B) of the
service time distribution B.

Under (2.5) the system is termed stable, in which case the sequences of waiting
times and response times all have stationary versions [2,3]. In particular, let Ty (A)
denote the stationary system response time for the AN'—dimensional Fork-Join queue in
statistical equilibrium when the arrival rateis A (0 < A < p). We are concerned with the
evaluation of T (\) = E[Tk())], the average response time in statistical equilibrium
for the A—dimensional Fork—Join queue when the arrival rate is A\. This is a notoriously
difficult endeavor [1,6] as should be apparent from (2.2)-(2.4).

III. LIGHT TRAFFIC INTERPOLATIONS — A SUMMARY

In this paper we combine light traffic information with heavy traffic limits to derive
approximations to the performance measure T (A). We now briefly describe the salient
features of this approach as used here.

IIT.1. Light traffic theory: Light traffic theory is concerned with the evaluation of
the performance measure for small values of A, a task best accomplished by considering
the Taylor series expansion of T ()\) at A = 0. Assuming the existence of the n first
derivatives of T (A) at A = 0, we have

AT —(n)

Tre(A) ~ T (0) + ATV (0)... + TR0, A0 (3.1)

where T(]?Z)( 0) denotes the derivative of order m at A = 0, m = 0,1,...; by convention,

we set T(,?r)(O) = Tk(0) and often write TIK(O) for the first derivative T(AI)(O) We call
—(m

Ty )(0) the light traffic derivative of order m.

To this date, a fairly large body of literature exists on the light traffic of queueing
systems [12-14] with the bulk of the efforts devoted to finding conditions for the existence
of light traffic derivatives and to providing methods to evaluate them. Most of the results



are concerned with systems with Poisson arrival processes, but can be extended to more
general arrival processes which are “driven” by a Poisson process, e.g., phase-type
renewal processes, non—stationary Poisson processes and Markov—modulated Poisson
processes to name a few [12-14]. Here, as we confine the discussion to light traffic
derivatives of order m = 0,1, we follow mostly the viewpoint developed by Reiman
and Simon in [12-14] for Poisson arrival processes. The relevant facts of the theory
are summarized below for easy reference in the context of the stable I\-dimensional
Fork-Join queue with Poisson arrivals of rate A and general service time distribution B.
In the interest of brevity, we omit discussing the relevant technical conditions; details
are available in [12-14,17]. It should be noted however that all situations considered in
this paper satisfy the appropriate conditions.

As we are interested in statistical equilibrium, we can think of the system as having
been operated from ¢t = —oco onward, so that T (A) can be interpreted as the response
time of a tagged job entering the system at ¢ = 0. This tagged job has service times
V1,-..,Vk, which are i.i.d. rvs with common distribution B and which are independent,
of all other rvs. Following Reiman and Simon [12-14], we then define

»(0) = E[Tx(N)| No arrivals on (—o0, c0)] (3.2)
and
There is exactly one arrival at time ¢

E({t})EE{TK(A)I ., te IR (3.3)

on (—o0,00)
In [12-14], it is shown that the quantities (3.2)~(3.3) are independent of A, and that

T (0) = %(0) (3.4)

and

T = [ @ - w0 (3.5)

We now indicate how (3.2)-(3.5) pave the way for an evaluation of the light traffic
-1 (1
quantities Tk (0) and T(K)(O).
The definition (3.2) suggests the following scenario for computing 1»(#): The tagged
job enters the system given that no other job will enter the system on (—o0, 00). Since
the tagged job arriving at ¢ = 0 does not experience interference from any other job,

its queueing delay will be zero, and its response time is simply the maximum of the i
iid. rvs vy,..., v, with common distribution B. As a result, we have

E(@) = E[max{vy,...,vx}] (3.6)
so that -
Tr(0) = / (1 - B(x)") da. (3.7)
0
Note that (3.6)—(3.7) also yield T (0) when the arrival process is not Poisson.

71 — . .
To evaluate T (K)(O), we need to compute ¥ ({t}) for all ¢ in IR. To do so, we intro-
duce the rv Tk (%, 81,...,8K,V1,...,Vn) to represent the response time of the tagged



job that enters the system at time ¢t = 0 with service times vq,..., v, given that an-
other job arrives at time t (in IR) with service times s1,...,s5. Under the foregoing
assumptions, the rvs vy,..., v, $1,...,8x are 1.i.d. rvs with common distribution B,
and 1t is clear that

TK(tv'sly' < SKRL UL, .. 7UK)

max{vy,...,vx }, ift>0
- (3.8)
max{vy + (s1 + )T, ... ;o + (s +8)T} ift <0,
and from the definition (3.3) we readily get
E({t}> :E[T[((t,s1,..-,8['\',111,...,7)]()], t e IR. (39)
Since _ _
P({t}) = Elmax{vy,...,vx}] =), t>0, (3.10)

1t is plain that (3.5) now reduces to

0
T()= [ (@) - 7)) e (3.11)
For t < 0, we define the rvs Y7,...,Yr by

Yi=wvp+ (s +8)7, k=1,... K. (3.12)

The rvs Y7, ..., Yy are 1.1.d. with common distribution Fy which can be easily derived
in terms of B as will be done later in specific instances. With the representation

Tr(t s,y SK,01,...,05) =max{Yy,..., Y}, t<O0 (3.13)

as a starting point, we use the independence of the rvs Yi,..., Y to obtain

P({t}) = /OOO (1— Fy(2)")de, t<oO. (3.14)

II1.2. Heavy traffic theory: Heavy traffic refers to the situation where A increases
to its critical value p, in which case T (A) grows unbounded and attention shifts to
finding a function ag : [0, ] — IR+ and a non-zero constant Cp such that

lim —TK(‘)\)
Alu CYI\'()‘)

=Ck. (3.15a)

We refer to C'x- as the heavy traffic limit. If o and Cx are “easily” computable, then
(3.15) provides a means to approximate Tx(A) in heavy traffic, since then

TK()\) ~ ap(A)Cr, A=~pu. (3.150)



Heavy traffic limits for the Fork-Join queue have been investigated in [11,17,19].
To describe the results, we consider a family of stable Fork—Join queues indexed by a
parameter » = 1,2, .. .; the 7'* system has interarrival time distribution A(r) and service
time distribution B. For technical reasons, we assume that for some ¢ > 0, B has a
finite moment of order 2 4 € and

SUP,>q / 2T dA(r)(t) < oo. (3.16)
= Jo

This family of stable Fork—Join queues is chosen such that as r T oo, the systems become
increasingly less stable, 1.e., lim, 0o A(7) = g where A(r) = m(A(r))™',r =1,2,.... This
trend to heavy traffic is achieved under the following conditions

lilm VT (m(A(r)) — m(B)) =~ (3.17)
and
l'ilm var(A(r)) = o} (3.18)

for constants ¥ > 0 and o2 > 0.

In [17,19], we showed the existence of the heavy traffic limit (3.15) in the form

lim (0 = M)T(A() = C (3.19)

with C'x expressed as the first moment of a fairly complicated functional on a standard
K —dimensional Brownian motion. In general no closed—form expression seems available
for Ck, except in some special cases which we now briefly describe: We define

%
T = e 3.20
f o2 4 var(B) (3.20)
For K =2 and = %, we were able to solve the basic PDE satisfied by the stationary

distribution of the diffusion limit of the end-to—end delay [17,19], and showed that

, — 11 var(B)

li — A(r)T (A = — = 3.21

lim(u = A)T2(A() = (Y (3.21)
so that ¢ = % :;?(rg;; . For arbitrary K, the exact value of Cp is not known, even for

g = % Only in the extreme cases § = 0 and 8 = 1 is the heavy traffic limit known; we
state the results without proof and refer the reader to [9,17,19] for additional details.
Roughly speaking, the value § = 0 corresponds to the situation with deterministic
arrivals (62 = 0), in which case the K—dimensional Fork-Join queue can be interpreted
as K i1.d. D/GI/1. It is easily shown that

var(B)
2

lifii(“ — M)k (A(r)) = Hy



where

K 1
Hy = E e K =1,2,...(3.23)
r=1]
For B = 1, the services are deterministic and the K—dimensional Fork-Join queue

reduces to a GI/D/1 whose heavy traffic limit is then given by

lnn(,u — ANr)NT k(M) = (3.24)

[\glot\:

ITL.3. Light traffic interpolations: Assume known the light and heavy traffic infor-
mation as described above, say

_ A'Il
Tr(\) ~ Tr(0) + NTW(0).. A+ TR0, A0 (3.25)

2

for some n =10,1,..., and

11111 (= ANT i (A\(r)) = Ck. (3.26)

The basic idea behind the light traffic interpolation is to interpolate
tkN) =(p— NTr(N), 0<A<pu (3.27)
by a polynomial #5(\) of order n 4 1, say of the form
th(N) =go+ g1 A+ ...+ gu A" A€ IR, (3.28)

The n+2 unknown ¢o, g1, . .., gna1 are determined by n+2 matching conditions inferred
from (3.25)—(3.26), namely the heavy traffic condition

th(p”)=tp(p”)=Cx (3.29)

and the light traffic conditions
t(lzn)(()) = ¢ (m) (0), m=0,1,...,n (3.30)

with tA(I?l)(O) and t(lgl) (0) denoting the derivative of order m of #5(\) and tx()), respec-
tively, at A = 0. Once this interpolation has been performed, we undo the normalization
and settle on T (\) given by

tA (/\)
(=AY

Tr(A) = 0< A< p (3.31)

as the approximation to T g (A). We refer to Tk (A) as the interpolation approximation
of order n. Throughout this paper, we consider only either zero order (n = 0) or first
order (n = 1) approximations.



As pointed out in Section III.2, it may not be possible in some cases to obtain a
closed form expression for the heavy traffic limit Ck. In such situations, we propose
ways to approximate C'g, say by Ck. and use this approximate value Cr instead in the
interpolation condition (3.29).

IV. THE MARKOVIAN CASE

In this section we develop approximations for the so—called Markovian case, 1.e.,
Poisson arrivals with rate A and exponential service times with rate p. This situation
is characterized by

Alz)=1—-e, z>0 (4.1)
and

Bz)=1—e""  2>0. (4.2)
Since var(A) = A™? and var(B) = p~2, in heavy traffic (A 1 1) we find 0 = 72 and
B=1

IV.1. The case K = 2 — A first order approximation: We first present the
first order approximation as described in Section II1.3: The heavy traffic result (3.21)
reduces here to

lim(p — NT3(N) = 1—81, (4.3)

Alw

and upon specializing the light traffic result (4.12) to the case K =2, we find

_ 3 — 11
) = — = 4.4
T5(0) o and T,(0) 52 (4.4)

Using (4.3)—(4.4), with ¢3(\) given by (3.27), we readily obtain the relations

t2(0) =

[NVRRL]

1 _ 11
, t5(0) = “a ta(pu™) = 3 (4.5)

If 5(\) denotes the corresponding quadratic interpolation of t5(A) over the range [0, p],
say #2(\) = go + ¢1A + ¢2A%, 0 < A < p, then the matching conditions (3.29)-(3.30)

easily imply go = 3, g1 = —5; and go = 0, and we get
3 1A
LM ==-=2 0<A< 4.6
2(A) =3 5 <A< p (4.6)

Undoing the normalization, we obtain the first order approximation To(A) to the average

response time in steady state in the form

3 A 1

Ty \)=—— 2=
2(A) 20 —A)  8ul(u—2A)

0 <A< p. (4.7)



Several points are worth noticing at this stage:

1. The first order approximation (4.7) to the average response time of the two—
dimensional Fork—Join queue will coincide with its zero order approximation; this is so
because g3 = 0.

2. More significant perhaps is the fact that the approximation (4.7) is in fact
exact. Indeed, in [10] Nelson and Tantawi derived a closed form expression for the
average response time T(\) of a two—dimensional Fork-Join queue. They showed that

12 —
8(p—A)

=I>

Ty(N) = 0<A<p (4.8)

and the equality TQ( \) = T»(\) follows by direct inspection of (4.7). This is an encour-
aging fact and bodes well for the accuracy of the method.

IV.2. The general case K > 2 — A conjecture: So far we have developed approx-
imations only for two dimensional Fork—Join queues due to the fact that only in the
case I{ = 2, were we able solve the basic PDE for the stationary distribution of the
diffusion limit of the end-to-end delay [17,19]. Because of the complexity involved, it
is unlikely that we shall be able to obtain heavy traffic limits for the case I > 2 by
solving the corresponding PDEs. Hence, even though light traffic limits are available
for ' > 2, our ignorance of the corresponding heavy traffic limits prevents us from
obtaining interpolation approximations in accordance with the program of Section IIL

To circumvent this difficulty, we seek to approzimate the heavy traffic limit for the
case K > 2. We wish to do so in such a way so that for K = 2 the approximation to the
heavy traffic limit coincides with the exact expression (4.3). The following observation
provides the underpinning of our approach: For the case K = 1, the Fork—Join system
reduces to a single M/M/1 queue, and by direct inspection of classical expressions, we
easily verify that

/LZT; (0) = %\i}ll(u —NT1(\) =1. (4.9)
i

For the case K = 2 (with exponential inter—arrival and service times), we also note from

(4.3)—(4.4) that
— — 11
,LL2TIZ(O) =lim(p — NT(\) = —. (4.10)
Alp 8
It would be tempting (and very desirable for our purpose) to believe that (4.9)-(4.10)
hold more generally for all K—dimensional Fork—Join queues, with Poisson arrivals and
exponential service times, namely

MTM@:&P@-AﬁKuy K =34,...(411)
u

Although we were not able to validate this relation, we shall nevertheless use it in
generating first order approximations. Therefore, in order to proceed, we assume the
validity of (4.11) for M /M systems. The significance of doing so is immediate in that
it enables us to derive an estimate to the heavy traffic limit since the light traffic



derivative can be computed here, as shown in Appendix A. The approximations based
on this conjecture agree extremely well with both simulation results and the so—called
“scaling approximation” of Nelson and Tantawi [10].

IV.3. The general case K > 2 — A first order approximation: We derive here
approximations to T'x(A) for arbitrary I > 2, with the help of (4.11). Expressions for
the light traffic quantities T 5 (0) and T;\r(O) are derived in Appendix A in accordance
with the developments of Section III.2. In particular, we show there that
Hy — Vi

H '

Tr(0) =

where H is given by (3.23) and we have used the notation

I - r
_ Z K — Z r\ (m — 1) .
VI'\’ = <7'>(—1) 1 <WL>W IX = 273,(413)

r=1 m=1

The values of Hi and Vi have been tabulated for I = 1,...,20 in Appendix E.

To approximate the heavy traffic limit, we now make use of the conjectured equality
(4.11), which here takes the form

1>\i%n(p, — MT k(\) = V. K =23,...(4.14)
i

As in Section IV.1., we now combine (4.12)—(4.14) to obtain a first order approximation
Tr(A) to T (N); elementary computations show that

S A 1 . .
TK()\) = \‘H["%»(VK wI{A’); —/\, 0<A< . K = 2,3,...(4.15/)

By using both experimental as well as theoretical considerations, Nelson and
Tantawi [10] have also derived an approximation T 7(\) for the average response time
of a symmetric K—dimensional Fork-Join queues with exponential service and inter—
arrival times. Their “scaling approximation” is given by

R Hy 4. Hp A= )
TNT\) = | =2 4+ = (1 = =22 T <A K =223 ... (4.1¢
K (A) [H2 +11(1 HZ)#] Ty(X), 0<A<p \ ,3,...(4.16)

with T2()) given by (4.8). The relative error of their approximation as compared to
simulation results was shown to be less than 5% for systems where I < 32.

We have checked our approximation (4.15) against that of Nelson and Tantawi for
K <15, and our approximation seems to perform just as well as shown in Section IV 4.
The two approximations are closely related as they are both “anchored” at comparable
light and heavy traffic regimes. The latter can be seen by taking the heavy traffic linit
of fZA"f\V T namely

7

Bm(p — )\)T[]\YT(/\) = —+ —Hy. K =23,...(4.17)
Alp 12
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Using the table in Appendix E, the reader may check that indeed the right handside of
(4.17) agrees quite closely with Vi-. The advantages of our approximation over that of
Nelson and Tantawi are however two—fold:

1. Nelson and Tantawi resorted to experimental results to obtain the values of the
constants in their approximation, while we give exact closed—form expressions for all
the constants appearing in our approximation.

2. The approximation (4.16) of Nelson and Tantawi is only valid for Fork—Join
queues with exponential inter—arrival and service distributions. On the other hand, as
we show in Sections V and VI, our approximation procedure can be extended to cover
Fork—Join queues with general inter—arrival and service distributions.

IV.4. Simulation results: In this section, the approximation (4.15) is compared with
simulation results for the case when p = 1 with K = 2,5,10 and 15. For the cases
I = 5,10 and 15, we have also given the Nelson—Tantawi approximation (4.16) for
comparison purposes. For the case K = 2, the two approximations are identical.

A Ty(N) Ty(\) | % Error Ts5(A) Ts(A) | % Error | TNT(A)
0.1 1.654+0.007 | 1.65 0.30 2.494+0.008 | 2.49 0.04 2.48
0.2 1.85+0.011 1.84 0.43 2.75+0.012 | 2.75 0.07 2.73
0.3]2.09+£0.0158 | 2.09 0.43 3.09 +0.017 | 3.08 0.32 3.06
04| 2.4440.024 | 2.41 1.22 3.55+0.027 | 3.52 0.84 3.49
0.5] 2914+0.037 | 2.87 1.37 4.1940.042 | 4.14 1.09 4.10
0.6 | 3.63+£0.061 | 3.56 1.93 5.16 £ 0.074 | 5.07 1.74 0.01
0.7 480+0.109 | 4.71 1.87 6.80 +0.154 | 6.62 2.64 6.54
0.8 7.16+0.23 7.0 2.23 9.85+0.09 | 9.72 1.3 9.59
0.9 13.9140.32 | 13.87 0.29 19.30 £ 0.43 | 19.02 1.45 18.74

A Tlo(/\) Tlo(/\) % Error TIIXT()\)
0.1 ] 3.17+£0.009 3.17 0.09 3.16
0.2 | 3.48+£0.013 3.48 0.06 3.47
0.3 | 3.88+0.018 3.86 0.51 3.86
0.4 ] 4.4240.026 4.39 0.68 4.38
0.5 5.18 £0.042 5.12 1.16 5.11
0.6 | 6.34 £0.072 6.22 1.89 6.21
0.7 ] 8.23+£0.137 8.05 2.18 8.05
0.8 11.924+£0.30 | 11.71 1.76 11.72
0.813.44+0.392 | 12.83 4.54 13.01
0.9 ] 2349+£041 | 22.68 3.45 22.76




A 715(/\) T15(/\) % Error legT(/\)

0.1] 3.58£0.009 | 3.58 0.03 3.58
0.2 391+£0.013 | 3.91 0.13 3.91
03] 4.35+£0.020 | 4.34 0.23 4.34

0.4 4.95+0.031 4.90 1.01 4.92
0.5 | 5.78 £ 0.050 5.70 1.38 5.72
0.6 | 7.03 £0.086 6.88 2.13 6.94
0.7] 9.14+0.166 8.87 3.04 8.96

0.8]13.444+0.392 | 12.83 4.54 13.01
0.9 | 25.90+0.47 | 24.73 4.52 25.18

V. THE NON-MARKOVIAN CASE WITH /= %

In Section IV, we were able to obtain approximations for symmetric Fork—-Join
queues with Poisson arrivals and exponential services by postulating (4.11), a relation
between the heavy and light traffic regimes. As our next step, we would like to obtain
approximations for Fork—Join queues with more general arrival and service character-
istics. There are however certain difficulties for carrying out this program: Extending
the light traffic theory of Section III to arbitrary arrival patterns may not be possible.
Moreover, it is not at all clear that the postulated relation (4.11) is still appropriate
in the general case. We plan to circumvent the first difficulty by considering only zero
order approximations whenever non—Poissonian streams are involved, in which case
(3.6)-(3.7) still hold. The second difficulty is addressed by developing an estimate for
the heavy traffic limit for general inter—arrival and service distributions. This will be
accomplished in two steps, the first one being taken here in the non—-Markovian case
with g = %; the second step is discussed in Section VI.

V.1. A zero order approximation: In the Markovian situation, we have 3 = {;, and
for I¥ = 2, the exact heavy traffic limit is available [17,19] in the form

lim(p — \)T2()\) = E (5.1)
Alp 8

For arbitrary K, such a result was not available and we resorted to a conjectured
relationship between the heavy and light traffic regimes in order to generate a plausible
estimate of the heavy traffic limit. To do so, we extended the domain of validity of the
relations (4.9)—(4.10) to all K by postulating

1T (0) = lin (e — NTx(A) = Vi K=12,...(52)
I
Intent on extending this approach, we recall that an exact heavy traffic limit (such
as (5.1)) is available for A’ = 2 under the weaker assumption f = 3;, and takes the
general form
. o 1,
lm(p — AT (\) = —o*p (5.3)
Al 3



with again no such result being available for A > 2. Unfortunately, for non-Poissonian
arrivals the equality (5.2) may not even hold for K = 1; for instance, in a single server
queue with Erlang—2 inter—arrival times and exponential service times, we have

j— 3 —_— .
wT(0)=0# 7 = Lim(p = AT1(). (5.4)

However, as we compare the form of the expressions (5.1)—(5.3) when K = 2, and recall

that V5 = 1—81, we would expect that for the case K > 2 and 8 = %, the relation

%\i%n(,u - /\)TK()\) = Vio? K =3.4,...(5.5)
m

is either true or at least plausible.

As we now show, (5.5) provides the underpining for a zero order approximation to

Ty (N) for all K when 3 = % With 5 (A) still defined by (3.27), we readily see that
ti(0) = uTr(0) and tx(p™)= Vo u?. (5.6)

If #;c(\) denotes the corresponding linear interpolation of tx(A) over the range [0, 14,
say tAK()\) = go + g1A, 0 < A < p, then (5.6) yields the relations go = pT'k(0) and
go + 1t = Vio? u? from which we conclude that

tn(N) = pTr(0) + (Vo u —Tr(0NA, 0< A< p (5.7)

Undoing the normalization, we obtain the zero order approximation T ( A) to Tr(N) in
the form

. _ . _ A 1
Tr(N) = |pTr(0)+ (Vo 12 — uT(0))= — 0<A<pu K=23..538)
[

We illustrate the accuracy of this approximation on a simple example.

V.2. An example — Erlang—2 arrivals and service times: The A -dimensional
Fork-Join queue with Erlang-2 inter—arrival and service time distributions is character-
ized by

Ax) =1 — (142 z)e 2, 2>0 (5.9)
and

B(x) =1— (14 2ux)e” ", = >0. (5.10)

Here, var(A) = (2)0*)7% and var(B) = (2u?)72, so that in heavy traffic (A T p), we have
ol = (24%)7?% and B = % An application of (5.5) to this queue vields

V]\'

lim(p — T k() = K =2.3,...(5.11)
Al 2




whereas a formula for Tk (0) is derived in Appendix B, namely

= _ Fx

T (0) K=2.3,...(512)
7
where
1L /K - r m!
F]\’ = ; Z (7‘ )(——1)T_l Z (7n,> W K = 2, 37 v (513)
r=1 m=0

The numbers F, K =1,...,20, are tabulated in Appendix E.

Finally, upon substituting (5.11)-(5.12) into (5.8), we obtain a zero order approxi-
mation to the average response time of a I{—dimensional Fork-Join queue with two—stage
Erlang inter—arrival and service distributions. This approximation takes the form
Vi A 1 . , :

NP ——, 0<A<upu K =2,3,...(514)
2 ] o= A

Z

Ti(\) = [FK + (

and agrees extremely well with simulation results. Below we compare the zero order
approximation (5.14) with simulation results for the cases I{ = 2,5,10 and 15.

A Ta(N) To(N) | % Error Ts(\) Ts(\) | % Error
0.1 ] 1.40£0.004 | 1.45 3.57 1.93 £0.004 | 2.01 4.14
0.2 ] 1.46 £0.005 | 1.54 5.48 2.01 £0.006 | 2.13 5.97
0.3 1.55£0.006 | 1.67 7.74 2.14 £ 0.007 | 2.30 7.47
0.4 1.694+0.008 | 1.83 8.28 2.33 £0.010 | 2.52 8.15
0.5} 1.91+£0.012 | 2.06 7.85 2.62+£0.015 | 2.83 8.01
0.6 | 2.23+£0.021 | 2.41 8.07 3.064£0.024 | 3.29 7.51
0.7]2.80+0.041 | 2.98 6.42 3.83 £ 0.046 | 4.07 6.26
0.8 4.03£0.11 | 4.12 2.23 5.43 +0.11 | 5.62 3.49
0.9 | 7.44+ Ofii 7.56 1.61 10.11 £ 0.15 | 10.27 1.58

A Tlo()\) Tlo(/\) % FError Ty 5(A) Tl5( A) | % Error
0.11234+£0.004| 2.43 3.84 2.58 +0.003 2.68 3.87
0.2 1243+0.005| 2.58 6.17 2.68 £+ 0.004 2.85 6.34
0.3 | 2.58£0.007 | 2.78 7.75 2.84 £ 0.006 3.06 7.74
0.4 2.81+£0.010| 3.04 8.18 3.08 £ 0.009 3.34 3.44
05131510014 | 3.41 8.25 3.43 4+ 0.014 3.74 9.03
0.6 | 3.68£0.022| 3.96 7.60 33.99 +£0.025 | 4.33 8.52
0.7]4.59+0.043 | 4.87 6.10 4.94 + 0.052 5.32 7.69
0.8 6.45+0.09 6.70 3.87 6.87+0.12 7.31 6.40
0.9112.094+0.15 | 12.19 0.83 12.89 4 0.47 13.25 2.79




VI. THE GENERAL NON-MARKOVIAN CASE

In the last section we derived a zero order approximation in the non-Markovian case
when f = % As our next step, we would like to obtain approximations for Fork—Join
queues possessing more general arrival and service characteristics. However, an equality
such as (5.5) may no longer be true nor plausible, and a different approach is required
for developing an estimate for the heavy traffic limit in the case of general inter—arrival
and service distributions. The main idea behind this approximation is as follows: The
heavy traffic limit is easily obtained in the extreme cases § = 0 (deterministic arrivals)
and # = 1 (deterministic services), while in Section V, we proposed an estimate of the
heavy traffic limit for the case § = % This points the way to a quadratic interpolation
(in A over [0,1]) to produce a formula for the heavy traffic limit for general inter—arrival
and service distributions.

1. 8 =0 - The K queues are now decoupled from each other since the arrival
stream is deterministic (because o9 = 0), and using (3.22), we can write

B o2
lm(p — AT (X)) = Hy . K =23,...(6.1)
Al 2

<

2. B = % — In this case 0g = ¢ and according to our conjecture (4.2), we have

%\i%n(,u —NT (N = Vo . LN =223,...(6.2)
i

3. 5 =1 - In this case ¢ = 0 and the system hehaves essentially like a GI/D/1

queue so that

2,2
oy 1

l)\i%n(,u —MTk(\) = K =223,...(6.3)

i

Observing the structure of (6.1)-(6.3), we venture the following approximation

: = o’ +o5 .
Lm(p — NTr(\) = Mg(B)———pn", 0<p<1 K =223 ...(64)

Ap 2

for the heavy traffic limit, where

1
MK(O) - HI\', MK(

5) =Vk, Mg(l)=1 (6.5)

In the absence of any additional information we may use a quadratic approximation for
M(3) anchored at (6.5), and this leads to the heavy traffic estimate

lim(p — AT i (N) K =23,...(6.6)
Al

2 D)
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This estimate of the heavy traffic limit can now be used in conjunction with light traffic
information to yield an approximation. In the remaining sections of this paper, we
validate (6.6) by comparing it with simulations for various choices of inter—arrival and
service distributions. We consider the following situations:

1. Erlang-2 arrivals and exponential services;

[

Poisson arrivals and hyper—exponential services;
3. Poisson arrivals and Erlang—2 services; and

4. Hyper—exponential arrivals and exponential services.

VI.2. Example 1 — Erlang—2 arrivals and exponential services: Consider the
case when A and B are given by (5.9) and (4.2), respectively. Therefore, var(A)

(220*)7! and var(B) = p~?, and in heavy traffic, we find 02 = (2p%)7!, whence g = 3.
Applying (6.6) we obtain
lim(p — AT k(A ! +1H L2y, K =23,...(6.7)
im(u — (A)=——+-Hg + =Vg. =2,3,...(6.
Alp K g ) 12 6 K 3 ! '

This system has the same light traffic limit Tk (0) as the system with Poisson arrivals
and exponential services considered in Section IV, namely

_ Hi .
T (0) = ;. K=23,...(68)

Combining (6.7) and (6.8) we obtain the zero order approximation Tr()\) in the form

A 2 5 1.X 1
Tr(\) = |Hi +(5Vk — 2Hp — =)
3

—— < [ K =23...(6¢
G B 0< A<y ¢ ,3,...(6.9)

=N

This approximation agrees extremely well with simulation results as we show for the
case when p =1 with K = 2,5,10 and 15.

A To()) Ty(\) | % Error Ts(\) Ts(\) | % Error
0.1 1.55+£0.007 | 1.62 4.51 2.34+0.007 | 2.45 4.70
0.2 ] 1.65£0.009 | 1.77 7.27 2.494+0.008 | 2.67 7.23
0.3 |1.81£0.011 | 1.96 8.28 2.71+£0.011 | 2.94 3.48
0.41]205+£0.015| 2.22 8.29 3.03+£0.016 | 3.31 9.24
0.5]239+£0.024 | 2.58 7.95 3.50 £ 0.026 | 3.82 9.14
0.6 |291+£0.042| 3.12 7.21 4.22+0.044 | 4.59 8.77
0.7 | 3.81+£0.088 y 4.03 5.77 547+ 0.086 | 5.87 7.31
0.8 ]5.65+£0.203 | 5.83 3.18 8.01+£0.21 | 8.43 5.24
0.9 10.96 £0.24 | 11.25 2.64 1575+ 0.27 | 16.12 2.34




A T1o(A) | Tho(N) | % Error | Tis(A) | Tis(A) | % Error
0.13.004+0.007| 313 | 4.33 |3.39+0.007| 3.54 | 4.30
0.2318+0.009| 339 | 660 J3.59+0.009| 3.83 | 6.68
0.3|347+0.013| 373 | 749 |389+0011| 420 | 797
0.4388+0019 | 417 | 747 |434+0017| 469 | 806
0.5| 4494003 | 479 | 6.68 |4.99+0.027| 537 | 7.61
06| 5414005 | 573 | 591 |599+0045| 640 | 6.84
0.7 6.99+0.09 | 7.29 | 4290 |7.69+0.008| 811 | 546
0.8]10.214£0.22 | 1040 | 186 |11.08+0.19| 11.53 | 4.06
0.9|1951+£0.28 | 19.74 | 1.18 |21.03+0.85| 21.80 | 3.67

VI.2. Example 2 — Poisson arrivals and hyper—exponential services: Here, we
assume that A is given by (4.1) and that B has the form

B(z) =1— (pre "%+ pee™), 220 (6.10)

with 0 < p;y < 1, p» = 1 —p; and py # p2. To simplify the computations, we also

assume % = % = 1 so that 1 + pp = 2. Simple algebra shows that m(B) = 1 and

var(B) = ﬁ — 1. Therefore, ¢ = 1 and in heavy traffic (A T u), we find 03 = =% =1
and g = £k2,

The light traffic limit T (0) can be computed via (3.6)~(3.7), and takes the form

K T m_r—mn

oo — K oyl r P Py :
Tr(0) = Z (r >( b Z (m) mpyq + (r —mug’ (6.11)

r=1 m=0

An expression for the light traffic derivative —T;\(O) is obtained in Appendix C, namely

K - KN—r my
— K r 1y m My My —1a
TK(O)ZZ(T>(—1) DD VD’ (mz)pl E2

r=1 m =0 mo=0
r 7 pLp ky k
172 r—k 1 2 ko, 2 k1—k»
>< T [ P
kZ_O (kl)(,U/Z — [ ) kz——:() <k2) (pl lul) (])QHZ)
1= -
r—k; r—k r—ki .k
X Z D) (=1)r—Ri—ka Z ) Y ke jr—ka—ka
ks by
k3:0 k4:0
X k1‘
(/61(7712 + kz + le) + ;L2(7711 — Mgy — kZ 4+ — k3))k1+1
1

X . 6.12
1 (ko + ky) + pa(r — by — k4) ( )

We consider the special case when gy = 0.1, o = 1.9, p1 = 0.05 and py = 0.95,

in which case ¢ = 1 and 8 = 0.095. The values of Dx = Tx(0) and Ex = _Tl,\( 0),



K =1,...,20, are tabulated in Appendix E. Substituting these parameter values into

(6.6), we readily conclude that the estimate of the heavy traffic limit is given by

ﬁmﬂ—me@):&%Hx+1&wk—04
n

Combining (6.11)—(6.13), we finally obtain the first order approximation

A II.D Y )\
Tk(\) = PEE L [(WER — D]
[ = A

—A

, A
—FBB5HK+&8]W(*04—4fEK]@ﬁ2——3, 0<\<p.

[T

For the cases I = 2,5,10 and 15, (6.14) becomes

A 1.702 118N — 1.94)\2
Ty(\) = +38 ) . 0<A<1
1—A
- .3 1164 — 9.68)\2
5()\):?)Z’)24~1-18 6 968/\’ 0< )\ <1
1—A
A 5.447 + 31.013\ — 21.61)2
Tro(h) = o247 310 , 0<A<1
1—A
and
“ 7.22 40.573)\ — 31.12)\2
Tis()) = 7+ 40.57 3 <a<l.

1—A ’

(6.13)

(6.18)

These approximations are compared below with simulation results, and as the reader

may note, the agreement is quite good.

A To(N) Tg(/\) % Error T5(x\) T5()\) % Error

01| 2.78+£0.021 | 2.77 0.36 9.59 £ 0.030 5.60 0.17
0.2 4.09+£0.042 | 4.06 0.73 8.22 £ 0.054 S.20 0.24
0.3 ] 5.71+£0.067 | 5.66 0.87 11.32 £ 0.086 | 11.27 0.35
0.4 | 7.83£0.105 | 7.73 1.28 15.10 £0.130 | 15.04 0.39
0.5110.73+0.172 | 10.55 1.67 19.93 £0.198 | 19.92 0.05
0.6 | 14.95 1+ 0.289 | 14.69 1.74 26.70 £ 0.332 | 26.77 0.26
0.7 | 21.70 £ 0.503 | 21.45 1.15 37.40£0.609 | 37.54 0.37
0.8 ] 34.71+£1.50 | 34.77 0.17 57.94+1.30 | 58.11 0.29
0.9 | 71.144+2.59 | 74.37 4.54 114.03 £3.11 | 117.88 3.37




_—
A Tio(A) Tyo(A) | % Error Ti5(N) Ti5(\) | % Error

0.1 9.18+0.038 9.27 0.98 11.994+0.041 | 12.19 1.67
0.2 13.16 £ 0.066 | 13.48 2.43 16.79 £ 0.069 | 17.62 4.94
0.3 ] 17.56 +0.099 | 18.29 4.16 21.92 £0.106 | 23.71 8.17
0.4 22.674+0.147 | 24.05 6.08 27.76 £0.157 | 30.79 10.91
0.5]28.99+0.219 | 31.10 7.28 34.94 +0.234 | 39.47 12.96
0.6 | 37.64+£0.34 | 40.82 8.45 44.72 £ 0.363 | 50.92 13.86
0.7] 50.89 £0.59 | 55.22 8.51 59.97+0.630 | 67.93 13.27
0.8 79.95+1.19 | 82.49 3.17 89.09 £1.29 | 98.84 10.94
0.9 ] 146.72 £ 2.2:5 158.54 8.05 174.26 £ 3.28 | 185.35 6.36

VI.4. Example 3 — Poisson arrivals and Erlang—2 services: Consider the case
when A and B are given by (4.1) and (5.10), respectively. Here we have var(4) = A~?
and var(B) = (2u)7%, and in heavy traffic (A T u), we find 0 = ;72 so that g = é In
this case (6.6) becomes

1 Hyp 2

li —~ T r(\) == V. =23 ...(6.19
;ﬁm YR () 5T 1 +3% (=2,3,...(6.19)

The light traffic limit T'x(0) is the same as that for the system with Erlang—2 arrivals
and services, and is therefore given by (5.12), i.e.,

Fr

TK(O) -

with Fy given by (5.13). Combining (6.19) and (6.20) we obtain the following zero
order approximation Tk () in the form
A 1

A, 2y, Fr) 0<A<pu K=23
“Vk —Fr)—| ——, < . K=23, ...
12 T3 TR T /

This approximation is in very good agreement with simulation results, as we now show
for the case when =1 with K = 2,5,10 and 15.

A 1
Tr(A) = Fr+(5 (6.21)

res— — —— —— — -
A Ty(A) T5(A) | % Error Ts(A) Ts5(\) | % Error

0.1 1.48£0.005| 1.48 0.13 2.03£0.005 | 2.04 0.24
0.2 ] 1.62£0.007 | 1.61 0.37 2.20£0.007 | 2.21 0.45
0.3 1.79+0.009 | 1.78 0.50 2.43+0.011 | 2.42 0.41
0.41202£0.014 | 2.01 0.49 2.73+£0.015 | 2.71 0.73
0.5 2354+0.022 | 2.33 0.86 3.156+£0.022 | 3.11 1.26
0.6 | 2.85+£0.039 | 2.81 1.4 3.80+£0.041 | 3.72 2.10

0.7 3.6 £0.07 | 3.61 1.09 4884+ 0.079 | 4.73 3.07
0.8 5.30+£0.19 | 5.20 1.88 6.98£0.06 | 6.74 3.43

0.9110.08+0.20 | 9.98 0.99 13.34 £ 0.23 | 12.79 4.12




A T1o(\) | Tho(N) | % Error | Tis5()) | Tis(\) | % Error
0.1 |246+0.005| 246 | 0.08 |2714+0.005| 2.71 0.07
0.2 | 2.66 +£0.007 | 2.66 | 0.007 |2.924+0.008| 2.92 | 0.07
0.3 | 2.92+0.011 | 2.91 0.31 |3.1940012| 3.18 | 0.31
0.4 | 3.27+0.017 | 3.23 122 | 3.574+0.021 | 3.53 1.12
0.5 | 3.754£0.027 | 3.70 1.33 | 410£0.037 | 4.02 1.95
0.6 | 4.49+0.047 | 439 | 222 |4904+0062| 4.76 | 2.86
0.7| 5.754+0.10 | 554 | 3.65 |62640.114| 599 | 4.31
0.8 | 8304007 | 7.85 | 542 | 9.03+£029 | 844 | 6.53
0.9 15.90£0.27 | 1477 | 7.10 ]17.34£0.30 | 1581 | 8.82

At this point we would like to point out that the excellent agreement with simulation
for this system, has been obtained without making use of the light traffic derivative. This
is contrast to the case for hyper—exponential services discussed in Section VI.3, where we
had to make use of the light traffic derivative in order to obtain good approximations.
The reason behind this disparity is that, while for the case of hyper—exponential services,
the relation (4.11) is clearly not satisfied, for the case of Erlang—2 services this appears
to be the case for Erlang-2 services, as we now demonstrate. In Appendix D the light
traffic derivative TIA-( 0) is evaluated as

Tl}\(o) = GK

p?
with

K - 1 K=r 0. ., q .
o= ()5 2 (5 ) 2 0)

r=1 g=0 m=0

n

~/r\ 1 (m+3r—n) n p! )
. KN=23... (623
Z <7l> 3r—n (7, 4 q)7n+3r——n+1 Z p (271)17_*_1 , 8 , 3, ({ )

n=0 p=0

The values of G, K = 1,...,20, have been tabulated in Appendix E. Comparing the
right handside of (6.19) with the values of G g, we observe that they indeed match very
closely.

VI1.5. Example 4 — Hyper—exponential arrivals and exponential services: We
close with the case when A is of the form

A(z) = 0.05¢71% 4+ 0.95v¢~ 7, x> 0. (6.24)
for some v > 0, and B is given by (4.2) with ;o = 1. We have

m(A) = A" = 0.95y~" +0.005 (6.25)



while the variance of A is given by

0.9975  0.0095
v? v

var(A) = 0.000975 + (6.26)

Since m(A) | 11s equivalent to v — 52 simple calculations show that 02 = limy; var

(A) = 1.085, and therefore = 0.52. Substituting these values into (6.6), we obtain

Al

Lm(1 — MT g (A) = 1.042V — 0.021 Hfc + 0.021. Is

=2,3,...(6.2
i b3, ..(6.27)

The light traffic limit is the same as the one for the system with Poisson arrivals and
exponential services, and is thus given by (4.12). Combining this fact with (6.27) we
obtain the approximation

. Hy + (1.042Vi — 1.021Hy + 0.021)) )
Tr(\) = K [1 ;3 k002D o1 k=23, (629

We observe rather good agreement with simulation results displayed below for the case
when K =2,5,10 and 15.

A Ta(N) Ty()\) | % Error Ts(\) Ts(\) | % Error
0.1 1.72£0.003 | 1.66 3.49 2.57+£0.003 | 2.49 3.11
0.2 1.91£0.004 | 1.86 2.62 2.84 £0.004 | 2.76 2.82
0.3 ] 2.15+£0.005 | 2.11 1.86 3.16 £ 0.006 | 3.10 1.89

0.4 | 2.50+£0.008 | 2.45 2.00 3.64 £0.009 | 3.56 2.19
0.5 | 3.004+0.022 | 2.92 2.67 4.31+0.014 | 4.19 2.78
0.6 | 3.68£0.019 | 3.63 1.36 9.23+0.023 | 5.15 1.53
0.7] 492+0.038 | 4.82 2.03 6.94+0.046 | 6.75 2.74
0.8 ] 7.09+£0.084 | 7.19 1.31 10.01 £ 0.103 | 9.93 0.80
0.9 | 14.324+0.331 | 14.30 0.14 20.26 £ 0.414 | 19.50 3.75

A Tlo(/\) Tm(}\) % Error 715(/\) T]5()\) % Error
0.1} 3.26+0.003 | 3.18 2.45 3.99 + 0.003 3.59 2.44
0.2 | 3.58£0.004 | 3.49 2.51 4.02 £ 0.004 3.92 2.49
0.3 ]3.96+£0.006 | 3.89 1.77 4.44 + 0.006 4.36 1.80
0.4 ]4.54+0.009| 4.43 2.42 5.07 £ 0.009 4.94 2.56
0.51536+0015| 5.18 3.36 5.9740.016 5.74 3.89
0.6 | 6.46+0.025| 6.30 2.48 7.18 4 0.027 6.96 3.00
0.7 | 8.5240.049 8.17 4.11 9.43 4+ 0.054 8.98 4.77
0.811217+£0.11 | 11.92 2.05 13.44 +£0.123 | 13.03 3.05
0.9 ]24.34+0.44 | 23.17 0.73 26.99 £ 0.493 | 25.17 6.74




1]
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APPENDICES

APPENDIX A — We now show how to compute T i (0) and the light traffic derivative

T"IA—(O) in the Markovian case. With B given by (4.2), we find by the binomial expansion
that

I -
B(.’E)K = Z <é>(—1)re"r’””, z > 0. (A.1)

r=0

Substituting into (3.7), we readily get

*° r—1
T'A-(o):/0 (l—FK(x))d;v—lZ<r>( L (4.2)

"

and the first equation in (4.12) follows from (A.2) by making use of the identity

1S r
Hy = Z Z (I‘> 1) . K=1,2,...(A3)

Fixing t < 0, we see that the common distribution Fy of the rvs B defined through
(3.12) is given by
Fy(z)=1— 1+ pxe!e ™, >0 (A4)

and repeated binomial expansions show that

Fy(2)" = ; ({‘) —1)7(1 4 pet)e”

K - r X
= E ({&>(—1)Te“””” E <77 >(/Lxe“t)m, x> 0. (A.5)
) m
r=0

m=0



Upon substitution of (A.5) into (3.14), we now find

=/ <1 = (D)o s ()(#))

r=0 m=0
60 I& r ”
r—1 e TTHE bt L
/ < )( 1) 7;] (m) (pze! )" dx
Z (I&) 1)7« 1 ET: <7‘>(N€Mt>m /OO pMeTTHE oy (AG)
r=1 m=0 v

Using the well-known identity
/ z™e “dr = m! m=20,1...(A.7)
0

for the moments of an exponential distribution, we conclude from (A.6) that

— 1 K I Y.

D{t}) = ;Z (7 )( Tty <m>e ﬂfm, t<0. (A.8)
r=1 m=0

Finally, reporting (A.8) in (3.11), we get

The(0) = / O ]Z )¢ 1)“1 SN B PN
TR r m ¢ rmtl K

r=1

1 0 K K
g > (F)ewr Z( o
00 p=1 =1

1 IS -
x5

'lrzl

APPENDIX B — We derive a formula for T ;(0) when the inter—arrival times and the
service times are distributed according to a two-stage Erlang distributions. Here, with
B given by (5.10), we see by repeated binomial expansion that

m — 1)!
P 1

(A.9)

m=1

B(x)" =1 -1 +2ux)e™ 2N >0

—Z(I&) (1 + 202

IN r
Z( ) -1 ) (n>(2,u)’" “itwr =23, .(B.1)

— m=0



Therefore, invoking (3.6)—(3.7) (and the remark that follows), we get

e K v " r .
TK(O) = /0 (1 — Z <Ir>(—1)r Z <m>(2,u;r)me_“”> do

r=0 m=0
X K r . o
= 1y ! 2, LM e 2TRE ],
Z<7>( ) Z(nz)( 1) /0 e dr
r=1 m=0
1 1N K r , ol
= — —1) ! SRR K =23 .. (B2
H = (7’ >( ) 7;0 (m) (27,)171—}—1 L , 3, ( )

upon using (A.7) in the last step, and (5.12)~(5.13) is obtained.

APPENDIX C — We obtain a formula for T’K(O) when the arrivals are Poisson and the
service times are hyper—exponential, with B given by (6.10). Following the development
of Section III.2, we fix ¢ < 0 and observe by simple computations that

Fy(z) =1 —pje "M% —pye #2% — pi?,ul;re“‘(tw”) _ p%/tzxe’”(tﬁ")

+ —P—lpL(e_’“z — e (pge!t 4 ey, x> 0. (C.1)
[z —

Substituting into (3.11), we obtain after some tedious caleulations that

— 0 © & K K—ry,r v
T7(0)=— i Z . U Vidx | dt (C.2)
- r=1

where for z > 0 and ¢t > 0, we have set

U=1-—pe " — pye H2*

and
: — : - pPip2 . "
V= —pf/tl.’ljeul(t “) —pi/,ég;vel”(t v) ;—T e MT _ o “21)(111,26’.“” + Nlﬁ/ut).
2 —
More tedious computations show that
N—r K ) mi
T K—r L —7 oy 1 mo my—ms (1 maotpa(my—ms))r
Ut = (-1) P1 P2 ¢ (C.3)
LS iy
m1;=0 my=0

and

T k1
T _1\T r PiP2 -k, RPN ki —ko
Vi=(-1) ) <k1>(ﬂz—m) > <k2>(p1m) (pzht2)

k1=0 ky=0
ek Bk
- —k1—k TRLY ke r—k —k
X (e (T e
ka=0 3 kq=0 4

> xkl 6(#1(k2+k3)+/42(7'—k2—k3))1 (p1(kotkha)+po(r—Fky—ky))t (C.‘l)

€



Substituting (C.3)-(C.4) into (C.2) we readily get the result (6.12).

APPENDIX D — We outline the derivation of a formula for T/K(O) when the arrivals
are Poisson and service times are distributed according to a two-stage Erlang, in which
case B is given by (5.10). Fixing ¢t < 0, we see that the common ditsibution Fy of the
rvs defined by (3.2) is this time given by

. , , 4 o |
Fy(z) =1— (14 2ux)e " — [(2u? — 44 t)2? + = 2] e?#le 21 o+ >0, (D.1)
/ / ;

We can show after some tedious calculations that

T (0) = /:_Oo /: Z (I‘> UK=Y dedt (D.2)

where we have set

U=1~—(1+2ux)e ?** >0

and A
V= —[(2p" — 4pPt)2? + 3,u Ple?tteT 2 >0, t > 0.

Through some more tedious computations, we can show that

UA'—T — Z (I& - 7)( 1) Z (;]l) (2,&%’)”16—2(”“; (DS)

q=0 m=0
and
vr=<—1>’“Z( )(2##)”( Wty Z()(—mw (D.4)
p

n=_0 p=0

Combining (D.2)-(D.4), we obtain

Tao =53 (M) S (< )y

()

q=0 m=0

/N 1 (m43r—n) < (n p!
C'8
HXZ‘; (71) 3r—1z (,,. + q)7n—|—3r—n+] ],;O (p> ( )p+l ( )

which can be written as (6.22)—(6.23).

APPENDIX E — The various constants which were derived during the course of the
discussion are tabulated below.



o=y
N

Vi

Fy

G K

E K

O 0 -~ O Ot k= W N

N = s e el e e e e 2
O W W = DY U W NN = O

1.5
1.833
2.083
2.283
2.449
2.593
2.717
2.829
2.929
3.019
3.103
3.180
3.251
3.318
3.380
3.439
3.495
3.547
3.597

1.375
1.594
1.745
1.860
1.951
2.027
2.091
2.147
2.195
2.240
2.280
2.316
2.349
2.379
2.408
2.434
2.460
2.478
2.510

1.375
1.606
1.773
1.904
2.011
2.101
2.180
2.249
2.313
2.367
2.418
2.465
2.508
2.549
2.587
2.622
2.658
2.688
2.734

0.957
1.072
1.151
1.210
1.258
1.297
1.330
1.359
1.384
1.407
1.427
1.446
1.463
1.474
1.494
1.507
1.520
1.532
1.547

1.702
2.296
2.830
3.324
3.789
4.230
4.652
5.057
447
5.825
6.191
6.546
6.891
7.227
7.554
7.873
8.184
8.488
8.788

[ S

e

9.82
13.98
17.84
21.44
24.82
27.99
30.98
33.80
36.46
38.98
41.37
43.63
45.77
47.80
49.73
51.57
53.31
54.97

56.55




