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Abstract

The well-known error propagation problem inherent in any variable-length coding op-
eration limits the usefulness of variable-length encoded entropy-constrained scalar quan-
tizers when the quantizer outputs are to be transmitted over a noisy channel. In the
absence of channel noise, hdwever, these quantizers are known to perform better than
error-minimizing fixed-rate Lloyd-Max quantizers for a wide class of memoryless sources.
Motivated by this observation, in this paper we develop a fixed-rate vector quantization
scheme which achieves performance close to that of optimum entropy-constrained scalar
quantizers; due to the fixed-rate nature of the encoder, channel error propagation is not
an 1ssue any more. An algorithm for the design of this scheme is described and procedures
for codebook search and codevector encoding are developed. We show that codebooks
significantly larger than those in conventional vector quantizers can be designed. Nu-
merical results demonstrating the efficacy of this scheme along with comparisons against

Lloyd-Max quantizers and optimal entropy-constrained quantizers are rendered.

f This work was supported in part by National Science Foundation grants NSFD MIP-86-57311 and

NSFD CDR-85-00108, and in part by a grant from General Electric.
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I. Introduction

Optimal entropy-constrained scalar quantizers (ECSQ’s) are known to per-
form close to the rate-distortion bound for a large class of memoryless sources [1], [2].
To implement such quantizers, however, some type of variable-length noiseless coding is
needed. Due to the sequential nature of decoding of such codes, channel errors could lead
to a loss of synchronization resulting in propagation of ierror and hence large cumulative
reconstruction errors. Therefore, ECSQ’s are of limited usefulness for most practical appli-
cations that involve transmission over noisy channels; usually some type of packetization

to limit the error propagation to within a packet is used.

Optimal minimum-distortion (Lloyd-Max) quantizers (LMQ’s) utilizing fized-length
codewords, on the other hand, are immune to error propagation and related problems but
in the absence of channel noise perform worse than ECSQ’s (3],[4]. The gap between the
performance of optimal ECSQ’s and LMQ’s can be large for certain sources [1]. To bridge
this gap while maintaining fixed-length codewords one could use a vector quantizer (VQ).
Optimal fized-rate VQ’s of sufﬁciently large dimension can perfofm arbitrarily close to the
rate-distortion bound. Such quantizers however have two drawbacks: (i) the encoding
complexity (which grows exponentially with the rate and block-length) and (ii) the large
amount of memory required toi store the codebook. The problem of encoding complexity
can be alleviated, at the cost of a small performance degradation, by designing suboptimal
VQ’s such as tree-searched VQ’s [5]. But, this only adds to the storage problem. In
any practical situation, the complexity and memory problems place a constraint on the

maximum codebook size and hence the performance of the VQ.

The permutation encoder (PE) is a fized-length encoder which can be thought of as a
VQ with a special structure (the codebook consists of codevectors that are permutations
of one another) [6]. The structure of this codebook obviates the need for storing the
codevectors and also results in a simple encoding algorithm. It is proved in [6] that the
a.vexlagé distortion of the PE is bounded below by that of the optimal ECSQ at the same
rate and in the limit of infinite block-length, the optimal PE becomes equivalent to the
optimal ECSQ. The block-length of the PE required to achieve performance better than
LMQ is very large resulting in large encoding delays. In addition, while the channel errors
do not propagate beyond block boundaries, they do affect all samples within a block;

therefore, very large block-lengths offset some of the advantages of fixed-length coding
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over noisy channels.

This paper describes a fized-length structured vector quantizer (SVQ) based on
variable-length encoded scalar quantizers. The fidelity criterion used here is the squared-
error distortion. The basic idea can be described as follow!*s. Consider an ECSQ the outputs
of which are encoded by variable-length codewords of length given by the negative loga-
rithim of the probability of the corresponding quantizatién level. If such a variable-length
encoded ECSQ (VL-ECSQ) is used to quantize a block of samples from a memoryless
source, the total length of the output reflects its probability (smaller length means higher
probability). When the block-length is large, with a very high probability the length of
the output is close to the typical length =(block-length x entropy). This suggests that if
(for large block-length) the output length of a VL-ECSQ is constrained to lie in a small
neighborhood of the typical length, then with high probability the quantizer outputs can
be encoded without any distortion. If all the possible VL-ECSQ outputs that satisfy the
length constraint are counted and encoded with fixed-length codewords, the system will
perform close to the ECSQ. Although the performance of this system approaches that of
the ECSQ as the block-length goes to infinity, for any fixed block-length it is preferable to
encode all the VL-ECSQ outputs of lengths equal to or less than the typical length. This
is because the smaller length outputs are more probable. This idea provides the motiva-
tion for the present work, the actual scheme as formally described in Section II is slightly

different and uses an optimized scalar quantizer in place of an ECSQ.
|

A procedure for the design of the encoder parameters is described in Section III. Sec-
tion IV addresses the implementation issues which include codebook search and codevector
encoding. Comparisons between the SVQ and some other schemes (mentioneﬁd above) are
made in Section V while the storage and the computational requirements of the SVQ
are tabulated in Section VI..Specific numerical results demonstrating the efficacy of this
scheme lfor a variety of sources, encoding rates and block-lengths are presented in Section

VIL Finally, a summary and conclusions are presented in Section VIII.

I1. ,The Structured Vector Quantizer

For the rest of this paper we will assume that the source to be encoded is a station-
ary memoryless source. In the structured vector quantization scheme proposed here, the

codebook structure is derived from a variable-length encoded scalar quantizer. If each
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component of an m-vector is scparately quantized usinF; an n-level scalar quantizer, the
set of possible output vectors form an m—dimensional% grid of n™ points which is con-
tained inside an m-cube. For an m-dimensional SVQ each codevector corresponds to a
point on this grid. However, not every grid-point has“ a codevector associated with it.
To determine the grid-points to be included in the codebook we first assign some lengths
b, © € Jn, (Jn = {1,2,..., n}) to the quantization levels ¢; of the underlying scalar
quantizer. These lengths are not required to be integers, but are rounded-off to the near-
est multiple of some fraction 1/b of a bit. Next, we determine the total length associated
with each grid-point as the sum of the lengths of its m components. If the total length
of a point is less than a threshold L, we include the point in the codebook. The thresh-
old is determined so that the codebook contains 2™" codevectors where r is the desired
average transmission rate in bits/sample. With this structure of the codebook it is pos-
sible to quantize the in};ut vector to the nearest codevector without explicitly storing the
codebook (Section IV). An algorithm for determining the set of scalar quantizer levels
Q= {q1,92,---5 qn}, the set of lengths £ = {{1,4s,..., £} and the threshold L is pre-

sented next.

ITI. Design of the SVQ

The SVQ is completely described by Q, £ and L. Designing the SVQ hence cor-
responds to the determination of these quantities. For a given source and an average
transmission rate r, the SVQ c?n be designed using a two step iterative procéss. The first
step (Step A) determines the quantization levels Q given £ and L. The second step (Step
B) determines the lengths £ and threshold L given Q. If both of these steps are performed
optimally (with respect to some distortion measure), then each iteration reduces distor-
tion and since the distortion is lower bounded by zero, the solution converges to a locally
optimal design. Unfortunately, the optimal solution for £ and L given Q in Step B is not
known for the squared-error distortion measure. These quantities are hence determined
suboptimally resulting in a suboptimal design of the SVQ. Step A and Step B of the <iesign

aigorithm are described below.
A. Step A
The problem of determining @ optimally given £, L and a source probability density
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function (pdf) is itself solved iteratively ! using a method similar to the optimal design of
conventional VQ’s [7]. A long training set of N source vectors is generated and this set is
used to characterize the pdf of the source. Let X' = {x;;j € Jn} denote the training set of
m-vectors X; = (1, %2j,. - -, Tmj). Given the set of quantization levels Q¥ (where k is the
iteration index), quantize each vector in X' using the SVQ defined by @*, £ and L. Let
Yr = {y}‘;j € Jn} represent the set of quantized vectors where yf = (yfj,yfj, e Uk
and y,k] € Q% i€ Jn, j € Jy. The mean squared-error (MSE) D for this quantization

operation can be expressed as,

1 N N m ,
k k2
D= b S i = 3 3 e
y=1 j=1 i=1
1 o . (1)
SIS G
=1 4jiyl =qf
i 1€J,
JEJN
The new Q given by Q1 = {g;*',¢}*!,..., gk**} where
r 1-1r §
gatt= > 1 > @il 1€Ja (2)
gyl =gk gl =qf ,
i€Jm 1€ Jpm
L JEJN d L JEJIN J

minimizes D and hences reduces distortion over QF.

Since each step of this itetative process reduces the MSE, Q% converges to a locally
optimal solution Q,p¢(L, L).
B. Step B

As mentioned before, the optimal solution for £ and L given Q is not known! The

following suboptimal solution is proposed instead. Since the m-dimensional grid (Section

IT) contains n™ points out of which we want to choose only-2™" points as codevectors, we

1 For implementing the algorithm to design SVQ’s it is not necessary to keep performing the iterations
within Step A until the solution for Q converges. In fact only one such iteration needs to be performed

each,time Step A is visited.



choose the 2™" most probable ones. Clearly this choice does not necessarily minimize the
MSE, but it ensures that with the highest probability the input vector will be quantized
to the nearest point on the grid. The usefulness of this suboptimal solution is supported
by the results given in Section VIL

Let p;, 7 € J, be the probability that the input sample is quantized to level ¢; if scalar
quantization to the nearest level is performed. These probabilities can either be calculated
from the source pdf or the set of training vectors. The probability P(v) of an arbitrary
grid-point v = (v1,v2,..., Um) with v; € Q, ¢ € Jp,, is then gi\’ren by (#id input),

P(v) = [[ppuy =27 2am'o80/rre0), (3)
I=1

where the index function f: Q — J, is defined as,

. flai) =14, i€Jn. | (4)

We define the length ¢; = log1/pi, © € J,, resulting in
P(v) =2~ 2z b, (5)

This shows that the higher probability grid-points are the ones with smaller ¢otal lengths.
Hence choosing the 2™" most probable grid-points corresponds to choosing 2™" points with
the smallest total lengths.

The suboptimal threshold L is given by the maximum value of the threshold for which

there are at most 2™" vectors in the codebook. An algorithm to do this follows.

C. Determination of the threshold L

The threshold L is obtained by counting the grid-points (starting with the ones
that have the smallest total length) until we have 2™" points and taking the largest total

length in this collection. ,

Let N,-j represent the number of distinct i-vectors (21,22,..., 2;) with z3,22,..., z; €

Q such that their total length £s(,y + €5y + ... + €42y = j. Then Nij satisfies the

following recursive equation V i € J,:

1 N} = Z NI, | (6)

k=1
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where Nij =0 for j <0 and NQ = 1. The N,-j ’s can hence be determined using a dynamic
programming type of algorithm. The total number of grid-points CJ, with total length

less than or equal to j is now given as,
: r -
Ch=) Nn. (7)

The threshold L can therefore be evaluated as,
L=max{j: CJ, <2™}. (8)

This choice of L guarantees that there will be at most 2™" vectors in the codebook and

hence each codevector can be encoded by an mr-bit binary codeword.

IV. Implementation of the SVQ

The encoding operation essentially involves two steps, the codebook search and the

encoding of the codevectors. Fast algorithms for both of these steps are now presented.

A. Codebook search

The codebook search can be performed by a dynamic programming algorithm similar
to the Viterbi algorithm for convolutional coding [8]. The aim here is to find a grid-point
of total length less than or equal to L that is closest (in the sense of minimum distortion)
to the given input vector. As mentioned before, we aésume that the lengths ¢;, 7 € J, and
the threshold L are rounded-off to the nearest multiple of a fraction 1/b of a bit. Usixllg this
fraction as a unit of length measurement, we can represent all lengths as positive integers.
Without loss of generality we assume that 4;, 1 € Jn and L are positive integers.

Let Df be the minimum équared-ex‘ror distortion that results when the first z com-
ponents of the input m-vector x = (zy,2,..., m) are quantized to any of the i-vectors
z; = (z1,22,..., 2) with z1,29,..., z; € @ such that the total length of z; is j, i.e.,
Crizy + Lp(zg) + oo H g2y = J. Also, let zf represent the i-vector that results in the

minimum distortion D]. The distortion D}, , is then recursively given as,

D{+1 = {1&1}1 D{‘e* + (ziy1 — qk)2] ,1=0,1,..., m—1, (9)

|

03

where D{ = oo for § <0 ori<0but D =0.
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If the above is minimized for £ = k', then the corresponding minimum distortion

vector z;, is given by the recursive equation,

2l = (2" ) . ~(10)

Using the dynamic programming algorithm to solve these equations we can determine

D} ., V¥j € Ji. The minimum distortion Dy, is then given as,

Dpin = ;renjr; Dfn . (11)

If j = j' minimizes this distortion then zJ, gives the desired codevector.

B. Encoding of codevectors

There are 2™ codevectors in the codebook Z of the SVQ and the encoder is a mapping
that assigns mr-bit binary numbers to the codevectors in a one-to-one manner. The

following algorithm implements one such mapping.
To every codevector z = (21,22,..., zm) € Z is assigned an m-digit base-n number
N(z) given as,

N(z) = (f(z1) =1, f(z2) =1, ...y flzm) = 1)

= Z n™(f(z1) = 1).
=1
Clem‘ly, N(z1) = N(2z2) & 21 = z2. The encoder function E: Z — Jymr is defined as,

E(z)= ) Xuw - (13a)

wgEZ

where

-X'zw =

Y

(13.0)

{O if N(w) > N(z)
1 if N(w) < N(2).

[

In other words, E(z) is the nuinber of codevectors in Z that are “smaller” than z
I

(smaller in the sense M(w) < N (z)). We can also write E(z) as,

E(Z) == Z Ek y ‘ (14)
k=1 .
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where Ej is the number of codevectors w such that A(w) and A(z) written as base-n
numbers are equal in their k¥ — 1 most significant digits while the kth digit of M(w) is

smaller than that of A(z).

Let C'ij represent the number of distinct i-vectors (z1, z2,..., 2;) with 21,2,..., 2; €

Q such that €ee.) + Ly + .00+ Lgz) < j. Also, define

i 0 if7<0
J o
CO"{1 i£7>0. (15)
It can easily be shown that
f(ze)-1
Ee= Y Coli*7%, keln, (16)
i=1

where Lg = 0 and L; = Zi e,(,,.), 1€ Jpn.

i=1

Now (14) and (16) give,

m f(z)-1 L . '
E(z) =) Z Co . (17)
k=1 j=1

Note that C,-j can be evaluated by expressing it in terms of N,.j (Section III) as, I

hJ

o
Cl=) NF, VieJnandj>0. (18)
' k=1

For a fast implementation of this algorithm the C’,-j ’s can be evaluated once and stored

V. Comparison with other schemes

in the memory.

In this section the performzince of the SVQ is compared, in a qualitative manner,
with the LMQ, the ECSQ and the permutation encoder. An SVQ for which Step B in the

design algorithm of Section III is carricd out optimally is referred to as an optimal SVQ.

An LMQ is a special cése of the optimal SVQ when the block-length is one. Since

it is reasonable to assume that the performance of the SVQ’s improves with block-length,

[y
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the 'optimal SVQ always performs better than the LMQ. Our numerical results (Section
VII) indicate that this conclusion also holds for the suboptimal SVQ of Section III.

It 1s difficult to analytically c‘ornpare the performance of a fixed block-length SVQ to
an ECSQ. But in the limit of infinite block-length it can be shown that the performance of
an SVQ derived from an ECSQ (by using the quantization levels of the ECSQ and assigning
to cach level a length given by the negative logarithm of its probability) approaches the
performange of the ECSQ. This suggests that the asymptotic performance of the optimal
SVQ for large block-lengths is at least as good as that of the optimal ECSQ. This may not
be true for the suboptimal SVQ.

A permutation encoder based on an ECSQ becomes equivalent to the ECSQ in the
limit of infinite block-length. For relatively small block-lengths the permut;tion encoders
perform poorly [6] and, as supported by the results in Section VII, the suboptimal SVQ’s

can be expected to perform better.

VI. Complexity issues

Table 1 gives the complexity of the codebook search and codevector encoding al-
gorithms in terms of their computational and storage requirements. The computfmtional
complexity is measured by the number of equivalent 32 bit floating point operations (ad-
ditions and comparisons) reqxlired per source sample. Based on a large number of SVQ’s
designed, the value of the threshold L is taken to be approximately 1.5mrb (where 1/b is
the unit of length measurement). Since the number of quantizer levels n is expected to
grow exponentially in r, the computational complexity of the SVQ grows linearly in m and
exponentially in r while the memory requirement grows as the cube of m and exponen-
tially in r. For large values of r a slightly modified implementation of the codebook search
and the codevector encoding algorithms changes the exponential dependence of computa-
tional complexity on r to linear dependence [9]. With'the present VLSI technology the
complexity of an SVQ is quite affordable even for relatively fine quantization and a large
block-length.

VII. Numerical results and comparisons

The performance results for SVQ’s designed using the algorithm of Section III are

reported in this section.
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A. Convergence of the suboptimal design

_ Although the suboptimal algorithm for designing the SVQ’s is not guaranteed to
converge, for most SVQ’s designed it was found that the solution actually converges. For
a few cases it did not converge but the average distortion initially decreased and then

oscillated in a narrow range. In such cases the SVQ with minimum distortion was selected.

B. The generalized Gaussian distribution

To analyze the performance of SVQ’s, sources with a generalized Gaussiaii (GG)
distributio? were chosen because the GG distribution effectively models rhost unimodal
symmetric distributions arising in practical situations. The pdf of the GG distribution is
given by,

) = S ex (=l D)lell*} (19

1/2
where n(a, ) = 7! [f ? z” , a > 0 is the exponential decay parameter and 37 is the

variance of the distribution. 1

The Laplacian and Gaussian distributions are special cases of the GG distribution
for @ = 1 and 2, respectively. For large values of @ the GG distribution approaches the

uniform distribution while for small « 1t 1s a broad-tailed distribution.

C. Rate vs. distortion characteristics of the SVQ

Table 2 gives the signal-to-noise ratio (SNR) in dB of the SVQ’s designed for GG
sources with @ = 0.5, 1 and 2, for various rates and block-lengths. The corresponding
SNR values of LMQ’s and ECSQ’s are provided for comparison. Fig. 1 gives plots of the
average distortion as a function of the encoding rate fpr GG sources with o = 0.5 and
a = 2.0 which show that the SVQ’s effectively bridge the gap between LMQ’s and FCSQ’s
while maintaining fixed-length outputs.

For all results in Table 2, length was quantized to multiples of a quarter of a bit
(b = 4) and a training sequence of 50,000 source samplés was used to characterize the
source distribution. If the designed SVQ turned out to have a rate different from the

desired rate?, the SNR at the desired rate was obtained by interpolating the MSE.

2 This could happen at low rates and small block lengths where the number of codevectors in the

codebook could be significantly less than 27,
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D. Effect of the block-length m

In Fig. 2 the performance of the SVQ is plotted as a function of the block-length
for GG sources with @ = 0.5 and o = 2.0. These plots show that at low rates, a small
block-length is adequate to perform close to the optimal ECSQ while for higher rates a

larger block-length is required.

E. Effect of the number of quantization levels n

Fig. 3 shows the variation of the performance of an SVQ with the number of quan-
tization levels. The two cases shown are: (i) GG source with a = 0.5, m = 16 and r = 2
bits/sample, and (ii) GG source with @ = 1, m = 32 and r = 3 bits/sample. When n = 2",
the SVQ reduces to m scalar LMQ’s. For higher values of n the performance improves and
then saturates. Broad-tailed distributions (smaller a) require a larger value of n to reach

saturation.

F. Effect of length guantization }

To reduce the complexity of implementation of the SVQ the lengths ¢;, ¢ € J, and
threshold L are quantized to the nearest multiple of 1/b bigs. The performance of the SVQ
is plotted as a function of b in Fig. 4 for the GG sources with a = 0.5, 1 and 2, m = 16
and r = 2 bits/sample. It can be seen that the performance does not depend signiﬁcantly
on b and does not necessarily improve as b increases. This should be expected because
we use only a suboptimal algorithm for length assignment and hence small deviation in

lengths (due to quantization) could improve or degrade performance.

VIII. Summary and conélusions '

_In this paper we have proposed a fixed-rate structured vector quantizer for encoding
stationary memoryless sources; the the structure of the codebook is derived from a variable-
length encoded scalar quantizer. A suboptimal algorithm for the design of the SVQ was
presented along with fast algorithms for codebook search and encoding. The asymptotic
performance of the optimal SVQ (for large block-lengths) was compared with some other
quantization schemnes.

Numerical results presented demonstrate that the SVQ’s effectively bridge the gap
between LI Q’s and the optimal ECSQ’s while maintaining fixed-rate outputs. The SVQ’s
perform close to the optimal ECSQ’s at block lengths much smaller than those required

by permutation encoders. Since the complexity of the SVQ’s'is affordable even for fine

12



quantization and relatively large block-lengths, the SVQ’s can be used even when the

vector quantizers are too expensive.

Better suboptimal (or possibly optimal) solutions for Step B of the design algorithm

§
in Section III as well as extensions of SVQ to non-identically distributed sources and

to sources with memory (Markov sources) are among interesting problems that deserve

further investigation.
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Codebook Search

Encoding Operation

Computational
Requirement

(floating point

n(L +2)
~ 1.5mbrn
or
=~ Const.xmbr

or
~ Const.xmr

operations) (for large r) (for large r)
Storage L(1+ _r_n__lggﬂ) +n mL x 2+
Requirement

(32 bit numbers)

~ 1.5mbr(1 + ."lﬂ‘_z.ﬁ) +n

~ 2 mr
~ 1.ombr x

Table 1

Computational and Storage Requirments of the SVQ.
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Rate Block-Size LMQ | ECSQ
4 8 16 24 32
a=2.0
1.0 | 467 | 4.74 | 475 | 475 | 4.76 | 440 | 4.64
15 | 712 | 7.33 | 7.47 | 7.55 | 7.58 | - 7.55
2.0 | 9.71 | 9.96 | 10.26 | 10.37 | 10.43 | 9.30 | 10.55
2.5 | 1244 | 12.61 | 13.00 | 13.07 | 13.21 - 13.54
3.0 {15.14 ) 15.35| 15.71 | 15.85 | 16.00 | 14.62 | 16.56
a=1.0
1.0 | 480 | 5.23 | 547 | 5.60 | 5.61 | 3.01 5.76
1.5 | 6.59 | 7.51 | 8.03 | 8.14 | 8.22 - 8.55
2.0 | 9.23 | 9.75 | 1042 | 10.57 | 10.73 | 7.53 | 11.31
2.5 {1149 12.26 | 12.98 | 13.21 | 13.31 - 14.32
3.0 | 14.13 | 14.95| 15.66 | 15.91 | 16.05 | 12.61 | 17.20
a = 0.3
1.0 | 541 | 693 | 731 | 7.46 | 7.79 | 1.82 | 8.53
1.5 | 7.97 | 9.24 | 10.00 | 10.54 10!.75 - 11.57
2.0 994 [ 1169} 12.44 | 13.10 13;40 5.53 | 14.53
2.5 | 11.87 | 14.09 | 14.98 | 15.38 | 15.97 - 17.49
3.0 {14.44|16.23 | 17.19 | 17.83 | 18.18 | 10.21 | 20.41
Table 2

SNR (in dB) of SVQ’s for Three Different Generalized

Gaussian Sources at Different Bit Rates (in bits/sample).
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Fig. 2.a: Normalized Distortion of the SVQ as a Function of Block-length

for a Generalized Gaussian Source; o = 0.5.
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Fig.. 2.b: Normalized Distortion of the SVQ as a Function of Block-length

for a Generalized Gaussian Source; a = 2.0.
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Fig 3: Normalized Distortion of the SVQ as a Function of the

Number of Quantization Levels.
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Fig 4: Variation of the SVQ Performance with Length Quantization.
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