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A 2-dimensional dynamic analog of squid tentacles was presented. The tenta-

cle analog consists of a multi-cell structure, which can be easily replicated to a large

scale. Each cell of the model is a quadrilateral with unit masses at the corners. Each

side of the quadrilateral is a spring-damper system in parallel. The spring constants

are the controls for the system. The dynamics are subject to the constraint that

the area of each quadrilateral must remain constant. The system dynamics was

analyzed, and various equilibrium points were found with different controls. Then

these equilibrium points were further determined experimentally, demonstrated to

be asymptotically stable. A simulation built in MATLAB was used to find the

convergence rates under different controls and damping coefficients. Finally, a con-

trol scheme was developed and used to drive the system to several configurations

observed in real tentacle.
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Chapter 1: Introduction

1.1 Objective of Study

The overall objective of the project is to explore the control of a tentacle using

a simpler mathematical analog. The specific objectives are:

• To build a mathematical analog of a tentacle.

• To determine the equilibrium configurations of the tentacle system.

• To determine the stability of the equilibrium points and the rate of conver-

gence.

• To find a family of controls of the tentacle analog.

1.2 Background and Motivation

Elephant’s trunks, squid tentacles, and the tongues of many creatures, includ-

ing humans, have two common features. They are capable of an elaborate and com-

plex collection of movements, and they consist almost entirely of muscles. Muscles

can only cause themselves to contract. Some outside force is required to lengthen

a muscle. Because muscle is about 85% water and water is incompressible, this
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lengthening force is provided by hydrostatic pressure in these boneless structures.

People have studied these muscular hydrostats experimentally and by com-

puter simulations. Simulations can replicate some, but not all, of their movement

repertoire, but they provide little insight into their control.

In order to obtain a better understanding of this control issue, this thesis

presents a 2-dimensional mathematical analog of the tentacle with a simple me-

chanical structure. The model is composed of quadrilateral cells. Linear springs

with controllable spring constants and rest length equal to zero form the boundaries

of the cells. Fixed dampers are in parallel to the springs. These cells are constrained

to have constant area, regardless of the forces applied to them. It is easy to replicate

such a simple cell on the 2-D plane, thus the properties of a model with many cells

can be understood once the simple model is well understood. In this report, the

tentacle analog is evaluated as a dynamic system. Its equilibrium points are found,

and the corresponding stabilities of the equilibrium points are studied. Addition-

ally, a simulation of the tentacle model is built in MATLAB to verify its dynamic

performance with the controls derived from the system analysis.

1.3 The Organization of the Thesis

The thesis is divided into six chapters.

Chapter 1 Introduction: This chapter provides a brief background and moti-

vation of the project.

Chapter 2 Literature Review: This chapter illustrates the relevant literatures
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and recent research related to the project.

Chapter 3 Tentacle Analog Analysis: This chapter focuses on the tentacle

system modeling, and analysis of the system equilibrium configurations for different

model.

Chapter 4 Stability and Rate of Convergence: An experimental method is used

to determine stability of the system equilibrium points. And the rate of convergence

is also studied by analyzing the experiment data.

Chapter 5 The Control of Tentacle Analog: An example of the control of

tentacle analog to achieve several movements is presented.

Chapter 6 Conclusion and Future Work: Conclusion and suggestions on the

future work are discussed.
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Chapter 2: Literature Review

Most mammals, birds, fish and lizards have bony skeletons to support their

bodies and, under the action of muscles, produce movements. However, there are

many animals and animal structures that do not have such rigid bones and con-

sist almost entirely of muscles. A notable example is the tongues of many creatures.

Instead, they use ’hydrostatic skeletons’ [1] so that the muscle contractions on differ-

ent parts of the biomechanical structure can change their shapes and create various

complex movements.

2.1 Muscular Hydrostats

2.1.1 Structure of Muscular Hydrostats

Muscles are composed primarily of water and are essentially incompressible at

physiological pressures, thus the structures that consist mainly of muscles without

the support of skeletons are termed as muscular hydrostats [2]. A muscular hydrostat

is characterized as an array of compactly arranged musculature. Animals and animal

structures with such mechanism are often in cylindrical shapes [3]. And the muscles

in these cylinders are well-arranged so that the cylinder lengths and diameters can
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be actively controlled [1]. There are mainly three orientations for the arrangement

of muscles, that are perpendicular to the longitudinal axis (See Fig.2.1):

• Circular: the muscle fibers enclose the cylinder circumferentially.

• Radial: the muscles start at the central axis and extend to the cylinder surface,

• Transverse: the muscle fibers extend in two perpendicular directions along the

cross section of the cylinder.

All three arrangements are observed to control the diameter successfully. There are

also muscles that are parallel to the longitudinal axis. The length of the cylinder can

then be changed and determined corresponding to the diameter since the cylinder

volume is constrained to be constant.

Figure 2.1: Common orientations for muscle fibers in muscular hydrostats [1]

2.1.2 Fundamental Principles

The muscular hydrostat is typically considered as a fluid-filled cavity sur-

rounded by muscle fibers [4]. The most important feature of a muscular hydrostat

is that the structure maintains constant volume. Since no evidence is shown that

flow of fluid can move in and out of the structure, the muscle tissue is believed to
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be incompressible at physiological pressures. In addition, muscle contraction does

not change structure volume, which means any change in one dimension will result

in passive changes in other dimensions.

2.1.3 Movements in Muscular Hydrostats

The fundamental principle of a muscular hydrostat serves as the basis for

achieving a variety of movements. And these movements can be categorized as

• Lengthening: The contraction of circular, radial and transverse muscles

which are perpendicular to the longitudinal axis will decrease the diameter of

the cylinder, and in the meantime increase the pressure inside the structure.

Due to the constant volume of the fluid inside the muscle, the dimension on

the longitudinal direction must be increased. Then the ’cylinder’ is lengthened

along the long axis.

• Shortening: Contraction of the longitudinal muscles forces the length to

decrease but, because of the constant volume constraint, the cross-sectional

area (equivalently, the radius of the cylinder increases).

Figure 2.2: Illustration of bending in a muscular hydrostat
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• Bending: Qualitatively, it can be achieved by muscle contractions only on one

side. The unilateral decrease in length together with the constant diameter

will resulting in bending towards the muscle contraction side.(See Fig.2.2)

2.2 Some Quantitative Models

The muscular hydrostats mainly consist of muscles, and muscle models have

been proposed and thoroughly studied by [5], [6] and many other researchers. How-

ever, in order to focus on the functions and properties, a simpler model of mus-

cular hydrostats is needed. After qualitatively understanding the basic structure

and properties of the muscular hydrostats, much research was devoted to obtaining

quantitative models. Most of the research was from the perspective of biomechanics,

thus very complicated biomechanical models were introduced. [7] proposed a model

of the reptilian tongue. [8] proposed a dynamic model of squid tentacles. However,

the limited number of DOF restricts the model to only describe the lengthening

movement. [9] developed a worm-like model. The model is quasi-static, and cannot

describe the full dynamics of motion [10].

2.3 Conclusions

The quantitative models proposed are either complicated in the biomechanical

structure, or limited in achieving movements. In a word, they are not fully able to

characterize the motion of the muscular hydrostat. Thus, it is useful to develop a

dynamic model with a simple mathematical form that is able to describe the complex
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movements of a muscular hydrostat.
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Chapter 3: Tentacle Analog Analysis

3.1 Overview

The tentacle analog is defined on a 2-dimensional plane as an array of cells.

Fig.3.1 shows an example. Each cell consists of 4 nodes, and the structure between

every two nodes is a spring-damper system in parallel arrangement (Fig.3.2). The

mass of each node is concentrated in a point mass and is set as m = 1. The springs

in the model are defined as massless, linear springs, and the spring constants are

defined as the system inputs which can be used to control the tentacle movement

and configuration. The damping coefficient of all dampers is b.

x
0 0.5 1 1.5 2 2.5 3

y

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.1: A 3-cell, single-row tentacle analog in the initial configuration
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Figure 3.2: The spring-damper system between two nodes

The initial configuration for the tentacle analog is shown in Fig.3.1. And the

feasible equilibrium configurations of the tentacle analog in the x− y plane include

at least 3 types:

• Lengthening: The tentacle is elongating along the x-axis and is thinner in

the y-direction.

• Shortening: The tentacle is shortened along the x-axis and thickened in the

y-axis.

• Bending: The tentacle is bending towards one side.

Among these, some special cases are defined. Pure lengthening is the case where

only the first cell in the model is of a trapezoidal shape while all the other cells are

identical rectangles. And pure shortening is similar to pure lengthening, but the

tentacle contracts to a shorter, thicker shape compared to the inital configuration.

There is also ideal bending, which is termed as the bended tentacle has a constant

radius and forms into a circle. And all the cells have the same area and are identical
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isosceles trapezoids in each row.

This chapter focuses on the analysis of the tentacle analog. Two models are

thoroughly researched and several theorem are stated and proved.

3.2 Single-row Tentacle Analog

3.2.1 Modeling

A single-row, n-cell tentacle model has 2n+ 2 nodes as shown in Fig.3.3 for a

3-cell example. We label the upper (top) n + 1 nodes as ti (i = 1, 2, . . . , n, n + 1)

and the lower (bottom) n + 1 nodes as bi (i = 1, 2, . . . , n, n + 1). Let xti and

xbi (i = 1, 2, 3, . . . n, n+1) denote the x-position of the 2n+2 nodes of the tentacle.

Similarly, let yti and ybi be the corresponding y-positions of nodes ti and bi. Then,

we define

x =









xt

xb









and

y =









yt

yb









where

xα =

[

xα1 xα2 . . . xα(n+1)

]T

, α = t, b

yβ =

[

yβ1 yβ2 . . . yβ(n+1)

]T

, β = t, b
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Figure 3.3: Example of a tentacle model with 3 cells shown in the pure lengthening

configuration. There are 4 pairs of nodes. The 3 pairs indicated in red and ∗ can

move in the x− y plane. The leftmost pair of nodes is fixed and immoveable. There

are 9 controls, uαi, in blue and 3 pressures, pi, (α = t, v, b and i = 1, 2, 3, 4) shown

in green. The lengths for each spring are shown in orange. The controls are the

spring constants.
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Additionally, the control u and the pressure p are defined by

u =

















ut

uv

ub

















and

p =

[

p1 p2 . . . pn

]T

where

uγ =

[

uγ1 uγ2 . . . uγn

]T

, γ = t, v, b

Here, ut,uv,ub are the controls for the upper, vertical and lower springs. The

springs connect the nodes. The controls are the spring coefficients. That is, for

example, the force on node t3 due to control ut2 is ut2

[

(xt3 − xt2)
2 + (yt3 − yt2)

2
]1/2

.

And pi(i = 1, 2, . . . , n) denotes the pressure of the ith cell.

We can first write the dynamics of the n-cell system as

ẍ = M(x,y,u,p) + bMdamp(ẋ, ẏ)I (3.1)

ÿ = N(x,y,u,p) + bNdamp(ẋ, ẏ)I (3.2)

where M and N are functions of the state, pressures and input vectors, b is the

damping coefficient assumed to be the same everywhere, and I is a 3n× 1 column

vector with all elements being 1. Since the controls u and the pressures p enter the

equations linearly, eqns (3.1) and (3.2) can be rewritten as,

ẍ = M̂(x,y)









u

p









+ bMdamp(ẋ, ẏ)I (3.3)
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ÿ = N̂(x,y)









u

p









+ bNdamp(ẋ, ẏ)I (3.4)

Combine eqns (3.3) (3.4) into a general form,









ẍ

ÿ









=









M̂(x,y)

N̂(x,y)

















u

p









+ b









Mdamp(ẋ, ẏ)

Ndamp(ẋ, ẏ)









I (3.5)

:= A(x,y)









u

p









+ bAdamp(ẋ, ẏ)I

Let z =

[

z1 z2

]T

, where

z1 =

[

xt2 yt2 xb2 yb2 . . . xt(n+1) yt(n+1) xb(n+1) yb(n+1)

]T

and

z2 =

[

ẋt2 ẏt2 ẋb2 ẏb2 . . . ẋt(n+1) ẏt(n+1) ẋb(n+1) ẏb(n+1)

]T

Then, eqn(3.5) can be written as,

ż =









ż1

ż2









=

















z2

A(z1)









u

p









+ bAdamp(z2)I

















(3.6)

where








u

p









=

[

ut1 . . . utn uv1 . . . uvn ub1 . . . ubn p1 . . . pn

]T

The crucial feature of the system is that the area of each cell must be constant

for all time regardless of the forces applied to the system. The pressures play the role
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of Lagrange multipliers that produce the forces required to maintain these constant

cell areas. Thus, there is really one more equation per cell. That equation can be

written in either of two ways. Specifically, one can use Bretschneider’s formula. Let

S denote the area of a general convex quadrilateral,

S =

√

(s− a)(s− b)(s− c)(s− d)− abcd · cos2(α + γ

2
)

where parameters a, b, c, d, s, α and γ are shown in Fig.3.4. The other expression for

Figure 3.4: A general convex quadrilateral (Wikipedia)

the area of any quadrilateral when the coordinates of its vertices are known is

S =

∣

∣

∣

∣

(xAyB − yAxB) + (xByC − yBxC) + (xCyD − yCxD) + (xDyA − yDxA)

2

∣

∣

∣

∣

(3.7)

where xi, yi are the coordinates for vertex i (i = A,B,C,D) of the quadrilateral in

Fig.3.4. And the formula actually works for any non-self-intersecting quadrilateral

no matter if it is convex or concave. With further analysis, the formula (3.7) was

found to not need the absolute value when used for convex quadrilaterals (i.e., it is

always negative), and the simplified formula is

S = −(xAyB − yAxB) + (xByC − yBxC) + (xCyD − yCxD) + (xDyA − yDxA)

2
(3.8)
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Since the coordinates for all nodes in the tentacle model are always known as a

fundamental part in the modeling, the second formula for computing the areas is

adopted. And Si is denoted as the area for cell i.

There are additional conditions on both the controls, u, and the pressures, p.

The controls must be nonnegative because they are equivalent to spring coefficients

for linear springs. The pressures must be nonnegative as well.

Thus, the complete mathematical description of the tentacle analog is

ż =









ż1

ż2









=

















z2

A(z1)









u

p









+ bAdamp(z2)I

















Si = S∗ for all i

uαi ≥ 0 α = t, d for all time and i

pi ≥ 0 for all time and i

where S∗ is the constant area.

There are additional constraints that are much more complicated to write

and that usually can be ignored. Specifically, all the ”spring” lengths must be

nonnegative. It is necessary to verify that these constraints are satisfied but they

generally are inactive.

3.2.2 Equilibria

Firstly, we analyze the conditions that must be satisfied at a lengthened or

shortened equilibrium configuration. If the tentacle can have equilibrium configura-
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tions, denoted by z1e with their velocities z2e = 0, there must exist some positive

controls and pressures such that the states of these configurations are sets of equi-

librium points. Then according to eqn(3.6), there should exist









u

p









that satisfy

0 =









ż1e

ż2e









=

















z2e

A(z1e)









u

p









+ bAdamp(z2e)I

















which can be reduced to the necessary and sufficient condition

A(z1e)









u

p









= 0 (3.9)

for a known A(z1e) because, for linear damping, Adamp(0) = 0. Additionally, u and

p should satisfy the constraints,

u ≥ 0 and p ≥ 0 (3.10)

and the z1e must form a configuration that complies with

Si = S∗ i = 1, 2, . . . , n (3.11)

though the constant value S∗ can vary from cell to cell.

To find a nontrivial solution to this problem, the rank of the matrix A(z1e)

must be analyzed. If A(z1e) has full rank, which is 4n, then there is no nontrivial

solution to this problem, and the associated configuration can only be an equilibrium

point if u and p are both 0. If A(z1e) is less than full rank, there exist infinitely

many solutions to eqn(3.9). But it is still necessary to determine if any solution

satisfies constraints (3.10) and (3.11).
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• Theorem 1: For a model consisting of n cells in a single row, in the pure

lengthening or pure shortening case, the rank of the 4n × 4n A(ze) is 3n.

Furthermore, the uti (i = 1, 2, . . . , n) can be chosen to be any numbers greater

than or equal to 0 and the remaining controls and the pressures are then

uniquely determined.

Proof: Given that the number of cells is n, the dimension of the matrix A(z1e) is

4n×4n. Assume that controls uti = αi (for all 1 ≤ i ≤ n), where the αi are arbitrary

positive numbers. Then we use induction to solve for the rest of the controls and

pressures from cell n to cell 1 for the lengthening and shortening case separately.

Due to the configurations of pure lengthening and pure shortening, as can be seen

in Fig.3.3 for an example, we know that nodes ti and bi (i = 1, 2, . . . , n + 1 ) are

symmetric with respect to the x-axis, thus

xti = xbi, yti = −ybi

Additionally, the parameters for the configuration are

xt(i+1) − xti =

{ h, i = 1

d, i ≥ 2

yti − ybi =

{ a, i = 1

c, i ≥ 2

where

a + c

2
h = cd

18



such that constraint (3.11) is satisfied.

(a) Pure lengthening

• Step 1: For the last cell (cell n), we have four equations governing the positions

of nodes (xt(n+1), yt(n+1)) and (xb(n+1), yb(n+1)),

0 =− (xt(n+1) − xtn)utn − (xt(n+1) − xb(n+1))uvn +
∣

∣yt(n+1) − yb(n+1)

∣

∣ pn

(3.12)

0 =− (yt(n+1) − ytn)utn − (yt(n+1) − yb(n+1))uvn +
∣

∣xt(n+1) − xtn

∣

∣ pn (3.13)

0 = (xt(n+1) − xb(n+1))uvn − (xb(n+1) − xbn)ubn +
∣

∣yt(n+1) − yb(n+1)

∣

∣ pn (3.14)

0 = (yt(n+1) − yb(n+1))uvn − (yb(n+1) − ybn)ubn +
∣

∣xb(n+1) − xbn

∣

∣ pn (3.15)

By rearranging eqns(3.12) and (3.14) (and by symmetry), it is clear that utn =

ubn. Then, it is easy to see that eqns(3.13) and (3.15) are equivalent. Thus, we

have two linearly independent equations for the last cell with two unknowns,

uvn and pn. Also, the above equations can be rewritten in matrix form,

04×1 = An(z1en)









un

pn









=

























−d 0 0 c

0 −c 0 d

0 0 −d c

0 c 0 −d

















































utn

uvn

ubn

pn

























where z1en is the postions of nodes t(n+1) and b(n+1) in the vector form. Then

check the rank of An(z1en)

rank(An(z1en)) = 3
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Thus, the above equations have infinitely many solutions. And the null space

for An(z1en) can be written as

N (An(z1en)) = β

[

c/d d/c c/d 1

]T

, β ∈ R

If we choose utn = αn, the system of equations (3.12) (3.13) (3.14) (3.15) has

the unique solution,

uvn =

(

d

c

)2

αn, ubn = αn, pn =

(

d

c

)

αn

• Step 2: Assume that we have solved for ut, uv, ub and p up to nodes (xt(i+2), yt(i+2))

and (xb(i+2), yb(i+2)). Then for nodes (xt(i+1), yt(i+1)) and (xb(i+1), yb(i+1)) in

cell i, we have four equations,

0 =− (xt(i+1) − xti)uti + (xt(i+2) − xt(i+1))ut(i+1) (3.16)

− (xt(i+1) − xb(i+1))uvi +
∣

∣yt(i+1) − yb(i+1)

∣

∣ pi −
∣

∣yt(i+1) − yb(i+1)

∣

∣ p(i+1)

0 =− (yt(i+1) − yti)uti + (yt(i+2) − yt(i+1))ut(i+1) − (yt(i+i) − yb(i+1))uvi (3.17)

+
∣

∣xt(i+1) − xti

∣

∣ pi +
∣

∣xt(i+2) − xt(i+1)

∣

∣ p(i+1)

0 =(xt(i+1) − xb(i+1))uvi − (xb(i+1) − xbi)ubi + (xb(i+2) − xb(i+1))ub(i+1) (3.18)

+
∣

∣yt(i+1) − yb(i+1)

∣

∣ pi −
∣

∣yt(i+1) − yb(i+1)

∣

∣ p(i+1)

0 =(yt(i+1) − yb(i+1))uvi − (yb(i+1) − ybi)ubi + (yb(i+2) − yb(i+1))ub(i+1) (3.19)

−
∣

∣xb(i+1) − xbi

∣

∣ pi −
∣

∣xb(i+2) − xb(i+1)

∣

∣ p(i+1)

Similarly, by substituting the configuration parameters into the above equa-
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tions and rewriting them into the matrix form,

04×1 = Ai(z1ei)









ui

pi









+Bi(z1ei)









u(i+1)

p(i+1)









=

























−d 0 0 c

0 −c 0 d

0 0 −d c

0 c 0 −d

















































uti

uvi

ubi

pi

























+

























d 0 0 −c

0 0 0 d

0 0 d −c

0 0 0 −d

















































ut(i+1)

uv(i+1)

ub(i+1)

pn(i+1)

























=

























−d 0 0 c

0 −c 0 d

0 0 −d c

0 c 0 −d

















































uti

uvi

ubi

pi

























+

























0

α(i+1)d
2/c

0

−α(i+1)d
2/c

























Since Bi(z1ei)









u(i+1)

p(i+1)









is in the linear span of matrix Ai(z1ei), the system

of equations has infinitely many solutions. Additionally, choosing uti = αi,

results in a unique solution to the above equations,

uvi =

(

d

c

)2
(

αi + α(i+1)

)

, ubi = αi, pi =

(

d

c

)

αi

• Step 3: For the first cell of the model, nodes (xt2, yt2) and (xb2, yb2) must

satisfy
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0 =− (xt2 − xt1)ut1 + (xt3 − xt2)ut2 − (xt2 − xb2)uv1 + |yt1 − yb2| p1 − |yt2 − yb2| p2

(3.20)

0 =− (yt2 − yt1)ut1 + (yt3 − yt2)ut2 − (yt2 − yb2)uv1 + |xt2 − xt1| p1 + |xt3 − xt2| p2

(3.21)

0 = (xt2 − xb2)uv1 − (xb2 − xb1)ub1 + (xb3 − xb2)ub2 + |yt1 − yb2| p1 − |yt2 − yb2| p2

(3.22)

0 = (yt2 − yb2)uv1 − (yb2 − yb1)ub1 + (yb3 − yb2)ub2 − |xb2 − xb1| p1 − |xb3 − xb2| p2

(3.23)

which are basically the same as eqns (3.16) (3.17) (3.18) (3.19). And again by

substitution with the configuration parameters, we obtain

uv1 =

(

d

c

)2

α2 +

[

a− c

2c
+

2h2

c(a+ c)

]

α1, ub1 = α1, p1 =

(

2h

a+ c

)

α1

given ut1 = α1. Since a is greater than c in the lengthening configuration, it is

easy to verify that all controls and pressures are greater than 0, and that the

constraint (3.10) is satisfied for all solutions.

To conclude, each pair of nodes of the model has three linearly independent

equations governing its position. For a system of n cells, there are n pairs

of nodes to be determined. Thus we have 3n linearly independent equations.

Therefore, for the 4n× 4n matrix A(z1e), its rank is 3n.
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(b) Pure shortening (we analyze this case in the same manner as in the length-

ening case)

• Step 1: For cell n, there are four equations governing the positions of the last

pair of nodes. They are exactly the same as eqns(3.12) (3.13) (3.14) and (3.15).

Thus the same result is obtained. There are only three linearly independent

equations. And the unique solution to these equations is

uvn =

(

d

c

)2

αn, ubn = αn, pn =

(

d

c

)

αn

given the arbitrarily chosen control utn = αn > 0.

• Step 2: Assume that all controls ut, uv, ub and pressures p have been solved

backwards from cell n to cell i+1. We want to solve for the nodes in cell i. We

again get eqns(3.16) (3.17) (3.18) and (3.19), which lead to the same conclu-

sion. Only three linearly independent equations will be required. Additionally,

given any uti = αi > 0, by solving the above equations, we obtain

uvi =

(

d

c

)2
(

αi + α(i+1)

)

, ubi = αi, pi =

(

d

c

)

αi

• Step 3: For the first cell of the model, eqns (3.20) (3.21) (3.22) (3.23) apply,

so three linearly independent equations are again obtained. The solution is

uv1 =

(

d

c

)2

α2 +

[

a− c

2c
+

2h2

c(a+ c)

]

α1, ub1 = α1, p1 =

(

2h

a+ c

)

α1

Since parameter a < c in the pure shortening case, it is possible that the

control uv1 is negative. Thus one more condition is needed here to guarantee
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c
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t
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uvnuv(n-1) pn

ubn

l

Figure 3.5: A randomly-shaped convex quadrilateral with the top and bottom par-

allel to each other.

that uv1 > 0. It is

α2 >
2c5 (c3 − a2c− 4h2)

h2 (a+ c)3
α1

To conclude, we obtain three linearly independent equations for each pair of

nodes in the tentacle model in a pure shortening configuration. For a tentacle

model with n cells, there are 3n linearly independent equations. Therefore,

the rank of the matrix A(z1e) in eqn(3.9) is 3n.

• Theorem 2: For a tentacle model of any size, the last cell can only be a

rectangle or an isosceles trapezoid if the top and bottom of the cell are

parallel.

Proof: Assume that the last cell is a randomly-shaped convex quadrilateral

except that the top and bottom are parallel to each other. Without loss of
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generality, we can align the x-axis with the top and bottom as shown in Fig.3.5.

Given these assumptions,

yt(n+1) − ytn = yb(n+1) − ybn = 0

yt(n+1) − yb(n+1) = ytn − ybn = c (c > 0)

and we can set

xt(n+1) − xtn = t (t > 0)

xb(n+1) − xbn = b (b > 0)

xb(n+1) − xt(n+1) = l (l 6= 0 and l can be negative)

We have four equations defining an equilibrium of the last pair of nodes,

0 =− (xt(n+1) − xtn)utn − (xt(n+1) − xb(n+1))uvn +
∣

∣ytn − yb(n+1)

∣

∣ pn

0 =− (yt(n+1) − ytn)utn − (yt(n+1) − yb(n+1))uvn +
∣

∣xb(n+1) − xtn

∣

∣ pn

0 = (xt(n+1) − xb(n+1))uvn − (xb(n+1) − xbn)ubn +
∣

∣yt(n+1) − ybn
∣

∣ pn

0 = (yt(n+1) − yb(n+1))uvn − (yb(n+1) − ybn)ubn −
∣

∣xt(n+1) − xbn

∣

∣ pn

Applying the assumptions to these equations, we get

0 = −tutn + luvn + cpn

0 = −cuvn + (t+ l)pn

0 = −luvn − bubn + cpn

0 = cuvn − (b− l)pn
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which can be rewritten as

04×1 = An(zen)









un

pn









=

























−t l 0 c

0 −c 0 l + t

0 −l −b c

0 c 0 l − b

















































utn

uvn

ubn

pn

























(3.24)

To show that there exist some nonzero solutions such that the specific con-

figuration is an equilibrium point, we need to show An is less than full rank.

It is easy to see from eqns(3.24) that rank(An) = 3 if and only if b − t = 2l

holds. And there are 2 cases that satisfy this condition:

– Case 1: The convex quadrilateral is a rectangle if t = b and l = 0;

– Case 2: The convex quadrilateral is an isosceles trapezoid if t 6= b.

It is obvious that Case 1 is nothing but the configuration for the last cell in

the pure lengthening and pure shortening case. And the controls and pressure

are

uvn =

(

d

c

)2

α1, ubn = α1, pn =

(

d

c

)

α1 (3.25)

provided utn = α1 (α1 > 0).

Case 2, where the last cell is an isosceles trapezoid, suggests the possibility of

curved equilibria. As a matter of fact, curved equilibria do exist. This is proven

below.
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Figure 3.6: Example of a system with 3 cells in the bending case (Each cell is in the

shape of an identical isosceles trapezoid. The model has 4 pairs of nodes, where 3

pairs, in red and ∗, can move in the x − y plane. The leftmost pair cannot move.

The parameters defining the trapezoidal shape are indicated in orange.)
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• Theorem 3: Given an n-cell single-row model with an ideal bending configu-

ration z1e consisting of identical isosceles trapezoids , the rank of the 4n×4n

A(z1e) is 3n. Furthermore, the controls uti (i = 1, 2, . . . , n) can be chosen

to be any positive number and these choices uniquely determine the other

controls and pressures.

Proof: Mathematical induction is used to prove the bending theorem. Since

the designed configuration is bending along a circle with a constant radius ,

polar coordinates are used for the equilibrium configuration analysis instead

of Cartesian coordinates. Similarly, given a system with n cells in the bending

configuration z1e with z2e = 0, the dimension of the matrix A(z1e) is 4n×4n.

Assume that upper controls uti = di (for all 1 ≤ i ≤ n), where the di are

arbitrary positive numbers.

b

t

*

*θ

⇀n

⇀
t

⇀
t

α

R0

R1

r

Figure 3.7: Bending configuration of the isosceles trapezoid with the polar coordi-

nates

The isosceles trapezoid is defined by 3 variables, α,R0 and β as shown in
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Fig.3.6 and Fig.3.7. Here, α is the angle between the two legs of the trapezoid

(0 < α < π/2). R0 is the distance from the upper nodes to the origin O (R0 >

0). And the distance from the bottom nodes to the origin O is denoted as

R1, where R1 is determined by R1 = βR0 (β > 1). Without loss of generality,

we use variables t, b, θ and r for simplicity (as shown in Fig.3.7), and their

relationship with α,R0 and β is

θ =
α

2

R1 = βR0

r = R1 −R0 = (β − 1)R0

t = 2R0 sin θ

b = 2R1 sin θ = 2βR0 sin θ

• Step 1: For the last cell (cell n), we have four equations governing the equi-

librium of the nodes.

0 = −tutn cos θ + rpn + tpn sin θ

0 = tutn sin θ − ruvn + tpn cos θ

0 = −bubn cos θ + rpn − bpn sin θ

0 = ruvn + bubn sin θ − bpn cos θ
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which can be rewritten as

04×1 =An(zen)









un

pn









=

























−t cos θ 0 0 r + t sin θ

t sin θ −r 0 t cos θ

0 0 −b cos θ r − b sin θ

0 r b sin θ −b cos θ

















































utn

uvn

ubn

pn

























(3.26)

=

























− sinαR0 0 0 (β − cosα)R0

−(cosα− 1)R0 −(β − 1)R0 0 sinαR0

0 0 −β sinαR0 (β cosα− 1)R0

0 (β − 1)R0 −β(cosα− 1)R0 −β sinαR0

















































utn

uvn

ubn

pn

























(3.27)

Then, by checking the rank of An(zen), we get

rank(An(zen)) = 3

Thus, the above equations have infinitely many solutions. And the null space

is

N (An(zen)) = γ

[

(β − cosα) cscα
(β+1) tan(α

2
)

β−1
cotα− cscα

β
1

]T

, γ ∈ R

(3.28)

Additionally, to satisfy constraints (3.10), all the controls and pressures must

be nonnegative. Thus, we need all elements in the kernel to be nonnegative.
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Then by solving the inequalities

(β − cosα) cscα ≥ 0

(β + 1) tan
(

α
2

)

β − 1
≥ 0

cotα− cscα

β
≥ 0

Further constraints on variables α and β are obtained. They are

0 < α < π/2

β > 1/ cosα

By the previous assumption that utn = dn, the controls and pressure for cell

n are obtained,

uvn =
(β + 1) sinα tan

(

α
2

)

(β − 1)(β − cosα)
dn

ubn =
β cosα− 1

β2 − β cosα
dn

pn =
sinα

β − cosα
dn

• Step 2: Assume that we have solved for ut, uv, ub and p from cell n to cell

(i+ 1). Then for nodes t(i+1), b(i+1) in the ith cell, we have four equations,

0 = −tuti cos θ + rpi + tpi sin θ + tut(i+1) cos θ − rp(i+1) − tp(i+1) sin θ

0 = tuti sin θ − ruvi + tpi cos θ + tut(i+1) sin θ + tp(i+1) cos θ

0 = −bubi cos θ + rpi − bpi sin θ + bub(i+1) cos θ − rp(i+1) + bp(i+1) sin θ

0 = ruvi + bubi sin θ − bpi cos θ + bub(i+1) sin θ − bp(i+1) cos θ
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By simplification, this system of equations can be rewritten as

04×1 =Ai(zei)









ui

pi









+Bi(zei)









u(i+1)

p(i+1)









(3.29)

=

























− sinαR0 0 0 (β − cosα)R0

−(cosα− 1)R0 −(β − 1)R0 0 sinαR0

0 0 −β sinαR0 (β cosα− 1)R0

0 (β − 1)R0 −β(cosα− 1)R0 −β sinαR0

















































uti

uvi

ubi

pi

























(3.30)

+

























sinαR0 0 0 (cosα− β)R0

−(cosα− 1)R0 0 0 sinαR0

0 0 β sinαR0 (1− β cosα)R0

0 0 −β(cosα− 1)R0 −β sinαR0

















































ut(i+1)

uv(i+1)

ub(i+1)

p(i+1)

























By substitution of controls and pressures solved previously and defining bi to

be

bi =Bi(zei)









u(i+1)

p(i+1)









=

[

0 − (β+1)R0(cosα−1)
β−cosα

d(i+1) 0 (β+1)R0(cosα−1)
β−cosα

d(i+1)

]T

It is easy to see that Ai computed above is exactly the same as the matrix

An in eqn(3.30). Thus its rank is 3 as well. Since the augmented matrix
[

Ai bi

]

is of the same rank as Ai,

rank

([

Ai bi

])

= rank(Ai) = 3

There exist infinitely many solutions to eqn(3.29). And then by solving for
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the equation Ai









ui

pi









= −bi, the particular solution is given as

[

u∗

ti u∗

vi u∗

bi p∗i

]T

=

[

0 − (β+1)(cos α−1)
(β−1)(β−cos α)

d(i+1) 0 0

]T

Together with the null space acquired from (3.49), and with uti = di (ki > 0),

the controls and pressure can be uniquely determined as

uvi =
(β + 1) sinα tan

(

α
2

)

(β − 1)(β − cosα)
(di + d(i+1))

ubi =
β cosα− 1

β2 − β cosα
di

pi =
sinα

β − cosα
di

and these are all positive.

• Step 3: For the first cell of the bending model, the equations governing the
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positions are the same as eqn(3.29),

04×1 =A1(ze1)









u1

p1









+B1(ze1)









u2

p2









=

























− sinαR0 0 0 (β − cosα)R0

−(cosα− 1)R0 −(β − 1)R0 0 sinαR0

0 0 −β sinαR0 (β cosα− 1)R0

0 (β − 1)R0 −β(cosα− 1)R0 −β sinαR0

















































ut1

uv1

ub1

p1

























+

























sinαR0 0 0 (cosα− β)R0

−(cosα− 1)R0 0 0 sinαR0

0 0 β sinαR0 (1− β cosα)R0

0 0 −β(cosα− 1)R0 −β sinαR0

















































ut2

uv2

ub2

p2

























From Step 2, the controls and pressure for the cell 2 are

uv2 =
(β + 1) sinα tan

(

α
2

)

(β − 1)(β − cosα)
(d2 + d3)

ub2 =
β cosα− 1

β2 − β cosα
d2

p2 =
sinα

β − cosα
d2

Then

b1 =B1(ze1)









u2

p2









=

[

0 − (β+1)R0(cosα−1)
β−cosα

d2 0 (β+1)R0(cosα−1)
β−cosα

d2

]T

Thus, the particular solution of this system of equations is acquired as

[

u∗

ti u∗

vi u∗

bi p∗i

]T

=

[

0 − (β+1)(cos α−1)
(β−1)(β−cos α)

d2 0 0

]T
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Since the general solution is in the null space of matrix A1(ze1), it is exactly

the result shown in eqn(3.49). The unique solution is

uv1 =
(β + 1) sinα tan

(

α
2

)

(β − 1)(β − cosα)
(d1 + d2)

ub1 =
β cosα− 1

β2 − β cosα
d1

p1 =
sinα

β − cosα
d1

if the control ut1 is specified as ut1 = d1 > 0.

To conclude, the rank for the coefficient matrix of each cell is 3 in the ideal

bending configuration. For a tentacle model with n cells, there are 3n linearly

independent equations. Therefore, the rank of the matrix A(ze) in eqn(3.9)

is 3n. And the controls uti (i = 1, 2, . . . , n) can be any positive number.

By Theorem 3, the existence of the bending tentacle configuration is proved.

And notice that the model is bending around an origin O with a constant radius.

As a matter of fact, bending into a circle is not the only complex movement

that the tentacle model can perform, it can even coil up like real squid tentacles do.

This is proven below.

• Theorem 4: When the last cell is an isosceles trapezoid at equilibrium, the

next to last cell can be a rectangle with all constraints satisfied.

Proof: Assume the last cell is in the shape of an isosceles trapezoid. And

the trapezoid is defined by variables α, β and R0, as illustrated in Fig.3.8.
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*
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r

d

O
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Figure 3.8: A rectangular cell next to an isosceles trapezoidal cell at equilibrium

According to Theorem 3, the controls and pressure for the last cell are

utn = dn

uvn =
(β + 1) sinα tan

(

α
2

)

(β − 1)(β − cosα)
dn

ubn =
β cosα− 1

β2 − β cosα
dn

pn =
sinα

β − cosα
dn

where dn can be any positive real number.

The trapezoid cell is connected to a rectangular cell. Due to the constant area

constraint, the parameter d for the rectangle satisfies

d =
1
2
(β2 − 1)R2

0 sinα

r
=

1
2
(β2 − 1)R2

0 sinα

(β − 1)R0

=
(β + 1)R0

2
sinα
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Then, for the middle nodes, indicated in red and by ∗, we get

04×1 = A(n−1)(ze(n−1))









u(n−1)

p(n−1)









+B(n−1)(ze(n−1))









un

pn









=

























−1
2
(β + 1) sinαR0 0 0 (β − 1)R0

0 −(β − 1)R0 0 1
2
(β + 1) sinαR0

0 0 −1
2
(β + 1) sinαR0 (β − 1)R0

0 (β − 1)R0 0 −1
2
(β + 1) sinαR0

















































ut(n−1)

uv(n−1)

ub(n−1)

p(n−1)

























+

























sinαR0 0 0 (cosα− β)R0

−(cosα− 1)R0 0 0 sinαR0

0 0 β sinαR0 (1− β cosα)R0

0 0 −β(cosα− 1)R0 −β sinαR0

















































utn

uvn

ubn

pn

























and

b(n−1) =B(n−1)(ze(n−1))









un

pn









=

[

0 − (β+1)R0(cosα−1)
β−cosα

dn 0 (β+1)R0(cosα−1)
β−cosα

dn

]T

Note that

rank

([

A(n−1) b(n−1)

])

= rank(A(n−1)) = 3

which implies infinitely many solutions exist for the above equations. In ad-

dition, by solving

A(n−1)









u(n−1)

p(n−1)









= −b(n−1)

the particular solution can be obtained as

[

u∗

t(n−1) u∗

v(n−1) u∗

b(n−1) p∗(n−1)

]T

=

[

0 − (β+1)(cos α−1)
(β−1)(β−cos α)

dn 0 0

]T
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And together with the general solution, the controls and pressure for the rect-

angle cell are

ut(n−1) = d(n−1)

uv(n−1) =
(β + 1)2 sin2 α

4(β − 1)2
d(n−1) +

(β + 1)(1− cosα)

(β − 1)(β − cosα)
dn

ub(n−1) = d(n−1)

p(n−1) =
(β + 1) sinα

2(β − 1)
d(n−1)

Notice that all the solutions are positive if d(n−1) is positive. Thus, there

exist feasible controls and pressure that satisfies constraints (3.10) (3.11). In

other word, there exist equilibrium configurations in which a rectangular cell

is connected with an isosceles trapezoidal cell. Obviously, the rectangular cell

can be also connected with other rectangular cells or isosceles trapezoidal cells

with different angles α. Thus, the tentacle model could form into a coil.

3.3 Double-row Tentacle Analog

3.3.1 Overview

Now, we analyze the tentacle model with two rows. Here we use similar no-

tation to that for the single-row case. For a double-row tentacle model with n cells

per row, there are 3n+3 nodes in the model. We name the upper (top), middle and

lower (bottom) nodes as ti, mi and bi, respectively. Then the positions for these
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nodes can be expressed as x and y, and

x =

















xt

xm

xb

















and y =

















yt

ym

yb

















where

xα =

[

xα1 xα2 . . . xα(n+1)

]T

, α = t,m, b

yβ =

[

yβ1 yβ2 . . . yβ(n+1)

]T

, β = t,m, b

In addition, the control u and the pressure p are defined as

u =

[

ut uvt um uvb ub

]T

and

p =









pt

pb









where

uγ =

[

uγ1 uγ2 . . . uγn

]T

, γ = t, vt,m, vb, b

pδ =

[

pδ1 pδ2 . . . pδn

]T

, δ = t, b

Here, ut,uvt,um,uvb,ub are the controls for springs connecting upper, middle and

lower nodes. And pti, pbi (i = 1, 2, . . . , n) denote the pressure of the ith cell in the

upper or lower row, respectively.
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b1
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c

m2

* * *
m3 m4

uvt1 uvt2 uvt3

uvb1 uvb2 uvb3

pt1 pt2 pt3

pb2 pb3
pb1

Figure 3.9: Example of a double-row tentacle analog with 3 cells per row in the

lengthening case (4 pairs of nodes, where 3 pairs, in red, can move in the x − y

plane. 15 controls uαi are indicated in blue while 6 pressures pi are shown in green

(i = 1, 2, . . . , n). The lengths for each spring are shown in orange)
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3.3.2 Equilibria

• Theorem 5: For the double-row case of the tentacle analog, there exist mul-

tiple constant controls and pressures that have the same equilibrium points

z1e, where

z1e =

[

z1e z2e z3e . . . zie . . . zne

]T

and

zie =

[

xt(i+1)e yt(i+1)e xm(i+1)e ym(i+1)e xb(i+1)e yb(i+1)e

]T

Analysis: To prove the theorem, we need to show that there exists [ u p ]T that

satisfy eqn(3.9), eqn(3.10) and eqn(3.11). (The configuration of the double-row

tentacle model is illustrated in Fig.3.9, i.e. only the first two cells consisting of

the first pairs of nodes is in a trapezoid shape while the rest of the cells are all

rectangular, and the tentacle is symmetric about the x-axis. All the parameters of

the configuration are shown in Fig.3.9.)

Proof: We prove this theorem in the same manner as we did for the lengthening

and shortening case for the single-row tentacle model.

(a) Pure lengthening

• Step 1: For the last pair of nodes
(

t(n+1), m(n+1), b(n+1)

)

, which compose 2
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cells, we have 6 equations that governing their positions.

0 =− (xt(n+1) − xtn)utn − (xt(n+1) − xm(n+1))uvtn +
∣

∣ytn − ym(n+1)

∣

∣ ptn (3.31)

0 =− (yt(n+1) − ytn)utn − (yt(n+1) − ym(n+1))uvtn +
∣

∣xtn − xm(n+1)

∣

∣ ptn (3.32)

0 = (xt(n+1) − xm(n+1))uvtn − (xm(n+1) − xmn)umn (3.33)

+ (xm(n+1) − xb(n+1))uvbn +
∣

∣yt(n+1) − ymn

∣

∣ ptn +
∣

∣ymn − yb(n+1)

∣

∣ pbn

0 = (yt(n+1) − ym(n+1))uvtn − (ym(n+1) − ymn)umn (3.34)

+ (xm(n+1) − xb(n+1))uvbn −
∣

∣xt(n+1) − xmn

∣

∣ ptn +
∣

∣xmn − xb(n+1)

∣

∣ pbn

0 = (xt(n+1) − xb(n+1))uvbn − (xb(n+1) − xbn)ubn +
∣

∣ym(n+1) − ybn
∣

∣ pn (3.35)

0 = (yt(n+1) − yb(n+1))uvbn − (yb(n+1) − ybn)ubn +
∣

∣xm(n+1) − xbn

∣

∣ pn (3.36)

By putting the parameters of this configuration into the equations (3.31) (3.32)

(3.33) (3.34) (3.35) (3.36) and simplifying, we obtain

06×1 =An(zen)









un

pn









=









































−d 0 0 0 0 c 0

0 −c 0 0 0 d 0

0 0 −d 0 0 c c

0 c 0 −c 0 −d d

0 0 0 0 −d 0 c

0 0 0 c 0 0 −d









































6×7

















































utn

uvtn

umn

uvbn

ubn

ptn

pbn

















































7×1

Notice that the summation of the second row and the fourth row of the matrix

An(zen) would cancel the sixth row. We also check the rank of An(zen)

with the MATLAB symbolic solver and find that rank (A(zen)) = 5, and
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the nullspace is spanned by

N (An(zen)) =









c
d

d
c

c
d

0 0 1 0

0 0 c
d

d
c

c
d

0 1









T 







α

β









for arbitrary real α, β. Now if we assume utn = αn and ubn = βn (αn ≥ 0, βn ≥

0), then we can have the controls are

uvtn =

(

d

c

)2

αn, umn = αn + βn, uvbn =

(

d

c

)2

βn, ptn =
d

c
αn, pbn =

d

c
βn

Since the parameters shown in Fig.3.9 are positive, the controls un are non-

negative, and satisfy constraint(3.10).

• Step 2: Assume that we have solved for controls ut, uvt, um, uvb, ub and pres-

sures pt, pb from the last pair of nodes backwardly to nodes t(i+2), m(i+2) and
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m(i+2). Then for nodes t(i+1), m(i+1) and b(i+1) in cell i, we have six equations,

0 =− (xt(i+1) − xti)uti + (xt(i+2) − xt(i+1))ut(i+1) (3.37)

− (xt(i+1) − xm(i+1))uvti +
∣

∣yti − ym(i+1)

∣

∣ pti −
∣

∣yt(i+2) − ym(i+1)

∣

∣ pt(i+1)

0 =− (yt(i+1) − yti)uti + (yt(i+2) − yt(i+1))ut(i+1) (3.38)

− (yt(i+1) − ym(i+1))uvti +
∣

∣xti − xm(i+1)

∣

∣ pti +
∣

∣xt(i+2) − xm(i+1)

∣

∣ pt(i+1)

0 = (xt(i+1) − xm(i+1))uvti − (xm(i+1) − xmi)umi (3.39)

+ (xm(i+2) − xm(i+1))um(i+1) − (xm(i+1) − xb(i+1))uvbi +
∣

∣yt(i+1) − ymi

∣

∣ pti

−
∣

∣yt(i+1) − ym(i+2)

∣

∣ pt(i+1) +
∣

∣ymi − yb(i+1)

∣

∣ pbi −
∣

∣ym(i+2) − yb(i+1)

∣

∣ pb(i+1)

0 = (yt(i+1) − ym(i+1))uvti − (ym(i+1) − ymi)umi (3.40)

+ (ym(i+2) − ym(i+1))um(i+1) − (ym(i+1) − yb(i+1))uvbi −
∣

∣xt(i+1) − xmi

∣

∣ pti

−
∣

∣xt(i+1) − xm(i+2)

∣

∣ pt(i+1) +
∣

∣xmi − xb(i+1)

∣

∣ pbi +
∣

∣xm(i+2) − xb(i+1)

∣

∣ pb(i+1)

0 = (xm(i+1) − xb(i+1))uvbi − (xb(i+1) − xbi)ubi (3.41)

+ (xb(i+2) − xb(i+1))ub(i+1) +
∣

∣ym(i+1) − ybi
∣

∣ pbi −
∣

∣ym(i+2) − yb(i+1)

∣

∣ pb(i+1)

0 = (ym(i+1) − yb(i+1))uvbi − (yb(i+1) − ybi)ubi + (yb(i+2) − yb(i+1))ub(i+1) (3.42)

−
∣

∣xm(i+1) − xbi

∣

∣ pbi −
∣

∣xb(i+2) − xb(i+1)

∣

∣ pb(i+1)

By simplifying these equations with the given parameters and the controls
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determined previously, we get

06×1 =Ai(zei)









ui

pi









+ bi

=









































−d 0 0 0 0 c 0

0 −c 0 0 0 d 0

0 0 −d 0 0 c c

0 c 0 −c 0 −d d

0 0 0 0 −d 0 c

0 0 0 c 0 0 −d

























































































uti

uvti

umi

uvbi

ubi

pti

pbi

















































+









































0

d2

c
α(i+1)

0

d2

c
(β(i+1) − α(i+1))

0

−d2

c
β(i+1)









































It is obvious that Ai(zei) is exactly the same as An(zen), so its rank is 5 as

well, and we have 2 free variables for this group of equations. Since

rank

([

Ai(zei) bi

])

= rank(Ai(zei)) = 3

There are infinitely many solutions to the equation. Assume uti = αi and

ubi = βi (αi ≥ 0, βi ≥ 0), then the controls must be

uvti =

(

d

c

)2

(αi + α(i+1)), umi = αi + βi, uvbi =

(

d

c

)2

(βi + β(i+1)), pti =
d

c
αi, pbi =

d

c
βi

It is easy to see that all the controls are nonnegative.

• Step 3: For the first 2 cells of the tentacle model, the motions of nodes t2, m2
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and b2 are determined by

0 =− (xt2 − xt1)ut1 + (xt3 − xt2)ut2 − (xt2 − xm2)uvt1 + |yt1 − ym2| pt1 − |yt2 − ym2| pt2

(3.43)

0 =− (yt2 − yt1)ut1 + (yt3 − yt2)ut2 − (yt2 − ym2)uvt1 + |xt1 − xm2| pt1 + |xt3 − xm2| pt2

(3.44)

0 = (xt2 − xm2)uvt1 − (xm2 − xm1)um1 + (xm3 − xm2)um2 − (xm2 − xb2)uvb1

(3.45)

+ |yt2 − ym1| pt1 − |yt2 − ym3| pt2 + |ym1 − yb2| pb1 − |ym3 − yb2| pb2

0 = (yt2 − ym2)uvt1 − (ym2 − ym1)um1 + (ym3 − ym2)um2 − (ym2 − yb2)uvb1

(3.46)

− |xt2 − xm1| pt1 − |xt2 − xm3| pt2 + |xm1 − xb2| pb1 + |xm3 − xb2| pb2

0 = (xm2 − xb2)uvb1 − (xb2 − xb1)ub1 + (xb3 − xb2)ub2 + |ym2 − yb1| pb1 − |ym3 − yb2| pb2

(3.47)

0 = (ym2 − yb2)uvb1 − (yb2 − yb1)ub1 + (yb3 − yb2)ub2 − |xm2 − xb1| pb1 − |xb3 − xb2| pb2

(3.48)
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After simplification,

06×1 =A1(ze1)









u1

p1









+ b1

=









































−h 0 0 0 0 a 0

a− c −c 0 0 0 h 0

0 0 −h 0 0 c c

0 c 0 −c 0 −h h

0 0 0 0 −h 0 a

0 0 0 c c− a 0 −h

























































































ut1

uvt1

um1

uvb1

ub1

pt1

pb1

















































+









































0

d2

c
α2

0

d2

c
(β2 − α2)

0

−d2

c
β2









































Here rank (A(ze1)) = 6, thus we only have 1 free variable. The nullspace is

spanned by

N (An(ze1)) = α

[

a
h

a2−ac+h2

ch
2c
h

a2−ac+h2

ch
a
h

1 1

]T

for any real α. Let ut1 = α1 (α1 ≥ 0), we then have

uvt1 =
a2 − ac+ h2

ac
α1 +

(

d

c

)2

α2, um1 =
2c

h
α1,

uvb1 =
a2 − ac + h2

ac
α1 +

(

d

c

)2

β2, ub1 = α1, pt1 = pt1 =
h

a
α1

When a ≥ c in the configuration of Fig.3.9 as required by the pure length-

ening case, it is always true that all the controls are nonegative and satisfy

constraint(3.10).

To conclude, for a double-row tentacle model with n cells per row in the lengthening

configuration (shown in Fig.3.9), the dimension of the matrix A(ze) is 6n×7n, and
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the rank is 5n + 1. Thus there exist infinitely many solutions for the controls such

that satisfy eq(3.9). And by the above steps solving for the controls and pressures,

it is easy to see that all the controls and pressures are nonnegative, thus they satisfy

the constraints(3.10) and (3.11).

(b) Pure shortening

• Step 1: For cell n, there are six equations governing the positions of the last

three nodes. They are exactly the same as eqns(3.31) (3.32) (3.33) (3.34)

(3.35)and (3.36). Thus the same result is obtained. And the unique solution

to these equations is

uvtn =

(

d

c

)2

αn, umn = αn + βn, uvbn =

(

d

c

)2

βn, ptn =
d

c
αn, pbn =

d

c
βn

if we assume utn = αn and ubn = βn (αn ≥ 0, βn ≥ 0).

• Step 2: Assume that all controls and pressures have been solved backwards

from cell n to cell i + 1. We want to solve for the nodes in cell i. We again

get eqns(3.37) (3.38) (3.39) (3.40) (3.41) and (3.42), which lead to the same

conclusion. Additionally, given any uti = αi > 0 and ubi = βi > 0, by solving

the above equations, we obtain

uvti =

(

d

c

)2

(αi + α(i+1)), umi = αi + βi, uvbi =

(

d

c

)2

(βi + β(i+1)), pti =
d

c
αi, pbi =

d

c
βi

• Step 3: For the first two cells of the model, eqns (3.43) (3.44) (3.45) (3.46)

(3.47) (3.48) apply, so six linearly independent equations are obtained. Let
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ut1 = α1 (α1 ≥ 0), we then have the unique solution

uvt1 =
a2 − ac+ h2

ac
α1 +

(

d

c

)2

α2, um1 =
2c

h
α1,

uvb1 =
a2 − ac + h2

ac
α1 +

(

d

c

)2

β2, ub1 = α1, pt1 = pt1 =
h

a
α1

Since parameter a < c in the pure shortening case, it is possible that the control

uv1 is negative. Thus additional conditions are needed here to guarantee that

both uvt1 and uvb1 are nonnegative. And the conditions are

α2 >
4c3 (a2 − ac+ h2)

h2a (a+ c)2
α1

and

β2 >
4c3 (a2 − ac + h2)

h2a (a + c)2
α1

To conclude, for a double-row tentacle model with n cells per row in the pure

shortening configuration, the dimension of the matrix A(ze) is 6n × 7n, and

the rank is 5n+ 1. Thus there exist multiple constant controls and pressures

that have the same equilibrium points. And by the above steps solving for the

controls and pressures, it is easy to find that all the controls and pressures are

nonnegative, thus they satisfy the constraints(3.10) and (3.11).

• Theorem 6: For an n-cell double-row model, there exist multiple constant

controls and pressures that have the same equilibrium points and these points

form an ideal bending tentacle.

Proof: The theorem is proved by induction. Similar to the single-row model, polar

coordinates are used here for convenience when analyzing the equilibrium configu-

ration. A system with n cells in the bending configuration z1e and z2e = 0 has a
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Figure 3.10: Isosceles trapezoid in bending configuration with the polar coordinates

6n× 7n matrix A(z1e). Assume that the upper controls uti = di (for all 1 ≤ i ≤ n),

where the di are arbitrary positive numbers.

The model in an ideal bending configuration consists of several isosceles trape-

zoids. The trapezoids in each row are identical. And their shapes are uniquely

defined by 3 variables, α,R0 and β. α is the angle between the two legs of the

trapezoid (0 < α < π/2). R0 is the distance from the upper nodes to the origin O

(R0 > 0). And the distance from the middle nodes to the origin O is denoted as

R1, where R1 is actually determined by β as R1 = βR0 (β > 1). R2 is the distance

from the bottom nodes to the origin O. And due to the constant area constraint

imposed by the ideal bending, R2 is fixed once α,R0 and β are specified. It satisfies
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the equation

1

2
(R2

1 −R2
0) sinα =

1

2
(R2

2 − R2
1) sinα

Thus,

R2 =
√

2R2
1 − R2

0 =
√

2β2 − 1R0

An example of a 3-cell model in the bending configuration can be seen in Fig.3.10.

Without loss of generality, alternative variables t,m, b, θ and r1, r2 are used for

simplicity (shown in Fig.3.10), and their relationship with α,R0 and β is

θ =
α

2

R1 = βR0

R2 =
√

2β2 − 1R0

r1 = R1 − R0 = (β − 1)R0

r2 = R2− R1 = (
√

2β2 − 1− β + 1)R0

t = 2R0 sin θ

m = 2R1 sin θ = 2βR0 sin θ

b = 2R2 sin θ = 2(
√

2β2 − 1− β + 1)R0 sin θ

• Step 1: For the two cells at the unattached end, there are 3 end nodes, i.e.,

nodes on the boundary of the tentacle model. And the six equations can be

acquired by analyzing the states,
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0 = −tutn cos θ + r1ptn + tptn sin θ

0 = tutn sin θ − r1uvtn + tptn cos θ

0 = −mumn cos θ −mptn sin θ +mpbn sin θ + r1ptn + r2pbn

0 = mumn sin θ + r1uvtn − r2uvbn −mptn cos θ +mpbn cos θ

0 = −bubn cos θ + r2pbn − bpbn sin θ

0 = r2uvbn + bubn sin θ − bpbn cos θ

which can be rewritten as

06×1 =









































−t cos θ 0 0 0 0 r1 + t sin θ 0

t sin θ −r1 0 0 0 t cos θ 0

0 0 −m cos θ 0 0 r1 −m sin θ r2 +m sin θ

0 r1 m sin θ −r2 0 −m cos θ m cos θ

0 0 0 0 −b cos θ 0 r2 − b sin θ

0 0 0 r2 b sin θ 0 −b cos θ

























































































utn

uvtn

umn

uvbn

ubn

ptn

pbn

















































Then, by checking the rank of the coefficient matrix,

rank(An(zen)) = 5

Thus, the above equations have infinitely many solutions. And the null space
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is spanned by

N (An(zen)) =



















































0 β cscα− cotα

0
(β+1) tan(α

2
)

β−1
√

2β2
−1 cscα

β
− cotα cotα− cscα

β
(

β+
√

2β2
−1

)

tan(α

2
)√

2β2
−1−β

0

cotα− β cscα√
2β2

−1
0

0 1

1 0



























































γ1

γ2









, γ =









γ1

γ2









∈ R2

(3.49)

Additionally, to satisfy constraints (3.10), all the controls and pressures must

be nonnegative. Thus, we need all elements in the kernel to be nonnegative.

Then by solving the inequalities, further constraints on variables α and β are

obtained as

0 < α < π/4

β > cosα
√

sec (2α)

• Step 2: Assume that we have solved for ut, uv, ub and p from cell n to cell (i+1).
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Then for nodes t(i+1), m(i+1), b(i+1) in the ith cell, we have six equations,

0 =− tuti cos θ + r1pti + tpti sin θ + tut(i+1) cos θ − r1pt(i+1) − tpt(i+1) sin θ

0 = tuti sin θ − r1uvti + tpti cos θ + tut(i+1) sin θ + tpt(i+1) cos θ

0 =−mumi cos θ −mpti sin θ +mpbi sin θ + r1pti + r2pbi +mum(i+1) cos θ

− r1pt(i+1) +mpt(i+1) sin θ − r2pb(i+1) −mpb(i+1) sin θ

0 = mumi sin θ + r1uvti − r2uvbi −mpti cos θ +mpbi cos θ +mum(i+1) sin θ

−mpt(i+1) cos θ +mpb(i+1) cos θ

0 =− bubi cos θ + r2pbi − bpbi sin θ + bub(i+1) cos θ − r2pb(i+1) + bpb(i+1) sin θ

0 = r2uvbi + bubi sin θ − bpbi cos θ + bub(i+1) sin θ − bpb(i+1) cos θ
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By simplification, the system of equations above can be rewritten as

06×1 =Ai(zei)









ui

pi









+Bi(zei)









u(i+1)

p(i+1)









=









































−t cos θ 0 0 0 0 r1 + t sin θ 0

t sin θ −r1 0 0 0 t cos θ 0

0 0 −m cos θ 0 0 r1 −m sin θ r2 +m sin θ

0 r1 m sin θ −r2 0 −m cos θ m cos θ

0 0 0 0 −b cos θ 0 r2 − b sin θ

0 0 0 r2 b sin θ 0 −b cos θ

























































































uti

uvti

umi

uvbi

ubi

pti

pbi

















































+









































t cos θ 0 0 0 0 −r1 − t sin θ 0

t sin θ 0 0 0 0 t cos θ 0

0 0 m cos θ 0 0 −r1 +m sin θ −r2 −m sin θ

0 0 m sin θ 0 0 −m cos θ m cos θ

0 0 0 0 b cos θ 0 −r2 + b sin θ

0 0 0 0 b sin θ 0 −b sin θ

























































































ut(i+1)

uvt(i+1)

um(i+1)

uvb(i+1)

ub(i+1)

pt(i+1)

pb(i+1)

















































By computation, one sees that Ai is exactly the same as the matrix An, thus

its rank is 5 as well. And because the augmented matrix

[

Ai bi

]

is of the

same rank as Ai,

rank

([

Ai bi

])

= rank(Ai) = 3

Thus, there exist infinitely many solutions to the this equation.
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• Step 3: For the first cell of the bending model, the equations governing the

positions are same as the equation in Step 2,

06×1 =A1(ze1)









u1

p1









+B1(ze1)









u2

p2









=









































−t cos θ 0 0 0 0 r1 + t sin θ 0

t sin θ −r1 0 0 0 t cos θ 0
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As in Step 2, there exist infinitely many constant controls and pressures for

the first cell that have the same equilibrium points in the ideal bending con-

figurations.

To conclude, the rank for the coefficient matrix of each cell is 5 in the ideal
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bending configurations. For a double-row tentacle with n cells in each row,

there are 5n linearly independent equations. Therefore, the rank of the matrix

A(ze) is 5n. And there exist infinitely many constant controls and pressures

for the same equilibrium points in the ideal bending configurations.
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Chapter 4: Stability and Rate of Convergence

4.1 Introduction

Having shown that there exist equilibrium states of the tentacle analog, the

question arises: Are these equilibria stable, asymptotically stable, or unstable? Fur-

thermore, if they are asymptotically stable, how fast do they converges? These

questions are studied in this chapter.

In the absence of the constant area constraint, the tentacle analog collapses to

a unique equilibrium state in which all lengths are zero because the system consists

only of springs with rest lengths equal to zero and ideal linear dampers. Thus, the

stability question is really the stability on a very complicated manifold.

The first step is to try to understand the manifold on which the system states

are constrained to lie. Given an n-cell single-row tentacle, there are 2n nodes, or 4n

coordinate values, that can move in the x − y plane. And the first pair of nodes is

fixed. Due to the constant area requirement, n more constraints are introduced into

the tentacle analog and thus in fact only 3n coordinate values can be determined

freely. More specifically, the configuration of each cell will be determined once 7

coordinate values of its nodes are fixed. The remaining one coordinate value is

specified by eqn(3.8). Without loss of generality, coordinates xt,yt,xb are given in
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the computer experiment, and coordinates yb are then obtained as,

yb(i+1) =
(xtiyt(i+1) − ytixt(i+1)) + (xb(i+1)ybi − yt(i+1)xb(i+1)) + (xbiyti − ybixti) + 2S∗

xbi − xtt(i+1)

i = 1, . . . , n

With different values for positions xt,yt,xb, a different yb is obtained. And it must

lie on a 3n-dimensional manifold in a 4n dimension space. No special geometry of

the manifold is evident. In addition, we were unable to find useful literature on

stability of systems restricted to a manifold. Thus, the question of stability was

studied by computational experiments of the following form:

• Given an equilibrium configuration, keep the controls constant;

• Randomly perturb its states, subject to the requirement that the perturbation

satisfies the constant area constraint;

• Repeat many times randomly and study the results.

4.2 Simulation Algorithm

The simulation algorithm uses two loops for solving for the perturbed system

dynamics and finding the trajectories of the system states. Basically, the inner loop

solves for the pressure for the next states, and the outer loop is used for finding the

trajectories. The algorithm is shown below.

• Step 1: Given values of the state z(i), the controls u∗, solve for the next step

pressures p(i+1) such that the constant area constraint holds.
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The system dynamics are

ż =
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ż2
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A(z1)
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There exists a function z(i+1) = f(p) if zi and controls u∗ are fixed and

unchanged in f . Meanwhile, eqn(3.8) can also be expressed as a function

g : R4n → Rn, where g(z) is the area error vector ae in the cells and n is the

number of cells. Thus, there is a relationship that maps pressure p to the area

error ae,

(g ◦ f) : Rn → Rn

Then by solving the equation

0 = (g ◦ f)(p)

We obtain p∗, the correct pressure at time i+1 (p(i+1)), and the corresponding

state at time i+ 1 can always satisfies the constraints on the areas.

• Step 2: Solve the dynamics for z(i+1) with p∗ and u∗ using ode4.

• Step 3: Repeat Step1 and Step 2 until iteration time i meets the final time T .

4.3 Simulation Experiments

To analyze the system stability, a simulation was created in MATLAB for a

single-row, 3-cell tentacle model.
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Firstly, a configuration was given, and the corresponding controls and pressures

that made it an equilibrium were computed. Secondly, an initial state condition

was provided. The initial states were randomly perturbed from the equilibrium

configuration and yet forced to satisfy the area constraint. The velocities in the

initial states were always set to be 0. Then, the simulation algorithm was kept

running iteratively until the error between the current states and the equilibrium

states was less than a certain threshold.

A random number generator (in the range of [−1, 1]) was utilized in the code

so that the perturbation on the initial state conditions would vary every time. Then,

a variable boundary was used to determine the range of perturbation. Thus, the

perturbed initial states z(0) ∈ Br, where Br = {z1 ∈ Rn | ‖z1‖ ≤ boundary}. And

the experiment was run with different values of boundary to determine the domain

of attraction of a specific system.

4.4 Results of Computational Experiments

The experiments were conducted to test the configuration stability with the

MATLAB simulation.

To experimentally determine if the system is stable, it is obviously not enough

to test with different initial conditions only a few times. Thus, in this experiment,

the simulations were run 100 times with different variable values. And the time

of iteration was updated and saved when the algorithm was running. Thus the

convergence time for every test could be computed.

61



x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) t = 0s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) t = 0.5s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) t = 1.5s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) t = 2.5s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(e) t = 11.5s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(f) t = 47.0s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(g) t = 85.0s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(h) t = 172.5s

x
0 1 2 3 4 5 6

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(i) t = 225s

Figure 4.1: Example of system dynamics with a large initial perturbation.
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Since there exist infinitely many constant controls corresponding to each equi-

librium configuration, these controls can be scaled with respect to a fundamental

vector uf . The controls can then be expressed as

u = ratio · uf

where ratio is a positive control multiple. The experiments were conducted with

various control multiples, ratio, and damping coefficients b.

By experiment, we found that the system always converged to the equilibrium

configuration from randomly perturbed initial conditions. See Fig.4.1 for an example

of the transient response of a 3-cell single-row tentacle analog. The convergence rates

for the pure lengthening case can be seen in the following tables.

Tables 4.1 and 4.2 show the simulation results for the convergence time of

tentacle models under perturbation using different boundaries on the perturbation.

Table 4.1 is the result for a 3-cell single-row tentacle while Table 4.2 is for a 7-cell

tentacle. By comparison within each table, it is obvious to see that the convergence

time tends to be larger with larger perturbations. Also, by comparison between the

two tables, the data shows that with a larger number of cells, it takes much longer

for the tentacle to converge to the equilibrium configuration.

Table 4.3 and 4.4 show the convergence time of tentacle models under different

control multiple ratio and damping coefficients b with certain bounded perturbation.

The experiment was conducted with boundary being fixed as 0.25, and with ratio

and b being 1, 4, 7 and 1, 2, 3 respectively. Table 4.3 shows the convergence time for

tentacles with 3 cells and Table 4.4 is for systems with 7 cells. One sees, from the
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boundary 0.25 0.5 1

convergence rate

mean 163.5 188.8 193.5

max 230.5 253.5 267.5

min 19.0 25.0 25.0

std.de. 50.4 48.4 60.0

Table 4.1: Convergence rate (unit: seconds) for 3-cell tentacle with control ratio = 1,

b = 1

boundary 0.25 0.5 1

convergence rate

mean 978.7 1115.0 1320.2

max 1431.0 1567.5 1694.0

min 67.0 113.5 139.5

std.de. 308.6 318.9 251.9

Table 4.2: Convergence rate (unit: seconds) for 7-cell tentacle with control ratio = 1,

b = 1
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table, that the convergence is slower when the damping coefficients are increased

while keeping the controls unchanged. The result is not surprising because damping

generally has the effect of reducing the movement speed of a dynamic system. No-

tice that with the damping coefficients fixed, the convergence time decreased greatly

as the control multiple increased. This phenomenon is explained by the fact that

the forces generated by the springs would increase as ratio increases, resulting in

larger accelerations and faster convergence. Additionally, by observing the transient

response of the perturbed system, one finds significant oscillations when large con-

trols (larger ratio) are applied. Meanwhile the oscillations was reduced when larger

b was introduced into the system.

The equilibrium configuration shown is the pure lengthening case with

a = 1

c = 1/2

h = 4/3

d = 2

S∗ = 1
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control multiple ratio 1 4 8

damping coefficient b 1 2 3 1 2 3 1 2 3

convergence rate

mean 163.5 331.7 510.3 35.5 55.0 117.3 16.7 38.1 61.1

max 230.0 476.5 729.7 51.5 99.7 175.1 21.8 56.8 86.0

min 19.0 28.0 60.8 6.9 9.5 6.6 5.0 4.9 8.4

std.de. 50.4 106.9 149.1 11.8 34.0 39.1 3.9 13.4 16.7

Table 4.3: Convergence rate (unit: second) for perturbed tentacle n = 3, perturbation boundary = 0.25
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control multiple ratio 1 4 8

damping coefficient b 1 2 3 1 2 3 1 2 3

convergence rate

mean 978.7 1937.8 2908.9 218.9 495.2 749.5 98.3 230.6 376.2

max 1431.0 2898.8 4150.6 314.9 713.4 1129.1 129.3 345.9 531.7

min 67.0 82.4 1065.0 17.4 51.9 51.4 17.2 24.4 42.0

std.de. 308.6 747.1 947.9 65.4 136.1 268.9 29.0 93.0 94.8

Table 4.4: Convergence rate (unit: second) for perturbed tentacle n = 7, perturbation boundary = 0.25

67



t(s)
0 50 100 150 200 250

ar
ea

1.0000

1.0000

1

1.0000

1.0000
Area for cell 1

t(s)
0 50 100 150 200 250

ar
ea

1.0000

1.0000

1

1.0000

1.0000

1.0000
Area for cell 2

t(s)
0 50 100 150 200 250

ar
ea

1.0000

1.0000

1

1.0000

1.0000
Area for cell 3

Figure 4.2: Area for cells in a 3-cell tentacle model

During the evolution of the tentacle nodes (system states), it is important to

verify that all cells maintain constant area. Thus a function computing the cell

areas was run each time as the system evolved. Fig.4.2 is an example for a 3-cell

single-row tentacle model that shows the areas remain almost constant at 1 and

only change within a range smaller than 0.0001. The test has been conducted with

various parameters for several times, and the results are always similar to Fig.4.2.

Therefore the constant area constraint holds as the states evolve with time.

4.5 Conclusions

By computational experiment, one can conclude that the tentacle systems

studied with specific controls, always converged to the expected equilibrium config-

uration under considerable perturbations. Thus these equilibrium points are asymp-

totically stable.
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Chapter 5: The Control of Tentacle Analog

In the previous chapters, the controls for the tentacle analog in equilibrium

configurations were found. Given different constant controls, the system can main-

tain specific positions and shapes. In this chapter, an example of controlling a 3-cell,

single-row tentacle analog to perform certain movements is presented in Fig.5.1 and

Fig.5.2.

Initially, the tentacle analog is static in its original configuration. And the

controls are set to shorten the tentacle at t = 0.1s. As the tentacle is shortened to

the expected configuration at t = 3s, the controls are then reset to make the tentacle

lengthen. The tentacle reaches its new equilibrium configuration at t = 9.6s. Again,

we give a new set of controls to the system and make it further lengthen. As seen in

Fig.5.1, the tentacle is elongated and becomes even thinner at t = 20s. At t = 20.1s,

the system is controlled to shorten to a previous equilibrium configuration, and it

is stabilized at t = 27s. After that, at t = 30s, the controls are set to make the

tentacle bend. And notice that the bending radius is decreasing from t = 39.6s to

t = 64.9s as shown in Fig.5.2. The controls input into the system are shown in

Fig.5.3.
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Figure 5.1: The response to the control signals, shown in Fig.5.3, of a 3-cell, single-

row tentacle
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Figure 5.2: The response to the control signals, shown in Fig.5.3, of a 3-cell, single-

row tentacle (cont.)
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Figure 5.3: The controls for the system
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As the entire process of control of the tentacle analog, it is shown that the

model can be driven from one equilibrium configuration to another one by changing

of controls of the system.

These results suggest that the qualitative understanding of the control of the

shape of tentacle and tongues may be incorrect. For the systems analyzed here at

equilibrium, one control for each cell can have any positive value provided that all

the other controls have exactly the right values. Furthermore, precise movements

between equilibria can be produced by controls satisfying the same conditions.

Note that this is similar to the situation for agonist/antagonist pairs of muscles

that connect to bones but it is not identical. The presence of bones makes it possible,

but not necessary, for one of the pair to be completely inactive. This is apparently

not true for muscular hydrostats.
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Chapter 6: Conclusions and Future Work

6.1 Conclusions

The work described in this thesis is concerned with the exploration of the con-

trol of a tentacle. A 2-dimensional mathematical analog of a tentacle was presented.

The model is composed of quadrilateral cells which are constrained to have constant

area. The boundaries of the cells are formed by linear springs with controllable

spring constants. The model was evaluated as dynamic systems for the single-row

case and the double-row case respectively. Equilibrium points and corresponding

controls were found for both cases, and they can make the tentacle analog form

lengthened, shortened and bent shapes. The stabilities for the equilibrium points

were studied with a computational experiment. And they have been demonstrated to

be asymptotically stable. A simulation of the tentacle analog was built in MATLAB

to verify the dynamic performance with controls derived from the system analysis.

The rate of convergence was computed in the simulation, finding that larger controls

and smaller damping coefficients resulted in faster convergence. By perturbing the

system states and observing the system performance, the domain of attraction for

specific equilibrium configurations was also studied. Though the result cannot be

provided analytically, it is still safe to say that the domain of attraction is large. In
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fact, the experiments are consistent with the domain of attraction being the entire

constant area manifold. The simulation was tested with various controls so that

the tentacle analog was shown to be able to achieve different movements, including

lengthening, shortening and bending.

6.2 Suggestions for Future Work

While this thesis has demonstrated the fundamental functions of the mathe-

matical analog of a tentacle in two dimensional, it could be further developed in a

number of ways:

• Extending the mathematical analog to 3-dimensional space

The proposed tentacle analog is a 2-dimensional model that consists of quadri-

lateral cells with constant area. It can be extended to 3-dimensional space as

a model of hexahedral cells with constant volume. All the calculations are

feasible in 3-dimensions but are much more complicated. Though more com-

plicated, the extended model is believed to maintain the same functional move-

ments, like lengthening, shortening and bending. And more complicated move-

ments, such as torsion, may to be feasible. Furthermore, the 3-dimensional

case can be used as an analog of a tongue. Tongues are much more interesting

and important than tentacles.

• Studying the system performance under the case of environment

interaction

External forces has not been taken into consideration in the current work.
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Thus the tentacle analog used in this thesis does not interact with the envi-

ronment. This topic should be further analyzed so that the tentacle model

could be controlled to manipulate objects in the environment.

• Analyzing the workspace of the tentacle analog

It has been proven that the tentacle analog can be controlled to form different

configurations and achieve various complex movements. And the workspace

of the tentacle analog remains to be studied.

• Planning the tentacle movement trajectory

Since the tentacle is capable of creating several complex movements, it is of

interest to consider optimal control and trajectories of the tentacle analog.

• Exploring the asymptotics It would be interesting to study the effects of

repeatedly dividing each cell into 4 identical subcells. Making the individual

cells smaller while keeping the overall area constant would bring the analog

closer to a two dimensional model of a real tentacle.

• Building a mechanical version A physical system with the same properties

as the tentacle analog might be useful in some applications, especially those

requiring complex maneuvers in tight spaces.
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