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Haldane’s rule states that when one sex of hybrids shows sterility or inviability it 

tends to be the heterogametic sex. This pattern is considered a fundamental law of 

speciation, and is known to be caused by several separate mechanisms. One such 

mechanism may be the divergence at loci affecting sex chromosome meiotic drive. 

Cyrtodiopsis dalmanni and C. whitei are sister species of stalk-eyed fly found in 

Southeast Asia and in which a sizable proportion of wild-caught males produce female-

biased broods due to X chromosome meiotic drive. I cross multiple populations of these 

two species and use QTL mapping and DNA sequencing techniques to test three 

predictions of the meiotic drive hypothesis of Haldane’s rule. In chapter 1, my results 

show that male hybrid sterility is the fastest-evolving form of reproductive isolation in 

these species, consistent with Haldane’s rule. In chapter 2, I show that DNA sequence 

evolution is consistent with a pattern of repeated selective sweeps associated with X-

linked meiotic drive. In chapter 3, I report the discovery of autosomal suppressors of 



  

drive, a Y-linked suppressor, a cryptic (suppressed) driver, an inviability effect of drive, 

and several QTL for sterility and one QTL for male-biased progeny sex ratios. The 

suppressors and cryptic driver support the conclusion, from chapter 2, that meiotic drive 

and suppressors have evolved repeatedly in response to each other. The sterility and sex 

ratio QTL did not map to the same genetic marker interval, which is not necessarily 

inconsistent with the drive hypothesis if sufficient time has elapsed to allow additional 

sterility loci to evolve. Overall, these results provide several lines of support for the 

meiotic drive hypothesis of Haldane’s rule, which is rapidly gaining traction among 

researchers in the field of speciation. This conclusion suggests that attempts should be 

made to identify specific genes affecting meiotic drive and male hybrid sterility in 

Cyrtodiopsis. 
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Introduction 

Background 

  

Eighty-five years ago, the evolutionary biologist J. B. S. Haldane noted a pattern 

that has become known as Haldane’s rule: when one sex of hybrids suffers from a greater 

degree of sterility or inviability than the other, it is usually the heterogametic (XY or ZW) 

sex (Haldane 1922). Although attributing the pattern to heterogamety has been 

questioned as recently as the early 1990's (Read and Nee 1991; Read and Nee 1993), 

Haldane’s rule is widely accepted and regarded as a fundamental rule of speciation 

(Coyne and Orr 1989b) and holds in all animal taxa that have been studied (Orr 1997). 

 While many hypotheses have been put forth as possible explanations of Haldane’s 

rule, three favored mechanisms are believed to operate in different circumstances (Coyne 

and Orr 2004; Presgraves and Orr 1998). These hypotheses are known as the dominance 

theory, the faster-male theory, and the faster-X theory. The dominance theory (Muller 

1942; Orr 1993; Turelli and Orr 1995) assumes that epistatic interactions cause hybrid 

dysfunction (Dobzhansky-Muller incompatibilities: Dobzhansky 1937b; Muller 1940; 

Muller 1942; Orr 1995). Partially recessive interactions with at least one X-linked locus 

may be masked when the X is diploid but will be expressed in the heterogametic sex 

when the X is haploid. The second hypothesis, the faster-male theory (Wu et al. 1996), 

proposes that, due to sexual selection, intense competition for fertilizations leads to rapid 

divergence of genes affecting male reproductive traits. This leads to faster accumulation 
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of Dobzhansky-Muller incompatibilities in males, and earlier male than female sterility, 

in male-heterogametic systems. The faster-X hypothesis (Charlesworth et al. 1987), 

regarded by some as the least important of the three (Orr 1997), states that when 

favorable mutations are partially recessive, higher substitution of those mutations on a 

hemizygous chromosome lead to faster evolution on the X than on autosomes. 

 A fourth hypothesis for the cause of Haldane’s rule, which is less widely 

accepted, is the meiotic drive hypothesis (Frank 1991; Hurst and Pomiankowski 1991). 

This hypothesis states that as sex chromosome meiotic drive systems diverge between 

isolated populations, heterogametic hybrids fail to complete gametogenesis, leading to 

sex-specific sterility or possibly inviability. After an initial period of intense criticism 

(Coyne et al. 1991; Coyne and Orr 1993; Johnson and Wu 1992), the drive hypothesis 

has emerged as a fertile area of research. Recent reinterpretations of the hypothesis point 

out that due to two different mechanisms of meiotic drive, the concept applies to both 

male- and female-heterogametic taxa (Tao and Hartl 2003).  

Meiotic drive is a selfish genetic system that causes a chromosome to be 

overrepresented in gametes at the expense of its homolog (Sandler and Novitski 1957), 

and is therefore one cause of the effect known as transmission ratio distortion. The two 

major mechanisms of drive are called genic drive and chromosomal drive. In genic drive, 

a locus on one chromosome prevents transmission of sperm carrying that chromosome’s 

homolog. It is this mechanism of drive that is hypothesized to lead to Haldane’s rule in 

male-heterogametic species. In chromosomal drive, centromeres compete to reach the 

ovum during meiosis instead of being relegated to a polar body (Henikoff et al. 2001; 

Henikoff and Malik 2002); this mechanism of drive is hypothesized to lead to Haldane’s 
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rule in female-heterogametic species. In genic sex chromosome drive, a locus on one sex 

chromosome produces skewed offspring sex ratio by eliminating viable gametes 

containing the other sex chromosome. In X drive, Y-bearing sperm affected by the drive 

allele degenerate and become greatly outnumbered by X-bearing sperm (Montchamp-

Moreau and Joly 1997; Novitski 1947; Wilkinson and Sanchez 2001). The potential 

importance of the drive hypothesis of Haldane’s rule can be seen by examining the wide 

distribution of meiotic drive systems in animals: numerous cases have been reported in 

Diptera, and examples occur in Lepidoptera, Hemiptera, guppies, rodents, birds, 

flowering plants, and even humans (summarized in Hurst and Pomiankowski 1991; 

Jaenike 2001). 

 Orr et al. (2007) have recently summarized evidence from studies of Drosophila 

that is consistent with the drive hypothesis for Haldane’s rule. Cryptic drive systems have 

been discovered that are masked in the populations in which they occur, but which are 

expressed in hybrids (Dermitzakis et al. 2000; Mercot et al. 1995; Orr and Irving 2005; 

Tao et al. 2001; Yang et al. 2004). In addition, male hybrid sterility loci and meiotic 

drive-related loci have been shown to map to the same chromosomal intervals (Orr and 

Irving 2005), or possibly to the same locus (Tao et al. 2001). From another taxonomic 

kingdom, hybrid sterility QTL are associated with transmission ratio distortion in tomato 

(Moyle and Graham 2006). In addition to these supportive empirical results, the 

feasibility of the drive hypothesis has been demonstrated theoretically (Adams 2005). 
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Experimental Investigation of the Meiotic Drive Hypothesis 

 

The hypothesis that divergence between sex chromosome drive systems causes 

Haldane’s rule makes several testable predictions, four of which I investigate here. These 

predictions are based on the action of X chromosome drive in a male-heterogametic 

system; i.e. where males have one X and one Y chromosome and females have two X 

chromosomes. The first prediction is that male hybrid sterility, which is the only form of 

isolation so far to have been linked to meiotic drive, will evolve faster than all other 

forms of isolation. Second, if divergence between populations at meiotic drive loci is 

rapid enough to cause early reproductive isolation, signatures of this rapid divergence 

will be retained in linked DNA sequence. Third, this pattern of evolution of meiotic drive 

is predicted to generate multiple suppressor loci and cryptic drivers. Finally, if male 

hybrid sterility is caused by the same loci as meiotic drive, QTL affecting the two traits 

will map to the same chromosomal intervals. In the following paragraphs I briefly 

describe the study system and methods used to test each of these predictions. 

 

Study System 

 
 
 Cyrtodiopsis dalmanni and C. whitei are sister species of stalk-eyed flies from the 

family Diopsidae (Wilkinson et al. 1998a) which are of interest for the study of several 

evolutionary questions. Multiple populations have been collected from these species’ 

ranges in Southeast Asia (Christianson et al. 2005; Swallow et al. 2005) and maintained 

in the lab since 1999. Both species possess exaggerated, sexually dimorphic eyestalks 
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(Burkhardt and de la Motte 1985, Figure 1), which affect female mate choice (Burkhardt 

and de la Motte 1988; Wilkinson and Reillo 1994) and male competition (Panhuis and 

Wilkinson 1999), and eyespan is correlated with body size (Wilkinson and Dodson 

1997). Both C. dalmanni and C. whitei exhibit meiotic drive (Presgraves et al. 1997), and 

eyespan is an indicator of males’ meiotic drive status (Johns et al. 2005; Wilkinson et al. 

1998b).  

The various populations of C. dalmanni and C. whitei are separated by a 

minimum of 0.3% mitochondrial DNA sequence divergence and all population crosses 

feature some level of prezygotic or postzygotic isolation (Christianson et al. 2005). 

However, these distinct populations cannot be differentiated by eyespan allometry and 

therefore do not appear to be speciating as a result of sexual selection (Swallow et al. 

2005). There are also no obvious ecological differences between populations. While no 

ecological studies have been performed on wild Cyrtodiopsis flies, all of the populations 

studied in this dissertation were collected in remarkably similar locations, and all from 

within a few yards of fast-moving streams (G. Wilkinson, pers. comm.). In addition, the 

populations have all been successfully maintained for nearly 10 years under identical 

laboratory conditions, eating identical pureed corn medium. Because there is little reason 

for concern about habitat differences between populations, and because males and 

females mate multiply and show little or no precopulatory courtship (Wilkinson et al. 

1998a; Wilkinson et al. 2003), these species are amenable for studies of reproductive 

isolation. Finally, the growing infrastructure for molecular genetic research – 

approximately 50 microsatellites are in use (Wright et al. 2004) and thousands of 
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expressed sequence tags are under development (G. Wilkinson, pers. comm.) – makes 

this system increasingly powerful for addressing a variety of evolutionary questions. 

 

Prediction 1: Rapid Evolution of Male Hybrid Sterility 

 
 
 In chapter 1, I report on a study in which I test the relative rates of evolution of 

several forms of reproductive isolation in Cyrtodiopsis. I conducted reciprocal crosses 

between most combinations of six C. dalmanni and two C. whitei populations and record 

matings and other behaviors, sperm transfer frequency, the number of progeny produced, 

and the proportion fertile progeny. I analyzed these data against the average 

mitochondrial DNA sequence divergence between populations and found a gradual 

decline in mating rate and sperm transfer frequency with increasing genetic distance, 

which indicated gradual evolution of prezygotic isolation. A gradual decline in log 

transformed progeny production indicated a similar pattern in the evolution of postmating 

isolation (excluding hybrid sterility). Female hybrid sterility appeared at a similar level of 

divergence as prezygotic and postmating isolation, but male hybrid sterility was present 

between populations with much less divergence. This result indicated, in agreement with 

the prediction of the meiotic drive hypothesis of Haldane’s rule, that male hybrid sterility 

was the first form of reproductive isolation to evolve between populations of flies in this 

genus.   

 This study underscored the difficulties with using indices of reproductive isolation 

in meta-analyses to detect broad speciation trends (Coyne and Orr 1989a; Coyne and Orr 

1997; Sasa et al. 1998; Zouros 1973). Clearly, it is impractical to test dozens of species 
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for several measures of reproductive isolation for every study. However, compiling 

multiple studies with different methodologies entails compromises that affect analytical 

power. For example, the postzygotic isolation index in Coyne and Orr’s landmark meta-

analysis of speciation in Drosophila ranked interspecific crosses on a scale from zero (all 

hybrids either sterile or inviable) to four (all hybrids both viable and fertile) (Coyne and 

Orr 1989a; Coyne and Orr 1997). These criteria mean that a cross which fails to produce 

any hybrid males will recieve the same score as a cross which yields many sterile males. 

Thus, the first publication of the analysis (Coyne and Orr 1989a) used an impressive 

array of species comparisons but failed to draw all of the conclusions that were made 

when the issue was revisited with a larger sample size (Coyne and Orr 1997).  

Because I analyzed each type of reproductive isolation as a quantitative measure, 

I avoided the problems that plague meta-analyses. Instead of collecting food cups and 

counting progeny from a single cage containing multiple males and females, I housed 

each male in his own cage with three females and observed matings. My methods 

required more time and space, and restricted the number of population combinations and 

sample sizes within each comparison. However, the data I collected allowed me to make 

detailed comparisons between types of reproductive isolation that otherwise would not 

have been detected by simpler approaches. 

 

Prediction 2: DNA Sequence Polymorphism and Divergence 

 
  

In chapter 2, I examined the DNA sequence of two populations of C. dalmanni for 

evidence of recent positive selection. I sequenced autosomal and X-linked DNA 
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fragments and analyzed the sequences for patterns of polymorphism and divergence. I 

show that there is greatly reduced polymorphism associated with meiotic drive, which is 

consistent with the action of positive selection and hitchhiking of linked genes. I also 

show that the XD and XST chromosomes have diverged significantly with respect to one 

another and to a greater extent than the autosomal loci. These results are consistent with 

antagonistic coevolution within the complex of meiotic drive-associated loci, as expected 

if drive is causing Haldane’s rule. 

   

Prediction 3: QTL Locations in Drive and Sterility 

 
 
 In chapter 3, I conducted two quantitative trait loci (QTL) studies to compare the 

locations of chromosomal regions affecting male hybrid sterility and X chromosome 

meiotic drive. I performed two crosses between the Gombak and Soraya populations of 

C. dalmanni, one with a male that expressed meiotic drive and the other with a male that 

did not carry drive. After two backcross generations I collected data on the fertility and 

progeny sex ratio of 699 male progeny and genotyped these males at 27 microsatellite 

markers.  I failed to locate QTL affecting the two traits in the same marker interval, but I 

did demonstrate that both traits are affected by the same portion of the X chromosome, 

which is tightly linked in drive-carrying males by a large paracentric inversion. I also 

uncovered a cryptic drive chromosome, an autosomal suppressor of drive and a Y-linked 

modifier that led to severely male biased broods. These results provide mixed support for 

the meiotic drive hypothesis of Haldane’s rule. 
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 Before mapping sterility, I had to decide how to score the trait. I allowed the flies 

to mate and counted, or noted the absence of, their progeny. However, in many studies of 

male hybrid sterility a different measure of fertility is used. Studies of Drosophila fruit 

flies most commonly score the presence of motile sperm (e.g. Coyne 1984; Coyne and 

Charlesworth 1989; Coyne et al. 2004; Moehring et al. 2006). In mice, both testis weight 

and sperm count have been used as measures of fertility (e.g. Britton-Davidian et al. 

2005). The obvious appeal of such measures is that hybrid progeny do not have to be kept 

alive for days or weeks after reproductive maturity, saving time and resources and 

allowing for greater sample sizes. And indeed, in my study I had difficulty obtaining a 

sufficient number of fertile males to map progeny sex ratio. But the method chosen to 

score fertility can have a dramatic impact on the final outcome of the study.  

In both mouse and fruit fly studies, data were collected to ensure correlation 

between fertility as measured by progeny production and by the surrogate trait (Britton-

Davidian et al. 2005; Coyne 1984; Storchova et al. 2004), and the results of the two 

measures do not always agree. In mice, multiple QTL have been detected for testis 

weight and sperm count where only a single QTL was found for progeny count 

(Storchova et al. 2004). And, in the study that began the tradition of using sperm motility 

to measure fertility in fruit flies, at least one genotype class was found to produce motile 

sperm but no offspring (Coyne 1984). Coyne argued that using progeny production to 

score fertility confounds mating ability with sperm competence and that the missing 

progeny were due to the males’ lack of competitive ability. I argue, however, that a 

hybrid male that cannot produce progeny is sterile whether the reason is a sperm 

deficiency or incorrect mating behavior. Because I required progeny sex ratio data, as 



 10 
 

well as fertility data, I chose to count progeny rather than score males for motile sperm 

since that would have required considerable additional time and ultimately reduced my 

sample size. I later scored (thawed) frozen testes for the presence of mature sperm 

bundles, and while essentially all fertile males’ testes contained mature sperm bundles, 

only approximately one half of males with mature sperm bundles produced offspring 

(Table 1). In a future paper I plan to report on how QTL for sperm production and sperm 

length differ from QTL for male hybrid sterility. 

 

Summary of Conclusions 

 
 
 Results from the studies in this dissertation provide mostly positive support for 

the meiotic drive hypothesis of Haldane’s rule. I tested three predictions made by this 

hypothesis, and the results here are entirely consistent with two and partially consistent 

with the third. I failed to find QTL affecting meiotic drive and male hybrid sterility that 

map to the same marker intervals, but I did find evidence for rapid evolution of male 

hybrid sterility, cryptic meiotic drive, autosomal and Y-linked suppressors of meiotic 

drive, and antagonistic coevolution between drive and suppressors. These results join the 

growing body of evidence that indicates the importance of meiotic drive in speciation, 

and show that the genus Cyrtodiopsis will be a valuable system in which to investigate 

many questions about speciation. 
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Table 1: The number of males with and without mature sperm bundles upon dissection. 

Fertile and sterile males are from all four backcross families are pooled. 

 Fertile Males Sterile Males 

Mature sperm bundles present 273 197 

Mature sperm bundles absent 4 214 
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Figure 1: Female (left) and male (right) Cyrtodiopsis dalmanni, illustrating their 

dimorphic eyestalks. Photo by A. Lorsong. 
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Chapter 1: Rapid Evolution of Postzygotic Isolation in Stalk-eyed Flies 

 

Abstract 

 
We test the relative rates of evolution of pre- and postzygotic reproductive 

isolation using eight populations of the sexually dimorphic stalk-eyed flies Cyrtodiopsis 

dalmanni and C. whitei. Flies from these populations exhibit few morphological 

differences yet experience strong sexual selection on male eyestalks. To measure 

reproductive isolation we housed one male and three female flies from within and 

between these populations in replicate cages and then recorded mating behavior, sperm 

transfer, progeny production and hybrid fertility. Using a phylogeny based on partial 

sequences of two mitochondrial genes, we found that premating isolation, postmating 

isolation prior to hybrid eclosion, and female hybrid sterility evolve gradually with 

respect to mitochondrial DNA sequence divergence. In contrast, male hybrid sterility 

evolves much more rapidly – at least twice as fast as any other form of reproductive 

isolation. Hybrid sterility, therefore, obeys Haldane’s rule. Although some brood sex 

ratios were female-biased, average brood sex ratio did not covary with genetic distance, 

as would be expected if hybrid inviability obeyed Haldane’s rule. The likelihood that 

forces including sexual selection and intra- and intergenomic conflict may have 

contributed to these patterns is discussed. 
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Introduction 

 
 

From a genetical perspective, understanding the process of speciation amounts to 

understanding the process of reproductive isolation. Factors inhibiting interspecies 

mating (premating prezygotic isolation), interspecies fertilization (postmating prezygotic 

isolation or gametic isolation), and the fitness and fertility of hybrid organisms 

(postzygotic isolation), create barriers to gene flow that eventually lead to speciation. It 

can be difficult to determine the sequence of genetic changes causing each of these 

effects during the earliest stages of isolation because the species available for study have 

generally been separated for many thousands or even millions of years (Orr 1995) and 

may currently inhabit isolated locations. However, laboratory study of mating behavior 

and hybridization among multiple species or divergent populations has provided some 

insights into the early isolation process.  

In a comprehensive meta-analysis, Coyne and Orr (1989a; 1997) describe several 

important features of reproductive isolation in Drosophila. First, allopatric species pairs 

tend to acquire prezygotic and postzygotic isolation at equal and constant rates. 

Subsequent studies on ducks (Tubaro and Lijtmaer 2002), doves (Lijtmaer et al. 2003), 

butterflies (Presgraves 2002), and frogs (Sasa et al. 1998), have also found evidence that 

postzygotic isolation evolves gradually over time, but a few studies have reached other 

conclusions. For example, Tilley et al. (1990) failed to detect a relationship between 

prezygotic isolation and allozyme differentiation in plethodontid salamanders after taking 

into account geographic proximity. Moyle et al. (2004) reported that reproductive 
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isolation correlates with genetic distance with Silene but not in two other angiosperm 

genera, possibly due to polyploidy events. Mendelson (2003) found evidence for 

accelerated evolution of prezygotic over postzygotic isolation in the fish genus 

Etheostoma, possibly as a result of sexual selection or the absence of degenerate sex 

chromosomes in these fish. However, her only measure of postzygotic isolation was 

hybrid inviability.  

A second feature of reproductive isolation identified by Coyne and Orr (1989a; 

1997) was that sympatric species pairs accumulate prezygotic, but not postzygotic, 

isolation more rapidly than allopatric pairs, presumably as a consequence of 

reinforcement (Dobzhansky 1937b). Similar results have also been reported by Marin et 

al. (1993), who performed mass pairwise crosses of 30 populations from 10 species of the 

Drosophila repleta group. However, Moyle et al. (2004) found no such pattern in the 

three angiosperm genera studied. A third feature is that Haldane’s rule, that is, a bias 

towards hybrid sterility or inviability in the heterogametic sex (Haldane 1922), appears 

during the earliest stages of postzygotic isolation in male-heterogametic Drosophila. This 

result has also been supported for female-heterogametic taxa (Presgraves 2002; Price and 

Bouvier 2002).   

A potential weakness of meta-analyses is that they typically incorporate an 

isolation index which compresses information about multiple characters into a single 

categorical metric. Studies generally combine either male and female hybrid sterility or 

hybrid sterility and hybrid inviability to accommodate data from a variety of 

experimental designs. Such an index can, for example, allow a species pair that produces 

many sterile male hybrids to be scored identically to a species pair that produces no male 
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hybrids at all. While it then may be possible to draw conclusions regarding the relative 

rates of evolution of prezygotic isolation to postzygotic isolation, in general, or of hybrid 

sterility and hybrid inviability, differences between forms of isolation that have been 

combined into indices could confound interpretation. For example, Coyne and Orr 

(1989a) at first failed to detect a difference between the rate of evolution of hybrid 

sterility and hybrid inviability, using a categorical description of sterility and inviability 

and combining male and female hybrid sterility. They were later able to detect a 

difference (1997), as have other studies (Presgraves 2002; Sasa et al. 1998; Wu 1992) 

using different analyses.  

In this paper, we measure premating isolation, postmating isolation, male hybrid 

sterility, and female hybrid sterility for a single study system.  We estimate evolutionary 

rates for each of these forms of reproductive isolation by using mitochondrial DNA 

(mtDNA) sequence divergence between allopatric populations from two Cyrtodiopsis 

species of Southeast Asian stalk-eyed flies. To avoid problems associated with isolation 

indices we scale measures of isolation relative to within-population measurements prior 

to comparing them to one another. We also test if hybrid sterility and hybrid inviability 

conform to Haldane’s rule, that is, if male hybrids exhibit sterility and/or inviability 

before female hybrids. 

Diopsid stalk-eyed flies in the genus Cyrtodiopsis are well suited for studying the 

evolution of reproductive isolation for several reasons. First, because these flies are easily 

captured in the field and can be reared in captivity (Burkhardt and de la Motte 1983; 

Wilkinson 2001), many types of reproductive isolation can be measured in the laboratory. 

Second, both males and females are promiscuous and exhibit little or no precopulatory 
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courtship behavior (Wilkinson et al. 1998a; Wilkinson et al. 2003). Thus, direct 

observations of copulation rates provide quantitative information on premating isolation. 

Third, while stalk-eyed flies are well-known for having sexually dimorphic eyestalks that 

influence both female mate choice (Wilkinson et al. 1998b) and male-male competition 

(Panhuis and Wilkinson 1999), little to no divergence in eyespan allometry or body size 

has occurred between the populations used in this study (Swallow et al. 2005). Thus, any 

reproductive isolation between populations is not likely to be the result of sexual 

selection on eyespan. Fourth, robust phylogenetic hypotheses based on DNA sequence 

information are available for several species in the family (Baker et al. 2001) as well as 

among populations of two species in the genus (this paper). These populations occur on 

islands in the Sunda Shelf region of Southeast Asia and vary in geographic and genetic 

separation, but all exhibit evidence of X chromosome meiotic drive (Wilkinson et al. 

2003). Thus, they provide a natural experiment for inferring evolutionary change in 

reproductive isolation. 

 
 

Materials and Methods 

 

Study Populations 

 
 

For this study we used six populations of C. dalmanni and two populations of C. 

whitei derived from flies captured in the Sunda Shelf region of Southeast Asia between 

January, 1996 and September, 2000 (Figure 2). Populations were established with at least 
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50 adult individuals and subsequently kept at higher numbers in 30 x 30 x 30 cm 

Plexiglas population cages in the lab. Cyrtodiopsis dalmanni were captured near 

Cameron Highlands, Malaysia (4˚ 15’ N, 101˚ 21’ E); near Ulu Gombak, Malaysia (3˚ 12' 

N, 101˚ 42' E); near the Soraya field station, Sumatra, (2˚ 52' N, 97˚ 54' E); near Bukit 

Lawang, Sumatra, (3˚ 35' N, 98˚ 6' E); at a forestry research station in Bogor, Java (6˚ 34' 

S, 106˚ 50' E); and at the Kuela Belalong Field Station in Brunei, Borneo (4°30' N, 

115°10'). Cyrtodiopsis. whitei were captured at Ulu Gombak and near Chiang Mai, 

Thailand (19˚ 9' N, 98˚ 7' E). We classified flies to species based on morphological 

comparisons to specimens housed at the National Museum of Natural History, 

Washington, D.C. 

In the laboratory, stock populations are maintained in a humidified chamber at 

25°C with a 12:12 h light-dark cycle. Adult animals are fed twice weekly with pureed 

corn treated with methyl paraben to inhibit mold. Flies used in mating trials were bred 

from stock populations by allowing females to oviposit on 50 ml of pureed corn in 100 

ml plastic cups. Larvae were kept on the same light and temperature regime as their 

parents. After eclosion from the cups flies were kept in single-sex cages for at least 4 

weeks to ensure virginity and reproductive maturity (Lorch et al. 1993). 

 
 

Phylogenetic Analysis 

 
 

Phylogenetic relationships between the eight populations used in this study (Fig. 

2) were inferred using partial gene sequences of two different mitochondrial genes: 

cytochrome oxidase II (COII) and 16S ribosomal RNA (16S). For each population we 



 19 
 

extracted DNA from five or more field-collected flies, which had been frozen or 

preserved in ethanol, using Qiamp tissue extraction kits (Qiagen, Valencia, CA, USA). 

We then amplified the two gene fragments using primers and polymerase chain reaction 

(PCR) protocols optimized for diopsid flies (Baker et al. 2001). Using amplifying 

primers, we sequenced both strands of the products using Big Dye cycle sequencing 

chemistry (PE Applied Biosystems, Foster City, CA) on an ABI 310 automated genetic 

analyzer. These partial gene sequences can be found in GenBank (COII: AY876495-

AY876545; 16S: AY876546-AY867595). Sequence data for Diopsis apicalis (COII, 

AF304777; 16S, AF304742) and Eurydiopsis argentifera (COII, AF304764; 16S, 

AF304729) were obtained from GenBank and included as outgroups to root the tree in 

the phylogenetic analyses.   

 Phylogenetic hypotheses were generated using maximum-likelihood (ML) and 

maximum-parsimony (MP) in Paup* 4.0b10 (Swofford 2001) on the combined COII and 

16S data set. Exactly five animals per population were used for generating phylogenetic 

trees, but all available sequences were used for calculating genetic distances between 

populations. Optimal parameters of DNA substitution rates for ML searches were 

obtained using Modeltest 2.0 (Posada and Crandall 1998). The most appropriate model of 

DNA substitutions for this data set corresponded to a TIM model (Transitional model: 

rAC = rGT ≠ rAT = rCG  ≠ rAG ≠ rCT)  with a transition:tranversion (ts:tv) ratio of 

~1:4.4, rate heterogeneity (gamma distribution shape parameter = 4.85). Equal weighting 

and a ts:tv weighting scheme of 1:4 were used in the MP analyses. We conducted a single 

heuristic search using the ML criteria and 500 bootstrap replicates of heuristic searches 

using MP criteria. Gaps were treated as missing data and uninformative characters were 
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excluded from analyses. Because all analyses resulted in similar phylogenetic trees, only 

the results of the parsimony analysis are presented. 

 

Prezygotic Isolation 

 
 

We tested for reproductive isolation by combining a male fly from one population 

with three female flies from another population in replicate cages. We used several, but 

not all, of the possible pairs of populations in an effort to maximize phylogenetic 

coverage without unnecessary replication of distant crosses (Table 2). We conducted 

experimental crosses in four rounds between May, 2000 and March, 2003. In the first 

round we reciprocally crossed the two populations of C. whitei. In the second round, we 

crossed the Gombak, Soraya, Belalong, and Cameron populations of C. dalmanni in 

every possible combination. In the third round we crossed Bukit Lawang and Bogor with 

a subset of the other C. dalmanni populations. In the final round, we tested the C. 

dalmanni Gombak and C. whitei Chiang Mai populations in reciprocal crosses. We also 

conducted all within-population crosses to estimate within-population fertility, behavior 

rates, progeny production and copulation success. 

To quantify reproductive isolation we scored interest and success in mating using 

observations and female dissections. We observed flies in transparent Nalgene (Nalge 

Nunc International, Rochester, NY) mouse cages modified with ventilation and access 

holes and inverted on pans lined with moist cotton and blotting paper. The day before 

beginning observations we released three females individually marked with paint into a 

clean cage. Prior evidence indicates that mating behavior is most frequent at dawn and 
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dusk (Lorch et al. 1993; Wilkinson et al. 1998a). Therefore, just before lights came on 

(0900 h) we released one unanesthetized male into each cage. We then timed all 

successful copulations and tallied all related male behavior not leading to successful 

mating for the ensuing 2.5 h using a hand-held tape recorder. We define a successful 

copulation as one that exceeds 30 sec, which is long enough to transfer sperm in C. whitei 

(Lorch et al. 1993). Other behavior was recorded as “pursuit,” when a male chased or 

jumped towards a female but did not land on her, and “copulation attempts,” where a 

male alighted on a female but did not mate or mated for less than 30 sec. Observations on 

each day were balanced with respect to type of cross with either 15 or 16 cages observed 

at a time, depending on the round (Table 2). 

After observation the flies remained in their cages for one week, after which we 

dissected females and examined their spermathecae for sperm. We anesthetized a female 

with carbon dioxide or cold, pulled out the two terminal abdominal segments with 

spermathecae attached while the female was still alive, and deposited the tissue into a 

drop of phosphate-buffered saline (PBS, pH = 7.4) on a microscope slide. Spermathecae 

were then gently squashed under a cover slip and immediately examined for sperm at 

400X magnification with dark-field illumination. If any female in a cage contained 

sperm, we scored the male as successfully transferring sperm. We then calculated the 

proportion of all replicates of a cross in which sperm was transferred. 
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Postzygotic Isolation 

 
 
 To quantify postmating and postzygotic isolation, we used the cages described 

above to score progeny production and hybrid fertility. We collected eggs in food cups 

for one week after mating observations ended, counted all eclosing offspring by sex and 

kept hybrids for four weeks to reach reproductive maturity. Then, treating hybrids from 

reciprocal crosses as different types, we crossed up to five flies of each sex from each 

hybrid type with each parental population (Table 2). Each hybrid fly was housed with 

two flies of the opposite sex to ensure a fertile partner. Females were allowed to oviposit 

in food cups for 10 days, after which we removed and examined their spermathecae for 

stored sperm. We also counted any offspring by sex that eventually eclosed from the food 

cups. We scored female hybrids sterile when they produced no offspring but stored 

motile sperm. We scored male hybrids sterile if no motile sperm were stored by their 

mates and no progeny were produced. Because we were not able to assess egg fertility 

rates, we cannot determine whether low progeny counts reflect failure of sperm to 

fertilize eggs or a failure of embryonic development. Thus, hybrid progeny counts 

potentially confound postzygotic isolation with postmating prezygotic isolation. Hybrid 

fertility, however, is purely a measure of postzygotic isolation. 

 

Data Analysis 

 
 

We first converted observations of pursuit, attempted copulation, and successful 

copulation into hourly rates. Then we performed linear regression on each of those 



 23 
 

measures, as well as the proportion of males that successfully transferred sperm and the 

number of progeny produced, against genetic distance. Genetic distance was measured as 

the average pairwise uncorrected proportion of nucleotide substitutions for the 889 bp of 

mtDNA between individuals from two populations (Figure 2). Our observations are not 

independent because every data point is a property of two populations and each 

population is represented in several data points. Thus, we pooled the data from reciprocal 

crosses and used the regression version of the Mantel test as described in Smouse et al. 

(1986). We determined statistical significance of our regression coefficients using 

randomization procedures (Manly 1996), as have other studies of reproductive isolation 

(Gleason and Ritchie 1998; Moyle et al. 2004; Tilley et al. 1990). We chose to perform 

10,000 replicates, which gives the p value a standard error of 0.002 when it is near the 

alpha level of 0.05; 1000 replicates gives a standard error roughly three times larger. 

Prior to reporting the results of any parametric analyses, we examined the residuals to 

ensure compliance with the standard assumptions of normality and homoscedasticity. If 

an assumption was violated, we transformed the data to correct the problem.  

Evidence of asymmetrical reproductive isolation may indicate that pooling data 

from reciprocal crosses would be inappropriate. We therefore tested each of our 12 pairs 

of reciprocal crosses for potential asymmetry in copulation, pursuit, and copulation 

attempt frequency and progeny production using t-tests. We also tested for asymmetry in 

sperm transfer frequency and hybrid fertility using association tests and estimated 

significance from either a chi-squared statistic or Fisher’s exact test. We analyzed the 

hybrid sexes separately and only performed the analysis if at least six hybrids from each 

of the two reciprocal crosses had been tested for fertility. To correct for multiple testing, 
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we applied the sequential Bonferonni correction for type I error within each set of tests 

(Rice 1989).  

To test if hybrid sterility obeys Haldane’s rule, we performed a Wilcoxon signed-

rank test on the percent fertility of male versus female hybrids. To test if hybrid 

inviability obeys Haldane’s rule we calculated the brood sex ratio (percent male) 

produced by every between-population cross and performed a Mantel test by regressing 

sex ratio on genetic distance. Although progeny counts could be influenced by either 

hybrid inviability or gametic isolation, these data can still be used to test for Haldane’s 

rule for inviability because progeny sex ratio should be independent of sperm-egg 

incompatibility. We performed two tests to assess the potential influence of meiotic drive 

on the pattern of progeny sex ratios. In the first we used a regression Mantel test on the 

percent of drive males, that is, those producing biased sex ratios, against genetic distance. 

In the second we tested if male drive phenotype was independent of the type of cross 

(within or between population) using a chi-squared contingency table. We assessed drive 

phenotype using a chi-squared goodness-of-fit test for departure from a 50:50 sex ratio. 

Only those males producing at least 20 offspring were tested. 

To compare the rate of evolution between different types of reproductive 

isolation, we first converted all measurements to a common, continuous scale. For 

premating isolation we divided the mating frequency for each replicate of a between-

population cross by the average of all replicates of the two corresponding within-

population crosses. Similarly, for postmating isolation we divided the observed progeny 

count of each between-population replicate by the average progeny count for the maternal 

population. Then, to compare premating isolation (copulation rate) directly with 
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postmating isolation (progeny production), we performed another Mantel test. In this test 

for each cross combination we subtracted scaled progeny production from scaled mating 

rate, and then regressed the resulting differences against genetic distance. A significant 

slope would, therefore, indicate that premating isolation evolves either more slowly or 

more rapidly than postmating isolation. Hybrid sterility could not be analyzed using 

linear regression methods due to poor fit of the data to a linear model. Instead, we 

compared male and female hybrid sterility separately to both progeny production and 

copulation rate using Wilcoxon signed-rank tests. Because the tabular p-values for this 

test are based on all possible permutations under the binomial distribution, a 

randomization procedure is unnecessary. 

 

Results 

 

Phylogenetic Relationships 

 
 

The combined COII and 16S dataset included 889 characters, 184 of which were 

phylogenetically informative. The weighted analysis (i.e., 1:4 ts:tv) resulted in two most 

parsimonious trees; a phylogram of the bootstrap consensus tree is presented in Figure 3. 

Each of the three described species of Cyrtodiopsis forms a monophyletic unit, with 

bootstrap support ranging from 96% for C. dalmanni to 100% for the other two species. 

In addition, all five individuals from each population form a monophyletic unit with 

significant bootstrap support. The six populations of C. dalmanni form two distinct clades 

which are separated by 5.3% sequence difference. 
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Prezygotic Isolation 

 
 

Prezygotic isolation increases monotonically with genetic distance as evidenced 

by a decline in copulation frequency with increasing population divergence (P < 0.002, 

Figure 4A). Between-population copulation frequencies are always below the within-

population averages (Table 3), and the incidence of mating falls nearly to zero at 5% 

sequence divergence. No pairs of reciprocal crosses exhibited significant asymmetry in 

copulation frequency (Table 4). The frequency of sperm storage in females (Figure 4B) 

exhibits a pattern that is similar to copulation frequency in that it declines with increasing 

genetic distance (P < 0.002), but for some between-population crosses sperm storage 

occurs more often than within populations. This result indicates that sperm were 

transferred during the week of cohabitation between male and females in at least some 

cages where no mating was observed during the 2.5 h observation period. Two pairs of 

reciprocal crosses showed significant asymmetry in this measure (Table 4). 

In contrast to the pattern exhibited by copulation and sperm storage, pursuit 

frequency (Figure 4C) increases with genetic distance (P = 0.010), and often exhibits a 

higher rate of occurrence between than within populations. We failed to detect an effect 

of genetic distance on copulation attempts (P = 0.29, Figure 4D). No significant 

asymmetry was detected between reciprocal crosses in either of these measures (Table 4). 
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Postmating Isolation 

 
 

Progeny counts (Figure 5A) decline with genetic distance (F = 66.06, P < 0.002), 

with cross averages falling to zero at 5% sequence divergence. No pairs of reciprocal 

crosses exhibited significant asymmetry in progeny production (Table 4). Brood sex ratio 

does not vary with genetic distance (F = 2.61, P = 0.92), indicating that no sex bias in 

hybrid viability could be detected. Brood sex ratio does appear to be affected by the 

presence of males carrying meiotic drive in all populations. Of 166 males that produced 

enough progeny to be tested for departure from a 1:1 brood sex ratio, 41 (24.7%) had 

significantly female-biased brood sex ratios. However, the fraction of males expressing 

female-biased brood sex ratios does not covary with the genetic distance of the cross (P = 

0.155). Furthermore, the drive phenotype of a male is independent of the type (within or 

between populations) of cross (chi-square = 0.076, P = 0.783). 

 

Hybrid Sterility 

 
 
 Hybrid males were sterile (Figure 5B) except for two crosses involving recently 

isolated populations. In C. whitei, Gombak males crossed with Chiang Mai females 

(0.83% sequence divergence) produced seven fertile and three sterile males, and the 

reciprocal cross produced three fertile and seven sterile males. In C. dalmanni, Gombak 

males crossed with Bukit Lawang females (2.2% sequence divergence) produced six 

fertile and four sterile males. The reciprocal cross between Gombak and Bukit Lawang 

produced no fertile males, making this the only pair of crosses to show significant 
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asymmetry (Table 4). In contrast, female hybrid fertility was generally high, averaging 71 

± 11.9% until genetic distance exceeded 5%, above which no fertile hybrids of either sex 

were found. Hybrid fertility of females is higher than males (Wilcoxon signed-rank test, 

S = -21, P = 0.031), consistent with Haldane’s rule for sterility. 

 

Relative Rates of Evolution 

 
 

We failed to find a difference between the rates at which prezygotic isolation 

(mating frequency) and postmating isolation evolve (Mantel test, P = 0.705). However, 

male hybrid sterility evolves sooner than both prezygotic isolation (Wilcoxon signed-

ranks tests, S = -14, P = 0.016) and postmating isolation (S = -14, P = 0.016). Female 

hybrid sterility evolves later than prezygotic isolation (S = 15, P = 0.0391), but we failed 

to detect a difference between female sterility and postmating isolation (S = 5.5, P = 

0.570). 

 
 

Discussion 

 

Prezygotic Isolation 

 
 
 Our results indicate that in Cyrtodiopsis, as in Drosophila, Lepidoptera, and other 

taxa, prezygotic isolation increases monotonically over time. This pattern is indicative of 

a gradual accumulation of multiple factors of small effect. Copulation and sperm transfer 



 29 
 

frequencies both exhibit a decrease with increasing genetic distance, indicating that as 

populations become isolated from each other the probability of successful mating 

decreases. This result indicates that either male or female mating interest is depressed in 

crosses between genetically distant populations. Because male pursuit behavior increases 

with genetic distance, it appears that males continue to seek mating opportunities from 

females that reject them. These results are consistent with mating discrimination evolving 

more rapidly in females than in males.  

The cause of the observed prezygotic isolation is not yet known, because little 

obvious morphological evolution has taken place between these populations (Swallow et 

al. 2005). Divergence between populations in traits affecting mate choice appears to be 

insufficient to explain the observed relationship between mating frequency and genetic 

distance. Neither body size nor eyestalk allometry differs between populations, but the 

Belalong population does have a distinctive eyestalk phenotype: instead of protruding 

horizontally from the head, the eyestalks are at a visibly higher angle. If mating interest 

was affected by this difference, we would expect to observe asymmetries in behavior in 

most crosses involving the Belalong population, but this did not occur. Divergence in 

courtship behavior (Price and Boake 1995) and cuticular hydrocarbons (Coyne and 

Charlesworth 1997; Coyne et al. 1994) have been shown to produce reproductive 

isolation in Drosophila. However, C. whitei and C. dalmanni display no obvious 

courtship behavior (Wilkinson et al. 1998a), that is, there is no ritualized precopulatory 

touching that might allow flies to sense non-volatile waxes on the cuticle of a potential 

partner. Whether volatile compounds or other behavioral or morphological cues affect 

prezygotic isolation in these flies deserves further study. 
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Postmating and Postzygotic Isolation 

 
 

We found evidence for Haldane’s rule with respect to hybrid sterility but not 

hybrid inviability. Over the range of genetic distances we sampled, progeny sex ratio did 

not change as a function of genetic distance, as would be expected if male hybrids were 

less viable than female hybrids. Also, the frequency of males expressing meiotic drive 

was consistent with previously published estimates for Cyrtodiopsis (Wilkinson et al. 

2003). In contrast, sex bias in hybrid sterility was apparent even for populations with very 

little sequence divergence, before complete sterility became the rule. The lowest 

sequence divergence we sampled at which all female hybrids were sterile was 5.4%, 

whereas the lowest value at which all male hybrids were sterile was 2.3%, a 2.4-fold 

difference. Thus, hybrid male sterility has evolved considerably faster than hybrid female 

sterility in these animals. 

That we observed Haldane’s rule for hybrid sterility and not inviability may not 

be surprising. Although both types of postzygotic isolation are thought to be caused by 

the accumulation of deleterious epistatic (Dobzhansky-Muller) incompatibilities 

(Dobzhansky 1937b; Muller 1940; 1942; Orr and Turelli 2001), separate genetic causes 

may be involved (Presgraves and Orr 1998). Sterility-causing incompatibilities 

accumulate more rapidly in male than female Drosophila (Wu and Davis 1993), and by 

extension other male-heterogametic taxa, possibly due to sexual selection (Wu et al. 

1996). Inviability-causing incompatibilities become visible first in the heterogametic sex 

due to the expression of deleterious X-linked recessive mutations when in the 

hemizygous state (Orr 1993; Turelli and Orr 1995). If one mechanism operates faster than 
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the other, it should be possible to detect species pairs that diverged in the time period 

between the appearance of Haldane’s rule for sterility and inviability. Some of the 

Cyrtodiopsis populations examined in this study are consistent with this prediction. 

However, even though we found no change in the brood sex ratio of hybrids with genetic 

distance, we did find a highly significant decline in progeny production. As Haldane’s 

rule is an early and nearly ubiquitous form of postzygotic isolation (Coyne and Orr 

1989a), this decline may reflect gametic isolation instead of or in addition to hybrid 

inviability. Further study to determine the fertilization rate of eggs in between-population 

crosses is needed to separate hybrid inviability from gametic isolation. 

 

Relative Rates of Evolution 

 

We found two differences between hybrid sterility and postmating isolation in 

Cyrtodiopsis. First, hybrid male sterility, but not hybrid female sterility, has evolved 

faster than postmating isolation. Even if we have completely confounded sperm-egg 

incompatibility with hybrid inviability, our measure of postmating isolation sets an upper 

limit on the amount of hybrid inviability. Thus, we can be certain that male hybrid 

sterility evolves faster than hybrid inviability. This result shows the advantage of 

analyzing forms of reproductive isolation separately rather than combining traits into a 

composite isolation index. Second, hybrid sterility in Cyrtodiopsis shows a different 

pattern of evolution from postmating isolation. Postmating isolation increases gradually 

with no detectable change in brood sex ratio over the range of sequence divergence in 

this study. Sterility, however, evolves abruptly in a sex-specific pattern. Male hybrid 
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sterility is incomplete at low genetic distance, but quickly becomes complete. Female 

hybrids all have similar fertility at genetic distances below 5% but are sterile above that 

level.  

Whether these results differ from other taxa is difficult to determine because other 

studies have either lacked hybrid sterility information (Mendelson 2003), combined 

sterility and inviability data into one isolation index to compare prezygotic to postzygotic 

effects (Coyne and Orr 1989a; Sasa et al. 1998; Zouros 1973), or lacked prezygotic 

isolation data (Presgraves 2002; Price and Bouvier 2002; Sasa et al. 1998). However, a 

genetic study of postzygotic isolation in Drosophila that tested many small introgressions 

found more male hybrid sterility loci than either hybrid inviability or female hybrid 

sterility loci (Tao and Hartl 2003). Moreover, hybrid sterility evolves faster than 

inviability in many taxa (Presgraves 2002; Price and Bouvier 2002; Sasa et al. 1998; Wu 

1992). These studies also showed compliance with Haldane’s rule, indicating faster 

evolution of sterility in the heterogametic hybrid sex. Thus, other taxa seem to follow the 

same pattern of evolution seen in Cyrtodiopsis: first male hybrid sterility, then female 

hybrid sterility, then hybrid inviability. How the rates of evolution of male and female 

hybrid sterility and inviability considered separately compare to prezygotic isolation in 

these other taxa is not known. In addition, quantitative measurement of postzygotic 

isolation will be necessary to determine if hybrid sterility also evolves abruptly in those 

taxa. 
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Accelerated Evolution of Male Hybrid Sterility 

 
 
 Postzygotic isolation could evolve rapidly by more than one mechanism. 

Possibilities include endosymbionts such as Wolbachia (Breeuwer and Werren 1990; 

Werren et al. 1986), intragenomic conflict from selfish genetic elements (Frank 1991; 

Hurst and Pomiankowski 1991), antagonistic coevolution (Rice 1996; Rice 1998), and 

sexual selection (Wu et al. 1996; Wu and Davis 1993). However, not all mechanisms will 

produce accelerated male hybrid sterility in relation to female hybrid sterility, hybrid 

inviability, and prezygotic isolation. Tao and Hartl (2003) argued that experimental data 

supports a new faster-heterogametic-sex hypothesis of Haldane’s rule. This hypothesis, 

which is related to an earlier hypothesis that divergent sex chromosome meiotic drive 

systems contribute to Haldane’s rule (Frank 1991; Hurst and Pomiankowski 1991), 

suggests a major role of genomic conflict in the rapid evolution of male hybrid sterility. 

Intergenomic and cytoplasmic-nuclear genome conflicts affecting progeny sex ratio may 

be particularly important. At least two types of conflict, meiotic drive and sperm 

competition, are present and affect one another in C. whitei (Fry and Wilkinson 2004; 

Wilkinson and Fry 2001) and are intimately linked to sexual selection (Wilkinson et al. 

1998b; Wilkinson et al. 2003). Future research is needed to determine how much 

influence these forms of conflict and sexual selection have on speciation in this genus.  
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Table 2: List of crosses, sample sizes and proportion nucleotide substitutions. 

Observation sample sizes before the slash are for the cross as listed in the left-hand 

column (male x female); those after the slash are for the reciprocal cross. For number of 

hybrids tested, the number before the slash represents flies whose male parent is listed 

first in the cross column; those after the slash are for flies whose female parent is listed 

first. 

Number of hybrids tested Cross Observation 

sample size 

Genetic 

distance Male Female 

Within C. dalmanni     

     Gombak x Soraya 16/15 0.0207 10/3 10/10 

     Gombak x Cameron 15/16 0.0576 0/0 0/1 

     Gombak x Belalong 14/15 0.0596 1/0 1/0 

     Gombak x Bukit Lawang 16/15 0.0211 10/10 10/10 

     Soraya x Cameron  15/15 0.0534 0/0 0/0 

     Soraya x Belalong 15/15 0.0533 0/0 2/0 

     Soraya x Bukit Lawang 16/16 0.0035 4/10 9/10 

     Cameron x Belalong 14/16 0.0399 3/0 10/4 

     Cameron x Bogor 15/15 0.0337 0/0 0/0 

     Belalong x Bogor 15/15 0.0376 10/10 10/10 

Within C. whitei     

     Gombak x Chiang Mai 15/17 0.0083 10/10 10/10 

Between C. dalmanni and C. whitei     

     Gombak x Chiang Mai 16/16 0.0783 0/0 0/0 
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Table 3: Within-population average (± 1 SE) for hourly behavior frequencies, sperm 

transfer rate, and progeny production over a one-week period 

Population n  Copulation  Sperm 

transfer 

Pursuit Copulation 

attempts 

Progeny 

count 

C. dalmanni       

   Bukit Lawang 15 1.9 ± 0.61 1.000 10 ± 4.1 0.07 ± 0.067 36 ± 8.6 

   Bogor 15 5.0 ± 0.42 1.000 6 ± 1.3 1.3 ± 0.34 130 ± 14 

   Belalong 14 2.8 ± 0.64 0.929 9 ± 1.4 0.5 ± 0.20 28 ± 8.3 

   Cameron  15 1.8 ± 0.26 0.867 5.4 ± 0.63 0.13 ± 0.091 24 ± 6.0 

   Gombak 15 4.6 ± 0.76 0.933 4 ± 1.1 0.13 ± 0.091 60 ± 12 

   Soraya 15 3.6 ± 0.38 1.000 4 ± 1.0 0.13 ± 0.091 70 ± 13 

C. whitei       

   Gombak 15 2.3 ± 0.55 1.000 4 ± 1.8 0.07 ± 0.067 38 ± 7.5 

   Chiang Mai 17 5.2 ± 0.47 1.000 4.8 ± 0.83 0.4 ± 0.24 65 ± 8.1 
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Table 4: Results of asymmetry tests.  Table values are t (first four columns) or chi-square (last two columns) statistics. 

Numbers before the slash in the last column are for male hybrid fertility, after are for female hybrid fertility. Significance was 

calculated using a sequential Bonferroni correction applied to each column of P-values (Rice 1989).  

Cross Progeny 

count 

Copulation 

frequency 

Pursuit 

frequency 

Attempt 

frequency 

Sperm transfer Hybrid fertility 

Bukit Lawang x C.d. 

Gombak 

1.91 -0.91 -1.46 -1.59 2 10.77*/1.05 

Bukit Lawang x Soraya 0.18 3.05 -2.17 1.25 5.24 2/1.72 

Bogor x Belalong 2.71 3.06 1.84 -0.49 5.00 2/1.05 

Bogor x Cameron 1.00 -0.87 0.79 -1.05 0.37 3 

Belalong x Cameron -3.11 -3.24 -2.34 1.47 16.63*** 3 

Belalong x C.d. Gombak -1.51 -1.00 -1.35 -0.65 0.58 3 

Belalong x Soraya -1.46 1 -1.07 1 7.50 3 

Cameron x C.d. Gombak 1.00 1.00 -0.28 0.15 4.21 3 

Cameron x Soraya 1 1.86 1.17 -0.59 2 3 

C.d. Gombak x Soraya 0.11 -0.08 0.70 -0.58 2 3/1.17 
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Chiang Mai x C.w. 

Gombak 

-0.71 1.87 1.39 -0.72 2 3.20/2 

Chiang Mai x C.d. 

Gombak 

1 1.89 1.46 -2.20 16.76*** 3 

***P < 0.001;  **P < 0.01; *P < 0.05 

1 Statistic < 0.001  

2 Test not performed because one column of the contingency table contained only sperm transfer or hybrid fertility rates of 

zero 

3 Test not performed because there were not enough surviving hybrid offspring 
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Figure 2: Stalk-eyed fly collection localities in the Sunda shelf region of Southeast Asia. 

For site details and species collected, see text. 

 

Figure 3: Maximum-parsimony hypothesis for the phylogenetic relationships among 

populations using 889 bp of mitochondrial DNA (cytochrome oxidase II and 16S 

ribosomal RNA) from five flies per population. Numbers on each branch indicate 

bootstrap support. 

 

Figure 4: Prezygotic isolation measures are plotted against genetic distance (p, the 

proportion uncorrected DNA sequence changes). Open circles show the within-

population values, filled circles show comparisons between conspecific populations, and 

the filled square represents the single between-species comparison. Within-population 

values indicate the average percent sequence divergence among five flies from each 

population. (A) Number of copulations observed per hour in cages containing one male 

and three females (R2 = 0.74, b = -22.21, 95% confidence interval = -28.54, -15.86). (B) 

Proportion of replicate cages in which at least one female contained sperm in her 

spermathecae after one week (R2 = 0.68, b = -11.63, 95% CI = -15.45, -7.85). (C) 

Number of times males chased females per hour (R2 = 0.20, b = 30.10, 95% CI = 3.55, 

46.00). (D) Number of unsuccessful copulation attempts per hour (R2 = 0.01). 

 

Figure 5: Postzygotic isolation measures are plotted against genetic divergence (p, the 

proportion uncorrected mtDNA sequence changes). (A) Progeny production, after log10 

transformation, with symbols as in Figure 4 (R2 = 0.74, b = -57.61, 95% CI -73.95, -
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41.24). (B) Proportion of hybrids that produced progeny when mated. Open circles 

represent within-population males, closed circles represent male hybrids. Squares 

represent female hybrids. Within-population female values could not be calculated from 

these data. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 



 44 
 

Chapter 2: Reduced polymorphism and increased divergence associated with 

meiotic drive in the stalk-eyed fly Cyrtodiopsis dalmanni 

 
 
 

Abstract 

 

 The meiotic drive hypothesis of Haldane’s rule states that divergence between 

incipient species at loci involved in sex chromosome meiotic drive leads to early hybrid 

incompatibilities. I sequenced autosomal and drive-associated X-linked loci in the stalk-

eyed fly Cyrtodiopsis dalmanni and analyzed the sequences for patterns of polymorphism 

and divergence. I show that there is greatly reduced polymorphism associated with 

meiotic drive, which is consistent with the action of positive selection and hitchhiking of 

linked genes. I also show that the XD and XST chromosomes have diverged significantly 

with respect to one another, and to a greater extent than the autosomal loci. These results 

are consistent with antagonistic coevolution within the complex of meiotic drive-

associated loci, as expected if drive is causing Haldane’s rule. 
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Introduction 

 
 
 Hybrid dysfunction in the heterogametic sex, a phenomenon known as Haldane’s 

rule (Haldane 1922), is an important and complex milestone on the way to the complete 

isolation of new species (Coyne and Orr 2004; Orr 1997). At least three hypotheses 

describe the processes generally believed to contribute to Haldane’s rule (Coyne and Orr 

2004; Presgraves and Orr 1998). First, the dominance theory (Muller 1940; Muller 1942; 

Orr 1993; Turelli and Orr 1995) states that if the epistatic interactions leading to hybrid 

dysfunction are, on average, at least partially recessive, loci on a hemizygous sex 

chromosome will contribute more to sterility and inviability than those on an autosome. 

An autosomal allele, because it may be paired with another allele producing the dominant 

phenotype, is less likely to lead to the expression of a recessive hybrid dysfunction. 

Second, the faster-male theory (Wu et al. 1996) states that, because there is intense 

competition between males to achieve fertilizations, male reproductive genes evolve 

faster than female reproductive genes and lead to earlier male than female hybrid sterility. 

This explanation applies specifically to the evolution of sterility in male-heterogametic 

species. The third hypothesis is called the faster-X theory (Charlesworth et al. 1987). 

According to this hypothesis, which is regarded as less important than the other two (Orr 

1997), higher substitution rates of favorable, partially recessive mutations on a 

hemizygous chromosome lead to faster evolution on the X than on autosomes.  

A fourth, more controversial, explanation for Haldane’s rule is that divergence at 

loci affecting sex chromosome meiotic drive may lead to hybrid male sterility and 

possibly inviability in male-heterogametic species (Frank 1991; Hurst and Pomiankowski 
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1991). While some evidence supports this meiotic drive hypothesis (Dermitzakis et al. 

2000; Orr and Irving 2005; Tao et al. 2001), many questions must be answered in order to 

determine whether meiotic drive is a major factor in the evolution of hybrid dysfunction. 

One such question is whether the evolutionary change occurring at drive-associated loci 

is capable of leading to early hybrid incompatibilities. Genes that evolve rapidly under 

the influence of selection may be more likely to lead to initial hybrid incompatibilities 

than genes which evolve more slowly. One approach to determine whether meiotic drive 

is evolving under the influence of selection is to examine DNA sequence variability for 

characteristic changes known to be produced by selection.  

 Sex chromosome meiotic drive is a selfish genetic system which is characterized 

by non-Mendelian transmission of sex chromosomes (Sandler and Novitski 1957); most 

typically, one observes transmission of the X at the expense of the Y (e.g., Carvalho et al. 

1989; Gershenson 1928; James and Jaenike 1990; Presgraves et al. 1997; Stalker 1961; 

Sturtevant and Dobzhansky 1936). A driving X chromosome (XD) outcompetes the non-

driving X chromosome (XST) and, if unimpeded by selection, is predicted to proceed to 

fixation (Hamilton 1967). However, multiple levels of selection act on the XD 

chromosome and the flies that carry them. When drive is active in a population, females 

mating with non-driving males have higher fitness because sons are valuable in a female-

biased population (Capillon and Atlan 1999; Curtsinger and Feldman 1980; Jaenike 

1996). Traits indicative of a male’s drive status may then evolve, allowing females to 

choose mates that will produce a favorable offspring sex ratio (Lande and Wilkinson 

1999; Wilkinson et al. 1998b). Selection to avoid producing the more-abundant sex 

favors the spread of autosomal drive suppressors, which act to correct the imbalance in 
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the sex ratio (Carvalho and Klaczko 1993; Hauschteck-Jungen 1990). The Y 

chromosome faces selection to avoid exclusion from sperm, which favors the evolution 

of Y-linked suppressors producing drive resistance (Carvalho et al. 1997; Hauschteck-

Jungen 1990; Mercot et al. 1995; Stalker 1961). The driving X also faces selection to 

increase its own success, accumulating X-linked modifiers of the original drive locus 

(Montchamp-Moreau and Cazemajor 2002). And finally, decreased female fecundity, 

male fertility, and viability have all been reported in conjunction with meiotic drive in 

flies (Beckenbach 1996; Curtsinger and Feldman 1980; Edwards 1961; Wilkinson et al. 

2006), and likely result in selection against the drive chromosome. 

Most of the types of selection listed above are forms of positive selection, in 

which an allele that confers a benefit to itself (in the case of the drive allele or an X-

linked modifier), its chromosome (a Y-linked suppressor), or the organism (any 

suppressor) increases in frequency. Fecundity, fertility, or viability costs, however, may 

cause background selection, which decreases the frequency of a deleterious allele. 

Heterozygous advantage in females may produce balancing selection, which leads to an 

intermediate allele frequency. The complex cycle of evolution of drive and its 

suppressors and modifiers can lead to a polymorphism of drive and non-drive phenotypes 

(Carvalho et al. 1997; Jaenike 1996) or to complete masking of the drive phenotype 

(Cazemajor et al. 1997; Dermitzakis et al. 2000; Orr and Irving 2005). These different 

forms of selection can also lead to different patterns of polymorphism at the DNA 

sequence level. Under positive selection a successful allele increases in frequency, which 

means other alleles at the same locus must necessarily decrease in frequency. The 

resulting change in the frequency spectrum affects both the locus under selection and 
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others linked to it, due to a process known as “genetic hitchhiking” (Kaplan et al. 1989; 

Kojima and Schaffer 1967; Maynard Smith and Haigh 1974). When hitchhiking occurs 

the remaining allelic diversity tends to be concentrated in rare alleles with a marked 

deficit of intermediate-frequency alleles (Aguade et al. 1989; Braverman et al. 1995). 

DNA polymorphism is also reduced under background selection (Charlesworth et al. 

1993b), but the resulting allele frequency distribution is much less severely skewed than 

under positive selection (Charlesworth 1996; Charlesworth et al. 1995). In contrast, 

balancing selection favors polymorphism and tends to leave an allele frequency 

distribution higher in the center and deficient in the tails when compared to the neutral 

expectation (Fay and Wu 2000). 

The prevailing opinion is that in Drosophila, while some contribution has come 

from demographic processes (Hutter et al. 2007) and background selection (Jensen et al. 

2002), repeated selective sweeps are responsible for most observed cases of reduced 

DNA polymorphism (Andolfatto and Przeworski 2001; Begun and Aquadro 1992; Glinka 

et al. 2003; Quesada et al. 2003). In particular, several species in the genus show low 

sequence polymorphism in chromosomal regions with reduced recombination (Aguade et 

al. 1994; Aguade et al. 1989; Jensen et al. 2002; Martin-Campos et al. 1992; Miyashita 

1990; Stephan and Langley 1989; Stephan and Mitchell 1992). Genetic hitchhiking 

reduces DNA polymorphism more effectively in regions of low recombination (Kaplan et 

al. 1989). In addition, simulations suggest that when recombination is extremely low, 

reduced polymorphism is most likely due to hitchhiking, not background selection, and 

polymorphism is most effectively reduced when positive selection acts alone rather than 

in combination with background selection (Kim and Stephan 2000).  
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Reed et al. (2005) point out that in Drosophila, the selection coefficients 

attributable to drive appear to be strong, and speculate it is not a coincidence that drive is 

found in areas of the X chromosome known to have both low recombination rates and 

low polymorphism. One study (Derome et al. 2004) also found evidence of a recent, 

meiotic drive-associated selective sweep that severely reduced polymorphism in one area 

of the D. simulans X chromosome. An interesting contrast to Derome et al. (2004) is a 

study conducted on meiotic drive in D. recens by Dyer et al. (2007). Very little sequence 

polymorphism was found on the D. recens drive X chromosome, but analysis suggested 

that the chromosome is no longer experiencing selective sweeps, and is instead 

accumulating deleterious alleles and may be on its way to being lost. The D. recens study 

illustrates that while repeated selective sweeps may leave an impact on patterns of DNA 

polymorphism, the cycle need not continue indefinitely. 

Like most meiotic drive systems in Drosophila, the one studied by Derome et al. 

(2004) includes highly effective suppressors, and it is rare to see a wild population with a 

significant proportion of males harboring unsuppressed meiotic drive (Jaenike 2001; 

James and Jaenike 1990). Suppressors will increase in frequency due to positive selection 

and contribute to an overall pattern of reduced DNA polymorphism. A drive 

polymorphism without active suppression is likely maintained through background or 

balancing selection that counteracts the transmission advantage of the XD chromosome. 

In such a polymorphism, the pattern of variation in DNA sequence should reflect a 

contribution of negative or balancing selection as well as positive selection.  

The stalk-eyed fly Cyrtodiopsis dalmanni provides an intriguing system for 

studying X chromosome meiotic drive. Multiple populations in Southeast Asia possess 
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high frequencies of X chromosome drive, have close phylogenetic relationships 

(Wilkinson et al. 2003), and exhibit different degrees of reproductive isolation 

(Christianson et al. 2005). One or more inversions on the X chromosome are associated 

with meiotic drive, and there is little evidence of recombination occurring between XD 

and XST chromosomes (Johns et al. 2005). In the wild, drive persists in a natural 

polymorphism of XD and XST chromosomes, with female-biased population sex ratios 

(Wilkinson and Reillo 1994) and between 8% and 25% of males producing biased sex 

ratios (Wilkinson et al. 2003). The high frequency of drive in the wild suggests that 

unlike in D. recens, meiotic drive in C. dalmanni is not nearing extinction. Published 

(Johns et al. 2005) and unpublished work (Chapter three of this dissertation) suggests that 

variation in drive is caused by Y-linked and autosomal suppressors and additional cryptic 

(completely suppressed) drivers, and earlier studies report the presence of Y-linked 

modifiers (Presgraves et al. 1997; Wilkinson et al. 1998b). The combined presence of X 

chromosome drive, suppressors, and cryptic drive suggests a history of repeated selective 

sweeps. However, the apparent natural drive polymorphism is consistent with ongoing 

balancing selection (Wilkinson et al. 2006).  

Here I use two populations of C. dalmanni to conduct a study on the effects of X 

chromosome drive on patterns of DNA sequence evolution. I sequence two X-linked loci 

at opposite ends of a large, drive-associated inversion, and two autosomal loci which 

consist of one coding region and one untranscribed region of the same gene. I examine 

the sequences for patterns of polymorphism and divergence and perform analyses to test 

for departure from neutral expectations. I then consider the results in light of the 

predicted patterns left behind by selective sweep, background and balancing selection 
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models. I then discuss the implications of these results on the meiotic drive hypothesis of 

Haldane’s rule. 

 

Materials and Methods 

DNA Samples 

 
 Thirteen male Cyrtodiopsis dalmanni were captured in 1999 near the Soraya 

research station in Aceh province, Indonesia. Five of those males were found to produce 

offspring in a sex ratio not significantly different from 50:50 (i.e. were presumed to carry 

XST, and were non-drivers), but the remainder were not tested before they died. All 13 

were preserved in 70% ethanol, and their DNA extracted using DNEasy extraction kits 

(Qiagen). Twenty-five other males were included in this study, all from the laboratory 

population originally collected in 1999 near Ulu Gombak, in peninsular Malaysia. That 

population has since been continuously maintained, at about four generations per year, 

with at least 100 breeding females. In 2004, a screening project was undertaken to 

identify males from the Gombak population that carry sex chromosome meiotic drive 

(Wilkinson et al. 2006). Out of 81 males tested, 15 driver males (i.e. those producing 

significantly female-biased offspring sex ratios) were found. 11 drive and 14 non-driving 

males from that study are used here. DNA had been previously extracted from those 25 

flies using the DNEasy kit and stored at -80°C. 
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DNA Sequence Generation and Preparation 

 
 
 Four DNA segments, two autosomal and two X-linked, were sequenced for this 

study. The autosomal loci included one coding segment and one untranscribed region 

(UTR) from the same gene, which totaled 921 bp in the alignment used for analysis (see 

Table 5 for details and primer sequences). This locus is putatively identified as bangles 

and beads (bnb), on the basis of a probability of 7*10-36 (R. Baker, pers. comm.) for the 

best match returned from a BLAST search against Drosophila melanogaster genome 

sequence. In D. melanogaster bnb is located on the X chromosome, but in C. dalmanni it 

maps to one of the two autosomes (S. Christianson, unpublished data). I also sequenced 

two regions of the X chromosome, approximately 40 cM apart. One region included part 

of a gene, cryptocephal (crc), that contains a tandemly repeated amino acid (glutamine) 

while the other region contains a dinucleotide microsatellite (ms125, Wright et al. 2004) 

and is known to segregate with X chromosome meiotic drive (Johns et al. 2005). In the 

final alignment the two X-linked loci totaled 1172 bp.  

Primers for sequencing came from several sources. Primers for bnb coding and 

UTR sequence came from an expressed sequence tag (EST) project on Cyrtodiopsis eye-

antennal imaginal discs (Baker and Wilkinson, unpublished data). I then designed 

additional primers to target sequence fragments less than 800 kb in length. For crc I used 

primers designed for Cyrtodiopsis by Dr. Richard Baker (unpublished). For ms125 I used 

one primer previously designed for microsatellite genotyping purposes (Wright et al. 

2004) and personally designed others to obtain a larger fragment for this sequencing 

study. Dr. Richard Baker provided sequence from a fosmid clone that was identified as 
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carrying ms125 (unpublished data). In several cases more than two primers are listed for 

the loci in Table 5. For the autosomal loci, this reflects heterozygosity for indels near a 

primer site. Because such indels make sequence interpretation difficult, I designed 

additional primers to fall inside the location of the indel and repeated the sequencing 

process for affected samples. For crc, the two external primers bracket a fragment that 

was too long to sequence reliably, so the internal primers allow the locus to be processed 

in two smaller, overlapping fragments. 

These four DNA segments were first amplified using PCR. Each 25 µL reaction 

included 2.5 µL 10x Invitrogen PCR buffer, 250 µM dNTPs, between 1.5 and 3.0 mM 

MgCl2 (optimized for each primer pair), 625 µM of each primer, and 0.625 units of 

recombinant Taq polymerase (Invitrogen, Foster City, CA). The annealing temperature 

was optimized for each primer pair (see Table 5 for primer sequences). Following an 

initial denaturation step of two minutes at 94°, the amplification conditions consisted of 

35 cycles with 30 s at 94°, 30 s at the annealing temperature and 45 s at 72°. A small 

amount of each completed PCR sample was run on an agarose gel with a Low Mass DNA 

Ladder (Invitrogen) to quantify the amount of DNA fragment in the product. I then 

cleaned the PCR products using 2.5 units of Exonuclease I (USB, Cleveland, OH), 0.25 

units of shrimp alkaline phosphatase (USB) and 0.5 µL of SAP dilution buffer (USB) per 

each 5 µL of PCR product. The mixture was put on a thermal cycler for 30 min. at 37° 

and 15 min. at 80°. Cycle sequencing was performed in both directions on each cleaned 

PCR product using ABI Big Dye v3.1 kits. Each 10 µL reaction contained 1 µL Big Dye 

Ready Reaction Mix, 1.5 µL Big Dye buffer, 3.3 pmol primer, and approximately 20 ng 

template. Thermal cycling conditions followed the manufacturer’s recommendations. 
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Sequencing reaction products were cleaned by isopropanol precipitation, resuspended in 

HiDi formamide (ABI), and run on either an ABI 3100 or 3730 automated genetic 

analyzer. 

Each sequence file was checked and edited using Chromas Lite (version 2.01; 

Technelysium Pty Ltd), and then the sequences were manually aligned using BioEdit 

(v7.0.5.3,  Hall 1999). Because I did not clone individual strands of DNA prior to 

sequencing, heterozygous individuals could be identified by the presence of two 

nucleotides at one base position in the sequence data files. In the case of individuals with 

multiple heterozygous bases, I could not separate the heterozygous sequences into true 

haplotypes. Instead I described the diploid sequence from each autosomal locus using 

two “pseudo-haplotypes” per individual.  The two pseudo-haplotypes were identical at all 

homozygous base positions, but were each assigned one of the two nucleotides at 

heterozygous positions.  This allowed me to accurately count alleles at each variable 

position and assess polymorphism within populations and divergence between them. 

Because diopsid males have one X chromosome and two of each autosome 

(Wolfenbarger and Wilkinson 2001), each alignment contained one sequence per 

individual in the case of an X-linked locus and two in the case of an autosomal locus. I 

removed all base positions associated with repetitive DNA, indels and missing data 

before analyzing the aligned sequence, but used the information in the repetitive regions 

in separate analyses (see below). 
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Molecular Genetic Analysis 

 
 
 I used DnaSP v4.10.9 (Rozas et al. 2003) to calculate several measures of 

polymorphism and divergence, including the number of polymorphic sites, number of 

haplotypes, haplotype diversity (H), π, and θ. For each chromosome and each locus 

within a chromosome I then calculated two D statistics. Tajima’s D (Tajima 1989) detects 

departure from neutrality, which is useful for two reasons. First, it can help establish 

whether bnb is experiencing strong selection that would make it inappropriate to use for 

comparison to the X chromosome, and second, it can reveal whether the XST 

chromosome is evolving more like XD or an autosome. I also estimated Fu and Li’s D* 

(Fu and Li 1993) to detect and differentiate between balancing and purifying selection. I 

calculated the D and D* statistics separately for the Gombak XD and XST samples and 

again for all pooled Gombak samples. 

I used DnaSP to perform two between-population analyses: an HKA test and a set 

of K*ST tests. The HKA test (Hudson et al. 1987) detects selection at a locus by 

comparing polymorphism and divergence using sequence from at least two loci and two 

populations. I used this test to look for evidence of selection on the XD chromosome by 

comparing it to the autosomal sequence using males carrying the Gombak XST as an 

outgroup. I performed the same comparison between all Gombak X chromosome 

sequences and the Soraya X sequences. I performed K*ST tests (Hudson et al. 1992) to 

examine genetic divergence between the driving- and non-driving-male Gombak 

samples, and between the Gombak and Soraya population samples. P values for these 

tests were calculated using permutations with 1000 replicates. 
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It should be noted that three Soraya X chromosomes were quite similar to one 

another but quite different from the others, as is illustrated in the crc segment of Figure 6. 

Because these three sequences are similar to one another, the crc alignment does not 

include many singleton polymorphisms.  Of these three flies, however, only one yielded 

sequence for locus ms125 after repeated attempts. Including that one sequence in the 

analysis of ms125 or the pooled X chromosome sequence led to large numbers of 

singleton polymorphisms, which disproportionately affected some of the statistics. For 

that reason it was excluded from the above analyses of ms125 and the pooled X 

chromosome sequence. 

While repetitive DNA regions were removed from sequence alignments prior to 

performing the above analyses, they also contain information on polymorphism and 

divergence that reflects a shorter time period due to their relatively high mutation rates. 

The sequenced region for locus ms125 contained four different repetitive regions – the 

expected dinucleotide microsatellite repeat, but also a polythymine repeat, a six-bp 

repeat, and an eight-bp repeat.  The crc sequence contained a polyglutamine (CAA or 

CAG) repeat. To assess variation at these repeat regions I counted the number of repeats 

in each of the five regions and then calculated allelic diversity using the following 

equation: 

                                     

(Nei 1987). This is the same equation used by DnaSP to calculate haplotype diversity of 

DNA sequence. In this equation, H is allele (or haplotype) diversity, n is the number of 
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chromosomes sampled, pi is the frequency of the ith allele (which in this case is the 

number of repeats present at one of the five regions), and k is the number of alleles.  

 

Phylogenetic Analysis 

 
 
 To determine the evolutionary history of the alleles at each of the loci in this 

study, I used PAUP* v.4 (Sinauer, Sunderland, MA) to construct separate neighbor-

joining (NJ) trees of the autosomal and X-linked sequence. Unlike DnaSP, PAUP* does 

not exclude nucleotide positions with missing data. Therefore, I was able to include the 

ends of the alignments which were trimmed before analysis in DnaSP and which 

contained additional polymorphic sites. I again excluded repetitive sequences and indels 

where the alignment could not be unambiguously determined. The trees were constructed 

using the parsimony criterion and rooted by using the Soraya population as an outgroup 

to the Gombak population (cf. Wilkinson et al. 2003). 

 

Results 

 

The most striking result is the complete lack of polymorphism on the XD 

chromosomes, and the difference between the XD chromosome sequences and all other 

sequences. All diversity measures for Gombak XD sequences equaled zero (except for the 

number of haplotypes, which was one; see Tables 6 and 7). Figure 6 shows the DNA 

sequence polymorphism, illustrating the lack of variability in Gombak XD sequences but 

similar levels of variability in autosomes from the two groups of Gombak samples and in 
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the Gombak XST and Soraya X chromosomes. The sequence haplotype diversity of the 

Soraya X chromosome equaled 1.00, for the Gombak XST chromosome equaled 0.89, and 

for the Gombak XD chromosome equaled 0.00. An ANOVA of X chromosome haplotype 

diversity by population shows that this difference is highly significant (F = 683.88; P < 

0.0001). Figure 7 summarizes the allele diversity values for the repetitive regions.  

The D statistics are also summarized in Tables 6 and 7. No Tajima’s D statistics 

were significant, suggesting that the bnb locus is not under strong selection and is 

therefore an appropriate locus to use for comparison to the X chromosome. The D* 

statistics involving the Gombak combined X chromosome sequence were significant, as 

was the separate analysis for the crc locus. However, because there was zero sequence 

variability on the XD chromosomes it was not possible to calculate D statistics for those 

sequences.  

The HKA test between the Gombak XD and XST samples was significant (χ2 = 

5.88, P = 0.015), showing evidence for selection on the XD chromosome. Table 8 shows 

the observed and expected values from the test, which indicate a lack of polymorphism 

within the X-linked sequence of driving males relative to their autosomal sequence, and 

excess divergence between XST and XD linked sequence relative to the autosomal 

sequence. The HKA test between the Gombak and Soraya samples was not significant (χ2 

= 0.044, P = 0.833). This means the test failed to detect either a disparity in 

polymorphism between the X-linked and autosomal sequence or a disparity in divergence 

between Gombak and Soraya at the X-linked and autosomal loci. The results of the K*ST 

tests (Table 9) show significant divergence, which persists after Bonferroni correction, 

between the groups of flies for three of the four loci and both sets of pooled sequences.  
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Phylogenetic analysis of the X-linked sequence (Figure 8a) reveals that all 

Gombak XD sequences form a single cluster, as expected from the lack of variation 

among those males. While one Gombak XST sequence was similar to the XD sequences, 

no males producing an unbiased sex ratio had X chromosome sequence identical to the 

group of XD sequences. Thus, there were apparently no males in this sample carrying 

suppressed drive. Before the outgroup method was used to root the tree, it was evident 

that Soraya and Gombak formed monophyletic groups (unrooted tree not shown). The 

three Soraya sequences which are similar to one another but different from the remainder 

of the group can be easily identified in Figure 6 (labeled Sor6, Sor7, and Sor12). In 

contrast to the X chromosome sequence, phylogenetic analysis of the autosomal sequence 

(Figure 8b) fails to recover distinct groups. Autosomal sequences from driving and non-

driving males are intermingled on the branches of the tree, and even flies from the two 

populations did not fully resolve into separate clades. 

 

Discussion 

 

In this study I identify a striking pattern of sequence polymorphism and 

divergence associated with X chromosome drive in Cyrtodiopsis stalk-eyed flies. The 

sampled XD chromosomes have zero sequence polymorphism, while Gombak XST 

chromosomes, Soraya X chromosomes, and autosomal regions from all three groups 

contain abundant polymorphism. Remarkably, even the repetitive regions of the XD 

chromosome exhibit zero polymorphism. The possible explanations for this dramatic 

result fall into two categories: demography or selection. One demographic explanation, a 
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population bottleneck, could cause low variability, because there can only be as many 

alleles at a locus as there are chromosomes. However, a bottleneck should affect the 

entire genome, and certainly more than just one class of X chromosome. Thus, a 

historical bottleneck in the wild is an unlikely explanation. Because the Soraya flies were 

wild-caught but the Gombak flies had spent approximately 20 generations in the lab, less 

sequence polymorphism in Gombak might be expected as a consequence of recent 

reduced population size. The evidence regarding this prediction is somewhat mixed. On 

the one hand, the Soraya flies appear to harbor more autosomal polymorphism than the 

Gombak flies, but on the other hand X-linked polymorphism is similar between the 

Soraya and Gombak XST samples. Repeat number variability is also similar in the Soraya 

and Gombak XST samples. Therefore, while it is possible that maintaining the Gombak 

population in the lab has reduced genetic variability, that effect has been minor. Like a 

historical bottleneck, establishing a laboratory population seems unlikely to account for 

the complete loss of variability in only one class of X chromosome.  

Another demographic factor to consider is the effective population size of the X 

chromosome relative to the autosomes. In a population with an unbiased sex ratio there 

will be four autosomes in each pair for every three X chromosomes and the autosomes 

should, therefore, support more genetic diversity. Some of the polymorphism data in this 

study are consistent with this prediction, as Soraya autosomal sequence is more variable 

than Soraya X chromosome sequence. However, the data from the Gombak XST flies are 

not consistent with the prediction, as there are similar levels of polymorphism in the 

autosomal and X-linked sequences. An interesting point to consider is that when X 

chromosome meiotic drive invades a population the relative proportion of X 
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chromosomes actually increases; for example, in a population that is 60% female, X 

chromosomes are four fifths as frequent as autosomes, not three quarters. This change in 

frequency brings the X chromosome closer to autosomes in the ability to support genetic 

variation. Because wild populations of C. dalmanni are female-biased (Wilkinson and 

Reillo 1994), reduced effective population size of the X chromosome should be less of a 

factor in this species than in species with unbiased population sex ratios (cf. Wright et al. 

2004). 

 Instead of demographic processes, selection provides a better explanation for the 

dramatic lack of polymorphism on the Gombak XD chromosome. The HKA test revealed 

evidence for selection on the Gombak XD when compared to the Gombak XST 

chromosome. When contrasted with the result of the HKA test performed on the Gombak 

X and Soraya X sequence, it is apparent that selection has been concentrated on the 

chromosome that carries meiotic drive. By itself, however, this result does not rule out or 

confirm any one type of selection. Further analysis must be performed to distinguish 

between the different forms of selection, but ironically, having zero polymorphism 

instead of merely very low polymorphism makes statistical analysis to differentiate 

between different types of selection more difficult or even impossible.  

When there is zero polymorphism, it is not possible to calculate Tajima’s or Fu 

and Li’s D* statistics. Thus, I could only calculate those statistics for the Gombak XST 

and Soraya samples. Fu and Li’s D* statistic is designed to detect and differentiate 

between background and balancing selection (Fu and Li 1993), with a positive value 

indicating balancing selection and a negative value indicating background selection. The 

significant D* statistics (Tables 6 and 7) all involved the Gombak XST sequence. The 
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significant statistics were positive, which suggests evidence for balancing selection on the 

Gombak X chromosome and no evidence of background selection. The presence of 

balancing selection supports the prediction made by a female-biased population sex ratio 

(Wilkinson and Reillo 1994) that a force operates counter to the natural tendency of an 

XD chromosome to sweep to fixation (Wilkinson et al. 2006).  

A second way to differentiate between forms of selection is to examine the allele 

frequency distribution. The H test (Fay and Wu 2000), which is designed to identify 

hitchhiking events, tests for the characteristic deficiency of intermediate-frequency alleles 

that is created by positive selection. Like Fu and Li’s D*, the H test is not possible to 

conduct when there is zero polymorphism. Therefore, while it is intuitively clear that 

because there is only one XD haplotype there is a deficit of intermediate-frequency alleles 

in the X chromosome sequences from drive-carrying males, I cannot support that 

assertion with a P value. Such a severe lack of variability is unlikely to be due to 

background selection, which is predicted to leave behind an allele frequency distribution 

that is difficult to distinguish from the neutral expectation (Charlesworth et al. 1995). In 

addition, the presence of only one allele is unlikely to be due to balancing selection, 

which selects for diversity rather than a single allele. Therefore, the evidence suggests 

that positive selection has played the biggest role in shaping patterns of polymorphism 

and divergence on the XD chromosome, with a possible contribution from balancing 

selection but little evidence to suggest a role of background selection. Unlike what was 

found by Dyer et al. (2007), the presence of only a single drive haplotype in this study 

suggests the most recent selective sweep on the C. dalmanni XD chromosome must have 

been recent enough that no variation has since accumulated.  
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A major obstacle to the inference of positive selection on the C. dalmanni 

Gombak XD chromosome is that while a selective sweep eliminates linked neutral 

variation, it is not predicted to have an effect on genetic divergence (Kaplan et al. 1989; 

Maynard Smith and Haigh 1974). However, the results of the K*ST tests and observed 

and expected values of the HKA test show that there is significant divergence between 

the XD and XST arrangements in the Gombak population, and the neighbor-joining trees 

in Figure 8 show that the X chromosome sequences have assorted into monophyletic 

groups while the autosomal sequences are still intermingled. The usual assumption 

underlying theoretical work on genetic hitchhiking is that a new, favorable allele arises at 

single locus and increases the fitness of the organism in which it resides. But meiotic 

drive systems are complex, involving drive, target, modifier and suppressor loci, and 

evolution at one locus in effect changes the environment of the other loci. This is the 

essence of intragenomic conflict, which can create antagonistic coevolution similar to 

what occurs between predators and prey, parasites and hosts (reviewed in Kniskern and 

Rausher 2001), or the two sexes within a species (Parker 1979; Parker 2006). Unlike 

simple positive selection, antagonistic coevolution between loci is expected to promote 

rapid divergence between populations and possibly drive speciation (Rice et al. 2005).  

Meiotic drive neatly fits the description of a system that could lead to divergence 

and reproductive isolation between species. Because meiotic drive is associated with 

sperm production, it is an attractive target for investigations into hybrid dysfunction and 

male hybrid sterility in particular (Frank 1991; Hurst and Pomiankowski 1991). Drive-

suppressor systems have been shown to evolve rapidly within populations (Capillon and 

Atlan 1999; Palopoli and Wu 1996) and diverge from the standard X chromosomes of the 
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same species (Babcock and Anderson 1996). Wu and Beckenbach (1983) describe a 

“quite unexpected” level of divergence between the sex-ratio drive systems of 

Drosophila pseudoobscura and D. persimilis, despite the fact that the two species share 

the same chromosomal inversion that houses the drive system. My data show a loss of 

polymorphism that is consistent with recent, rapid change associated with a selective 

sweep, and divergence between X chromosomes that are unable to recombine. While 

these results do not show conclusively that sex chromosome meiotic drive has caused the 

reproductive isolation between populations of C. dalmanni (Christianson et al. 2005), 

they are consistent with that hypothesis and suggest that more detailed genetic studies of 

the meiotic drive system are warranted.  
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Table 5: Primer sequences and product sizes 

Locus Primer sequence (5’ first) Aligned product size 

125 F: TGGTGTTAATGAACGAGTGACTTC 
F2: GAAGACTTGCATGAATGGCA 
F3: TGGTGTGCGTTTGCATTTAT 
F4: TTCATTGCATTTGCATTCG 
R2: AAATGGAAAATTGTGGAAGTGG 
R3: GCACAAAACATGGCGAAAAT 
R4:TGAAGAAAAATTGTATGAAATGAAAAG 
R5: GCCGCAGACATGACAGTAAA 
 

460 

crc F2: ATCAAACCTTCGTCTCAGC 
trrF: CCAGTTCAAATTGTAACCAACG 
R1: GCATAGAATTCACGTATAAGCG 
trrR: TCGACAATTTGCATTTCACGTGC 
 

712 

bnb F1: GAAACACCCGTAGAAGTTGTGCCAG 
R2: ACACGATGCGTATGTTGTGTGGGC 
R3: GGGGAAAACCTTAAGCCATTA 
 

530 

bnb UTR F1: CAGAAGACCGGCAAGTAAATG 
SF2: TGCAAACAATGCTCAAGGAC 
SF3: GGACGTTTCGAGGAAAGTGA 
R1: GATTTTTGCGACGGTTCAAG 

391 
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Table 6: Summary of polymorphism, divergence and tests of neutrality, loci combined by chromosome. 

 All X-linked All autosomal 

 GomD GomST All Gom Sor GomD GomST All Gom Sor 

n 9 8 17 7 20 24 44 22 

S 0 11 15 10 13 13 13 28 

Si 0 0 0 6 3 2 0 6 

h 1 5 6 7 N/A N/A N/A N/A 

π
1 0 0.49 0.51 0.33 0.40 0.42 0.43 0.89 

θW
1 0 0.36 0.38 0.35 0.40 0.38 0.32 0.83 

DT ‡ 1.78 1.37 -0.23 -0.21 0.37 0.72 -0.16 

D*FL ‡ 1.52** 1.51** -0.40 0.06 0.67 1.07 0.17 

 

1: multiplied by 10-2.  

†: cannot be calculated because haplotype information is not known for autosomal loci.  

‡: cannot be calculated because of lack of polymorphism within this subgroup.  

*: P < 0.05, **: P < 0.02.  

n: number of chromosomes used in the calculations.  
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L: number of bases in the trimmed alignment.  

S: number of nucleotide polymorphisms.  

Si: number of singleton polymorphisms.  

h: number of haplotypes (data not available for autosomal sequences). 

π: average number of nucleotide differences between sequences.  

θW: Watterson’s (1975) estimator of the number of segregating sites between populations, reported here per base.  

DT: Tajima’s D.  

DFL: Fu and Li’s D. 
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Table 7: Summary of polymorphism, divergence and tests of neutrality, by individual loci. 

 Locus 

 125 crc bnb bnbUTR 

 GomD GomST Sor GomD GomST Sor GomD GomST Sor GomD GomST Sor 

n 11 14 10 9 8 9 20 24 22 22 28 26 

S 0 7 5 0 7 20 11 11 14 2 2 15 

Si 0 3 4 0 0 2 1 2 4 2 0 3 

h 1 4 4 1 3 5 N/A N/A N/A N/A N/A N/A 

π
1 0 0.48 0.25 0 0.53 1.12 0.66 0.61 0.71 0.05 0.16 1.21 

θW
1 0 0.48 0.38 0 0.38 1.03 0.59 0.56 0.73 0.14 0.13 1.00 

DT ‡ 0.01 -1.39 ‡ 1.85 0.39 0.14 0.31 -0.30 -1.51 0.39 0.21 

D*FL ‡ -0.35 -1.35 ‡ 1.44* 1.19 0.64 0.50 -0.24 -2.11 0.82 0.21 

 

1: multiplied by 10-2.  

†: cannot be calculated because haplotype information is not known for autosomal loci.  

‡: cannot be calculated because of lack of polymorphism within this subgroup.  

*: P < 0.05, **: P < 0.02.  
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n: number of chromosomes used in the calculations.  

L: number of bases in the trimmed alignment.  

S: number of nucleotide polymorphisms.  

Si: number of singleton polymorphisms.  

h: number of haplotypes (data not available for autosomal sequences). 

π: average number of nucleotide differences between sequences.  

θW: Watterson’s (1975) estimator of the number of segregating sites between populations, reported here per base.  

DT: Tajima’s D.  

DFL: Fu and Li’s D. 
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Table 8: Result of the HKA test. The numbers before the slashes are observed values, and 

the numbers after the slashes are the expected values 

 Autosome X 

Gombak drive males  vs. Gombak non-drive males  

     No. segregating sites (drive only) 13 / 9.17 0 / 3.83 

     No. differences (drive vs. non-drive) 4.13 / 7.95 9.13 / 5.3 

Gombak males vs. Soraya males   

     No. segregating sites (Gombak only) 13/13.54 15/14.46 

     No. differences (Gom. vs. Sor.) 7.64/7.10 11.03/11.58 
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Table 9: Results of the K*
ST tests. Numbers in each cell are the K*ST statistics. **: P < 0.001, ***: P < 0.0001 

 ms125 crc X combined bnb bnb UTR Autosomal combined 

GomST males vs. GomD males 0.550*** 0.383*** 0.505*** 0.009** 0.029 0.034** 

Soraya males vs. all Gombak males 0.226*** 0.254*** 0.209*** 0.086*** 0.188*** 0.078*** 
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Figure 6. The genotype of each fly at each polymorphic site in the four DNA regions. Fly names 

beginning with “Sor” are from the Soraya population, those beginning with “Gom” are from the 

Gombak population and the laboratory screen for meiotic drive. Gombak flies with an asterisk at 

the end carry XD, those without carry XST. All polymorphisms are in the order in which they 

appear in the alignments with the intervening non-variable sequence removed. The loci ms125 

and crc are X-linked, and bnb and the bnb UTR are autosomal. IUPAC nucleotide ambiguity 

codes, which are used to indicate heterozygous positions in the autosomal loci, are as follows: R 

= A or G, Y = C or T, M = C or A, K = T or G, W = T or A, S = C or G. 

 

Figure 7. Allele diversity statistics calculated for the repetitive DNA regions. The first four in 

each are the allele diversity statistics corresponding to the four repetive regions in the ms125 

locus. The final bar in each set corresponds to the glutamine repeat region in the crc locus. 

 

Figure 8. Neighbor-joining tree of X-linked sequences (Figure 8a) and neighbor-joining tree of 

autosomal sequences (Figure 8b). Sequence names beginning with “Sor” are from the Soraya 

population. Sequence names beginning with “Gom” are from the Gombak population laboratory 

drive screen. Gombak sequence names followed by an asterisk are known drive carriers, those 

without are known not to carry drive.
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Fig. 6 

ms125 crc bnb bnb UTR

Sor1    GACCGGTATGTTTGGATATTTTTT  CCTAAAGCACGGCCCGAAATTTGTGTG  CGGCTATTACACACGAAGCCAGT  TGCATTGAACGGTATGAT

Sor2    ...T.....A......G...C...  ...G.G....A............C...  .R....Y..........R....Y  .........M.K.YW..C

Sor3    ........................  ...G.G....A................  ......C..........R....Y  ...........T.WAK.C

Sor4    ....................C...  ---------------AGGT..CC.C..  ......C.Y........R....Y  ...........-.M...C

Sor5    ....................C...  ...........................  .R....Y................  ...G.......T.CW..C

Sor6    ------------------------ ---------------AGGT..CC.C.G  TA...TCA.....G.....G..C  AR....TTG.T.AT...C

Sor7    AGA..AGTC........CA.C..G  TTC...AT..AA.TGAGGT..CC.C..  TAR...CA.....G.....G..C  AA....TTG.T.AT...C

Sor8    ....................C...  --------------------------- ----------------------- .....Y.....K.C...C

Sor9    ....................C...  --------------------------- .R....Y.........MR....Y  ..........SK.YA..C

Sor10   ....................C...  ...........................  ......C................  ...........K.M...C

Sor11   ....................C...  ...G.G....A................  ......................Y  .................C

Sor12   ----------.......CAGC.TG  TTC...AT..AA.TGAGGT..CC.C..  -------A...........GRRC  AA....TTG.T.AT...C

Sor13   ...............T....C...  ...........................  ......C................  ...........T.CW..C

Gom1    ....A.....AC.A......C...  .T..G.....A.T............C.  .R.YY....M..M.R........  ....Y......T.C...C

Gom2    ....A.....AC.A......C...  .T..G...CAA........G......A  .A....Y..M.YM.R........  ..Y........T.C...C

Gom3    ....A.........C.....C...  .T..G.....A.......--------- ----------------------- ....Y......T.C...C

Gom4    ....A.....AC.A......C...  ---------------.....C......  .A........R.......Y....  ...........T.C...C

Gom5    ....A.....AC.A......C...  .T..G.....A.........C......  .A.......MR.M.R........  ..Y........T.C..MC

Gom6    ....A.....AC.A......C...  .T..G.....A.........C......  .A.......MR.M.R........  ..Y........T.C...C

Gom7    ....A.....AC..C.....C...  .T..G.....A.T.......C......  .R.YY.............Y....  ...........T.C...C

Gom8    ....A.........C.....C...  .T..G...CAA........G......A  .A.......A..C.AW.......  ..Y........T.C...C

Gom9    ....A.........C.....C...  .T..G...CAA........G......A  .A.......M..M.RW..Y....  ...........T.C...C

Gom10   ..........AC..C.....CCA.  ---------------....G......A  .A.......A..C.A........  ..Y.Y......T.C...C

Gom11   ....A.....AC..C.....C...  ---------------.....C......  .A.......M..M.R...Y....  ....Y......T.C...C

Gom12   ....A.....AC..C.....C...  --------------------------- ----------------------- ...........T.C...C

Gom13   ....A.....AC.A......C...  .T..G.....A.T.......C......  .R.YY.............Y....  ...........T.C...C

Gom14   ....A.....AC..C.....C...  .T..G.....A.T.......C......  .A.......A..C.AW.......  ....Y......T.C...C

Gom15*  ...........CA.C.....CCA.  .T..G.....A.T..............  .A................T....  ...........T.C...C

Gom16*  ...........CA.C.....CCA.  --------------------------- ----------------------- ...........T.C...C

Gom17*  ...........CA.C.....CCA.  .T..G.....A.T..............  .A.......MR.M.M........  ..Y........T.C...C

Gom18*  ...........CA.C.....CCA.  .T..G.....A.T..............  .A....Y..M.TM.R........  ....Y......T.C...C

Gom19*  ...........CA.C.....CCA.  .T..G.....A.T..............  .A.......MR.M.RW.......  ...........T.C...C

Gom20*  ...........CA.C.....CCA.  .T..G.....A.T..............  ...TC..................  ...........T.C...C

Gom21*  ...........CA.C.....CCA.  .T..G.....A.T..............  .R.YY.............Y....  ...........T.C...C

Gom22*  ...........CA.C.....CCA.  .T..G.....A.T..............  .R.YY.Y....Y...........  ...........T.C...C

Gom23*  ...........CA.C.....CCA.  .T..G.....A.T..............  .R.YY.............Y....  ...........T.C...C

Gom24*  ...........CA.C.....CCA.  .T..G.....A.T..............  .A....Y....Y......Y....  ...........T.C...C

Gom25*  ...........CA.C.....CCA.  .T..G.....A.T..............  .R.YY.....R............  ...........T.C...C

 



 74 
 

Fig. 7 
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Fig. 8a 
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Fig. 8b 
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Chapter 3: Hybrid Male Sterility and Extraordinary Progeny Sex Ratios in 

Stalk-eyed Flies 

 

Abstract 

 
 
I test two predictions made by the meiotic drive hypothesis of Haldane’s rule. The 

first prediction is that loci affecting sex chromosome meiotic drive also cause male 

hybrid sterility. The second is that the evolution of meiotic drive has resulted in the 

accumulation of cryptic drive loci and suppressors of drive. I test these predictions by 

conducting two QTL studies on groups of hybrid males generated by crossing two 

genetically isolated populations of the stalk-eyed fly C. dalmanni. I located several QTL 

affecting male hybrid sterility and one affecting progeny sex ratio. I found evidence for a 

Y-linked modifier affecting meiotic drive, an autosomal suppressor of drive, a cryptic 

drive locus released from suppression in hybrids, and X-linked hybrid inviability. I 

discuss these results in the context of the meiotic drive hypothesis of Haldane’s rule, 

including avenues for future research. 

 
 

Introduction 

 

A major challenge to those who study speciation is to determine the causes of 

early reproductive isolation between incipient species. A productive avenue for gaining 
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insight into this issue has been to investigate the causes of Haldane’s rule (Haldane 

1922). Haldane’s rule states that when closely related species hybridize, the 

heterogametic sex of offspring are more likely to be sterile or inviable than the 

homogametic sex. This phenomenon is believed to be a nearly ubiquitous phase of early 

speciation and has been observed in all animal taxa that have been studied (Orr 1997). 

Haldane’s rule has been revealed to have multiple causes, and it is clear that genetic 

factors, such as the type of sex determination system, cause different taxa to follow 

different paths to unisexual hybrid dysfunction (Presgraves and Orr 1998; Turelli 1998).   

 Two of the best-supported explanations for Haldane’s rule are the dominance 

theory and faster-male theory. The dominance theory (Muller 1942; Orr 1993) states that 

if genes causing hybrid dysfunction are at least partially recessive, the heterogametic sex 

will be affected more than the homogametic sex. This result is expected because the 

degenerate (or missing, in XO taxa) sex chromosome possessed by the heterogametic sex 

fails to mask recessive alleles present on its homolog. The dominance theory is generally 

applied to cases of Haldane’s rule for inviability, and applies to all taxa with a degenerate 

sex chromosome, whether male- or female-heterogametic. The second hypothesis, known 

as the faster-male theory (Wu et al. 1996; Wu and Davis 1993), applies specifically to 

Haldane’s rule for sterility in male-heterogametic taxa, but includes taxa where the 

chromosome that determines maleness is not degenerate (as in Aedes mosquitoes, 

Presgraves and Orr 1998). This hypothesis states that male-specific sterility factors 

accumulate faster than female-specific factors, possibly because sexual selection causes 

more rapid change in male-specific reproductive loci. Thus Haldane’s rule can result 
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from at least two processes: a fundamental difference between sex chromosomes and 

autosomes and different rates of evolution in the two sexes. 

In 1991, two publications independently proposed a third hypothesis to explain 

Haldane’s rule: the divergence of sex chromosome meiotic drive systems in isolated 

populations causes hybrid dysfunction (Frank 1991; Hurst and Pomiankowski 1991). Sex 

chromosome meiotic drive refers to non-Mendelian passage of X and Y chromosomes 

into gametes and causes biased progeny sex ratios. The drive hypothesis for Haldane’s 

rule is similar to the dominance theory in that it assumes that interacting loci cause 

incompatibilities (Dobzhansky 1937a; Muller 1940; Muller 1942; Orr 1995), but in the 

drive hypothesis the loci influence meiotic drive. The system of interacting loci which 

causes meiotic drive has been shown to evolve rapidly within (Capillon and Atlan 1999; 

Palopoli and Wu 1996) and between populations (Wu and Beckenbach 1983), as also 

predicted by the faster-male theory. However, unlike the faster-male theory, the drive 

hypothesis can apply to either male- or female-heterogametic taxa (Tao and Hartl 2003) 

because there are two different mechanisms for producing meiotic drive: genic drive and 

chromosomal drive. In genic drive, loci attack their counterparts on homologous 

chromosomes and kill the sperm in which they are carried, which could lead to Haldane’s 

rule in male-heterogametic species. In chromosomal drive, centromeres compete to reach 

the ovum during meiosis instead of being relegated to a polar body (Henikoff et al. 2001; 

Henikoff and Malik 2002), which in female-heterogametic species could lead to 

Haldane’s rule. The drive hypothesis has, therefore, the potential to apply to a diversity of 

taxa, but few studies have yet been designed to evaluate its plausibility. 
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The meiotic drive hypothesis of Haldane’s rule was largely dismissed at first 

(Coyne et al. 1991; Coyne and Orr 1993; Johnson and Wu 1992), but has since stimulated 

interest in the relationship between selfish genetic systems and speciation. Meiotic drive 

systems have been found in a wide variety of animal taxa (summarized in Hurst and 

Pomiankowski 1991), but may be particularly common in the Diptera (Jiggins et al. 

1999). Largely due to work on several Drosophila species, evidence is mounting that the 

evolution of drive systems may be a factor in the accumulation of postzygotic isolation. 

Several studies have revealed meiotic drive in hybrids between Drosophila populations 

that show no segregation distortion on their own (Dermitzakis et al. 2000; Mercot et al. 

1995; Tao et al. 2001; Yang et al. 2004). Other work has shown hybrid incompatibility 

QTLs to be associated with transmission ratio distortion in tomato (Moyle and Graham 

2006). A hybrid sterility locus maps closely to the location of a meiotic drive locus in one 

Drosophila cross (Tao et al. 2001) and sterility and drive are associated with the same 

regions of the X chromosome in another (Orr and Irving 2005). Finally, a recent 

theoretical model shows the feasibility of meiotic drive leading to the evolution of hybrid 

sterility (Adams 2005).    

The stalk-eyed fly genus Cyrtodiopsis presents an excellent system in which to 

further investigate sex chromosome meiotic drive and its effect on hybrid dysfunction. 

The phylogenetic relationships among multiple captive populations of the species C. 

dalmanni and C. whitei have been discovered (Swallow et al. 2005), and several pairs of 

populations have been examined for the nature and severity of reproductive isolation 

between them (Christianson et al. 2005). The population comparisons were chosen to 

represent a wide range of genetic distances between captive populations (divergence for 
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mitochondrial gene fragments between 0.35% and 7.83%), and revealed rapid evolution 

of male hybrid sterility relative to other types of pre- and postzygotic isolation. Most or 

all of these populations carry a sex chromosome meiotic drive complex (Wilkinson et al. 

2003), which is located on the X chromosome, likely within a paracentric inversion 

(Johns et al. 2005; Presgraves et al. 1997). Genetic information available for use with the 

genus is growing rapidly, and includes more than 50 microsatellite loci spread over the X 

chromosome and both autosomes (Wright et al. 2004) and an EST library containing over 

3500 unique genes (Baker et al, unpublished data). 

 In this study, I tested two predictions of the meiotic drive hypothesis. The first is 

that loci affecting progeny sex ratio and male hybrid sterility will map to the same 

chromosomal locations. The second is that the evolution of meiotic drive, as discussed in 

chapter 2 of this dissertation, will leave behind multiple suppressors of drive and cryptic 

driver loci; that is, driver loci which are completely suppressed. I chose two 

monophyletic populations of C. dalmanni that are separated by approximately 2% 

mitochondrial DNA sequence distance (Swallow et al. 2005) and display male-specific 

hybrid sterility but little prezygotic isolation (Christianson et al. 2005). I created inbred 

lines from these populations and crossed the lines to construct families for QTL mapping. 

I measured male hybrid sterility and progeny sex ratio bias in hybrids, and collected 

microsatellite genotype data. I then used backcross-design QTL mapping techniques to 

detect genomic regions affecting meiotic drive, including possible suppressor or modifier 

genes, and male hybrid sterility loci.  

I made several specific predictions about the outcome of this experiment. First, 

because meiotic drive in C. dalmanni is already known to be located on the X 



 82 
 

chromosome (Johns et al. 2005; Presgraves et al. 1997), I predicted that the presence or 

absence of drive would depend on the X chromosome and on suppressors located on the 

autosomes or Y chromosome. Autosomal and Y-linked suppressors have been detected or 

inferred in several systems (Carvalho and Klaczko 1993; Cazemajor et al. 1997; 

Hauschteck-Jungen 1990; Johns et al. 2005; Montchamp-Moreau et al. 2001; Presgraves 

et al. 1997), including C. dalmanni. Second, if meiotic drive and male hybrid sterility are 

indeed related, sterility QTL will be detected on both the autosomes and X chromosome, 

where meiotic drive loci are predicted to be located. Because the Y chromosome can only 

be mapped if it recombines with the X, and because I additionally have no Y-linked 

genetic markers, I cannot study loci on the Y chromosome. Third, at least some sterility 

QTL will localize to regions containing drive QTL. Finally, drive will be more likely to 

segregate in families derived from a drive-carrying male. The frequency of recombination 

between C. dalmanni drive and non-drive chromosomes (designated as XD and XST, 

respectively) is very low (Johns et al. 2005), such that the XD appears to be inherited 

nearly as a complete unit and there exist multi-locus microsatellite haplotypes diagnostic 

for the XST chromosome (Wilkinson et al. 2006). Consequently, segregation of drive 

among individuals carrying XST chromosomes would provide evidence for cryptic drive 

expressed in a hybrid background, which has been observed in studies of other hybrids 

(Dermitzakis et al. 2000; Fishman and Willis 2005; Mercot et al. 1995; Orr and Irving 

2005; Tao et al. 2001; Yang et al. 2004). 
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Materials and Methods 

 

Fly-rearing Conditions 

 

 Husbandry and egg-collection procedures are as described in Christianson et al. 

(2005, Chapter 1 of this dissertation). Cups containing pupae were kept for one week 

after progeny ceased to eclose to ensure that progeny counts were complete and sex ratio 

data were accurate. Progeny to be used in future crosses were separated into single-sex 

cages prior to the time of sexual maturity, which is approximately 22 days for females 

and 25 days for males (Baker et al. 2003) and kept for several days past these ages before 

using them in crosses. Stocks of virgin females were used within a few weeks. Males 

varied more widely in age when used in crosses but were frozen if not used prior to 

reaching 5 months of age.   

 

Creation of Inbred Parental Lines 

 
 
 To facilitate linkage mapping I created inbred lines from the Soraya and Gombak 

populations. I began the Soraya lines by isolating three females taken from the laboratory 

population cage. I collected male and female progeny from these females to start the 

inbreeding process. I similarly established one Gombak inbred line from each of two 

control lines from an ongoing selection experiment (Johns et al. 2005; Wilkinson 1993; 

Wilkinson et al. 1998b). The control lines had not been subjected to direct selection but 

had experienced 50 generations of reduced population size, and therefore had reduced 
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heterozygosity relative to the outbred lab population cage. I used full-sib inbreeding to 

reduce genetic variability in the Soraya and Gombak lines for 10 and 7 generations, 

respectively. For the QTL crosses, I chose one line from each population (Soraya 3, or 

S3, and Gombak 2, or G2) that exhibited high productivity and fixed allelic differences 

from the other population. 

 

Creation of Experimental Populations 

 
 
 The crossing scheme for this experiment is outlined in Figure 9. To generate 

recombinant families for QTL mapping I created two different types of hybrid F1 female 

flies. One type (hereafter described as the “F1ST” type) was derived from crossing a 

female from the S3 line with a non-driving male from the G2 lines. The other (the “F1D” 

type) was derived by crossing an S3 female to a known Gombak driver male (a male 

expressing an extremely female-biased progeny sex ratio characteristic of X chromosome 

meiotic drive, found during a screen of non-inbred Gombak population males). Every F1 

female therefore had one chromosome in each pair from the Gombak population and the 

other from the Soraya population, but the F1D and F1ST types differed in that one carried 

a Gombak XD chromosome and the other carried a Gombak XST chromosome. 

Because F1 males derived from Gombak-Soraya crosses are sterile (Christianson 

et al. 2005) I used a backcross experimental design. I backcrossed both F1D and F1ST 

females to males from both inbred lines, creating four populations of backcross progeny 

(F1DxS, F1DxG, F1STxS, and F1STxG). I tested the fertility of a preliminary group of 60 

males from these four populations. I housed each male with three virgin females, 
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collected four food cups over two weeks from each cage, and waited for progeny to 

emerge from those food cups. Only two of the 60 backcross male progeny were fertile. 

To obtain a more balanced ratio of sterile to fertile males for mapping, I conducted a 

second generation of backcrosses, using the same inbred parental line as the first 

generation (see Fig. 9). By this method I created progeny that had more alleles derived 

from a parental line and therefore were more likely to be fertile. 

For this second-generation backcross design, I used multiple progeny from each 

generation to create multiple families of flies from which to collect genotype and 

phenotype data. The aim of this tactic was to generate informative data for as many loci 

as possible throughout the genome, with the expectation that a subset of families would 

provide no data at each locus. In a backcross, offspring are expected to be homozygous at 

50% of loci and heterozygous at the other 50%. Choosing a single fly from that 

generation to perform a second-generation backcross would therefore result in 50% of 

loci being homozygous and uninformative for genotyping in the final progeny. Using 

multiple backcross progeny for the second generation of backcrosses instead results in a 

mixture of homozygous and heterozygous families, which occur in a 3:1 ratio when 

averaged over all loci.  

To generate the four groups of second-generation backcross male progeny I used 

full sisters from each of the four backcross populations. The females were housed 

individually, but groups of three sisters shared a mate taken from the same inbred line as 

their father. This method allowed me to trace the parentage of each second-generation 

backcross male, generate families large enough for QTL mapping, and maximize the 

relatedness between the male progeny. Each male parent was rotated between the 
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females’ cages approximately five times per week until he died, and food cups were 

collected twice weekly for each female until she died. I collected the male progeny from 

this second generation of backcrosses and scored them for several phenotypes and 

genotypes at 27 microsatellite loci. For a full list of second-generation backcross families 

and the sample sizes of each, see Supplemental Tables 1 and 2 in the Appendix. 

 

Collection of Phenotype and Genotype Data 

 
 
 I measured the fertility and progeny sex ratios of 699 second-generation 

backcross male progeny by housing each with three virgin females and collecting food 

cups for two weeks. I counted all progeny emerging from the food cups and calculated 

the sex ratio. Males producing zero progeny were scored sterile, as were two males which 

produced only one offspring and whose testes contained no mature sperm bundles upon 

dissection and microscopic examination. I tested each fertile male for departure from a 

1:1 sex ratio using one-degree of freedom chi-square tests with a continuity correction 

(Wilkinson et al. 2003). Under that test the minimum number of progeny required to 

identify a biased sex ratio is five, provided all five are of the same sex. At the end of a 

male’s two week test period he was placed in a labeled tube in a -20°C freezer before 

DNA extraction. 

 When phenotype testing was complete I pulverized the thorax plus legs of each 

male in an individual 1.5 mL plastic tube and extracted DNA using Qiagen DNEasy kits 

(Valencia, CA). Microsatellite genotype data were collected using primers designed for 

C. dalmanni (Wright et al. 2004). I amplified the microsatellite loci in 10 µL PCR 
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reactions on a thermal cycler (MJ Research). Each 10 µL reaction contained 1 µL of 10X 

PCR buffer (200 mM Tris-HCl, 500 mM KCl), 0.5 µL 50 mM MgCl2, 0.25 µL 8 mM 

mixed dNTPs, 0.05 µL 5 units/µL recombinant Taq DNA polymerase (all of the above 

Invitrogen, Carlsbad, CA), 0.5 µL each of 10 µM forward (a mixture of unlabelled and 6-

FAM, NED, or HEX-labelled) and reverse primers, and the remainder sterile, deionized 

water. PCR was started at 94°C for 2 min. followed by 32 cycles of 94°C for 30 sec., 

52°C 30 sec., 72°C for 30 sec., and terminated with 72°C for 7 min. When possible, I 

amplified three primers in a single multiplex reaction. Reagent concentrations in 

multiplex reactions were identical to single-primer reactions with 0.5 µL of each forward 

and reverse primer, and the quantity of water was adjusted accordingly to maintain a 

reaction volume of 10 µL. I determined the size of amplified products using an ABI 3100 

automatic genetic analyzer and the Genotyper v2.5 software package (both Applied 

Biosystems, Foster City, CA).  

 

Linkage Mapping and QTL Analysis 

 
 
 Before attempting to locate QTL for the phenotypes of interest, I constructed 

linkage maps of the two autosomes and the X chromosome (Wolfenbarger and Wilkinson 

2001). I used the genotypes of one or more generations of parents to unambiguously 

determine the population origin of each microsatellite allele and, therefore, code the data 

for linkage analysis. In some cases where there were no informative data from parents I 

was able to determine the origin of the alleles based on the pattern of segregation. 

Inbreeding was sufficient to ensure diagnostic microsatellite alleles at many loci; 
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however, it did not eliminate all heterozygosity within populations or sharing of alleles 

between the two populations. Flies with an allele of ambiguous origin were coded as 

missing data at that locus. In some families at some loci genotypes could not be 

unambiguously coded with regard to parental origins of alleles, but still provided useful 

information on the frequency of recombination between linked loci. This usually 

occurred with X-linked loci, which I could identify based on segregation patterns across 

generations, but occasionally occurred with autosomal loci whose positions were known 

from a previous study (Johns et al. 2005). I used these data for map construction in order 

to improve the precision of recombination estimates, but re-coded them as missing prior 

to searching for trait QTLs, as the latter process requires knowledge of the population 

origin of genotypes. 

 Linkage maps were first constructed separately for the Soraya and Gombak 

backcross populations using the Kosambi mapping function in Map Manager QTX v0.30 

(Manly et al. 2001). After excluding family/locus combinations that were uninformative, 

I mapped autosomal loci using segregation expectations for a first-generation backcross. 

On chromosome 1 I included one locus in the Soraya families that was invariant among 

Gombak progeny, for respective totals of 12 and 11. On chromosome 2, the same seven 

loci were mapped in the Gombak and Soraya backcross families. Because the loci were in 

the same order in both backcrosses, I used JoinMap 3.0 (Van Ooijen and Voorrips 2001) 

to estimate a single set of recombination distances for only this chromosome. To map X-

linked loci I used the segregation expectations for a doubled haploid population and 

included the same six X-linked loci in both the Soraya and Gombak backcross 

populations.  
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Prior to performing QTL analysis I tested each chromosome for an association 

with male hybrid sterility and biased progeny sex ratio. For each individual in the Soraya 

backcrosses, I surveyed each of their chromosomes for Gombak population alleles. 

Similarly, I counted Soraya population alleles on each chromosome of each Gombak 

backcross individual. I tabulated the individuals according to the presence or absence of 

those alleles, and presence or absence of the trait of interest (either sterility or biased 

progeny sex ratio). I then conducted G tests on each of the 2x2 contingency tables. This 

was a preliminary test of which chromosomes influenced each trait, and it showed 

whether sterile and sex-ratio biased individuals tended to carry more or fewer alleles 

from the backcross parent. 

 I used MapManager QTXb20 (freely available at www.mapmanager.org) to 

locate QTL affecting hybrid male sterility and sex ratio bias. In all cases, I first 

performed marker regression to identify markers associated with significant QTL. I then 

performed interval mapping on each of the three chromosomes, one at a time, separately 

for each backcross. When marker regression revealed a significant association on one of 

the three chromosomes, I selected the marker with the highest likelihood ratio statistic to 

set as background, and then performed composite interval mapping (CIM: Zeng 1994). 

Background loci were not chosen from the chromosome being mapped; therefore up to 

two background loci were incorporated in the generation of each map. I determined 

significance thresholds using permutation tests (Churchill and Doerge 1994), conducted 

separately for each chromosome with 10,000 permutations. I used the highest threshold 

(“highly significant”), corresponding to a probability of 0.001. CIM was developed for 

mapping continuous traits, but CIM is sufficiently robust to map binary traits accurately 
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with large sample sizes (Moehring et al. 2004; Moehring et al. 2006). I randomly deleted 

half of the flies from my sample and performed the CIM analysis on both the full and the 

reduced data sets and found that QTL location was not affected. This analysis indicated 

that my sample size was sufficient to use CIM to map the binary traits in this study (A. 

Moehring, pers. comm.). 

 
 

Results 

Linkage Maps 

 
 There were several differences between the linkage maps in the two backcrosses. 

Chromosome 1 was calculated to be 76.3 cM long in the Gombak backcrosses and 80.2 

cM in the Soraya backcrosses; the Soraya map included one more microsatellite marker 

(Figure 10). Chromosome 2 was calculated to be 51.1 cM long. The X chromosome was 

calculated as 40.4 cM in the Soraya backcrosses but 55.3 cM in the Gombak backcrosses. 

Three loci on the X (ms71, crc and ms395) are in nearly identical locations in the two 

backcrosses, and the difference between the backcrosses is almost entirely due to the 

remaining loci. In the Gombak backcrosses, three more loci (ms106, ms167 and ms70) 

add 14.9 cM to the X chromosome, but in the Soraya backcrosses those same three loci 

segregate together 16.8 cM from ms395. Of the 438 Gombak backcross individuals with 

recorded genotypes at two or more of these three loci, 24 (5.5%) contained recombinant 

genotypes. Of the 261 Soraya backcross individuals, zero were recombinant. A G test on 

that difference is highly significant at (df = 1, G = 21.96, P < 0.0001). Two additional 
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microsatellite loci (ms238 and ms125) were genotyped but segregated perfectly with 

ms167 in both crosses. 

 

Male Hybrid Sterility 

 
 
 Male hybrid fertility differed between the four backcross types. In total, 40.3% of 

second-generation backcross males were fertile. The number of males tested in each 

backcross type varied between 96 and 220, and fertility varied between 24.1% and 51.4% 

(Table 10). A chi-squared test failed to detect an association between backcross 

population and fertility (df = 1, Χ2 = 3.48, P = 0.06). However, fertility was significantly 

associated with the drive status of the original male parent (df = 1, Χ2 = 22.09, P < 

0.0001). Surprisingly, the F1DxS and F1DxG backcrosses produced more fertile progeny 

than the F1STxS and F1STxG backcrosses.  

Fertility was affected by both autosomes and the X chromosome. G tests showed 

a highly significant association between the presence of non-backcross parent alleles and 

male hybrid sterility on each chromosome in each backcross (Table 11). Statistical 

significance was unaffected by application of the sequential Bonferroni procedure for 

correction of P values under multiple tests (Rice 1989). In all cases, fertility was more 

likely when all alleles came from the backcross parent’s population. In the Gombak 

backcrosses, at least one QTL affecting fertility was detected on chromosome 1 and on 

the X chromosome (Figure 11a). On chromosome 1, at the maximum likelihood ratio 

statistic (LRS) value, the QTL explained 14% of the variance of male hybrid fertility. At 

the corresponding LRS maximum on the X chromosome, that figure was 12%. In the 
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Soraya backcrosses, at least one sterility QTL was detected on each of chromosomes 1 

and 2 (Figure 11b). On chromosome 1, the QTL explained 13% of the variance of hybrid 

fertility at the LRS maximum. On chromosome 2, that figure was 21%. These measures 

are conservative estimates of the percent variance explained by the QTL because there 

may be more than one QTL in the area where the LRS exceeds the “highly significant” 

threshold. 

 

Progeny Sex Ratio 

 
 
 Progeny sex ratio varied between the four backcrosses in unexpected ways. The 

frequency of biased progeny sex ratios among fertile males varied between 26% and 47% 

in the four backcrosses, for an overall frequency of 40.4% (Table 10). In the Soraya 

backcross families these were nearly always male-biased broods, and in the Gombak 

families they were nearly always female-biased (Figure 12). Chi-squared contingency 

table analysis shows no significant relationship between backcross family (Soraya or 

Gombak) and the frequency of biased brood sex ratios (df = 1, Χ2 = 2.86, P = 0.09). 

However, the frequency of biased brood sex ratio did vary with the drive status of the 

original male parent (df = 1, Χ2 = 5.46, P = 0.02): the frequency of biased sex ratios 

produced by second-generation backcross males was higher in the F1DxG and F1DxS 

backcrosses. 

 Only chromosome 1 in the Gombak backcrosses had a detectable effect on 

progeny sex ratio. G tests detected an association of non-backcross population 

microsatellite allele ancestry with sex ratio bias on chromosome 1 in the Gombak 
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backcrosses, but no other cases (Table 12). These results were unaffected by application 

of the sequential Bonferroni procedure (Rice 1989). The presence of Soraya population 

alleles in this case was associated with a greater frequency of biased progeny sex ratio. 

QTL mapping of progeny sex ratio detected one significant QTL on chromosome 1 in the 

Gombak backcrosses (Figure 12). At the LRS maximum, the QTL explained 23% of the 

variance in progeny sex ratio. Because only fertile progeny could be used to map this 

trait, the sample size was reduced in comparison with the analysis of male hybrid 

sterility. Few fertile recombinant individuals were available in the Soraya backcross 

families, and consequently interval mapping failed on chromosome 2 and the X 

chromosome, and no QTL were detected on chromosome 1.  

 

Selective Loss of Genotypes 

 

 Examination of marker allele frequencies indicated that not all genotypes were 

equally represented in the second-generation backcross progeny. First, in the Soraya 

backcrosses, the Gombak XD chromosome was completely lost. While 21 males Soraya 

progeny carried at least one X-linked, Gombak-derived microsatellite allele (Table 11), 

all 21 were from the F1STxS backcross. Second, while 229 Soraya backcross progeny 

carried intact Soraya X chromosomes (Table 11), none carried an intact Gombak X 

chromosome, either XD or XST. This difference cannot be analyzed using a test of 

association because zero males carried intact Gombak chromosomes. Similarly, in the 

Gombak backcrosses, 279 males carried intact Gombak X chromosomes (Table 11), but 

zero fertile and only 14 sterile males carried intact Soraya X chromosomes. This 
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difference is highly significant according to a G test of association (df = 1, G = 22.74, P < 

0.0001). 

  

Discussion 

 
 
 

At the start of this study, I made several predictions about the outcome of the 

results. Some of these predictions were supported, and some were not. In general, though, 

the results I obtained suggest that X chromosome drive is intimately involved in the 

explanation for Haldane’s rule in C. dalmanni. First, I uncovered evidence for inviability 

of hybrids that carried a Gombak XD chromosome. Consequently, I was unable to map 

loci on the drive chromosome. Second, males in all four backcrosses produced broods 

with biased sex ratios, despite the loss of the original XD chromosome, due to the 

unmasking of cryptic drive. Third, two of four backcrosses produced extremely male-

biased, rather than typical female-biased, broods due to a probable Y-linked modifier. 

Fourth, I detected QTL indicating the presence of autosomal suppressors of meiotic drive. 

Finally, while there was evidence for both autosomal and X-linked effects on male hybrid 

sterility and biased progeny sex ratio, these two traits did not map to the same 

chromosomal intervals. Below, I discuss the implications of these results for 

understanding the role of meiotic drive in stalk-eyed fly speciation. 
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Linkage Maps 

 

Previous studies have provided evidence for a large X chromosome inversion or 

inversion complex that is associated with sex chromosome meiotic drive in C. dalmanni 

(Johns et al. 2005, Chapter 3 of this dissertation). The unexpected difference in this study 

between the X chromosome linkage maps in the Soraya and Gombak backcrosses 

indicates the presence of a second inversion. There is a significant difference between the 

frequency of recombinant individuals in the Soraya and Gombak backcrosses at ms70, 

ms106 and ms167, and as a result the Soraya X appears to be truncated with the three 

markers mapping to a single location. This result is consistent with an inversion 

polymorphism between the Soraya and Gombak populations rather than a simple artifact 

of disparate sample sizes. The inversion breakpoint is most likely located between ms395 

and the apparent location of ms70, ms106, and ms167 on the Soraya X chromosome. 

Because inversion polymorphisms often suppress recombination (Sturtevant 1917; 

Sturtevant and Beadle 1936), and because QTL mapping requires recombination, this 

hypothesized inversion polymorphism constrains X chromosome mapping in this study. 

However, no QTL from either male hybrid sterility or sex ratio bias localized to the end 

of the X chromosome containing the putative inversion, so this constraint is unlikely to 

have limited my ability to map these traits. 
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Male Hybrid Sterility 

 

QTL mapping reveals that male hybrid sterility is strongly influenced by both 

autosomal and X–linked factors, as predicted. Maps of the Soraya and Gombak 

backcrosses (Figures 11a and 11b) identified highly significant QTL on chromosome 1, 

although the broad peaks make it difficult to determine whether the QTL are in the same 

location in the two backcross groups. A QTL was also detected on the X chromosome in 

the Gombak backcrosses, but not in the Soraya backcrosses. However, because the 

presence of even a single Gombak allele on the X chromosome led to sterility in the 

Soraya backcross males (Table 11), it is apparent that the X chromosome has a very large 

effect on sterility in both backcrosses. The unexpected observation that F1DxS and F1DxG 

families had a higher incidence of fertility than F1STxS and F1STxG could be explained by 

inbreeding depression given that the original drive parent was an outbred, rather than 

inbred, male. 

 

Extraordinary Sex Ratios 

 

The most astonishing result of this study was the appearance of sex-ratio-biased 

broods in all four backcross families, counter to expectation. Because the original parent 

carried an XD chromosome, I expected to see female-biased broods produced by the 

F1DxS and F1DxG backcrosses. While that prediction was borne out in the F1DxS 

backcross, the F1DxG progeny produced male-biased, not female-biased, broods. 

Similarly, F1STxS progeny produced female-biased broods, and F1STxG progeny 
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produced male-biased broods, even though I had not expected any progeny sex ratio bias 

from these males. Because the original XD chromosome was lost, all X-linked alleles 

carried by fertile males were derived from the S3 inbred line. This observation means that 

the female-biased broods produced by F1DxS males did not result from the original XD 

chromosome. The S3 inbred line was not known to produce biased sex ratios; thus, no 

F1STxS or F1DxS males carried a known XD chromosome. Therefore, the most likely 

explanation for the female-biased broods in the Soraya backcrosses is that an X 

chromosome carries cryptic drive which is normally suppressed but is released from 

suppression in hybrids. A similar phenomenon was observed by Tao et al., (2001), who 

unmasked a cryptic drive after five generations of backcrossing hybrids between two 

Drosophila species. Other observations of cryptic meiotic drive have been made in 

Drosophila (Dermitzakis et al. 2000; Mercot et al. 1995; Orr and Irving 2005; Yang et al. 

2004) and Mimulus yellow monkeyflowers (Fishman and Willis 2005), but never before 

in Cyrtodiopsis. Cryptic meiotic drive is predicted to exist in systems where drive 

repeatedly evolves and is in turn repeatedly suppressed. 

 The appearance of strongly male-biased broods also cannot be explained by the 

Gombak XD chromosome, and suggests a Y chromosome effect. Weakly male-biased 

broods have previously been reported in C. dalmanni (Presgraves et al. 1997), where the 

authors deduced the presence of a modifying Y chromosome (Ym) that causes male 

progeny sex ratio bias when paired with an XST chromosome. Although the bias did not 

reach the degree found in this study, where multiple broods approached 100% male 

progeny, the pattern is consistent in both studies. Several lines of evidence in the present 

study suggest the presence of a Y-linked modifier of drive. First, because the backcross 
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experimental design used only female hybrids, all Y chromosomes in the second-

generation backcross progeny came from inbred lines. Thus a Y chromosome effect in 

those males would be derived from backcross fathers, as seen here, not from males from 

the parental generation. Second, the data do not support an effect of an XD chromosome, 

as males from both the F1DxG and F1STxG backcrosses produced male-biased broods, 

even though the F1STxG backcross was derived from a male carrying an XST 

chromosome. All four backcross families began with a female from the S3 inbred line, 

which did not exhibit a sex ratio bias during inbreeding. Thirdly, sib-mating eliminated 

all but one Y chromosome per inbred line in the very first generation of inbreeding. If the 

sole Y chromosome present in the G2 inbred line is a Ym chromosome, the male-biasing 

effect of that chromosome might be expected to occur at fairly high frequencies, as seen 

here.  

I hypothesize that the Gombak-derived Ym chromosome interacts with Soraya-

derived alleles to produce an effect not observed in either population or either inbred line. 

This interaction may occur in conjunction with chromosome 1, as Gombak backcross 

males producing male-biased broods were more likely to carry Soraya alleles on this 

chromosome than those males producing 1:1 sex ratios. Thus the Y chromosome and the 

QTL on chromosome 1 conform to my original prediction of the presence of suppressors 

of drive.  
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Male Hybrid Inviability 

 

The low number of intact X chromosomes in backcross progeny provides strong 

evidence for hybrid inviability produced by an interaction of the X chromosome with the 

autosomal background of another population. Because many Soraya backcross progeny 

inherited intact (nonrecombinant) Soraya X chromosomes, it is likely that intact Gombak 

chromosomes were also being transmitted at meiosis but the zygotes or embryos carrying 

them failed to survive. Similarly, many Gombak backcross progeny inherited intact 

Gombak X chromosomes and few inherited intact Soraya chromosomes, likely because 

the latter individuals failed to survive. All alleles from the Gombak XD were completely 

lost in the F1DxS backcross, which may be due to the drive-associated inversion which 

effectively requires that all or none of the X-linked alleles in a hybrid male come from 

that chromosome. This hybrid inviability is surprising because a previous study of C. 

dalmanni (Christianson et al. 2005, Chapter one of this dissertation) found little evidence 

for decreased progeny production of Soraya-Gombak hybrids relative to within-

population values, suggesting little to no hybrid inviability. The different outcomes may 

be due to the autosomal genetic makeup of hybrids in the two studies. The 2005 study 

involved F1 hybrids, which are heterozygous at all autosomal loci, but the current study 

involves backcross progeny, which can be homozygous at autosomal loci. This difference 

means recessive X-autosome interactions may be expressed in hybrid males in the current 

study that were not expressed in the F1 hybrid males from the 2005 study. 
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Haldane’s Rule and Meiotic Drive 

 

In this study I uncovered hybrid inviability related to the interaction of the X 

chromosome with another population’s autosomal background. It was originally 

hypothesized that sex chromosome meiotic drive could cause Haldane’s rule for 

inviability as well as sterility (Frank 1991), although that possibility has received little 

attention since that time. The current study was not designed to look for hybrid 

inviability, and because I did not study the female backcross progeny I cannot determine 

whether the inviability was sex-specific, i.e. conformed to Haldane’s rule. I also do not 

know how many hybrid inviability loci are on each chromosome. A recent detailed study 

of Drosophila found that while hybrid male sterility is disproportionately affected by the 

X chromosome, no such bias was detected for hybrid inviability (Masly and Presgraves 

2007). The observation of a strong inviability effect of the X chromosome therefore 

deserves further investigation, as this is possible evidence for a little-examined aspect of 

the meiotic drive hypothesis of Haldane’s rule. 

The meiotic drive hypothesis predicts that the same loci should cause both male 

hybrid sterility and biased progeny sex ratios. However, to observe a one-to-one 

correspondence between genes affecting the two traits, it is necessary to capture incipient 

species when very few genetic changes have taken place to cause hybrid sterility. Once 

populations have already achieved postzygotic isolation, additional divergence need no 

longer produce perfect correspondence between loci affecting meiotic drive and hybrid 

sterility. Therefore, when studying populations with demonstrated postzygotic isolation, 

it is only predicted that some loci affecting the two traits will be the same.  
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While there is little evidence to support the prediction that the two traits would 

map to the same chromosomal regions, there is not enough evidence to effectively 

contradict it either. I had little statistical power to map QTL affecting progeny sex ratio in 

the Soraya backcrosses, which means I cannot determine if loci affecting drive and 

Haldane’s rule are located in the same place in that population. In the Gombak 

backcrosses, while neither trait showed evidence of a significant QTL on the second 

chromosome, highly significant QTL affecting both meiotic drive and male hybrid 

sterility were identified on chromosome 1. This result is consistent with a previous QTL 

analysis (Johns et al. 2005), which concluded that a similar region of the Gombak first 

chromosome was the likely location of a suppressor of meiotic drive. In this study, the 

peaks for each QTL on chromosome 1 were broad, encompassing approximately half of 

the chromosome. The QTL for the two traits appeared to be centered on opposite ends of 

chromosome 1; therefore, the two traits are most likely not being affected by the same 

gene. The X chromosome presents an intriguing situation. A significant QTL affecting 

male hybrid sterility was detected in an area shown by other work to be part of a large 

inversion polymorphism containing the meiotic drive complex (Johns et al. 2005, chapter 

3 of this dissertation). Because I was unable to localize X-linked loci affecting meiotic 

drive in the present study, I cannot conclude whether the same X chromosome interval 

affects both drive and sterility. However, because the two traits are bound by an inversion 

of the XD relative to the XST chromosome, the QTL affecting the two traits would be 

nearly perfectly linked in a cross where the XD chromosome persists.  

I also tested the prediction that the evolution of drive leads to the accumulation of 

cryptic driver loci and suppressors of drive. As discussed in chapter 2, meiotic drive is 
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believed to experience repeated, intense selective sweeps as suppressors and drivers 

evolve in competition with one another (Derome et al. 2004; Dyer et al. 2007; Reed et al. 

2005). Many of these results are consistent with this prediction, and lead to excellent 

opportunities to further study the link between sex ratio bias and male hybrid sterility in 

Cyrtodiopsis. First, I discovered evidence of autosomal suppressors in both the Soraya 

and Gombak backcrosses. Second, in the Gombak population, there is evidence of a Y-

linked modifier that interacts with the Soraya genetic background to produce severe male 

bias in the progeny sex ratio. No Y-linked genetic markers have yet been identified in C. 

dalmanni that would enable chromosome identification, but the search for new markers is 

ongoing. This result provides a greater impetus to continue that search, in particular to 

find markers on the Y chromosome. The third, and arguably most important, result in 

support of this prediction was the discovery of cryptic meiotic drive. The meiotic drive 

hypothesis was rejected early in its history because there was no evidence of cryptic drive 

being unmasked in hybrids (Charlesworth et al. 1993a; Coyne and Orr 1993; Johnson and 

Wu 1992). The recent surge of interest in the hypothesis has been stimulated by the 

discovery of such cryptic drive systems in several Drosophila crosses (Dermitzakis et al. 

2000; Mercot et al. 1995; Orr and Irving 2005; Tao et al. 2001). Cryptic drivers confirm 

an important assumption of the meiotic drive hypothesis, which is that drivers and 

suppressors undergo repeated cycles of evolution. With a large number of C. dalmanni 

ESTs under development, more detailed mapping and study of the active and cryptic 

drivers and their suppressors will soon be possible.  
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Table 10: The four backcross types, number of males tested, and rates of sterility and 

biased sex ratio. In the first column, the letters in the parentheses indicate the population 

origins of the original two parents, with the male parent listed first. G indicates a fly from 

the G2 inbred line, and S indicates a fly from the S3 inbred line. F1D and F1ST represent 

females generated by crossing an S3 line inbred female with a drive-carrying outbred 

Gombak male or non-drive-carrying G2 line inbred male, respectively. Letters outside the 

parentheses indicate the population of the male parent used in backcrosses. Sample size 

refers to the number of second-generation male backcross progeny that were tested. The 

percent biased sex ratio is calculated out of the fertile males producing sufficient progeny 

for statistical analysis, not out of the total number of males tested for fertility. 

Cross type N No. (Pct.) Sterile No. (Pct.) Fertile No. (Pct.) Biased 

G(G(F1ST)) 220 167 (75.9%) 53 (24.1%) 20 (39%) 

G(G(F1D)) 218 106 (48.6%) 112 (51.4%) 52 (47%) 

S(S(F1ST))  165 93 (56.4%) 72 (43.6%) 16 (26%) 

S(S(F1D)) 96 51 (53.1%) 45 (46.9%) 19 (45%) 
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Table 11: The number of progeny with and without non-backcross population alleles at 

microsatellite markers. The P values show the results of G tests on the 2x2 contingency 

table corresponding to each chromosome.  

Chromosome 1 Chromosome 2 X Chromosome Non-backcross 

parent alleles Fertile Sterile Fertile Sterile Fertile Sterile 

Gombak backcrosses      

0 83 47 135 117 159 123 

≥1 82 226 30 155 6 152 

G 53.22 67.27 147.02 

P < 0.0001 < 0.0001 < 0.0001 

Soraya backcrosses      

0 64 35 79 33 121 108 

≥1 53 109 38 111 0 21 

G 20.64 54.02 29.60 

P < 0.0001 < 0.0001 < 0.0001 
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Table 12: The number of progeny with and without non-backcross population alleles at 

microsatellite markers. The P values show the results of G tests on the 2x2 contingency 

table corresponding to each chromosome. The G test could not be performed in one case 

because no surviving males carried Gombak alleles. 

Chromosome 1 Chromosome 2 X Chromosome 

Non-backcross 

parent alleles Biased 

Not 

Biased Biased 

Not 

Biased Biased 

Not 

Biased 

Gombak backcrosses      

0 21 62 59 76 71 88 

≥1 53 29 15 15 3 3 

G 26.54 0.39 0.07 

P < 0.0001 0.53 0.80 

Soraya backcrosses      

0 18 46 22 57 33 84 

≥1 15 38 11 27 0 0 

G 0.00 0.02 N/A 

P 0.98 0.90 N/A 
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 Figure 9: Cross scheme for the four backcross populations. Two crosses were begun in 

the first generation, using either a male known to carry an XD chromosome or a non-

driving male from an inbred line. Subsequent generations in both types of crosses involve 

backcrosses to one of two inbred lines. G2 and S3 refer to individuals from the Gombak 

and Soraya inbred lines, respectively, and GXD refers to a known drive male from the 

Gombak population. 

 

Figure 10: Linkage maps of the X chromosome and two autosomes in the Soraya and 

Gombak populations of C. dalmanni. Maps of chromosome 1 and the X chromosome 

were created separately for the two populations because of different numbers of 

informative loci on each, and the map for chromosome 2 was created using combined 

data from both populations. 

 

Figure 11: QTL plots of second-generation backcross hybrid male fertility. Figure 11a 

shows results of the Gombak backcross families, and 11b shows the Soraya backcross 

families. Likelihood ratio statistic values were generated using composite interval 

mapping in the program MapManager QTX v.0.30. Triangles on the X axis represent the 

location of microsatellite marker loci, and the dashed line shows the “highly significant” 

threshold of QTL detection, representing a probability of 0.001 (Lander and Kruglyak 

1995) 

 

Figure 12: Histograms of brood sex ratio for each of the four backcross types. Figure 12a 

shows the results of the Gombak backcrosses, and 12b shows the results of the Soraya 
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backcrosses. Black bars indicate broods with sex ratios showing a significant departure 

from a 1:1 sex ratio according to chi-square analysis, white bars show those with no 

significant departure from 1:1. 

 

Figure 13: QTL plots of biased progeny sex ratio among fertile Gombak backcross males. 

Likelihood ratio statistic values were generated using composite interval mapping in the 

cases of the X chromosome and chromosome 2. For chromosome 1, interval mapping 

was used because no significant loci were detected on other chromosomes that could be 

used as background for composite interval mapping. Triangles on the X axis represent the 

location of microsatellite marker loci, and the dashed line shows the “highly significant” 

threshold of QTL detection, representing a probability of 0.001 (Lander and Kruglyak 

1995). 
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Fig. 9 
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Fig. 10 
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Fig. 11a 
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Fig. 11b 
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Fig. 12a 
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Fig. 12b 
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 Fig. 13 



 115 
 



 116 
 

Appendix 

 
 

Supplemental Table 1 (Chapter 3): Sample sizes in each second-generation backcross 

family (Soraya backcrosses). Each male replicate is a separate male from the Soraya 

inbred line. In the female replicates, each male replicate was mated with either three or 

four full sisters from the pool of first generation backcross progeny. All females who 

yielded progeny used in the study are listed in this table. 

cross F1DxS F1STxS 

Male replicate A B C A B C 

Female replicate 1 1 3 4 1 3 3 1 2 3 2 

Number of sons 15 33 32 13 1 2 94 1 27 20 23 
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Supplemental Table 2 (Chapter 3): Sample sizes in each second-generation backcross family (Gombak backcrosses). Each male 

replicate is a separate male from the Gombak inbred line. In the female replicates, each male replicate was mated with either three or 

four full sisters from the pool of first generation backcross progeny. All females who yielded progeny used in the study are listed in 

this table. 

cross F1DxG F1STxG 

backcross replicate A B C A B C 

2nd-gen bx replicate 1 2 4 1 2 4 1 2 3 4 1 2 3 1 2 3 1 2 3 

sample size 19 41 1 20 13 26 7 33 17 41 41 14 52 8 45 15 20 9 16 
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