
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site   http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

The Jacobian Analysis of a Parallel Manipulator Using 
Reciprocal Screws

by L. W. Tsai

T.R. 98-34



      

The Jacobian Analysis of a Parallel Manipulator
Using the Theory of Reciprocal Screws

Lung-Wen Tsai

Department of Mechanical Engineering

and

Institute for Systems Research

University of Maryland, College Park, MD

email: lwtsai@isr.umd.edu

Abstract
In this paper, the theory of reciprocal screws is reviewed. Reciprocal screw sys-

tems associated with some frequently used kinematic pairs and chains are developed.
Then, the application of reciprocal screw systems for the Jacobian analysis of parallel
manipulators is described. The Jacobian and singular conditions of a six-dof parallel
manipulator are analyzed.

1 Introduction

The study of the instantaneous motion of kinematic chains was pioneered by Waldron (1966).
Since then, various methods of analysis have been proposed (Baker, 1980; and Davies, 1981).
The instantaneous kinematics of parallel manipulators is complicated by the existence of
numerous number of closed loops. Recently, Mohamed, et al. (1983) developed a procedure
for the determination of the instantaneous twists associated with the joints of a limb using the
velocity vector-loop equations. Mohamed and Duffy (1985) applied the theory of reciprocal
screws, and Sugimoto (1987) used the motor algebra for the Jacobian analysis of parallel
manipulators.

In this paper, the theory of reciprocal screws will be reviewed. Although the concept
of using reciprocal screws for the instantaneous kinematic analysis of parallel manipulators
was first introduced by Mohamed and Duffy (1985), no specific procedure was given for the
derivation of reciprocal screws. The purpose of this paper is to provide the readers with a
better understanding of the reciprocal screws and their applications for the Jacobain analysis
of parallel manipulators. It is shown that the reciprocal screws associated with a kinematic
chain can be identified by an inspection of the kinematic structure. To demonstrate the
methodology, the Jacobian of a six-dof parallel manipulator is analyzed.
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2 Reciprocal Screws

The concept of reciprocal screws was first studied by Ball (1900), followed by Waldron(1969),

Hunt (1978), Roth (1984), and others. A unit screw $̂ is defined by a pair of vectors:

$̂ =

[
s

so × s + λs

]
=



S1

S2

S3

S4

S5

S6


, (1)

where s is a unit vector along the direction of the screw axis, so is the position vector of any
point on the screw axis with respect to a reference frame, and λ is called the pitch.

A screw of intensify ρ can be written as $ = ρ$̂. We call the screw a twist if it represents
an instantaneous motion of a rigid body, and a wrench if it represents a system of forces and
couples acting on a rigid body. In this regard, the first three components of a twist represent
the angular velocity and the last three components represent the linear velocity of a point
in the rigid body which is instantaneously coincident with the origin of the reference frame.
On the other hand, the first three components of a wrench represent the resultant force and
the last three components represent the resultant moment about the origin of the reference
frame.

Two screws, $ and $r, are said to be reciprocal if they satisfy the condition:

$Tr $ = 0, (2)

where the transpose of a screw is defined as

$T = [S4 S5 S6 S1 S2 S3]

such that the orthogonal product of the two screws is given by:

$Tr $ = Sr4S1 + Sr5S2 + Sr6S3 + Sr1S4 + Sr2S5 + Sr3S6. (3)

The reciprocity condition can be stated as the virtual work between a wrench and a
twist is equal to zero. From the geometry of the lines associated with the two screws, the
reciprocal condition can be derived as:

(λ+ λr) cosα− a sinα = 0, (4)

where a is the offset distance along the common perpendicular leading from the screw axis
of $ to $r, and α is the twist angle between the axes of $ and $r, measured from $ to $r
about the common perpendicular according to the right-hand screw rule.

Equation (2) imposes one constraint on the two screws. Since a unit screw requires five
independent parameters to specify the screw axis direction, location, and the pitch, there is
a quadruple infinitude (∞4) of screws reciprocal to a given screw. Hence, all screws that are
reciprocal to a single screw form a five-system. A more detailed description of screw systems
can be found in Hunt (1978).
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2.1 Reciprocal Screws Of Some Kinematic Pairs

The screws and reciprocal screws associated with some frequently used joints are listed below:
Revolute Joint. The unit screw associated with a revolute joint is a screw of zero pitch

pointing along the joint axis. The reciprocal screws form a five-system and, in particular,
those zero-pitch reciprocal screws lie on all planes containing the axis of the revolute joint.

Prismatic Joint. The unit screw associated with a prismatic joint is a screw of infinite
pitch pointing along the direction of the joint axis. The reciprocal screws form a five-system
and, in particular, those zero-pitch reciprocal screws lie on all planes perpendicular to the
axis of the prismatic joint.

Spherical Joint. The unit screws associated with a spherical joint form a three-system
of zero pitch passing through the center of the joint. The reciprocal screws also form a
three-system of zero pitch passing through the center of the sphere.

Universal Joint. The unit screws associated with a universal joint form a two-system of
zero pitch. It is a planar pencil radiating from the center of the universal joint and lying on
a plane which contains the two axes of revolution. The reciprocal screws form a four-system.
In particular, all zero-pitch reciprocal screws either pass through the center of the universal
joint or lie on the plane defined by the two joint axes of the universal joint, and there exists
a reciprocal screw of infinite pitch which passes through the center of the universal joint and
is perpendicular to both joint axes.

2.2 Reciprocal Screws Of Some Kinematic Chains

Using the above information, reciprocal screws associated with a kinematic chain can be
obtained by an intersection of the systems of reciprocal screws associated with the joints in
the kinematic chain. In what follows, the reciprocal screws associated with several frequently
used kinematic chains are developed.

Universal-Spherical Dyad. The joint screws associated with a universal-spherical dyad
form a five-system. Hence, the reciprocal screw is a one-system. Because of the presence
of a spherical joint and a universal joint, the reciprocal screw is a zero-pitch screw passing
through the centers of the two joints.

Revolute-Spherical Dyad. The joint screws associated with a revolute-spherical dyad
form a four-system. The reciprocal screws form a two-system. Because of the presence of
a spherical joint and a revolute joint, all reciprocal screws are zero-pitch screws forming a
planar pencil. Specifically, all reciprocal screws pass through the center of the spherical joint
and lie on a plane which contains both the axis of the revolute joint and the center of the
spherical joint as shown in Fig. 1(a).

Prismatic-Spherical Dyad. The joint screws associated with a prismatic-spherical dyad
form a four-system. The reciprocal screws form a two-system. Because of the presence of
a spherical joint and a prismatic joint, all reciprocal screws are zero-pitch screws forming
a planar pencil. Specifically, all reciprocal screws pass through the center of the spherical
joint and lie on a plane which is perpendicular to the axis of the prismatic joint as shown in
Fig. 1(b).

3



R

S

$r forms a

planar pencil
$r

 forms a 

planar pencil

(a) Revolute-spherical dyad (b) Prismatic-spherical dyad

P

S

Figure 1: Reciprocal screw systems of two dyads.

3 The Screw Based Jacobian

A parallel manipulator typically consists of several limbs, say m. Each limb is made up
of several links connected together by joints. Kinematically, we can replace a cylindrical
joint by a revolute joint plus a coaxial prismatic joint, and a spherical joint by three non-
coplanar intersecting revolute joints. Hence, we may consider each limb as an open-loop
chain connecting the moving platform to the fixed base by ` one-dof joints. Figure 2 shows
a typical limb, where the first subscript denotes the joint number of a limb and the second
subscript represents the limb number. This way, the instantaneous twist, $p, of the moving
platform can be expressed as a linear combination of ` instantaneous twists (Mohamed and
Duffy, 1985).

$p =
∑̀
j=1

q̇j,i$̂j,i, for i = 1, 2, · · · ,m, (5)

where q̇j,i and $̂j,i denote the intensity and the unit screw associated with the jth joint of
the ith limb.

Equation (5) contains many unactuated joint rates which should be eliminated. This can
be accomplished by applying the theory of reciprocal screws. Assuming that the actuated
joints in each limb appear in the first g terms, we first identify g screws, $̂rj,i, for j = 1, 2 · · · , g,
each of them is reciprocal to the screw system associated with all the unactuated joints of the
ith limb. Then, we take the orthogonal product of both sides of Eq. (5) with each reciprocal
screw. This produces g equations which can be written in a matrix form as follows:

Jx,i$p = Jq,iq̇i, (6)
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Figure 2: Typical limb of a parallel manipulator.

where q̇i = [q̇1,i, q̇2,i, · · · , q̇g,i]T ,

Jx,i =


$̂Tr1,i
$̂Tr2,i

...

$̂Trg,i

 , and Jq,i =


$̂Tr1,i$̂1,i $̂Tr1,i$̂2,i · · · $̂Tr1,i$̂g,i
$̂Tr2,i$̂1,i $̂Tr2,i$̂2,i · · · $̂Tr2,i$̂g,i

...
... · · · ...

$̂Trg,i$̂1,i $̂Trg,i$̂2,i · · · $̂Trg,i$̂g,i

 .

Equation (6) written m times, once for each limb, yields n = m × g linear equations
which can be assembled in a matrix form:

Jx$p = Jqq̇, (7)

where q̇ = [q̇1,i, · · · , q̇g,i, q̇1,2, · · · , q̇g,2, · · · , q̇g,m]T ,

Jx =


Jx,1
Jx,2
...

Jx,m

 and Jq =


[Jq,1] 0 · · · 0

0 [Jq,2] · · · 0
...

... · · · ...
0 0 · · · [Jq,m]

 .

The twists associated with all the joints of a limb form an `-system provided that they
are linearly independent. Let d be the dimension of the motion space (d = 6 for spatial and,
d = 3 for planar and spherical motions). Clearly, if ` = d, there exists no screw reciprocal to
the `-system of twists. If ` < d, there are (d− `) linearly independent screws which form a
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Figure 3: A parallel manipulator driven three planar motors.

(d− `)-system. Every screw in the (d− `)-system is reciprocal to the `-system of twists. For
a limb with k unactuated joints, there exists (d− k) linearly independent screws that form
a (d− k)-system. Every screw in the (d− k)-system is reciprocal to every unactuated joint
screw of the limb. Obviously, the (d − k)-system contains the (d − `)-system. Any screw
taken from the (d − k)-system, provided that it does not belong to the (d − `)-system, can

be used as $̂rj,i to formulate of the Jacobian matrices. Hence, there are plenty of reciprocal
screws to choose. Furthermore, if each of the reciprocal screws is reciprocal to all the joint
screws, except for just one of the actuated joint screws, then Jq reduces to a diagonal matrix.
In what follows, the Jacobian of a six-dof parallel manipulator is analyzed to illustrate the
theory.

4 The Jacobian Of A 6-DOF Parallel Manipulator

Figure 3 shows a six-dof parallel manipulator developed by (Tsai and Tahmasebi, 1993). This
manipulator is made up of a moving platform, a fixed base, and three inextensible limbs,
AiBi for i = 1 to 3. The upper end of each limb is connected to the moving platform by a
revolute joint while the lower end is connected to a planar two-dof driver by a spherical joint.
The three revolute joints lie on the B1B2B3 plane. The manipulator motion is obtained by
moving the planar motors on the fixed base.

As shown in Fig. 3, two Cartesian coordinate systems, (x, y, z) and (u, v, w), are attached
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to the fixed base and moving platform, respectively. The origin of the (u, v, w) frame
is located at the centroid P of the moving platform with the u and v axes lying on the
B1B2B3 plane. In the equivalent limb, the spherical joint is replaced by three non-coplanar
intersecting revolute joints, $̂3,i, $̂4,i, and $̂5,i. The axis of $̂3,i is aligned with the x axis; the

axis of $̂5,i is aligned with the longitudinal axis of the limb; and the axis of $̂4,i is perpendicular

to both $̂3,i and $̂5,i. Overall, there are six joint screws associated with each limb. The first
two are actuated prismatic joints while the remaining four are passive revolute joints.

To facilitate the analysis, we define an instantaneous reference frame, (x′, y′, z′), with
its origin is located at point P and the x′, y′ and z′ axes parallel to the x, y and z axes of
the fixed frame. Then, we express all the joint screws with respect to this instantaneous
reference frame as follows:

$̂1,i =

[
0
s1,i

]
, $̂3,i =

[
s3,i

(bi − di)× s3,i

]
, $̂5,i =

[
s5,i

bi × s5,i

]
,

$̂2,i =

[
0
s2,i

]
, $̂4,i =

[
s4,i

(bi − di)× s4,i

]
, $̂6,i =

[
s6,i

bi × s6,i

]
,

where s1,i = s3,i = [1, 0, 0]T , s2,i = [0, 1, 0]T , bi = PBi, di = AiBi, s5,i = di/di, and
s4,i = s5,i × s3,i.

We now consider each limb as an open-loop chain and express the instantaneous twist,
$p, of the moving platform in terms of the joint screws of the ith limb.

$p = vx,i$̂1,i + vy,i$̂2,i + θ̇3,i$̂3,i + · · ·+ θ̇6,i$̂6,i, (8)

where vx,i and vy,i denote the linear velocities the planar motor along the x and y directions,
respectively, and θ̇3,i, · · · , θ̇6,i denote the rotation rates about the passive joint axes.

Since there is a spherical joint at the lower end and a revolute joint at the upper end of
each limb, all screws that are reciprocal to the unactuated joint screws form a planar pencil.
These reciprocal screws pass through point Ai and lie on a plane H i which contains point
Ai and the axis of $̂6,i.

Let ni = [nx,i, ny,i, nz,i]
T be a unit vector defined by the cross product of s5,i and s6,i:

ni = s5,i × s6,i. (9)

Then, a screw that is reciprocal to all screws except for $̂1,i is obtained by an intersection of
the H i plane and the plane which contains Ai and is parallel to the x− z plane:

$̂r1,i =

[
sr1,i

(bi − di)× sr1,i

]
, where sr1,i =

[nz,i 0 − nx,i]T√
1− n2

y,i

. (10)

Similarly, a screw that is reciprocal to all screws except for $̂2,i is obtained by an intersection
of the H i plane and the plane which contains Ai and is parallel to the y − z plane:

$̂r2,i =

[
sr2,i

(bi − di)× sr2,i

]
, where sr2,i =

[0 nz,i − ny,i]T√
1− n2

x,i

. (11)
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Taking the orthogonal products of both sides of Eq. (8) with (10) and (11), we obtain:

[
((bi − di)× sr1,i)

T sTr1,i
((bi − di)× sr2,i)

T sTr2,i

] [
ω̄p
vp

]
=


nz,i√
1−n2

y,i

0

0 nz,i√
1−n2

x,i

 [ vx,i
vy,i

]
. (12)

Writing Eqs. (12) three times, once for each limb, we obtain:

Jxẋ = Jqq̇, (13)

where ẋ = [ωpx, ωpy, ωpz, vpx, vpy, vpz]
T , q̇ = [vx,1, vy,1, vx,2, vy,2, vx,3, vy,3]

T , and

Jx =



((b1 − d1)× sr1,1)
T sTr1,1

((b1 − d1)× sr2,1)
T sTr2,1

((b2 − d2)× sr1,2)
T sTr1,2

((b2 − d2)× sr2,2)
T sTr2,2

((b3 − d3)× sr1,3)
T sTr1,3

((b3 − d3)× sr2,3)
T sTr2,3


,

Jq =



nz,1√
1−n2

y,1

0 0 0 0 0

0 nz,1√
1−n2

x,1

0 0 0 0

0 0 nz,2√
1−n2

y,2

0 0 0

0 0 0 nz,2√
1−n2

x,2

0 0

0 0 0 0 nz,3√
1−n2

y,3

0

0 0 0 0 0 nz,3√
1−n2

x,3


.

An inverse kinematic singularity occurs when nz,i = 0 for i = 1 or 2 or 3. Hence, when one
of the limbs points in the z direction, the manipulator loses two degrees of freedom. If two
or three limbs simultaneously point in the z direction, four or six degrees of freedom will be
lost. A forward kinematic singularity occurs when nx,i = ny,i = 0 for all three limbs. Under
such condition, the sixth column of Jx becomes zero identically and the manipulator gains
one degree of freedom. Physically, this corresponds to the configuration when the moving
platform and the three limbs lie on the x− y plane. Another forward kinematic singularity
occurs when the following three conditions are simultaneously satisfied: (1) 4B1B2B3 is an
equilateral triangle; (2) the three limbs are of equal length; and (3) A1, A2, and A3 are placed
directly under the centroid of the moving platform. When the above conditions are met, the
manipulator gains three rotational degrees of freedom. A third direct kinematic singularity
occurs when nz,i = 0 for i = 1, 2 and 3. Under this condition, the fourth and fifth columns
of Jx are both equal to zero, and the moving platform can make an infinitesimal translation
along any direction which is parallel to the x−y plane. In fact, this is a combined singularity
since the manipulator is also under the inverse kinematic singulairy.
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5 Summary

First, the definitions of a screw and its reciprocal screws are reviewed. Then, reciprocal screw
systems associated with some frequently used kinematic pairs and chains are developed.
Using these reciprocal screw systems, it is shown that the Jacobian of a parallel manipulator
can be systematically derived. To illustrate the methodology, the Jacobian of a six-dof
parallel manipulator is analyzed and its singular conditions are discussed.
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