
ABSTRACT

Title of Dissertation: ALGORITHMS FOR GENERATING MULTI-STAGE

MOLDING PLANS FOR ARTICULATED ASSEM-

BLIES

Alok K. Priyadarshi, Doctor of Philosophy, 2006

Dissertation directed by: Associate Professor Satyandra K. Gupta

Department of Mechanical Engineering

Plastic products such as toys with articulated arms, legs, and heads are tra-

ditionally produced by first molding individual components separately, and then

assembling them together. A recent alternative, referred to as in-mold assembly

process, performs molding and assembly steps concurrently inside the mold itself.

The most common technique of performing in-mold assembly is through multi-

stage molding, in which the various components of an assembly are injected in

a sequence of molding stages to produce the final assembly. Multi-stage molding

produces better-quality articulated products at a lower cost. It however, gives

rise to new mold design challenges that are absent from traditional molding. We

need to develop a molding plan that determines the mold design parameters and

sequence of molding stages. There are currently no software tools available to

generate molding plans. It is difficult to perform the planning manually because it

involves evaluating large number of combinations and solving complex geometric

reasoning problems.

This dissertation investigates the problem of generating multi-stage molding

plans for articulated assemblies. The multi-stage molding process is studied and

the underlying governing principles and constraints are identified. A hybrid plan-

ning framework that combines elements from generative and variant techniques is

developed. A molding plan representation is developed to build a library of feasible

molding plans for basic joints. These molding plans for individual joints are reused

to generate plans for new assemblies. As part of this overall planning framework,

we need to solve the following geometric subproblems – finding assembly configura-

tion that is both feasible and optimal, finding mold-piece regions, and constructing

an optimal shutoff surface. Algorithms to solve these subproblems are developed

and characterized.

This dissertation makes the following contributions. The representation for

molding plans provides a common platform for sharing feasible and efficient mold-

ing plans for joints. It investigates the multi-stage mold design problem from the

planning perspective. The new hybrid planning framework and geometric reason-

ing algorithms will increase the level of automation and reduce chances of design

mistakes. This will in turn reduce the cost and lead-time associated with the

deployment of multi-stage molding process.

ALGORITHMS FOR GENERATING MULTI-STAGE MOLDING PLANS FOR

ARTICULATED ASSEMBLIES

by

Alok K. Priyadarshi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Associate Professor Satyandra K. Gupta, Chairman/Advisor
Professor Davinder K. Anand
Associate Professor Hugh Bruck
Associate Professor Jeffrey W. Herrmann
Professor Amitabh Varshney

c© Copyright by

Alok K. Priyadarshi

2006

DEDICATION

To my parents

ii

ACKNOWLEDGEMENTS

I would like to show my appreciation and express my gratitude to

Dr. Satyandra K. Gupta for giving me an opportunity to conduct

research under his supervision. I strongly believe that the skills I have

acquired while working with him will prove to be extremely useful in my

professional career. I would also like to thank my dissertation review

committee members for their invaluable suggestions.

This work was supported by NSF Grant DMI-0093142. I am thankful

to the University of Maryland, the Mechanical Engineering Depart-

ment and the Institute for Systems Research for the opportunity and

support. Regina Gouker, Florian Krebs, Martin Shroeder, and Stefan

Warth helped me in prototyping the example parts. Many of the fun-

damental and technical ideas underlying this work were initiated from

our discussions. Ralph and Mike from Space Ltd. patiently answered

all my questions about molding. Cholly Nachman, my colleague at

Solidworks taught me finer details of mold design.

My fellow researchers and friends at CIM lab – Abhijit, Arvind, Ashis,

Bellam, Brent, Changxin, Chen, Deepak, Greg, Ira, Jun, Li, Malay,

iii

Mandar, Mukul, Rohit, Sunil, Tao, and Yao have provided good com-

pany and advice. Arindam, Siddharth, Dutta, Akash, and Janhavi

hosted me while I was visiting Maryland.

And last but not the least, a special thank you to my wife Susmita and

my family for all their support through the years.

iv

TABLE OF CONTENTS

List of Figures xi

1 INTRODUCTION 1

1.1 In-Mold Assembly . 1

1.2 Research Motivation . 4

1.3 Research Objectives and Issues . 6

1.3.1 Planning Framework . 7

1.3.2 Geometric Algorithms to Support Planning 9

1.4 Dissertation Outline . 13

2 BACKGROUND 14

2.1 Injection Molding . 15

2.1.1 Molding Process . 15

2.1.2 Mold System . 17

2.1.3 Rapid Tooling . 20

2.1.4 Production Tooling . 20

2.2 Multi-Stage Molding . 21

2.3 Hardware Shadow Mapping . 23

2.3.1 Self Shadowing . 24

2.3.2 Percentage Closer Filtering (PCF) 26

v

2.4 Geometric Modeling Basics . 26

2.4.1 Solid Models . 28

2.4.2 Assembly Models . 30

2.4.3 Geometric Transformations 32

2.4.4 Faceting . 36

2.4.5 Convex Hull . 39

2.5 State-Space Search . 40

3 PROBLEM FORMULATION 45

3.1 A Model for Articulated Assemblies 45

3.1.1 Articulated Joints . 46

3.1.2 Articulated Assemblies . 49

3.2 Definition of Mold Design Terms 53

3.3 Generating Molding Plan . 55

3.3.1 Feasiblity of a Molding Plan 57

3.3.2 Cost of a Molding Plan . 59

3.4 Multi-Stage Mold Design for Articulated Assemblies 63

3.5 Problem Statement . 65

3.6 Overview of Approach . 66

4 RELATED WORK 71

4.1 Accessibility Analysis . 71

4.1.1 Local Accessibility analysis 72

4.1.2 Global Accessibility Analysis 75

4.2 Two-Piece Mold Design . 77

4.2.1 Determination of Parting Direction 77

vi

4.2.2 Determination of Parting Line and Parting Surface 83

4.3 Multi-Piece Mold Design . 85

4.3.1 Sacrificial Mold Design . 86

4.3.2 Permanent Mold Design . 86

4.4 Multi-Stage Mold Design . 90

4.5 Assembly Sequence Planning . 93

4.6 Hybrid Process Planning . 95

4.7 Summary . 95

5 REPRESENTING REUSABLE MOLDING PLANS FOR AR-

TICULATED JOINTS 97

5.1 Introduction . 98

5.2 Basic Assembly Design Principles for Achieving Feasible and Effi-

cient Plans . 99

5.2.1 Achieving Proper Joint Clearances 100

5.2.2 Preventing Adhesion at Joint Interfaces 104

5.2.3 Minimizing the Number of Molding Stages 106

5.2.4 Simplifying the Method for Changing Cavity Shape 107

5.3 Framework for Representing Joint Molding Plans 109

5.3.1 Applicability Conditions . 110

5.3.2 Feasibility Constraints . 111

5.3.3 Representation Format . 113

5.4 Molding Plans for Prismatic Joint 115

5.4.1 Plan A . 115

5.4.2 Plan B . 118

5.5 Molding Plans for Revolute Joint 120

vii

5.5.1 Plan C . 121

5.5.2 Plan D . 123

5.6 Molding Plans for Spherical Joint 126

5.6.1 Plan E . 126

5.6.2 Plan F . 129

5.7 Summary . 131

6 GENERATING MOLDING PLANS FOR ARTICULATED AS-

SEMBLIES 133

6.1 State Space Formulation . 133

6.2 Overview of Approach . 137

6.3 The Search Algorithm . 141

6.3.1 Bounding Function . 145

6.3.2 Reusing the Results of a Search Node 147

6.3.3 Branching Rule . 147

6.4 Generating Molding Stages . 148

6.4.1 Finding Stage Components and the Base Component 150

6.4.2 Orienting the Base Component 153

6.4.3 Finding the Feasible Configuration Space for a Stage Com-

ponent . 154

6.4.4 Finding an Optimal Configuration for a Stage Component . 158

6.4.5 Finding Feasible Configurations for Pre-Stage Components . 164

6.5 Results . 167

6.5.1 Swashplate . 167

6.5.2 Vent Assembly . 172

6.5.3 Universal Joint . 174

viii

6.6 Summary . 178

7 FINDING MOLD-PIECE REGIONS 180

7.1 Problem Definition . 180

7.2 Object-Space Algorithm . 183

7.2.1 Determining the Accessibility of a Facet 184

7.2.2 Separating Axis Method for Convex Polygons 187

7.2.3 Handling Near-Vertical Facets 188

7.2.4 Pruning Unnecessary Obstruction Tests 191

7.2.5 Implementation and Results 194

7.3 Image-Space Algorithm . 195

7.3.1 Overview of Approach . 197

7.3.2 Handling Near-Vertical Facets 199

7.3.3 Preventing Self-Shadowing 200

7.3.4 Transferring Results from the GPU to CPU 203

7.3.5 Implementation and Results 205

7.4 Summary . 208

8 CONSTRUCTING OPTIMAL SHUTOFF SURFACES 212

8.1 Background . 212

8.1.1 Shutoff Surface . 214

8.1.2 Methodology for Creating Shutoff Surface 216

8.2 Problem Formulation . 217

8.2.1 Validity of a Shutoff Surface 219

8.2.2 Machining Cost of a Shutoff Surface 220

8.2.3 Problem Statement . 221

ix

8.3 Overview of Approach . 223

8.4 The Algorithm . 223

8.4.1 Creating an Initial Valid Shutoff Surface 224

8.4.2 Optimizing the Initial Shutoff Surface 225

8.4.3 Making a Segment Patch Follow a Strategy 230

8.4.4 Creating a Bridge Patch . 232

8.5 Results . 233

8.6 Summary . 234

9 CONCLUSIONS 236

9.1 Intellectual Contributions . 236

9.2 Anticipated Industrial Benefits . 239

9.3 Future Work . 240

Bibliography 243

x

LIST OF FIGURES

1.1 Examples of in-mold assembled articulated devices 3

1.2 Swash plate with traditionally assembled components 3

1.3 Examples of infeasible and feasible configuration 10

2.1 A single screw injection molding machine for thermoplastics 16

2.2 A basic mold for an example part 18

2.3 Mold System Operation . 19

2.4 Multi-stage molding. 22

2.5 Depth comparison scheme used in shadow mapping [Ever01] 24

2.6 Percentage Closer Filtering (PCF) 27

2.7 Faceting . 37

2.8 3D Convex Hull . 40

3.1 Prismatic joint [Simm06] . 48

3.2 Revolute joint [Simm06] . 48

3.3 Spherical joint [Simm06] . 49

3.4 Assembly configuration scheme. 51

3.5 Mold pieces mold for an example part 53

3.6 Mold-Piece Regions . 55

3.7 Shutoff surface for an example part. 55

xi

3.8 Molding plan example. 58

3.9 Component A casts shadow on component B 59

3.10 Mold-piece regions and parting line for the third molding stage of

gimbal shown in Figure 3.8d. 64

3.11 Shutoff surface for the third molding stage of gimbal shown in Fig-

ure 3.8d. 65

3.12 Overview of approach . 69

4.1 Visibility Maps of some simple surfaces 73

4.2 Visibility Map represents local visibility 75

4.3 Cores can be avoided even if the visibility map is empty 78

4.4 Cores can be avoided even if the intersection of visibility maps is

empty . 80

4.5 Partitioning of a pocket . 81

4.6 Difference between the parting surface and the shutoff surface . . . 85

4.7 Concave regions having no parting direction and no internal convex

edge are also moldable . 89

5.1 Effect of Shrinkage on Joint Clearance 100

5.2 Shrinkage Analysis for Revolute Joint 101

5.3 Three components can be injected in two stages 107

5.4 Changing mold cavity shape between stages 108

5.5 Feasible configuration space of a joint axis 112

5.6 Feasible range of a joint parameter 113

5.7 Prismatic joint plan A . 116

5.8 Example for prismatic joint plan A 117

xii

5.9 Prismatic joint plan B . 118

5.10 Example for prismatic joint plan B 119

5.11 Effect of excessive shrinkage on part quality 120

5.12 Revolute joint plan C . 121

5.13 Example for revolute joint plan C 123

5.14 Revolute joint plan D . 124

5.15 Example for revolute joint plan D 125

5.16 Spherical joint plan E . 127

5.17 Example for spherical joint plan E 128

5.18 Spherical joint plan F . 129

5.19 Example for spherical joint plan F 130

6.1 Molding plan problem . 135

6.2 Gimbal . 138

6.3 Partial state space . 139

6.4 Method to generate a molding stage 151

6.5 Joint precedence constraints for gimbal 152

6.6 Precedence constraints for an assembly. 153

6.7 Determining the feasible configuration space for a stage component 157

6.8 Scheme for finding the configuration with minimum undercuts . . . 160

6.9 Finding a configuration for which the parting line is flattest 162

6.10 Scheme for finding the orientation for flattest parting line 163

6.11 Tree representation of the subassembly produced by a molding stage 165

6.12 Feasible configurations for pre-stage components 166

6.13 Swashplate . 168

6.14 Joint precedence constraints for swashplate 168

xiii

6.15 Complete state space for swashplate 170

6.16 Feasible configuration space for C2. 171

6.17 Optimal configuration for C2. 172

6.18 Vent assembly. 173

6.19 Joint precedence constraints for vent assembly. 173

6.20 First molding stage for vent assembly. 174

6.21 Second molding stage for vent assembly. 175

6.22 Universal joint. 176

6.23 Joint precedence constraints for universal joint. 176

6.24 First molding stage for universal joint. 177

6.25 Second molding stage for universal joint. 178

7.1 Accessibility of a surface means demoldability 181

7.2 Split core . 182

7.3 Mold-Piece Regions . 183

7.4 Projecting facets on the viewing plane 186

7.5 Separating Axis Method for convex polygons 188

7.6 Surface tolerance problems with near-vertical facets 189

7.7 Compensating surface tolerance by rotating viewing direction 190

7.8 Convex-Hull facets and Non-Convex-Hull facets 191

7.9 Polyhedral-object accessibility properties 192

7.10 Obstruction test need not be performed for all facet pairs 194

7.11 Screenshots of three example parts 196

7.12 Performance result for a progressively simplified part. 197

7.13 Visibility of projected facets cannot change at intersection with con-

cave contour edges . 202

xiv

7.14 The problem with the second-depth technique when used with PCF 203

7.15 Perturbation scheme for near-vertical facets 205

7.16 Graphics rendering pipeline . 206

7.17 Screenshots of four example parts 209

7.18 Performance of the image-space algorithm 210

8.1 Shutoff surface for an example part. 214

8.2 Outer and inner parting line loops 215

8.3 Outer and inner shutoff surfaces . 215

8.4 Strategies for creating shutoff surface. 218

8.5 A bridge patch stitches two disjoint shutoff patches 219

8.6 Creating a valid shutoff surface. 225

8.7 The problem of selecting the optimal combination of strategies . . . 227

8.8 Creating a bridge patch . 233

8.9 Results of the algorithm for creating shutoff surface 235

xv

Chapter 1

INTRODUCTION

This chapter is arranged in the following manner. Section 1.1 describes the in-

mold assembly process that is used to manufacture molded articulated assemblies.

Section 1.2 describes the motivation behind the research undertaken in this disser-

tation. Section 1.3 describes the objectives and associated challenges of this work.

Section 1.4 finally describes the outline of this dissertation.

1.1 In-Mold Assembly

Plastic products are usually produced by first molding individual components sep-

arately, and then assembling them together. A recent alternative, referred to as

in-mold assembly process, performs molding and assembly steps concurrently in-

side the mold itself. This means that an entire assembly consisting of multiple

components can be produced by a single set of molds, thereby eliminating the

need for secondary assembly operations and the use of bolts, welds, glue, or other

fasteners.

In-mold assembly has several advantages over traditional techniques that in-

volve molding the components separately and then assembling them. It allows in-

1

tegration of functional elements, thereby reducing the number of components and

additional assembly steps. Several studies have indicated that assembly costs make

up 40% to 50% of the manufacturing costs to produce a product [Anan95]. Re-

duction in number of components reduces the associated assembly labor, purchas-

ing, inspecting, warehousing, capital requirements and piece part costs of a prod-

uct [Roth04]. In-mold assembled products also have better component-alignment

and overall structural integrity than their traditional counterparts.

In-mold assembly opens up the design space and presents new possibilities. One

of its applications has been in producing multi-material rigid and compliant struc-

tures where material interfaces are adhered to each other completely constraining

the motion between them [Gouk06, Bruc04]. For example, it can be used to mold

gaskets directly onto parts that need to form tight seals, such as lids, connectors

and the like. One of the most recent successful applications of in-mold assem-

bly has been in producing multi-material rigid-body articulated devices. Unlike

compliant mechanisms, rigid-body articulated devices have non-binding interfaces

with selective degrees of freedom between components. Multi-material articulated

devices are widely used in toys, medical instruments, consumer products, and

household appliances. Two examples are shown in Figure 1.1. Figure 1.2 shows

the swash plate made traditionally. The number of components in the traditionally

manufactured swash-plate is eleven, while the in-mold version has only five.

The most common and economically feasible way of performing in-mold assem-

bly is through multi-stage molding (MSM). MSM is usually accomplished through

some form of specialized injection molding technique [Pirk98, Plan02, Good02,

Li04]. Various polymers composing the different material sections are heated to

their melting temperatures, then injected in sequence into a mold or set of molds.

2

(a) Swash plate with in-mold as-

sembled components

(b) Syringe with in-mold assembled seal, plunger,

and closeable lid

Figure 1.1: Examples of in-mold assembled articulated devices

Figure 1.2: Swash plate with traditionally assembled components

The mold cavity shape changes after each molding stage to accommodate the ma-

terial to be injected in the next stage. The liquefied polymers solidify into their

desired shapes by taking on the form of the mold cavities in which they reside.

MSM is described in detail in Section 2.2.

3

1.2 Research Motivation

Multi-stage molding has emerged as an important manufacturing process. It can be

used to make better-quality articulated products at a lower cost. But at the same

time, it gives rise to new mold design challenges that are absent from traditional

molding. As opposed to traditional molding, multi-stage molding combines two

processes – fabrication and assembly. This combination of processes introduces a

new component of planning into multi-stage mold design.

In multi-stage molding, an articulated assembly A is produced using a sequence

of molding stages {s1, . . . , sn}. In each molding stage si, a set of components Ci

is added to the already molded sub-assembly Ai−1 to produce Ai. The first stage

s1, starts with an empty assembly (A0 = ∅), and the last stage sn produces the

final assembly (An = A). Intermediate stages require reconfiguring the mold as

well as intermediate subassemblies Ai. The first and an integral step in design-

ing a multi-stage mold for an articulated assembly is generating a molding plan,

which essentially consists of a sequence of molding stages {s1, . . . , sn} required to

produce the assembly. Once a molding plan is generated, available software tools

for traditional mold design can be used to design a mold for each molding stage si.

There are currently no software tools to generate molding plans. The mold

design software systems (MoldWizard, ProMold, IMold, etc.) available in market

today only handle traditional molding. They provide a variety of tools to speed

up the mold design process. They can examine part geometry, simulate analysis,

and forecast potential problems. Most of the systems can perform draft analysis,

undercut detection, parting line recognition, and core-cavity split. A high-end

tool such as MoldFlow can help analyze the flow, cooling, shrinkage, warpage

and stress during the thermoplastic injection process. Some others also help in

4

designing ejection and cooling systems. To summarize, the available commercial

software packages do not generate a molding plan, but provide low-level tools for

analysis and creating mold pieces. A molding plan needs to be manually developed

to make use of available tools.

It is difficult to perform the planning manually. Like any manufacturing process

planning task, generating molding plan is a challenging problem. The components

of an assembly can be molded in any order. But out of all possible permutations

and combinations, there are usually very few feasible sequences that lead to a

product with desired characteristics. Identifying a feasible sequence that also min-

imizes the manufacturing cost is even harder. It involves examining a large number

of combinations and solving complex geometric reasoning problems. The desired

articulation and multiple molding stages introduce geometric constraints, which if

violated, results in poor part quality, longer molding cycles, and high tooling cost.

In the absence of software tools, it usually takes a long time – about three to

four weeks on an average to develop a molding plan. There are also concerns about

the correctness of a molding plan because many decisions are based on subjective

guesswork. In many cases, designers are not able to discover errors until very

late in the design process. Discovering problems after investing so much time and

money results in expensive product and missed market opportunity. The cost to

fix a potential problem is multiplied by several times the further it is discovered

down the product development cycle. A problem discovered while designing the

part or mold is far more economical to fix than if it is discovered after the molds

are built, the parts are molded, and the products are assembled, packaged and

delivered to the customer.

The injection molding industry is one of the largest and most competitive in-

5

dustries. To maintain competitive edge, companies need to continuously strive for

better, faster, and cheaper products. Shorter design and manufacturing lead times,

good dimensional and overall quality, and frequent design improvements are keys

to success. Multi-stage molding aims to reduce the manufacturing cost by elimi-

nating secondary assembly operations. But those cost benefits cannot be realized

unless we produce multi-stage molds in much less time and cost. It is observed

that software lowers the overall cost by reducing design/manufacturing lead times.

It reduces chances of error through robust geometric calculations and also explores

design alternatives that are otherwise difficult due to human constraints. Hence it

would be useful to have software tools to generate multi-stage molding plan.

1.3 Research Objectives and Issues

The purpose of this dissertation is to investigate the problem of generating multi-

stage molding plan for articulated assemblies. This dissertation formally defines

the planning problem and develops algorithms to solve them. These algorithms can

be used to develop software that can automatically generate multi-stage molding

for articulated assemblies.

This dissertation makes the following assumptions:

• The input assembly is a serial mechanism. This dissertation does not handle

parallel mechanisms.

• The input assembly consists of only rigid-body joints. Articulation can be

achieved by both – compliant joints [Gouk06, Bruc04] and rigid-body joints.

The compliant joints are created using a soft (compliant) material between

two rigid materials. The material interfaces are adhered to each other com-

6

pletely constraining the motion between them. In contrast, there is some

clearance and hence one or more degrees of freedom between material in-

terfaces in rigid-body joints. This dissertation only deals with rigid body

joints.

• Sequencing is not affected by flow considerations. It is assumed that each

component is feasible to mold from the mold-flow point of view in all possible

sequences.

• Sequencing is not affected by thermal considerations. It is assumed that the

thermal management system is capable of providing appropriate cooling and

heating.

We need to develop a framework for solving the planning problem. Performing

assembly with fabrication leads to new problems that are absent from the tradi-

tional mold design problem. These new problems are geometric in nature and need

to be solved in order to do planning. So we need to develop geometric reasoning

algorithms for the same. The rest of this section discusses the associated research

issues.

1.3.1 Planning Framework

Generating molding plan is in some ways similar to other manufacturing operation-

planning problems such as machining and sheet-metal bending. There are two

traditional approaches to process planning. The first approach is called generative

process planning. In this approach a plan is synthesized from the first principles by

trying various alternatives in generate-and-test paradigm. The second approach is

called variant process planning. In this approach, a plan is generated by modifying

7

an existing plan. Sometimes a hybrid approach is also used that combines elements

from generative and variant techniques. We need to identify the approach that is

most suitable for our planning problem.

Incorporating Experimentally-Verified Molding Plans for Joints

When a successful plan is developed and experimentally validated for molding a

joint, a lot of useful knowledge is generated. Developing a successful molding

plan is a complex and time-consuming process. Hence, when a joint similar to a

previously molded joint is found in a new assembly, it would be more efficient to

reuse the previously generated plan than reinventing it from scratch. The various

types of joints used are very few. So it is very common to find similar joints in new

assemblies. We need to develop an approach for incorporating the experimentally-

verified molding plans for individual joints into the overall planning framework for

assemblies.

Formulation of Molding Planning Problem

The molding planning problem has not yet been formally defined. We first need

to develop mathematical definitions to represent entities such as articulated as-

semblies, configuration space, and molding stage. A molding plan is considered

feasible if it leads to a product with desired characteristics. We need to study the

multi-stage molding process and identify the underlying governing principles and

constraints that a plan needs to satisfy in order to be feasible. Multiple feasible

molding plans may exist for a given assembly. In that case, it is desired that we

select the molding plan with minimum manufacturing cost. The cost of a molding

plan depends on a variety of factors. We need to identify all those factors and

8

develop a computationally-tractable cost function that needs to be minimized.

Development of Search Technique

Manufacturing operation-planning problems that are usually formulated as state-

space search and uses branch and bound (B&B) search to obtain an optimal solu-

tion. However the effectiveness of B&B depends on problem-specific heuristics that

guides the search to an optimal solution quickly. Any problem employing B&B

needs to provide a bounding cost function. In our case we need to calculate a lower

bound cost for molding a subassembly. Another problem that we need to consider

is reducing the time taken to generate a search node. Generating a search node

involves extensive geometric reasoning and making queries to a geometric kernel.

Such computation is time-consuming and leads to very high node-generation time.

Slow node generation also makes it difficult to explore large portions of the search

space. We need to develop an approach to avoid generating redundant nodes.

1.3.2 Geometric Algorithms to Support Planning

In each molding stage, we need to find a configuration of the intermediate sub-

assembly Ai in which molding will take place. The configuration should be such

that it is feasible as well as optimal. In a feasible configuration, there is no ob-

struction between two components along the parting direction. The characteristics

of an optimal configuration is that the cost of the molding stage is minimum. This

dissertation defines the cost of a molding stage as sum of molding cost, defect cost,

and tooling cost. The number of undercuts on the components to be molded (stage

components) is a contributing factor to the molding cost. Similarly, complexity

of the parting line and machining cost of the shutoff surface are the contributing

9

C1

C2
C3

C4
C5

C6

Parting
Direction

(a) Infeasible configuration

Parting
Direction

C1

C2
C3

C4
C5

C6

(b) Feasible configuration

Figure 1.3: Examples of infeasible and feasible configuration

factors to the defect cost and the tooling cost respectively.

Hence for each molding stage, we need to find a configuration that is obstruction-

free, and for which the number of undercuts on the stage components is minimum

and the parting line is flattest. For each molding stage, we also need to create a

shutoff surface for which the machining cost is minimum.

Finding Obstruction-Free Configuration

In a valid molding stage si, the components of subassembly Ai do not obstruct

the accessibility of each other. Figure 1.3 shows examples of infeasible and fea-

sible configuration for a vent assembly. The configuration shown in Figure 1.3a

is infeasible because components C2 − C6 obstruct each other along the parting

direction. Orienting the components vertical as shown in Figure 1.3b makes the

configuration obstruction-free and hence feasible.

The algorithm for finding an obstruction-free configuration space for Ai re-

quires determining global ray-accessibility of facets. The algorithm for finding the

mold-piece regions also needs to determine the accessibility of facets. It is required

10

that the accessibility analysis algorithm be both efficient and robust. In compu-

tational geometry, efficiency and robustness are usually conflicting attributes for

an algorithm. It should be efficient because it will be very heavily used. It should

be robust because we are dealing with polyhedral objects. The curved surfaces on

the part boundary are faceted and approximated by smaller triangles. Due to the

surface tolerances introduced by faceting, a robust method is required to determine

the accessibility of near-vertical facets.

The available visibility algorithms cannot be used because there is a small, but

important difference between ray-accessibility and visibility. A facet perpendicular

to a direction ~d (vertical facet) is not visible but accessible in ~d. Mathematically,

suppose ~n is the facet normal, then the facet is visible if ~d.~n > 0, but accessible

even if ~d.~n = 0. Therefore, a new approach to determine global ray-accessibility of

a facet needs to be developed.

Finding Assembly Configuration with Minimum Undercuts

The tooling cost for a component is directly proportional to the number of side

actions that are required to form the undercuts on the component. Here we are

interested in finding a molding configuration for a component for which the number

of undercuts is minimum. Finding a parting direction and finding a configuration

are equivalent problems. There are primarily two approaches used for finding

parting direction: approaches based on accessibility analysis and approaches based

on feature recognition. Unfortunately none of them provide complete solution for

the problem being considered in this dissertation. Hence we need to find a new

approach to find a configuration with minimum undercuts.

11

Finding Assembly Configuration with Flattest Parting Line

Mathematically, parting line of a part is equivalent the silhouette of the part. How-

ever, the silhouette is not always a good parting line. Constructing parting lines

as ‘flat’ as possible is one of the best mold design practices followed in the molding

community. The parting line defines the profile of the contact surface (shutoff

surface) between the core and cavity. A flat parting line results in an accurate and

high precision shutoff surface. It also increases the sealing pressure between the

core and cavity, which in turn reduces the material flash. In other words, a flat

parting line reduces the defect cost. Hence it is proposed that the flattest possi-

ble parting line be found [Ravi90, Majh99, Chen03]. The available approaches to

finding the flattest parting line is limited to simple convex parts. Here we need to

solve a related, but different problem. We need to find a configuration for which

the parting line is flattest.

Creating Shutoff Surface with Minimum Machining cost

One of the most popular approaches to create shutoff surface is by extending

parting lines toward side-walls of the mold enclosure. This approach works fine

on simple planar parting lines. But simply extending complex non-planar parting

lines may produce shutoff surface that intersects with the part or with itself. It

also may not follow the standard techniques used by the mold designers to reduce

machining cost and flash. Therefore, we need to develop a new approach to create

shutoff surface.

12

1.4 Dissertation Outline

The ensuing chapters of this dissertation discuss how the above-described objec-

tives and challenges are addressed by this dissertation.

Chapter 2 provides the technical background required to understand this dis-

sertation. Chapter 3 formally defines the problem being investigated in this dis-

sertation. Chapter 4 presents a survey of related work. Chapter 5 presents a

framework for representing reusable molding plans for articulated joints. This

chapter also presents molding plans for three basic joints – prismatic, revolute,

and spherical. Chapter 6 is the main chapter of this dissertation. It describes

an algorithm for generating multi-stage molding plan for articulated assemblies.

Chapter 7 describes an algorithm to robustly and efficiently find the mold-piece

regions for a given object. Chapter 8 presents an algorithm to create a provably

correct and optimal shutoff surface for a given parting line. Chapter 9 summa-

rizes the conclusions reached from this research and provides suggestions for future

extensions.

13

Chapter 2

BACKGROUND

This chapter provides the background required to understand the material pre-

sented in this dissertation. Section 2.1 describes a brief background on the injec-

tion molding process. It also describes the basic components of a mold system.

This dissertation presents an algorithm for generating molding plan for articulated

assemblies created using multi-stage molding. Section 2.2 describes the multi-sage

molding technique. Section 2.3 provides a brief review of a technique used for

rendering shadows using computer graphics hardware. The algorithm for find-

ing mold-piece regions described in Chapter 7 is based on this hardware shadow

mapping technique. Some basic geometric modeling concepts are described in

Section 2.4.

Generating molding plan is similar to other manufacturing operation-planning

problems such as machining and sheet-metal bending. Many operation-planning

problems are formulated as combinatorial optimization problems. They are gen-

erally solved using state-space search. Section 2.5 briefly reviews the state-space

search algorithms.

14

2.1 Injection Molding

Injection molding is one of the most common plastic manufacturing process used

today. Products produced with this process permeate virtually every aspect of our

lives. From the coffee maker and toothbrush we use in the morning, to the car

we drive to work, to the computer and telephone we use during the day, so many

products we use are injection molded. Injection molding is used in almost every

market and represents the mainstay of the designer’s toolbox of processes. One of

the main reasons for its dominance is its versatility. The forms that designers can

create are almost unlimited. The wide range of plastic materials we can choose to

mold is so broad, it can address most of our needs. Typical examples of products

made by injection molding are appliance casings (for example, computer monitors,

CPUs), aircraft and automotive parts, and utensils to name a few.

Injection molding is a near-net-shape manufacturing process that can produce

parts with no or very few secondary manufacturing processes. The parts produced

have good surface quality and accuracy. It is particularly well suited to high

volume production using economies of scale and short cycle times to drive costs

down. While much of the consumer industry involves the design and fabrication

of injection-molded thermoplastic parts, metals and ceramic parts can also be

produced.

2.1.1 Molding Process

In the injection molding process, we take raw plastic material in the form of small

pellets (also referred to as resin), heat it gently to the point where it will flow under

moderate pressure, and inject it (push it with a plunger) into a mold. The mold

is usually made up of two separable halves. After allowing enough time for the

15

Figure 2.1: A single screw injection molding machine for thermoplastics

plastic to cool off and solidify, the mold opens (separates), and the molded part

is removed. The process utilizes specialized equipment called injection-molding

machines. These machines can be quite large, usually much larger than one would

expect relative to the sizes of the parts they make. Figure 2.1 shows a typical

injection-molding machine for thermoplastics.

Injection System is responsible for melting and injecting molding material. It

confines and transports the material as it progresses through the feeding, com-

pressing, degassing, melting and injection stages. It contains a reciprocating screw,

which while turning, compresses, melts and feeds the material being molded.

Mold System is an important and costly part of the injection-molding machine.

It contains the cavity into which molten material is injected. It also contains

cooling channels that regulate temperature on the mold surface. Section 2.1.2

describes the mold system in detail.

Clamping System supports and carries the constituent parts of the mold system.

It is responsible for opening and closing of mold. When the molten material is being

16

injected, it provides sufficient force to prevent the mold from opening. The size

range of machines is usually stated in tons, which refers to the clamping pressure

that they can apply to the mold halves. Typical machine capacities range from 40

to 2000 tons, suitable for plastic parts up to 80oz.

Hydraulic System provides power to the mold system (for energizing ejector

pins and slides), the clamping system (for opening and closing the mold), and the

injection system (for turning and driving reciprocating screw).

Control System is like the CPU of the whole system. It monitors and controls

the processing parameters (temperature, pressure, injection speed, screw speed and

position, and hydraulic position) and hence provides consistency and repeatability

in machine operation.

2.1.2 Mold System

An injection mold consists of two main pieces – core and cavity. The core and cavity

form the impression into which molten material is injected. The cavity determines

the external shape of a molded part and the core forms the internal shape. Parting

Direction is the direction along which the core and cavity are separated. Undercuts

are “sideways” recesses or projections on the molded part that prevent the removal

of the molded part from the mold along a parting direction. The undercuts are

formed using side actions. When the mold opens, the side actions are moved out

of the way, thereby allowing separation of the core and cavity. The motion of the

side action usually consists of one or two translations away form the undercut.

The core side of the mold consists of an Ejection System, which is responsible for

ejecting the molded part after the mold opens. The most common type of ejection

system consists of ejector pins. The stroke on these ejector pins clear the molded

17

Core

Part

Cavity

Parting
Direction

Figure 2.2: A basic mold for an example part

part out of the mold system. Figure 2.2 shows a basic mold for an example part.

Figure 2.3 shows how the molded part is ejected from the mold.

The mold system consists of some additional features. Sprue provides the

entry point of molten material into the mold. Sprue bush provides the seating

for the injection-cylinder nozzle and conducts the hot molding material from the

injection cylinder to the mold cavity. Leader Pins assist in assembly and fitting

of the mold pieces. They maintain alignment during mold setup and when the

mold is running. The mold system may also consist of Cooling Channels, that are

18

Figure 2.3: Mold System operation; (a) molten material has been injected; (b)

after the material solidifies, the side actions retract; (c) the core separates taking

the part along; (d) the molded part is pushed out of the core

passageways located within the body of a mold, through which a cooling medium

(typically water, steam, or oil) circulates. It helps to regulate temperature on the

mold surface.

19

2.1.3 Rapid Tooling

As a product develops, it requires tooling with different production capacity at each

development stage. Pre-production prototyping is a common industrial practice.

The purpose of prototyping is to help the designers visualize the object that is

being designed and hence eliminate any design errors. With a prototype it can be

actually seen in real life whether or not the two surfaces of a widget interfere, or

if the screw threads on a fastener are of the wrong size. The majority of product

development cost occurs in the concept and design validation phases. During those

times, much time is spent designing and re-designing the product. Prototypes are

made and evaluated. Then changes are made and the whole process starts over.

Since this is an iterative process, prototyping needs to be quick and economical.

Rapid tooling is a molding technique used for producing limited number of

prototypes. It is sometimes also used for low-volume pilot production and market

testing. In the prototype production phase, it is required that molds be manufac-

tured quickly and economically. Therefore, layered fabrication techniques (SLA,

SLS, 3D printing) or high-speed milling of tooling blocks are used to manufacture

epoxy or aluminum molds. The molds also do not contain expensive components

such as actuated side actions and cooling channels.

2.1.4 Production Tooling

Production tooling is capable of high volume production. It is employed only after

the product design is finalized and the product has stabilized in the market. Here

the focus is on the durability of the mold and reducing the molding cycle time.

Hence the production tooling are usually made by milling alloy steel blocks and

measures are taken to squeeze every second out of the cycle time. The side actions

20

are fully automated and there are extensive cooling channels to quickly solidify the

injected material.

2.2 Multi-Stage Molding

Traditionally injection molding involves a single material and consists of only one

molding stage. Multi-stage molding refers to a molding process in which multiple

materials are added in a sequence to produce multi-material objects. For each

component in the desired product, usually a separate molding stage is required. A

molding stage entails injecting a single material in a specific mold configuration.

Successive stages require reconfiguring the mold as well as the previously injected

components.

Figure 2.4a shows an example of a three-material articulated gimbal that can be

manufactured using multi-stage molding technique. The gimbal consists of three

rings mounted on axes at right angles. It can be molded in three molding stages.

The outer ring is molded in the first mold stage as shown in Figure 2.4b. Two

inserts are used as placeholders for the middle ring. In the second mold stage, the

middle ring is molded and the same inserts are used as placeholders for the inner

ring as shown in Figure 2.4c. The inner ring is molded in the final mold stage after

removing the inserts as shown in Figure 2.4d. The figure only shows the cavity

mold piece for clarity. The core mold piece is similar to the cavity piece.

An overview of different multi-material molding techniques can be found in

[Gouk06]. Because multi-stage molding techniques can be significantly different

than traditional single-material molding, some new terminology has been adopted

to better explain these techniques and processes. Because most molding involves

injecting or shooting the polymer into the mold cavity, the word ‘shot’ is sometimes

21

(a) Gimbal (b) Molding stage 1

(c) Molding stage 2 (d) Molding stage 3

Figure 2.4: Multi-stage molding.

used instead of ‘stage’. Two more terms that arise frequently in the context of

multi-stage molding are ‘substrate’ and ‘overmold’. The substrate is the material

that is injected in the first stage, usually forming the base or majority of the final

component. The overmold is the subsequent shot which tends to form at least

partially over top of the substrate.

22

2.3 Hardware Shadow Mapping

Hardware shadow mapping [Will78] is a hardware-accelerated image-based shad-

owing technique. It utilizes existing hardware functionality, texturing and depth

buffering, to efficiently calculate complex high-quality shadows for a lighted 3D

scene. A comprehensive explanation on hardware shadow mapping can be found

in [Ever01]. We will briefly describe the technique here for the sake of completeness.

Consider a scene consisting of a couple of objects and a single point light. When

rendering the scene, for each point (rasterized fragment), we need to find whether

it is lit, or in shadow. Clearly, it is lit only if the straight path from the light to the

point is not occluded by any other object present in the scene. This is the basic

idea behind shadow mapping. The lit regions in the scene are exactly those that

are visible to a viewer placed at the light source. Other regions are in shadow. The

lit and shadowed regions are calculated by performing a visibility test for each light

source at each rasterized fragment using the depth buffer technique. Following are

the typical steps to do shadow mapping using graphics hardware:

1. Render the scene from the light’s point of view and save the depth buffer

values into a shadow map (depth texture)

2. Render the scene from the camera’s point of view. To determine whether a

point is shadowed or not, compare the distance B between the point and the

light with the corresponding depth A stored in the shadow map.

• if A < B (Figure 2.5a), there must have been an object in front of this

point when looking from the light’s position, so this point is in shadow.

• if A = B (Figure 2.5b), there was nothing occluding this point when

drawing from the light source, so this point is lit.

23

(a) The A < B shadowed fragment case

(b) The A = B unshadowed fragment case

Figure 2.5: Depth comparison scheme used in shadow mapping [Ever01]

2.3.1 Self Shadowing

Shadow mapping is prone to self-shadowing artifact in which the equality test for

unshadowed fragments yields incorrect results. This happens due to following two

reasons:

24

1. Lack of precision. The depth values in the shadow map are stored as finite-

precision floating point numbers. Using an equality to test for an unshadowed

point may produce incorrect results due to the lack of precision. This is the

same reason as that behind comparing two finite-precision floating point

numbers.

2. Lack of resolution and variable sampling location. Due to fixed resolution of

the shadow map and depth buffer, when the geometry is rasterized from the

eye’s point of view, it will be sampled in different locations than when it was

rasterized from the light’s point of view. It is also unlikely that a fragment

will be exactly mapped onto a texel (texture element) in the shadow map.

In that case, any interpolation of depths may produce incorrect results.

The most widely used solution to the self-shadowing artifact is called polygon

offset, where a small bias is added to the depths stored in the shadow map. Due

to variable sampling location, the amount of necessary bias depends on the slope

of the rasterized polygon in light space. The reason for variable bias is explained

in [Ever01].

Another approach to preventing self-shadowing artifact called second-depth

shadow mapping is presented by Wang and Molner [Wang94] for the special case

of a scene consisting of solid objects only. Their method eliminates the need for a

bias by rendering only the back facets into the shadow map. This method is based

on the observation that in case of solid objects there is always a back facet on

top of a shadowed front facet. This generally works better than the polygon offset

method because there is adequate separation between the front and back facets,

but of course is limited to solid objects.

25

2.3.2 Percentage Closer Filtering (PCF)

Shadow mapping algorithm suffers from aliasing problems like any other sampling

method. Usually, texture maps are accessed by filtering the texture values over

some region of the texture map. Accessing depth values from shadow maps in

similar manner is inappropriate. The basic problem is that filtering depth values

bears no relation to the geometry of the scene and leads to undersampling artifacts.

This problem is illustrated in Figure 2.6b. In the figure, we need to determine if a

pixel at depth 0.55 is shadowed. The pixel is mapped to four pixels in the shadow

map that are at depths 0.25 and 0.63. Filtering (averaging) these depth values we

get 0.44. Hence, the pixel is marked as shadowed since it’s depth (0.55) is greater

than the filtered depth (0.44). This is quite wrong because there is nothing at

0.44, but at 0.25 and 0.63.

Reeves [Reev87] proposed a filtering technique called Percentage Closer Filter-

ing (PCF) to produce anti-aliased shadows. PCF works by reversing the order of

filtering and comparing. The given z value of the surface is first compared with

the shadow map depths over a region. This comparison converts the shadow map

under the region into a binary image, which is then filtered to give the proportion

of the region in shadow. The resulting shadows have soft, antialiased edges. PCF

technique is illustrated in Figure 2.6c. Here the pixel is reasonably marked as 50%

shadowed.

2.4 Geometric Modeling Basics

A geometric model is a mathematical description of the shape of a physical object.

Geometric modeling is the study of construction or processing of geometric models.

26

Figure 2.6: These figures illustrate percentage closer filtering technique; (a) De-

termining whether the pixel is in shadow; (b) Ordinary texture map filtering that

does not work for shadow maps; (c) Percentage closer filtering

27

Geometric models are extensively used in computer-aided design and manufactur-

ing and computer graphics.

There are mainly three types of models used to describe a geometry – wire-

frame, surface, solid. Wireframe models represent a shape by its characteristic

lines and end points. Wireframe modeling systems were popular when geometric

modeling was first introduced. In surface models, the mathematical description

corresponding to a geometry includes surface information in addition to the in-

formation about the characteristic lines and their end points contained in the

wireframe description. The mathematical description may include the information

about surface connectivity (i.e., information on how surfaces are joined and which

surfaces are adjacent to each other at which curves, and so on). Surface modeling

systems are popular systems in sheet metal industry. Currently, Solid models are

most widely used representation because it provides a richer set of information

than wireframe and surface models.

2.4.1 Solid Models

Solid models are used to model a shape having a closed volume, called a solid.

Unlike wireframe modeling systems or surface modeling systems, a simple set of

surfaces or a simple set of characteristic lines is not allowed if it cannot form

a closed volume. In addition to the information provided in a surface modeling

system, the mathematical description of a shape created by a solid modeling system

contains information that determines whether any location is inside, outside, or on

the closed volume. Therefore any information related to the volume of the solid

can be derived, and thus application programs can be written to do operations at

the level of volume instead of at the level of surface. For example, an application

28

program can be written to generate automatically the finite elements of a solid

type from a solid model. Furthermore, an NC tool path generation program can

be written to generate automatically all the tool paths to machine the volume to

be removed from the workpiece. It can do so without generating the tool paths

surface by surface that would require user input for each surface. These capabilities

are realized when the model is created as a complete solid.

Developers of solid modeling systems try to provide simple and natural mod-

eling functions so that users can manipulate the shape of a solid as they do for a

physical model without having to consider the details of the mathematical descrip-

tion. Modeling functions such as primitive creation, Boolean operations, lifting,

sweeping, swinging, and rounding typically require only a simple input from the

user. They then take care of all the bookkeeping tasks needed to update the math-

ematical description. The modeling functions supported by most solid modeling

systems can generally be classified into many groups. The first group includes

the modeling functions that are used to create a simple shape by retrieving a

solid, which is one of the primitive solids stored in the program in advance and

by adjusting its size. Hence they are called primitive creation functions. The next

group includes functions of adding to or subtracting from a solid. These func-

tions are called Boolean operations. Another way to create a solid is by moving

a surface. Thus the sweeping and skinning functions belong to this group. The

sweeping function creates a solid by translating or revolving a predefined planar

closed domain. The modeling function using the revolution of a planar domain

is also called sweeping. Another possible approach is called parametric modeling;

because various solids are generated by changing the parameters. The parameters

may be some constants involved in the geometric constraints and/or dimension

29

values. The skinning function generates a solid by creating the skin surface to en-

close a volume when the cross sections of the desired solid are given. The rounding

and blending functions create the solid by performing local modifications to the

solid.

2.4.2 Assembly Models

Geometric modeling systems, whether they are wireframe, surface, or solid mod-

eling systems, have been used mainly to design or model an individual part rather

than for the assembly of parts. Until recently, engineers designed parts individu-

ally and then assembled them later in the development cycle to determine whether

they fit properly and the product functioned as intended. Such an approach was

fine for small design teams working on simple products. However. this approach is

unworkable when the design is performed by several teams spread around the world

and the assembly to be designed is complex. A designer may change a component

configuration and fail to let others know or forget to make corresponding changes

in other affected components. Considerable time is spent manually tracking part

designs, part-to-part interfaces, engineering changes, product specifications, test

results, and other essential information to be sure that individual part designs fit

with one another. In the early 1990s, the growing need for collaborative engi-

neering in industries was a primary driving force for the development of assembly

design capabilities. These capabilities accurately keep track of parts and their

relationships to one another so that designers can create part geometry in the con-

text of other parts. Probably the greatest use of assembly design capabilities is

in the automotive and aerospace industries. There the design of highly complex

products must be coordinated not only for engineers throughout the world but also

30

with second- and third-tier suppliers.

Assembly modelers provide a logical structure for grouping and organizing parts

into assemblies and subassemblies. The structure enables a designer to identify

individual parts, keep track of associated part data, and maintain relationships

among parts and subassemblies. Relationship data maintained by an assembly

modeling system include a wide range of information about a part and its associa-

tion with others in the assembly. Mating conditions between parts in the assembly

are among the most important pieces of relationship data. Mating conditions iden-

tify how the part is connected to others (e.g., two planar faces of a pair of parts are

in contact or two cylindrical faces are coaxial). Instancing information identifies

other places in the assembly where the same part is used; instancing is a useful

concept, especially for standard parts, such as fasteners, because the part data

can be stored only once even when the part is used many places in the assem-

bly. Data on fit, position, and orientation specify exactly how parts are joined in

the assembly and often include allowable tolerances. The position and orientation

data of parts are derived from the mating conditions in many systems. Assem-

bly modeling systems also provide the capability to create parametric constraint

relationships between parts and to measure size and dimension information from

one part and apply it to another, thus freeing the user from having to reenter ge-

ometric data where parts interface. Inter-part constraint relationships are helpful

when many dimensions in an assembly depend on some key dimensions. Once such

relationships have been input, the designer needs change only the key dimensions;

the system takes care of other related dimensions automatically. This powerful

capability also provides a mechanism for propagating a complete change (e.g., if

the diameter of a shaft changes, the size of a hole that fits into it is updated as

31

well). Thus designers’ time is saved because the entire assembly doesn’t have to

be painstakingly modified whenever part designs are modified.

2.4.3 Geometric Transformations

Geometric transformations are quite often used during construction of geometric

objects and for performing gometric reasoning. A geometric object can be con-

sidered as a set of points in E2 or E3. A geometric object is constructed and

manipulated in a coordinate system. For any point p in space, a transformation

maps it into a new point q. Theoretically, we can transform a geometric object by

transforming each of its points.

Vector Representation of a Point

A point in E3 can be represented by its position vector as follows:

~p = xî+ yĵ + zk̂ =

x

y

z

where î, ĵ, and k̂ represent unit vectors along three axis of current coordination

respectively. x, y, z are the coordinates of point p.

Linear Transformation

A transformation maps a point in space into another point. A possible mapping

can be accomplished using the following formula:

x′

y′

z′

=

a11 a12 a13

a21 a22 a23

a31 a32 a33

x

y

z

32

x′ = a11x+ a12y + a13z

y′ = a21x+ a22y + a23z

z′ = a31x+ a32y + a33z

Above equations are linear in nature. Therefore, we call this kind of transformation

linear transformation.

Most transformations used in Geometric Reasoning are linear in nature. Rigid

Body Transformation (e.g., Rotation and Translation) is a type of linear transfor-

mation. We often describe these transformations as rigid-body motions because

they resemble physical movements. Rigid body transformations preserve the met-

ric properties (i.e., the distance, angle, are, volume, etc. of the geometric objects

are invariant).

Translation

A translation is a mapping given by Cartesian equations of the following forms:

x′ = x+ tx

y′ = y + ty

z′ = z + tz

In matrix form, the above equations are represented as:

x′

y′

z′

=

x

y

z

+

tx

ty

tz

(2.1)

33

The above form however is difficult to mix with other types of transformations

such as rotation. Therefore, the computer graphics and computational geome-

try community uses homogeneous representation. The homogeneous coordinates

of a point in n-dimensional space consist of n + 1 numbers. The homogeneous

coordinates of a point p in E3 space is written as:

p =

x

y

z

1

In all three-dimensional transformations, we will use a 4 × 4 matrix T . This

is called the homogeneous transformation matrix. For this translation, T is as

following:

T =

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

When using homogeneous representation, all types of linear transformations

can be calculated as multiplication of matrices. So Equation 2.1 can be rewritten

as:

x′

y′

z′

1

=

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

·

x

y

z

1

(2.2)

34

Rotation

The simplest rotation in three dimensions are rotations about one or more of the

three principle coordinate axes. We denote the angle of rotation as ψ, θ, and φ

about the x-axis, y-axis, and z-axis, respectively. The rotation matrices for the

three angles are as following:

Rφ =

cosφ − sinφ 0 0

sinφ cosφ 0 0

0 0 1 0

0 0 0 1

(2.3)

Rθ =

cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

(2.4)

Rψ =

1 0 0 0

0 cosψ − sinψ 0

0 sinψ cosψ 0

0 0 0 1

(2.5)

We may specify the rotation of a point or other geometric object in space as

the product of successive rotations about each of the three principle axes. It is

important to establish some kind of convention describing how we might do this;

here is one way (remember, order is important):

1. Rotation about z-axis (Rφ)

2. Rotation about y-axis (Rθ)

35

3. Rotation about x-axis (Rψ)

The above convention will produce the transformed point p in the following

manner:

p′ = RψRθRφp

Let R = RψRθRφ, the rotational component of R is called Rψθφ.

R =

r11 r12 r13 | 0

r21 r22 r23 | 0

r31 r32 r33 | 0

− − − | −

0 0 0 | 1

(2.6)

2.4.4 Faceting

Faceting is an operation that generates approximate polygonal representations

called facets for the faces of a solid body. While facets can be any polygon, this

dissertation deals with triangular facets only. In general, faceted representations

are used in rendering, in clearance analysis, and in operations where an approxi-

mation is acceptable in order to simplify calculations.

Faceting is performed in four phases: grid spacing determination, edge dis-

cretization, face subdivision, and triangulation. Each edge in the object is first

subdivided by placing a list of points on the edge. Each face then is subdivided

by laying a grid on the face in parameter space. The nodes created by subdividing

the edges and faces are triangulated to produce the facets. Figure 2.7(b) shows

the faceted version of the object shown in Figure 2.7(a).

36

Figure 2.7: Faceting; (a) Original part; (b) Faceted part

By setting maximum surface tolerance, the inaccuracy introduced by faceting

can be controlled. The surface tolerance is the distance between the facet and

the part of the surface it is representing. Hence by specifying a maximum surface

tolerance ǫ, we are ensuring that nowhere the distance between a facet and the

true surface is greater than ǫ. The proper value of maximum surface tolerance

is dependent on the model size. It is calculated by using the dimensions of the

bounding box of the object.

The faceted version of a solid body is a polyhedron. Many schemes are used

to represent a polyhedron. We will use the most common representation called

the Boundary Representation (BRep). It stores the boundary information of the

polyhedron, i.e., topological entities (vertices, edges, and facets) together with the

information on how they are connected. The facets are triangles and the edges are

line segments with vertices at the endpoints. A polyhedron is considered a valid

manifold if the following conditions are satisfied:

1. Each facet must have exactly 3 edges, otherwise it will not be a triangle.

37

2. Each edge must have exactly two vertices, otherwise it will not be a line

segment.

3. The edges associated with a facet must form a loop or closed circuit, to

ensure that they enclose a 2-D area. This condition is satisfied if and only if

each vertex in a facet belongs exactly to two of the facet’s edges.

4. The facets must form one or more closed surfaces or shells, to ensure that

they enclose a 3-D volume. This condition is satisfied if and only if each edge

belongs to exactly two facets.

5. Each vertex, represented by a 3-tuple of coordinates must correspond to a

distinct point in 3-space.

6. Edges must either be disjoint or intersect at a common vertex, otherwise

there would be missing vertices in the representation.

7. Similarly, facets must either be disjoint or intersect at a common edge or

vertex.

These conditions are easy to establish intuitively, and can be derived mathemat-

ically. Conditions 1-4 are combinatorial. They are easy to check algorithmically

by counting nodes or links in the boundary graph. In contrast, conditions 5-7 are

metric, i.e., they involve coordinates of vertices and equations of lines and planes.

They are computationally expensive to check, because they require intersection

tests. We conclude that validity checking for BReps is not computationally attrac-

tive, and should be avoided. Most geometric modeling systems attempt to embed

the required validity conditions in the algorithms used to construct the represen-

tations, instead of testing representational validity after the BReps are built. This

38

dissertation only handles manifold polyhedrons.

2.4.5 Convex Hull

Convex hull is one of the most basic concepts in computational geometry. Convex

hull serves as a first preprocessing step to many geometric algorithms. Convex

hulls are used extensively in the area of collision detection and shape analysis.

The hull quickly captures a rough idea of the shape or extent of a data set.

Intuitively, the convex hull of a set of points in a plane is the shape taken by a

rubber band stretched around nails punched into the plane at each point. The

boundary of the convex hull of points in three dimensions is the shape taken by a

plastic wrap stretched tightly around the points. Convex hull of a polyhedron P ,

denoted as CH(P) is defined as the smallest convex polyhedron that has within

it or on its boundary all the defining vertices of the original geometry. Figure 2.8

shows a 3D polyhedral part and its convex hull. The convex hull of a set of points

S in n dimensions is the intersection of all convex sets containing S. For N points

P = {p1, . . . , pN}, the convex hull CH(P) is then given by the expression:

CH(P) = {
N

∑

i=1

λipi : λi ≥ 0∀i,
N

∑

i=1

λi = 1}

The above expression also represents the intersection of all halfspaces that con-

tain S. A halfspace is the set of points on or to one side of a plane (line in 2D).

Note that the convex hull is a ‘closed’ set. Computing the convex hull for n points

takes O(n log n) time.

39

Figure 2.8: 3D Convex Hull; (a) Polyhedral Object; (b) Convex Hull of the Object

2.5 State-Space Search

Many engineering and design problems require finding a feasible or an optimal

solution by searching through the solution space. One possible method to solve

these problems is to enumerate all the candidate solutions and examine each of

them. A feasible or optimal solution is found when all of the candidate solutions

have been explored [Sahn98]. In many search problems, during the search process,

solutions are generated incrementally by adding additional steps to previously

generated partial solutions. In such cases when a complete solution has been

found which is as good as all the partial solutions examined so far, then the search

can be terminated. When solution spaces are very large, quite often heuristics

are used to avoid enumeration of those solutions that are not expected to be the

answer to the problem.

In order for algorithms to systematically explore the candidate solutions, the

solution space needs to be well organized. State-space graphs are the data struc-

tures that are very commonly used for the organization purposes. If each candidate

40

solution consists of an alternative combination and sequence of all the known pos-

sible steps, then a most efficient structure for keeping track of the effects of these

alternative combinations and sequences of steps is a directed graph, called a state-

space graph. Each node in the graph represents a distinguishable state of the world

model of the problem. Each edge in the graph represents a step that transforms

the world model of the problem from one state to another. One node in the graph

representing the initial state is called the start node. Some other node in the

graph representing an externally specified goal state is called a goal node [Nils98].

A feasible solution of the problem is a path from the start node to a goal node. If

each edge in the graph is assigned some cost values, then an optimal solution of

the problem is a path from the start node to some goal node while the total cost of

the path is minimal. State-space search algorithms refer to algorithms that solve

problems by systematically exploring the state-space graphs of the problems and

find feasible or optimal paths in the graph.

There are two broad classes of state-space search processes – uninformed search

and heuristic search. Uninformed search is the type of search in which, insofar as

finding a path to a goal node is concerned, there are no problem-specific reasons to

prefer one part of the state-space graph to another. On the other hand, heuristic

search is the type of search in which there is problem-specific information to help

focus the search [Nils98].

Breadth-first search and depth-first search are the two fundamental types of

algorithms used for uninformed search [Nils98]. Breadth-first search examines all

the direct successors of the start node first, then again the direct successors of these

examined successors, and so on. The action of finding the successors of a node is

called expanding the node. Once the procedure finds the node to be expanded

41

next is a goal node for the first time, it guarantees to have found the path from the

start node to this goal node as a feasible solution that includes the least number of

steps. The procedure terminates if the problem only requires a feasible solution,

or continues until a feasible solution has been found and proved to be an optimal

solution to the problem. A disadvantage of breadth-first search, however, is that it

requires the generation and storage of a tree whose size is exponential in the depth

of the node at which the procedure terminates.

Depth-first search generates the successors of the start node just one at a time.

As soon as a successor is generated, it is examined and one of its successors is

generated, and so on. But no successor is generated whose depth is greater than

a depth bound. The depth bound is a presumed bound that has the following

property: not all goal nodes lie beyond this bound in terms of the distances from

the start node. Using depth bound, searching algorithms ignore those parts of the

graph that do not contain a sufficiently close goal node. A trace is left at each

node to indicate that other successors of it can be generated and examined later

through backtracking if needed. Only the path currently being explored, as well

as the traces at nodes that are not yet fully expanded, is needed to be stored for

depth-first search. Since the length of a path is no greater than the depth bound,

depth-first search only requires memory storage that is linear in the depth bound.

A disadvantage of depth-first search, however, is that when a goal node is found,

it does not guarantee to have found a solution that includes the least number of

steps. Depth-first search suffers from another problem. If a shallow goal is the

only goal node and a successor of a node expanded late in the process, then the

depth-first search may have to explore a large part of the search space to find this

goal node.

42

Heuristic search is also called best-first search. Heuristic search, unlike unin-

formed search, makes use of problem-specified information for guiding the search

procedure. It proceeds preferentially through nodes that problem-specific heuris-

tic indicates might be on the best path to a goal. Heuristic search is especially

useful in solving real engineering problems. The basic idea of heuristic search is

the following [Nils98]:

1. A heuristic evaluation function is used to help decide which node is the best

one to expand next. This evaluation function is based on information specific

to the problem domain.

2. Always expand next the node that has the minimum value from the evalua-

tion function.

3. Terminate when the node to be expanded next is a goal node or when an

already examined goal node has lead to an optimal solution.

Given a node n in the state-space graph, the heuristic evaluation function f(n)

is defined in the following manner:

f(n) = g(n) + h(n) (2.7)

where,

• h(n) is some heuristic estimate of the cost of the minimal cost path between

node n and a goal node (over all possible goal nodes and over all possible

paths from n to them), and

• g(n) is the cost of the lowest-cost path found so far from the start node to

node n.

43

In implementation, all successors can be stored in a priority queue [Sahn98] in the

non-decreasing order of evaluation function values, and each time the first node in

the queue is to be expanded next.

44

Chapter 3

PROBLEM FORMULATION

This chapter defines the problem being investigated in this dissertation. The first

two sections define the concepts required to describe the problem. Section 3.1

describes a mathematical model for representing an articulated assembly, while

Section 3.2 defines the basic mold design terminology. Section 3.3 and Section 3.4

describe the problem and associated constraints. Section 3.5 finally presents the

problem statement and Section 3.6 presents an overview of the technical approach

that has been adopted to solve the problem.

3.1 A Model for Articulated Assemblies

In order to develop molding plans for articulated assemblies, we first need to de-

velop a mathematical model to describe them. We are specifically interested in

describing the structure and configuration of articulated assemblies. An articu-

lated assembly can be informally defined as an object with movable parts, or a set

of rigid bodies connected together so as to allow motion between them.

We first define a model for rigid-body articulated joints in Section 3.1.1. We also

describe the motion equations for three basic types of joints – prismatic, revolute,

45

and spherical. Section 3.1.2 defines a model for describing the configuration space

of rigid-body articulated assemblies. We will use these mathematical models for

describing the molding plans for articulated joints and assemblies.

3.1.1 Articulated Joints

An articulated joint can be defined as a connection between two rigid bodies hav-

ing relative motion. Each articulated joint allows (1) translational motion, (2)

rotational motion, or (3) a combination of translational and rotational motion.

An articulated joint represents one or more mechanical degrees of freedom (DoF)

between the two bodies it connects.

One of the connected bodies by convention plays the role of base and the other

body plays the role of follower. The base is regarded as fixed, while the follower

moves with respect to the base. For ease of computing the kinematic equations

for the connected bodies, the motion of the follower is described with respect to a

coordinate frame attached to the base. The position and orientation of the follower

is defined in terms of joint variables. A joint variable represents a DoF of the joint.

So the number of joint variables for a joint is equal to the number of DoF of that

joint. A joint variable j is defined as:

j = (t̂, θ) (3.1)

where t̂ is the axis and θ is the coordinate of relative motion between the connected

bodies. For translational motion, the joint variable is a linear coordinate along a

direction. For rotational motion, the joint variable is an angular coordinate about

an axis. For ease of calculation, coordinate frame attached to the base is aligned

with the joint axes.

46

A primitive joint expresses a single DoF or coordinate of motion. There are

two types of primitive joints – prismatic joint for translation and revolute joint

for rotation. Other more complicated composite joints can be modeled in terms

of these two primitive joints. The spherical joint, which can be modeled as a

combination of three revolute joints is sometimes also treated as a primitive joint.

Prismatic Joint.

A prismatic joint (Figure 3.1) allows one translational degree of freedom along a

direction. Prismatic joints are seen in a wide variety of assembled objects. Appli-

cations range from the well-known slider-crank mechanisms, used in the cylinder

of an internal combustion engine, to more recent mechanisms found in CD and

DVD drives.

The motion of a point p on the follower with respect to the base can be described

in terms of joint variables as follows. Suppose the point p has an initial position

~p0 = (x0, y0, z0). The joint axis, or the direction of motion of the follower is t̂. For

a given joint parameter, or amount of translation θ, the new position of p is given

by:

~p′ = ~p0 + θ · t̂ (3.2)

Revolute Joint.

A revolute joint (Figure 3.2) allows one rotational degree of freedom about a spec-

ified axis. Pin connections are an excellent example of a simple revolute joint.

Revolute joints are extensively used in making robots and bar linkages.

The motion of a point p on the follower with respect to the base can be described

47

Base

Follower

t

Figure 3.1: Prismatic joint [Simm06]

Base

Follower

t

Figure 3.2: Revolute joint [Simm06]

in terms of the joint variable j = (t̂, θ) as follows. Suppose the point p has an initial

position ~p0 = (x0, y0, z0). The new rotated position of p is given by [Weis99]:

~p′ = ~p0 cos θ + t̂(t̂ · ~p0)(1 − cos θ) + (~p0 × t̂) sin θ (3.3)

48

Follower

Base

t1
t2

t3

Figure 3.3: Spherical joint [Simm06]

Spherical Joint.

A spherical joint (Figure 3.3) allows three rotational degrees of freedom at a single

pivot point. A common example of this type of joint is known as the ball and

socket joint. This type of joint is well known for its uses in the human body.

As shown in Figure 3.3, the motion of follower connected by a spherical joint is

described in terms of three joint variables – one joint variable for each degree of

freedom.

The spherical joint can be modeled as a combination of three revolute joints.

Two rotational DoFs specify a directional axis, and the third rotational DoF spec-

ifies rotation about that directional axis [Simm06]. The three rotational axes are

perpendicular to each other. The equation of motion for the spherical joint is a

simple concatenation of three rotational motions.

3.1.2 Articulated Assemblies

An articulated assembly is defined as a structure A which is composed of:

49

• Two or more rigid lumps L = {l1, . . . , ln}, and

• Articulated joint variables J = {j1, . . . , jm} between pair of lumps as defined

in Equation 3.1

Every articulated assembly has an implicitly defined configuration space (CS).

The CS has dimension equal to the total number of degrees of freedom of the

assembly. A point in the CS specifies a particular configuration of the assembly.

We define a configuration of the assembly as:

T = (Θ, T̄) (3.4)

where

• Θ = {θ1, . . . , θm} are the joint coordinates defined in Equation 3.1, and

• T̄ is the homogeneous transformation applied to the whole assembly.

By selecting different Θ and T̄ , we can generate different assembly configurations.

In the initial configuration, all the joint coordinates θ0
i are equal to zero and T̄ 0 is

an identity matrix.

θ0

i = 0,∀i ∈ {1, . . . ,m} (3.5)

T̄ 0 = I =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(3.6)

The configuration scheme is illustrated in Figure 3.4. The shown assembly

consists of two components A and B connected by revolute joints. There are

two revolute joints in the assembly, but the joint axes for both the joints are

collinear. This means that for configuration purposes, they are equivalent and one

50

x

y

z

x

y

z

A

B

Xg

Xa

(a) Initial configuration

x

y

z

x
y

z

A

B

Xg

Xa

(b) A new configuration

Figure 3.4: Assembly configuration scheme.

of them can be neglected. Let the selected joint be j1 = (t̂1, θ1). We will consider

component A as base and component B as follower. Hence, motion of B will be

measured with respect to the coordinate system Xa attached to A. With respect

to Xa, the joint axis for the joint j1 is along the x-axis. The coordinate system Xg

is attached to the ground, i.e., fixed.

Figure 3.4a shows the initial configuration, where T̄ 0 = I and θ0
1 = 0. Fig-

ure 3.4b shows another configuration obtained by rotating the whole assembly

about the z-axis of Xg by 90◦, and rotating B about the x-axis of Xa by 90◦. The

parameters for this configuration are given by:

51

T̄ = [0, 0, 1, 90◦] =

cos 90◦ − sin 90◦ 0 0

sin 90◦ cos 90◦ 0 0

0 0 1 0

0 0 0 1

(3.7)

θ1 = 90◦ (3.8)

We need to calculate the transformation matrix for components A and B to

describe their position and orientation with respect to the fixed coordinate system

Xg. The transformation matrix TA for A is simply equal to T̄ . B is subjected

to two successive rotations. Matrices for such transformations are calculated by

chaining the matrices of all transformations together.

TA = T̄ (3.9)

TB = TA · TB/A (3.10)

TB/A = [1, 0, 0, 90◦] =

1 0 0 0

0 cos 90◦ − sin 90◦ 0

0 sin 90◦ cos 90◦ 0

0 0 0 1

(3.11)

TB/A is the transformation of B with respect to A. This is equivalent to the

transformation of B with respect to the coordinate system Xa attached to A.

As can be seen aligning the coordinate frame with the joint axes simplifies the

calculations.

52

Core

Part

Cavity

Parting
Direction

Figure 3.5: Mold pieces mold for an example part

3.2 Definition of Mold Design Terms

An injection mold consists of two main pieces – core and cavity. The core and

cavity form the impression into which molten material is injected. The cavity

determines the external shape of a molded part and the core forms the internal

shape. Figure 3.5 shows the mold pieces for an example part.

Parting Direction is the direction along which core and cavity are separated

from the molded part. Figure 3.5 shows the parting direction for the mold pieces.

A Mold-Piece Region of a part is a set of part facets that can be formed by

53

a single mold piece. There can be four types of mold-piece regions – core region

(Co), cavity region (Ca), both region (Bo), and undercut region (Uc). Figure 3.6

shows various mold-piece regions for a part. Given a polyhedral object P and a

parting direction ~d, each set of part facets has the following property:

1. Co, which is formed by core, is accessible from +~d, but not −~d.

2. Ca, which is formed by cavity, is accessible from −~d, but not +~d.

3. Bo, which can be formed by either of them, is accessible from both, +~d and

−~d.

4. Uc, which cannot be formed by either of them, is not accessible from either

+~d or −~d. The undercut region is formed by side actions that are usually

separated in a direction perpendicular to the parting direction.

A facet f on a polyhedral object P is accessible in a direction ~d, if for every point

p on f , the ray starting from p to infinity in the direction ~d does not intersect the

interior of P .

Parting Line of a part is a continuous closed curve on the surface of the part

that defines faces to be split into different mold pieces. Hence, a parting line is

actually the boundary of a mold piece region as shown in Figure 3.6.

ShutOff Surface is the contact surface of two mold pieces. Another property of

the shutoff surface is that it meets the part at the parting line. Figure 3.7 shows

the parting line and the parting surface of the part shown in Figure 3.5.

Mold enclosure is an oriented rectangular block enclosing the object.

Gross Mold of an object is a connected solid obtained by subtracting the object

from its mold enclosure. The gross mold is split into core and cavity using shutoff

surface.

54

Parting
Direction

Core
Region

Cavity
Region

Both
Region

Undercut
Region

Parting
Line

Figure 3.6: Mold-Piece Regions

Figure 3.7: Shutoff surface for an example part.

3.3 Generating Molding Plan

Generating molding plan is similar to other manufacturing process planning ac-

tivities that translate design information into process steps and instructions to

efficiently manufacture products. A molding plan consists of a sequence of mold-

ing stages required to mold an articulated assembly.

55

In multi-stage molding, a multi-material articulated assembly A = {a1, . . . , am}

is produced using a sequence of molding stages S = {s1, . . . , sn}. The number of

molding stages m may not be equal to the number of components n. In each

molding stage si, a set of components Ci is added to the already molded sub-

assembly Ai−1 to produce Ai, such that

• Ai = Ai−1 ∪ Ci =
⋃j=i
j=1

Cj

• A0 = ∅

• An = A

A molding stage si is described by:

1. The set of components Ci to be molded in stage si

2. The parting direction di for the stage si

3. The configuration of the subassembly Ai in which molding will take place in

stage si

On closer observation, we find that instead of specifying both, the parting direction

and the subassembly configuration, we can fix the parting direction to be the same

for all molding stages, and the subassembly configuration will adjust accordingly.

Without the loss of generality, we can assume that the parting direction is always

along the z-direction.

So each molding stage si can be represented as:

si = (Ci, Ti) (3.12)

where

56

• Ci is the set of components to be molded in the ith molding stage, and

• Ti represents the configuration of subassembly Ai as defined in Equation 3.4

Figure 3.8 shows the molding plan for a three-material articulated gimbal.

Figure 3.8a shows the gimbal in given initial configuration. Figure 3.8b shows the

first molding stage s1. The component set C1 consists of a single component A.

The molding configuration T1 is obtained by rotating the subassembly C1 about

the x-axis by 90◦. Figure 3.8b and Figure 3.8c show second and third molding

stage respectively. The parameters for each molding stage are given below.

si Ci Ti

s1 {A} T̄ = [1, 0, 0, 90◦]

s2 {B} T̄ = [1, 0, 0, 90◦], θ1 = 90◦

s3 {C} T̄ = [1, 0, 0, 90◦], θ1 = θ2 = 90◦

3.3.1 Feasiblity of a Molding Plan

A molding plan is considered feasible if the sequence of molding stages leads to

the desired articulated assembly. The first requirement for a molding plan to be

feasible is that all the molding stages are valid. A molding stage si is considered

valid if:

1. Each component in Ci has the same material attribute mi. In multi-stage

molding, the various materials are injected sequentially, i.e., only one type

of material is injected in a molding stage.

2. Each component in Ci is connected to a common base component ai. If the

components to be injected are distributed throughout the assembly, designing

a runner system to feed the material becomes very difficult. So it is required

57

x

y

z Xg

(a) Gimbal

x

y

z Xg

A

(b) Molding stage 1

x

y

z Xg

Xa

x

y

z
B

(c) Molding stage 2

x

y

z Xg

Xa

x

y

z

Xb

x y

z

C

(d) Molding stage 3

Figure 3.8: Molding plan example.

that all the components to be molded in a stage are conneceted to a common

base component.

3. For the given configuration Ti, the components of subassemblyAi =
⋃j=i
j=1

Cj =

{a1, . . . , ak} do not

(a) Intersect with each other, i.e., ap ∩
∗ aq = ∅,∀p, q ∈ {1, . . . , k} and p 6= q

(b) Cast shadows on each other, i.e., āp ∩
∗ āq = ∅,∀p, q ∈ {1, . . . , k} and

p 6= q, where āi is projection of ai on the x-y plane (because the parting

direction is along the z-direction). Figure 3.9 shows an invalid configu-

ration where component A casts shadow on component B.

58

A

B

Parting
direction

Shadow

Figure 3.9: Component A casts shadow on component B

The feasibility requirement for a molding plan can be summarized as follows.

A molding plan S = {s1, . . . , sn} is considered feasible for a given multi-material

articulated assembly A = {a1, . . . , am} if:

1. Each molding stage si is valid

2. Each component ai is assigned to exactly one molding stage, i.e., Ci ∩ Cj =

∅,∀i, j ∈ {1, . . . , n} and i 6= j

3. The molding sequence is consistent with one of the known feasible molding

plans.

3.3.2 Cost of a Molding Plan

This section describes a cost equation for a molding plan. This cost equation is

used to compare two molding plans. Hence we only consider the cost that varies

between two molding plans. We neglect the costs that are the same in all possible

molding plans for an assembly. Such constant costs consist of the following:

1. Material cost

59

2. Undercut cost required for joint features

3. Machining cost for mold surface corresponding to the part surface

The main difference between two solution paths is the number of molding stages

and molding configuration for each molding stage. Hence we only consider following

relative costs.

1. Molding cost: This represents the cost of molding a stage. It represents setup

time, cooling time, and ejection time. The setup time is the time taken to

reconfigure the mold before a molding stage. It usually requires a constant

time and hence incurs a constant cost. The cooling time is the time taken to

cool the injected part before it can be ejected out of the mold. The cooling

time is directly proportional to the wall thickness of the part. The ejection

time is the time taken to eject the molded components. If there are undercuts

on the components, side actions are required to form them. Depending on the

production volume, the side actions can be actuated by a cam mechanism or

a human being. Operating a side action complicates ejection and takes time.

Hence the ejection time is directly proportional to the number of undercuts

on the molded components.

Cm = k1 + (k2T
1.4
h) + (k3Nu) (3.13)

where,

• k1 is the constant stage setup cost which consists of mold loading time

and stage transfer time that take 2 hours and 2 minutes respectively.

Using injection molding rate at $50 per hour, we get k1 = $203.30.

• Th is the maximum wall thickness (in mm) of the injected components

and k2 = 1.5.

60

• Nu is the total number of undercuts on the components for which side

actions are required. It takes about 5 seconds to operate a side action,

hence we will consider k3 = 0.7.

2. Defect cost: This represents the cost of producing defective components.

Constructing parting lines as ‘flat’ as possible is one of the best mold design

practices followed in the molding community. The parting line defines the

profile of the contact surface (shutoff surface) between the core and cavity. A

flat parting line results in an accurate and high precision shutoff surface. It

also increases the sealing pressure between the core and cavity, which in turn

reduces the material flash. In other words, a flat parting line reduces the

defect cost. Hence the defect cost can be described in terms of the flatness

of parting line as follows:

Cd = 1/ρ (3.14)

where ρ is a measure of flatness of the parting line. Increasing the flatness

decreases the defect cost.

3. Tooling cost: This represents the cost of manufacturing the mold for a mold-

ing stage. The cost mainly depends on the time taken to machine the shutoff

surface. The cost of machining a surface patch s is given by:

C(s) = k4A(s) + k5N(s) (3.15)

where,

• A(s) is the surface area (in sq. inch) of s. It takes about 2 hours to

machine each sq. inch. using machining rate at $50 per hour, we get k4

= 100.

61

• N(s) is the number of surface normals on s. It takes 10 minutes per

surface normal, which gives k5 = 8.5.

Hence the tooling cost can be written as:

Ct = k4As + k5Ns (3.16)

where As is the area of the shutoff surface and Ns is the number of normals

on the shutoff surface.

From the above, the cost of a molding stage can be written as:

ci = Cm + Cd + Ct (3.17)

However, the molding cost is usually very large compared to the defect cost and

the tooling cost. The tooling cost is a fixed cost while the molding cost is a

running cost. The molding cost becomes more significant as the production volume

increases. This dissertation performs a hierarchical optimization to minimize the

cost of a molding stage. We first optimize the molding cost, then defect cost, and

finally tooling cost. When comparing the cost of two candidate molding stages,

we only compare the molding cost of the two. The defect cost and tooling cost are

used only in case of a tie. Hence for all practical purposes, the cost of a molding

stage can be safely approximated as following:

ci ≈ Cm (3.18)

The total cost of a molding plan S = {s1, . . . , sn} is the sum of the cost of each

molding stage si.

C =
n

∑

1

ci (3.19)

62

3.4 Multi-Stage Mold Design for Articulated As-

semblies

For a given articulated assembly, a multi-stage mold can be designed in two steps.

A molding plan is first generated in the first step. The molding plan consists of a

sequence of molding stages as described in Section 3.3. The second step generates

a mold design for each molding stage. For each molding stage si = (Ci, Ti), it adds

the stage components (Ci) to the already molded subassembly (Ai−1) and orients

the resulting subassembly (Ai) in the specified configuration Ti. The resulting

subassembly (Ai), is considered as a single homogeneous object for which a mold

needs to be designed. Designing a mold for a single homogeneous object has been

widely studied. It mainly consists of four steps – find mold-piece regions, create

parting line, create shutoff surface, and create mold pieces. These mold design

terms are defined in Section 3.2. The third molding stage of gimbal shown in

Figure 3.8d will be used as an example to illustrate the mold design process for a

molding stage.

1. Finding Mold-Piece Regions: A Mold-Piece Region of a part is a set of part

facets that can be formed by a single mold piece. A facet can belong to one

of the four mold-piece regions – core region (Co), cavity region (Ca), both

region (Bo), and undercut region (Uc) depending on its accessibility along the

parting direction. Hence, the problem of finding mold-piece regions reduces

to performing accessibility analysis of P along +~d and −~d and decomposing

the part facets F into four sets Co, Ca, Bo, and Uc. Figure 3.10 shows the

various mold-piece regions of the third molding stage of gimbal. The cavity

region is not visible in the figure, but it is similar to the core region.

63

Core
region

Both
region

Parting
Line

Figure 3.10: Mold-piece regions and parting line for the third molding stage of

gimbal shown in Figure 3.8d.

2. Creating Parting Line: A parting line of a part is a continuous closed curve

on the surface of the part that defines faces to be split into different mold

pieces. Hence, a parting line can be the boundary of a mold piece region.

However, flat parting lines are cheaper to manufacture. So it is required that

the parting line be as flat as possible. Figure 3.10 shows the parting line for

the third molding stage of gimbal shown in Figure 3.8d. It can be seen in the

figure that the parting line does not follow the boundary of the core region.

It lies on a plane that goes through the middle of the both region. Since both

region can be molded by any mold piece, core or cavity, the parting line can

be placed inside both region.

3. Creating Shutoff Surface: A shutoff surface is the contact surface of two mold

pieces. The parting line of a part consists of one outer loop and may have

multiple inner loops. The gimbal example has three inner loops. The shutoff

surface is created by covering the inner loops by a surface, and extending the

outer loop. Figure 3.11 shows the shutoff surface for the third molding stage

64

Shutoff
surface

Figure 3.11: Shutoff surface for the third molding stage of gimbal shown in Fig-

ure 3.8d.

of gimbal.

4. Creating Mold Pieces: A mold enclosure is first created for the given part.

The part is then subtracted from the mold enclosure to form the gross mold.

The shutoff surface is used to split that gross mold into core and cavity mold

pieces. Figure 2.4d shows the cavity mold piece for the third molding stage

of gimbal. The core mold piece, which is similar to the cavity mold piece is

not shown for clarity.

3.5 Problem Statement

Problem GenerateMoldingPlan

Input: Multi-material articulated assembly A as defined in Section 3.1.2.

Output: A molding plan, which is a sequence of molding stages S = {s1, . . . , sn}.

Each mold stage si is represented as a tuple (Ci, Ti) as defined in Equation 3.12.

Output Requirements:

65

• The molding plan is feasible as defined in Section 3.3.1

• The molding plan is optimal, i.e., the cost C of the molding plan as defined

in Section 3.3.2 is minimum.

Input Restrictions:

• Each component is a polyhedron, that is, a solid bounded by a piecewise

linear surface. The boundary of the polyhedron (union of vertices, edges,

and facets on the surface) is a connected 2-manifold. Each facet of the

polyhedron is a triangle.

• The components do not have any internal shell. A hollow part (having in-

ternal shells) is not moldable.

3.6 Overview of Approach

Generating molding plans for articulated assemblies is a challenging planning prob-

lem. This requires determining the sequence and configuration in which the as-

sembly components will be molded. In a typical case, very few feasible plans exist.

Unfortunately, many plan feasibility constraints are order-dependent (e.g., a mold-

ing pose that is feasible in one sequence may not be feasible in another sequence).

Hence, a large number of planning constraints cannot be generated a priori. More-

over, plan parameters must be selected such that the resulting molding plan is

optimal. Many of the subproblems (determining mold-piece regions, parting line,

and shutoff surface) that need to be solved as part of this overall planning prob-

lem require geometric reasoning. This eliminates the use of symbolical reasoning

type of planning techniques. These factors combined together make this problem

a challenging process planning problem.

66

There are two traditional approaches to process planning. The first approach

is called generative process planning. In this approach a plan is synthesized from

the first principles by trying various alternatives in generate-and-test paradigm.

The second approach is called variant process planning. In this approach, a plan

is generated by modifying an existing plan. Both approaches have their relative

strengths and weaknesses. Generative approaches can generate a plan for any

planning problem instance from the domain. However, generative approaches are

computationally more expensive. Moreover, the required domain knowledge must

be explicitly represented and used by the planning system. Variant approaches

can generate plans for only those planning problems for which a close enough plan

already exist. But they are relatively faster. Moreover, a previously generated plan

may contain useful proper knowledge in an implicit form (e.g., process parameter

settings used in the plan might have been selected because they reduce chatter).

This implicit knowledge can be incorporated in the new plan.

Purely generative approaches are unlikely to work in the molding planning

domain. A lot of knowledge that is needed to successfully mold joints does not

exist in an explicit geometric form. For example, in order for a revolute joint of

a certain size to work, one may have to experimentally determine the molding

sequence and a set of molding poses. Currently, effects of molding parameters on

joint clearances and flash generation are not well understood. Joint clearance and

flash affect how well a given joint will work. To successfully create a joint one also

needs to design a runner and a cooling system. Currently, an explicit model for

solving these problems also does not exist. Many of these problems are currently

solved by trial and error. In the absence of a framework for explicitly modeling

the required planning constraints, it will be impossible to guarantee the feasibility

67

of a generated plan without performing experimental validation.

Purely variant approaches are also unlikely to work in the molding planning

problem. Every new assembly is significantly different from the previously gener-

ated assemblies. Hence minor modification of a previous molding plan is unlikely

to work. In most practical cases, major changes in molding sequences and poses

will be needed.

Variant approaches, can however be applied to developing molding plans for in-

dividual joints. The various types of joints used are very few. So it is very common

to find similar joints in new assemblies. When a successful plan is developed and

experimentally validated for molding a joint, a lot of useful knowledge is generated.

When a joint similar to a previously molded joint is found in a new assembly, the

previously generated knowledge can be applied to the new joint. Hence, it appears

that plans that exist for molding individual joints can be reused in new assemblies.

Rather than reusing the entire molding plans from the mold assemblies, we can

synthesize new plans by reusing plans for individual joints.

In this dissertation, we use a hybrid approach that combines elements from

generative and variant techniques. We reuse molding plans for individual joints

to generate plans for new assemblies. This allows us to reuse existing molding

knowledge and yet ensure that we can handle a wide variety of molding planning

problems. For each joint type, we store reusable molding plans. When a new

assembly is encountered we first check if the joints used in the assembly are suffi-

ciently similar to the joints for which plans exist. This is performed by comparing

the type, size, geometry, and material of the joints. If a joint in the assembly

is sufficiently similar to a joint with the known molding plan, then the molding

plan for the joint is used as feasibility constraints in the planning process. This

68

Assembly
Model

Generate
Molding Plan

Molding
Plans

for Joints

Molding Plan

Figure 3.12: Overview of approach

ensures that our method will only generate feasible plans. The rest of the planning

proceeds in a generative manner. The overall hybrid approach is illustrated in

Figure 3.12.

Chapter 5 presents a framework for representing reusable molding plans for ar-

ticulated joints. This representation is used to build a database of reusable molding

plans for common types of joints. The proposed representation is comprehensive

in the sense it captures all important information and makes it easy to classify

and catalog the molding plans. This chapter also presents molding plans for three

basic joints – prismatic, revolute, and spherical.

Chapter 6 is the main chapter of this dissertation. It describes an algorithm

for generating multi-stage molding plan for articulated assemblies. The algorithm

formulates the molding plan problem as a state-space search and adopts a combina-

tion of generative and variant approach to reach an optimal solution. It solves the

problem in two steps. It first uses the molding plan database described in Chap-

69

ter 5 to reduce the search space, and then the geometric reasoning algorithms

presented in Chapter 7 and Chapter 8 to generate an optimal molding plan.

Chapter 7 describes an algorithm to robustly and efficiently find the mold-

piece regions for a given object. We have developed two versions of the algorithm –

object-space and image-space. The image-space version runs on current-generation

computer graphics hardware (GPU). The image-space version exploits the compu-

tational power offered by the GPUs to find a solution in real time. The object-space

version runs on CPU and can be used where special graphics hardware is not avail-

able. This algorithm is used by the molding plan algorithm (Chapter 6) to evaluate

the feasibility of a molding stage configuration.

Chapter 8 presents an algorithm to create a provably correct and optimal shut-

off surface for a given parting line. This algorithm is used by the molding plan

algorithm (Chapter 6) to evaluate the optimality of a molding stage configuration.

The algorithms for finding mold-piece regions and creating shutoff surface can also

be used by the designers as a software tool to design mold for a molding stage.

70

Chapter 4

RELATED WORK

This chapter provides a review of the related work and the state of the art in

geometric algorithms for mold design. Automation of two-piece mold design has

been studied very widely. Multi-piece and Multi-stage mold design are relatively

new concepts and hence very few papers have been published in these domains.

This chapter has been organized in the following manner. Section 4.1 presents the

work done in accessibility analysis that forms an integral component of many mold

design algorithms. Sections 4.2, 4.3, and 4.4 review the representative approaches

in the two-piece, multi-piece, and multi-stage mold design respectively. Section 4.5

reviews the assembly planning literature. Section 4.6 reviews the representative

work in hybrid generative/variant process planning.

4.1 Accessibility Analysis

Accessibility analysis of a surface seeks to determine the directions along which

the surface is accessible in presence of an obstacle. Accessibility analysis is used

to perform process planning in a number of different manufacturing applications.

In machining, accessibility analysis is used to find the set of directions from which

71

the part may be approached by the cutting tool. This helps in determining the

work-piece orientations that would minimize the number of set-ups required for

machining the part [Suh95, Kang97] and helps in cutter path planning [Bala00].

Accessibility analysis is also used in disassembly-based decomposition of the gross

mold to ensure part ejection. It allows the selection of parting surface that mini-

mizes or eliminates the undercuts. This helps in reducing the number of side cores

required in the mold design [Chen93, Wein97, Dhal01, Priy04]. In assembly oper-

ations, it is used to find the directions from which the assembly and disassembly

operations can be carried out. Accessibility analysis is also used in automated

planning and programming tasks with a Coordinate Measuring Machine (CMM).

It helps in determining part orientation on the CMM and identifying the directions

from which a probe can approach the part to perform measurements [Spit99]. We

use accessibility analysis to find mold-piece regions in Chapter 7.

Many different papers have been published in the area of accessibility analysis

for a variety of manufacturing domains. They can be broadly classified into two

categories – approaches that perform local analysis and those that perform global

analysis.

4.1.1 Local Accessibility analysis

A Gaussian map of a surface is the set of end points of the unit normal vectors of

the surface. Gaussian maps can be represented as a spherical region (i.e., a subset

of the boundary of a unit sphere). By extending the basic idea behind Gaussian

maps, Chen et al. [Chen93] developed the concept of Visibility Map to represent

local accessibility.

Visibility Map of a surface is an spherically convex region. Any point in the

72

Figure 4.1: Visibility Maps of some simple surfaces

visibility map of a surface corresponds to a direction from which the entire surface

is locally accessible. Local accessibility of a point on a surface is defined by the

hemispherical region constructed by using the surface normal at the point as the

pole. Therefore, the visibility map of a point is a hemispherical region on a unit

sphere. The visibility map of a surface is the intersection of visibility maps of

all the points on the surface. The visibility map of a region is the intersection

of visibility maps of all the surfaces in the region. Figure 4.1 shows the visibility

maps of some simple surfaces.

The accessibility of a surface can be interfered by both, parts of the same surface

(local interference) and, by other surfaces of the object (global interference). Since

73

the faces of polyhedral parts are planar, there is no local interference, i.e., any

point on a face does not block any other point on the same face. The notion of

pockets is introduced for detecting global interference. The boundary of the part is

divided into spatially independent convex and concave regions (pockets) by taking

the regularized difference between the convex hull of the object and the object

itself. A ray emanating from a point in a pocket will either intersect a surface in

the same pocket or go to infinity. Hence, the visibility map of a pocket represents

a set of directions from which all the faces in the pocket are globally accessible.

But as soon as a pocket is decomposed, and visibility maps are calculated

for decomposed parts separately, these visibility maps no longer represent global

accessibility. This is because the visibility map of a region is constructed using the

local visibility of region surfaces without considering other surfaces on the object.

Figure 4.2 shows an example that illustrates this observation. Faces A, B, and C

form a concave region R. The visibility map of R (Figure 4.2(b)) contains only

one direction ~d1. This means that the faces A, B, and C are completely and

globally visible from only one direction ~d1. The visibility map of face A, calculated

separately without considering B and C, contains all directions in a hemisphere

(Figure 4.2(c)). It can be seen in Figure 4.2(a) that though direction ~d2 is present

in the visibility map of A, a point p on A is not visible from ~d2. The above argument

can be summarized as follows. The visibility map represents global visibility of a

face present in a concave region R only if it has been calculated considering all the

faces present in R. Otherwise it represents local visibility only.

The concept of visibility maps has been extended by Kim et al. to cover

bezier surfaces [Kim95]. They have defined and provided algorithms for comput-

ing tangent, normal and visibility maps for regular bezier surfaces. Elber and

74

Figure 4.2: Visibility Map represents local visibility; (a) Faces A, B, and C form a

concave region (b) Visibility Map of the concave region; (c) Visibility Map of face

A

Coher [Elbe95] presented an approach to compute “visibility set” (a similar con-

cept to visibility map) for freeform surfaces.

4.1.2 Global Accessibility Analysis

Suh and Kang developed an approach for performing accessibility analysis for

NC machining [Suh95]. They compute accessibility by constructing the binary

spherical maps. The part surface is faceted into triangular patches. The unit

hemisphere is also faceted using spherical triangles. Accessibility is computed

by projecting centroids of various facets on the unit sphere and identifying the

spherical triangles that contain them. Due to approximations, this approach is

75

prone to the following two types of errors. First, it might report that an entire

facet is accessible in a certain spherical triangle while actually only a portion of

the facet is accessible. Second, it might report that a facet is not accessible from

an entire spherical triangle while actually the facet is accessible from a portion of

the spherical triangle.

Recently, methods have been developed to perform accessibility analysis by

taking advantage of computer graphics hardware [Bala00, Spit99]. Graphics cards

make use of the depth-buffer implemented using hardware to perform fast hidden

surface removal and render the object in a given scene. If all the individual faces

on the object have been assigned different colors, then the accessibility of each

face in a given direction can be detected by rendering the object using the given

direction as the viewing direction, and querying the colors that appear on the pixel

map after rendering. Since each rendering actually corresponds to a particular

viewing direction, the point accessibility can be approximated by sampling a finite

number of directions on the Gaussian Sphere. This approach involves two types

of approximations. First, it uses finite sampling of viewing directions on Gaussian

sphere. Second, it assumes that the face is so small that presence of a single pixel

on the rendered scene can identify its accessibility. Therefore, the results produced

by this approach are only an approximation of the exact solution.

Stage and Roberts described a framework for representing and computing tool

accessibility from manufacturability evaluation point-of-view [Stag97]. This is pri-

marily a feature-based approach, focusing on the shape/size compatibility between

a tool and an entity (a face or a set of faces) to be machined. The advantage of

this approach is that it works for an object with curved surfaces without any need

for faceting. However, the notion of accessibility is closely tied with a particular

76

tool.

Dhaliwal et al. [Dhal03] presented an algorithm for computing global accessi-

bility cones for various facets of a polyhedral object. The paper describes exact

mathematical conditions and the associated procedure for determining the set of

directions from which a facet is inaccessible due to another facet on the object. By

utilizing the procedure to compute the exact inaccessibility region for a facet, the

paper presents an algorithm for computing global accessibility cones for various

facets on the object. A unit sphere that represents all possible set of directions is

divided into small spherical triangles. Global accessibility cone for a facet is the

set of all spherical triangles from which the facet is accessible.

4.2 Two-Piece Mold Design

In the area of traditional two-piece molds, mold design problem has been studied

mainly form two perspectives – determination of parting direction and determina-

tion of parting line and parting surface. Section 4.2.1 reviews the approaches for

determining parting direction. Section 4.2.2 reviews the approaches for determin-

ing parting line and parting surface.

4.2.1 Determination of Parting Direction

In determining parting direction, most works consider demoldability as the pri-

mary factor in the determination. There are primarily two approaches used for

determining parting direction: approaches based on accessibility analysis and ap-

proaches based on feature recognition.

77

Figure 4.3: Cores can be avoided even if the visibility map is empty; (a) a part

with one pocket; (b) two-piece mold for the part

Approaches based on Accessibility Analysis

Chen et al. [Chen93] formulated demoldability as a visibility problem. By com-

puting the intersection of visibility maps of “pockets” on the part, the problem of

finding the parting direction that minimizes the number of cores is transformed to

finding a pair of antipodal points p and −p that maximize the number of visibility

maps which contain either p or −p. “Pockets” are non-convex regions on an object.

Pockets on mold shape form basic elements of potential mold components. Based

on this formulation, several other approaches have been presented for computing

optimal parting directions of mold [Wein96, Vija98]. Pockets on an object can be

generated by subtracting the object from its convex hull [Chen93], or by testing

adjoining surfaces [Wein96].

This approach has the following limitations:

• It is assumed that a side core is inevitable for a pocket that has an empty

visibility map. But sometimes, the side cores can be completely eliminated

78

by subdividing the pocket. The part shown in Figure 4.3(a) has one pocket

whose visibility map is empty. Figure 4.3(b) shows a valid mold design that

is found by subdividing the pocket such that the two subdivisions are formed

by different mold halves.

• It is also assumed that if the intersection of visibility maps of all the pockets

is empty, side cores cannot be avoided. Subdividing the pocket and correctly

attaching the subdivisions to different mold halves can again avoid the cores.

Figure 4.4 shows one such example. The part shown in Figure 4.4(a) has five

pockets, each of which has a valid draw range (non-empty visibility map).

But the intersection of the visibility maps is empty i.e., there is no pair

of antipodal directions along which all the pockets are completely visible.

Figure 4.4(b) shows that a draw direction is possible for the decomposed

pockets.

The above examples show that the attempt to form a whole pocket by a single

mold piece fails. The pockets had to be decomposed irrespective of whether the

pockets, had empty or non-empty visibility maps. And, as soon as a concave region

is decomposed, the global nature of visibility maps is destroyed. Therefore, the

approaches based on visibility maps cannot be applied to pocket subdivisions as it

will not guarantee global accessibility and hence demoldability.

Hui and Tan [Hui92] heuristically generated a set of candidate parting direc-

tions that consisted of planar face normals and axis of cylindrical faces. Based on

the observation that the face normals of the openings of the cavity solid (pocket

in [Chen93]) determine a zone of possible directions for clearing the corresponding

undercut, Hui [Hui97] added some more directions to the set of candidate parting

directions by using normals to the cavity opening faces (lid faces in [Chen93]). He

79

Figure 4.4: Cores can be avoided even if the intersection of visibility maps is empty;

(a) a part with five pockets; (b) two-piece mold for the part

also developed a partitioning scheme to subdivide the pockets without destroying

their global nature with respect to visibility. For a candidate parting direction ~d,

a pocket is partitioned by a series of planes each containing an edge of the pocket

and vector parallel to ~d. The elements obtained after partitioning are convex and

are either completely blocked or cleared in ~d. Figure 4.5 shows the proposed par-

titioning scheme. Each candidate parting direction is evaluated, and the direction

requiring minimum number of side cores is chosen as the main parting direction.

Though this approach provides a valuable method for partitioning the pockets

without destroying the global nature of the visibility map, the heuristically found

set of candidate parting directions may not be complete. For some very complex

parts, it may not be able to find the sufficient set of directions required for the

80

Figure 4.5: Partitioning of a pocket; (a) a part with one pocket; (b) pocket; (c)

partitioning of the pocket

part.

Ahn et al. [Ahn02] presented an O(n log n) algorithm to test whether a poly-

hedral object is castable from a given direction. They also presented an algorithm

to find all combinatorially distinct directions in which the object is castable. They

represent every possible direction by a point on a unit sphere centered at the origin.

They build an arrangement on vertices, edges, and cells of the object on the sphere.

They prove that the vertices of this arrangement found by intersecting the curves

on the unit sphere represent the complete set of distinct directions in which the

object may be castable. There are Ω(n4) distinct directions that can be computed

in O(n4) time. So the total running time for finding a feasible parting direction

takes O(n5 log n) time. Building on this, Elber et al. [Elbe05] have developed an

algorithm based on aspect graphs to solve the two-piece mold separability prob-

lem for general free-form shapes, represented by NURBS surfaces. McMains and

Chen [Mcma04] have determined moldability and parting directions for polygons

81

with curved (2D spline) edges.

The algorithm presented by Ahn et al. [Ahn02] has recently been implemented

by Khardekar et al. [Khar05] using programmable GPUs. They describe a two-

pass algorithm to determine moldability in a given direction. The camera is placed

above the part along the given direction. In the first pass, the front faces of the

part are rendered and the depth buffer is recorded. In the second pass, depth test

is adjusted so that only the front faces invisible in the first pass are rendered. If

there is any pixel rendered in the second pass, it means there are undercuts on the

part. They further describe a method similar to Shadow Mapping to highlight the

undercuts using shader programs.

Approaches based on Feature Recognition

These approaches make use of various feature recognition techniques to detect un-

dercuts. A feature may be explicitly an undercut, or just a combination of certain

types of surfaces. Each of the recognized features has its own set of possible part-

ing directions due to accessibility considerations. These possible parting directions

form a set of candidate parting directions and are evaluated using evaluation func-

tions that measure goodness of a parting direction. It is a well-known fact that

feature recognition is a difficult problem. This is especially so when the features

interact with each other. Hence all the algorithms based on feature recognition

techniques cannot handle arbitrarily complex parts.

Urabe and Wright [Urab97] select three principal coordinate directions as the

candidate parting directions. Undercuts are recognized along each of these candi-

date directions. Number of undercuts, projected area, and number of cone surfaces

for each of the candidate directions are calculated to determine the main parting

82

direction. The complexity of the part shapes that this approach can handle is

limited as stated in their paper.

Gu et al. [Gu99] developed a universal hint-based feature recognition algo-

rithm to recognize features (holes, steps, pockets, protrusions, etc) on a part to

be molded. Each type of feature has its own set of candidate parting directions.

The optimal parting direction is the one with maximum value from an evaluation

function.

Fu et al. [Fu99] developed an algorithm to recognize undercut features and

classify them as Inside Internal Undercut, Outside Internal Undercut, Inside Ex-

ternal Undercut, and Outside External Undercut. More recently, Yin et al. [Yin01]

presented an approach of determining optimal parting direction by minimizing the

number of undercuts among candidate parting directions. The mold components

are also constructed based on the undercut features.

Lu and Lee [Lu00] presented an approach for analyzing interference elements

and release direction for die casting and injection molding. A three-dimensional

ray detection method was developed to recognize and extract the interference ele-

ments. Again, each recognized interference element has its own candidate release

directions. The optimal release direction is computed to minimize the number of

side cores.

4.2.2 Determination of Parting Line and Parting Surface

In the approaches to determining parting line, either the parting direction is already

set, or the parting direction does not cause any undercuts due to the convex shape

of the object.

Ravi and Srinivasan [Ravi90] presented sectioning and silhouette methods for

83

parting line generation. Wong et al. [Wong96] presented a slicing strategy for gener-

ating the parting line. Through a recursive uneven slicing method, several parting

surfaces are generated for further evaluation. Weinsten and Manoochehri [Wein96,

Wein97] formulated the parting line determination problem as an optimization

problem. Their objective function is defined as a function of the flatness of the

parting line, draw depth, number of side cores required to form the undercuts, ma-

chining complexity, etc. Majhi et al. [Majh99] presented an algorithm for comput-

ing an undercut-free parting line that is as flat as possible for a convex polyhedral

object.

For non-planar parting line, Tan et al. [Tan88] presented a method to create

the parting surface by extending the parting lines. The parting line has an outer

loop and may have multiple inner loops. The outer loop is projected on a plane

perpendicular to the parting direction and convex edges are identified. Each convex

hull edge is projected to an adjacent side face of the mold enclosure. The projection

direction is perpendicular to the parting direction and parallel to the surface normal

of the mold face on which the edge is being projected. The gaps in the corners and

inner loops are filled by triangulation. Nee et al. [Nee98] use a similar approach of

extruding the parting lines to create the parting surface.

The limitations of the previous approaches are the following. They may not

handle complex parts. The adjacent surface patches may intersect with each other

or create undercuts. The produced surface may also not be optimal to machine.

But most importantly, the previous approaches are trying to solve the wrong prob-

lem. The parting surface is not appropriate for complex 3D parting lines. The

mold designers actually create what is called a shutoff surface. Figure 4.6 shows

the difference between the parting surface and shutoff surface for an example part.

84

Parting
Surface

(a) Parting surface

Shutoff
Surface

(b) Shutoff surface

Figure 4.6: Difference between the parting surface and the shutoff surface

The parting surface or the shutoff surface is the contact surface between the mold

pieces. They are machined with very high precision to minimize flash. The surface

area of the parting surface is larger than that of the shutoff surface as shown in the

figure. Machining such a large surface with very high precision is very expensive.

4.3 Multi-Piece Mold Design

Although multi-piece molds can fabricate much more complex parts than two-piece

molds, there are very few papers in this area. There are two types of multi-piece

molds – sacrificial and permanent. The sacrificial mold pieces are manufacturable

85

but may not be disassemblable. They need to be destroyed before ejecting the

molded part. The permanent mold pieces are both manufacturable and disassem-

blable.

4.3.1 Sacrificial Mold Design

Dhaliwal et al. [Dhal01] presented a feature-based approach to solving the prob-

lem of automated design of multi-piece sacrificial molds. For those objects whose

geometry can be represented by their feature-based representation, the approach

provides a 3D spatial partitioning scheme to computationally efficiently solve the

mold design problem. However, this approach cannot be used to design molds for

arbitrarily complex parts.

Huang and Gupta [Huan02] describe an algorithm based on accessibility-driven

partitioning approach to design multi-piece sacrificial molds. Gross shape of the

mold is constructed by subtracting the part model from the mold enclosure. Ac-

cessibility analysis of the gross mold is performed. The gross mold is partitioned

using the accessibility information. Each partitioning improves accessibility and

a set of mold components is produced. Each mold component is accessible and

therefore can be produced using milling and drilling operations.

4.3.2 Permanent Mold Design

Krishnan and Magrab [Kris97] describes automated two-piece and multi-piece mold

design for injection molding. The part is constructed by stacking 2.5D primitives

called C-entities along the Z direction through either a Constructive Solid Ge-

ometry (CSG) or Destructive Solid Geometry (DSG) operation. A C-entity is

manufacturable if there are no thin walls created by the shape of the island and

86

cavity profiles and there are no thin walls created by the position of the cavity pro-

file with respect to the island profile. Each entity also has an accessibility attribute

that is calculated with respect to its parent entity. The accessibility attribute is

used to determine whether a two-piece mold can be used. If a two-piece mold can-

not be used to make the injection-molded part, it is checked whether a multi-piece

mold can be used or not. A multi-piece mold is defined as one that has two or

more pieces, and the direction of separation of the mold components is orthogonal

to the Z direction (i.e. the direction in which the part was created). The mold

separation direction is restricted to the X and Y direction.

This approach has several limitations. Since the primitives considered are only

2.5D solids that are stacked along the Z direction, the complexity of the part

is limited in this approach. Moreover, since the mold separation directions are

constrained to be along either the X-axis direction or the Y-axis direction, it is not

always guaranteed to find a solution.

Chen and Rosen [Chen01a, Chen01b] subdivide multi-piece mold design pro-

cess into two subsequent processes: Mold Configuration Design Process and Mold

Construction Process.

1. Mold Configuration Design Process: In this step, object boundary is sub-

divided into smaller regions that will be formed by different mold pieces.

Parting direction is found for each mold piece region by solving a linear op-

timization problem. If a combined region (pockets) does not have a parting

direction, it is split into concave regions (all internal edges concave) and con-

vex faces (all face edges convex). The plane of a face containing an internal

convex edge is used to split the region. If the region does not have any inter-

nal convex edge, it is not split. It is assumed that the part is non-moldable.

87

2. Mold Construction Process An approach based on Reverse Glue Operation

is developed to produce a two-piece mold. Glue faces and planar parting

surfaces are used to split the core and cavity. Selecting different glue faces

and parting planes produce different mold pieces. This algorithm for two-

piece molds is used recursively to produce a multi-piece mold.

This being the first multi-piece mold design approach seen in literature that

allows three-dimensional mold decomposition, provides an excellent groundwork

to improve upon. One of the areas that requires immediate attention is in the

determination of parting directions. Since a local approach has been followed to

find the parting direction of a region, disassembly of mold pieces is not guaranteed.

A separate interference test simulation module is required to verify the mold design

generated by this approach. If the mold design is found to be incorrect, the whole

process has to be repeated again and again. There may even be cases when this

approach fails to produce a feasible solution. Figure 4.7 shows one such example.

Since the concave region R does not have a parting direction, it needs to be split

into concave regions and convex faces. But R does not have any convex edge along

which it can be split. It can be seen that the proposed region splitting approach

fails to produce a feasible solution in this case. A robust implementation of region

splitting algorithm is also challenging because splitting a face in some cases, may

produce slivers. Slivers have two vertices so close to each other that it becomes

difficult to do correct vertex classification.

Priyadarshi and Gupta [Gupt03, Priy04] developed geometric algorithms for

completely automated design of multi-piece molds. Given the CAD model of a

part and the mold enclosure dimensions, they presented a novel five-step approach

called Multi-Piece Mold Design Algorithm (MPMDA) to generate a multi-piece

88

Figure 4.7: Concave regions having no parting direction and no internal convex

edge are also moldable; (a) a part with a concave region that has no parting

direction and all concave internal edges; (b) two-piece mold for the part

mold design for the part.

1. A heuristic set of candidate parting directions D is first generated based on

the geometry of the part.

2. For each direction ~d in D, ray-accessibility of every facet on the part is

checked. For the part to be moldable, every facet on the part needs to

be ray-accessible from at least one direction. If a facet is accessible from

none of the directions in D, accessibility analysis of the facet is performed

to compute accessibility cone of the facet. If the accessibility cone is non-

empty a direction is chosen from the accessibility cone and included in D.

Otherwise, the part is discarded as non-moldable. For each candidate parting

direction, accessible-facet sets are found.

89

3. Using the set of accessible-facet sets, the part boundary is then divided into

different mold-piece regions.

4. Out of all mold-piece regions, minimum number of mold-piece regions is

selected such that the entire part boundary is covered. This is equivalent to

solving set-cover problem.

5. After minimum number of mold-piece regions has been identified, mold pieces

are finally constructed.

4.4 Multi-Stage Mold Design

Kumar and Gupta [Kuma02] developed an algorithm to design multi-stage molds

for producing multi-material objects. In order to find a feasible mold-stage se-

quence, the algorithm decomposes the multi-material object into a number of ho-

mogeneous components to find a feasible sequence of homogeneous components

that can be added in a sequence to produce the desired multi-material object. The

algorithm starts with the final object assembly and considers removing components

either completely or partially from the object one at a time such that it results in

the previous state of the object assembly. If a component can be removed from

the target object leaving the previous state of the object assembly a connected

solid, they consider such decomposition a valid step in the stage sequence. This

step is recursively repeated on new states of the object assembly until the ob-

ject assembly reaches a state where it only consists of one component. When an

object-decomposition has been found that leads to a feasible stage sequence, the

gross mold for each stage is computed and decomposed into two or more pieces to

facilitate the molding operation.

90

The novel features of their algorithm are as follows.

• It finds multiple partitioning planes to perform partitioning of the mold-

pieces.

• It performs object and mold decomposition needed to ensure the assembly

and disassembly of mold-pieces during mold-stage assembly.

• It generates the complete molding sequence of the multi-stage molds. The

algorithm specifies the mold-pieces that should be added and removed from

the previous stage to produce the mold assembly at each stage.

The limitations of their algorithm are as follows:

• The contact surface between homogeneous components is assumed to be

planar. This limits the types of material interfaces in the multi-material

object that can be handled by the algorithm.

• The object decomposition algorithm does not always find a feasible object

partitioning sequence because it only decomposes components along the ma-

terial interfaces.

Li and Gupta [Li04, Gupt02] extended the work presented in [Kuma02]. They

presented a geometric algorithm for automated design of multi-stage mold designs

for rotary-platen process. The algorithm is limited to two-material two-lump ob-

jects. It consists of two steps – determination of molding strategy and creation of

mold pieces. In the first step, a molding strategy is determined depending on the

geometry of the two lumps. The molding strategy consists of the number of mold

stages and fabrication sequence that will be required to mold the object. They

show that a two-material two-lump object can be molded in either two or three

91

stages. In the second step, the algorithm automatically generates the mold pieces

for different mold stages.

The novel features of their algorithm are as follows.

• The algorithm can handle curved contact surface. The types of curved sur-

faces is however limited to spherical and conical.

• The algorithm partitions the gross mold by curved analytical surfaces and

combine the resulting solids to form the final mold pieces. This ensures that

the contact surfaces between two mold pieces is perfect and does not leak.

• The disassemblability of the generated mold pieces is guaranteed.

The limitations of their algorithm are as follows:

• This algorithm uses a simple extension of Tans algorithm [Tan88] for finding

parting lines. Hence it cannot handle complex parting lines.

• Only cylindrical undercut features are handled by this algorithm.

• The input object cannot have more that two materials and two lumps.

• The mold pieces generated by the algorithm may not have optimal geometric

shape.

• Material-based precendece constraints are not incorporated.

• Configuration of articulated assemblies is not changed after every molding

stage.

92

4.5 Assembly Sequence Planning

Automatic assembly sequence planning has been an important research topic for

researchers in geometric modeling, robotics and artificial intelligence. The process

of assembling component parts to make a final product and disassembling a final

part into its components are two different but similar processes in a real world. The

process of assembly can be considered as traversing in an ordered list of assembly

operations. An assembly operation can be defined as going from one spatial config-

uration of components to another spatial configuration of components by moving

one or more components. The assembly process starts from a configuration where

all the components are completely disassembled and the last assembly operation

leads to the final product.

An assembly sequence plan is a high-level plan for constructing a product

from its component parts. It specifies which sets of parts form subassemblies, the

order in which parts and subassemblies are to be inserted into each subassembly.

Research in this domain is intended to generate a good and feasible assembly

sequence plan automatically. A variety of automated systems have been designed

to generate such assembly sequence plans. While excellent progress has been made

in developing methods to quickly find a geometrically feasible plan for a product,

there have been both definitional and computational problems with finding good

assembly plans.

The early assembly sequence planners were mainly interactive in nature. Geo-

metric constraints were supplied by a human, interactively, by answering a series

of questions asked by the computer. One such system was by Fazio and Whit-

ney [Fazi87] which asked questions like: a) Is it true that a component Ci cannot

be inserted after components Cj and Ck are assembled or b) Is it true that Ci

93

cannot be inserted if components Cj and Ck are yet to be assembled. The user of

these systems had to answer these questions and system used some logical reason-

ing to produce a feasible assembly plan. Automated geometric reasoning were later

used to answer these questions automatically. These approaches generated several

candidate assembly sequences and tested their feasibility by applying geometric

reasoning. But these approaches tend to generate a large number of candidate

assembly sequences and were repeating the same geometric reasoning many times.

Then attempts were made to store and reuse previous computations and in some

cases new assembly representations were used that implicitly reduced the number

of geometric computations.

The work by Wilson and Latombe [Wils94] used Non-Directional Blocking

Graph (NDBG) representation which implicitly contained the geometric constraints.

NDBG was automatically generated from the input geometry of the product by ap-

plying geometric reasoning. Woo and Dutta [Woo91] proposed construction of an

disassembly tree and generated disassembly sequences by modeling disassembly as

an ”onion peeling” procedure where one start from the boundary components and

works inwards using the disassembly tree. An algorithm for component disassem-

bly was developed and used to perform disassemblability analysis of a component

from an assembly or sub-assembly. This algorithm only considers disassembly

of 1-Disassemblable subassemblies. Beasley and Martin [Beas93] went one step

ahead and developed an algorithm for 2-disassemblable subassemblies, but they

only considered the objects built from integral number of cubes.

94

4.6 Hybrid Process Planning

Process planning translates design information into process steps and instructions

to efficiently manufacture products. Automated computer-sided process plan-

ning has evolved as an important element in integrating design and manufac-

turing [Alti89]. There are two traditional approaches to process planning. The

first approach is called generative process planning. In this approach a plan is

synthesized from the first principles by trying various alternatives in generate-and-

test paradigm. The second approach is called variant process planning. In this

approach, a plan is generated by modifying an existing plan.

Elison et al. [Elis97] proposed a hybrid approach that combined the charac-

teristics of both variant and generative process planning. They built a variant

database of designs and process plans classified using design signatures. When

a process plan is needed for a new design, slices of plans are retrieved from the

database built earlier. These plan slices are combined in a generative manner to

produce a new plan. Balasubramanian et al. [Bala98] proposed another hybrid

approach that used a generative approach for process selection and then a variant

procedure to select fixtures.

4.7 Summary

The previously published algorithms for mold design are not adequate for designing

multi-stage molds for articulated assemblies. The algorithms to find mold-piece

regions are most importantly not robust. They produce inconsistent results in the

presence of near-vertical facets. There is also a need to increase the efficiency to

be able to handle high resolution parts. The algorithms for creating parting line

95

and parting surface cannot handle very complex shapes that are quite common in

case of multi-stage molds. With the increase in complexity of the parting lines and

parting surfaces, there is an increase in the need to automatically optimize them.

This is missing from the current literature.

96

Chapter 5

REPRESENTING REUSABLE MOLDING

PLANS FOR ARTICULATED JOINTS

This chapter presents a framework for representing reusable molding plans for

articulated joints. This representation is used to build a library containing reusable

molding plans for common types of joints. This library is used by the algorithm

described in Chapter 6 to generate molding plans for articulated assemblies. The

material presented in this chapter is expanded version of the material published

in [Priy06a].

This chapter is organized in the following manner. Section 5.1 describes where

the joint molding plans fit into the overall approach. Section 5.2 describes a set

of basic assembly design principles that if followed may lead to feasible and effi-

cient molding plans. Section 5.3 describes the framework for representing reusable

molding plans. Sections 5.4 – 5.6 present molding plans for three basic joints –

prismatic, revolute, and spherical. Section 5.7 finally summarizes this chapter.

97

5.1 Introduction

Generating molding plan is similar to other manufacturing operation-planning

problems such as machining and sheet-metal bending. There are two traditional

approaches to process planning. The first approach is called generative process

planning. In this approach a plan is synthesized from the first principles by trying

various alternatives in generate-and-test paradigm. The second approach is called

variant process planning. In this approach, a plan is generated by modifying an

existing plan. Purely generative approaches are unlikely to work in the molding

planning domain. A lot of knowledge that is needed to successfully mold joints

does not exist in an explicit geometric form. Purely variant approaches are also

unlikely to work because every new assembly is significantly different from the

previously generated assemblies.

Variant approaches, can however be applied to developing molding plans for in-

dividual joints. The various types of joints used are very few. So it is very common

to find similar joints in new assemblies. We use a hybrid approach that combines

elements from generative and variant techniques. We reuse the molding plans for

individual joints to generate plans for new assemblies. When a new assembly is

encountered we first check if the joints used in the assembly are sufficiently similar

to the joints for which plans exist. If such plans are available, they are reused in

a generative manner to develop the molding plan for the assembly.

Reusing molding plans for joints allows us to reuse existing molding knowledge

and yet ensure that we can handle a wide variety of molding planning problems.

When a successful plan is developed and experimentally validated for molding a

joint, a lot of useful knowledge is generated. There is a great value of design

knowledge in engineering. Experienced designers make good designs. Meanwhile

98

novices are overwhelmed by the design requirements. Experienced designers ev-

idently know something that inexperienced ones do not. One thing experienced

designers know not to do is solve every problem from first principles. Rather, they

reuse solutions that have worked for them in the past. When they find a good

solution, they use it again and again. Such experience is part of what makes them

experts.

Knowledge and experience is especially important in mold design. Developing a

molding plan is a hard problem. It requires significant amount of time, effort, and

expertise. There are often concerns about the feasibility of a molding plan because

many decisions are based on subjective guesswork. The desired articulation and

multiple molding stages introduce geometric constraints, which if violated, results

in poor quality, longer molding cycles, and high tooling cost.

5.2 Basic Assembly Design Principles for Achiev-

ing Feasible and Efficient Plans

Currently a systematic approach to designing articulated in-mold assembled prod-

ucts does not exist. It is an iterative process and successful implementation mainly

depends on the designer’s experience. There is also very little published literature

available in the public domain. In this section we identify a set of basic assembly

design principles that lead to feasible and efficient molding plans, which in turn

result in high performance and reduced overall cost. These design principles are

mainly for selecting the right geometry and material for assembly components.

They are based on interactions with experienced mold designers and experiments

in our laboratory. The designers populating the library of reusable molding plans

99

Clearance,

caused by
shrinkage

First molding stage Second molding stage

Shrinkage direction for
the second material

Figure 5.1: Effect of Shrinkage on Joint Clearance

must follow these principles when designing joints. This will ensure that only

feasible and efficient plans are added to the library.

5.2.1 Achieving Proper Joint Clearances

The molded parts shrink as they solidify. This shrinkage directly affects the amount

of clearance in a molded joint as illustrated in Figure 5.1. Estimating shrinkage for

molded parts is a challenging problem in the molding community. This problem

is extremely important in articulated assemblies because all the components have

to fit together and work. Uncompensated shrinkage in even one component can

cause the assembly to have excessive or insufficient clearances. Excessive clearance

causes poor kinematic performance, while insufficient clearance causes geometric

locking. This section describes a model for designing articulated joints and molding

process so that the final product can meet the performance goals. We outline a

systematic approach that will help a designer to determine component dimensions,

material properties, and molding parameters.

Shrinkage is defined as the difference in dimensions of a molded part and the

100

Hole

Pin

Hole

Pin

Figure 5.2: Shrinkage Analysis for Revolute Joint

mold cavity at room temperature. Uncompensated shrinkage leads to either sink

marks or voids in the molding interior. Shrinkage of individual components can

stackup or combine together to affect a final assembly dimension. We describe

shrinkage analysis, similar to the assembly tolerance analysis to help predict the

final assembly dimensions and hence the success of an in-mold assembly. For

the success of an assembly, there are some critical dimensions that need to be

controlled. A critical assembly dimension Ys is a function of the component feature

dimensions xi, and is given by:

Ys = f(x1, . . . , xn) (5.1)

This function between the assembly and component dimensions is known as

assembly function or stackup function and must be derived for each assembly.

Shrinkage analysis for assemblies is concerned with determining the critical as-

sembly dimension Ys. This analysis will be illustrated with the help of a simple

revolute joint shown in Figure 5.2. The clearance between the pin and the hole is

a critical dimension and is given by:

C = Dh −Dp (5.2)

101

where Dh and Dp are the hole and pin diameters respectively. The component

dimensionsDh andDp are obtained after shrinkage. Because of the dynamic nature

of the molding process, estimating shrinkage is not straightforward. However hard

we try, some uncertainty will always be present. So we represent the component

dimensions as interval numbers. For example, a dimension D will be represented

as:

D = [Dmax, Dmin] (5.3)

The corresponding uncertainty in the clearance C can be calculated as follows:

Cmax = Dmax
h −Dmin

p (5.4)

Cmin = Dmin
h −Dmax

p (5.5)

∆C = Cmax − Cmin

= ∆Dh + ∆Dp (5.6)

The next step in shrinkage analysis is to understand the shrinkage of individual

dimensions. Shrinkage of a dimension can be mathematically expressed as:

S = α.D (5.7)

where D is the original dimension and α is the shrinkage coefficient. The shrinkage

coefficient α is dependent on material properties and other process parameters such

as melt temperature, mold temperature, injection pressure and hold time. This

parameter is usually experimentally determined for a given material and process

parameters by creating a test specimen with the volume and section thickness

comparable to the desired part. [Jans98] presented a systematic study on the effect

of processing conditions on mold shrinkage. They concluded that the shrinkage of

injection molded products is mostly influenced by the holding pressure and the

102

melt temperature. [Post05] recently published experimental results on assessment

of the effects of process parameters on shrinkage. These studies can also be utilized

to estimate the shrinkage coefficient for a given material and process parameters.

After shrinkage, the dimension of a molded part Dp is given by:

Dp = (1 − α)Dm
p (5.8)

where Dm
p is the mold dimension. The uncertainty in the molded part dimension

can be estimated as:

∆Dp = ∆α.Dm
p (5.9)

where ∆α is the uncertainty in α, which can be controlled by changing molding

parameters such as injection pressure, pack-hold time or cooling time, and holding

pressure. The uncertainty in the mold dimension due to machining is negligible.

Therefore, these terms are omitted from further consideration. From the above

equation we get the following governing equations:

C = (1 − αh)D
m
h − (1 − αp)D

m
p (5.10)

∆C = ∆αhD
m
h + ∆αpD

m
p (5.11)

where Dm
h and Dm

p are the mold dimensions for the hole and pin respectively.

Usually C and ∆C are given based on design goals. It is the job of the designer to

determine the values for αh, αp, ∆αh, ∆αp, D
m
h , and Dm

p that meet the given values

of C and ∆C. As is obvious from Equations 4.10 and 4.11, the number of variables

is more than the number of equations. Therefore this problem is under-constrained.

These equations can be solved by assigning fixed values to some variables and

solving for the remaining variables. The above equations have been derived for a

revolute joint shown in Figure 5.2. Similar types of equations can be derived for

other types of joints as well. The above model is intended as a useful guideline for

103

designing articulated joints and molding process. It usually provides a first order

approximation. In many cases, shrinkage is not linear and constant in different

directions. It is measured along three directions – direction of flow, cross-flow

direction, direction of part thickness. These often may have different magnitudes

leading to uneven volumetric shrinkage along the three directions. Moreover, in

case of complex joints, it is very difficult to derive the assembly function. In such

cases, shrinkage effects must be determined via empirical experiments.

Our experiments indicate that the following guidelines would be useful in con-

trolling shrinkage in multi-stage molding process:

1. The outer components, which envelop the other components, must be cast

before the inner components are molded. This will cause the last stage to

shrink away from its preceding stage and establish clearance between the

components. If the stage order is reversed, the final mold stage will tend to

shrink onto the interior parts resulting in a friction increase at the interface,

in turn restricting the relative motion.

2. Since shrinkage is directly proportional to component dimension, the above

criterion may be ignored for small parts.

3. Pack-hold time or cooling time should be increased to reduce shrinkage.

4. Shrinkage can also be reduced by controlling injection pressure and melt

temperature.

5.2.2 Preventing Adhesion at Joint Interfaces

During the multi-stage molding process, when the second material is injected on

top of the already molded material, the two materials tend to adhere to each other.

104

To created articulated devices, we need to prevent the adhesion at the interfaces

so that we can create free moving articulated devices. Based on the published

research and our own tests, the following process and material parameters affect

adhesion at the multi-material interfaces:

1. Cross-linking of polymers: This dictates the strength of bonding on molecular

scale.

2. Mold pressure: Higher pressure enhances intimacy of microscale contact at

interface.

3. Curing temperature: This parameter controls crosslinking at the interface.

4. Anti-stiction agents: These agents inhibit adhesion at the interface.

5. Surface roughness of substrate: Higher surface roughness enhances mechani-

cal interlocking at microscale.

6. Shrinkage stress: Shrinkage induced stresses generate forces to separate in-

terface.

Based on our experiments the best way to prevent adhesion is to select materials

that are chemically incompatible with each other and hence do not promote cross-

linking of polymers. The number of available materials for molding is quite large,

resulting in countless material combinations possible for multi-material molding.

Unfortunately, the adhesion quality for all combinations of materials is not known.

In many cases, this has to be determined experimentally for the given component

configuration and processing conditions. Some research has been conducted on

the compatibility of various materials and it is observed that polymers of similar

nature adhere to each other well. The material combinations that do not adhere

105

well and are good for articulated joints include Acrylonitrile-Butadiene-Styrene

(ABS) and Polyvinyl Carbonate (PVC), acrylic-styrene-acrylonitrile (ASA) and

Polystyrene (PS).

An additional rule to material selection is that the melting temperature of the

first molded material must be much greater than the melting temperature of the

material being used in the second molding stage. If this rule is not followed, the

second material will melt the first one and the two will stick with each other. The

same general rule holds true for all subsequent molding stages. The designer must

match up material properties with molding stages as well as product specifications.

Apart from selecting the right materials, increasing the curing time between

subsequent mold stages also helps prevent adhesion problems. There are also mold-

release sprays (e.g., Silicone Mold Release from Huron Technologies, Inc.) available

in the market that when applied to material interfaces, prevent adhesion.

5.2.3 Minimizing the Number of Molding Stages

Usually a separate molding stage is required for each component. But in some

cases, the mold sequence can be specified in such a way that the assembly can be

molded in lesser number of stages. For example, a product with three components

has six different possible sequences. One way to minimize manufacturing time is by

using a mold-staging strategy that involves injecting as many components in one

sequence as possible. For example, consider the two-material object illustrated

in Figure 5.3. Because components A and C never touch and are of the same

material, component B can be injected in the first stage and then A and C can

both be injected in the second stage. It is important to specify an appropriate

sequence of stages so that the product can be manufactured in the least number

106

C1, Material A

C2, Material B

C3, Material A

Figure 5.3: Three components can be injected in two stages

of stages.

5.2.4 Simplifying the Method for Changing Cavity Shape

To carry out multi-stage molding, the cavity shape needs to change after every

molding stage. The first stage starts with the first stage material being injected

into an empty cavity. The material fills the cavity completely and solidifies. Before

starting the second stage molding, the cavity shape needs to be altered to create

room for injecting the second stage material. This step requires changing the

shape of the original cavity. The cavity shape should be changed while satisfying

the assembly and disassembly constraints imposed on the mold pieces. Therefore,

different types of geometries require different cavity shape change methods. Fol-

lowing are the different ways cavity shape can be changed in the increasing order

of complexity:

1. One or more mold pieces can simply be moved away from the first stage

material in the cavity and hence can expand the cavity (Figure 5.4(a)).

107

Cavity shape
after completing
first stage

Cavity shape
before starting
second stage

Cavity shape
after completing
first stage

Cavity shape
before starting
second stage

(a) (b) (c)

Figure 5.4: Changing mold cavity shape between stages

2. One or more mold pieces in the initial cavity can be swapped with a mold

piece with a different shape (Figure 5.4(b)).

3. Partitions can be added in the initial cavity and then removed during sub-

sequent stages (Figure 5.4(c)).

4. Molded part can be completely transferred to another mold with a different

cavity shape. This method is called cavity transfer.

The first three techniques alter the cavity shape without moving the already

molded shape. Only a few mold pieces around the molded shape are moved. The

first technique is desirable than the second and third technique because it is easier

and faster to just move the mold pieces. The last cavity transfer technique is one of

the easiest to design a mold for, but is also quite challenging to implement into mass

production process. This is due to the fact that molded parts must be manually

or robotically manipulated between mold stages. Orientation of the components

108

between stages is also difficult when transferring it. It can be seen that shape-

change method mainly depends on the complexity of component interfaces. If it

is a simple hole, the first technique can be employed. But in the case of complex

interfaces, the cavity transfer technique needs to be employed, or the mold design

becomes too complicated. Hence a simple interface should be designed between

two components.

5.3 Framework for Representing Joint Molding

Plans

The purpose of developing a representation for molding plans is to record them

in a reusable form. To effectively reuse a molding plan for a new assembly, the

first thing that we need to determine is whether that molding plan is applicable.

The molding plan for the new assembly will be developed using the molding plans

for each joint in the assembly. The molding plan for the whole assembly needs to

satisfy the constraints of each joint molding plan to be feasible. So the next thing

that we need to know is the set of feasibility constraints that needs be to added to

the overall molding problem for the new assembly. It is important to compile this

information in a consistent format so that the molding plans are easy to classify

and search.

Section 5.3.1 describes the necessary conditions that a joint in a new assembly

needs to satisfy before a molding plan can be applied. Section 5.3.2 enumerates

the relevant feasibility constraints imposed by a joint molding plan. Section 5.3.3

describes a comprehensive format for representing a molding plan.

109

5.3.1 Applicability Conditions

We can reuse a molding plan only if it is applicable. So a representation for molding

plans should contain information about the situations in which a particular molding

plan can be applied. The applicability conditions for a molding plan should contain

all critical parameters that affect the molding plan. But at the same time, it should

not contain irrelevant parameters that does not directly the molding plan. These

irrelevant parameters unnecessarily reduce the applicability of the molding plan.

From Section 5.2, we know that the geometry and material of a joint are im-

portant factors in developing a molding plan for the joint. They directly affect the

obtained joint clearance and play a significant role in determining the feasibility

and efficiency of the generated molding plan. Hence it is reasonable to assume

that if the geometry and material of two joints match, the molding plan for one

joint can be used for the other. The molding plan must contain all combinations of

materials that can be used and the following parameters that define the geometry

of a joint:

1. Type of joint: There are several standard joints (prismatic, revolute, spher-

ical, universal, etc.) used in articulated assemblies. The standard joint

are represented by their name, while the non-standard ones are represented

graphically or by a CAD model.

2. Size of joint: The plan must provide the range of joint sizes on which it can

be used.

3. Where the joint components can be extended: The molding plan provides a

graphical representation of the joint. The regions where the joint components

can be extended is marked.

110

5.3.2 Feasibility Constraints

Based on the design principles described in Section 5.2, we can identify certain

constraints that need to be satisfied for a molding plan to be feasible.

1. Precedence constraint: As described in Section 5.2.1, the outer components

should be cast before the inner components. This requirement is however not

important for small dimensions. But in case of large dimensions, the molding

plan must contain this constraint. The precedence constraint is represented

by a partially ordered set. A partially ordered set (or poset) is a set taken

together with a partial order on it. Formally, a partially ordered set is defined

as an ordered pair P = (X,≤), where X is called the ground set of P and ≤

is the partial order of P [Insa04]. In our case, ≤ represents the sequence in

which components need to be molded. As example, consider X = {a, b, c}.

The relation a ≤ b and a ≤ c states that a must be molded before b and c.

2. Joint-Axes Constraints: The joints should be molded in a configuration such

that parting line does lie on the joint interfaces. Flash is usually formed

along the parting line. If the parting line lies on the joint interface, the flash

between the connected components will cause jerky motion. In the worst

case, it can even interlock the components and prevent any relative motion.

Another factor that influences the molding configuration of a joint is the

direction of removing side actions. It is usually economical to remove the

side actions in a direction perpendicular to the parting direction.

Due to these performance and cost reasons, the molding plan for a joint must

specify a configuration space of the joint axes. The configuration space for

each axis of the joint is represented as a spherical polygon on a Gaussian

111

Parting
direction

Joint
Axis

Configuration
space

Figure 5.5: Feasible configuration space of a joint axis

sphere, which is a unit sphere centered at the origin such that every point

on it defines a direction in Euclidean 3-space. A spherical polygon is a

portion of the surface of a unit sphere that is bounded by the arcs of great

circles. A great circle is the intersection of a sphere with a plane going

through its center. We define the configuration of the joint axes with respect

to the parting direction. Without the loss of generality, we assume that the

parting direction is along the z-direction (north pole on the Gaussian sphere).

Figure 5.5 shows an example configuration space for a joint axis.

3. Joint-Parameter Constraints: The geometry of a joint sometimes imposes a

constraint on joint parameters. For a joint, there may be certain values of a

parameter in which molding cannot take place. Figure 5.6 shows an example

where the joint is valid only for a finite range of joint parameter θ. In such

cases, the molding plan must specify a a feasible range of joint parameters.

A range is represented by a tuple [θl, θu] where θl is the lower bound and θu

112

θ

Figure 5.6: Feasible range of a joint parameter

is the upper bound of the range.

5.3.3 Representation Format

A common vocabulary or language is fundamental to expressing the concepts of

any engineering discipline. We too need a consistent format for representing the

molding plans in order to provide a communication platform for sharing molding

plans for commonly encountered articulated joints. Forming a common description

format for conveying the problems and proposed solutions allows us to capture the

body of knowledge and intelligibly reason about them. The requirements for a

representation are the following:

1. It should be flexible enough to be easily adapted. The molding plans for

joints are not intended to be directly used. For a given assembly, they need

to be merged with molding plans for other joints in the assembly and modified

according to the geometry of assembly components. So the representation

should only present the core of the plan in such a way that it can be adapted

to different scenarios.

113

2. It should contain all information important for developing a feasible plan for

a joint.

3. It should not contain irrelevant information that reduces applicability and

over-constrains the design space.

4. It should be easy to classify so that the molding plans can be stored in a

library and retrieved.

This dissertation proposes the following format to describe a molding plan

which satisfies the requirements outlined above. A molding plan for joints contains

four pieces of information:

1. Applicability to easily identify the plan applicable to a certain problem

(a) Type of joint

(b) Size of joint

(c) Where the joint components can be extended

(d) Material

2. Solution

(a) Number of molding stages

(b) Molding sequence (includes explicit precedence constraints)

(c) Molding configuration (includes explicit joint axes and parameter con-

straints)

(d) Method for changing mold-cavity shape change

3. Example to better understand the solution

114

4. Consequences to describe the positive and negative aspects of the solution

It must be noted that the ‘Solution’ section of the representation includes ex-

plicit feasibility constraints of a molding plan. The molding sequence is the prece-

dence constraint. The molding configuration includes the joint axes and parameter

constraints. It gives the orientation of the joint axes with respect to the parting

direction and the range of joint parameters.

5.4 Molding Plans for Prismatic Joint

Prismatic joints are seen in a wide variety of assembled objects. Applications range

from the well-known slider-crank mechanisms, used in the cylinder of an internal

combustion engine, to more recent mechanisms found in CD and DVD drives. The

basic criterion to define a prismatic mechanism is that it restricts all rotational

motion and allows the object to translate in one direction. This section presents

two design plans for realizing prismatic joints. Both plans employ planar contact

surface to constrain rotation and facilitate translation along one direction. The

difference is in the geometry of the parts that form the prismatic joint.

5.4.1 Plan A

Applicability

This molding plan is for prismatic joints where the handle completely envelops the

slide. Figure 5.7 shows regions where the joint components can be extended.

115

Parting
Direction

Stage 1

Stage 2

Figure 5.7: Prismatic joint plan A

Solution

This plan requires two mold stages. The handle is molded in the first stage. The

slide is molded in the second stage. The parting direction is perpendicular to the

translation axis. The cavity shape is changed using a sliding core. The core acts

as a placeholder for the slide in the first stage. It is pushed out of the mold in the

second stage creating a cavity into which the material for the slide is injected.

Example

Figure 5.8 shows an example for this plan. It requires two mold pieces and a

side core. Figure 5.8(b) and 5.8(c) show the two mold stages for molding the

prismatic joint. In the first mold stage, Mold piece A and B are assembled and the

core is inserted to the position shown in Figure 5.8(b). The first material is then

injected into the assembled mold. Figure 5.8(c) shows the molded part after the

first stage. For the second mold stage, the core pulled out to the position shown

in Figure 5.8(c). The second material is then injected to produce the final part.

116

Figure 5.8: Example for prismatic joint plan A

Consequences

This plan follow the clearance principles outlined in Section 5.2.1 of molding the

inner component after the outer component. This will cause the inner component

(slide) to shrink away from the outer component (handle) establishing clearance

between the contact surfaces. It is a very simple plan but restrictive. The geometry

of the part containing the slide can only be modified at the ends.

117

Parting
Direction

Stage 1

Stage 2

Figure 5.9: Prismatic joint plan B

5.4.2 Plan B

Applicability

This molding plan is for prismatic joints where the handle partially envelops the

slide. Figure 5.9 shows regions where the joint components can be extended.

Solution

This plan requires two mold stages. The handle is molded in the first stage. The

parting direction for this stage is along the translation axis. The slide is molded

in the second stage. The parting direction for this stage is perpendicular to the

translation axis. This plan employs over-molding, i.e., the handle molded in the

first stage is transferred one mold to another.

Example

Figure 5.10 shows an example for this plan. This design requires four mold pieces.

Figure 5.10(b) and 5.10(c) show the two mold stages for the prismatic joint. In

the first mold stage, the first material is injected into the assembly of mold piece A

and B. Figure 5.10(c) shows the molded part after the first stage. For the second

mold stage, the molded part produced in the first mold stage is transferred to the

118

Figure 5.10: Example for prismatic joint plan B

assembly of mold piece C and D as shown in Figure 5.10(c). The second material

is then injected to produce the final part.

Consequences

This plan follow the clearance principles outlined in Section 5.2.1 of molding the

inner component after the outer component. This will cause the inner component

(slide) to shrink away from the outer component (handle) establishing clearance

between the contact surfaces. Since the handle only partially envelops the slide,

this plan is more general than plan A, but the mold design and operation is much

more complex. It requires four mold pieces, while plan A only requires two mold

pieces and a simple core. More importantly, plan A employs a simple cavity

manipulation technique where the core is simply pulled out of the previous mold

119

(a) (b)

Figure 5.11: Effect of excessive shrinkage on part quality; (a) critical surface for

shrinkage; (b) deformation caused by excessive shrinkage

stage, while plan B employs the complex cavity transfer mechanism where the

part is transferred form one mold stage to the next. This can have very serious

implications on part quality. Careful analysis of shrinkage in the handle mechanism

is required in order to ensure correct part alignment in the second mold stage. As

seen in Figure 5.11(a), the locking mechanism for the handle must perfectly align

with the molded curvature for the slide. Figure 5.11(b) demonstrates how features

of a part can become deformed if shrinkage is not accounted for. The slide will

take on a deformed shape when molded. Despite the fact that the slide channel

will shrink away from the handle after demolding, the part may not fully recover

from this deformity. Consequently, the slide will suffer from tremendous friction

loses and in extreme cases may be geometrically locked in place.

5.5 Molding Plans for Revolute Joint

While combinations of translational or prismatic joints make up 3 DOF possible for

joint connections, revolute joints encompass the other 3 DOF of purely rotational

120

Stage 1

Stage 2
Parting

Direction

Figure 5.12: Revolute joint plan C

motion. Depending on the desired function, an articulated part may require 1

to 3 DOF for a revolute connection. Examples of these connections range from

simple 1 DOF dimmer light switches to 3 DOF robotic arms. Pin connections

are an excellent example of a simple revolute joint. These connections restrict all

translational movements and only allow the part to rotate along one axis. When

designing, one can combine several pin connections to increase the functionality

of the part. This section presents two molding plans for realizing revolute joint.

Both molding plans employ cylindrical contact surface to facilitate rotation along

one axis but different features to constrain translation. One molding plan uses a

cap-end connection while the other uses a groove connection.

5.5.1 Plan C

Applicability

This molding plan is for revolute joint with cap-end connection. The hole is made

of ABS and the pin is made of Polyethylene. The diameter and length of the joint

lies between [1/8, 1/2] inch. Figure 5.12 shows regions where the joint components

can be extended.

121

Solution

This plan requires two mold stages. The outer cylinder is molded in the first stage.

The inner capped cylinder is molded in the second stage. The parting direction

is perpendicular to the rotation axis. The cavity shape is changed using a sliding

core that is translated along the rotation axis. The core acts as a placeholder for

the inner cylinder in the first stage. It is pushed out of the mold in the second

stage creating a cavity into which the material for the inner cylinder is injected.

Example

Figure 5.13 shows an example for this plan. This design requires two mold pieces

and a core. Figure 5.13(b) and 5.13(c) show the two mold stages. In the first mold

stage, Mold pieces A and B are assembled and the core is inserted to the position

shown in Figure 5.13(b). The first material is then injected into the assembled

mold. Figure 5.13(c) shows the molded part after the first stage. For the second

mold stage, the core is pulled out to the position shown in Figure 5.13(c). The

second material is then injected to produce the final part.

Consequences

This plan follows the guidelines outlined in Section 5.2.1 of molding the inner com-

ponent after the outer component. This will cause the inner component to shrink

away from the outer component establishing clearance between the cylindrical sur-

faces. However, it must be noted that the inner component also shrinks along the

cylindrical axis. This might cause the cap to stick to the outer component and

jam the motion. Length of the inner component must be accordingly specified to

compensate for this shrinkage.

122

Figure 5.13: Example for revolute joint plan C

5.5.2 Plan D

Applicability

This molding plan is for revolute joint with a groove connection. Figure 5.14 shows

regions where the joint components can be extended.

Solution

This plan requires two mold stages. The outer cylinder is molded in the first stage.

The inner grooved cylinder is molded in the second stage. The parting direction is

perpendicular to the rotation axis. The cavity shape is changed using two sliding

cores that are translated along the rotation axis. The cores acts as placeholders for

the inner cylinder in the first stage. They are pushed out of the mold in the second

123

Stage 1

Stage 2

Parting
Direction

Figure 5.14: Revolute joint plan D

stage creating a cavity into which the material for the inner cylinder is injected.

Example

Figure 5.15(a) shows an example for this plan. This design requires three mold

pieces and four cores. Figure 5.15(b) and 5.15(c) show the two mold stages. For

the first mold stage core A1 is inserted into mold piece A and core A2 is inserted

into mold piece C. Mold pieces A and C are assembled with mold piece B as shown

in Figure 5.15(b). First stage material is then injected. Figure 5.15(c) shows the

molded part after the first stage. For the second mold stage, cores A1 and A2

are replaced with cores B1 and B2 respectively as shown in Figure 5.15(c). The

second material is then injected to produce the final part. Please note that Cores

A1 and A2 have the same shape. They have been assigned different names to

clearly illustrate the different assembly steps. Same is true with Cores B1 and B2.

Consequences

This plan follows the guidelines outlined in Section 5.2.1 of molding the inner com-

ponent after the outer component. This will cause the inner component to shrink

124

Figure 5.15: Example for revolute joint plan D

away from the outer component establishing clearance between the cylindrical sur-

faces. Although this plan provides similar functionality as plan C, but the mold

design is much more complicated. It requires four cores compared to only one in

plan C. Also the cavity shape change method is very complicated.

125

5.6 Molding Plans for Spherical Joint

Spherical joint allows for rotation in any direction simultaneously. A common

example of this type of joint is known as the ball and socket joint. This type

of joint is well known for its uses in the human body. There are many uses for

the ball and socket joint in molded and assembled parts as well. Spherical joints

are not widely used in molded plastic products because the joint needs to be

realized by very precisely assembling many individual pieces. Therefore, instead

of implementing a spherical joint, two or three pin connections are used in series

to produce the same function.

In-mold assembly facilitates molding of spherical joints. A spherical socket

requires a spherical core, which obviously cannot be disassembled from the molded

socket. There are two options to disassembling the spherical core - using sacrificial

core or splitting the core into three or more pieces. Using sacrificial core is costly

and may not be suitable for many situations. Split cores introduce flash on the

spherical surface that causes jerky motion. This section again presents two molding

plans for realizing spherical joints.

5.6.1 Plan E

Applicability

This molding plan is for spherical joint where the socket surrounds about three-

fourth of the spherical ball. Figure 5.16 shows regions where the joint components

can be extended.

126

Parting
Direction

Stage 1

Stage 2

Figure 5.16: Spherical joint plan E

Solution

This plan requires two mold stages. The outer component (socket) is molded in the

first stage. The inner component (ball) is molded in the second stage. The parting

direction is along the opening of the socket. The cavity shape can be changed

either using a sacrificial core or split cores that are translated along the parting

direction itself. The cores acts as placeholders for the ball in the first stage. They

are pushed out of the mold in the second stage creating a cavity into which the

material for the ball is injected.

Example

Figure 5.17 shows an example for this plan. This design requires two mold pieces

and five cores. Figure 5.17(b) and 5.17(c) show the different steps for molding

the spherical joint. In the first mold stage, Mold pieces A and B are assembled

with cores A, C1 and C2 as shown in Figure 5.17(b). The first material is then

injected into the assembled mold. Figure 5.17(c) shows the molded part after the

first stage. For the second mold stage, the cores A, C1 and C2 are replaced by

cores B1 and B2 as shown in Figure 5.17(c). The second material is then injected

127

Figure 5.17: Example for spherical joint plan E

to produce the final part.

Consequences

This plan follows the guidelines outlined in Section 5.2.1 of molding the inner

component after the outer component. This will cause the inner component (ball)

to shrink away from the outer component (socket) establishing clearance between

the contact surfaces. This plan uses split cores, but still produces smooth motion.

The trick to getting a smooth motion in spite of the flash produced by split cores

is not molding the entire ball and socket. Both, ball and socket are split and there

are two empty spaces on both of them. As the joint is rotated, the flash on the

surface will be pushed into those empty spaces causing a smooth motion.

128

Parting
Direction

Stage 2

Stage 1

Figure 5.18: Spherical joint plan F

5.6.2 Plan F

Applicability

This molding plan is for spherical joint where the socket surrounds the spherical

ball only around the equator. This enables the joint to have maximum rotational

capabilities, but lesser mechanical strength. Figure 5.18 shows regions where the

joint components can be extended.

Solution

This plan requires two mold stages. The inner component (ball) is molded in the

first stage. The outer component (socket) is molded in the second stage. The

parting direction is perpendicular to the equator where the socket surrounds the

ball. The cavity shape is changed using two sliding cores that are translated

perpendicular to the parting direction. The cores act as placeholder for the socket

in the first stage. They are pushed out of the mold in the second stage creating a

cavity into which the material for the socket is injected.

129

Figure 5.19: Example for spherical joint plan F

Example

Figure 5.19 shows an example for this plan. This design requires two mold pieces

and two cores. Figure 5.19(b) and 5.19(c) show the different steps for molding the

spherical joint. In the first mold stage, Mold pieces A and B are assembled with

cores A and B as shown in Figure 5.19(b). The first material is then injected into

the assembled mold. Figure 5.19(c) shows the molded part after the first stage.

For the second mold stage, the mold piece B is replaced by mold piece C, and the

cores A and B are simply pushed out sideways as shown in Figure 5.19(c). The

second material is then injected to produce the final part.

130

Consequences

This plan does not follows the guidelines outlined in Section 5.2.1 of molding the

inner component after the outer component. This might cause the socket to shrink

onto the ball leading to a tighter clearance. As described in Section 5.2.1, this plan

is not appropriate for components of large dimensions. It also requires uses of anti-

stiction agents and materials with negligible shrinkage. However the mold design

for this plan is much simpler as compared to plan E.

5.7 Summary

Generating feasible molding plans for joints is a time-consuming process. The

designers need to experiment with size, geometry, material and molding sequence to

generate a feasible and efficient molding plan. When a successful plan is developed

and experimentally validated, a lot of useful knowledge is generated. In the absence

of a formal framework to capture this information, most of it is lost and needs to

be painstakingly regenerated for every new assembly.

This chapter presents a framework for representing molding plans for artic-

ulated joints. This framework allows us to record molding plans for joints in a

reusable form. When a joint similar to a previously molded joint is found in a new

assembly, the previously generated knowledge can be applied to the new joint.

This chapter identified four assembly design principles that lead to feasible and

efficient molding plans. If these design principles are followed, it is possible to

reduce the molding cost and ensure that the molded assembly is of desired quality.

This chapter identified the complete set of applicability conditions that needs to

be satisfied in order to use a molding plan for a particular joint. This chapter also

131

identified all feasibility constraints that can be transferred from the molding plan

of the joint to the overall molding planning problem for an assembly. The molding

plan for the assembly needs to satisfy these constraints of the joint molding plan

in order to be feasible. This chapter finally presents six reusable molding plans for

three basic joints – prismatic, revolute, and spherical.

132

Chapter 6

GENERATING MOLDING PLANS FOR

ARTICULATED ASSEMBLIES

This chapter investigates the problem of generating molding plans for articulated

assemblies. This chapter is arranged in the following manner. Section 6.1 for-

mulates the molding plan problem as a state-space search problem. Section 6.2

presents a high-level overview of approach, while Section 6.3 presents a detailed

description of the overall algorithm. Section 6.4 describes the geometric algorithms

that are used to generate a molding stage. Section 6.5 finally illustrates the algo-

rithm with the help of some examples.

6.1 State Space Formulation

Generating molding plan is similar to other manufacturing operation-planning

problems such as machining and sheet-metal bending. There are two traditional

approaches to process planning. The first approach is called generative process

planning. In this approach a plan is synthesized from the first principles by trying

various alternatives in generate-and-test paradigm. The second approach is called

133

variant process planning. In this approach, a plan is generated by modifying an

existing plan. Purely generative approaches are unlikely to work in the molding

planning domain. A lot of knowledge that is needed to successfully mold joints

does not exist in an explicit geometric form. Purely variant approaches are also

unlikely to work because every new assembly is significantly different from the

previously generated assemblies.

We use a hybrid approach that combines elements from generative and variant

techniques. We reuse the molding plans for individual joints described in Chapter 5

to generate plans for new assemblies. This allows us to reuse existing molding

knowledge and yet ensure that we can handle a wide variety of molding planning

problems. When a new assembly is encountered we first check if the joints used

in the assembly are sufficiently similar to the joints for which plans exist. This is

performed by comparing the:

• Type of joint,

• Size of joint,

• Geometry, and

• Material of connected components

If a joint in the assembly is sufficiently similar to a joint with the known molding

plan, then the molding plan for the joint is used as feasibility constraints in the

planning process. This ensures that our method will only generate feasible plans.

The rest of the planning proceeds in a generative manner.

The problem statement for generating molding plan (GenerateMolding-

Plan) is given in Section 3.5. The input to GenerateMoldingPlan is the

articulated assembly for which molding plan is to be generated. To solve the

134

Assembly
Model

Generate
Molding Plan

Molding
Plans

for Joints

Molding Plan

Figure 6.1: Molding plan problem

problem using hybrid approach, we also need a molding plan for each joint in the

assembly. A molding plan for a joint can be obtained automatically as follows. The

joint parameters (type, size, geometry, and material) are first identified by analyz-

ing the CAD model of the input assembly. The molding plan database described

in Chapter 5 is then queried with the joint parameters to obtain the molding plan

of the closest-match joint. This dissertation does not provide low-level details for

accomplishing the same. The algorithm assumes that a molding plan is provided

for each joint in the assembly. This molding plan may either be obtained auto-

matically or explicitly provided by the designer. The molding plan problem is

represented graphically in Figure 3.12.

For a molding plan to be feasible, it must satisfy the feasibility constraints

of the joints in addition to the molding stage feasibility constraints given in Sec-

tion 3.3.1. The new stage constraints can be informally summarized as follows.

The mathematical definitions for each constraint is given in Section 3.3.1 and Sec-

135

tion 5.3.2.

1. Joint precedence constraints. The molding plan for a joint specifies the order

in which the connected components need to be molded. For example, hole

must be molded before pin in a revolute joint. The molding plan for the

assembly must follow precedence constraints for all the joints in the assembly.

2. Joint axis constraints. The molding plan for a joint specifies a feasible con-

figuration space of the joint axes. For example, the joint axis for a revolute

joint must be perpendicular to the parting direction. A molding stage form-

ing a component of a joint must be configured such that the joint axis is

within the feasible configuration space.

3. Joint parameter constraints. The molding plan for a joint specifies a feasible

range of joint parameters. A molding stage forming a component of a joint

must be configured such that the joint parameter is within the feasible range.

4. Concurrency constraints. All components molded in a single stage must be

of the same material and connected to a common base component.

5. Intersection constraints. The stage subassembly must be configured such

that components do not intersect with each other.

6. Shadow constraints. The stage subassembly must be configured such that

components do not cast shadow upon each other.

This dissertation formulates the molding planning problems as a state-space

search problem. Section 2.5 briefly reviews the state-space search algorithms. For

molding plan problem, one can develop many different types of state-space formu-

lations. We will use the forward chaining formulation for explaining the scheme

136

described in this thesis. The search space is represented as a tree T = {N,E, S,G},

where

• N is the set of nodes in the tree. Each node in the search tree represents a

search state, i.e., an intermediate assembly.

• E is the set of edges between the nodes. Each edge in the search tree rep-

resents a molding operation or stage. Each molding stage is described by

the set Ci of components to be molded, called stage components and the

configuration Ti of the subassembly in which the molding will take place.

It is mathematically represented as a two-tuple (Ci, Ti) as in Equation 3.12.

Each edge or mold stage has an associated manufacturing cost.

• S is the root node of the search tree, which is an empty assembly.

• G is the set of leaf nodes in the tree. The leaf nodes of the search tree are

either nodes corresponding to the final assembly, or nodes corresponding to

the intermediate subassemblies that have infeasible molding configuration.

The leaf nodes that do not correspond to the final part are called blocked

nodes. New search nodes cannot be generated from the blocked nodes.

Figure 6.3 shows a portion of the state space for the gimbal assembly shown in

Figure 6.2. A solution is a path through this graph from the start node S to a goal

node in G. The path with the lowest manufacturing cost is the optimal solution.

6.2 Overview of Approach

The state-space search problems are known to be combinatorial optimization prob-

lems. For an assembly with m components, a brute-force approach that evaluates

137

C1

C2

C3

Figure 6.2: Gimbal

all possible states in Figure 6.3 will take O(m!) time. The state-space search

problems are usually solved using branch and bound algorithm with a lower time

complexity. This technique generates one path at a time, keeping track of the best

solution so far. It uses that best solution as a bound on future branches of the

search. A bounding function assigns a bound to each node in the search tree. For

leaves the bound equals the value of the corresponding solution, whereas for inter-

nal nodes the value is a lower bound for the value of any solution in the subspace

corresponding to the node. The main objective in a branch and bound algorithm

is to perform an enumeration of the alternatives without evaluating each search

node. We use a heuristic variant of the branch and bound algorithm, which is a

combination of Depth-First Search (DFS) as the overall principle and Best-First

Search (BeFS) when choice is to be made between nodes at the same level of the

search tree. The branch and bound technique is briefly reviewed in Section 2.5.

In order to use branch and bound search effectively, we need to overcome two

challenges – large number of search nodes and high node-generation time. Due

to the exponential nature of the problem, even a moderate size assembly can lead

138

Empty Assembly

Mold C3
Mold C2

Mold C1

Mold C2
Mold C1

Mold C1 Mold C2

Mold C3

Figure 6.3: Partial state space

to a large state space. In a typical case, very few feasible plans exist, and the

algorithm wastes a lot of time evaluating infeasible solution paths. Generating

a new search node also takes a lot of time. This step usually involves extensive

geometric reasoning and making queries to a geometric kernel. Such computation is

time-consuming and leads to very high node-generation time. Slow node generation

also makes it difficult to explore large portions of the search space. We use the

following two techniques to solve the state-space search problem efficiently:

139

1. Reduce the search space using feasibility constraints. We eliminate infeasible

solutions as early as possible to save time. As we will see later, the first

step of generating a node is to find stage components. This can be done

by simply enumerating all alternatives, but it will lead to redundant com-

putation. We observe that the precedence constraints from the joints and

the concurrency constraints from the problem requirements can be applied

at this stage itself to quickly eliminate the infeasible sequences. We in fact

create a Directed Acyclic Graph (DAG) from the precedence constraints of

the joints and traverse it to generate stage components. We also arrange

the steps of the node-generation algorithm such that least time is wasted on

infeasible nodes.

2. Reuse the results of a search node. Each node in the search tree contains an

intermediate subassembly as shown in Figure 6.3. A particular subassembly

can be reached via different paths in the search tree. Any two molding

stage sequences that cover the same set of components will lead to the same

subassembly. For example the molding sequences [Mold C3 → Mold C2] and

[Mold C2 → Mold C3] in Figure 6.3 will result in the same intermediate

subassembly containing C2 and C3. So the subtree below both the nodes

will be identical. This observation is used to reuse the results of previously

visited search nodes and avoid repetitive computations.

When we need to branch a node, we first check if the subassembly in the

node has already been reached from a different path. If such a node is found,

we reuse the solution path from that node to the goal node.

140

6.3 The Search Algorithm

We use a heuristic variant of the branch and bound algorithm, which is a combi-

nation of Depth-First Search (DFS) as the overall principle and Best-First Search

(BeFS) when choice is to be made between nodes at the same level of the search

tree.

In DFS, a live node with the largest level in the search tree is chosen for

exploration. An advantage of this strategy is that the memory requirements in

terms of number of nodes to store at the at the same time is bounded above by

the number of levels in the search tree multiplied by the maximum number of

children of any node. This number is quite manageable in most practical cases.

It allows the use of recursion to traverse the tree, which enables one to store

the information about the current subproblem in an incremental way, so only the

constraints added in connection with the creation of each subproblem need to be

stored. It also quickly produces a feasible solution. However, if the incumbent

is far from the optimal solution, large amounts of unnecessary computations take

place.

Combining BeFS to choose between the nodes at the same level of the search

tree avoids this problem. BeFS proceeds preferentially through nodes that problem-

specific heuristic indicates might be on the best path to a goal. A heuristic eval-

uation function is used to help decide which node is the best one to explore next.

Given a node n in the search tree, the heuristic evaluation function f(n) estimates

the total path cost of going from a start node to a goal node via n. The value

returned by f(n) is an underestimate and hence can also be used as a bounding

value for discarding unpromising solution paths. BeFS selects the node for which

f(n) is minimum. The idea is that exploring the node with minimum estimated

141

cost first hopefully leads to a good feasible solution.

Algorithm GenerateMoldingPlan

Input:

1. Multi-material articulated assembly A = {a1, . . . , am}.

2. Each component ai is a lump with an associated material attribute mi.

3. Each joint jk in the assembly has an associated molding plan pk.

Output: A sequence of molding stages S = {s1, . . . , sn}

Steps:

1. Initialize solution:

• IncumbentSolution := ∅

• IncumbentCost := ∞

2. Initialize search:

• A0 := ∅

• P0 := {A0}

3. Start search: ProcessNode(P0)

4. Return IncumbentSolution

The algorithm GenerateMoldingPlan recursively traverses a search tree to

return the molding plan with minimum cost. The algorithm initializes the search

142

with a node containing an empty assembly. It then calls the algorithm Pro-

cessNode that recursively builds the assembly by inserting components. The

variables IncumbentSolution and IncumbentCost are global that are updated by

the algorithm ProcessNode whenever a solution better than the incumbent so-

lution is found.

Algorithm ProcessNode

Input: Search node P containing the current subassembly AP

Output: Updates the global variables IncumbentSolution and IncumbentCost de-

fined in algorithm GenerateMoldingPlan Steps:

1. S := Path from P0 to P

2. If AP = A, then

(a) If Cost(S) < IncumbentCost, then

• IncumbentSolution := S

• IncumbentCost := Cost(S)

(b) Return.

3. If AP has already been processed, then

(a) Retrieve the shortest path SP from AP to A

(b) S := S ∪ SP

(c) If Cost(S) < IncumbentCost, then

• IncumbentSolution := S

• IncumbentCost := Cost(S)

143

(d) Return.

4. Find a lower-bound cost f(P) := Cost(S) + h(P) as described in Sec-

tion 6.3.1

5. If f(P) ≥ IncumbentCost then return.

6. Branch on P generating children search nodes P ′ = {P1, . . . , Pq} using algo-

rithm

GenerateMoldingStages(AP) described in Section 6.4

7. If |P ′| = 0, i.e., no feasible molding stage is possible for the current sub-

assembly then return.

8. LivePriorityQueue :=
⋃

{(Pi, f(Pi))}

9. Repeat until LivePriorityQueue = ∅

(a) Extract a node Pi with minimum lower-bound cost f(Pi) from LivePri-

orityQueue to be processed

(b) ProcessNode(Pi)

The algorithm ProcessNode processes a node in the search tree. Each node

P in the search tree stores the current subassembly AP . The search node is either

fathomed or branched into multiple search nodes. A search node is fathomed in

three scenarios:

1. The search node is a leaf node, i.e., the current subassembly AP is the final

assembly A.

2. The subassembly AP contained in the search node has already been processed

before, and the result can be reused.

144

3. If the lower bound cost f(P) is no better than the incumbent. The current

solution path is not promising because no feasible solution of the subproblem

can be better than the incumbent solution.

Whenever a new solution is found, it is compared with the incumbent solution

(IncumbentSolution). If it is better, the incumbent solution is updated with the

new solution. If a search node cannot be fathomed, the possibility of a better

solution cannot be ruled out. The node is branched into multiple search nodes

{P1, . . . , Pq}. The new nodes Pi to be processed are inserted into a priority queue

(LivePriorityQueue) indexed on the lower-bound cost f(Pi). Extracting a node

from the priority queue always returns a node with the lowest lower-bound cost.

Therefore we always process the best node available, which is why this is called

the best-first search.

From the above, our algorithm consists of three main components:

1. A bounding function (Section 6.3.1) providing a lower bound for the best

solution obtainable in a subspace.

2. A strategy for reusing (Section 6.3.2) the results of previously processed

nodes.

3. A branching rule (Section 6.3.3) to be applied if a search node after investi-

gation cannot be discarded, hereby branching the current node into two or

more nodes to be investigated in subsequent iterations.

6.3.1 Bounding Function

The bounding function is the key component of any branch-and-bound algorithm.

Given a node P , the bounding function f(P) estimates the total path cost of going

145

from a start node to a goal node via P . Ideally the value of a bounding function

for a given subproblem should be equal to the value of the best feasible solution

to the problem, but obtaining this value itself is NP-hard. So a trade off is struck

between quality and time when dealing with bounding function. The algorithm

described above uses the following bounding function for a node P :

f(P) = Cost(S) + h(P)

where,

• Cost(S) is cost of the path S from P0 to P

• h(P) estimates the cost of the path from P to a goal node containing the

final assembly A

The path S is essentially the sequence of molding stages used to reach P from

P0. The function Cost(S) returns the sum of the cost of all molding stages in

the sequence. Section 3.3.2 describes a method to calculate the relative cost of a

molding stage. It consists of molding cost, defect cost, and tooling cost. However,

as described in Section 3.3.2 the molding cost is usually very large compared to the

defect cost and the tooling cost. Therefore, when comparing two molding plans,

it is sufficient to only compare the molding cost. The molding cost for a molding

stage is given by Equation 3.13, which consists of:

1. Setup time (constant cost)

2. Cooling time (directly proportional to the wall thickness of the part)

3. Ejection time (directly proportional to the number of undercuts required for

non-joint features)

146

The bounding function h(P) must be an underestimate so that a solution path

can be safely pruned. Each node in the search tree stores the current subassem-

bly AP . We need to find a lower bound cost for molding the remaining set of

components {A− AP}. We calculate the lower bound by relaxing the precedence

constraints coming from the joint molding plans. We still follow the feasibility

constraints given in Section 3.3.1. We assume that all components of the same

material and connected to a common base component can be molded in a sin-

gle stage. We also assume that all the components in a particular stage can be

oriented in a configuration that minimizes the number of undercuts. These as-

sumptions make the cost parameters (cooling time and number of undercuts) of a

stage independent of molding sequence. Hence the cost of molding each component

can be calculated offline and reused to quickly compute a lower bound cost for a

subproblem.

6.3.2 Reusing the Results of a Search Node

A particular subassembly can be reached via different paths in the search tree. Any

two molding stage sequences that cover the same set of components will lead to

the same subassembly. For example the molding sequences [Mold C3 → Mold C2]

and [Mold C2 → Mold C3] in Figure 6.3 will result in the same intermediate sub-

assembly. So the subtree below both the nodes will be identical. This observation

is used to reuse the results of previously solved subproblems.

6.3.3 Branching Rule

In algorithm ProcessNode, a branching rule is applied to a search node if it

cannot be discarded. The node is branched into multiple nodes to be investigated

147

in subsequent iterations. We refer to the node from which new nodes are generated

as the starting node and the nodes that are being generated as the target nodes.

All branching rules can be seen as subdivision of a problem (starting node) into

two or more subproblems (target nodes). The search is considered converging if

the size of each generated subproblem is smaller than the original subproblem.

Each node P in the search tree stores the current subassembly AP . The prob-

lem represented by this search node is generating a feasible molding plan for the

subassembly {A − AP}. For example, the problem represented by node N1 in

Figure 6.3 is generating a feasible molding plan for a subassembly consisting of

components C1 and C2.

We branch a node by generating molding stages. A molding stage adds a set of

components to the current subassembly (starting node) to create a new subassem-

bly (target node). The molding stage is represented by the directed edge between

the starting node and the target node. For a given subassembly, we can generate

multiple molding stages by selecting different sets of stage and base components.

The number of subproblems that can be generated from a problem is equal to the

number of feasible molding stages for a subassembly. For example, the node N1

in Figure 6.3 can be subdivided into two nodes N2 and N3 by molding C1 and C2

respectively. The subdivided nodes N2 and N3 represent smaller problems of gen-

erating a molding plan for C2 and C1 respectively. The algorithm for generating

molding stages for a given subassembly is described in Section 6.4.

6.4 Generating Molding Stages

This section describes an algorithm for generating a molding stage for an inter-

mediate assembly. This algorithm is used by algorithm ProcessNode to branch

148

an interior node in the search tree. A molding stage si is represented as a tu-

ple (Ci, Ti) as defined in Equation 3.12, where Ci is the set of components to be

molded in molding stage si and Ti represents the configuration of the subassem-

bly Ai. The configuration Ti of an assembly is defined in Equation 3.4 as a tuple

(Θ, T̄) where Θ = {θ1, . . . , θm} are the joint coordinates and T̄ is the homogeneous

transformation applied to the whole assembly.

Figure 6.4 shows the steps involved in generating a molding stage. The middle

column in the figure shows the steps that need to be executed in the specified

sequence. The right column is the set of constraints extracted from the molding

plans of the joints. The left column is the set of problem constraints. Section 6.4.1

describes an algorithm to find the stage components Ci. Section 6.4.2 describes

a method to determine T̄ . Section 6.4.3 and Section 6.4.4 determine the joint

coordinates θi for stage components, while Section 6.4.5 determines the θi for pre-

stage components. The algorithm for generating all possible molding stages for a

subassembly is described below.

Algorithm GenerateMoldingStages

Input: Current subassembly AP

Output: All possible molding stages SP = {s1
P , . . . , s

q
P} for AP

Steps:

1. Find the sets of stage components C = {C1, . . . Cq} using algorithm Find-

StageComponents described in Section 6.4.1

2. SP = ∅

3. For each Ci ∈ C do

149

(a) Find a component b ∈ AP that is connected to all components in Ci. In

case of multiple such components, any one can be arbitrarily chosen

(b) Orient the base component b to determine T̄ as described in Section 6.4.2

(c) Θ = ∅

(d) For each stage component aj ∈ Ci do

i. Find a feasible and optimal configuration θj as described in Sec-

tion 6.4.3 and Section 6.4.4

ii. Θ = Θ ∪ θj

(e) Pre-stage components AQ = AP − b

(f) For each pre-stage component ak ∈ AQ do

i. Find a feasible configuration θk as described in Section 6.4.5

ii. Θ = Θ ∪ θk

(g) SP = SP ∪ {Θ, T̄}

4. Return SP

6.4.1 Finding Stage Components and the Base Component

This is the first step of generating a molding stage for the current subassembly.

Before we can generate a molding stage, we need to find the components that can

be added to the current subassembly in a molding stage.

Algorithm FindStageComponents

Input:

1. Input assembly A

150

Find stage components and
the base component

Find the feasible
configuration space for each

stage component

Find an optimal
configuration for each stage

component

Find a feasible configuration
for each pre-stage

component

Orient the base component

Precedence
constraints

Joint-axis
constraints

Joint-parameter
constraints

Concurrency
constraints

Inter-component
shadow constraints

Minimum undercuts
and

Flattest parting line

Inter-component
shadow constraints

Figure 6.4: Method to generate a molding stage

2. Current subassembly AP

3. Precedence constraints G: The precedence constraints are derived from the

joint molding plans. Each joint molding plan specifies a sequence in which

the connected components need to be molded. This defines a partial ordering

on the assembly components. This partial ordering can be represented as a

Directed Acyclic Graph (DAG). Figure 6.5 shows the precedence constraints

DAG for the gimbal shown in Figure 6.2. The DAG shown in the figure

implies that component c3 must be molded after c2, which must be molded

after c1.

151

C1

C2

C3

Figure 6.5: Joint precedence constraints for gimbal

4. Concurrency constraints: The concurrency constraints represent the require-

ment that all components molded in a single stage must be of the same

material and connected to a common base component. The parameters for

this constraint are available in the input assembly model. Each component

model ai has a material attribute mi and mating data in the assembly pro-

vides the connectivity information.

Output: Sets of stage components C = {C1, . . . Cq}. Each Ci is a set of components

that can be molded in the next stage.

Steps:

1. For each component ai in AP remove ai and associated edges from G

2. U := set of all nodes in G for which indegree count is zero

3. Partition U into groups of components C = {C1, . . . Cq} such that Ci ⊂ U

and ∪Ci = U . This can be achieved by union-find algorithm [Corm90] that

partitions a set of elements into equivalent groups.

4. Return C.

Suppose that the input assembly is A = {a1, . . . , a9} and the current subassem-

bly is AP = {a1, a5}. The precedence constraints DAG is shown in Figure 6.6a.

152

a1

a2 a3

a4

a5

a6 a7

a8

a9

(a) Initial DAG

a2 a3

a4

a6 a7

a8

a9

(b) After molding a1 and a5

Figure 6.6: Precedence constraints for an assembly.

Figure 6.6b shows the DAG after removing the nodes a1 and a5 corresponding

to the current subassembly. The components for which indegree count is zero

are U = {a2, a3, a6, a7, a8}. Suppose that a2 and a3 are made of same material

and connected to a1. Similarly a6 and a7 are made of same material and con-

nected to a5. U can thus be partitioned into three groups of stage components

C = {{a2, a3}, {a6, a7}, a8}. The base component for the group {a2, a3} is a1 and

that for {a6, a7} is a5. Hence, the node P corresponding to the subassembly AP

can be branched into three new nodes.

6.4.2 Orienting the Base Component

The configuration Ti of an assembly is defined in Equation 3.4 as a tuple (Θ, T̄)

where Θ = {θ1, . . . , θm} are the joint coordinates and T̄ is the homogeneous trans-

formation applied to the whole assembly. In this step, we determine T̄ to orient the

base component such that joint-axis constraints are satisfied. The molding plan

for a joint specifies a feasible configuration space of the joint axes. For example,

the joint axis for a revolute joint must be perpendicular to the parting direction.

A molding stage forming a component of a joint must be configured such that the

153

joint axis is within the feasible configuration space.

Orienting the base component to satisfy the joint-axis constraints amounts to

building a transformation matrix T̄ . Section 2.4.3 provides some background on

transformations applied to geometric entities. Here we are interested in orienting

an axis or a vector along a particular direction. Since a vector always passes

through the origin, this transformation is equivalent to one or more rotations

about the three principle coordinate axes as described in Section 2.4.3.

6.4.3 Finding the Feasible Configuration Space for a Stage

Component

This step describes a method to determine feasible configuration space for a stage

component. In order for a molding stage to be feasible, the parameter θ of the

joint between the stage component a and the base component b must be defined

such that following three constraints are satisfied:

1. Joint parameter constraints. θ must be within the range specified by the

joint molding plan, i.e., θl ≤ θ ≤ θu

2. Intersection constraints. The stage component does not intersect with the

base component, i.e., a ∩∗ b = ∅.

3. Shadow constraints. The stage component and the base component do not

cast shadow on each other, i.e., ā∩∗ b̄ = ∅, where ā and b̄ are projections of a

and b on the x-y plane (because the parting direction is along the z-direction).

We sweep the stage component over the initial range [θl, θu] specified by the

joint molding plan. The sweep is a translation or rotation depending on on whether

154

the stage component is connected to a prismatic or revolute joint. We then find

the actual ranges for which the stage component does not intersect with or cast

shadow over the base component. This partitions the initial range specified by the

molding plan into sets of feasible and infeasible ranges.

Lemma 6.1. If two components do not cast shadow on each other along a viewing

direction, they also do not intersect.

Proof. From the separating axis theorem (described in Section 7.2.2), if there exists

a plane for which the projection of two objects do not intersect, then the objects

do not intersect. Suppose that the viewing direction is along the z-direction. By

definition, if two components a and b do not cast shadow on each other along the

z-direction, the projections of a and b on the x-y plane do not intersect. Hence a

and b do not intersect.

The above lemma implies that the shadow constraint is stricter than the inter-

section constraint. If shadow constraint is satisfied for a particular configuration,

the intersection constraint is automatically satisfied. Hence, we can conclude that

if we sweep the stage component a over the initial range [θl, θu] specified by the

joint molding plan, the set of joint parameters θ for which the projection of the

stage component a and the base component b do not intersect, constitutes the

feasible configuration space of a.

The projection of a triangulated polyhedron p onto a plane consists of a set of

triangles. A projection p̄1 intersects with another projection p̄2 if any triangle in

p̄1 intersects with any triangle in p̄2. A triangle t1 intersects with another coplanar

triangle t2 if any edge in t1 intersects with any edge in t2 or it is completely enclosed

inside t2. Hence, the intersection of projection of two polyhedrons can be tested by

155

just considering projected edges. We can further reduce the number of projected

edges to be tested by just intersecting the silhouette the two polyhedrons. The

projection of a polyhedron is a simple polygon with holes. The boundary of this

polygon is called silhouette of the polyhedron.

Let us first consider prismatic joints. The molding plans for prismatic joints

presented in Chapter 5 specify that the parting direction be perpendicular to the

joint axis, i.e., joint axis is in the x-y plane. If a stage component is connected

to the base component via a prismatic joint, the sweep of a vertex v of the stage

component is a line segment. We project this line segment onto the x-y plane to

get another line segment l. It can be seen in Figure 6.7a that the overlap status

of an edge e connected to this vertex v can only change at the intersections of l

and the silhouette h of the base component. Figure 6.7b shows that for each edge

on the stage component, the initial feasible configuration space θ is partitioned

into feasible and infeasible ranges. The feasible ranges for each edge ei can be

represented as {[θ1
j , θ

2
j], . . . , [θ

k−1

j , θkj]} such that θ1
j ≥ θl and θkj ≤ θu. The final

feasible range for the stage component is the intersection of the feasible ranges for

each edge on the stage component.

θ = ∩mj=0{[θ
1

j , θ
2

j], . . . , [θ
k−1

j , θkj]}

As the stage component is translated along the joint axis, the silhouette of the stage

component does not change. Hence we can further optimize the implementation

by only considering the silhouette edges of the stage component.

If the stage component is connected to the base component via a revolute joint,

the sweep of a vertex on the stage component is a circular arc. The projection of

this arc on the x-y plane is again a line segment. Therefore we can use the same

scheme used for prismatic joint. However, as the stage component is rotated, its

156

v1

v2

e

Silhouette Overlap Swept
vertex

Clear Clear

(a) Changing overlap status

cl cu

c1 c2 c3 c4

Feasible Feasible

Infeasible

(b) Partition of the initial feasi-

ble space

Figure 6.7: Determining the feasible configuration space for a stage component

silhouette continuously changes. Hence we need to consider all edges of the stage

component.

Theorem 6.1. Let Pa be a stage component with na vertices connected to a base

component Pb with nb vertices. The feasible configuration space for Pa can be

calculated in O(nanb log nb) time if the type of joint between Pa and Pb is prismatic

or revolute.

Proof. The first step is to find the silhouette h of the base component. This is

accomplished by projecting the facets of the base component onto the x-y plane

and finding the union of the projected facets. The union can be found by plane-

sweep algorithm which takes O(nb log nb) time.

Now consider each vertex of the stage component. The projection of the trajec-

tory of each vertex of the stage component as it is translated or rotated, depending

on whether it is connected to a prismatic or revolute joint, is a line segment l on

the x-y plane. The number of potential intersections between l and the silhouette

157

h is nb. We need to determine the status of l at each intersection point whether it

is entering or exiting h. This can be done by sorting the intersection points and

finding the status of an endpoint of l. The status of l alternates at each succes-

sive intersection point. Sorting the nb intersection points takes O(nb log nb) time.

Finding whether a point lies inside or outside h takes nb time. Hence it takes

O(nb log nb) to process each vertex of the stage component. Processing na vertices

will therefore take O(nanb log nb) time.

The sweep of a stage component connected via a spherical joint is too compli-

cated for the scheme presented above. We use an iterative scheme presented in

Section 6.4.5 to handle spherical joints.

6.4.4 Finding an Optimal Configuration for a Stage Com-

ponent

The previous section finds a feasible configuration space (range of joint parameter

θ) for a stage component. This section chooses a configuration from the feasible

range that minimizes the molding stage cost. As described in Section 3.3.2, we

need to optimize the molding cost (Cm), defect cost (Cd), and tooling cost (Ct).

The molding cost is directly proportional to the number of undercuts, defect cost

is directly proportional to the complexity of the parting line, while the tooling cost

is directly proportional to the time taken to machine the shutoff surface. Usually,

Cm ≫ Cd ≫ Ct (6.1)

We first optimize the molding cost, then defect cost, and finally tooling cost.

When comparing the cost of two candidate molding stages, we only compare the

molding cost of the two. The defect cost and tooling cost are used only in case of

158

a tie. Hence, we follow a hierarchical approach in optimizing the parameters of a

molding stage. This hierarchical optimization scheme will not work in cases where

Equation 6.1 does not hold.

In the first step, we further subdivide the feasible range of joint parameter such

that the number of undercuts in each subrange is constant. In other words, moving

the stage component within the subdivided range does not change the number of

undercuts. We select the range with the minimum number of undercuts. In the

next step, we find the configuration within the selected range for which the parting

line is flattest. It should be noted that this method is only applicable for revolute

joints. The motion of a prismatic joint in a straight line does not change the number

of undercuts or flatness of the parting line. In the final step, we construct a shutoff

surface for which the machining cost is minimum. The final step is described in

Chapter 8. The first two steps are described in the following sections.

Minimizing the number of undercuts

Our first algorithm for minimizing the number of undercuts is inspired by the

theoretical algorithm of Ahn et al. [Ahn02], who prove that all combinatorially

distinct parting directions correspond to 0-, 1-, or 2-cells in an arrangement of

great circles Gc on a Gaussian sphere, which is a unit sphere centered at the origin

such that every point on it defines a direction in Euclidean 3-space. A great circle

is the intersection of a sphere with a plane going through its center (defined in

Section 5.3.2). Every facet normal and normal of the triangle formed by every

edge-vertex pair of the part generates a great circle in their arrangement. These

great circles correspond to the directions where a part face changes from front-

facing to back-facing (directions contained in the plane of the face), and directions

159

Parting
directionGa

Gc

Figure 6.8: Scheme for finding the configuration with minimum undercuts

where a projection of one part face potentially changes from occluding to not

occluding (or vice versa) another part face (directions contained in the planes

through an edge-vertex pair from separate triangles).

The parting direction and the orientation of a stage component is equivalent.

Rotating the parting direction clockwise is equivalent to rotating the stage com-

ponent anticlockwise. For the sake of simplicity let us keep the parting direction

fixed. The feasible ranges of revolute joint parameters can be represented as great

arcs Ga on the Gaussian sphere. The great circles Gc intersect and subdivide these

great arcs Ga as shown in Figure 6.8. By construction of the great circles Gc,

the status of a face (front-facing, back-facing, occluding, non-occluding) does not

change within a subdivision. Hence the number of undercuts in a subdivision of

Ga cannot change. The algorithm for detecting the undercuts on a component is

described in Chapter 7.

Definition 6.1. The curve of intersection of a plane and a sphere is a circle. It

160

is called a great circle if the plane passes through the center of the sphere. Two

non-coincident great circles intersect at exactly two points that are diametrically

opposite.

Theorem 6.2. Let P be a stage component with n vertices connected to a base

component with a revolute joint. The configuration with the minimum number of

undercuts can be found in O(n4) time.

Proof. A great circle is formed for every edge-vertex pair on the part. Hence the

number of great circles Gc that can be drawn for a polyhedron with n vertices is

O(n2). Since a great circle intersects with every other great circle on the sphere

at two diametrically opposite points, the number of potential subdivisions of the

great arcs Ga representing the feasible ranges of revolute joint parameters is O(n2).

Hence we need to test O(n2) orientations. It takes O(n2) time to test each orien-

tation because each facet needs to tested against every other facet. The overall

complexity hence becomes O(n4).

It should however be mentioned that although the theoretical worst-case com-

plexity of this algorithm is O(n4), it behaves almost as O(n3). The proof of Theo-

rem 6.2 states that it takes O(n2) time to test each orientation because each facet

needs to tested against every other facet. However Section 7.2 presents an algo-

rithm for detecting undercuts which is almost linear. Section 7.3 presents another

fast algorithm that runs on GPU. Using the GPU-based algorithm, testing O(n2)

directions is not that expensive.

Determining the flattest parting line

The previous section chooses a feasible range of joint parameters for which the

number of undercuts is minimum. This section chooses a joint parameter within the

161

z

y

Parting
line

Parting
direction

(a) Initial orientation

z

y

(b) Optimal orientation

Figure 6.9: Finding a configuration for which the parting line is flattest

feasible range for which the parting line is flattest. Once a feasible range is found,

we calculate the mold-piece regions of the stage component for any orientation

within the feasible range. The algorithm for calculating the mold-piece regions is

described in Chapter 7. The parting line is the set of boundary edges between the

core region and the cavity region. If we rotate the stage component within the

feasible range, the status of the mold-piece regions does not change, and hence the

parting line also does not change. However, the flatness of the parting line with

respect to the parting direction changes. Figure 6.9 shows a simple 2D case where

the parting direction is along the z-direction and the joint axis is along the x-axis.

For simplicity, we assume that the lower bound of the feasible range is zero

and the upper bound is θ, i.e., the selected feasible range is [0, θ]. We need to find

an angle α within this range for which the parting line is flattest. Before we can

develop a method, we must formally define the notion of flatness of a parting line.

Let us consider the scheme shown in Figure 6.10. The parting direction is along

the z-direction and the joint axis is along the x-axis. Let AB be the projection of

162

A

B

C

D

y

z Parting
direction

zA

zB

zC

zD

Figure 6.10: Scheme for finding the orientation for flattest parting line

a line segment in the parting line onto the yz-plane. Our measure of flatness of

AB is:

ρ(AB) = (zA − zB)2 = l2i sin
2(αi)

where li be the length of AB and αi be the angle between the y-axis and AB. Note

that ρ(AB) ≥ 0, with equality holding if and only if AB is perpendicular to the

z-axis (parting direction). In general, the smaller the value of ρ(AB), the flatter is

AB. If AB is rotated to CD along the x-axis (joint axis) by an angle α as shown

in Figure 6.10, the new measure of flatness would be:

ρ(CD) = l2i sin
2(αi + α)

The optimization problem can now be formally stated as follows. Create the

parting line L = {e1, . . . , ek} for the stage component oriented with α = 0. Project

each parting line edge ei onto the yz-plane to create a line segment of length li

163

that makes an angle αi with the y-axis.

Minimize f(α) =
∑k

i=0
l2i sin

2(αi + α)

s.t. 0 ≤ αi ≤ θ
(6.2)

Differentiating the minimization function gives:

k
∑

i=0

2l2i [(2 sinαi cosαi) sin2 α− (1− 2 sin2 αi) sinα cosα+ (sinαi cosαi)] = 0 (6.3)

Solving the above equation gives α for which the parting line is flattest.

Theorem 6.3. Let P be a stage component connected to a base component with

a revolute joint. Let [0, θ] be a feasible range of configurations inside which the

status (front-facing, back-facing, occluding, non-occluding) of any facet on P is

invariant. Let L = {e1, . . . , ek} be the parting line of P for the configuration

α = 0. The configuration 0 ≤ α ≤ θ of the polyhedron for which the parting line is

flattest can be found in O(k) time.

Proof. In the first step, each parting line edge is projected onto the yz-plane which

takes O(k) time. In the next step Equation 6.3 is formed and solved. Summing

up the k terms takes O(k) time and solving it takes O(1) time. Hence the overall

complexity of the algorithm is O(k).

6.4.5 Finding Feasible Configurations for Pre-Stage Com-

ponents

A molding stage si consists of three types of components for which we need to find

a feasible configuration (joint parameter θ):

1. Base component b: Section 6.4.2 describes an algorithm to orient b.

164

b

c1 c2 c3a3a1

a2 a4

Base
component

Stage
components

Pre-stage
components

Figure 6.11: Tree representation of the subassembly produced by a molding stage

2. Stage components Ci: Section 6.4.3 and Section 6.4.4 describe algorithms to

orient Ci.

3. Pre-stage components AQ: This stage finally orients the pre-stage compo-

nents such that there is no shadow between the AQ and b ∪ Ci.

The subassembly that will be produced by stage si can be represented as a tree

with the base component b at the root. Figure 6.11 shows such a representation.

The nodes in the figure are components while the edges are the joints between the

components. Each branch of the tree is a chain of links (components). We need to

find the joint parameters for the pre-stage components with the links corresponding

to the base component and the stage components fixed.

We describe an incremental approach for finding feasible configurations for pre-

stage components. We incrementally change the joint parameter θi each pre-stage

component ak and mark all the feasible configurations. If we consider the sub-

assembly shown in Figure 6.11, the set of feasible configurations for the pre-stage

components {a1, a2, a3, a4} can be represented as another tree shown in Figure 6.12.

Each node in the tree shows a feasible configuration for a pre-stage component.

165

u
1θ1

1θ

1
2θ v

2θ

1
3θ w

3θ

1
4θ

Feasible
configurations for

a1

Feasible
configurations for

a2

Feasible
configurations for

a3

Feasible
configurations for

a4

Figure 6.12: Feasible configurations for pre-stage components

The nodes on the first level of the tree show the feasible configuration for compo-

nent a1. Similarly nodes on levels two to four show the feasible configurations for

components a2 to a4. Any path from the root to a leaf node gives feasible configu-

rations for the pre-stage components. We use the algorithm for finding mold-piece

regions described in Chapter 7 to determine the feasibility of a configuration. The

transformation of the components in a chain is calculated by concatenating the

transformation of components from the root of the tree to that component as

described in Section 3.1.2. For example, the transformation of component a2 in

Figure 6.11 is:

Ta2
= Tb · Ta1/b · Ta2/a1

This algorithm incrementally evaluates only discrete configurations and hence

suffers from aliasing issues like any other discrete sampling algorithm. It may not

be able to find a feasible configuration when it actually exists.

166

6.5 Results

We will illustrate the steps for generating molding plan with the help of three

examples – swashplate, vent assembly, and universal joint.

6.5.1 Swashplate

A swashplate is a mechanical device used in helicopters to control the motion of the

main rotor blades. An example swashplate is shown in Figure 6.13. The swashplate

consists of three rings connected together by revolute joints. The inner and outer

rings, C1 and C3 respectively are made of the same material ABS. The middle ring

C2 is made of polyethylene. The diameter of the hole and pin in the revolute joint

is 1/4 in. In addition to the assembly model, the designer also provides a molding

plan for each joint in the assembly. The swashplate example has two revolute

joints. The designer compares the type, size, geometry, and material of the joints

to find the molding plan C described in Section 5.5.1 for the joints. The assembly

model of the swashplate and molding plan C is fed to the planner.

The planner first creates a Directed Acyclic Graph of components using the

precedence constraints in the joint molding plan. Plan C specifies that pin must

be molded after hole, i.e., component C2 must be molded after component C1 and

C3. Figure 6.14 shows the precedence constraints for the assembly.

The planner next calculates the lower bound cost h(P) of molding each com-

ponent separately. These values are used to compute the bounding values f(P)

for the search nodes. Section 3.3.2 gives the equation for calculating the total cost

of a molding stage. As explained in Section 6.3.1, we only consider the relative

cost between two solution paths. The relative cost consists of setup cost, cooling

cost, and undercut cost for non-joint features. Using the cost equation and pa-

167

Plan C

C1

C2

C3

Figure 6.13: Swashplate

C1

C2

C3

Figure 6.14: Joint precedence constraints for swashplate

rameters given in Equation 3.13, we get the following lower bound cost values for

each component:

• h(C1) = 203.30 + (1.5 × 0.5) + (0.7 × 2) = 205.45

168

• h(C2) = 203.30 + (1.5 × 6.5) = 213.05

• h(C3) = 203.30 + (1.5 × 19.6) = 232.70

Figure 6.15 shows the complete state space for the swashplate example. The

node numbers (N1, . . . , N8) correspond to the sequence in which each node is pro-

cessed by the algorithm ProcessNode. The bounding value f is also shown

against first-level nodes.

Processing N0

In the first stage, we can either mold C1 (node N6) or C3 (node N3) because they

must be molded before C2. We can in fact mold C1 and C3 together (node N1) in

a single stage because they are made of the same material. We use the best-first

search strategy when choice is to be made between nodes at the same level of the

search tree. Figure 6.15 shows the bounding values f for the nodes N1, N3, and

N6. We choose N1, which has the minimum bounding value.

Processing N1

At this stage, only one component is left to be molded. Hence we do not need to

branch the node. We just need to find the molding configuration for the assembly

and create a shutoff surface. Here we have one stage component C2. It is connected

to two components C1 and C3. Hence any one of the two can serve the role of a base

component. We arbitrarily choose C1 as the base component and use the joint-axis

constraints from plan C to orient C1 such that the joint axis is perpendicular to

the parting direction (z-direction). The component C3 is oriented using the inverse

kinematics scheme described in Section 6.4.5.

169

Empty Assembly

N6 N3 N1

N7 N4

N2

N8 N5

f = 447.15

Cost(S) = 234.1

f = 651.2f = 651.2

N0

f = 448.55

Figure 6.15: Complete state space for swashplate

Next, we need to find a feasible configuration space for component C2 such that

C1 and C2 do not occlude each other in z-direction. Figure 6.16a shows the top

view (camera pointed toward −z-direction) of the subassembly. It also shows the

axis along which C2 can be rotated. Figure 6.16b shows the range of joint angle θ

for which C1 and C2 do not occlude each other.

170

Stage
component

Base
component

Parting
direction

Feasible
configuration

space

Figure 6.16: Feasible configuration space for C2.

The next step is to find a configuration for C2 such that the number of undercuts

is minimum and the parting line is flattest. Section 6.4.4 describes an algorithm

that uses a gaussian sphere to find an optimal configuration for a component. The

feasible configuration space for component C2 is represented as a great arc Sc on

the sphere. Each facet plane can also be represented as great circles on the sphere

that intersect Sc. The intersection points represent visibility events where visibility

of a facet changes. It is sufficient to evaluate the number of undercuts and flatness

of parting line at those visibility events. Figure 6.17a shows the component C2 and

the joint axis along which it is rotated. Figure 6.17b shows the gaussian sphere

and a couple of visibility event points. It also shows the point at which optimal

configuration is achieved.

Processing N3 and N6

These nodes can be safely fathomed as the bounding value is greater than the

incumbent solution. If we had to traverse the subtree below N3 and N6, we could

have reused the results from N1 – the subassemblies in nodes N4, N7, and N1 are

equivalent. It must be noted that in most of the cases, the molding plan with

171

Parting
direction

Parting
line

Parting
direction

Optimal
configuration

Figure 6.17: Optimal configuration for C2.

minimum number of stages is the winner.

6.5.2 Vent Assembly

A vent assembly is used at the end of intake or exhaust to regulate air flow.

It is most commonly found on automobile dashboards. Figure 6.18 shows an

example vent assembly. It consists of six components - one main body (C1) and

five vanes (C2, . . . , C6). The main body is made of ABS, while the vanes are made

of polyethylene. The vanes are connected to the main body via revolute joints of

size 1/4 in.

The revolute joints in the vent assembly are similar to that in plan C which

will be used for this example. Plan C specifies that pin must be molded after hole,

i.e., the vanes must be molded after component the main body. Figure 6.19 shows

the DAG representing the precedence constraints for the assembly.

As per the precedence constraints, the main body C1 needs to be molded before

the vanes. So in the first stage, only C1 can be molded. As per the joint axis

constraint, it is oriented such that the joint axis is perpendicular to the parting

172

C1

C2
C3

C4
C5

C6

Plan C

Figure 6.18: Vent assembly.

C1

C4C3C2 C6C5

Figure 6.19: Joint precedence constraints for vent assembly.

direction. The configuration for the first stage eliminates any undercut and makes

the parting line flattest. It is shown in Figure 6.20 and is given by:

T̄1 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

After the main body is molded, we have the choice of molding the vanes in

173

Parting
Direction

C1

Figure 6.20: First molding stage for vent assembly.

any order. But since all the vanes are made of the same material, they can be

molded in a single stage. Figure 6.21 shows the configuration of the assembly

for the second molding stage. It must be noticed that in the initial configuration

shown in Figure 6.18, the vanes cast shadow on each other. They need to oriented

vertically as shown in Figure 6.21 to avoid this problem. The configuration for the

second stage is given by:

Θ2 = [30◦, 30◦, 30◦, 30◦, 30◦]

T̄2 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

6.5.3 Universal Joint

A universal joint in a rigid rod allows the rod to bend in any direction. It consists of

a pair of ordinary hinges located close together, but oriented at 90o relative to each

174

Parting
Direction

C1

C2
C3

C4
C5

C6

Figure 6.21: Second molding stage for vent assembly.

other. Universal joints are common wherever a driveshaft needs to turn a corner; a

driveshaft with a universal joint can freely rotate through the universal joint, and

no gears are required to couple the two ends. The most obvious example of this

application of a universal joint is in the driveshafts of automobiles [Wiki05b].

Figure 6.22 shows an example of universal joint. It consists of three components

- two shafts (C1 and C3) and a link (C2). The shafts are made of ABS, while the

link is made of polyethylene. The shafts and links are connected together via

revolute joints of size 1/4 in.

The revolute joints in the universal joint are similar to that in plan C which will

be used for this example. Plan C specifies that pin must be molded after hole, i.e.,

the link must be molded after the shafts. Figure 6.23 shows the DAG representing

the precedence constraints for the assembly.

As per the precedence constraints, the shafts C1 and C3 need to be molded

before the link C2. So in the first stage, we can mold C1, C2, or both. The

shafts can be molded sequentially using the same mold or using a multi-cavity

175

C1

C2

C3

Plan C

Figure 6.22: Universal joint.

C1

C2

C3

Figure 6.23: Joint precedence constraints for universal joint.

mold depending on the volume of production. As per the joint axis constraint, it

is oriented such that the joint axis is perpendicular to the parting direction. The

configuration for the first stage eliminates any undercut and makes the parting

176

Parting
Direction

C3

Parting
Direction

C1

Figure 6.24: First molding stage for universal joint.

line flattest. It is shown in Figure 6.24 and is given by:

T̄1 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The link can now be molded in the second stage. In this stage, the link (stage

component) is connected to two shafts. Hence any one of the two shafts can serve

the role of a base component. We arbitrarily choose C1 as the base component and

use the joint-axis constraints from plan C to orient C1 such that the joint axis is

perpendicular to the parting direction (z-direction). The other shaft C3 is oriented

using the inverse kinematics scheme described in Section 6.4.5. Figure 6.25 shows

the configuration of the assembly for the second molding stage. It must be noticed

that this is only valid configuration. Any other configuration suffers from the

shadow problem. The configuration parameters for the second stage are:

Θ2 = [0◦, 90◦]

177

Parting
Direction

C1

C3

C2

Figure 6.25: Second molding stage for universal joint.

T̄2 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

6.6 Summary

Using multi-stage molding for articulated devices is a relatively new technology,

so software tools for generating molding plans do not exist. The available software

tools only handle traditional molding. The molding plan is generated manually

by the mold designer based on prior experience. This is difficult because it in-

volves examining a large number of combinations and solving complex geometric

178

reasoning problems.

This chapter describes an algorithm for generating a molding plan for an ar-

ticulated assembly. This algorithm produces a molding plan, which is feasible as

well as optimal with respect to the manufacturing cost. The molding planning

problem is a combinatorial optimization problem. We formulate it as a state-space

search problem and use branch and bound to search for an optimal solution. Our

state space has large number of search nodes and processing each node takes a

lot of time. We handle these problems by pruning infeasible solution paths and

reusing the results of a search node. This chapter also presents geometric reason-

ing algorithms for the subproblems that need to be solved as part of the overall

planning problem. These subproblems include finding stage components and as-

sembly configuration for each molding stage. The assembly configuration found

by the algorithm is such that the number of undercuts on the stage components

is minimum and the parting line is flattest. The algorithms have been tested with

several complex assemblies for which multiple molding plans are possible. This

algorithm can be adapted for assembly planning where monotonocity assumptions

do not hold.

179

Chapter 7

FINDING MOLD-PIECE REGIONS

This chapter describes the algorithm for finding the mold-piece regions on a part.

The material presented in this chapter is expanded version of the material pub-

lished in [Dhal03] and [Priy06b].

Section 7.1 defines the problem of finding mold-piece regions. Section 7.2

presents an object-space algorithm, which can be executed on the central process-

ing unit (CPU) of a computer, while Section 7.3 presents an image-space algorithm,

which can be executed on the graphics processing unit (GPU) of a computer. The

image-space algorithm seeks to exploit the computational power of the current

generation computer graphics hardware.

7.1 Problem Definition

Kwong [Kwon92] and Chen et al. [Chen93] first formulated the condition for de-

moldability of a mold surface in terms of ray-accessibility of the part surface it is

forming. If a surface is accessible along a direction, it is also demoldable along that

direction. This geometric property is illustrated in Figure 7.1 and can be formally

stated as follows.

180

Figure 7.1: Accessibility of a surface means demoldability

Theorem 7.1. If a surface S on an object O is completely and globally ray-

accessible from a direction ~d, the mold surface forming S can be translated to

infinity in the direction ~d, without intersecting the interior of O.

However, some surfaces for which, the above property does not hold, may also

be moldable. Those surfaces that are not ray-accessible from any direction, may

be formed by special cores, called split cores. Split cores are disassembled in two

steps. Figure 7.2 illustrates the functionality of a split core. This dissertation does

not handle such class of objects.

A Mold-Piece Region of a part is a set of part facets that can be formed by

a single mold piece. There can be four types of mold-piece regions – core region

(Co), cavity region (Ca), both region (Bo), and undercut region (Uc). Figure 7.3

shows various mold-piece regions for a part. Given a polyhedral object P and a

parting direction ~d, each set of part facets has the following property:

1. Co, which is formed by core, is accessible from +~d, but not −~d

2. Ca, which is formed by cavity, is accessible from −~d, but not +~d

3. Bo, which can be formed by either of them, is accessible from both, +~d and

181

Figure 7.2: Split core; (a) a part with inaccessible surface; (b) the inaccessible

surface is formed by the split core; (c) split core moves away from the undercut;

(d) split core moves along the main parting direction

−~d

4. Uc, which cannot be formed by either of them, is not accessible from either

+~d or −~d

Hence, the problem of finding mold-piece regions reduces to performing acces-

sibility analysis of P along +~d and −~d and decomposing the part facets F into

four sets Co, Ca, Bo, and Uc.

182

Parting
Direction

Core
Region

Cavity
Region

Both
Region

Undercut
Region

Parting
Line

Figure 7.3: Mold-Piece Regions

7.2 Object-Space Algorithm

This section presents an object-space algorithm, which can be executed on the

central processing unit (CPU) of a computer. As explained above, finding the

mold-piece regions of a part is equivalent to performing the accessibility analysis

of the part along the given parting direction. Suppose F is the set of facets on the

part and ~d is the given parting direction. We determine the accessibility of each

facet f ∈ F along both +~d and −~d directions. Depending on its accessibility, it is

assigned to Co, Ca, Bo, or Uc. Section 7.2.1 describes an algorithm to test whether

a facet is accessible from a particular direction. Section 7.2.3 describes an approach

to robustly determine the accessibility of near-vertical facets (whose normals are

near-perpendicular to the parting direction). Section 7.2.4 presents ideas based

on geometric properties of polyhedral objects for efficient implementation of the

algorithm.

183

7.2.1 Determining the Accessibility of a Facet

This section describes an algorithm to test whether a facet is accessible from a

particular direction.

Definition 7.1. A facet f on a polyhedral object O is accessible in a direction ~d,

if for every point p on f , the ray starting from p to infinity in the direction ~d does

not intersect the interior of O.

For a facet to be accessible from a direction, it needs to pass two tests –

Orientation test and Obstruction test. The orientation test looks at the orientation

of the facet normal with respect to the test direction. Since facets form the outer

surfaces of a solid object, they have an orientation convention: inside and outside.

All facets have material on one side (the “inside”), and air on the other (the

“outside”). The normal to a facet always points away from the inside region. With

respect to a direction, a facet is back-facing or front-facing. If the dot product of a

facet’s normal ~n and a viewing direction ~d is negative, the facet is inaccessible, and

is called back-facing. If the dot product is non-negative, the facet is potentially

accessible, and is called front-facing.

The obstruction test further checks whether a potentially accessible front-facing

facet f is obstructed by another facet f ′ on the object. If none of the facets on the

object obstructs f , it is accessible. The basic idea behind this algorithm is based

on the following definition.

Definition 7.2. A facet f2 obstructs a front-facing facet f1 in a direction ~d, if for

any point p on f1, the ray starting from p to infinity in the direction d pierces f2.

Though this is a mathematically rigorous definition, it is computationally im-

practical since there would be infinite points on f1 from which a ray needs to

184

be shot. A mathematically equivalent but computationally practical procedure is

described below.

We are interested in checking whether a facet f2 obstructs a front-facing facet

f1 in a direction ~d. Assume that the entire scene is rotated so that the direction

of access ~d is aligned with +z-direction and the facets f1 and f2 are orthogonally

projected along the z-axis onto the plane z=0. f1 is projected onto S1 and f2 is

projected onto S2. The intersection of S1 and S2 is called S. Figure 7.4 shows the

above arrangement. Following can be deduced from the intersection region S:

• If S is empty, then the projections do not overlap and there is no obstruction.

• Any point p(x, y, 0), lying in S, corresponds to the point p1(x, y, z1) in f1

and the point p2(x, y, z2) in f2. The point p1 is obstructed by the point p2 if

and only if z2 > z1. If this true is for:

– all points in S: “f2 obstructs f1”. This thesis does not differentiate be-

tween partial and complete obstruction. A facet is marked as obstructed

even if it is partially obstructed.

– some points in S and false for others: “f1 and f2 intersect each other”.

However, this cannot be true for any two facets belonging to the bound-

ary of a valid solid. The boundary of a valid solid is a regular surface

that does not self-intersect. Therefore, if z2 > z1 for any point in S, it

must be true for all points in S.

– no point in S: “f2 does not obstruct f1”.

Based on the above observation, following algorithm is developed to check if a

front-facing facet f1 is obstructed by another facet f2.

185

Figure 7.4: Projecting facets on the viewing plane

Algorithm IsObstructing

Input:

• Facets f1 and f2

• Direction of access ~d

Output: True, if f2 obstructs f1 in ~d, else False.

Comments: This algorithm assumes that f1 is front-facing, i.e. the dot product of

~d and f1’s normal ~n is non-negative. It returns True even for partial ostruction.

Steps:

1. Transform f1 and f2 such that ~d is aligned with +z-direction.

2. If f2 is completely below f1, return False.

186

3. Project f1 and f2 orthogonally along the z-axis onto the plane z=0. f1 and

f2 are projected onto S1 and S2 respectively.

4. Check overlap of S1 and S2 using separating axis method (described in Sec-

tion 7.2.2).

5. If S1 and S2 do not overlap, return False.

6. Else do

(a) If f2 is completely above f1, return True.

(b) Else do

i. Find an intersection point p of S1 and S2.

ii. Map p(x, y, 0) to p1(x, y, z1) on f1, and p2 on f2(x, y, z2).

iii. If z2 > z1, return True else return False.

7.2.2 Separating Axis Method for Convex Polygons

Algorithm IsObstructing uses the method of separating axis to check whether

or not the two projected triangles overlap. The main focus of this method is on

the test intersection geometric query, a query that just indicates whether or not an

intersection exists. The problem of computing the set of intersection is denoted as

find intersections geometric query and is generally more difficult to implement than

the test intersection query. Information from the test query can help determine

the contact set that the find query must construct.

A test for non-intersection of two convex objects is simply stated: If there exists

a line for which the intervals of projection of the two objects onto that line do not

187

Figure 7.5: Separating Axis Method for convex polygons

intersect, then the objects do not intersect [Gott96]. Such a line is called a sepa-

rating line or, more commonly, a separating axis. For a pair of convex polygons

in 2D, only a finite set of direction vectors needs to be considered for separation

tests. That set includes the normal vectors to the edges of the polygons. Fig-

ure 7.5(a) shows two nonintersecting polygons that are separated along a direction

determined by the normal to an edge of one polygon. Figure 7.5(b) shows two

polygons that intersect (there are no separating directions). If the separating axis

method indicates an intersection, the actual intersection points can be found along

the edges of the polygons.

7.2.3 Handling Near-Vertical Facets

We need to robustly handle facets whose normals are very close to being perpen-

dicular to the parting direction. These near-vertical facets are usually produced

as a result of the approximation introduced by faceting vertical curved surfaces.

Figure 7.6 shows a cylindrical surface that has been faceted. It can be seen that

for a direction of access along the cylinder axis, some of the facets are back-facing

and hence inaccessible. From the user’s point of view, this is obviously not the

188

Figure 7.6: Surface tolerance problems with near-vertical facets

desired solution.

To find facets accessible from a direction ~d, the facets on the part boundary

are divided into three categories:

1. Front-Facing: ~d.~n ≥ τ

2. Back-Facing: ~d.~n ≤ −τ

3. Near-Vertical: |~d.~n| < τ

Where ~n is the facet normal and τ is normal tolerance whose value is dependent

on the surface tolerance introduced by faceting or that of the part. It is normally

set to 2-3 degrees.

Front-facing and near-vertical facets are potentially accessible facets. Deter-

mining the accessibility of front-facing facets has already been discussed in the

previous sections. Algorithm IsObstructing is used to check if a facet obstructs

a front-facing facet. The accessibility of a near-vertical facet is determined in two

steps:

189

Figure 7.7: Compensating surface tolerance by rotating viewing direction

1. The direction of access ~d is slightly rotated to ~d′ such that the near-vertical

facet f becomes front-facing for ~d′. The procedure to rotate the direction of

access is illustrated in Figure 7.7.

2. Algorithm IsObstructing is used to check if any facet obstructs f in di-

rection ~d′. If f is accessible in ~d′, it is assumed to be accessible in ~d also.

If the above procedure is not applied to near-vertical facets, then many of those

facets may be wrongly rejected as inaccessible. A near-vertical facet is not rejected

just because it is back-facing by a small amount. They are rejected only if a facet

obstructs it in a direction very close to the original direction of access.

190

Figure 7.8: Convex-Hull facets and Non-Convex-Hull facets

7.2.4 Pruning Unnecessary Obstruction Tests

If there are n facets on the object, to determine the accessibility of a facet from

a certain direction, the algorithm IsObstructing has to be called O(n) times

making the running time of the algorithm for finding mold-piece regions O(n2).

However, this time complexity is again a loose-bound complexity. It can be made

efficient by pruning out unnecessary obstruction tests.

A faceted object boundary consists of two types of facets: convex-hull facets

and non-convex-hull facets. Convex-hull facets are those facets on the part that

are also on the convex hull of the part. All the facets on the part other than

convex-hull facets are called non-convex-hull facets. Figure 7.8 shows examples of

convex-hull and non-convex-hull facets. Connected sets of non-convex-hull facets

form concave regions (pockets in [Chen93]).

Theorem 7.2. The global accessibility cone of a convex-hull facet is a hemisphere

generated using the direction normal of the facet as its pole [Chen93].

Theorem 7.3. A non-convex-hull facet can be blocked only by a non-convex-hull

facet present in the same concave region. A ray emanating from a point in a

191

Figure 7.9: Polyhedral-object accessibility properties

concave region will either intersect a facet in the same concave region or go to

infinity [Chen93].

Theorem 7.4. The accessibility of a facet f1 can be obstructed by another facet

f2, only if f1 and f2 see each other. Since the boundary of the object is continuous,

if the facets cannot see each other, there will always be at least one facet in between

the two facets. A facet f1 can see another facet f2, if any vertex of f2 lies in the

outer half-space of f1 [Dhal03].

Figure 7.9 illustrates the properties stated above. A facet can see all facets

present in its outer half-space. Facet A can see facet B, but B cannot see A.

Therefore any ray starting from A cannot reach B before piercing another facet on

the object. Facet C being a convex-hull facet cannot see any other facet present

on the object.

The following steps are taken for an efficient implementation of the algorithm

for finding mold-piece regions:

1. Since the accessibility cone of a convex-hull facet is always a hemisphere

(Theorem 7.2), a front-facing convex-hull facet is always accessible. Hence,

we only need to perform obstruction tests for non-convex-hull facets.

192

2. Due to Theorem 7.3, obstruction tests need to be performed only for those

facet pairs that are present in the same concave region. Therefore, the object

boundary is subdivided into different concave regions, and accessible facets

are found in each concave region separately.

3. A ray emanating from a point in a concave region in the viewing direction

will either pierce a back-facing facet present in the same concave region, or

go to infinity. If the point is obstructed, the ray pierces a back-facing facet

before entering the interior of the object. Therefore, if a front-facing facet f

in a concave region is not obstructed by any of the back-facing facets present

in the same concave region, f is accessible. This further implies that if a

concave region has no back-facing facets for a direction of access, all facets

present in the concave region are accessible from the direction.

4. If a back-facet f2 is completely below a front-facing facet f1, then f2 cannot

obstruct f1.

5. Due to Theorem 7.4 obstruction tests need to be done only for those facet

pairs that can see each other.

The above steps can be summarized as follows. We only need to perform

obstruction tests for front-facing non-convex-hull facets. To determine the acces-

sibility of a non-convex-hull front-facing facet f , it is sufficient to perform the

obstruction tests only with those back-facing facets that:

1. are present in the same concave region,

2. are not below f , and

3. can see f .

193

Figure 7.10: Obstruction test need not be performed for all facet pairs

This pruning scheme is illustrated in Figure 7.10. The facet f1 can only be

obstructed by facets present in the region formed by the intersection of two half-

spaces A and B. Moreover, a facet f2 present in that half-space can obstruct f1

only if it is present in the same concave region as f1, and can see f1.

In addition to using these properties, we have used a hierarchical axis-aligned

bounding box tree to store the facets. This data structure allows us to quickly

prune many redundant obstruction tests.

7.2.5 Implementation and Results

We have implemented the algorithm for finding mold-piece regions described above

in C++. Other libraries used in the system are GNU Triangulated Surface Li-

brary [GTS], OpenGL, and Microsoft Foundation Classes [MFC]. GTS is an

open-source software library intended to provide a set of data structures and func-

tions to deal with three-dimensional surfaces meshed with interconnected triangles.

OpenGL provides application programming interface (API) for rendering 2D and

194

3D graphics primitives. MFC is a windowing toolkit for Microsoft Windows plat-

form. Our software takes the input for three-dimensional polyhedral objects in

Stereolithography (STL) file format. The output can be rendered is both graph-

ical and file-based. It has been successfully tested on more than 50 industrial

parts.

Figure 7.11 shows the screenshot of three example parts. The reported running

times were achieved by running the software on a Intel(R) Pentium(R) M Processor

1.80 GHz with 2 GB RAM. It can be seen that although the number of facets on

part C is more than that on part A and Part B, it takes lesser time to calculate

the mold-piece regions. This suggests that the running time is not only dependent

on the number of facets. Due to our pruning techniques, it is also dependent on

the convexity of the part and overall distribution of facets. To test the average

case running time, we need to test it with parts having similar geometry. We took

a 3D scanned model of a face and progressively simplified it to desired number of

facets. We used the freely available QSlim software [QSlim] to do the simplification.

Figure 7.12 shows the performance result obtained for the progressively simplified

face. It can be seen that the running time grows almost linearly.

7.3 Image-Space Algorithm

The rapid increase in the performance of graphics hardware, coupled with recent

improvements in its programmability, have made graphics hardware a compelling

platform for computationally demanding tasks in a wide variety of application

domains [Owen05]. Software that have traditionally been running on CPU are

being migrated to GPU in increasing numbers. These software belong to a diverse

set of applications ranging from audio and signal processing [Whal05] to data

195

(a) 2219 facets, 0.33s (b) 3122 facets, 0.46s

(c) 5716 facets, 0.24s

Figure 7.11: Screenshots of three example parts. The color scheme for highlighting

is following. Core region is blue, cavity region is green, both region is gray, and

the undercuts are red. Number of facets and obtained running time is reported

against each subfigure.

mining [Govi05].

This section describes our algorithm for finding and highlighting the mold-

piece regions. Section 7.3.1 gives an overview of our approach. Section 7.3.2 and

Section 7.3.3 address the robustness issues of the algorithm. Section 7.3.4 presents

an algorithm for transferring the results from the GPU to CPU.

196

Figure 7.12: Performance result for a progressively simplified part.

7.3.1 Overview of Approach

We use programmable GPUs to highlight the mold-piece regions on a part. The

basic idea is very similar to shadow mapping described in Section 2.3. The given

part is illuminated by two directional light sources located at infinity in the positive

197

and negative parting directions. The regions that are lit by the upper and lower

lights are marked as ‘core’ and ‘cavity’ respectively. The regions lit by both the

lights are marked as ‘both’, while the regions in shadow are marked as ‘undercuts’.

For a given parting direction, our approach highlights the mold-piece regions

on a part in two steps:

1. Preprocessing: We create two shadow maps by performing the following pro-

cedure. First the part is rendered with the camera placed above the part and

view direction along the negative parting direction. The resulting z-buffer is

transferred to a depth texture (shadow map). The current orthogonal view

matrix is also stored for the next step. The same procedure is repeated with

the view direction along positive parting direction.

2. Highlighting: The user can then rotate the camera and examine the mold-

piece regions of the part from all directions. A vertex program transforms

the incoming vertices using the two model-view matrices stored in the pre-

processing stage. The fragment program determines the visibility of each

incoming fragment by comparing its depth with the depth texture values

stored in the preprocessing stage and colors it accordingly. Fragments visible

along positive parting direction (core region) are colored blue while those

accessible along negative parting direction (cavity region) are colored green.

Fragments visible along both directions (both region) are colored gray and

invisible fragments (undercuts) are colored red.

If the algorithm is implemented as described, all the vertical facets will be

reported as undercuts. Also since our method is based on shadow mapping, it

is prone to self-shadowing. Section 7.3.2 and Section 7.3.3 describe techniques to

handle these issues.

198

7.3.2 Handling Near-Vertical Facets

There is a slight difference between the notion of visibility in computer graphics

and accessibility. The mathematical conditions for visibility and accessibility of a

facet with normal ~n in direction ~d are the following:

Visible if: ~d · ~n > 0

Accessible if: ~d · ~n ≥ 0

In other words, a facet perpendicular to a direction (vertical facet) is not visible,

but accessible which means all the vertical facets will be reported as undercuts.

In addition to vertical facets, we also need to robustly handle facets whose

normals are very close to being perpendicular to the parting direction. These near-

vertical facets are usually produced as a result of the approximation introduced by

faceting vertical curved surfaces. Figure 7.6 shows a cylindrical surface that has

been faceted. It can be seen that for a direction of access along the cylinder axis,

some of the facets are back-facing and hence inaccessible. From the user’s point of

view, this is obviously not the desired solution.

The robustness problems in geometric computations are usually handled by

slightly perturbing the input. But we cannot adopt this approach here as perturb-

ing the vertices of the part will change it’s appearance on the computer screen.

We solve this problem by visibility sampling. To determine the accessibility of a

rasterized fragment, the neighborhood of the corresponding texel in the shadow

map is sampled in the image space. If any sample passes the visibility test, the

fragment is marked as accessible. Incidentally, percentage closer filtering (PCF)

used to produce anti-aliased shadows does just that. PCF is briefly described in

Section 2.3.2.

For a given parting direction ~d, we divide the part facets into three categories:

199

1. Up facets: ~d.~n ≥ τ

2. Down facets: ~d.~n ≤ −τ

3. Near-vertical facets: |~d.~n| < τ

where ~n is the facet normal and τ is normal tolerance whose value is dependent

on the surface tolerance introduced by faceting the part. It is usually set between

1-2 degrees.

Up and down facets are tested for accessibility along −~d and +~d respectively.

The near-vertical facets are tested in both the directions with PCF enabled. In

our implementation, we used the OpenGL extension ARB shadow that samples the

neighborhood of a fragment and returns the average of all the depth comparisons.

If the returned value is greater than zero, we mark the fragment as accessible.

The PCF kernel that determines the size of the sampling neighborhood should be

adjusted according to the surface tolerance of the given part. We found that 3x3

kernel (9 samples) worked fine for most of the parts.

7.3.3 Preventing Self-Shadowing

Our algorithm is based on shadow mapping. So as explained in Section 2.3.1, it is

also prone to self-shadowing due to precision and sampling issues. The focus of the

currently available algorithms is mainly on producing aesthetically pleasing results.

They may not be physically correct. We decided not to use the most popular

polygon offset technique after a thorough experimentation. We found that it is

indeed very difficult to specify an appropriate bias for a part automatically. If the

bias is too little, everything begins to shadow. And if it is too much, shadow starts

too far back i.e., some of the fragments that should be in shadow are incorrectly lit.

200

We found that this problem is exaggerated in case of mechanical parts with regions

of high slope. Wang and Molner [Wang94] report that even for some simple test

scenes, it is impossible to find an acceptable bias. We developed an adaptation of

the second depth [Wang94] technique that prevents self-shadowing and robustly

handles the near-vertical facets.

Second depth technique [Wang94] is based on the observation that in case

of solid objects there is always a back facet on top of a shadowed front facet.

It renders only the back facets into the shadow map and avoids many aliasing

problems because there is adequate separation between the front and back facets.

But it may show incorrect results when used with PCF for near-vertical facets. As

explained in Section 7.3.2, we use PCF to sample the neighborhood of a point on

a near-vertical facet. If any sample passes the visibility test, we mark the point

as accessible. Because the shadow map only partially overlaps the PCF kernels

for both points A and B, they will be reported as only 50% shadowed and hence

accessible. This is the intended result for point B, but incorrect for point A.

To solve this problem, we use a visibility theorem for three-dimensional poly-

hedral surfaces based on the results presented by Lutz Kettner [Kett99].

Definition 7.3. An edge is a contour edge if it is incident to a front-facing facet

and a back-facing facet for a given viewing direction.

Lemma 7.1. For a given polyhedron and a viewing direction, if the edges and

facets of the polyhedron are projected into the viewing plane, the visibility of the

projected facets can only change at the intersection with contour edges [Kett99].

Definition 7.4. Suppose e is an edge between two facets f1 and f2 on a polyhedron

P . The edge e is convex if the dihedral angle between the two facets f1 and f2 in

the interior of P is less than π, otherwise it is concave.

201

E

f1
f2

p
Viewing
Direction

Figure 7.13: Visibility of projected facets cannot change at intersection with con-

cave contour edges

Theorem 7.5. For a given polyhedron P and a viewing direction ~d, if the edges

and facets of the polyhedron are projected into the viewing plane, the visibility of

the projected facets does not change at the intersection with concave contour edges.

Proof. Suppose e is a concave contour edge between a back-facing f1 and a front-

facing facet f2 as shown in Figure 7.13. Consider a plane E containing e and

perpendicular to the viewing direction ~d. Consider a point p on the edge e. Plane

E separates the neighborhood of point p into two regions – left and right of E.

The region to the left of E lies in the interior of P and hence inaccessible. The

region on the right is blocked by f1. Hence the visibility of projected facets cannot

change at the intersection with concave contour edges.

We exploit the above theorem that the visibility of projected facets cannot

change at the intersection with concave contour edges. When creating the shadow

map, we also render thick concave contour edges along with the back facets. As

can be seen in Figure 7.14(b), now that the shadow map fully overlaps the PCF

kernel for point A, it will be correctly reported as fully shadowed and hence marked

as inaccessible. It can also be seen that thickening the concave contour edges does

not affect the accessibility of point B.

202

Figure 7.14: The problem with the second-depth technique when used with PCF

(the PCF kernel and the contour edge has been exaggerated for illustration pur-

poses); (a) Both point A and point B are reported as only 50% shadowed and

hence accessible; (b) The problem is solved by rendering thick concave contour

edges into the shadow map

7.3.4 Transferring Results from the GPU to CPU

The previous sections describe how to find and highlight the mold-piece regions

using GPUs. This section describes how the information on mold-piece regions can

be transferred back to the CPU for other purposes such as designing molds. We

describe a simpler two-pass algorithm to accomplish the same.

We first assign a unique ID (color) to each facet of the given part. Almost all

the currently available graphics cards support at least 24-bit color palette that can

generate over 16 million unique colors. Then we follow the following procedure

to obtain the results on the CPU. The part is first rendered with the camera

placed above the part and view direction along the negative parting direction.

The resulting frame buffer (image) is read back to the CPU. The facets whose IDs

are present in the resulting image constitute the ‘core’ region. The same procedure

is followed with the view direction along the positive parting direction to obtain

203

the ‘cavity’ region. The facets missing from both the images are undercuts.

The problem with the above approach is that it cannot find the ‘both’ region.

None of the facets will be present in both the frame buffers and all of the vertical

facets will be reported as undercuts because being perpendicular to the viewing

direction, they cannot be rendered. But now since the part is not rendered for

visualization purposes, we can perturb the vertices of the part. For both the

viewing directions (negative and positive parting direction), we slightly perturb

the vertices of the near-vertical facets such that it becomes a front-facing facet for

that viewing direction and hence an eligible candidate for being rendered. This

perturbation can be done by either the CPU or by a vertex program loaded on

the GPU. The perturbation scheme is illustrated in Figure 7.15. It is similar to

adding a draft to the near-vertical facets. A reference plane is first located at

the topmost vertex with respect to the viewing direction and then each vertex on

the near-vertical facets is slightly moved along the surface normal at that point.

The perturbation amount is in proportion to the distance of the vertex from the

reference plane and is given by d = z. tan(τ), where τ is a small user-defined angle,

which depends on the average length of facets and resolution of the frame buffer.

We found that for a 512x512 buffer, τ = 0.5◦ was appropriate for most of the parts.

The algorithm for transferring the results from the GPU to CPU is based

on the assumption that the each facet belongs to only one mold-piece region.

Sometimes a front facet needs to be split into a core and an undercut facet, or a

vertical facet needs to be split into all the four mold-piece regions. A brute-force

approach to overcome this limitation could be splitting each facet into very small

facets. Another approach could be projecting each facet into the viewing plane

and splitting them at the intersection with convex contour edges [Kett99], and

204

Figure 7.15: Perturbation scheme for near-vertical facets

performing trapezoidal decomposition of vertical facets [Ahn02].

7.3.5 Implementation and Results

GPUs have traditionally been used to efficiently render high-quality graphics on

computer screens. Figure 7.16 shows a typical rendering pipeline. The latest

GPUs allow users to load their own programs (shaders) to replace some stages of

the fixed rendering pipeline. A shader can be a vertex program that replaces the

vertex transformation stage, or a fragment program that replaces the fragment

texturing and coloring stage.

We have implemented our algorithm for highlighting the mold-piece regions

as shader programs that can be executed on programmable GPUs. The overall

algorithm has been described below in the form of a pseudo code.

Pseudo Code: HighlightMoldPieceRegions

Input: Input part O and parting direction ~d

Output: Rendered image of the part O with mold-piece regions highlighted with

different colors Steps:

205

S
o

u
rc

e
: h

ttp
://

w
w

w
.li

gh
th

o
us

e
3d

.c
o

m

Figure 7.16: Graphics rendering pipeline

1. Build transformation matrices M− and M+ that place the camera above the

part and view direction along −~d and +~d respectively.

2. Set up M− as the model-view matrix. Render the part and thick concave

contour edges. Transfer the resulting z-buffer into shadow map S−. Simi-

larly create the shadow map S+ with M+ as the model-view matrix. While

creating the shadow maps, the part is rendered in a mode that allows only

back faces to be rendered.

3. Load and initialize the shader programs with the transformation matrices

(M−, M+) and shadow maps (S−, S+).

4. The user can now be allowed to rotate the camera and visualize the mold-

piece regions from all directions. The following two steps calculate and high-

light the mold-piece regions in each frame.

(a) The vertex program transforms each incoming vertex using the current

206

transformation matrix as well as M− and M+.

(b) The fragment program queries S− and/or S+ to determine the accessi-

bility of each incoming fragment and highlights with appropriate color.

i. If the incoming fragment is near-vertical, both S− and S+ are

queried with PCF enabled to determine if it is core, cavity, both or

undercut.

ii. Else if it faces −~d (up facet), S− is queried to determine if it is core

or undercut.

iii. Else if it faces +~d (down facet), S+ is queried to determine if it is

cavity or undercut.

It can be seen that the pseudo code for the fragment program consists of many

conditional statements (if-then-else). The fragment processors are based on Single

Instruction Multiple data (SIMD) architecture that assumes that all data elements

are processed identically. The conditional statements break this assumption. The

fragment processors implement the conditionals by executing both portions of the

conditional statement, which means that for each conditional statement, the exe-

cution time almost doubles. The structure of the conditional block indicates that

it can be moved to the CPU. We divide the part facets into three sets (up, down,

and near-vertical) on the CPU and create three specialized fragment programs for

each type of facet. For each frame we sequentially load each fragment program

and render the facet set it handles.

We have written the shader programs in OpenGL Shading Language (GLSL).

It requires four OpenGL extensions: ARB vertex shader, ARB fragment shader,

ARB depth texture, and ARB shadow. Other libraries used in the system are

OpenGL Utility Toolkit [GLUT] and OpenGL Extension Wrangler Library [GLEW].

207

GLUT is a basic bare-bones windowing toolkit that supports OpenGL. GLEW is

an OpenGL extension loading library. It provides efficient run-time mechanisms

for determining which OpenGL extensions are supported on the target platform.

The implementation has been successfully tested on more than 50 industrial

parts. It currently supports Stereolithography (STL) and Wavefront (OBJ) part

files. Figure 7.17 shows the screenshot of four example parts.

Figure 7.18 shows the performance of our implementation on 128 MB NVIDIA

Fx700Go card. It shows the obtained frame rates when simply rendering the part

using fixed OpenGL pipeline (without highlighting) and with highlighting. It can

be seen that the overhead imposed by the highlighting algorithm does not signifi-

cantly affect the time taken by the GPU to render a frame. The observed drop in

performance when highlight is at most one fps. In other words, the complexity of

the algorithms solely depends on the time to render the given part.

7.4 Summary

Finding mold-piece regions is a computationally intensive process. It takes a long

time to robustly find mold-piece regions even for one parting direction. Efficiency

is not an issue with traditional molding because parting direction is usually known

and only one direction needs to be evaluated. But when generating molding plan,

we need to evaluate thousands of directions for each molding stage to find a feasible

molding configuration. Also, with the recent advances in three-dimensional scan-

ning technology, the models can be very large. Therefore, we need an algorithm

that is efficient as well as robust.

This chapter presented two geometric algorithms for finding mold-piece regions

of components and assemblies. The first algorithm is an object-space algorithm,

208

(a) 2219 facets, 60 fps (b) 3122 facets, 58 fps

(c) 5716 facets, 47 fps (d) 50000 facets, 5 fps

Figure 7.17: Screenshots of four example parts. The color scheme for highlighting

is following. Core region is blue, cavity region is green, both region is gray, and

the undercuts are red. Number of facets and obtained rendering speed is reported

against each subfigure.

which runs on the central processing unit (CPU) of a computer. The algorithm

handles the near-vertical facets robustly by perturbing the parting direction. The

implementation utilizes geometric properties of polyhedral objects and hierarchical

data structure for efficiency. The second algorithm is an image-space algorithm,

which can be executed on the graphics processing unit (GPU) of a computer.

209

Figure 7.18: Performance of the image-space algorithm on 128 MB NVIDIA

Fx700Go card. The plot shows the obtained frame rates when simply rendering

the part (without highlighting) and those when also highlighting the mold-piece

regions

It robustly handles the near-vertical facets by slightly perturbing the vertices on

those facets and visibility sampling. It exploits the computational power offered

by the GPUs. It was shown that an efficient implementation of this algorithm

does not impose any significant overhead on the GPU. The mold-piece regions

even for parts with more than 50,000 facets can be highlighted at interactive rates.

Such a system that provides real-time information about mold-piece regions will

210

be very useful to the part and mold designers alike. They can easily optimize

the part and mold design and if needed make appropriate corrections upfront,

streamlining the subsequent design steps. Both algorithms have been successfully

tested with several complex components and assemblies. The results of the image-

space algorithm was verified by comparing them with those obtained by the object-

space algorithm. Both algorithms produce identical results. These algorithms can

also be used for machining, die-casting, and sheet metal forming.

211

Chapter 8

CONSTRUCTING OPTIMAL SHUTOFF

SURFACES

This chapter describes the algorithm for creating shutoff surface. Section 8.2 de-

fines the problem of creating shutoff surface. Section 8.3 presents a high-level

overview of the algorithm, while Section 8.4 provides a detailed description of the

same.

8.1 Background

The previous chapter described the algorithm for finding mold-piece regions. Given

a polyhedral object and a parting direction, the algorithm outputs four mold-piece

regions:

1. Core region, which is formed by the core

2. Cavity region, which is formed by the cavity

3. Both region, which can be formed by either core or cavity

4. Undercut region, which is formed by side actions

212

The designer uses the mold-piece regions to create side actions and parting line.

Creating side actions is mostly a manual task. There is no commercial software

available to automate this task. There has been none to very few publications in

this direction. Generating the shapes of the side actions requires solving a complex

geometric optimization problem. Different objective functions are needed depend-

ing upon different molding scenarios (e.g., prototyping versus large production

runs). Recently Banerjee and Gupta [Bane06] presented an algorithm to automat-

ically design optimal side actions. But their algorithm is limited to a particular

type of side action, commonly known as side core in molding terminology. More

work is needed to handle other types of side actions, namely, split cores, lifters,

etc.

After creating the side actions for undercuts, the designer is left with three

mold-piece regions – core region, cavity region, and both region. The next step in

the mold design process is creating parting line. A parting line of a part is a con-

tinuous closed curve on the surface of the part where core and cavity meet. Hence

boundary of the core region or the cavity region is a valid parting line. However, it

may not be an optimal parting line. Simple planar interfaces between mold pieces

reduce mold fabrication cost and mold operation complexity. Hence it is proposed

that the flattest possible parting line be found [Ravi90]. Since the ‘both’ region

can be formed by either the core or cavity, it provides a feasible region where an

optimal parting line can be located. Priyadarshi and Gupta [Priy04] presented an

algorithm that uses the flatness criteria proposed by Majhi et al. [Majh99] to find

an optimal parting line. The parting line is used to split the ‘both’ region into

core region and cavity region. After assigning the split regions, the designer is left

with only two mold-piece regions – core region and cavity region. Parting line is

213

Figure 8.1: Shutoff surface for an example part.

the curve along which the two regions meet.

This chapter assumes that the undercuts have been resolved by the designer

manually. The parting line has been created by the algorithm described in [Priy04],

and the both region separated by the parting line have been merged into the core

region and cavity region. So now the part has only two mold-piece regions – core

region and cavity region.

8.1.1 Shutoff Surface

Shutoff Surface is the contact surface of the two mold pieces – core and cavity.

It can be mathematically defined as the non-regularized intersection of core and

cavity. It meets the part at the parting line. Figure 8.1 shows the shutoff surface

for an example part.

The parting line has one outer loop and may have multiple inner loops. The

inner loops correspond to the thru-holes present on the part. Figure 8.2 shows

the outer and inner loops of a parting line. A shutoff surface is required for each

214

Outer
Loop

Inner
Loops

Figure 8.2: Outer and inner parting line loops

Inner
Shutoff

Surfaces
Outer

Shutoff
Surface

Figure 8.3: Outer and inner shutoff surfaces

parting line loop. Figure 8.3 shows the outer and inner shutoff surfaces for the

parting line shown in Figure 8.2.

215

8.1.2 Methodology for Creating Shutoff Surface

Given an object, parting direction, mold-piece regions, and parting line, the method-

ology followed by the mold designers for creating shutoff surface is the following:

1. A shutoff patch is created for each inner parting loop by filling the loop by

a surface. Filling is a surfacing method to fit a surface over the boundary

defined by a closed and connected circuit of curves. The curvature of the

filled surface is such that surface tangency is maintained at the loop edges.

2. The outer parting line loop L is split into multiple smooth segments {l1, . . . , ln}.

3. A shutoff patch si is individually created for each parting line segment li

using one of the following strategies:

• Strategy 1 (T1): Extruding li along a direction perpendicular to the

parting direction (Figure 8.4a).

• Strategy 2 (T2): Extruding li along a direction tangential to the core

surface (Figure 8.4b).

• Strategy 3 (T3): Extruding li along a direction tangential to the cavity

surface (Figure 8.4c).

The shutoff patch si, which is generated by extruding parting line segment

li along direction di by distance w is defined as:

si = {q ∈ E3 : q = p+ λdi, p ∈ li, 0 ≤ λ ≤ w} (8.1)

In some cases, the extruded shutoff patches may overlap or intersect with

each other or the part. Overlapping and intersecting shutoff surfaces create

undercuts. The designer needs to manually eliminate these invalid cases.

216

These cases are handled by trimming away the overlapping and intersecting

portions of the shutoff patches.

4. The shutoff patches created for two adjacent parting segments using different

strategies may not be joined together. Bridge patches are created to stitch

such disjoint shutoff patches together (Figure 8.5).

The strategies described above are standard in the molding community. These

strategies tend to minimize flash and machining cost. Strategy 1 (extruding the

parting segment along a direction perpendicular to the parting direction) is the

most commonly employed strategy. It minimizes the surface area and hence the

machining time. It also maximizes the clamp pressure to minimize flash. Strategy 2

and 3 (extruding the parting segment along a direction tangential to the core/cavity

surface) is mainly used for planar surfaces. It results in a smooth surface and hence

faster machining. It also allows sharing the machining setup with the core/cavity

surface.

8.2 Problem Formulation

Most of the commercial CAD software, such as SolidWorks 2006TM [SWK06] pro-

vide tools for creating shutoff surface. Creating the inner shutoff surfaces is rela-

tively easier. The CAD systems provide very sophisticated tools for creating filled

surfaces that work fine for inner shutoff surfaces. The inner shutoff surfaces are

created automatically without any problem. Creating the outer shutoff surface is

difficult. The tools provided by the CAD systems are too low-level. The designer

is expected to make all critical decisions. The designer decides which strategy

to follow for each parting line segment. The designer also manually corrects the

217

(a) Strategy 1 (T1): Extrude direction

perpendicular to the parting direction

(b) Strategy 2 (T2): Extrude di-

rection tangential to the core sur-

face

(c) Strategy 3 (T3): Extrude di-

rection tangential to the cavity

surface

Figure 8.4: Strategies for creating shutoff surface.

invalid shutoff patches (overlapping and intersecting) and creates bridge patches.

Since the main challenge lies in creating the outer shutoff surface, for the sake of

clarity, we will assume that the given parting line does not have any inner parting

loops. It only consists of one outer parting loop.

The aim of the mold designer is to create a shutoff surface, which is valid and

requires minimum machining cost. The following sections define the validity and

machining cost of a shutoff surface. Section 8.2.3 finally defines the problem in

terms of these concepts.

218

Startegy 2:
Tangential to
core surface

Startegy 1:
Perpendicular to
parting direction

Bridge patch

Figure 8.5: A bridge patch stitches two disjoint shutoff patches

8.2.1 Validity of a Shutoff Surface

For a given polyhedral object P and parting direction ~d, the properties of a valid

shutoff surface S = {s1, . . . , sn} are the following:

a) Continuous: The union of the shutoff surface and a mold-piece region (core

or cavity) is a continuous surface without any holes, i.e., S∗ = S ∪ Co is a

continuous surface with only one boundary loop.

b) Accessible: The shutoff surface is accessible along the parting direction, i.e.,

for every point p on S, the ray starting from p in the direction ±~d does not

intersect the interior of P or S. This ensures that the shutoff surface does

not form undercuts.

c) Intersection-Free: The shutoff surface does not intersect with itself (si∩ sj =

∅,∀i, j ∈ {1, . . . , n} and i 6= j) or the part (S ∩ P = ∅).

219

8.2.2 Machining Cost of a Shutoff Surface

As explained in Section 8.1.2, for a given set of parting line segments L = {l1, . . . , ln},

a shutoff surface S consists of two types of patches:

1. Segment patches, Ss = {s1, . . . , sn} created by extruding the parting line seg-

ments. Each segment patch si is created using a strategy ti ∈ {T1, T2, T3} for

the parting line segment li. Hence each segment patch si can be represented

as a set of candidate segment patches.

si = {s1

i , s
2

i , s
3

i } = {sji : j ∈ {1, 2, 3}} (8.2)

where sji is created using strategy Tj. The cardinality of the set si is three.

2. Bridge patches, Sb = {b1, . . . , bn} to stitch the adjacent segment patches.

The bridge patch b1 connects the segments patches s1 and s2, b2 connects s2

and s3, and so on. At the end bn connects sn and s1 to complete the loop.

Each bridge patch bi can be represented as a set of candidate bridge patches.

bi = {bj,ki : j, k ∈ {1, 2, 3}} (8.3)

where bj,ki connects the segment patches sji and ski+1. The cardinality of the

set bi is nine.

The machining cost of a segment patch si depends on its geometry, which in

turn depends on the strategy used to create it. Hence the machining cost of the

segment patch si can be written as:

C(si) =
3

∑

j=1

δjiC(sji) (8.4)

where,

220

• C(sji) is the machining cost of the segment patch sji and is given by Equa-

tion 3.15.

• δji ∈ {0, 1} is a binary variable. δji = 1 if Tj is chosen to create si, else it is

equal to zero. Also, only one strategy can be chosen for a segment patch,

i.e.,
∑

3

j=1
δji = 1.

Suppose a bridge patch bi, connects two segment patches si and si+1. The

machining cost of bi depends on size of the gap between si and si+1, which in turn

depends on the strategies used to create si and si+1. Hence the machining cost of

a bridge patch bi can be written as:

C(bi) =
3

∑

j=1

3
∑

k=1

δji δ
k
i+1C(bj,ki) (8.5)

where C(bj,ki) is the machining cost of the bridge patch bj,ki and is given by Equa-

tion 3.15. Tj and Tk are the strategies used to create the segment patches si and

si+1 respectively.

From Equation 8.4 and Equation 8.5, the total machining cost of the shutoff

surface for a given set of parting segments L = {l1, . . . , ln} can be written as a

function of the strategies used to create the segment patches.

Ct =
n

∑

i=1

(C(si) + C(bi)) (8.6)

8.2.3 Problem Statement

Problem CreateShutoffSurface

Input:

1. A polyhedral object P

221

2. Parting direction ~d

3. Mold-piece regions – core region (Co), and cavity region (Ca)

4. Parting line segments L = {l1, . . . , ln}. A parting line can be split into

smooth segments by the designer manually or automatically by a software

by identifying vertices where the angle of the parting line changes abruptly.

5. Required width w of the outer shutoff surface. The width is supplied by the

designer and is usually in the range of 0.25 – 1.0 inch. It is selected such

that there is enough contact pressure between core and cavity to prevent the

injected material from leaking. It depends on injection pressure and mold

material.

Output:

1. Shutoff surface S

2. Machining cost Ct as defined in Equation 8.6.

Output Requirements:

1. Each segment patch si follows one of the standard strategies ti ∈ {A,B,C},

i.e., the extrude direction is either perpendicular to the parting direction or

tangential to Co/Ca

2. The shutoff surface S is valid, i.e., it is (a) continuous, (b) accessible, and

(c) intersection-free as described in Section 8.2.1

3. The machining cost Ct is minimum

222

8.3 Overview of Approach

The algorithm presented here works in two steps:

• Step 1: Create an initial valid shutoff surface (Section 8.4.1). An initial

shutoff surface that satisfies all the requirements outlined in Section 8.2.1

is created. This portion of the algorithm is adapted from the algorithm

presented by Ahn et al. [Ahn02]. The surface created in this step is math-

ematically valid (continuous, accessible, and intersection-free), but may not

be optimal. It also does not follow any of the standard strategies.

• Step 2: Optimize the initial shutoff surface (Section 8.4.2). Strategy for each

segment patch is selected such that the total machining cost of the shutoff

surface is minimum. This problem of finding an optimal combination of

strategies for creating the segment patches is reduced to the single-source

shortest path problem and Dijkstra’s algorithm is used to find the optimal

solution. The strategies selected for each segment patch is applied to the

shutoff surface created in the first step. The vertices of the shutoff surface

are moved to make the shutoff surface follow the selected strategies while

preserving its validity. Bridge patches are finally created to fill the gaps

between adjacent segment patches.

8.4 The Algorithm

Without the loss of generality, we can assume that the parting direction is along the

z-direction. Let L = {l1, . . . , ln} be the given parting line between the core region

(Co) and cavity region (Ca). We need to create a shutoff surface with minimum

machining cost C. As described in Section 8.3, the algorithm for creating the

223

optimal shutoff surface works in two steps. This section presents the detailed

description of each step.

8.4.1 Creating an Initial Valid Shutoff Surface

The method for creating a valid shutoff surface is adapted from the algorithm

presented by Ahn et al. [Ahn02]. We project the parting line L onto the xy-plane

to obtain a polygon L′ with holes. Figure 8.2 shows the projected polygon for

the part shown in Figure 8.1. It should be noted that the collinear edges are not

merged in the projection. Every vertex v of the parting line L is projected to a

vertex v′ of the polygon L′. To compute the boundary of L′, we need to determine

the union of the projection of L. If nv is the number of vertices in L, this can be

done in O(nv log nv) time using a plane-sweep algorithm [Prep85].

The outer boundary R of the projected polygon L′ is offset to a closed contour

R′ as shown in Figure 8.6a. The offset distance is equal to the required width w

of the outer shutoff surface. The holes in the polygon L̄ and the region formed

between R and R′ are triangulated in linear time [Chaz91]. This triangulation is

lifted into three-dimensional space by replacing every vertex v′ by its associated

vertex v as shown in Figure 8.6b. Note that the contour R′ remains on the xy-

plane as it does not have corresponding three-dimensional vertices. The lifted

triangulation S is a valid shutoff surface. It is continuous because after lifting,

it meets the part at the parting line. It is also accessible along the z-direction

and does not intersect with the part or itself. These properties are proved by

Theorem 8.3 and Theorem 8.4.

The triangulated surface S is a valid shutoff surface, but may not be optimal.

It also does not follow any standard strategy. The next section selects a strategy

224

Projected
Polygon

L’

Offset
Boundary

R’

Outer
Boundary

R

(a) Projected contour is triangulated (b) The triangulation is lifted into 3D

Figure 8.6: Creating a valid shutoff surface.

for each shutoff patch. But before that we need to split S into shutoff patches.

The parting line consists of a set of smooth parting segments {l1, . . . , ln}. Each

parting segment li has a corresponding segment ri on the offset contour R. All

the triangles formed between li and ri form a segment patch si. The triangulated

surface S is hence split into a set of segment patches S = {s1, . . . , sn}

8.4.2 Optimizing the Initial Shutoff Surface

The previous step (Section 8.4.1) creates a mathematically valid shutoff surface.

But the machining cost of created surface may not be minimum. It may also not

follow any of the standard strategies. From Equation 8.6, the total machining cost

of a shutoff surface for a given set of parting segments depends on the strategies

selected for creating the segment patches. This step selects a strategy for creating

each segment patch such that the total machining cost of the shutoff surface is

225

minimum. This optimization problem can be formally stated as follows:

Minimize Ct =
∑n

i=1
(
∑

3

j=1
δjiC(sji) +

∑

3

j=1

∑

3

k=1
δji δ

k
i+1C(bj,ki))

s.t. δji ∈ {0, 1}
∑

3

j=1
δji = 1

(8.7)

This reduces the problem of minimizing the machining cost of a shutoff surface

to that of selecting an optimal combination of strategies for creating the segment

patches. The major difficulty in selecting the strategies is the combinatorial nature

of the problem. We need to select one segment patch sji from each set si given in

Equation 8.2. This makes the total number of candidate shutoff surfaces equal to

3n. It is clear that greedily selecting the minimum-cost strategy for each segment

patch individually may not yield the minimum-cost shutoff surface. The cost of

the bridge patches needed to connect the minimum-cost segment patches may raise

the total cost of the shutoff surface higher than that for some other combination

of strategies.

This problem of finding an optimal combination of strategies can be reduced

to the single-source shortest path problem by representing it as a Directed Acyclic

Graph (DAG) where the nodes represent the segment patches and the edges rep-

resent the bridge patches. Figure 8.7 shows such a graph where strategy T1 is

selected for the segment patch s1. Any path from the node s1
1 at the top to the

same node at the bottom represents a candidate shutoff surface. All candidate

shutoff surfaces are covered by constructing similar DAGs for segment patches s2
1

and s3
1. Let us now assign weights to the edges of this DAG. The weight assigned

to an edge is equal to the sum of the corresponding bridge patch cost and the

segment patch cost. For instance, the cost of the edge connecting s1
1 and s3

2 is

equal to the sum of the bridge patch b1,31 machining cost and the segment patch s3
2

226

s1
1

s2
2s2

1 s2
3

s3
2s3

1 s3
3

sn-1
2sn-1

1 sn-1
3

sn
2sn

1 sn
3

s1
1

b1
1,3

b1
1,2

b1
1,1

bn
1,1 bn

2,1

bn
3,1

w1
1,3 = c(b1

1,3) + c(s2
3)

Figure 8.7: The problem of selecting the optimal combination of strategies

machining cost. The weight of the edge representing bj,ki is given by:

wj,ki = c(bj,ki) + c(ski+1) (8.8)

The path for which the total edge cost is minimum represents the shutoff sur-

face for which the machining cost is minimum. This is equivalent to solving the

single-source shortest path problem. Moreover, since our graphs are directed and

edge weights non-negative, we can apply Dijkstra’s algorithm [Corm90] to find the

minimum cost shutoff surface.

227

Based on the above observation, following algorithm is presented to find the

optimal combination of strategies for the segment patches.

Algorithm SelectOptimalStrategy

Input:

• Set of segment patches S = {s1, . . . , sn} created in Section 8.4.1

• Cost function c(s) to calculate the machining cost of a surface patch. The

cost function is usually supplied by the software tools such as MasterCAM

and ProEngineer.

Output:

• Set of strategies T = {t1, . . . , tn} for each segment patch

• Machining cost C

Steps:

1. For each segment patch si, create the set of candidate segment patches given

by Equation 8.2. Each candidate segment patch sji is created by making si

follow a strategy Tj. Section 8.4.3 describes a method for making a segment

patch follow a strategy.

2. Create the set of candidate bridge patches bj,ki given by Equation 8.3. Sec-

tion 8.4.4 describes a method for creating a bridge patch for a given pair of

segment patches.

3. Find the cost of segment patches sji and bridge patches bj,ki using the cost

function c(s).

228

4. Construct weighted DAGs G1, G2, and G3 for s1
1, s

2
1, and s3

1 respectively as

shown in Figure 8.7.

5. Find the cost C1, C2, and C3 of the shortest path in G1, G2, and G3 respec-

tively using the Dijkstra’s algorithm.

6. Return the minimum of {C1, C2, C3} and the corresponding path T .

Figure 8.1 shows the optimized shutoff surface created by the above algorithm for

the running example shown in Figure 8.6.

Theorem 8.1. Let L = {l1, . . . , ln} be a set of parting line segments and {A,B,C}

be a set of standard strategies. The combination of strategies given by the algorithm

SelectOptimalStrategy produces a valid shutoff surface with the minimum

machining cost.

Proof. By the structure of the DAGs {G1, G2, G3}, any path includes all segment

patches and bridge patches and only once. Hence the solution given by the algo-

rithm is valid. Also, since we evaluate all possible combinations of strategies, every

possible solution is embedded in the three DAGs. Suppose there is a solution T

whose cost is less than that found by the algorithm OptimalStrategy. If T is a

valid solution, it will be embedded in one of the three DAGs. And if it is embedded

in the graph and has the lowest cost, the algorithm will find it. If T is not found,

such a solution cannot exist.

Theorem 8.2. Let L be a parting line with ns segments and nv vertices. Let T be a

set of nst standard strategies. A valid shutoff surface with the minimum machining

cost can be created in O(nv log nv) time.

229

Proof. The complexity of the Dijkstra’s shortest path algorithm is O(V log V +E),

where V and E are the number of nodes and edges in the graph. This means that

we can find the optimal combination of strategies in O(ns log ns+n2
st) time, where

ns is the number of segments on the parting line and nst is the number of strategies.

Hence the overall complexity of the algorithm is O(nv log nv +ns log ns+n2
st). The

number of strategies (nst) is a fixed quantity, and the number of segments is always

less than the number of vertices (nv). So the overall complexity of the algorithm

remains O(nv log nv).

8.4.3 Making a Segment Patch Follow a Strategy

This section presents a method to modify a segment patch created in Section 8.4.1

such that each it follows a given strategy. This method is used by the algorithm

OptimalStrategy described in Section 8.4.2 to build the DAGs {G1, G2, G3}.

In Section 8.4.1, the shutoff surface was created by lifting a two-dimensional

triangulation into three-dimensional space. The outer boundary R of the projected

polygon L′ was projected back to the parting line. However the offset contour R′

remained on the xy-plane as it does not have corresponding three-dimensional

vertices. We make each segment patch follow the assigned strategy by moving the

vertices of R′ in the ±z-direction. We will first prove that moving the vertices of

the shutoff surface in the ±z-direction does not affect the validity of the shutoff

surface, i.e., it remains continuous, accessible, and intersection-free. Since we do

not move the vertices shared by the shutoff surface and the part, the shutoff surface

remains continuous. The following theorems further prove that the shutoff surface

also remains accessible and intersection-free.

Theorem 8.3. Let S be a planar continuous surface on the xy-plane. Surface S ′,

230

created by arbitrarily moving the vertices of S in the ±z-direction, is accessible

along the z-direction.

Proof. To test if S ′ is accessible along the z-direction, we need to project the

facets {f1, . . . , fn} of S ′ on the xy-plane and check whether any pair intersects.

Let S̄ ′ = {f̄1, . . . , f̄n} be the projection of S ′ on the xy-plane. S ′ is accessible

along the z-direction iff f̄i ∩
∗ f̄j = ∅,∀i, j ∈ {1, . . . , n}.

Since S ′ is constructed by moving the vertices of S in the ±z-direction, S̄ ′ is

the same as S and the facets {f̄1, . . . , f̄n} are in fact the original facets of S that

do not overlap. Hence, surface S ′ is accessible along the z-direction.

Theorem 8.4. Let S be a planar continuous surface on the xy-plane. Surface

S ′, created by arbitrarily moving the vertices of S in the ±z-direction, does not

self-intersect.

Proof. By separating axis theorem (Section 7.2.2), if there exists a plane on which

the projection of the two facets do not overlap, then the facets do not intersect.

From Theorem 8.3, the surface S ′ is accessible, i.e., the projection of the facets of

S ′ on the xy-plane do not overlap. This implies that no two facets of S ′ intersect

with each other and hence S ′ does not self-intersect.

Each vertex v′ on the contour R has a corresponding offset vertex v′′ on the

contour R′ as shown in Figure 8.6a. The vertex v′ also has a corresponding three-

dimensional vertex v on a parting segment li. Hence each vertex v on a parting

segment li has a corresponding vertex v′′ on the offset contour R′. The vertex v is

shared by two edges e1 and e2 on li. We lift the vertex v′′ to the intersection line

of the planes P1 and P2 containing e1 and e2 respectively. The orientation of the

planes P1 and P2 depends on the strategy to follow.

231

If the selected strategy is T1 (perpendicular to the parting direction), P1 also

contains the vector d1 which is the cross-product of the edge e1 and the z-direction,

i.e., ~d1 = ~e1×~z. Similarly, P2 also contains the vector d2 which is the cross-product

of the edge e2 and the z-direction, i.e., ~d2 = ~e2 × ~z.

If the selected strategy is T2 (tangential to core), P1 is the plane of the core

facet f1 whose one of the edges is e1. Note that f1 is unique because the edge e1 is

a boundary edge of the core region. P2 is the plane of the core facet f2 whose one

of the edges is e2. Similarly, if the selected strategy is T3 (tangential to cavity), P1

and P2 are the cavity facets whose one of the edges is e1 and e2 respectively.

8.4.4 Creating a Bridge Patch

This section presents a method to create a bridge patch for a given pair of segment

patches. This method is used by the algorithm OptimalStrategy described in

Section 8.4.2 to build the DAGs {G1, G2, G3}.

As described in Section 8.4.3, a segment patch is made to follow a strategy by

moving the vertices of the offset contour R′ shown in Figure 8.6a in ±z-direction.

A vertex v′′ on R′, which is shared by two adjacent segment patches may be moved

to different positions p1 and p2 with different z-coordinates. This creates a gap

between the segment patches as shown in Figure 8.8.

Since the two segment patches are joined at the parting line, they always share

a vertex on the parting line. This gap can be filled by single triangle b. The two

positions p1 and p2 to which v′′ is moved to have the same x and y coordinates, so

b is vertical. By definition, a vertical facet is accessible along the z-direction and

also does not occlude any other facet in the z-direction. But at the same time, a

vertical shutoff patch is not desirable as it leads to potential mold problems (e.g.

232

Parting
direction

Extrude direction
tangential to the

core surface

Extrude direction
perpendicular to the

parting direction

z1

z2

Bridge patch

Figure 8.8: Creating a bridge patch

breakage) and part problems (e.g. flash). To avoid this, p1 and p2 are slightly

perturbed in the x− y plane so that the triangle b (bridge patch), does not remain

vertical.

8.5 Results

Figure 8.9 shows the results of the algorithm for creating shutoff surface. The

parts in Figure 8.9a, Figure 8.9b, and Figure 8.9c have a single shutoff patch. This

does not require finding an optimal combination of strategies. Just finding the

minimum-cost strategy does the job.

Strategy 3 (tangential to the cavity surface) is infeasible for the part shown

in Figure 8.9d. This is because all the boundary facets of the cavity surface are

233

parallel to the z-direction and hence cannot be extruded in the xy-plane. Another

interesting feature of this part is that Strategy 1 (perpendicular to parting direc-

tion) and Strategy 2 (tangential to the core surface) result in the same surface

everywhere. This is due to the fact that all the boundary facets of the cavity sur-

face are perpendicular to the z-direction. Hence, although the part has multiple

patches, we do not need to find an optimal combination of strategies.

The part shown in Figure 8.9e has multiple patches for which we need to solve

the optimization problem as described in Section 8.4.2. The figure shows the

different strategies used for different shutoff patches.

8.6 Summary

Mold design community currently uses a set of surface extension techniques to

create shutoff surfaces. In case of complex parting lines, the parting line is manu-

ally split into parting line segments and different surface extension techniques are

used on different parting line segments to minimize mold machining cost. Sur-

face extension techniques are selected based on the prior experience of the mold

designer.

This chapter describes an algorithm for creating shutoff surface for a polyhe-

dral object. The input to the algorithm includes the parting direction, mold-piece

regions, and parting line of the object. The shutoff surface produced by the algo-

rithm is created using commonly used surface extension techniques in the molding

community. This algorithm produces provably optimal results for a given set of

surface extension techniques without exhaustively enumerating all combinations

of surface extension techniques. In fact the worst case time complexity for this

algorithm is polynomial in terms of parting line segments. The current version

234

(a) Single patch: Per-

pendicular to the parting

direction

(b) Single patch: Tan-

gential to the core sur-

face

(c) Single patch: Tan-

gential to the cavity sur-

face

s1

s2

s3

(d) Multiple patches: Perpendicular to pull and

tangential to the core surface everywhere

Tangential
to core

Perpendicular to
parting direction

(e) Multiple patches: Multiple strategies

Figure 8.9: Results of the algorithm for creating shutoff surface

of the algorithm works with three commonly known surface extension techniques

and produces shutoff surfaces with guaranteed accessibility. The algorithm can be

easily extended to include additional surface extension techniques as they become

available. This algorithm has been tested with several complex objects which re-

quire use of multiple different surface extension techniques in creation of shutoff

surfaces. This algorithm can also be used in die-casting.

235

Chapter 9

CONCLUSIONS

This chapter has been organized in the following manner. Section 9.1 describes

the main intellectual contributions of this dissertation. Section 9.2 identifies the

anticipated industrial benefits resulting from this research. Section 9.3 discusses

the future research directions.

9.1 Intellectual Contributions

This dissertation makes intellectual contributions in the following areas:

1. Framework for representing molding plans for articulated joints. This disser-

tation presents a framework for representing molding plans for articulated

joints. This framework allows us to record molding plans for joints in a

reusable form. When a joint similar to a previously molded joint is found in

a new assembly, the previously generated knowledge can be applied to the

new joint. The complete set of applicability conditions are given to identify

the applicable plan for a joint. Feasibility constraints that can be transferred

from the molding plan of the joint to the overall molding planning problem

for an assembly are identified. Four assembly design principles are given that

236

lead to feasible and efficient molding plans. If these design principles are fol-

lowed, it is possible to reduce the molding cost and ensure that the molded

assembly is of desired quality. This dissertation also presents six reusable

molding plans for three basic joints – prismatic, revolute, and spherical.

2. Algorithm for generating molding plans for articulated assemblies. This dis-

sertation describes an algorithm for generating a multi-stage molding plans

for articulated assemblies. This algorithm produces a molding plan, which

is feasible as well as optimal with respect to the manufacturing cost. The

molding planning problem is a combinatorial optimization problem. This

dissertation formulates it as a state-space search problem and uses branch

and bound to search for an optimal solution. The state space may have large

number of search nodes and processing each node takes a lot of time. These

problems are handled by pruning infeasible solution paths and reusing the

results of a search node. This dissertation also presents geometric reasoning

algorithms for the subproblems that need to be solved as part of the overall

planning problem. These subproblems include finding stage components and

assembly configuration for each molding stage. The assembly configuration

found by the algorithm is such that the number of undercuts on the stage

components is minimum and the parting line is flattest. The algorithms

have been tested with several complex assemblies for which multiple molding

plans are possible. This algorithm can be adapted for assembly planning

where monotonocity assumptions do not hold.

3. Algorithm for finding mold-piece regions. This dissertation presents two algo-

rithms for finding mold-piece regions of components and assemblies. The first

algorithm is an object-space algorithm, which runs on the central processing

237

unit (CPU) of a computer. The algorithm handles the near-vertical facets

robustly by perturbing the parting direction. The implementation utilizes ge-

ometric properties of polyhedral objects and hierarchical data structure for

efficiency. The second algorithm is an image-space algorithm, which can be

executed on the graphics processing unit (GPU) of a computer. It robustly

handles the near-vertical facets by slightly perturbing the vertices on those

facets and visibility sampling. It exploits the computational power offered

by the GPUs. It was shown that an efficient implementation of this algo-

rithm does not impose any significant overhead on the GPU. The mold-piece

regions even for parts with more than 50,000 facets can be highlighted at

interactive rates. Such a system that provides real-time information about

mold-piece regions will be very useful to the part and mold designers alike.

They can easily optimize the part and mold design and if needed make appro-

priate corrections upfront, streamlining the subsequent design steps. Both

algorithms have been successfully tested with several complex components

and assemblies. The results of the image-space algorithm was verified by

comparing them with those obtained by the object-space algorithm. Both

algorithms produce identical results. These algorithms can also be used for

machining, die-casting, and sheet metal forming.

4. Algorithm for constructing optimal shutoff surfaces. This dissertation de-

scribes an algorithm for creating shutoff surface for a polyhedral object. The

input to the algorithm includes the parting direction, mold-piece regions,

and parting line of the object. The shutoff surface produced by the algo-

rithm is created using commonly used surface extension techniques in the

molding community. This algorithm produces provably optimal results for a

238

given set of surface extension techniques without exhaustively enumerating

all combinations of surface extension techniques. In fact the worst case time

complexity for this algorithm is polynomial in terms of parting line segments.

The current version of the algorithm works with three commonly known

surface extension techniques and produces shutoff surfaces with guaranteed

accessibility. The algorithm can be easily extended to include additional sur-

face extension techniques as they become available. This algorithm has been

tested with several complex objects which require use of multiple different

surface extension techniques in creation of shutoff surfaces. This algorithm

can also be used in die-casting.

9.2 Anticipated Industrial Benefits

Multi-stage molding has emerged as an important manufacturing process. It can

be used to make better-quality articulated products at a lower cost. Unfortunately,

there are currently no software tools to generate molding plans. It is difficult to

perform the planning manually. It involves examining a large number of com-

binations and solving complex geometric reasoning problems. In the absence of

software tools, it usually takes a long time – about three to four weeks on an

average to develop a molding plan. There are also concerns about the feasibility

and optimality of a molding plan because many decisions are based on subjective

guesswork. The desired articulation and multiple molding stages introduce geo-

metric constraints, which if violated, results in poor part quality, longer molding

cycles, and high tooling cost.

The algorithm presented in this dissertation can be used to develop a software

system that can automatically generate molding plans that are both feasible and

239

economical. Currently a designer needs to manually develop a molding plan and

feed it to the available mold design software to generate the mold pieces. The

automation of planning will enable the complete automation of multi-stage mold

design, which in turn will reduce the cost and lead-time associated with the de-

ployment of multi-stage molds. Automation of mold design will also improve the

part quality by exploring explores design alternatives that are otherwise difficult

due to human constraints.

The economic deployment of in-mold assembly process will significantly impact

the molding industry. In-mold assembly allows integration of functional elements,

thereby reducing the number of components and additional assembly steps. As-

sembly is mostly a manual labor-intensive process and costs up to 50% of the total

manufacturing cost of a product. The elimination of post-molding assembly op-

erations will make manufacturing economically viable in places where labor costs

are high. In-mold assembly also opens up the design space and present new pos-

sibilities. By eliminating the manual assembly operation, it allows the production

of devices with extremely small components.

9.3 Future Work

Following the investigations taken up in this dissertation, a number of projects can

be taken up:

1. Incorporate the constraints imposed by flow and thermal considerations. The

algorithm for generating the molding sequence presented in this dissertation

does not consider the flow and thermal limitations of molding machines. It is

assumed that each component is feasible to mold from the mold-flow point of

240

view in all possible sequences and the thermal management system is capable

of providing appropriate cooling and heating. This assumption may however

break down for some molding stages. If the components to be molded in

a stage are too far, it may not be possible to deliver the molten plastic to

all cavities with limited injection pressure. Also, if the volume of injected

material in a molding stage is too much, the thermal management system

may not have the capability to melt or cool down so much material. Hence

the constraints imposed by the flow and thermal considerations should also

be incorporated into the algorithm.

2. Search the continuous configuration space of pre-stage components. For every

molding stage, we need to find a feasible configuration for pre-stage compo-

nents. This dissertation presented an algorithm that incrementally evaluates

only discrete configurations. This algorithm suffers from aliasing issues like

any other discrete sampling algorithm. It may not be able to find a feasible

configuration when it actually exists. More work is required to develop an

algorithm that searches the continuous configuration space.

3. Develop plans for meso-scale joints. The in-mold assembly process is espe-

cially useful when assembling the components manually is difficult such as

when the components are very small in size. We believe that it will be very

useful in meso-scale assemblies. This dissertation presented six molding plans

for three basic joints. But the size of all those are joints are at the macro

scale. Further investigation is required to develop plans for meso-scale joints.

4. Extend the work to deal with parallel mechanisms. This dissertation only

deals with serial mechanisms. The parallel mechanisms add another level of

241

complexity to the problem where we may have to handle cyclic feasibility

constraints. Further work is need to extend this work to deal with parallel

mechanisms.

5. Extend the methodology to incorporate compliant joints. This dissertation

only deals with rigid-body joints. Articulation can also be achieved by com-

pliant joints. The compliant joints are created using a soft (compliant) mate-

rial between two rigid materials. The assemblies with compliant joints have

larger feasible configuration space than the assemblies with rigid joints. The

geometry of the compliant joints can be ‘stretched’ away so that it no longer

casts shadow over another component. The algorithm to find feasible con-

figuration space for components need to be extended to handle compliant

joints.

242

BIBLIOGRAPHY

[Ahn02] Ahn, H.K., De Berg, M., Bose, P., Cheng, S.W., Halperin, D., Matousek,

J., and Schwarzkopf, O. Separating an object from its cast. Computer-

Aided Design, 34, 547-59, 2002.

[Alti89] L. Alting and H. Zhang. Computer aided process planning: The state of

the art survey. International Journal of Production Research, 27(4):553–

585, 1989

[Anan95] G.K. Ananthasuresh and S. Kota. Designing Compliant Mechanisms.

Mechanical Engineering, 117(11): 93-96, 1995.

[Bala98] S. Balasubramanian, A. Elinson, J.W. Herrmann, and D. Nau. Fixture-

based usefulness measures for hybrid process planning, ASME Design

for Manufacturing Conference, Atlanta, Georgia, September 13-16, 1998

[Bala00] Balasubramaniam, M., Laxmiprasad, P., Sarma, S., and Shaikh, Z. Gen-

erating 5-axis NC roughing paths directly from a tessellated represen-

tation. Computer-Aided Design, 32: 261-277, 2000.

[Bane06] A.G. Banerjee, and S.K. Gupta, A step towards automated design of

side actions in injection molding of complex parts. In Proceedings of

Geometric Modeling and Processing, Pittsburgh, PA, 2006

243

[Beas93] D. Beasley and R.R. Martin, Disassembly sequences for objects built

from Unit Cubes, Computer Aided Design, 25(12): 751-761, 1993

[Berg00] M. de Berg, M. van Kreveld, M. Overmars, and Schwarzkopf. Computa-

tional Geometry: Algorithms and Applications. Springer-Verlag, 2000.

[Bruc04] H. Bruck, G. Fowler, S.K. Gupta, and T. Valentine. Towards bio-

inspired interfaces: Using geometric complexity to enhance the inter-

facial strengths of heterogeneous structures fabricated in a multi-stage

multi-piece molding process. Experimental Mechanics, 44(3):261–271,

2004.

[Bryc96] D. M. Bryce. Plastic Injection Molding, Vol. I: Manufacturing Process

Fundamentals. Society of Manufacturing Engineers: Dearborn, Michi-

gan, 1996.

[Chaz91] B. Chazelle. Triangulating a simple polygon in linear time. Discrete

Comput Geom 1991;6:485-524.

[Chen93] L.L. Chen, S.Y. Chou, and T.C. Woo. Parting directions for mould and

die design. Computer-Aided Design, 25: 762-768, 1993

[Chen01a] Y. Chen and D. Rosen. Problem formulation and basic elements for au-

tomated multi-piece mold design. ASME Design Engineering Technical

Conference, Pittsburgh, PA, September 2001

[Chen01b] Y. Chen and D. Rosen. A region based approach to automated design

of multi-piece molds with application to rapid tooling. ASME Design

Engineering Technical Conference, Pittsburgh, PA, September 2001

244

[Chen03] Y. Chen and D. Rosen. A Reverse Glue Approach to Automated Con-

struction of Multi-Piece Molds. Journal of Computing and Information

Science in Engineering, 3(3): 219-230, September 2003

[Corm90] T. H. Cormen, C. E. Leiseron, and R. L. Rivest. Introduction to Algo-

rithms. The MIT Press, 1990.

[Dhal01] S. Dhaliwal, S. K. Gupta, J. Huang, and M. Kumar. A feature-based

approach to automated design of multi-piece sacrificial molds. ASME

Journal of Computing and Information Science in Engineering, 1(3):

225-234, 2001.

[Dhal03] S. Dhaliwal, S.K. Gupta, J. Huang, and A. Priyadarshi. Algorithms for

computing global accessibility cones. Journal of Computing and Infor-

mation Science in Engineering, 3(3):200–209, September 2003

[Elis97] A. Elinson, J.W. Herrmann, I. Minis, D. Nau, and G. Singh. Toward

hybrid variant/generative process planning. Design for Manufacturing

Symposium, ASME Design Engineering Technical Conference, Sacra-

mento, California, September 14-17, 1997

[Ever01] C. Everitt, A. Rege, and C. Cebenoyan. Hardware shadow mapping.

Whitepaper, http://developer.nvidia.com/object/hwshadowmap_

paper.html.

[Elbe95] G. Elber and E. Cohen. Arbitrarily precise computation of Gauss maps

and visibility sets for freeform surfaces. In Proceedings of 3th Sympo-

sium on Solid Modeling and Applications, May 1995, Salt Lake City,

Utah.

245

[Elbe05] G. Elber, X. Chen, and E. Cohen, Mold Accessibility via Gauss Map

Analysis. Journal of Computing and Information Science in Engineer-

ing, Vol. 5, No. 2, (2005), 79-85

[Fazi87] T. De Fazio and D. Whitney. Simplified generation of all mechanical

assembly sequences. IEEE Journal of Robotics and Automation, 3(6),

640-658, December 1987

[Fu99] M. W. Fu, J. Y. H. Fuh, and A. Y. C. Nee. Undercut feature recognition

in an injection mould design system. Computer-Aided Design, 31: 777-

790, 1999.

[GLEW] The OpenGL Extension Wrangler Library, Release 1.3.4,

Available http://glew.sourceforge.net.

[GLUT] The OpenGL Utility Toolkit, Version 3.7.6,

Available http://www.xmission.com/~nate/glut.html.

[Good02] V. Goodship and J.C. Love. Multi-Material Injection Moulding. Rapra

Technology LTD.: Shawbury, UK, 2002.

[Gott96] S. Gottschalk. Separating axis theorem. Technical Report TR96-024,

Department of Computer Science, UNC Chapel Hill, 1996.

[Gouk06] R.M. Gouker, S.K. Gupta, H.A. Bruck, and T. Holzschuh. Manufac-

turing Of Multi-Material Compliant Mechanisms Using Multi-Material

Molding. Accepted for Publication in International Journal of Advanced

Manufacturing Technology, 2006.

246

[Govi05] N.K. Govindaraju, N. Raghuvanshi, M. Henson, and D. Manocha. A

Cache-Efficient Sorting Algorithm for Database and Data Mining Com-

putations using Graphics Processors. UNC Tech. Report, 2005

[GTS] GNU Triangulated Surface Library: Version 0.7.6,

Available http://gts.sourceforge.net.

[Gu99] Z. Gu, Z. Zhou, S. Gao, and J. Shi. Determination of mold parting direc-

tion based on automatic molding feature recognition. ASME Computers

and Information in Engineering Conference, Las Vegas, Navada, 1999.

[Gupt02] S.K. Gupta, X. Li, and A. Priyadarshi. An algorithm for design of

multi-stage molds for multi-material objects with complex interfaces.

In ASME International Mechanical Engineering Congress and Exposi-

tion, New Orleans, Louisiana, November, 2002

[Gupt03] S.K. Gupta and A.K. Priyadarshi. Towards automated design of multi-

piece molds. In ASME Design Automation Conference, Chicago, IL,

September 2003.

[Huan01] J. Huang. Accessibility-driven spatial partitioning: A step towards au-

tomated design of multi-piece molds. PhD Thesis, Department of Me-

chanical Engineering, University of Maryland, College Park, 2001.

[Huan02] J. Huang and S.K. Gupta. Accessibility driven spatial partitioning for

generating sacrificial multi-piece molds. ASME Design for Manufactur-

ing Conference, Montreal, Canada, 2002.

[Hui92] K.C. Hui and S.T. Tan. Mould design with sweep operations - a heuristic

search approach. Computer-Aided Design, 24(2), 1992.

247

[Hui97] K.C. Hui. Geometric aspects of the mouldability of parts. Computer-

Aided Design, 29(3): 197-208, 1997.

[Insa04] M. Insall and E.W. Weisstein. Partially Ordered Set. From

MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.

com/PartiallyOrderedSet.html.

[Jans98] K.M.B. Jansen, D.J. Van Dijk, and M.H. Husselman. Effect of Process-

ing Conditions on Shrinkage in Injection Molding. Polymer Engineering

and Science, vol. 38, no. 5, pp. 838-846, May 1998.

[Kang97] J.K. Kang and S.H. Suh. Machinability and set-up orientation for five-

axis numerically controlled machining of free surfaces. International

Journal of Advanced Manufacturing Technology, 1997, 13: 311-325.

[Kett99] Lutz Kettner. Software Design in Computational Geometry and

Contour-Edge Based Polyhedron Visualization. PhD Thesis, ETH Zrich,

Institute of Theoretical Computer Science, September 1999

[Khar05] Khardekar, Burton, and McMains, Finding Feasible Mold Parting Di-

rections Using Graphics Hardware, Proceedings of the 2005 ACM sym-

posium on Solid and Physical Modeling, Cambridge, MA, June 2005,

pp. 233-243.

[Kim95] D.S. Kim, P.Y. Papalambros, and T.C. Woo. Tangent, normal, and

visibility cones on Bzier surfaces. Computer Aided Geometric Design,

1995, Vol. 12, 305-320.

[Kris97] S. Krishnan and E.B. Magrab. A new approach to mold design using

manufacturable entities. Proceedings of the Design for Manufacturability

248

Symposium: ASME Winter Annual Meeting, Dallas, TX, November

1997.

[Kuma02] M. Kumar and S.K. Gupta. Automated design of multi-stage molds for

manufacturing multi-material objects. Journal of Mechanical Design,

Vol. 124, No. 3, pp. 399-407, 2002.

[Kwon92] K.K. Kwong. Computer-aided parting line and parting surface genera-

tion in mould design. PhD Thesis, The University of Hong Kong, Hong

Kong, 1992

[Li04] X. Li and S.K. Gupta. Geometric algorithms for automated design of

rotary-platen multi-shot molds. Computer Aided Design, 36(12):1171–

1187, 2004.

[Lu00] H. Lu and W.B. Lee. Detection of interference elements and release

direction in die-cast and injection-moulded components. Journal of En-

gineering Manufacture, 214(B6): 431-441, 2000.

[Majh99] J. Majhi, P. Gupta, and R. Janardan. Computing a flattest, undercut-

free parting line for a convex polyhedron, with application to mold de-

sign. Computational Geometry Theory and Applications, 13: 229-252,

1999.

[Mall94] R. A. Malloy. Plastic Part Design for Injection Molding: And Introduc-

tion. Hanser Gardner Publications, Inc.: Cincinnati, Ohio, 1994.

[Mcma04] S. McMains and X. Chen, Determining Moldability and Parting Di-

rections for Polygons with Curved Edges. In International Mechanical

249

Engineering Congress and Exposition, ASME, IMECE, Anaheim, CA,

(2004)

[MFC] Microsoft Foundation Classes, Available http://msdn.microsoft.

com/visualc.

[Nee98] A.Y.C. Nee, M.W. Fu, J.Y.H. Fuh, K.S. Lee, and Y.F. Zhang. Auto-

matic determination of 3-D parting lines and surfaces in plastic injection

mould. Annals of CIRP, 47(1): 95-98, 1998

[Nils98] Nils J. Nilsson. Artificial Intelligence: A New Synthesis, Morgan Kauf-

mann Publishers, Inc., 1998

[OpenGL] OpenGL rendering library, Release 2.0,

Available http://www.opengl.org.

[Owen05] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E.

Lefohn, and T.J. Purcell. A Survey of General-Purpose Computation

on Graphics Hardware. In Eurographics 2005, State of the Art Reports,

August 2005, pp. 21-51.

[Pirk98] J. D. Pirkl. Automating the Multi-Component Molding Process. In Pro-

ceedings of Technologies for Multi-Material Injection Molding (CM98-

206). Troy, Michigan, May 1998.

[Plan02] H. Plank. Overmolding-Stack-Mold Technology: An Innovative Concept

in Multi-Component Injection Molding. SME Technical Papers (CM02-

225), 2002.

[Post05] P. Postawa. Shrinkage of Moldings and Injection Molding Conditions.

Polimery 50(3): 201-207, 2005.

250

[Prep85] F.P. Preparata and M.I. Shamos. Computational geometry: an intro-

duction. New York: Springer-Verlag, 1985

[Priy04] A.K. Priyadarshi and S.K. Gupta. Geometric algorithms for automated

design of multi-piece permanent molds. Computer Aided Design, 36(3):

241-260, 2004.

[Priy06a] A.K. Priyadarshi, S.K. Gupta, R. Gouker, F. Krebs, M. Shroeder, and S.

Warth. Manufacturing multi-material articulated plastic products using

in-mold assembly. Accepted for publication in The International Journal

of Advanced Manufacturing Technology.

[Priy06b] A.K. Priyadarshi and S.K. Gupta. Finding mold-piece regions using

computer graphics hardware. In Geometric Modeling and Processing

Conference, Pittsburgh, PA, July 2006

[QSlim] QSlim simplification library, Version 2.1,

Available http://graphics.cs.uiuc.edu/~garland/software/

qslim.html.

[Ravi90] B. Ravi, and M.N. Srinivasan. Decision Criteria for Computer-Aided

Parting Surface Design. Computer-Aided Design, 22(1), 1990

[Reev87] W.T. Reeves, D.H. Salesin, and R.L. Cook. Rendering antialiased shad-

ows with depth maps. In Computer Graphics (SIGGRAPH 87 Proceed-

ings), pages 283-291, July 1987

[Roth04] J. Rotheiser. Joining of Plastics, Handbook for Designers and Engineers.

Hanser Gardner Publications, Inc.: Cincinnati, Ohio, 2004.

251

[Sahn98] S. Sahni. Data Structures, Algorithms, and Applications in C++,

McGraw-Hill, 1998

[Simm06] SimMechanics documentation, Release 14,

Available http://www.mathworks.nl/access/helpdesk/help/

toolbox/physmod/mech

[Spit99] Spitz, S.N., Spyridi, A.J., and Requicha, A.A.G. Accessibility analysis

for planning of dimensional inspection with coordinate measuring ma-

chines. IEEE Transactions on Robotics and Automation, 15(4): 714-727,

Aug 1999.

[Stag97] R. Stage and C. Roberts. A framework for representing and comput-

ing tool accessibility. Proceedings of DETC’97, September 14-17, 1997,

Sacramento, California.

[Suh95] S.H. Suh and J.K. Kang. Process planning for multi-axis NC machining

of free surfaces. Internal Journal of Production Research, 1995, Vol. 33,

No. 10, 2723-2738.

[SWK06] Solidworks 3D mechanical design and 3D CAD Software Version 2006,

Available http://www.solidworks.com/.

[Tan88] S.T. Tan, M.F. Yuen, W.S. Sze, and K.W. Kwong. A method for gener-

ation of parting surface for injection moulds. Conference on Computer

Aided Production Engineering, Edinburgh, UK, 1988

[Urab97] K. Urabe and P. K. Wright. Parting direction and parting planes for the

CAD/CAM of plastic injection molds. ASME Design for Manufacturing

Conference, Sacramento, CA, 1997

252

[Vija98] J.V.K. Vijay, U. Shrinivasa, and B. Gurumoorthy. Automatic draw di-

rection generation for die design. ASME Computers and Information in

Engineering Conference, Atlanta, GA, 1998

[Wang94] Y. Wang and S. Molnar. Second-Depth Shadow Mapping. UNC-CS

Technical Report TR94-019, 1994

[Wein96] M. Weinstein and S. Manoochehri. Geometric influence of a molded

part on the draw direction range and parting line locations. Journal of

Mechanical Design, 118(3): 29-39, 1996

[Wein97] M. Weinstein and S. Manoochehri. Optimum parting line design of

molded and cast parts for manufacturability. Journal of Manufactur-

ing Systems, 16(1): 1-11, 1997

[Weis99] E.W. Weisstein. Rotation Formula. From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/RotationFormula.html

[Whal05] S. Whalen. Audio and the Graphics Processing Unit. IEEE Visualization

Tutorial, 2004

[Wiki05a] Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Gimbal, April 2005.

[Wiki05b] Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Universal_joint, July 2005.

[Will78] L. Williams. Casting curved shadows on curved surfaces. In Proceedings

of SIGGRAPH ’78, pages 270-274, 1978

253

[Wils94] R.H. Wilson and J.C. Latombe, Geometric reasoning about mechanical

assembly. Artificial Intelligence, 71: 371-396, 1994

[Wong96] T. Wong, S.T. Tan, and W.S. Sze. Parting line formation by slicing a

trimmed surface model. ASME-DETC, Irvine, CA, 1996

[Woo91] T.C. Woo and D. Dutta, Automatic disassembly and total ordering in

three dimensions. ASME Journal of Engineering for Industry, 113(1):

207-213, 1991

[Yin01] Z. Yin, H. Ding, and Y. Xiong. Virtual Prototyping of mold design: geo-

metric mouldability analysis for near-net-shape manufactured parts by

feature recognition and geometric reasoning. Computer-Aided Design,

33: 137-154, 2001

254

