Intradomain Overlays: Architecture and Applications

Christopher Kommareddy, Tuna Giiven, Bobby Bhattacharjee, Richard La, Mark Shayman
UMIACS, University of Maryland, College Park
{ker @cs, tguven@eng, bobby@cs, hyongla@eng, shayman@eng}.umd.edu

Abstract— We introduce an architecture for “Intrado-
main Overlays”, where a subset of routers within a domain
is augmented with a dedicated host. These strategically
placed hosts form an overlay network, and we describe
a number of applications for such overlays. These ap-
plications include efficient network monitoring, policy-
and load-based packet re-routing, and network resource
accounting.

In this paper, we elaborate on the network moni-
toring application and describe a distributed protocol
for monitoring routers within an AS which has been
augmented with a few overlay nodes. The routers and
other infrastructure are unaware of the overlay nodes,
and the monitoring of individual elements is conducted
using plain SNMP. We describe techniques for efficiently
synthesizing and transporting the monitored SNMP data,
and present results using trace data collected from an AS
with 400+ routers. Our results show that the overlay-based
monitoring reduces overheads by 2—4 orders of magnitude,
and thus enables much finer grained monitoring and traffic
engineering than is otherwise possible.

Index Terms—System design, Simulations, Network
measurements, Monitoring, Traffic Engineering, Overlay
Networks, Intradomain, Distributed.

I. INTRODUCTION

We introduce “intradomain overlays”, where a subset
of routers within an AS are augmented with dedicated
end-hosts. These end-hosts form an overlay network,
and allow network administrators to run different dis-
tributed “overlay applications” for network management
and administration. In this paper, we outline a complete
architecture for deploying such overlays, and describe a
number of applications of such overlays.

A primary goal of this work is to enable true traffic
engineering and robust network monitoring and adminis-
tration. All of our proposed protocols are incrementally
deployable, and do not require any changes to deployed
IP infrastructure.

We should note that a router augmented with a dedi-
cated end-host could be considered a viable platform for
active networking [1]. However, our goals here are much
more constrained: we do not allow user-programmability,
and we envision extremely limited and bounded com-
putations (e.g. encapsulation and decapsulation only)

on the data path. These constraints vastly simplify our
resource accounting and security problems at the cost of
much less flexibility: this is a conscious choice for our
platform which is designed entirely for single domain
administration and traffic engineering.

Why Intradomain?

A distinguishing feature of our work is the constraint
that our overlays are deployed withing a single domain.
Clearly, if there is gain in deploying overlays within one
domain, then a natural question is to consider gain that
could be gotten by a larger inter-domain deployment.
However, we constrain our focus to single domain de-
ployments for the following reason:

Single Administrative Entity: We assume that the AS is
administered by a single entity, and that the administra-
tors of each router trust a single principal. While this may
not be the case for all domains, we believe it holds for
a large majority of domains. Further, since the overlay
is deployed within a single domain, we can assume
that the domain topology is available at a central node,
and that all changes to the underlying IP network are
managed by (or reported to) a single authority. Further,
the overlay software can be updated at any time since
these changes are not visible outside the domain, and
all the intradomain nodes can be updated at once. These
assumptions vastly simplify the overlay deployment and
maintenance protocols since there is a single trusted
centralized entity that knows of all topology changes and
can mandate policy that is global for all deployed overlay
nodes.

Thus, our focus on intradomain overlays is due to
pragmatic issues. We believe that deploying overlays
within a single domain provides sufficient benefit without
necessitating yet another round of standardization that
would be required if these protocols were deployed
across domains. As an added bonus, in the single domain
case, we can use extremely simple protocols which are
more likely to be implemented correctly and be robust.
Note that intradomain overlays do not preclude inter-
domain deployments, though we do not consider such
an extension in our work.

A. Applications

Intradomain overlays are beneficial only if there are
useful applications that can be deployed over the overlay
nodes. Specifically, we are interested in applications that
both require the overlay nodes for efficient implementa-
tion, and are useful in practice. We believe there are a
number of classes of such applications, and we discuss
two in detail next.

Network Monitoring, Accounting and Management:
The in-network overlay nodes can form an extremely
efficient coordinated network monitoring platform. The
overlay nodes can use plain SNMP to monitor nearby
routers, but can then synthesize and compress relevant
data and answer sophisticated queries about the state of
the network. We present a scheme for such monitoring
in this paper, and show that the overlay nodes can
reduce overhead by several orders of magnitude. Such
efficient monitoring can be used for pre-emptive network
management, and can be used to account for resource
usage within (and across) a domain. Monitoring can also
be used to implement many reactive routing policies,
described next.

Flexible Intradomain Routing: The in-network overlay
nodes form a complete platform for re-routing. Packets
can be diverted off the underlying shortest paths onto
specific policy-based alternate paths. Note that the un-
derlying network and paths are still used for forwarding,
but packets are encapsulated and explicitly routed to
specific overlay nodes. Such rerouting essentially allows
MPLS [2] like circuits between overlay nodes without
requiring investment in new infrastructure, or standard-
izing on new protocols and headers.

Once a rerouting mechanism is instantiated in the
network, packets can be rerouted using various policies,
e.g. real-time Voice-over-IP packets could use a specific
path with small queues which is insulated from best-
effort peer-to-peer downloads. In this case, either the
VoIP or the p2p traffic (or both) would be classified and
routed using the overlay.

Rerouting also allows better load-balancing among the
links within a domain, and we have developed an optimal
load-based routing algorithm [3]. This scheme, like other
load-based rerouting algorithms [4], [5], require fine-
grained load information from different links in the net-
work. The overhead of gathering such information using
traditional means would render moot any benefit from
the load balancing; however, overlay-based monitoring
makes such algorithms immediately viable.

Contributions
The contributions of this paper are as follows:

« We introduce intradomain overlays and present al-
gorithms for efficient creation and maintenance of
secure single domain overlays.

o We describe how such overlays can be used to
efficiently monitor IP routers, and present detailed
simulations that compare our approach against plain
SNMP-based monitoring. Our results show that
overlay monitoring is more efficient by several
orders of magnitude.

Roadmap: The rest of the paper is structured as
follows: In the next section, we describe our overlay net-
work architecture. In Section Ill, we present the overlay
node software architecture and describe the capabilities
required by overlay node hardware. In Section IV, we
discuss network monitoring using SNMP and show how
to efficiently monitor an AS using an overlay. In Section
V, we present simulation results that quantify the benefits
of overlay-based monitoring. In Section VI, we briefly
discuss traffic engineering and present an algorithm that
achieves optimal routing using overlays. In Section VII,
we give a detailed comparison of our work with other
related work and conclude in Section VIII.

1. OVERLAY NETWORK ARCHITECTURE

The overlay network operates on top of the network
layer of the AS and consists of the set of overlay nodes
deployed within the AS. Each overlay node is attached
to one of the network interfaces of an AS router. The
overlay nodes coordinate with each other to aid in the
correct and efficient functioning of the AS network.
Multiple distributed overlay applications can run over
these overlay nodes, and these applications can be used
to monitor the status of the network, to re-route traffic
according to network policy, to enforce specific security
policies, etc. It is important to note that in this paper, an
overlay application refers to these in-network processes
and is not related to end-host based overlay applications
(or p2p applications) that may be deployed by end users
of the AS. The overlay nodes form a virtual topology
over the AS network. We will refer to this physical (AS)
network as the base network.

Consider the base network consisting of nine routers
(r1-rg) shown in Fig. 1. In this AS, there are four
overlay nodes, and overlay hops (e.g., Ni—N;) may
span multiple base hops ({ri—re, re—r7}). As we will
describe in Section VI, such overlay hops can divert
traffic from the default paths in the base network, and
can be used for policy-based re-routing. In general, the
overlay applications communicate using these overlay
hops.

Fig. 1. An example overlay network

A. Overlay Management

Our framework supports incremental deployment (and
re-deployment) of overlay nodes. The overlay network
is also designed to withstand overlay- and underlying-
node failures. Since our overlay design is targeted for
a single AS, we employ a centralized node, called the
overlay controller (OC) for overlay management and
configuration. The AS topology is input to the OC,
and the OC is also responsible for failure detection and
recovery of other overlay nodes (described below).

The Overlay Tree: The overlay nodes within an
AS form a logical tree rooted at the OC. This base
communication infrastructure is used to maintain the
integrity of the overlay network; it can also be used
by some overlay applications to exchange data (e.g., the
monitoring protocol described in Section 1V uses it to
convey node state). Once again, we appeal to the single
AS trusted domain scenario, and use a centralized proto-
col to compute the overlay tree as follows: each overlay
node is seeded with the address of the OC. Upon startup,
the overlay nodes send a message to the OC, which
causes the OC to recompute a minimum spanning tree
and individually send tree updated neighbor information
to each affected overlay node. Obviously, a distributed
(and more sophisticated) tree building algorithm can be
incorporated into this base structure, but we believe this
simplistic scheme is sufficient for many, if not most
ASes.

Once the overlay tree is constructed, the overlay nodes
use a heartbeat-based mechanism to detect failed overlay
nodes. Specifically, each overlay node periodically sends
a keepalive message to its tree parent. If such a message
is not received from a child for a predefined timeout,
the parent tries to directly communicate with the child
node. If this attempted communication fails, the child is
declared failed, and a message to this effect is sent to the
OC. (Note that the “child failed” message is unicast to

the OC since the integrity of the overlay tree cannot be
guaranteed during overlay node failures.) Upon receiving
these messages, the OC reconstructs a new overlay tree
and notifies affected nodes of changes in the overlay
topology. This procedure reconstructs the tree only if
the base network is not partitioned, and is not able to
distinguish whether an overlay node has failed, or the
first hop router for an overlay node has failed. In case the
network does get partitioned, this can be detected by the
OC (assuming there are overlay nodes that detect specific
router failures), and overlay applications can continue to
function on the component that contains the OC.

Obviously, the OC is a single point of failure, and has
to be monitored. The obvious idea is to maintain multiple
(replica) OCs, and all of our protocols can be extended
to this case. However, in our implementation, and in the
simulations we present in Section V, we assume that the
OC does not fail.

B. Communication and Computation on the Overlay

By default, the overlay topology supports unicast,
multicast, and concast [6] modes of communication. Two
overlay nodes may choose to unicast messages using
overlay links. The OC and other overlay nodes can
send messages to the entire set of overlay nodes using
the overlay tree. These multicast messages are often
administrative updates which carry information about
changes in the underlying topology, or updates to the
overlay tree, etc.

The overlay topology also supports concast. Specifi-
cally, messages from multiple overlay nodes can be sent
to a single overlay node, and aggregated using specific
rules as they traverse upstream on the overlay tree. Such
aggregation can be used to suppress duplicates, count
messages, or in general, compute a constrained function
on messages from different incident tree edges to create a
new upstream message. This facility will be heavily used
in the monitoring protocol we describe in Section IV.
Further, we allow specific overlay applications to set
up and maintain a small (configurable) amount of state
at each overlay node and compose different distributed
computations using this state much like the ephemeral
state processing paradigm [7].

Router Assignments: A number of different over-
lay applications, e.g., monitoring, load-based rerouting,
etc., require that each router in the underlying network
be monitored by some overlay node. We use a static
mapping of routers to overlay nodes: the map is com-
puted such that each router is monitored by the overlay
node that is closest to it. This router proximity map
is computed centrally by the OC, and multicast to the
overlay nodes using the overlay tree.

C. Security

The communication between the overlay nodes must
be secure, otherwise the entire AS would be open to
multiple catastrophic attacks. In our constrained do-
main, standard security primitives can be employed for
maintaining source authenticity and data integrity. We
assume that the overlay nodes themselves are trusted,
and upon bootup, they are provided with a symmetric
key that they share with the OC. (Note that it is trivial to
change this scheme such that a public-key based scheme
is used instead of symmetric keys; we use symmetric
keys entirely for run-time efficiency. Even if public
keys are used, we would not require an explicit PKI,
since the OC’s public keys can be manually distributed
upon overlay node startup, and the OC can supply all
nodes with the other nodes’ public keys.) For most
communication, the symmetric key is used to construct a
keyed-MAC for integrity checks. Obviously, this key can
also be used to encrypt any sensitive data, though none
of our protocols require this level of security. The OC
can be used to generate symmetric keys that two overlay
nodes can use for secure unicast. Note that if public
keys are used, and each node has its own public key
known to all other nodes, then these keys can be used to
exchange per-pair symmetric keys. In general, we believe
any level of security for our managed overlays can
be achieved using well-known techniques, and the real
challenge is in proper implementation and deployment
of the security protocols, and not in the design of the
protocols themselves.

I11. OVERLAY NODE ARCHITECTURE

In this section, we describe the internals of individual
overlay nodes, and outline the default services provided
by these nodes.

Fig. 2 shows a schematic overlay node software archi-
tecture. The functionality of each module is as follows:

Monitoring: The monitoring module is responsible for
monitoring the routers assigned to the overlay node.
Monitoring is implemented using SNMP; however, the
monitoring module can also use active probes to measure
losses, delays, and available capacity on overlay paths.

Logging and Reporting: The data gathered by over-
lay nodes needs to be processed and either logged or
reported. While the reporting is usually done to the
OC, it is possible to configure the nodes such that
different information is reported to different entities.
For example, data from an intrusion detection module
might be reported to a different site than regular network
monitoring data.

Domain
Policy
Manager User
f Space

Overlay
Path >
Calculator

* Kernel
Space

Overlay

Module |Monitoring

Reporting {e——>]

Logging
Manager

TCP
STACK

SNMP

Communication

IP Layer

Fig. 2. Overlay Node Software Architecture Schematic

Communication: The communication interface pro-
vides facilities for secure group and unicast communica-
tion. Along with usual transport-layers, our implementa-
tion provides access to raw IP for fast packet forwarding
and tunneling over the overlay links.

Policy Manager: The AS administrator sets the net-
work policy as well as policies for overlay applications.
The overlay network policies determine relative priorities
of overlay applications, and also determine resource
allocation at overlay nodes.

Admin. and App.-Specific Modules: Overlay nodes
include a number of other modules that are used for
regular node administration. These include modules for
resource accounting, path computations, failure recovery,
etc. Each overlay application can also start application-
specific computations that can avail of services provided
by the support modules described here.

A. Overlay Node Hardware

For most overlay applications, the overlay nodes do
not require any special hardware. However, for line-
speed re-routing, the overlay nodes may require special
hardware for fast encapsulation, lookup, and decapsula-
tion. If an AS overlay is used for re-routing, a few special
overlay nodes must be deployed. All packets that can
potentially be re-routed have to pass through an overlay
node which would encapsulate a subset of these packets
and direct these encapsulated packets off the default path
onto overlay links. This overlay node can be situated as
a pass through before the ingress router into the AS:
this would ensure that all incoming traffic will in fact go
through this overlay node (node A in Fig. 3) , but the
node has to be fast enough to process, at line speeds, all
packets that come into the network. It is possible to put
the intercept overlay node at other parts of the network
(e.g., node B in Fig. 3), but then packets destined for
egress F» could not be rerouted in this network.

|- Ingress

E1l, E2 - Egresses

Peer AS

Fig. 3. Overlay Node Intercepting Base Network Traffi ¢

In general, the encapsulation (and the decision to
encapsulate) must be performed at line speeds. In our
current implementation, we have implemented the encap-
sulation logic and mechanisms within the Linux kernel
and this implementation running on a 266 Mhz Intel
pentium Il processor is sufficient to maintain 100 Mbps
throughput. However, in a real AS, link speeds are likely
to be much higher, and packets from multiple links may
be incident upon the overlay node for rerouting. We
believe network processors are an ideal platform for
implementing such functionality, and are working on a
network processor based platform for faster implemen-
tation of this logic.

IV. OVERLAY-BASED MONITORING

In this section, we describe in detail how an AS-
level overlay can be used to efficiently monitor the links
and routers in an AS. Note that we do not assume
that the routers in the AS support any new protocols,
thus all monitoring that involves querying a router must
eventually use SNMP. However, we will describe how
the overlay network can help in significantly reducing
the overhead of SNMP, especially when a large domain
is monitored with high frequency. In order to under-
stand the source of benefits due to the overlay, it is
instructive to consider the details of SNMP operation.
We begin with a description of SNMP (next), and then
describe how the overlay can reduce SNMP overheads
(Section IV-C)

A. SNMP

The Simple Network Management Protocol (SNMP)
[8], [9] is an IETF standard protocol for network man-
agement. SNMP classifies SNMP elements of the net-
work as managers and agents. Agents can also act as

proxies to other manageable nodes that do not implement
SNMP protocols.

Agents implement the SNMP protocol, store and re-
trieve management information defined in Management
Information Bases (MIBs) and in some cases, act as
proxies. As a proxy, agents use non-SNMP or proprietary
protocols to interact with non-SNMP manageable nodes.
Agents also can asynchronously signal events to the
manager; however, there are only limited, non-extensible
sets of events for which this can be done.

An SNMP manager is also known as Network Man-
agement Station or NMS. It acts as a management con-
sole and can retrieve data from the agents using queries,
set variables in the agents, and accept asynchronous sig-
nals from the agents. The manager retrieves the state of
the network from the associated agents by polling agents.
In the poll messages, it provides the object identifiers and
in the replies, the agents fill the corresponding fields with
the values of those object instances.

SNMP assumes connectionless communication and
expects no reliability from the transport layer. Hence,
SNMP data can be encapsulated and transmitted by TCP,
UDP or any other transport protocols. UDP is the most
commonly used protocol.

B. SNMP Overheads

SNMP is a generic protocol designed to work under
all possible scenarios and for all manner of manage-
ment information. SNMP messages include fields for
authentication and privacy and other security features.
Because of their general nature, SNMP messages incur
high overhead. Specifically, SNMP messages have fields
for protocol version, message identifier, message size,
security flags, security model, and security parameters.
While these fields are necessary for SNMP to function
across versions and for protecting the integrity and
privacy of the data, these fields are not necessary for
the actual transmission of information.

The MIB objects are arranged in a tree and ob-
ject identifiers trace this tree. For example, the iden-
tifier of the speed of the link object in the net-
work interface MIB is 1.3.6.1.2.1.2.2.1.5 and the
name of the object is iso.org.dod.internet.mgmt.mib-
2.interfaces.ifTable.ifEntry.ifSpeed. These identifiers can
be up to 128 bytes long. While such a hierarchy is
required in the general case, it adds significant overhead
to each SNMP message.

The SNMP agent tracks discontinuities in any of the
interface’s counters by recording the time when the
counters started afresh. This time is stored in ifCoun-
terDiscontinuityTime and if this value changes since the

last time any of the interface counters were polled, the
current and previous polled values of the counters cannot
be used. Similarly, when the sysUpTime object is reset
(upon reinitialization), polled values cannot be used.
While these objects are not necessary for monitoring the
state of the AS, they are required to verify the integrity
of the polled data. Thus, the NMS must periodically poll
these objects to detect counter resets, etc., which all adds
more overhead to SNMP.

C. Overlay-based Monitoring

Overlay nodes deployed in the network can be used
to efficiently monitor the network. The overlay nodes
can actively probe the overlay links to determine the
available bandwidth, loss rate, etc. They can also monitor
the overlay traffic to passively determine loss rates, link
latencies and so on. In this section, we describe how
to efficiently use the overlay nodes for SNMP based
network monitoring.

The overlay monitor performs two main functions
(shown in Fig. 4):

« It performs the role of an NMS node and polls the

agents of the routers assigned to it.

«» It processes the SNMP messages it receives and for-
wards only the relevant information on the overlay
tree to the OC. (In this section, we assume that the
NMS is co-located or connected to the overlay OC;
if this is not the case, then a monitoring-specific tree
rooted at the NMS has to be constructed. This tree
can be constructed using exactly the same protocol
as the overlay tree. In the rest of the section, we
use OC and NMS interchangeably.)

In order for the overlay nodes to process the SNMP
data, they now have to maintain object-specific state such
as ifCounterDiscontinuityTime and sysUpTime. Further,
in order to calculate time-varying metrics such as average
bandwidth utilization, etc., the overlay nodes also have to

===>SNMP poll

— Overlay message

Fig. 4. Overlay Node functions: polling and forwarding

maintain historic information such as last time of polling,
last counter values, etc.

The overlay monitoring proceeds as follows: the OC
builds the overlay tree and assigns routers to specific
overlay nodes. The overlay nodes poll their respective
routers to determine the indices of the interfaces at
each of the routers in the SNMP tables and report this
information to the OC. The OC needs this information to
build the object identifiers of the object instances related
to the interfaces.

The OC then subscribes to the objects it is interested
in at each of the overlay nodes. This subscription is
done by providing the object identifiers to the overlay
nodes and the frequency with which it wants this infor-
mation updated. The OC also provides the asynchronous
events which the overlay nodes should report back. The
asynchronous events include usual SNMP traps such
as an interface failure, but can also include synthesis
of other SNMP data, e.g., the number of IP packet
errors exceeding a certain number. This subscription is
refreshed periodically (once every 30 minutes in our
testbed).

Effi cient Monitoring: The overlay nodes poll their
respective SNMP agents, process the response messages,
and the messages received from their children since the
last time they sent a message to their parent. They con-
solidate all these messages and forward an appropriate
digest to their own tree parent. The message processing
is a crucial step since the overlay nodes can process the
polled data on behalf of the NMS and hence, reduce the
processing overhead at the NMS. The processing also
drastically reduces the bandwidth consumption of the
monitoring, which directly allows data to be captured
at much higher frequencies.

We further reduce bandwidth requirements by using a
compressed representation when reporting values back
on the overlay tree. Specifically, instead of sending
SNMP object identifiers and node ids back up the tree,
during the subscription step, the OC publishes a map
of the type {node, object-id — hash-value}. When
this object is updated, the new values is published
using the hash value only. The OC stores this map in
memory, and upon receiving an update, can decipher
which counter/object has changed.

Lastly, we implement an optional bandwidth reduction
step in which values are only reported if they change by
a pre-defined fraction. This quantization step assures that
only interesting changes are sent back to the NMS.

Fig. 5 gives example messages that are encountered
in the different phases of overlay based network moni-
toring. The messages in the subscription phase are from
the NMS node to the overlay nodes and contain fields

Subscription Phase : NMS ---> Overlay Node
[[agent_id4) obj_id(>8) hash(D) |
[172.16.16.2 [1.361.2.12225 | 0 |

Polling Phase : Overlay Node ---> Agent
\ SNMP_hdr(>=20) req_id(4) err_status(4) err_index(4) obj id(>8) value(4) \
\ [o] 0 [0 13612122216 | 0 |
Get interface[2].ifOutOctets

Response Phase : Agent ---> Overlay Node
[SNMP_hdr(>=20) req id4) _err_status(4) _err_index(4)

obj id(>8) value(4) ‘

\ [o] 0 0 1.3.6.1.2.1.2.2.2.16 | 100000000]

Publish Phase : Overlay Node ---> NMS

hash(I) value(4)
| o [10000000

Fig. 5. Monitoring related messages

identifying the agents to be contacted, object identifiers
to identify the object instances to be polled, and the
hash values for the object identifiers. The polling phase
has SNMP poll messages going from every overlay node
to each of the SNMP agents assigned to it. The agents
fill in the value fields in the poll messages and transmit
them in the response phase. Finally, in the publish phase,
the overlay nodes forward the processed data to the
NMS node on the overlay tree. The paths for polling
messages and overlay messages are shown in Fig. 4. The
subscription messages are unicast directly to the overlay
nodes and the poll responses take the regular network
path from the agents to the overlay nodes.

V. SIMULATION RESULTS

In this section, we present a set of simulation results
that compare the overhead of plain SNMP monitoring
versus overlay-based monitoring. We use monitoring
trace data from a relatively large AS (the Univ. of
Maryland campus network, 400+ routers, 9000+ hosts)
as input to our simulations, and compare the overhead of
SNMP versus overlay-based monitoring on this topology.
In our results, we consider the total bandwidth hops
and message hops consumed by the two different types
of monitoring, and also consider the processing and
bandwidth overhead at the NMS. We describe our input
data in the next section, and present detailed simulations
in Section V-B.

A. Simulation Setup

We simulated our overlay network based monitoring
on the Univ. of Maryland campus network with four
hundred thirty-eight routers. We compared the results
against using centralized SNMP where the NMS is the
only manager in the network. Twenty-nine of the four
hundred thirty-eight routers form the backbone of the
AS. Subsets of the remaining routers have independent

Computing Labs

Small Buildings

Large Buildings

Fig. 6. Structure of UMD AS network used for the simulations

tree structures and link to one or more backbone routers.
The links in the network are predominantly 100 Mbps;
the backbone nodes are connected using 1 Gbps links.
The structure of this network is shown in Fig. 6.

The SNMP data for this network is collected over a
period of seven days in the first week of May 2003.
For the backbone routers, we polled data for transmitted
and received bytes, unicast and non-unicast packets,
error packets, and packets discarded on the receiving as
well as transmitting channels of each of the interfaces.
For non-backbone switches, we polled transmitted and
received bytes, and the count of packet errors. While the
backbone routers are polled on average every minute,
other switches are polled approximately once every five
minutes.

B. Results

For these simulations, we use the bytes transmitted as
the monitoring parameter. There were multiple reasons
for choosing this particular parameter: pragmatically, we
had polled this information for all interfaces and it is
the most time varying data that we collected. Somewhat
more importantly, this value is useful in computing link
utilizations which can then be used to infer the state
of the network and can also be used for load-based re-
routing (See Section VI). In the simulation, the routers
are polled every second for 30 minutes and we assume
no communication overhead between an overlay node

Message hops vs Percent of Overlay Nodes

1le+07

[%2]

o

(=}

T

a x‘“‘f%é ,,,,,,,,

22 [e PV

2 1e+06 o Kooy

[0 K

= T

s .

g *

£ 100000 ¢ Centralized —+—

2 quant. factor = 0.00 -~

= quant. factor = 0.01 -3~

“5 L

[|
%
)

10000

10 20 30 40 50 60 70 80 90 100
Percent of Overlay Nodes

Fig. 7. Centralized SNMP vs. overlay monitoring: message hops
consumed

and its attached router since we have a dedicated link
between them.

Total Monitoring Overhead: We first consider
the overheads associated with each of the monitoring
mechanisms. In Figs. 7 and 8, we plot the total message-
hops and bandwidth-hops consumed by all of the mon-
itoring messages. For the owverlay protocol, we vary
the number of overlay nodes and hence the number of
routers associated with each overlay node. Note that the
y-axes on these plots are on a log-scale, and from the
plots, it is clear that overlay monitoring is more than
an order of magnitude more efficient even with a very
small fraction of deployed overlay nodes. (In these exper-
iments, the overlay nodes were deployed using a greedy
strategy described in Section V-D.) Each plot for the
overlay scheme includes two curves, one corresponding
to the case when all changes are reported back to the
NMS (quantization=0.0), and one in which values are
reported only if they change by 1% (quantization =
0.01). With the 1% quantization, which we believe is
a useful measure for any practical algorithm, a fully
deployed overlay scheme is 100 times more efficient
than simple SNMP. While such efficiencies may not be
useful if nodes are monitored every minute or so, they
are certainly of great importance for sophisticated on-
line traffic engineering, where a large network might be
monitored every few hundred milliseconds. Algorithms
that can work with such detailed data are known [3], [4],
but are not usually deployed partly because the moni-
toring overhead is prohibitive; our scheme allows these
algorithms to be practically deployed without changing
existing hardware.

In Figs. 9 and 10, we plot the number of messages
received by the NMS node and the bandwidth consumed
by these messages. For base SNMP (centralized), these
messages include poll messages sent by the NMS nodes

Total Bandwidth-Hops vs Percent of Overlay Nodes

le+09 | |

[%2]
=3 ..
1e+08 | ¥rmge 5
3 Homrge S —
5 S
5 o
3 Ko X
2 1le+07 Centralized —+— %
3 quant. factor = 0.00 -~ Y
I quant. factor = 0.01 -
]
[

1e+06 |

100000

10 20 30 40 50 60 70 80 90 100
Percent of Overlay Nodes

Fig. 8.
consumed

Centralized SNMP vs. overlay monitoring: BW hops

and their respective response messages. Overlay moni-
toring is based on the publish-subscribe paradigm, and
the NMS node subscribes with the overlay nodes only
once. Hence, the number of messages sent is the same
as the number of overlay nodes and the bandwidth is
proportional to the number of variables in the network
being monitored. Once again, the y-axis is on a log-scale,
and the benefit due to the overlay monitoring is two
(or more) orders of magnitude. Moreover, this benefit
is essentially constant after a relatively small fraction
(10%) of the routers in the AS have an associated overlay
node. As expected, the gquantization helps, and in this
case reduces the overhead by a further factor of up up
to 10.

Monitoring Paths and Trees: We extend our
analysis to the case when a single unicast or multicast
path is monitored for bottlenecks. Often, it is important
to find the bottleneck link on a unicast or multicast path.
This information can then be used to reroute around
this link, or to reassign new traffic, etc. Using overlay
monitoring, we can compute the bottleneck information
inside the network and inform the NMS of this precise
information. Specifically, the NMS assigns a unique id
to monitored paths (trees) and informs specific overlay
nodes to publish bottleneck information. All overlay
nodes along the monitored paths (trees) send bottleneck
information about the path segment (tree-component)
they monitor up the overlay tree towards the NMS. The
individual paths are identified using the path-id originally
published by the NMS node. If the overlay node receives
information (either gathered locally or from downstream
overlay nodes) about multiple segments from a single
path or tree, it only forwards information about the most
congested link. In this manner, the path/tree bottleneck
information reaches the NMS node which can then use
it as needed. In comparison, SNMP-based monitoring

Messages Received by NMS node vs Percent of Overlay Nodes

le+06 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘]

Centralized —+—
quant. factor = 0.00 —---><---

quant. factor = 0.01 -
100000 |

10000 b

P ~X

1000
10 20 30 40 50 60 70 80 90 100

Percent of Overlay Nodes

Number of Messages seen by the NMS Node

Fig. 9.
at NMS

Centralized SNMP vs. overlay monitoring: # messages

requires polling all routers on the path or tree, and incurs
much higher overheads. We present results for monitored
paths and trees next. In these results, all routers in the
network have an associated overlay node.

In Fig. 11, we present the monitoring overhead for
monitoring different paths over the one week monitoring
period. These paths were chosen uniformly at random
from the UMD network, and ranged from 2—6 hops in
length. Even with such short paths, the overlay monitor-
ing scheme outperforms plain SNMP by two orders of
magnitude. For larger domains, we expect the advantage
due to overlay monitoring to increase. In Fig. 12, we
plot the monitoring overhead when different numbers
of multicast trees are monitored. These monitored links
were chosen by constructing shortest path trees between
10 randomly chosen routers. As expected, the overlay
based monitoring is more efficient, once again by about
two orders of magnitude. In general, we believe the
advantage due to overlay monitoring will increase as the
AS size increases, and as more complex conditions are
monitored.

Total Bandwidth-Hops vs Number of Paths Monitored
1e+09 T

1e+08
[}
Q.
o
T
£ le+07
=]
2
k=) x
c
& 1e+0s b S i
=
° ¥ Centralized Monitoring ——
= i Overlay Monitoring -
100000 { 1
10000
0 100 200 300 400 500 600 700 800 900 1000
Number of Paths Monitored
Fig. 11. Centralized SNMP vs. overlay monitoring: BW hops

consumed when paths are monitored

Total Bandwidth at the NMS node vs Percent of Overlay Nodes

1e+08 |

t t t t

Centralized —+—
quant. factor = 0.00 --—-->%---
quant. factor = 0.01 -3
1e+07 | |

1e+06 | B

100000 - e e v A

Total Bandwidth seen at the NMS node

10000
10 20 30 40 50 60 70 80 90 100

Percent of Overlay Nodes

Fig. 10. Centralized SNMP vs. overlay monitoring: BW usage
a NMS

Total Bandwidth-Hops vs Number of Trees Monitored
1e+09 T

(%]
Q
£ 1e+08 F Centralized Monitoring —+— E
< Overlay Monitoring ----><---
=}
=
=}
=
©
= VRS
B 1e+07 | R ,
5 v
/X/
1e+06
10 20 30 40 50 60 70 80 90 100
Number of Trees Monitored
Fig. 12. Centralized SNMP vs. overlay monitoring: BW hops

consumed when trees are monitored

Monitoring Trap Events:. Efficient monitoring
of asynchronous events are an important capability in
network management, and overlay monitoring allows
unprecedented flexibility and efficiency for defining and
monitoring new asynchronous events. In this experi-
ment, we consider a new trap which generates an event
whenever the traffic on any link of the AS crosses a
certain utilization level (either from above or below). In
Fig. 13, we plot the total bandwidth hops consumed over
the monitoring period if such events are signaled using
the overlay versus plain SNMP. The overlay monitoring
scheme is better by 4-6 orders of magnitude, and once
again, we expect the performance to be comparatively
better on larger networks. We should note that the large
difference in overheads happens because trap events
do not occur frequently, but still have to monitored
constantly. Hence, local monitoring used in our scheme
eliminates the large message overhead for monitoring
these events regularly. The efficiency of overlay monitor-
ing will allow network administrators to define more trap
events, and also monitor them much more aggressively.

Total Bandwidth-Hops vs Bandwidth Trap Level

1e+09 ‘ ‘ ‘ : ‘ ‘ :

1e+08
"é— 1e+07 Centralized Monitoring —+—
T Overlay Monitoring ----><---
5 1e+06 |
2
2
< 100000 + .
o T
5 e
S 10000 ¢ ><><

i SR
1000 | R
100 L—
10 20 30 40 50 60 70 80 90 100
Percent of Link Capacity used as Trap
Fig. 13. Centralized SNMP vs. overlay monitoring: BW hops

consumed when events are monitored

C. Scalability

An important property of the overlay-based moni-
toring is its scalability: once deployed, it is a fully
distributed scheme which we believe would work well
for large networks. Unfortunately, we did not have access
to a larger AS than the Univ. of Maryland network to test
our scalability hypothesis; instead we used subsets of our
available data to infer scalability properties. Specifically,
we chose five router subsets of size 50, 100, 200,
300, 400. We plot the bandwidth hops consumed for
monitoring each subset network when 50% and 100%
overlay nodes are deployed. As can be seen from figure
14, the resources consumed by the monitoring messages
linearly increases. This is clear from the fact that, as the
network becomes larger, more links have to be monitored
and the monitoring information has to travel longer
paths. However, with a 100% deployment and using
guantization, along with the resources consumed, rate
of increase is also small. For this example, the resource
usage increased by 77% when the network size increased
by a factor of 8.

D. Overlay Node Placement

In all experiments in this section, we have employed
a simple, greedy strategy for placing overlay nodes.
Specifically, we place the next overlay node at the
router with the highest degree (interface count) that
does not already have an overlay node. We believe
this is an intuitive strategy since these routers connect
more networks and are likely to require most attention.
We have also experimented with placing overlay nodes
purely uniformly at random, and as shown in Fig. 15,
such placement can increase bandwidth usage by a factor
of 2 when the number of overlay nodes is small.

Total Bandwidth-Hops vs Size of the Network

T T
quant. factor = 0%, 50% overlay —+—
quant. factor = 1%
[quant. factor = 0%, 100% overlay -----
quant. factor = 1% =

Total Bandwidth-Hops
w
]
+
o
N

. = L o . &
50 100 150 200 250 300 350 400
Size of the Network

Fig. 14. Scaling of Overlay Monitoring with Network Size
Total Bandwidth-Hops vs Percent of Overlay Nodes
4.5e+08 T T T T T
Greedy placement —+—
4e+08 | *._ Random placement ----x-- |
356408 |- >,
2 \
2 3e+08
< .
T 2.5e+08
2 o
°
S 2e+08 .
o
© 1.5e+08
O
2
1e+08 |
5e+07
o L
10 20 30 40 50 60 70 8 90 100
Percent of Overlay Nodes
Fig. 15. Comparison of Random vs Greedy placement of Overlay
Nodes

VI. TRAFFIC ENGINEERING

In this section, we briefly consider the traffic engineer-
ing aspect of overlay applications. This is a complete
topic by itself and we only present a single example
that illustrates both the benefits of in-network overlay
and of our monitoring scheme. Specifically, we describe
the Simultaneous Perturbation Stochastic Approximation
(SPSA) optimal routing algorithm [3] developed in the
context of our overlay network architecture and present
results that exhibit the effectiveness of this algorithm.

Consider the network in Fig. 16. Traffic on the default
paths from r3 and r5 to rg share the r5-rg path. If this
r5-rg path is congested, the overlay node N3 redirects
the traffic to N7 which forwards the packets to their
destination, rg.

SPSA based Optimal Routing: The goal of the
algorithm is to balance traffic among the several available
alternate paths between ingress-egress pairs to achieve
optimal routing. Each ingress node of the AS identifies
alternate overlay paths to each egress. The ingress then

Fig. 16. Traffi c Engineering using overlay network

executes the SPSA algorithm for all the ingress-egress
flows originating at itself. For each ingress-egress flow,
the ingress incrementally moves traffic from paths with
higher costs to paths with lower costs until the algorithm
converges. While the cost metric for the algorithm is
dependent on what the algorithm is optimizing, we use
a combination of packet loss and link utilizations on the
path. The rate at which the cost metrics are calculated
and how soon the algorithm converges is dependent
on the frequency at which the state is updated at the
ingresses by the overlay nodes. More details of the
algorithm can be found in [3].

We implemented this algorithm on a packet level
simulator and compared the algorithm against minimum
hop routing using drop rates. The AS topology used for
the simulation is the 19 node network shown in Fig. 16
and the simulation time is 15 minutes. The arrival traffic
at the ingresses has Poisson distribution and traffic load
is varied from 1.00 to 1.35 times the bandwidth on the
minimum hop path of the ingress-egress flows. Fig. 17
plots the fraction of incoming packets dropped inside the
network for SPSA based optimal routing and minimum
hop routing as the traffic load at ingresses is varied. The
drops observed when the traffic load is 1.00 is because
of the Poisson nature of the input traffic.

This result is an indication that load-based rerouting
can significantly improve performance within an AS.

These algorithms require extremely efficient monitoring
(in these experiments, each link is monitored every
second) that is simply not possible using SNMP-based
polling. We believe an overlay-based monitoring archi-
tecture is a promising approach to introduce realistic
traffic engineering within IP-domains.

Traffic Overload vs Drop Rate
0.16

‘ Min hop roﬁting —
014 I SPSA based traffic engineering --—-->---

0.12
0.1

0.08

Drop Rate

0.06

0.04

0.02

X

1 1.05 11 1.15 1.2 1.25 13 1.35

0

Traffic Load at Ingresses

Fig. 17. A comparison of SPSA with Minimum Hop routing

VII. RELATED WORK

Rerouting based on overlays has been proposed for
Resilient Overlay Network (RON [10]) and Detour [11]
projects. The goal of RON is to form overlay networks
of RON clients and reroute traffic among the clients
based on the quality of the paths between the clients.
RON clients are end-hosts and RON networks have
group sizes of up to 50 RON clients. Detour is similar
to RON except that Detour nodes form peers at the
network layer. The Detour network has no restriction
on the group size and spans the entire Internet. While
Detour nodes can be network elements, the majority
are end-hosts. Both RON and Detour are interdomain
rerouting approaches and use active probing to determine
the quality of routes among the members. Our overlay
network is an intradomain in-network overlay framework
and is thus different from both RON and Detour. In
our work, we form an in-network overlay using hosts
co-located with routers. Our approach also differs from
both RON and Detour in that, it is administered by a
single entity which makes configuration and maintenance
simpler. Our approach utilizes the network state infor-
mation available at the AS level instead of exclusively
relying on active probing as done in RON and Detour. In
general, Detour and RON are end-to-end techniques for
improving application performance in the wide-area; our
work requires in-network deployment and administrative
support, and is specifically designed to be a distributed
network management and monitoring platform.

Network monitoring has been extensively studied in
recent literature. Asgari, et. al., in [12], propose an
architecture similar to ours for network monitoring. In
their architecture, the monitor nodes that augment the
routers play a similar role in monitoring the routers
and processing the messages. Unlike this work, we
have described how overlay nodes can coordinate in
processing and forwarding monitoring messages in a
distributed manner, and how to implement more sophis-
ticated queries and traps. Finally, unlike our work, the
framework described in [12] does not include services
for policy-based rerouting, or network management.

Dilman, et. al. [13] propose using reactive monitoring
to decrease the monitoring overhead. The network ele-
ments generate reports in reaction to certain events in the
network and send the reports to the management station.
The management station then polls individual routers.
This approach assumes that the network elements im-
plement traps and event reporting but such functionality
exists only for a limited set of events. The authors in
[14] and [15] use mobile agent technology to reduce the
monitoring overhead in the network. These approaches
assume that routers have enough processing capabilities
to execute agent code, and in general, require a new or
upgraded infrastructure.

VIIl. CONCLUSIONS

In this paper, we have presented an architecture for
intra-domain overlay networks and have outlined various
uses for such a structure. We have described the func-
tional components of overlay nodes, and described pro-
tocols for instantiation and maintenance of the overlay
network. We have shown how all of these applications,
including policy- and load-based re-routing, efficient
monitoring, etc. can be implemented without changing
existing IP infrastructure.

Along with the overlay architecture, the primary con-
tribution of this paper is an algorithm that uses the
overlays to provide extremely efficient monitoring of
large domains. We have presented simulations from input
data gathered from a large AS, and shown that our
schemes reduce bandwidth and processing requirements
by 2 to 6 orders of magnitude. These gains permit much
finer granularity monitoring than is currently feasible.
We have described how such monitoring data can be
used to implement sophisticated load-based routing.

Lastly, we believe in-network trusted nodes are an
ideal platform for deploying monitors for network secu-
rity, specifically for distributed intrusion detection. The
benefits of such an approach are likely to be greatest in
very large domains, where many compromised hosts can

exist within the domain. This is a promising application
for intradomain overlays, and is an avenue for future
work.

REFERENCES

[1] K. Cavert, S. Bhattacharjee, E. Zegura, and J. Sterbenz,
“Directions in active networks,” 1998, |IEEE Communications
Magazine.

[2] E. Rosen, A. Viswanathan, and R.Callon, “RFC 3031:multipro-
tocol label switching architecture,” Jan. 2001.

[3] T. Guven, C. Kommareddy, R. La, M. Shayman, and S. Bhat-
tacharjee, “Measurement based optimal multi-path routing,”
UM Ingtitute of Advanced Computing Sciences, Tech. Rep.
UMIACS-TR-2003-69, July 2003.

[4] A.Elwalid, C. Jn, S. H. Low, and |. Widjaja, “MATE: MPLS
adaptive traffi ¢ engineering,” in INFOCOM, 2001, pp. 1300—
13009.

[5] S. Phuvoravan, K.-T. Kuo, T. Guven, L. Sudarsan, H. S. Chang,
S.Bhattacharjee, and M. A. Shayman, “Fast timescale control
for MPLS traffi ¢ engineering,” in Globecom, 2003.

[6] K. Calvert, J. Griffi oen, B. Mullins, A. Sehgal, and S. Wen,
“Concast: Design and implementation of an active network
service,” |EEE Journal on Selected Area in Communications,
vol. 19, no. 3, mar 2001.

[7] K. Calvert, J. Griffioen, and S. Wen, “Lightweight network
support for scalable end-to-end services,” in Proceedings of
S GCOMM, 2002.

[8] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “RFC 2578:
Structure of Management Information version 2 (SM1v2),” Apr.
1999.

[9] D. Harrington, R. Presuhn, and B. Wijnen, “RFC 3411: An ar-

chitecture for describing simple network management protocol

(snmp) management frameworks,” Dec. 2002.

D. Andersen, H. Baakrishnan, M. Kaashoek, and R. Morris,

“The case for resilient overlay networks,” in Proceedings of

the 8th Annual Wbrkshop on Hot Topics in Operating Systems

(HotOsVviIl), May 2001.

S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,

A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and

J. Zahorjan, “Detour: A Case for Informed Internet Routing

and Transport,” IEEE Micro, vol. 19, no. 1, Jan. 1999.

A. Asgari, P. Trimintzios, M. Irons, G. Pavlou, R. Egan, and

S. V. den Berghe, “A scalable real-time monitoring system for

supporting traffi ¢ engineering.”

M. Dilman and D. Raz, “Effi cient reactive monitoring,” in

INFOCOM, 2001, pp. 1012—-1019.

T. M. Chen and S. S. Liu, “A model and evaluation of

distributed network management approaches,” IEEE Journal on

Sdlected Areas in Communication, vol. 20, no. 4, pp. 850-857,

may 2002.

S. Papavassiliou, A. Palidfi to, O. Tomarchio, and J. Ye, “Mobile

agent-based approach for effi cient network management and

resource allocation: Framework and applications,” |[EEE Journal

on Selected Areas in Communication, vol. 20, no. 4, pp. 858—

872, may 2002.

[10]

[11]

[12]

[13]

[14]

[19]

