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Several benchmark cases are propelled to perform the verification and validation (V&V) of 

FireFOAM, a LES solver based on OpenFOAM. The Lamb-Oseen vortex with co-flow is used to 

verify several temporal and spatial schemes used in FireFOAM. The Taylor-Green vortex is 

implemented to verify the conservation of kinetic energy and enstrophy growth of FireFOAM. 

The Smagorinsky and one-equation turbulence models are validated by simulating the case of an 

isotropic decaying turbulence. Numerical solution of kinetic energy decay and energy spectrum 

are compared with the experimental data of Comte-Bellot and Corrsin (CBC). Several 

combinations of boundary conditions (BCs) are verified by studying the case of Lamb-Oseen 

vortex with co-flow and the case of a hot bubble with buoyancy. Several problems with BCs in 

FireFOAM are identified and corresponding reasons are analyzed. The Eddy-dissipation 

combustion model is evaluated in the McCaffrey’s pool fire case. The classical -5/3 slope for the 

temperature rise and -1/3 slope for the velocity decay are observed in the plume zone. 
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Chapter 1: Introduction: 
 

Introduction to FireFOAM and OpenFOAM: 
 

FireFOAM is a Large Eddy Simulation (LES) solver based on OpenFOAM, which is a general-

purpose Open Source CFD Toolbox. FireFOAM is developed by FM Global for fire and 

explosion modeling applications [1]. 

OpenFOAM is a free, open source CFD software released and developed primarily by OpenCFD 

Ltd since 2004 [2]. It has a large user base across most areas of engineering and science, from 

both commercial and academic organizations. OpenFOAM has an extensive range of features to 

solve anything from complex fluid flows involving chemical reactions, turbulence and heat 

transfer, to acoustics, solid mechanics and electromagnetics. OpenFOAM is first and foremost a 

C++ library, used primarily to create executables known as applications. The applications fall 

into two categories: solvers, that are each designed to solve a specific problem in continuum 

mechanics; and utilities, that are designed to perform tasks that involve data manipulation [3]. 

The OpenFOAM distribution contains numerous solvers and utilities covering a wide range of 

problems.   

The main benefits for people to choose OpenFOAM is listed below: 

 Technologically equivalent to commercial solutions.  

 Totally free – no licensing fees/unlimited number of users, jobs and cores. 

 Friendly syntax for partial differential equations. Its syntax for tensor operations and 

partial differential equations closely resembles the equation being solved.  

 Wide range of applications and models ready to use.  
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 Extensibility – Users can create custom objects, such as boundary conditions or 

turbulence models, which will work with existing solvers without having to modify or 

recompile the existing source code.  

Structure of files in OpenFOAM: 
 

There are three basic directories which are necessary to construct a case in OpenFOAM, the time 

directory, the constant directory and the system directory. Figure 1.1 shows the relationship 

between these directories and some common files contained in these directories.  

 

Figure 1.1: Case directory structure [4] 

The time directory can be separated into two parts, the 0 directory and the directories for other 

times. 0 directory is used to set the initial and boundary conditions of each case. It contains 

individual files of data for particular fields, such as the pressure field and velocity field. Each 

OpenFOAM field must always be initialized even when the solution does not strictly require it. 

The other time directories are used to store the simulation result at each output time. Of course, 
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each of these can also be treated as the initial condition for the simulation running after this time. 

The name of each time directory is the simulation time at which the data is stored.  

The constant directory is used to store the physical properties of the field that is simulated and 

the complete definition of the computational mesh generated for the case, which is stored 

separately in the polyMesh subdirectory.  Some common files in the constant directory of 

FireFOAM are listed in Table (1.1) with their utilities.  

   Table (1.1) Basic properties defined in the constant directory 

File Name   Utility 

thermophysicalProperties Define the energy/heat properties of the simulation 

combustionProperties Control the type of combustion modeling 

thermo.compressibleGas Specify the species properties of the simulation 

turbulenceProperties Control the type of turbulence modeling. 

transportProperties Specify the model type of kinetic viscosity ߥ and related necessary 

constant. 

radiationProperties Specify the radiation model of simulation 

reactions Define the global combustion equation 

 

The system directory is used to set the methods and parameters related to the solution procedure. 

It primarily contains 3 dictionaries, i.e. controlDict, fvScheme, fvSolution. All runs set up in 

OpenFOAM solvers start by setting up a database. This database controls the input and output of 

data. What controlDict does is to set up the parameters which are essential for the creation of the 

database, i.e. it is used to set the format of the input and output of time and data. fvScheme is 
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used to set up the spatial discretization and interpolation method of each term in the governing 

equation of the solver. OpenFOAM uses the standard Gaussian finite volume integration which 

is based on summing values on cell faces. The value on the faces are interpolated from the center 

value. So the difference choice of interpolation method will produce different results. The user 

has numerous choices of interpolation methods to choose in OpenFOAM, some of which are 

constructed for certain derivative terms. OpenFOAM divide these terms into different types 

which is shown in Table (1.2). Interpolation of all these terms need to be specified in fvScheme. 

The fvSolution is responsible for the choice of the iterative solvers which are used to advance the 

solution in time and for the choice of tolerances. There are three types of tolerances that can be 

set in fvSolution: the absolute tolerance (tolerance), the relative tolerance (relTol) and the 

maximum number of iterations (maxIter). 

    Table (1.2) Types of terms in governing equation 

Scheme types in OpenFOAM  comment 

timeScheme First and second time derivatives, ߲/߲ݐ, ߲ଶ/

 ଶݐ߲

gradSchemes Gradient ∇ 

divSchemes  Divergence ∇ ∙ 

laplacianSchemes  Laplacian ∇ଶ 

interpolationSchemes Cell to face interpolations of values 

snGradSchemes Component of gradient normal to a cell face 

wallDist Distance to wall calculation, where required 
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Procedure of simulation using FireFOAM: 
 

Preprocessing: 

Mesh generation: 

The first step in a simulation is the decomposition of space, i.e. the creation of a computational 

domain. In this case, we use the command blockMesh to do this. The principle behind blockMesh 

is to decompose the domain geometry into a set of three dimensional, hexahedral blocks. Edges 

of the blocks can be straight lines, arcs or splines. The mesh is ostensibly specified as a number 

of cells in each direction of the block.  In order to use this command, we need to create a 

dictionary file called blockMeshDict located in the constant/polyMesh directory of the case. 

BlockMesh reads this dictionary, generates the mesh and writes out the mesh data to points , 

faces, cells and boundary files in the same directory. 

 

The running status of blockMesh is reported in the terminal window. Any mistake in the 

blockMeshDict file is picked up by blockMesh and the resulting error message directs the user to 

the line in the file where the problem occurred. 

 

After the generation of the mesh, we can use the checkMesh command to check the mesh quality. 

This command will get the mesh statistics, the topology and geometry information of the mesh as 

well as test their validity. The graphics package Paraview is also a useful tool to check the mesh 

since it can plot the grid lines and thereby help inspect the structure of the mesh.  

 

Initialization of the simulation: 
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Once the mesh generation is completed, the user can pay attention to the initialization of the 

fields for this case. The case is set up to start at time t = 0 s, so the initial field data is stored in a 

0 sub-directory of the case directory. The 0 sub-directory in FireFOAM contains 12 files. 9 of 

them concern physical properties as illustrated in Table (1.3). We need to specify the values of 

these fields at each grid point as well as the boundary conditions. Table (1.3) shows the fields 

which need to be defined in the 0 directory.  

Table (1.3) Fields that need to be defined in the 0 directory 

Properties SI unit  Comments 

α௦௚௦ ݇݃. ݉ିଵ.   ଵ Mass density times theିݏ

Sub-Grid Scale diffusivity 

I ݇݃.  ଷ Radiationିݏ

K ݉ଶ.  ଶ Kinetic energyିݏ

μ௦௚௦ ݇݃. ݉.  ଵ Sub-Grid Scale dynamic viscosityିݏ

P ݇݃. ݉ିଵ.ିݏଵ Pressure 

௥ܲ௚௛ ݇݃. ݉ିଵ.ିݏଵ ௥ܲ௚௛ = ܲ − ρ݃ℎ 

T K Temperature 

U ݉.  ଵ Velocityିݏ

Y - Mass fraction 

 

 

Processing: 
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After the preprocession of the input files for the case, we can run the simulation by typing the 

solver’s name on the terminal. OpenFOAM also supports parallel computing. It uses the public 

domain openMPI implementation of the standard message passing interface (MPI) by default, 

other libraries can also be used [5].  

Postprocessing: 

The main post-processing tool provided with OpenFOAM is a reader module to run with 

Paraview, an open-source, visualization application. The module is compiled into 2 libraries, 

PV4FoamReader and vtkPV4Foam using version 4.4.0 of paraview supplied with the 

OpenFOAM release [6]. It uses the visualization Toolkit (VTK) as its data processing and 

rendering engine, so it can read any data in VTK format. You can visualize the data at each grid 

point, as well as get some spatial and temporal statistics by using the utility of Paraview. You 

can also generate the animation of the simulated fields in Paraview.  

 

The other way to postProcess data consists in using the OpenFOAM post-Processing 

functionality. It can be executed while the simulation is running by adding object functions in the 

system/controlDict dictionary as well as be executed after the simulation by running the 

postProcess command. Both approaches have advantages. Post-simulation post-processing 

allows the user to choose the way to analyze data after the simulation are completed. Run-time 

processing provides flexibility since users can access to all the data in the database at all 

simulation times [7].  
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Governing Equations: 
 

The instantaneous continuity, momentum, energy for a compressible fluid can be written, in 

indicial notations, as:  

ߩ߲
ݐ߲

+
(௝ݑߩ)߲

௝ݔ߲
= 0 

(1.1) 

(௜ݑߩ)߲

ݐ߲
+

߲൫ݑߩ௜ݑ௝൯
௝ݔ߲

= −
݌߲
௝ݔ߲

+
߲߬௜௝

௝ݔ߲
+  ௜݃ߩ

(1.2) 

(଴݁ߩ)߲
ݐ߲

+
(௝݁଴ݑߩ)߲

௝ݔ߲
= −

߲൫ݑ௝݌൯
௝ݔ߲

−
௝ݍ߲

௝ݔ߲
+

(௜߬௜௝ݑ)߲
௝ݔ߲

 
(1.3) 

   

where ߩ is the mass density, ݑ௜ is the ݅th component of velocity, ݌ is the pressure, ݃௜ is the ݅th 

component of the gravity vector, p is the pressure, T is the temperature. R is the specific gas 

constant which is defined by R = ܴ௨/ܹܯ, where ܴ௨ is the universal gas constant 

 and MW is the molecular weight. PIMPLE (merged PISO-SIMPLE) method (ଵିܭଵି݈݋݉݇ܬ8315)

has been used to solve the pressure-velocity coupling in the low-Mach compressible flow. The 

Semi-Implicit Method for Pressure-linked equations (SIMPLE) algrorithm allows the calculation 

of pressure on a mesh from velocity components by coupling the Navier-Stokes equations with 

an iterative procedure. The Pressure Implicit Splitting Operator (PISO) has been applied in the 

PIMPLE algorithm to rectify the pressure-velocity correction [8]. More information about 

SIMPLE and PSIO algorithm can be found in Feriger and Peric (1999) [9] and Issa (1985) [10] 

respectively. The ߬௜௝ is the viscous stress tensor which for a Newtonian fluid given by: 

߬௜௝ = ௜௝ܦ)ߤ2 −
1
3

 (௜௝ߜ௞௞ܦ
(1.4) 
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where ߤ is the dynamic viscosity and the rate of strain tensor ܦ௜௝ is defined by: 

௜௝ܦ =
1
2

(
௜ݑ߲

௝ݔ߲
+

௝ݑ߲

௜ݔ߲
) 

(1.5) 

 

݁଴ is the total energy defined by: 

݁଴ = ݁ +
௞ݑ௞ݑ

2
 (1.6) 

where, ݁ is the specific internal energy. The heat-flux, ݍ௝, is given by Fourier’s law: 

௝ݍ = ߣ−
߲ܶ
௝ݔ߲

 

 

(1.7) 

Here  ܶ is the temperature and ߣ is the thermal conductivity.  

Code verification and validation: 
 

Computational Fluid Dynamics (CFD) users and developers today face an important question: 

How to assess the confidence in modeling and simulation? During the last three or four decades, 

a large number of computer simulation tools have been developed and are routinely used in the 

design and analysis of engineering projects. Highly complex fluid flow processes can be 

described by CFD tools, such as turbulent combustion, chemical vapor deposition and 

multiphase flows. However, the underlying physics of most of these proceses are not understood 

completely. For such complex processes, it is still hard to achieve a predictive capability based 

on the first principles and we are not sure if simply increasing computing power can give us a 

correct solution [11]. To address this problem, several approaches have been developed to 
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evaluate the performance of CFD solvers and introduce quality control. The two principal 

approaches are called verification and validation (V&V).  

The definition of verification and validation varies among different authors. One compact 

definition is proposed by Boehm [12]: 

Verification: Are we building the model right? 

Validation:  Are we building the right model? 

In other words verification is ensuring that the product has been built according to the 

requirement and design specifications, while validation ensures that the product meets the user’s 

needs, and that the specifications were correct in the first place. Verification is the assessment of 

the accuracy of the solution to a computational model, primarily by comparison with known 

solutions, including exact analytic solution, computational results from previously verified codes 

and codes that address simplified or specialized cases. Validation is the assessment of the 

accuracy of a computational simulation by comparison with experimental data [11]. The 

relationship of the simulation to the real world is not tested in verification. In contrast, in 

validation, the relationship between the computation and the real world is the main focus.  
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Figure 1.1 Phases of modeling and simulation and the role of V&V[13] 

One graphical representation of the fundamental meaning of V&V was proposed by the Society 

for Computer Simulation (SCS) in 1979, as shown in Fig. 1.1. Two types of model are defined in 

this figure: a conceptual model and a computerized model. All mathmetical equations are 

included in Conceptual model. It also consists of its corresponding initial and boundary 

conditions. We observe and analyze the system in reality to obtain the conceptual model. In 

CFD, the conceptual model is mainly given by partial differential equations (PDE) for 

conservation of mass, momentum and energy. All of the auxiliary equations are also included in 

the conceptual model, for example, the combustion models, turbulence models and constitutive 

models for materials. The corresponding initial and boundary conditions are included in the 

conceptual model too. The computerized model is the computer program which is used to solve 

the conceptual model. Nowadays, the conceptual model can be referred to as mathematical 

model and the computerized model is often called the code. Figure 1.1 shows that verification is 

used to handle the consistence between the computerized model and conceptual model and the 

validation clearly shows the consistence between the computerized model and the real world. 
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The definition of model qualification proposed by SCS is the determination of the adequacy of 

the conceptual model to provide an acceptable level of agreement for the domain of intended 

application. We do not do the model qualification in this thesis.  

The verification processes consists of static/structural and dynamic/behavioral aspects. Static 

code verification is the analysis of the code which is performed without actually running a 

simulation. In most cases the analysis is performed on some versions of source code, and in the 

other cases, some forms of the object code. Dynamic code verification is performed by executing 

the code built from that software on a real or virtual processor. For dynamic code verification to 

be effective, the target code must be executed with sufficient test inputs to produce interesting 

behavior. Also, it is also important to minimize the effect that instrumentation has on the 

execution. Inadequate testing can lead to huge failures similar to the maiden flight of the Ariane 

5 rocket launcher where dynamic execution errors resulted in destruction of the vehicle [14]. 

As for validation, it can only be done dynamically, i.e. the code is tested by running benchmark 

cases.  

Outlines of this thesis: 
 

In this thesis, dynamic verification of FireFOAM is performed using several classic CFD cases. 

Chapter 2 is a verification case focused on the quality of numerical schemes implemented in 

FireFOAM using the case of the Lamb-Oseen vortex with co-flow. The numerical solution 

obtained with FireFOAM is compared with an analytical solution [15], which is used to evaluate 

the numerical error/dissipation of FireFOAM. Chapter 3 is a verification case focused on kinetic 

energy conservation and enstrophy growth using the Taylor-Green vortex. The enstrophy 

obtained with FireFOAM is compared with the semi-analytical solution for the enstrophy growth 



 

13 
 

by Brachet et al. [16] and the kinetic energy is compared with an exact solution, which is trivial 

since there is no viscosity. Chapter 4 is a validation test of the sub-grid turbulent stress model in 

FireFOAM using decaying isotropic turbulence, which is a classic turbulent flow problem often 

used for validation of LES models. The solutions obtained with FireFOAM are compared with 

the low Reynolds number data of Comte-Bellot and Corrison(CBC) [17]. Chapter 5 is a 

verification test of the accuracy of boundary conditions using Lamb-Oseen vortex with 

inflow/outflow boundary conditions (BCs). Several combinations of BCs are used and the 

solutions are compared with a reference case witch has no boundary influence. Chapter 6 is a 

validation case of the fire modeling using the classical McCaffrey pool fire experiment [18]. The 

agreement between the numerical results and experiment data shows that the current CFD model 

performs well for small-scale fires.  
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Chapter 2: Lamb – Oseen Vortex with Co-flow 
 

The aim of this case: 
 

We use this case to evaluate the numerical errors (both in time and space) of FireFOAM when 

solving the Navier-Stokes equation. An analytical solution is available for the Lamb-Oseen 

vortex model [19], a line vortex that decays due to viscosity. Convective influence is taken into 

account by adding a co-flow, which can also influence the simulation accuracy. Therefore, this 

case is relevant to the simulation of a turbulent reacting flow in which errors caused by the 

numerical dissipation might exist in the part of turbulent flow.  

 

Case initialization: 
 

The domain of this simulation is 0.1m × 0.1m. The boundary condition in streamwise the x-

direction is periodic. The boundary condition in y-direction is zeroGradient, which sets the 

normal gradient at boundary to zero. We set the co-flow velocity as 0.1m/s. The velocity of the 

vortex is initialized using Eq. (2.1) and parameters in table 2.1. 

,ݔ)௫ݑ (ݕ = ௠௔௫ݑ ൬
ݕ − ௖ݕ

௖ݎ
൰ ݌ݔ݁ ቆ

1
2

−
ݔ) − ௖)ଶݔ + ݕ) − ௖)ଶݕ

௖ݎ2
ଶ ቇ +  ௖௢௙௟௢௪ݑ

 
,ݔ)௬ݑ (ݕ = ௠௔௫ݑ− ൬

ݔ − ௖ݔ

௖ݎ
൰ ݌ݔ݁ ቆ

1
2

−
ݔ) − ௖)ଶݔ + ݕ) − ௖)ଶݕ

௖ݎ2
ଶ ቇ 

(2.1) 
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Table (2.1) Vortex parameter 

Parameter Value Units Comments 

 ௖ 0.005 ݉ Core radius of vortexݎ

 ௠௔௫ 0.5 m/s Maximum Velocityݑ

 ௖௢௙௟௢௪ 0.1 m/s Co-flow Velocityݑ

௖ݔ) , ,௖) (0, 0) (mݕ m) Centre location 

 ߥ

 

1 × 10ିହ ݉ଶ/ݏ Kinetic viscosity 

 

Figure 2.1 shows the x and y components of the initial velocity field and the magnitude of 

velocity as well as the magnitude of the initial vorticity field respectively. Initialization of 

velocity field is used by the command called funkySetFields. We can use this command to set 

the value of both scalar and vector fields by defining an expression in a dictionary or a command 

line on terminal. Field values on certain patches can also be set by this command. This command 

can only be used after the downloading of swak4Foam. In the simulation, we make an 

approximation that the initial pressure is uniform. As we can see later, such approximation will 

not significantly influence the results.  
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           (a)                                                                 (b) 

             

                                      (c)                                                              (d) 

Figure 2. 1 Initialization of a single vortex:a) ݑ௫ b) ݑ௬ 

c) magnitude of vorticity d) magnitude of velocity 

 

Analytical Solution: 
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In our case, the main variable that is used to evaluate the results of the simulation is the vorticity. 

The vorticity vector ݓሬሬԦ = ∇ ×  :ሬԦ is defined in cylindrical coordinates byݑ

 

ሬ߱ሬԦ =  

ۉ

ۈ
ۈۈ
ۇ

1
ݎ

௭ݑ߲
ߠ߲ −

ఏݑ߲
ݖ߲

௥ݑ߲
ݖ߲ −

௭ݑ߲
ݎ߲

1
ݎ ൬

ఏݑݎ߲
ݎ߲ −

௥ݑ߲
ߠ߲ ൰ی

ۋ
ۋۋ
ۊ

 

 

In the Lamb-Oseen vortex, the only component of velocity which is not zero is ݑఏ which may be 

shown to satisfy: 

 
,ݎ)ఏݑ (ݐ = ௠௔௫ݑ ൬

ݎ
௖ݎ

൰ ݌ݔ݁ ቆ
௖ݎ

ଶ − ଶݎ

௖ݎ2
ଶ ቇ 

(2.2) 

Where ݎ௖ and ݑ௠௔௫ are functions of time: 

 

௖ݎ
ଶ(ݐ) = ௖ݎ

ଶ(ݐ = 0) +  ݐߥ2

 

   (2.3) 

(ݐ)௠௔௫ݑ = ݐ)௠௔௫ݑ = 0) ൬
ݐߥ2

௖ݎ
ଶ(ݐ = 0)

+ 1൰
ିଷ/ଶ

 

  

 

   (2.4) 

            

 The maximum vorticity is at the center of the vortex, i.e. ݎ = 0: 
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߱௠௔௫(ݐ) =
2ܷ௠௔௫(ݐ)

(ݐ)௖ݎ
exp ൬

1
2

൰ 

 

(2.5) 

Results: 
 

Figure 2.2 shows the evolution of the vorticity magnitude during the simulation. The maximum 

vorticity of the vortex is decreasing with respect to time due to viscous dissipation, the 

simulation is performed over a period of 2s which contains 2 loops of the vortex motion.  

 

    

(a)                                                                         (b) 
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     (c)                                                                     (d)  

Figure 2. 2 The evolution of the vorticity magnitude with respect to time: a) t=0s b) t =0.25s  

c) t=0.5s d) t=0.75s 

We run this case using two different temporal schemes, one with a variable time step controlled 

by CFL number, i.e. ∆ݐ =
஼ி௅×∆௫

௨
, we set ܮܨܥ = 0.5. The other case is ran with a fixed time step 

ݐ∆ =  .ݏߤ2.5

CFL=0.5 

The first case we discuss here is the one with ܮܨܥ = 0.5, the corresponding initial time step of 

 for a grid resolution ݏߤ125
௥೎

∆௫
= 40. First order (Euler) or second order (backward) temporal 

schemes have been used in these simulations. The spatial scheme is second order accurate. 

 

Figure 2.3 shows qualitatively that the dissipation of the Euler scheme is larger than that of the 

backward method.  
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(a)                                                                                (b) 

Figure 2.3 Vorticity of a single vortex for different grid size when t=2s: a) Euler method  b) 

backward method. 

 

Figure 2.4 shows the maximum velocity with respect to time, which also shows the Euler scheme 

is more dissipative than backward scheme. 

                   

(a)                                                                              (b) 
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Figure 2. 4 Maximum velocity with respect to time (CFL=0.5): a) Euler method b) backward 

method 

Figure 2.5 shows the maximum vorticity with respect to time.  

                      

(a)                                                                                 (b) 

Figure 2.5 Maximum vorticity with respect to time (CFL=0.5): a) Euler method  b) backward 

method     

 

Figure 2.6 shows the rms error of the simulations with respect to the grid resolution (5, 10, 20 

and 40 cells across the core radius). The Euler scheme is a first order temporal scheme whose 

error is ܱ(∆ݐ). The backward scheme is a second order temporal scheme and the truncation error 

is ܱ(∆ݐଶ). From this figure, we can see that the spatial accuracy of  the cases with both schemes 

are not straight lines with respect to ∆ݔ. This indicates that the temporal error plays an important 

role in this case and we need to reduce such influence of the temporal error to check the scaling 

of the spatial error.  
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Figure 2.6 RMS error (CFL =0.5): Triangle symbols correspond to the euler numerical scheme 

and circle symbols to the backward numerical scheme. 

 



 

23 
 

                           

                              (a)                                                                               (b) 

                                          

                                (c)                                                                            (d) 

Figure 2.7  Vorticity magnitude for a single vortex with coflow at t=2s : a) 5 cells (Euler); b) 5 

cells (backward); c) 20 cells (Euler);  (d) 20 cells (backward). 
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Figure 2.7 presents the vorticity magnitude for a single vortex with coflow at 2s for 5cells and 20 

cells and for the Euler and backward schemes. For 5 cells across the core radius, the vortex 

structure is not correct and the magnitude of vorticity is also lower than the one in the case with 

20 cells. This suggests that the dispersion error is important when the grid resolution is not high.  

ݐ∆ =  ݏߤ2.5

 

In order to reduce the influence of temporal errors, we choose very small value of time step,  
ݐ∆ =   .ݏߤ2.5

 

Figure 2.8 shows the maximum vorticity with respect to time when ∆ݐ =  Compare Figure .ݏߤ2.5

2.8 with Figure 2.5, we can see the dissipation is much smaller than the one in the case which has 

the fixed CFL.  

                

(a)                                                                          (b) 
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Figure 2.8 Maximum vorticity with respect to time(∆t=2.5μs): a) Euler method  b) backward 

method 

Figure 2.9 shows the rms error with respect to space step. We can see the slope of grid 

convergence are 2 which the same as the order of accuracy of spatial schemes used in this case. 

The plot of Euler scheme almost overlaps the plot of backward scheme, which suggests the 

dissipation caused by time scheme is very small because of the tiny time step.  

 

Figure 2.9 RMS error (∆t=2.5μs): Triangle symbols correspond to the Euler method and circle 

symbols to the backward method. 

 
 

 

 



 

26 
 

Chapter 3: Taylor-Green Vortex 
 

The aim of this case: 
The Taylor-Green vortex flow is a simple configuration in which a turbulent energy cascade can 

be observed numerically. From a well-resolved initial condition containing only a single length 

scale, the flow field undergoes a rapid build-up of scales corresponding to a fully turbulent 

dissipative spectrum because of non-linear interactions of the developing eddies [20]. It thus 

constitutes a non-regularized problem with no lower bound on the length scale and is solved with 

no regularization other than that provided by the numerical method. The resulting flow field 

exhibits the features of an isotropic, homogeneous turbulence and is often used in code 

verification [21]. The goal of this case is to measure the conservation of kinetic energy and the 

enstrophy growth for different numerical schemes.  

Case initialization: 
 

The domain ݔ௜ = ௜ݔ∆ is periodic and the grid resolution is [ߨ0,2] =  And the initial .64/ߨ2

conditions are: 

ߩ  = 1 (3.1a) 

ݑ  = sin(ݔଵ) cos(ݔଶ) sin(ݔଷ), (3.1b) 

ݒ  = −cos(ݔଵ) sin(ݔଶ) cos(ݔଷ), (3.1c) 

ݓ                                             = 0, (3.1d) 

 
݌ = 100 +

[cos(2ݔଷ) + 2][cos(2ݔଵ) + cos(2ݔଶ)] − 2
16

 
(3.1e) 
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These initial conditions satisfy the continuity equation ∇ ∙ ሬԦݑ = 0. And the mean pressure is 

sufficiently high to make the problem essentially incompressible [22]. These conditions can be 

imposed by using the funkySetFields command. 

 

 

(a)                                                                          (b) 
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                                                                              (c) 

Figure 3.1 Initial condition for the Taylor-Green vortex case. a) velocity magnitude b) pressure 

magnitude c) vorticity magnitude 

 Results: 
 

The reference solution of enstrophy growth I used is the semi-analytical solution given by 

Brachet et al [23]. for ݐ ≤ 4. In inviscid problems, the kinetic energy does not change while the 

enstrophy grows rapidly. Eq. (3.2) is the governing equation of vorticity [24]: 

߲ ሬ߱ሬԦ
ݐ߲

= ሬԦݑ− ∙ ∇ ሬ߱ሬԦ + ሬ߱ሬԦ ∙ ሬԦݑ∇ + ଶ∇ߥ ሬ߱ሬԦ 
(3.2) 

Without viscosity, this equation turns into: 

ܦ ሬ߱ሬԦ
ݐܦ

= ሬ߱ሬԦ ∙  ሬԦݑ∇
(3.3) 

Only the vortex stretch make the enstrophy grow. Figure 3.2 shows the temporal evolution of the 

mean kinetic energy, < ௜ݑ௜ݑߩ >/2, and enstrophy, < ௜ݓ௜ݓ >/2, normalized by their initial 

values. The brackets denote averaging over all space: for a function ݍ. 

 

< ݍ > =  
1
ଷܮ ම ,ଵݔ)ݍ ,ଶݔ ଷݔଶ݀ݔଵ݀ݔ݀(ଷݔ

௅

଴

 
 

(3.4) 

 

 It is seen in Figure 3.2 that all the time schemes will cause dissipation. After 4s, all the schemes 

under-predict the kinetic energy and the enstrophy growth of the field. All temperal schemes 

agree well with the semi-analytical results for the enstrophy growth.  
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(a)                                                                        (b) 

Figure 3.2: Mean quantities for the Taylor-Green vortex on a 64ଷ grid. The zero subscripts 

denotes the initial value. (a) Kinetic energy (b) Enstrophy. The semi-analytical solution of 

Brachet et al. (1983) are the blue symbols.  

Table (3.1) shows the normalized mean kinetic energy of different numerical schemes at ݐ =  ;ݏ5

at this time, there are some vortices smaller than the grid size and the dissipation effect. The 

mean enstrophy normalized by its initial value is also shown at ݐ =  this is the last time for ;ݏ3.5

which the semi-analytical solution is known.  

Table (3.1) Comparison of global measures of kinetic energy and enstrophy in FireFOAM 

simulation performed with different temporal schemes for the Taylor-Green vortex case.  
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 Euler 

O(∆ݐ,  (ଶݔ∆

Backward 

O(∆ݐଶ,  (ଶݔ∆

Crank-Nicholson 

O(∆ݐଶ,  (ଶݔ∆

Exact solutions 

Brachet et al.[5] 

Kinetic Energy  

t = 5s 

0.936 0.945 0.952 1.00 

Enstrophy 

 t = 3.5s 

2.83 2.85 2.89 3.46 

 

Table (3.2) reports quantitative metrics for the Taylor-Green vortex case for high-order solvers 

taken from the literature [22]. 

Table (3.2) Global measures for the Taylor-Green vortex case for other high-order solvers [22]. 

 Hybrid 

O(∆ݐସ,  (଺ݔ∆

Stan 

O(∆ݐସ,  (଺ݔ∆

WENO 

O(∆ݐସ,  (ହݔ∆

Brachet et 

al.[23] 

Energy  

t = 5s 

1.00 0.976 0.916 1.00 

Enstrophy 

 t = 3.5s 

3.33 3.23 3.13 3.46 

 

Figure 3.3 presents the time evolution of the flow structure. The Q-criterion is used to visualize 

the vortical structure, with ܳ = 0.1. The initial Taylor-Green vortex is observed to stretch. 

Some smaller scales are produced. The 3D structure is colored by the vorticity magnitude to 

illustrate the enstrophy growth, i.e. the production of vorticity. 
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                                        (a)                                                                 (b) 

          

                                        (c)                                                                  (d) 
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                                        (e)                                                                   (f) 

Figure 3. 3: Taylor-Green vortex at different times using the Q-criterion with Q=0.1 colored by 

vorticity magnitude.  (a) ݐ = ݐ (b) ݏ0 = ݐ (c)  ݏ2 = ݐ (d) ݏ4 = ݐ (e) ݏ6 = ݐ (f)  ݏ8 =  ݏ10

 

Grid Convergence 
 

As we can see above (Table 3.1), the second order spatial and temporal schemes used in 

FireFOAM are slightly less accurate than other high order schemes. Therefore, we need to refine 

the grid to make the simulation achieve the same level of accuracy. Table 3.3 shows the 

normalized kinetic energy and enstrophy for a 64ଷ and 128ଷ grid.  

Table (3.3)  Global measures for the Taylor-Green vortex case for different mesh resolution [23]. 

 64ଷCells 

O(∆ݐଶ,  (ଶݔ∆

128ଷCells 

O(∆ݐଶ,  (ଶݔ∆

Exact solutions 

Brachet et al.[5] 
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Energy 

t = 5s 

0.952 0.965 1.00 

Enstrophy 

t = 3.5s 

2.89 3.23 3.46 
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Chapter 4: Isotropic Turbulence Decay 
 

The aim of this case: 
 

Isotropic turbulence is the turbulent flow whose statistical properties are invariant under all axis 

rotations. Since physically interesting properties include joint probabilities of field variables at 

two or more space points, isotropy requires homogeneity as well. Decaying isotropic turbulence 

has been the subject of many experimental and numerical studies. Due to the vast database 

available, this flow is a very popular case used for testing the realization of numerical schemes 

and closure models. In this section, we implemented this classical flow to examine whether the 

sub-grid stress (SGS) model in FireFOAM has been coded correctly. This test is a validation test 

rather than a verification, but can be treated as a complementary test to other verification tests 

performed in the previous sections. The low Reynold number experimental results of Comte-

Bellot and Corrsin (CBC) [25] are used to test the numerical results obtained with FireFOAM.   

Case initialization: 
 

The computational domain is a box with periodic boundaries of side ܮ = 9 × ≈) cm ߨ2 0.566݉) 

and ߥ = 1.5 × 10ି଺݉ଶ/ݏ for the kinematic viscosity. The non-dimensional times for these data 

are: 
௫

ெ
= 42(initial conditions), 98 and 171, where M is the characteristic mesh spacing of the 

CBC wind tunnel and x is the downstream location of this data station. Concerning the average 

velocity in the CBC experiment, these correspond to dimensional times of ݐ =

,ݏ0.00  in our time-evolving simulations. We get the initial velocity field by ݏ0.66 ݀݊ܽ ݏ0.28

superimposing Fourier modes. In our case, we assume that the initial density and pressure fields 
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are constant, note that a more physically realistic initial condition can be obtained by initializing 

the density and pressure fields using the method by Ristorcelli and Blaisdell [22].  

The initial velocity field is given in terms of its Fourier coefficients as  

,ො(݇ଵݑ ݇ଶ, ݇ଷ) = (
݇ଶ

݇ଵଶ
ܽ +

݇ଵ

݇ଵଶ

݇ଷ

݇
ܾ,

݇ଶ

݇ଵଶ

݇ଷ

݇
ܾ −

݇ଵ

݇ଵଶ
ܽ, −

݇ଵଶ

݇
ܾ) 

(4.1) 

 

Where ݇௜ are the wavenumbers, ݇ = ඥ݇௜݇௜ is the wavenumber magnitude, and ݇ଵଶ = ඥ݇ଵ
ଶ + ݇ଶ

ଶ.   

This is valid for all wavenumbers other than (0, 0, 0) provided one defines that 
௞భ

௞భమ
= 0 and 

௞మ

௞భమ
=

1 for ݇ଵଶ = 0. The quantities a and b are: 

ܽ =  ඨ
(݇)ܧ2
ଶ݇ߨ4 ݁௜ఝభܿ߮ݏ݋ଷ, ܾ =  ඨ

(݇)ܧ2
ଶ݇ߨ4 ݁௜ఝమܿ߮ݏ݋ଷ, 

(4.2) 

 

Where ߮ଵ, ߮ଶ, and ߮ଷ are random numbers uniformly distributed on [0, 2ߨ] that are re-sampled 

for each wavenumber triplet. The energy spectrum function is  

(݇)ܧ = ௥௠௦ݑ
ଶ 16ඨ

2
ߨ

݇ସ

݇଴
ହ exp ቆ−

2݇ଶ

݇଴
ଶ ቇ , 

(4.3) 

                                                   

Where ݇଴ is the most energetic wavenumber. The energy spectrum function is such that  
ଷ௨ೝ೘ೞ

మ

ଶ
=

׬ (݇)ܧ
ஶ

଴
݀݇.     
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(a)                                                                      (b)  

Figure 4.1: Velocity magnitude for the isotropic turbulence field. a) ݐ = ݐ (b ݏ0 =  ݏ2

 

Figure 4.1 shows the initial and final states of the velocity field in the 3D domain. The flow is 

unforced and the total kinetic energy decays with time due to viscous dissipation. 

 

Now we will define the different turbulent length scales of this flow and calculate the 

corresponding wave-numbers (݇). 

Maximum length scale (L): largest eddies in the flow, constrained by the physical boundaries of 

the flow. L = 0.566m 

݇௅ =
ߨ2
ܮ

= 11[1/݉]  
(4.4) 

Kolmogrov length scale (ߟ௞): smallest eddies in the flow, ߟ௞ = 2.9 × 10ିସm 
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݇ఎ =
ߨ2
ߟ

= 21,666[1/m] 
(4.5) 

                     

Nyquist limit: smallest eddies resolved by the grid. The characteristic wavenumber, ݇௖, 

corresponds to one period and is defined as: 

݇௖ =
ߨ2
2∆

= 355[1/݉] 
(4.6) 

Where ∆ is the filter width and is defined as ∆=(∆௫∆௬∆௭)ଵ/ଷ.  

The contribution to the kinetic energy k from motions in wavenumber range (݇௔, ݇௕) is  

݇(௞ೌ,௞್) = න (݇)ܧ
௞್

௞ೌ

݀݇ 
(4.7) 

Turbulence Model: 
 

Three turbulence models are tested in this case, i.e. the Smagroinsky SGS model, the constant 

coefficient one-equation model and the dynamic coefficient one-equation model. I will briefly 

introduce these three models in OpenFOAM.  

Smagorinsky SGS model: 
 

The Smagorinsky subgrid scale (SGS) model was developed by Joseph Smagorinsky in the 

meteorological community in the 1960s [26]. It is based on the eddy viscosity assumption, which 

postulates a linear relationship between the SGS shear stress and the resolved rate of strain 

tensor. This model serves as a reference for other SGS models. 
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The Smagorinsky SGS model is the oldest and best known subgrid scale model. The subgrid 

scale stress tensor ߬௜௝ is split into an isotropic part 
ଵ

ଷ
߬௞௞ߜ௜௝ and an anisotropic part ߬௜௝ −

ଵ

ଷ
߬௞௞ߜ௜௝. 

                                                 ߬௜௝ = ఫതതതതതݑపݑ − పഥݑ ఫഥݑ  

=  
1
3

߬௞௞ߜ௜௝ + (߬௜௝ −
1
3

߬௞௞ߜ௜௝) 
(4.8) 

 

In analogy with the molecular viscous stress in laminar flows, the anisotropic part is 

approximated by relating it to the resolved rate of strain tensor ܦഥ௜௝.  

߬௜௝ −
1
3

߬௞௞ߜ௜௝ =  ௜௝(ഥܦ)ݒ௦௚௦݀݁ߥ2−
(4.9) 

where ߥ௦௚௦ is the subgrid scale eddy viscosity, ݀݁ݒ(ܦഥ)௜௝ is the anisotropic part of ܦഥ and the 

resolved-scale strain rate tensor ܦഥ௜௝ is defined as: 

ഥ௜௝ܦ =
1
2

(
ത௜ݑ߲

௝ݔ߲
+

ത௝ݑ߲

௜ݔ߲
) 

(4.10) 

In OpenFOAM, the subgrid scale viscosity is computed as  

௦௚௦ߥ =  ௞∆ට݇௦௚௦ܥ

 

(4.11) 

Where ܥ௞ is a model constant whose default value is 0.094 and ∆ is the grid size that defines the 

LES filters length scale. The method for calculating ∆ is specified in the turbulenceProperties 

file. the subgrid scale kinetic energy ݇௦௚௦ is : 

݇௦௚௦ =
1
2

߬௞௞ =
1
2

ఫതതതതതݑపݑ) −  (ത௞ݑത௞ݑ
(4.13) 
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 The isotropic part can be written into  

1
3

߬௞௞ߜ௜௝ =
2
3

݇௦௚௦ߜ௜௝ 

 

(4.14) 

Where the SGS kinetic energy ݇௦௚௦ is computed with the assumption of the balance between the 

subgrid scale energy production and the dissipation (local equilibrium) 

߬ :ഥܦ + ఢܥ
݇௦௚௦

ଵ.ହ

∆
= 0 

 

(4.15) 

Where the operator : is a double inner product of two second-rank tensors that can be evaluated 

as the sum of the 9 products of the tensor components. ܥఢ is the dissipation term model 

coefficient which equals to 1.048. We can compute ݇௦௚௦ by solving Eq.(4.16) as shown below:  

:ഥܦ ൬
2
3

݇௦௚௦ܫ − (ഥܦ)ݒ௦௚௦݀݁ߥ2 ൰ + ఢܥ
݇௦௚௦

ଵ.ହ

∆
= 0  

:ഥܦ  ⇒    ቀ
ଶ

ଷ
݇௦௚௦ܫ − (ഥܦ)ݒ௞∆ඥ݇௦௚௦݀݁ܥ2 ቁ + ఢܥ

௞ೞ೒ೞ
భ.ఱ

∆
= 0  

:ഥܦ ⇒                 ඥ݇௦௚௦ ൬ܥఢ
௞ೞ೒ೞ

∆
+

ଶ

ଷ
(ഥܦ)ݎݐ − (ഥܦ)ݒ݁݀)∆௞ܥ2 ∶ ഥܦ  ൰ += 0   

⇒ ܽ݇௦௚௦ + ܾට݇௦௚௦ − ܿ = 0 

⇒ ݇௦௚௦ = (
−ܾ + √ܾଶ + 4ܽܿ

2ܽ
)ଶ 

 

(4.16) 

Where   
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ە
۔

ۓ ܽ =
஼ച

∆

ܾ =
ଶ

ଷ
(ഥܦ)ݎݐ

ܿ = :(ഥܦ)ݒ݁݀)∆௞ܥ2 (ഥܦ

 

In the case of incompressible flows, it reduces to  

                                                                       ܾ = 0  

ܿ =  ഥ|ଶܦ|∆௞ܥ

 

(4.17) 

Where 

ഥ|ଶܦ|           = ඥ2ܦഥ:  ഥܦ

By substituting these relations into Eq (4.16), we can get: 

݇௦௚௦ =
ܿ
ܽ

=
ഥ|ଶܦ|௞∆ଶܥ

ఢܥ
 

(4.18) 

We can get the following expression for the SGS eddy viscosity in the case of incompressible 

flows by substituting Eq. (4.18) into Eq.(4.11) 

௦௚௦ߥ = ௞ඨܥ
௞ܥ

ఢܥ
∆ଶ|ܦഥ| 

(4.19) 

Constant coefficient One-equation eddy-viscosity SGS model in OpenFOAM: 
 

The second category of SGS model is one-equation eddy viscosity models. The main reason to 

develop the one-equation SGS model is to overcome the limitation of the assumption of the 

balance between the SGS energy production and dissipation adopted in algebraic eddy viscosity 

models. The first one-equation eddy viscosity SGS model was theoretically derived by 
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Yoshizawa and Horiuti [27] based on solving a transport equation for the SGS turbulent kinetic 

energy ݇௦௚௦ which is: 

 

௦௚௦݇ߩ߲

ݐ߲
+

௜ݑ௦௚௦݇ߩ߲

௜ݔ߲
=

߲
௜ݔ߲

ቆߩ൫ߥ + ௦௚௦൯ߥ
߲݇௦௚௦

௜ݔ߲
ቇ + ܲ −  ௦௚௦ߝ

  

(4.20) 

 :௦௚௦ is the sub-grid eddy dissipation rate which is calculated asߝ

௦௚௦ߝ = ఌ݇௦௚௦ܥ
ଷ/ଶ/∆ 

 

(4.21) 

The production term, ܲ is expressed as: 

ܲ =  −
2
3

ߩ̅ ൬݇௦௚௦ + ௦௚௦ߥ
ത௞ݑ߲

௞ݔ߲
൰

ത௜ݑ߲

௜ݔ߲
+  ഥ௜௝ܦഥ௜௝ܦ௦௚௦ߥߩ2̅

 

(4.22) 

The first term is the turbulent kinetic energy variation caused by thermal expansion and the 

second term is caused by strain rate. 

Dynamic coefficient one-equation model in OpenFOAM: 
 

Dynamic coefficient one-equation model can be expressed as the dynamic version of constant 

coefficient one-equation model [28].  Using constant coefficient coefficient SGS model is 

difficult to simulate the transition from laminar to turbulent flow. It cannot present the fast 

transition of SGS kinetic energy during the flow transition from laminar flow to turbulence. This 

dynamic model uses the grid-scale (GS) level information to evaluate the coefficients of the SGS 

model. More detailed procedure to calculate ܥఌ and ܥ௞ can be found in [29]. 
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Results: 
 

 

(a)                                                             (b) 

Figure 4.2: Kinetic Energy comparison between CBC data and FireFOAM using the 

Smagorinsky turbulence model for a 64ଷ grid resolution. a) Kinetic Energy decay over time; b) 

Partition of kinetic energy versus wavenumber. The first vertical dashed line is the wavenumber 

for the maximum length scale (݇௅) and the second vertical dashed is the wavenumber for the 

Nyquist limit ݇஼. 

 

Figure 4.2 (a) shows the decay of kinetic energy for a 64ଷ grid resolution. The discrepancy 

between FireFOAM and CBC is less than 10%.  

Figure 4.2 (b) shows the corresponding spectral data. The three block solid lines are the CBC 

spectral data for points in time corresponding to times ݐ = ,ݏ0.0 ,ݏ0.28  The initial .ݏ0.66
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FireFOAM velocity field is specified to match the CBC kinetic energy up to the grid Nyquist 

limit. Kinetic energy is under-predicted for low wavenumber containing most of the energy.  

 

(a)                                                             (b) 

Figure 4. 3: Kinetic Energy comparison between CBC data and FireFOAM using the constant 

coefficient one-equation turbulence model for a 64ଷ grid resolution. a) Kinetic Energy decay 

over time; b) Partition of kinetic energy versus wavenumber. The first vertical dashed line 

represents the wavenumber for the maximum length scale (݇௅) and the second vertical dashed 

line represents the wavenumber for the Nyquist limit ݇஼. 

Figure 4.3 (a) shows the decay of kinetic energy for a 64ଷ grid resolution. The discrepancy 

between FireFOAM and CBC is less than 15%.  

Figure 4.3 (b) shows the corresponding spectral data. The three block solid lines are the CBC 

spectral data for points in time corresponding to times ݐ = ,ݏ0.0 ,ݏ0.28  Kinetic energy is .ݏ0.66

under-predicted for low wavenumber containing most of the energy. This model is less accurate 

than the Smagorinsky model. 
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(a)                                                           (b) 

Figure 4.4: Kinetic Energy comparison between CBC data and FireFOAM using the dynamic 

coefficient one-equation turbulence model for a 64ଷ grid resolution. a) Kinetic Energy decay 

over time; b) Partition of kinetic energy versus wavenumber. The first vertical dashed line 

represents the wavenumber for the maximum length scale (݇௅) and the second vertical dashed 

line represents the wavenumber for the Nyquist limit ݇஼. 

 

Figure 4.4 (a) shows the decay of kinetic energy for a 64ଷ grid resolution. The discrepancy 

between FireFOAM and CBC is less than 10%.  

Figure 4.4 (b) shows the corresponding spectral data. The three block solid lines are the CBC 

spectral data for points in time corresponding to times ݐ = ,ݏ0.0 ,ݏ0.28  Kinetic energy is .ݏ0.66

under-predicted for low wavenumber containing most of the energy. This model is the most 

accurate of the three models tested.  
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Chapter 5: The verification of boundary condition 
 

The aim of this case: 

Boundary conditions (BC) are very important in CFD. Almost every CFD problem is defined 

under the limit of boundary conditions. In most cases, we need to carefully evaluate BC to make 

the simulation accurate. In all previous cases, we used the periodic boundary conditions which 

approximates a large(infinite) system by using a small part called a unit cell. This BC is often 

used in computer simulations and mathematical models. However, to simulate the system in the 

real world, we often need to use open inflow/outflow BC which have limited accuracy. The 

intent in this chapter is to try different BCs implemented in FireFOAM in two classic problems, 

i.e. a Lamb-Oseen vortex case and a buoyant hot bubble case, to test the validity of BCs in these 

cases and find out an optimal combination. 

Lamb-Oseen vortex: 

In this case, we focus on the BC for the pressure field and the velocity field, which are the most 

important ones.  

Case Initialization:  

 

The initialization of the Lamb-Oseen vortex has been described in chapter one.  

Analytical Solution: 

 

In this open boundary problem, the analytical solution turns into a piecewise function which 

represents the different stages of the vortex transport in the domain, i.e. the vortex is in the 

domain, the vortex is leaving and the vortex has already left.  
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Velocity field:  

When  0 < t ≤ 0.5s, the maximum velocity of the fields equals: 

coflowTotal U+U=U maxmax  
(5.1) 

Here maxU is the maximum velocity of the Taylor-Green vortex as shown in Eq.(2.4). coflowU  is 

the velocity of co-flow which is 0.1݉/ݏ in our case. So when the vortex centre is in the domain, 

the analytical solution of ܷ௠௔௫்௢௧௔௟ is:  

    0.11
0

2
0

2/3

2
++

=tr

νt
=tU=U+U=U

c
maxcoflowmaxmaxTotal










  

 

(5.2) 

 

 

Figure 5.1 Analysis of the velocity field when the vortex partially leaves the domain.  ܷ௠௔௫ is 

the maximum velocity of the vortex, ܷ௫ and ܷ௬ is the x-component and y-component of ܷ௠௔௫ 

respectively.  ߙ is the angle between ܷ௫ and ܷ௠௔௫ and by the geometry relation it also equals to 

the angle ߚ. R is the radius of the vortex. O is the center of the vortex. W is the center of the 
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domain. B is the intersection of OW and the domain. ݈ is the length of WO, ݈ଶ  is the length of 

BO. ܮௗ௢௠௔௜௡ is the length of the domain. Here   ܮௗ௢௠௔௜௡ = 0.05m. 

 

When  0.5s < t ≤ 0.55s, the center of the vortex start leaving the domain. The decomposition of 

velocity is shown in Figure 5.1. The ܷ௠௔௫்௢௧௔௟ can be obtained by  

  2
yxcoflowmaxTotal U+U+U=U 2  

 

(5.3) 

Where:  

ܷ௫ = ܷ௠௔௫cos (ߙ) 

ܷ௬ = ܷ௠௔௫sin (ߙ) 

  νt+=tr=R c 202  

sin(ߙ) =
݈ଶ

ܴ
=

௖ܷ௢௙௟௢௪ݐ −
ௗ௢௠௔௜௡ܮ

2
ܴ

=
௖ܷ௢௙௟௢௪ݐ −

ௗ௢௠௔௜௡ܮ
2

ඥ( ௖ܷ௢௙௟௢௪ + ܷ௫)ଶ + ܷ௬
ଶ
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Figure 5.2 Analysis of the velocity field when the vortex completely leaves the domain.  ܷఏ is 

the tangential velocity of the vortex. W is the centre of the domain. B is the intersection of the 

domain and OW. ݈ଶ is the length of BO.  

 

When   0.55s < t ≤ 2s, the location where the vortex has the maximum velocity is completely 

out of the domain, as shown in Figure 5.2. And we have the maximum velocity of the domain: 

ܷ௠௔௫்௢௧௔௟ = ට ௖ܷ௢௙௟௢௪
ଶ + ܷఏ

ଶ 
(5.4) 

Where ܷఏ = ܷ௠௔௫(
௟మ

ோ
)exp (

ோమି௟మ
మ

ଶோమ ) 

Pressure Field: 

We use the minimum pressure ݌௠௜௡ as the diagnostic to evaluate the boundary condition’s 

influence on the pressure field. The analytical solution of ݌௠௜௡ for the Lamb-Oseen vortex is: 









 2

22

1exp
2

)(
R

rρU
p=rp maxθ,

min

 
 

(5.5) 

 

Where ݎ is the distance between the point and the vortex centre. 

 

When 0 < t ≤ 0.5s, the minimum pressure can be obtained at the centre of the vortex:  

pmin= p∞−
ρUθ ,max

2

2
exp(1)

 

(5.6) 

where    

2/3

2max 1
0
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0


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






+
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=tU=U=U

c
maxmaxθ,  
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Figure 5.3 Distance between vortex centre and domain.  

 

After the vortex center leaves the domain, ݎ = ௖ܷ௢௙௟௢௪ݐ − 0.05, as shown in Figure 5.3. 

 

When   0.5s < t ≤ 0.55s: 
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(5.7) 

 

where    
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When   0.55s < t ≤ 2s: 
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(5.8) 

 

where ܷఏ,௠௔௫ = ܷ௠௔௫(
௟మ

ோ
)exp (

ோమି௟మ
మ

ଶோమ )  
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Results:  

 

Figure 5.4 Boundary names in this simulation 

We tried several combination of standard BCs which are commonly used in FireFOAM.  

Case1:  

   Table (5.1) Combination of BCs used in case1 

 inlet outlet Top and bottom 

ܷ fixedValue zeroGradient zeroGradient 

 ௥௚௛ fixedFluxPressure fixedValue zeroGradient݌

 

                         Top  

inlet outlet 

bottom 
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Here the zeroGradient BC is the one which applies a zero-gradient condition from the patch field 

to patch faces.  The fixedValue BC supplies a fixed value constraint to the patch and is the base 

class for a number of other BC. The fixedFluxPressure is a common BC used on the pressure 

field. It sets the pressure gradient to the provided value such that the flux on the boundary is that 

specified by the velocity boundary condition. 

           

(a)                                                                     (b) 

Figure 5. 5 Case1. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

As we can see from Figure 5.5, the error caused by this combination of BCs is large, especially 

in the velocity field. There are two unphysical oscillation in the solution of velocity which we 

need to avoid.   

 

Case2 
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Table (5.2) Combination of BCs used in case2 

 inlet Outlet Top and bottom 

ܷ fixedValue inletOutlet zeroGradient 

 ௥௚௛ fixedFluxPressure fixedValue zeroGradient݌

 

Compared with case1, the change in case2 is that the outlet BC of the velocity field becomes 

inletOutlet. This boundary condition provides a generic outflow condition, with specified inflow 

for the case of return flow. When there is no back flow, this BC is the same as the zeroGradient. 

              

(a)                                                                       (b) 

Figure 5.6 Case2. a) maximum velocity  b) minimum pressure. The red line is the result obtained 

from FireFOAM. The black line is the analytical solution.  
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From Figure 5.6 we can see that the error in the velocity field is significantly reduced. However, 

there are oscillations in the pressure field at the end of the vortex’s leaving.   

Case3: 

Table (5. 3) Combination of BCs used in case3 

 Inlet Outlet Top and bottom 

ܷ fixedValue zeroGradient zeroGradient 

 ௥௚௛ fixedFluxPressure totalPressure zeroGradient݌

 

Compared with case1, the change in case3 is that it uses totalPressure BC on the outlet, which 

provides a fixed value for total pressure instead of a fixed value p_rgh. Both of these are good 

ways to prevent pressure drifting in the simulation.  

                 

(a)                                                                            (b)   
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Figure 5.7  Case3. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

From Figure 5.7 we can see, that although the discrepancy between the numerical and analytical 

solution is small in most places, it causes oscillations in result, both in velocity and pressure. In 

addition, it caused an unphysical jump in the velocity field. This is what we want to avoid. So 

this combination is not satisfactory. 

Case4: 

Table (5.4) Combination of BCs used in case4 

 Inlet Outlet Top and bottom 

ܷ fixedValue inletOutlet zeroGradient 

 ௥௚௛ fixedFluxPressure totalPressure zeroGradient݌
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(a)                                                                               (b) 

 

Figure 5.8 Case4. a) maximum velocity  b) minimum pressure. The red line is the result obtained 

from FireFOAM. The black line is the analytical solution.  

 

From Figure 5.8, we can see this combination of BCs successfully eliminates the oscillation in 

the velocity field and it has no unphysical jump; it also the limits discrepancy between the 

numerical and analytical solution. However, the oscillation in pressure field still exists.  

Case5: 

Table (5.5) Combination of BCs used in case5 

 Inlet outlet Top and bottom 

ܷ fixedValue pressureInletOutlet 

Velocity 

zeroGradient 
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 ௥௚௛ fixedFluxPressure totalPressure zeroGradient݌

 

Here the BC of outlet, i.e. pressureInletOutletVelocity, is different from all the cases shown 

above. This velocity inlet/outlet boundary condition is applied to patches where the pressure is 

specified. A zero-gradient condition is applied for outflow (as defined by flux); for inflow, the 

velocity is obtained from the patch-face normal component of the internal-cell.  

                                                                              

                

(a)                                                                         (b) 

Figure 5.9  Case5. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

From Figure (5.9) we can see that this combination of BCs is worse than the cases above. The 

error is large both in velocity and pressure field. The oscillation in the pressure field is not 

restricted.  
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Case6: 

Table (5.6) Combination of BCs used in case6 

 Inlet outlet Top and bottom 

ܷ fixedValue pressureInletOutlet 

Velocity 

zeroGradient 

 ௥௚௛ fixedFluxPressure totalPressure zeroGradient݌

 

             

(a)                                                                        (b) 

Figure 5.10 Case6. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

From the Figure 5.10, it seems that the combination of BCs in case5 is the optimal BC 

combination: there is no oscillation in velocity and pressure. However, the result is still not 
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satisfying, there is still a significant discrepancy between the analytical solution and the result 

obtained from fireFoam. We found that these errors in the results, both the oscillation and big 

gap, are caused by the appearance of back flow in this case: 

 

The research on backflow: 
 

To study the influence of backflow, we used two combinations of BCs shown above, one is the 

combination that we find optimal and the other is the one which cause oscillations in velocity 

and pressure which we used in case3. We only change the co-flow velocity in each case. We set 

it to 0.05݉/ݏ and 0.5݉/ݏ respectively. Note that when ௖ܷ௢௙௟௢௪ =  there is no back ,ݏ/0.5݉

flow. Here are the results: 

Case A:  

In this case, the combination of BCs is what we used in case3, i.e. Table (5.3) 

௖ܷ௢௙௟௢௪ =  ݏ/0.05݉
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Figure 5.11  The minimum ܷ௫ at the outlet (with sign). The negative value means that there 

exists back flow at the outlet.  

From figure 5.11, we can see the existence of the backflow. The boundary conditions performs 

badly which cause the oscillation in velocity. We can also see that the oscillation appears with 

the appearance of backflow. Next we explore the profile of ܷ௫ to bring more information on the 

oscillation. 

                       

      (ai)                                                                             (aii) 
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                                   (bi)                                                                       (bii) 

                           

        (ci)                                                                              (cii)                                             

Figure 5.12 Velocity at the outlet when the vortex leaves the domain at different times a) ݐ =

ݐ (b ݏ0.8 = ݐ (c ݏ1.0 =  i) the screenshot of the velocity field ii) the profile of steamwise ݏ1.2

velocity at the outlet.  

From the Figure 5.12, we can find that the oscillation occurs when the vortex transport out of the 

domain. As shown in 5.12 (b), the oscillation only happens where the ܷ௫ < 0, i.e. the position 

where the back flow happens. Before and after the vortex leaves the domain, there is no 

oscillation in velocity. 
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(a)                                                                                (b)  

Figure 5.13  CaseA. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

Figure 5.13 shows the maximum velocity and minimum pressure of the domain when ௖ܷ௢௙௟௢௪ =

Similar to the case when ௖ܷ௢௙௟௢௪ .ݏ/0.05݉ =  there are oscillations in velocity and ,ݏ/0.1݉

pressure field.  

In the next case, we use the same boundary condition but increase the velocity of co-flow to 

௖ܷ௢௙௟௢௪ =   .in which case there is no back flow ,ݏ/0.5݉

 

Case B: 
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Figure 5.14  The minimum ܷ௫ at the outlet (with sign).  No negative value means there is no 

back flow in this case.        

 

                 

                                     (ai)                                                                          (aii) 
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(bi)                                                                             (bii) 

Figure 5.15, Velocity at the outlet when vortex leaves the domain at different times a) ݐ =  ݏ0.1

b) ݐ =   .i) the screenshot of the velocity field ii) the profile of velocity at the outlet  ݏ0.15

 

From Figure 5.15, we can see the velocity develops smoothly, there is no oscillation in this case. 

Compared this result with the former case, we can find see that the oscillation is caused by the 

back flow. When the back flow happens, the combination that we use cannot restrict the 

oscillation 
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(a)                                                                     (b) 

Figure 5.16  CaseB. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

Figure 5.16 shows the maximum of velocity and minimum pressure in this domain. We can see 

that when there is no back flow, the numerical solution and analytical solution can agree. There 

is no oscillation and no large discrepancy between the numerical and analytical solution.  

 

In the next two case, we use the same set of co-flow velocity to the combination of BCs which 

we find optimal above, i.e. Table(5.6). 

Case C: 

௖ܷ௢௙௟௢௪ =  ݏ/0.05݉
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Figure 5.17  The minimum ܷ௫ at the outlet (with sign). The negative value means there exists 

back flow at the outlet.  

 

Figure 5.17 shows the minimum of ܷ௫ at the outlet. We can this combination of BCs restrict the 

oscillation successfully, but there is highly asymmetric part in the velocity. This combination of 

BCs break the symmetry of the vortex structure.  
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(a)                                                                             (b)                                           

Figure 5.18 Velocity at the outlet when the vortex leaves the domain at ݐ =  a) the  ݏ0.1

screenshot of the velocity field b) the profile of velocity at the outlet.  

Figure 5.18 shows the velocity field and the profile of ܷ௫ at the outlet when the vortex is leaving 

the domain. We can see the existence of back flow and the highly asymmetric part in the velocity 

field.  

 

             

(a)                                                                      (b) 

Figure 5.19 Case C. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

Figure 5.19 shows the maximum velocity and minimum pressure of case C. We can see that 

there is no oscillation in the pressure field which is the same as the case 6. But the error is 

significant in the velocity and pressure fields.  
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Case D: 

௖ܷ௢௙௟௢௪ =  ݏ/0.5݉

 

 

Figure 5.20 The minimum ܷ௫ at the outlet (with sign).  No negative value means there is no back 

flow in this case.       

 

           



 

68 
 

(a)                                                                        (b)  

Figure 5.21 Velocity at the outlet when the vortex leaves the domain at ݐ =  a) the  ݏ0.1

screenshot of the velocity field b) the profile of velocity at the outlet.  

 

From Figure 5.21 we can find, the structure of vortex is much more symmetric compared the 

case with back flow. Without the influence of backflow, this combination of BCs can maintain 

the symmetry of the vortex when it is leaving the domain. 

  

                

(a)                                                                          (b)    

Figure 5.22 Case D. a) maximum velocity  b) minimum pressure. The red line is the result 

obtained from FireFOAM. The black line is the analytical solution.  

 

Figure 5.22 shows the maximum velocity and minimum pressure of the field obtained from case 

D. As we can see, the discrepancy between the analytical solution and numerical solution is 
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much smaller compared to the case in which there exists backflow which indicates that the error 

comes mainly from the lack of ability of the boundary condition to handle backflow.   

Buoyant hot bubble: 
 

In the case above, we have tested the impact of the different choices of BC could cause different 

influence to velocity field. In this case, we test this impact on the temperature field. 

  

Case 1 of hot bubble: 
 

We set the temperature field as presented in Eq. (5.9): 

,ݔ)ܶ (ݕ = 294 + 50(tanh(
ݔ) − (଴ݔ

σ
) − tanh(

ݔ) − (ଵݔ
σ

)(tanh(
ݕ) − (଴ݕ

σ
)

− tanh(
ݕ) − (ଵݕ

σ
))) 

 

 

(5.9) 

where: ݔ଴ = ଴ݕ   ,0.008− = ଵݔ ,0.008− = ଵݕ  ,0.008 = 0.008, σ = 0.0015. 
 

 

 

Figure 5.23 shows the initial distribution of temperature field for a hot bubble. The size of hot 

spot is 0.02݉. The domain of our case is 0.2݉ × 0.15݉ 
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(a)                                                                                 (b) 

Figure 5.23  Initial temperature field for a “hot bubble”. a) case with BC’s influence b) reference 

case without BC’s influence 

 

Figure 5.24  Initial temperature over bubble center line. 

 

Since there is no analytical solution to this case, we construct a domain which is large enough 

size(2݉ × 0.5݉) that can then be used as a reference case.  
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(a)                                                                            (b) 

 

(c) 

Figure 5. 25  Development of hot bubble (a) ݐ = ݐ (b)  ݏ1 = ݐ (c)  ݏ1.5 =  ݏ5

                   

(a)                                                                            (b) 

Figure 5.26 Case 1 of hot bubble: a) maximum temperature b) enthalpy integration over the 

volume. 
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From Figure 5.25 and Figure 5.26, we can see that this combination of boundary conditions does 

not allow the hot bubble to leave the computational domain. The boundary on the top prevents 

some heat and prevent some heat leaving the domain. Some residual heat remains in this domain 

after the hot bubble leaves. Some heat even flows back into the domain.  

 

This is because the boundary on the top is not set properly. In this case, the boundary on the top 

is set to keep the pressure from drifting. However, when the hot bubble leaves the domain, the 

temperature change will lead to a change in the pressure field, which makes the fixed value of 

pressure unphysical. One way to fix this problem is to fixed the pressure on the bottom boundary 

instead of the top boundary, since there is no request for the fixed value of velocity at the bottom, 

such combination of boundary condition is reasonable, as shown in Table (5.7). 

Case 2 of hot bubble: 
 

Table (5.7)  Combination of BCs used in case 2 of hot bubble 

 Inlet outlet Top and bottom 

ܷ zeroGradient zeroGradient zeroGradient 

 ௥௚௛ totalPressure zeroGradient zeroGradient݌
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           (a)                                                                             (b) 

 

(c) 

Figure 5.27 Development of hot bubble (a) ݐ = ݐ (b)  ݏ1 = ݐ (c)  ݏ1.5 =  ݏ2
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(a)                                                                      (b) 

Figure 5.28  Case 2 of hot bubble: a) maximum temperature b) enthalpy integration over the 

volume. 

 

From Figure 5.27 and Figure 5.28, we can see this combination of boundary condition can make 

the hot bubble leave smoothly. The gap between the numerical solution and the reference 

solution is small and there is no heat residual that remains in the domain. So this combination of 

BCs at the outlet is considered good for the hot bubble buoyancy case.  
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Chapter 6: McCaffrey’s Pool Fire 
 

The aim of this case: 
 

This is a validation case for FireFOAM combustion modeling capability using McCaffrey’s pool 

fire configuration, which is an important classical problem in fire science. Many theories and 

correlations have been proposed for different aspects of this case [18]; [30]; [31]. These results 

have been widely used in fire science and engineering application. In addition, the geometry of 

the flame and fire plume is very simple. So we choose this case as the validation case for fire 

modeling of FireFOAM. 

Case initialization: 
 

The simulation is methane fire on a 0.3݉ × 0.3݉ square burner with heat release rate (HRR) at 

51.5 kW. In our case, the burner is set at an elevation of 0.1m, which can decrease the influence 

of floor. Table (6.1) lists the heat release rate (HRR) value of the case. The corresponding non-

dimensional heat release rate  ሶܳ ∗  and characteristic length scale ܦ∗ as defined in the following 

are also listed in Table (6.1): 

ሶܳ ∗ =
ሶܳ

௣ܥஶߩ ஶܶඥ݃ܦହ/ଶ
 

 

(6.1) 

ሶܦ ∗ = (
ሶܳ

௣ܥஶߩ ஶܶඥ݃
)ଶ/ହ 

 

(6.2) 

where ߩஶ is the environmental density, ܥ௣ is the specific heat under constant pressure, ஶܶ is the 

environmental temperature, ݃ is the acceleration of gravity,  ܦ  is the length of burner.  
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The variable ሶܳ ∗ is used in many plume correlations as the scaling parameter, and ܦሶ ∗is often used 

to evaluate the grid resolution in CFD simulations of fire.  

Table (6.1) Case Parameters 

 HRR(kW) ሶܳ ሶܦ ∗ ∗ 

Case1 51.5 0.6888 0.2918 

 

The computational domain is a 4.8݉ × 4.8݉ × 4.8݉ cubic box, which is large enough to 

capture the full plume width and will reduce the influence of the excessive BCs. In addition to 

blockMesh, another automatic meshing tool called snappyHexMesh is used in this case to refine 

the mesh. We sets four levels of refinement. The smallest cells are 1.25ܿ݉ × 1.25ܿ݉ × 1.25ܿ݉, 

which are uniformly distributed inside a 0.6݉ × 1.2݉ × 0.6݉ box which includes the burner, 

such resolution is level-3 refinement in our case. The cell of level-2 refinement is  2.5ܿ݉ ×

2.5ܿ݉ × 2.5ܿ݉ within a 1.2݉ × 2.2݉ × 1.2݉ box. The level-2 refinement zone is enough to 

hold the fire plume. The cells in level-1 and level-0 are proportionally increased. The cells of 

level-0 are 10ଷܿ݉ଷ, which are the largest cells of the domain. Such block-structured mesh 

enables us to concentrate roughly half of the cells into 1.3% volume of the domain.  

 

The BC of the velocity field at the burner corresponds to a fixed mass flow rate. We set the mass 

flow rate as 1.0323݃/ݏ which corresponds to the HRR of 51.5ܹ݇. The corresponding BC for 

the temperature field is the fixed enthalpy flow rate. Convective and diffusive mass and energy 

fluxes are considered at the inlet. We use the BC which we find optimal for the outflow of heat at 
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the outlet, i.e. the outlet BC shown in Table (5.7). For the BC at side boundaries, we use typical 

entrainment BCs which can fix the pressure. As for the radiation model, we use a simpler 

treatment by assuming the radiant fraction as constant equals to 20%, which is the same value as 

the value estimated by McCaffrey.   

The simulation is run for 20s. Turbulent statistics are collected for the last 12 seconds when the 

flow is completely statistically stationary.   

Results: 
 

Figure 6.1 presents a screen shot of the temperature field and velocity field after the flame 

becomes statistically stationery. ݐ =  .ݏ8

                        

(a)                                                                                  (b) 

Figure 6.1  Screenshot of field at ݐ =  a) Temperature field b) Y component of velocity .ݏ8

Figure 6.2 shows the zoom-in temperature at ݐ =  The  BC at outlet performs well for the .ݏ8

outflow of heat. There is no backflow of heat.  
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Figure 6.2  Zoom-in temperature field at ݐ =  .ݏ8

Figure 6.3 shows the HRR with respect to time. HRR presents turbulent characteristics. It has the 

oscillation which averages around 51.5݇ݓ, which is the same as the value we expect.  

 

Figure 6.3  Heat release rate with respect to time 
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Figure 6.4 shows the maximum temperature of the field with respect to time, which corresponds 

to the flame temperature with 20% radiation. 

 

Figure 6.4  Maximum temperature with respect to time 

Figure 6.5 shows the minimum temperature of the field with respect to time. Generally the 

minimum temperature is correct which equals to the environment temperature, i.e. ܶ = 293݇. 

There are some unphysical peaks which is caused by numerical error.  
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Figure 6.5  Minimum temperature with respect to time  

Figure 6.6 presents the mean temperature along the center line. The distance to burner is scaled 

by ሶܳ ଶ/ହ, which is the same as the scaling factor proposed by McCaffrey. We get the classic -5/3 

slope in the plume zone.  

 

Figure 6.6  Centerline mean temperature rise and decay.  

Figure 6.7 presents the mean vertical velocity over center line. It is scaled by ሶܳ ଵ/ହ. The distance 

to burner is scaled by ሶܳ ଶ/ହ. The slope of scaled velocity shows the expected -1/3 slope in the 

plume zone.  
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Figure 6.7 Centerline velocity 
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Chapter 7: Conclusion and furture work: 
 

This research considers several benchmark cases propelled for the verification and validation of 

FireFOAM. Several temporal (Euler, backward) and spatial schemes (second order) have been 

verified through grid convergence through the study of the Lamb-Oseen vortex with co-flow 

case. The order of accuracy of these schemes in FireFOAM as expected. The conservation of 

kinetic energy has been verified through the simulation of the Taylor-Green vortex case with 

different temporal schemes (Euler, backward and Crank-Nicholson ).  The accuracy of enstrophy 

growth is also verified in this case. The performance of several SGS turbulence models 

(Smagrinsky, constant coefficient one-equation, dynamic coefficient one-equation) have been 

evaluated through the implementation of decaying isotropoic turbulence case.  The kinetic 

energy evolution agrees well with the experimental data of CBC (Comte-Bellot and Corrsin). 

The dynamic coefficient one-equation model is found to perform best compared to the three 

models. Several combinations of outlet BCs have been examined through the study of the Lamb-

Oseen vortex case and buoyant hot bubble case. The optimal combination of outlet boundary 

condition is found to be the pressureInletOutletVelocity for the velocity field and the 

totalPressure for the pressure field. The limitation of current boundary conditions is their 

treatment of back flow is pointed out. The use of a fixed pressure at outlet is found to be 

incorrect in the hot bubble case. Some residual heat remain after the hot bubble completely 

leaves. A change it to zeroGradient can fix this problem. The eddy-dissipation combustion model 

has been validated through the study of McCaffrey’s pool fire case. The classical -5/3 slope for 

the temperature rise and -1/3 slope for the velocity decay are observed in the plume zone.  
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There are still several issues in the McCaffrey’s case. It is necessary to simulate this case under 

different HRR to see if the scaling law agrees well with all cases shown in MaCaffrey’s original 

paper. More turbulent properties need to be extracted, such as the normalized velocity fluctuation 

intensity, to evaluate the combustion model in more detail. In addition to the cases which have 

been developed, we need to consider several more cases to verify more aspect of FireFOAM, 

such as the pyrolysis model and the radiation model.  
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