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The problem addressed in this work is that of detecting and characterizing 

occurrences of irregular phonation in spontaneous speech. While published work tackles this 

problem as a two-hypothesis problem only in those regions of speech where phonation 

occurs, this work also focuses on trying to distinguish aperiodicity due to frication from that 

arising due to irregular voicing. In addition, this work also deals with correction of a current 

pitch tracking algorithm in regions of irregular phonation, where most pitch trackers fail to 

perform well, as evidenced in literature. Relying on the detection of such regions of irregular 

phonation, an acoustic parameter is then developed in order to characterize these regions for 

speaker identification applications. The algorithm builds upon the Aperiodicity, Periodicity 

and Pitch (APP) detector, a system designed to measure the amount of aperiodic and 

periodic energy in a speech signal on a frame-by-frame basis. The detection performance of 

the algorithm has been tested on a clean speech corpus, the TIMIT database, and on 

telephone speech corpus, the NIST 98 database, where regions of irregular phonation have 



been labeled by hand. The detection performance is seen to be 91.8% for the TIMIT 

database, with the percentage of false detections being 17.42%. The detection performance 

is 89.2% for the NIST 98 database, with the percentage of false detections being 12.8%. The 

corresponding pitch detection accuracy increased from 95.4% to 98.3% for the TIMIT 

database, and from94.8% to 97.4% for the NIST 98 database, on a frame basis, with the 

reference pitch coming from the ESPS pitch tracker. The creakiness parameter was added to 

a set of seven acoustic parameters for speaker identification on the NIST 98 database, and 

the performance was found to be enhanced by 1.5% for female speakers and 0.4% for male 

speakers for a population of 250 speakers. These results lead to the conclusion that the 

creakiness detection parameter can be used for speech technology. This work also has 

potential applications in the field of non-intrusive diagnosis of pathological voices. 
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Chapter 1 
 
INTRODUCTION & BACKGROUND 
 
 
 Speech is the primary mode of communication in humans. Indeed, the most obvious 

trait that sets the human race apart from the rest of the living world is the ability of humans 

to communicate with each other with richness, efficiency and variety. The speech signal 

produced by humans contains much more information than purely the message to be 

passed: it also gives the listener an idea of the gender and emotional state of the speaker, the 

language of communication, as well as the speaker’s identity in some cases. Each of these 

components of information is processed by the listener, and then put together in the brain 

to generate a complete picture of the particular conversation. 

  Automatic methods have been developed for a long time to capture these various 

levels of information, and researchers have contributed to different areas of speech 

processing by machines, like Automatic Speaker Recognition (ASR), Language Identification, 

Natural Language Processing (NLP), Speaker Identification (Speaker ID), Emotion 

Recognition etc. In addition, research has also focused on giving machines the ability to 

speak, or Speech Synthesis. Further, there have also been major contributions to the area of 

Speech Enhancement, with the intention of rendering speech signals more usable for 

machines and humans. However, while there have been significant advances in all of these 

components of speech technology, each of them is still far from perfect or even near-human 

performance, and a lot needs to be done before the problem of “teaching machines to 

converse like humans” can be declared solved. Indeed, for example, in the technology of 

speech recognition, human speech recognition beats ASR by an order of magnitude in both 

clear and noisy speech [1] – a gap that has not been bridged over the past nearly ten years. 
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Figure 1.1 : A Typical Pattern Recognition System for ASR Speaker ID 
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 There are several reasons for the marked difference between the performance of 

humans and machines. In particular, for the problems of ASR and speaker ID, the 

performance difference is significantly high and for most cases, unacceptable, and this might 

be attributed to the approach taken towards the problem [1]. Most ASR and speaker ID 

systems rely on the statistical pattern recognition framework, wherein the front-end contains 

the Feature Extractor, and the back-end consists of one of several class-discriminating 

modeling techniques. Figure 1.1 shows a typical statistical pattern recognition system akin to 

those used for ASR and speaker ID applications: 

  

  

  

  

  

  

  

 

 The speech signal is first processed in order to extract certain features that enhance 

the discrimination between the different classes that are required to be identified (phonemes 

for ASR and speaker characteristics for speaker ID). The features used in current state of the 

art systems are the Mel-Frequency Cepstral Coefficients (MFCCs), spectral features of 

speech that have been processed by auditory-inspired techniques in order to mimic human 

auditory processing [2]. In order to minimize the effect of channel distortions, these features 

are smoothed using Relative Spectral Transform (RASTA) filtering [3], a technique that 
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applies a band-pass filter to the energy in each frequency band in order to smooth short-

term noise and to remove any constant offset in the band. To capture implicitly some of the 

temporal information in speech, these MFCCs are complemented by their first and second 

derivatives (ΔMFCCs and ΔΔMFCCs) which give the rate of change of these features with 

time.  

Once the features are extracted, they are then fed into a modeling back-end, which 

characterizes their statistical and temporal behavior by means of marginal and conditional 

probability distributions, respectively. In state-of-the-art ASR systems, the back-end is a 

Hidden Markov Model (HMM) [4] which characterizes temporal behavior of the features, as 

well as their statistical description, by their conditional and marginal probability distributions. 

For speaker ID applications, the Gaussian Mixture Model (GMM), which accurately 

describes the statistical distribution of the extracted features in terms of a set of Gaussian 

distributions with varying means and variances, has been found to be most useful [5]. 

 The reason why machine recognition has not lived up to expectations and still 

demands new developments is that the modeling techniques, as well as the feature extraction 

methods, have not been (i) accurate and (ii) appropriate to the tasks at hand. As an 

illustration, the speaker ID technology uses a purely statistical mechanism to model speaker 

characteristics, without taking temporal information into account. It is a known fact [6] that 

speakers differ in the way they articulate the same phoneme, and therefore, the 

characteristics of speech they produce should show different dynamic behavior. However, 

the GMMs used for Speaker ID do not explicitly capture this temporal variation of the 

features, and rely on the ability of features to model temporal behavior. This is unlike the 

HMMs which characterize conditional distributions to capture temporal behavior, but which 

are not used for speaker ID because of the inherent complexities in modeling multimodal 
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distributions, and the lack of enough training data for each of the marginal and conditional 

probabilities.  

More importantly, the choice of features is also a bottleneck in pushing the limits of 

current speech technology. The MFCCs that have been traditionally used for speech and 

speaker recognition are not very intuitively motivated, and more significantly, do not provide 

a clear picture of why they should work or fail in certain circumstances. These features 

implicitly code the human vocal tract characteristics, and their temporal behavior does not 

clearly reflect the vocal tract activity that would have generated such a MFCC structure. 

Further, the traditional set of MFCCs used are low time liftered, capturing only the vocal 

tract information and are thus not fully efficient, since for example, the source information 

of the speaker is also rich in speaker-specific information like voice quality and could be 

used for speaker ID. Thus, it is useful to explore beyond the MFCCs and look for efficient 

features that explicitly capture specific information that would be useful for the particular 

task at hand. For example, recent work has shown that for speaker ID applications, the 

performance of a set of eight acoustic parameters matches that of the traditional 39 MFCCs 

for varying population sizes, typically beating the MFCCs in the case of female speakers [6]. 

Thus, it is a promising enterprise to embark on the search for parameters that would 

explicitly capture specific information from the speech signal. 

 

1.1 The Speech Production Process & The Acoustic Parameters  

 

If it were possible to extract reliable features that explicitly capture the activities of 

the speech-producing mechanisms, then it would be possible to improve the performance of 

current speech technology. A brief look at the speech production process explains how: 
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The speech production process can be approximated by an electrical system, where a 

source signal excites a filter [7]. The behavior of the glottis is modeled by the source – when 

the glottis opens and closes periodically, as in the case of vowels, the source is represented 

by a periodic or quasi-periodic signal. When the glottis remains partially open allowing air to 

flow from the lungs and there are no major constrictions in the vocal tract, aspiration noise 

created just above the glottis produces the sound /h/. When the glottis remains open and a 

major constriction is created along the vocal tract, a second source is produced, either by 

creating a close constriction like in the case of fricatives (/f/, /s/ etc.) or by allowing the 

articulators to excite the vocal tract with sudden impulses, like in the case of stops (/p/, /t/ 

etc). In such cases, the source is represented by a noise source. In some phonemes, like the 

voiced fricatives (/z/), both the periodic and aperiodic sources are simultaneously active, in 

which case the periodic energy typically manifests itself in the lower frequencies, and the 

aperiodic energy in the higher frequencies. Each of the different vowels is produced when a 

periodic source is modified by a different configuration of the filter representing the vocal 

tract; these configurations are represented by the resonant frequencies of the filter. The 

harmonic spectrum of the periodic source thus gets modified by the vocal tract frequency 

response, giving the resultant speech a spectrum that has peaks at certain frequencies. These 

frequencies, called the Formant frequencies, are different for different vowels (and are in 

fact characteristic of them).  

Voicing Source 

Aspiration Source 

Vocal Tract Filter Switch Speech Signal 

Figure 1.2 : The Speech Production Process modeled as an electrical system
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In particular, taking the example of ASR for vowels, a simple way to identify vowels 

automatically would then be to estimate the resonant frequencies from the speech spectrum, 

and then identify the vowel using the formants thus obtained. Though the variability in 

speech, both due to medium as well as due to speaker identity, renders the problem not so 

simple to solve, the principle is more or less the same. Thus, it comes naturally to use the 

formants as parameters for recognition of vowels – a subset of the parameters motivated by 

the speech production process and the acoustics involved. These  parameters that are called 

Acoustic Parameters (APs) in the remainder of this thesis. For the case of speaker ID, the 

motivation of using acoustic parameters is that each speaker has a characteristic pattern of 

movement of articulators [6]. Thus, when acoustic parameters are used to characterize the 

speaker’s speech, their behavior (both temporal and spectral) can help a lot in identifying the 

speaker from others. Further, the physical attributes of a speaker also limit the range of 

values that each of the acoustic parameters derived can take, and this can provide a valuable 

clue to speaker identity. Putting together this potpourri of acoustic parameters, that captures 

various characteristics of the speaker and speech generated, in an adequately capable 

modeling system, can give significant results for speech technology. For example, it was 

recently shown in Espy-Wilson et al, [6] that the speaker ID performance of a set of eight 

acoustic parameters either matches or beats that of the traditional 39 MFCCs. 

While capturing features, it is necessary to characterize both the vocal tract filter as 

well as the source signal exciting the vocal tract. The set of acoustic parameters that have 

been used in Espy-Wilson et al, to characterize the vocal tract are the four formants.  The 

degree of periodicity (and aperiodicity) in the source signal exciting the vocal tract, as well as 

the spectral tilt of the speech produced, are used to characterize the source information. The 

motivation for selection of these source features is elaborated on in [6]. 
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Figure 1.3 : A front view (left) and top view (right) of the vocal folds and the 
associated muscles (adapted from [7]) 

The aim of this thesis is to develop an acoustic parameter that characterizes a 

particular type of source information (i.e., voice quality). In particular, this work deals with 

automatically detecting regions in speech where the source signal exciting the vocal tract 

shows irregular behavior – the signal is neither periodic nor noise-like, but has a different 

structure as a consequence of irregularity in the pattern of vibration of the vocal folds [8]. 

 

1.2 Phonation & Voice Quality 

 

While it is the vocal tract that determines the phoneme to be produced, it is the 

mechanism of production of the glottal pulses exciting the vocal tract that determines the 

quality and perceptual attributes of the speech signal produced [7,9]. In this section, a brief 

description of the source mechanism during voiced speech is given [7]. The glottal pulses 

exciting the vocal tract are actually produced by the building of air pressure just behind the 

glottis. When the air pressure (coming from the lungs) is adequately high, the vocal folds that 

close the glottal opening are pushed apart to allow the air to escape. The volume velocity of 
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Figure 1.4 : Modulation of the air 
flow by the vocal folds (adapted 

from [7]) 

this air excites the vocal tract, causing it to resonate at certain frequencies according to its 

configuration.  

Figure 1.3 shows the front view of the glottis and vocal folds. Air pressure from the 

lungs causes the glottis to open by pushing the vocal folds apart and leaking through the 

opening thus formed. The figure on the right shows a top-view of the vocal folds and 

associated muscles. Because of the close (but importantly, not exact) symmetry between the 

muscles controlling the two vocal folds, the vocal folds usually open and close in synchrony 

to each other, and thus the resultant volume velocity is a smooth function of time, with both 

the vocal folds modulating the air velocity equally and in a balanced way. It is noteworthy 

that the modulation by the vocal folds shapes the volume velocity that excites the vocal tract, 

and thus influences the nature of the speech produced. The actual modulation of the air by 

the vocal folds is shown in Figure 1.4.  

 This is a view of the glottis and vocal 

folds from the front. It can be seen that the 

lower part of the vocal folds first separate out 

due to build up of sub-pressure, and then there 

is a gust of air that pushes through the vocal 

folds. Thus, the upper muscles now open apart 

and the air escapes from the glottis to the vocal 

tract. As the gust of air moves through the 

glottis, the lower muscles of the vocal folds start 

pulling them back together and the vocal folds 

start closing, from lower part to upper part. 

Thus, a Bernoulli Effect is seen in the opening 
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Figure 1.5 : Volume velocity of the air flow through the glottis during modal 
(normal) voicing (adapted from [7]) 

and closure of the vocal folds. Further, the closure of the vocal folds is faster than the 

opening. This is because the vocal folds that are inherently closed have to be pushed apart 

and therefore take a sufficiently large sub-glottal pressure to be opened. Once they are 

opened, there is a large volume of air traversing upwards and thus, the vocal folds are held 

apart. In contrast, once the air rushes out, there is no pressure to keep the vocal fold muscles 

apart and they close shut more rapidly. These mechanisms are reflected in the structure of 

the volume velocity that excites the vocal tract. The source signal that excites the vocal tract 

is seen to have a slower and more gradual opening phase, and a faster, more rapid closing 

phase (Figure 1.5). 

 

It is obvious that the physical characteristics of the speaker greatly determine the 

source signal modulating the vocal tract. Indeed, the typical durations of opening and closing 

of the glottis are a function of the acoustic mass of the upper and lower part of the vocal 

folds, as well as their acoustic compliances and the coupling compliance between them. 

(Mathematical details can be found in [7]). Thus, different speakers are expected to have 

different excitation patterns for their vocal tracts. Further, speakers are not consistent in the 

way they excite their vocal tract – the source signal for the same vowel can significantly 

change within a period of 10-15 msec for the same speaker during spontaneous speech. To 

complicate matters, the two vocal folds are not perfectly symmetric in terms of their 
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properties like acoustic mass, hardness etc. and this causes an imbalance in the modulation 

of the volume velocity by the two vocal folds. All these phenomena result in the source 

signal exhibiting characteristics that differ so greatly from one phoneme to another, that it 

sometimes becomes difficult to define what can be called “normal” and “abnormal” for a 

specific speaker. 

Perceptually, however, one can broadly classify “what speech sounds like” (i.e., the 

perceptual quality of speech, or Voice Quality) into three classes – Modal, Breathy and Creaky. 

Modal voicing is simply the normal voicing of a speaker – perceptually, it can be said that 

modal voicing is what a speaker usually sounds like. In this case, the vocal folds vibrate in 

the mode as described above, with the glottis opening and closing at regularly intervals and 

the vocal folds behaving symmetrically offering no greater resistance than they usually do [9]. 

In the case of Breathy voicing, the vocal folds do not always close completely and there is 

always a leakage of air through the slightly-open glottis (figure 1.6). Consequently, the speech 

produced has a slightly whispery or breathy quality to it, in the sense that there is always an 

underlying noisy element even during the vowels. Because of the leakage of air, the volume 

velocity has a non-zero DC component. This constant leakage of air also causes the 

resistance of the vocal fold muscles to be less cumbersome to air-flow, and thus, the opening 

phase is usually as free and the closing phase – giving rise to a symmetric glottal pulse. This, 

along with the fact that there is coupling between the sub-glottal and supra-glottal regions, 

explains the more sinusoidal nature of the glottal source pulse. Spectrally, the glottal source 

signal has a steeper slope (-18 dB/octave) than that of the modal case (-12 dB/octave). This 

is because of two reasons – the DC offset given by the leakage of the air, and the sinusoidal 

nature of the signal (as a signal approaches a sinusoid, its spectrum approaches that of an 

impulse and thus becomes steeper). This also causes the first harmonic (H1) of the source 
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Figure 1.6 : Glottal Configuration (top pane), Volume Velocity (middle pane) 
and Glottal Spectrum (bottom pane) for a creaky (left column), modal (middle 

column) and breathy (right column) vowel. (adapted from [9]) 

spectrum to be significantly higher than the second harmonic (H2). The H1-H2 difference 

for breathy vowels is usually about 6 dB more than that of the modal vowels. It must be 

noted that in the case of breathy voicing, the frequency of vocal fold vibration does not 

change and the pitch (F0) remains the same as it should in the modal case. Physiologically, 

the difference only exists in that the vocal folds allow a leakage of air during closure. Finally, 

this kind of voicing should also be noted as another example where a voiced source and 

aperiodic source act simultaneously, with the former dominating the lower frequencies and 

the latter, the higher frequencies. 

 

In the third voice quality class, i.e., creaky (or laryngealized) voicing, the vocal folds 

do not open completely, and close more abruptly than in the modal case. This could be due 

to one of several reasons – physically, creakiness is usually attributed to heavier or strained 
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vocal folds [7]. The vocal folds do not open completely and therefore, the volume of air 

flowing out is also usually less as compared to the other two voicing modes. The frequency 

of glottal opening and closure also reduces (i.e, the period, or pitch, of the source signal 

reduces) because of the difficulty in opening the vocal folds. The opening and closing phases 

are significantly shorter than the modal case, for the same reason. Spectrally, this translates 

to a spectrum that is flatter than the modal or breathy case. This is because of the abruptness 

in the opening and closing, which makes the source more impulse-like, rendering it a flatter 

spectrum. The typical spectral roll-off is -12 dB/octave, and the H1-H2 difference is actually 

negative, and less than that of the modal or breathy case. In this thesis, this mode of voicing 

is also classified as being irregular because the glottal opening and closure is not as it 

normally should be, and the pitch also does not fall in the same range it usually does.  

 

1.3 Irregular Phonation & Its Types 

 

In this study, we focus on one of the variations of voice quality, namely irregular 

phonation. This particular category is a super-class comprising of sounds that various 

researchers from different disciplines have called creak, vocal fry, diplophonia, diplophonic 

double pulsing [10, 11], glottalization [12], laryngealization [9], pulse register phonation [10], 

vocal fry [10] and glottal squeak [10]. While it is clear that each of these terms is well-defined 

in literature, there still remains some difficulty in defining the exact perceptual correlates of 

each of these phenomena. This is because of some common source mechanisms occurring 

in these various forms, which do not give a characteristic clue that identifies them from 

other types. However, the main characteristics of all these various forms of phonation are 

that the vocal folds do not vibrate as they would for a modal case, and the difference comes 
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either in asymmetry of the behavior of the vocal folds, or a significant difficulty in opening 

the two vocal folds to the extent that would happen in modal case. As an example, in the 

case of diplophonia (or diplophonic double pulsing), the vocal folds do not vibrate 

simultaneously and are out of phase. Thus, the volume velocity is modulated in a two-fold 

way, and there are two glottal pulses in each cycle, one being delayed and damped with 

respect to the other. The corresponding speech signal exhibits a waveform that shows two 

distinct pulses exciting the vocal tract, and a spectrum that shows interharmonics arising due 

to the interaction of these phase-inconsistent source signals. Most pitch trackers fail to track 

the pitch correctly in such cases, as was tested by the author on a few samples of such 

speech. An extreme case of diplophonia is diplothongia, where the vocal folds do not vibrate 

in synchrony at all and thus, two distinct tones are produced, one due to each vocal fold. 

In this work, we therefore avoid the confusion due to literary definitions, and instead 

rely on the work in [10] that has shown that in spite of their varying definitions, some of 

these phenomena are similar to each other, and are classified together by listeners to fall in 

the same perceptual space, thus narrowing the variety to very few classes. We thus clearly 

define our task as the automatic detection of all sounds that will fall in the above perceptual 

category, namely irregular phonation. Irregular phonation is defined for the scope of this 

thesis as “those sounds which fall into one of the categories of creak, vocal fry, diplophonia, 

diplophonic double pulsing, glottalization, laryngealization, pulse register phonation, glottal 

stop or any mode of phonation that arises from either asymmetric vibration of the vocal 

folds or due to a relatively abrupt closure of the vocal folds”.  

 

1.4 Why This Thesis? 
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Speakers have a certain characteristic quality to their voice, which is a consequence 

of their style of phonation, as well as their individual source properties. The variety in voice 

quality is a well-studied phenomenon, and researchers from various disciplines like speech 

processing, voice pathology, phonetics, linguistics and music have examined the various 

aspects of phonation. Detection of irregular phonation by visual inspection, and description 

of the characteristic features that identify it, as well as those that distinguish it from modal or 

breathy speech, has opened the doors to approaching one of the most important problems 

in speech processing – capturing the source information. This is especially true in present 

speaker identification systems, as studies have shown that different speakers can glottalize at 

different rates that are characteristic to them [12]. Traditional speaker identification and 

speech recognition systems have, however, focused on modeling the vocal tract, and there 

have been relatively few studies that try to incorporate source information into the system. 

One of the probable reasons for this is that there is still no set of parameters that one can 

use to explicitly and automatically arrive at the source information. The goal of research in 

the Speech Communication Lab at the University of Maryland is, in addition to other 

applications, arrive at a set of parameters that can identify automatically the degree and type 

of irregular phonation in a speaker. Since voice quality is a characteristic of the speaker, such 

a set of parameters would certainly boost the performance of a speaker identification system. 

Identification of creaky regions has been one of the tasks in this long-term goal. 

In addition to speaker identification, the task of automatic detection can contribute 

to ASR as well. Most ASR systems rely on the traditional MFCCs, but recently, research is 

also being pushed into the direction of landmark-based ASR using acoustic-parameters [c.f. 

13]. Identifying the source information and removing it from the speech signal to arrive at 

the vocal tract behavior could give insight into the actual articulators involved during the 
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production of that phoneme. This could well lead to the recognition of the phoneme being 

spoken. However, in order to remove the source information, it is important to get an idea 

of what kind of voicing is involved and what the glottis configuration has been – the 

irregular phonation detector could give insight into these issues and thus help in ASR. 

Automatic identification of irregular phonation can also aid in the study of voice 

pathology. This is an important potential application, as it can lead to non-intrusive diagnosis 

of laryngeal problems. It may be possible to identify the exact problem by simply processing 

the speech file with an algorithm that can identify how the vocal folds are vibrating and what 

physical activity is going on inside the larynx. While this thesis does not really focus on this 

particular problem, it is a step in that direction and gives sufficient thought to that possibility 

as being a possible future application, in terms of design of the pitch detection algorithm and 

other internal working details. 

This work can contribute to phonetics by identifying regions of speech such as turn-

taking etc., and also to the task of language identification, as there are a variety of languages 

that exploit creakiness and breathiness to articulate certain sounds [11]. Analyzing the rate of 

occurrence of certain creaky vowels can help in identifying the language of communication. 

Lastly, this work can also aid in automatic emotion recognition. Speakers under stress and 

those who have spoken for a long time, as well as physically exhausted speakers, show a 

tendency to go creaky in their speech. This fact can be exploited to detect if a certain speaker 

is under a stress of some kind. It also seems possible to use this system to detect voice 

imitation, as certain speakers may have certain patterns of irregularity in their phonation, and 

this may not be possible to mimic by the imitator. 

While a number of such potential applications have been listed, this work also 

supports one of them– speaker identification – numerically, as an illustration. Thus, it is 
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indeed a worthwhile task to design a system that can automatically detect irregular 

phonation. 

 

1.5 Literature Survey & Contributions of this Thesis 

 

The problem of trying to identify certain source characteristics has long been 

investigated by various researchers for different potential applications, and are too numerous 

to list with just a few references. However, there has been significantly little work done on 

actually arriving at irregular vocal fold activity during spontaneous speech. Further, 

developing this phenomenon as a means to characterize speakers is an idea that has not been 

investigated previously. 

Published attempts at explicitly detecting creaky voicing by automatic methods seem 

to have been made in parallel by three other authors, all in the period of 2004-2005. In the 

first of these works, published by Ishi in 2004, [14], the author tries to classify segments of 

clean speech as belonging to either vocal fry or modal voicing. Both voiced and unvoiced 

regions of speech are investigated. The acoustic cues that have been proposed for the 

purpose are the variation of short-time power over consecutive glottal cycles, and features 

called intra-frame periodicity and inter-pulse similarity, based on the properties of the auto-

correlation function of the voiced segments. The detection rate reported was 73.3%, with an 

insertion rate of 3.9%. 

Independent and parallel work was published by Slifka [15] in 2005, where the task 

was to classify tokens of clean speech from the TIMIT corpus containing modal voicing 

from those containing creaky voicing. The acoustic features extracted from the voiced 

segments are the pitch, normalized root mean square amplitude, smoothed energy difference 
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and shift-difference amplitude. These features have been used with a Linear SVM as a back-

end, and have yielded a detection accuracy of 91.25%, with insertion error rate 4.98%. 

Parallel work was also published by Yoon et al [16] in the same year, with the task 

being the same as the other two, namely, classification of segments of speech into modal or 

creaky voicing. However, the task was tougher in the sense that the corpus used was 

telephone speech, which exhibits significant channel distortion, and where pitch detection 

algorithms have been reported to fail even in voiced regions of speech [17]. Preprocessing 

steps were to boost the speech in order to equalize the channel effects, and then use a robust 

pitch tracking algorithm to detect creakiness. Fundamental frequency (F0) and spectral cues 

were used with an SVM to perform classification, and the classification accuracy was 

reported to be 75%. 

The work done in this thesis, independent from and parallel with the above works, is 

a significantly different task because of various reasons. The first is the data that has been 

used to evaluate the algorithm. The idea of developing the Irregular Phonation Detector was 

to be able to detect and numerically characterize creakiness in spontaneous speech, which 

includes regions of speech with no voicing and where the speech need not be clean. Indeed, 

this algorithm has been tested on both clean and noisy speech corpuses, and has been found 

to give results approaching the best of the above approaches ([15]) in clean (no results are 

reported in [15] for noisy telephone speech). Specifically, in the case of noisy speech that the 

algorithm was tested on, various degrading elements like channel distortion, laughter and 

coughing, etc. have been worked on. Also, while the above works have been tested on 

regions of voiced speech that have been predetermined and extracted manually, this 

algorithm operates on speech and non-speech from all sources. While it is a trivial affair to 

identify regions of voicing in the case of clean speech like from the TIMIT corpus, using 
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either the transcription labels or a sufficiently good pitch detection algorithm, the same is 

not the case with spontaneous speech. In the latter case, transcriptions are not available for 

detecting sonorant (voiced) regions, and pitch detection algorithms have been reported to 

fail detection of voicing [17] and detect voicing in regions where there is no voicing in reality 

(observed by author on various occasions). Even other simple and well-established acoustic 

features like the zero crossing rate, energy thresholds etc. fail when they are used to identify 

voiced from unvoiced regions in spontaneous speech from telephone data. All these facts 

are illustrated in the Figure 1.7 (next page), which demonstrates the temporal behavior of 

some of these features in telephone speech. 

The figure 1.7 shows a region of laughter (/ehehe/, boundary marked by red lines), 

where the region is partitioned into five regions: the first, third and fifth regions are voiced 

and breathy (/e/) and the second and fourth are aspirated. These two regions should be 

separated from each other by an appropriate voiced/unvoiced detector. Further, the detector 

must be able to separate unvoiced regions from creaky regions (which are voiced). It may be 

noted that the pitch detector of the ESPS software does not do a good job at detecting all 

the creaky regions, and thus cannot be used for purposes of this thesis. Further, the zero 

crossing rates and the energy are also not very useful in separating out these regions. For 

example, in regions 1,2 and 3, wherein 1 and 3 fall in the voiced category and 2 in the 

unvoiced, the zero crossing rate it seen to be in the same range. Further, even the short-time 

energy parameter in regions 1 and 2 are in the same range. Thus, no statistical framework 

can be used in this case to separate the voiced regions from unvoiced. Further, it may also be 

seen that the energy parameter in the unvoiced regions (which is typically expected to be low 

compared to voiced regions) is significantly higher than the voiced regions towards the end, 

where creakiness sets in. This kind of behavior is very common in spontaneous speech, and 
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it is simply impractical to use any of these measures in a simple way and expect good 

separation between the voiced and unvoiced regions. 

In this work, not only has the creakiness detection algorithm been designed to 

handle noisy speech containing distortions, as well as non-voiced parts of speech that would 

be identified as voiced by most current voicing-detection approaches, but an accurate pitch 

detection algorithm has also been incorporated into an Aperiodicity, Periodicity and Pitch 

(APP) detector [18]. An illustration of its performance may also be seen in figure 1.7. The 

ESPS pitch tracker clearly fails to track the correct pitch in creaky regions, and in regions 

with modal regions followed by creaky, it gives wrong pitch estimates for one of these tow 

modes of voicing. The APP detector pitch tracker, however, is seen to perform a decently 

better job at tracking the pitch, and fails to find only one voiced region – the breathy region 

5. It does not give the correct pitch value in some frames in one of the creaky regions, and 

shows a doubling error, but still, it could be said that on an overall basis, this modified pitch 

tracker shows greater accuracy than the ESPS pitch tracker. This modified pitch detection 

algorithm has been found to give pitch detection accuracy of 98.3%, compared to detection 

accuracy of 95.4% of the earlier version of the APP detector. The irregular phonation 

detector gave a detection accuracy of 91.8% with an insertion rate of 17.4% instances, or 

frame-wise, 5.6%. The irregular phonation detector was incorporated into the APP detector 

system. Further, as a demonstration of the speaker-distinguishing capability of the parameter 

thus developed, speaker identification experiments have been performed. 

 

1.6 Acoustic Parameters for Speaker Identification 
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  While traditional speaker identification systems rely on the vocal tract dynamics and 

under-emphasize the significance of the source, more recent work has shown (c.f. [19]) that 

the addition of source information can prove to be valuable speaker-specific information. 

The set of knowledge-based APs proposed for speaker ID includes four parameters (the 

amount of periodic and aperiodic energy in the speech signal, the spectral slope of the signal, 

the amount of creaky energy in the speech signal) related to source information 

complementing four parameters characterizing the vocal tract behavior four formants (F1, 

F2, F3, F4) [6]. Text-independent speaker identification experiments were performed using 

this feature set and the standard MFCCs for populations varying from 50 to 250 speakers of 

same gender. 

The relative amounts of periodic and aperiodic energy differ considerably depending 

upon the voice quality.  For modal voice, sonorant regions (vowels and sonorant 

consonants) are strongly periodic with little if any aperiodicity.  For breathy voice, sonorant 

regions are periodic at low frequencies with some aperiodicity in the region of F3 and the 

higher formants [9].  Finally, for creaky voice, there is irregular vocal fold vibration so that 

the irregular phonation detector (now incorporated into the APP detector) finds creaky 

energy.  Speakers differ not only in the voice quality used to produce sonorant sounds, but 

also in the tradeoff between the supraglottal turbulent source and the glottal voicing source 

used to produce voiced fricatives. The differences in the amount of periodic, aperiodic and 

creaky energies, due to various factors, is captured by the APP detector. Another measure 

used to capture information about the source is the spectral tilt of the speech signal, as 

explained in an earlier section. 

In addition to the various measures used to characterize the source, the formant 

frequencies F1 through F4 are used to characterize the vocal tract. The frequency range over 
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which these formants vary is an indication of vocal tract size and shape. F3 characterizes the 

length of the vocal tract of the speaker, and hence an average measure of F3 helps in 

capturing this speaker-specific information. F4 provides the higher frequency 

characterization of the vocal tract. Finally, it has been speculated that F4 (sometimes called 

the singer’s formant) in vowel regions is attributed to the resonance of the laryngeal cavity 

[20].  Given the relative stability of F4 in running speech for a particular speaker and its 

variance in frequency across speakers, it may be an additional measure of voice quality [21].   

 

1.7 Outline of the Thesis 

 

Chapter 1 provides a brief introduction to speech technology and the speech 

production process, and motivates the use of the acoustic parameters for various speech 

technology applications. This chapter describes in detail the source mechanisms in voiced 

speech, as well as irregular phonation. The motivation behind this work is then described, 

and the contributions of this thesis are highlighted.  

Chapter 2 briefly describes the APP detector system, and explains the failure modes 

of the pitch detection algorithm in regions of irregular phonation, which also hinders the 

detection of such regions. Solution to this problem is then motivated, and the chapter ends 

with a description of appropriate signal processing parameters for the APP system.  

Chapter 3 details the acoustic characteristics that are essential to detect creakiness, 

and motivates their use. The correction of pitch, and detection of creakiness, is then 

discussed.  

Chapters 4 discusses the results of the creakiness detection and pitch detection 

experiments, and demonstrates the use of creakiness as an acoustic parameter for speaker 
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identification. This chapter also discusses the reasons for errors and the influence that some 

of these errors may have on the other tasks.  

Chapter 5 discusses ways to improve performance and to deal with channel 

variations. The interplay of the acoustic parameters, and possible extension to the realms of 

ASR and other applications is then discussed. 
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Chapter 2 
 
MODIFICATIONS TO THE APP DETECTOR 
 
 
 The algorithm for the detection of irregular phonation can process an input speech 

file and automatically identify regions of the signal where the speaker exhibits irregular 

phonation. The algorithm is an extension of the Aperiodicity, Periodicity and Pitch (APP) 

Detector [18], a system that processes a speech file to give a spectro-temporal profile 

indicating the amount of aperiodicity and periodicity in different frequencies with time. The 

APP detector exploits the behavior of the Average Magnitude Difference Function (AMDF) 

to arrive at decisions of periodicity and aperiodicity for each frame. A complete description 

of the APP detector is given in [18]. In this chapter, the system is first briefly described for 

the sake of completeness, and then the reasons for the failure of the APP system to detect 

pitch in regions of irregular phonation are discussed. The output of the APP detector for 

different kinds of regions of speech is then discussed, and the current behavior of the APP 

detector for regions of irregular phonations is shown, highlighting the goals of this thesis. 

Finally, working parameters for using the APP system are recommended. 

 

2.1 The APP Detector 

 

The APP detector is a time domain algorithm that, at a broad level, makes a decision 

about how much voiced and aperiodic energy is present in a signal. To be more precise, this 

algorithm estimates 1) the proportion of periodic and aperiodic energy in a speech signal and 

2) the pitch period of the periodic component. While most of the algorithms used to detect 

aperiodicity are passive, i.e., aperiodicity is considered as the inverse or lack of periodicity, 

they are prone to errors in situations where the signal has simultaneous strong periodic and 
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aperiodic components. The APP detector is thus particularly useful in situations where the 

speech signal contains simultaneous periodic and aperiodic energy, as in the case of some 

voiced fricatives, breathy vowels and some voiced obstruents. Figure 2.1 shows the block 

diagram of the APP detector: 

 

The first block in the APP Detector is an auditory gamma-tone filter-bank that splits 

the channels into 60 frequency bands, with the upper-most center frequency being defined 

by the sampling rate. The choice of the filter-bank is in order to capture the perceptual 

importance of different frequencies. The outputs of the higher frequency channels (channels 

centered above 300 Hz) are then smoothed using the Hilbert transform to extract the 

envelope information and remove the finer structure. The next stage of the APP Detector 

incorporates frame-by-frame silence detection by applying a threshold to the signal energy in 

each channel. The energy is first normalized by the max energy in the speech signal, and then 

an empirically determined threshold of 0.0015 is used.  
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AMDF 

k k 

AMDF 

Figure 2.2 : Sample AMDF and dip strengths for a strongly periodic (left) and 
aperiodic (right) frame 

Following this, the signal in each channel is then processed to obtain the frame-wise 

Average Magnitude Difference Function (AMDF) to identify the amount of periodicity or 

aperiodicity in the signal. The signal is analyzed on a frame-by-frame basis. For each frame, a 

windowed portion of the signal, centered at the frame center, is used to compute the 

AMDF. The windowed signal is subtracted from a windowed portion of its neighbor located 

at a lag of k samples. The resultant signal is added to get a single number. For each such lag, 

the AMDF gives a number, and thus, for each frame, one obtains the AMDF as a function 

of the lag k. Mathematically, the AMDF γn[k] of a signal x[n] is defined as 

[ ] [ ] [ ] [ ] [ ]n
m

k x n m w m x n m k w m kγ
∞

=−∞

= + − + − −∑  

 

where w[n] represents a rectangular window centered at n and having a width as required. 

The conceptual idea behind the AMDF is the same as that of the Auto-Correlation Function 

(ACF) - signals which have periodicity content will yield an ACF that shows peaks at 

locations that are periodic with period equal to pitch frequency. However, the ACF involves 

multiplication, and is thus computationally expensive when calculated for a large number of 

lags. The AMDF is a computationally less expensive substitute for ACF, in that it 

incorporates subtraction instead of multiplication. The AMDF behaves like the ACF, with 
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one difference – with varying lag k, the periodic signal causes dips instead of peaks at 

locations corresponding to pitch period and its multiples. This is quantified in the APP 

detector by calculating the dip strengths using the convex hull of the AMDF. 

Figure 2.2 above contrasts a sample AMDF function from a single channel of a 

strongly periodic signal with that of a strongly aperiodic signal. The vertical lines superposed 

on the figure represent the strength of the dips. The noteworthy features are that the AMDF 

shows strong dips at lags equivalent to the pitch period and its multiples in the former case, 

while the dips are significantly weaker and randomly distributed in the latter case. Decisions 

of periodicity and aperiodicity are made by summarizing this trend across all channels. For a 

periodic frame, it is expected that all non-silent channels will exhibit a similar trend in the 

AMDF dips, due to the underlying periodicity that occurs due to the glottal source. Thus, 

when the dips are summarized across all channels by addition, the dips will all cluster tightly 

together at lags equaling the pitch periods and its integer multiples, and give a significant 

strength of dips. If this is the case for a particular frame, then that frame is classified as being 

periodic (per). Channels that contribute to this periodicity profile will then be called periodic 

channels, and other non-silent channels are called aperiodic (aper). For an aperiodic frame, on 

the other hand, the dips, when summarized, will display a random behavior as a consequence 

of the individual channel behavior. The summary measure of periodic and aperiodic content 

is obtained by multiplying the frame per/aper decision by its energy and then adding it across 

channels. Thus, for each frame, a decision of per/aper is made for the frame, its individual 

channel-wise per/aper profile is produced, and the amount of aperiodic and periodic energy is 

also obtained. The entire speech file is processed this way, to get frame-wise output. 

 

2.2  Dip Profiles in the APP Detector 
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Figure 2.3 : (left) Spectro-temporal profile of periodic energy (blue) and aperiodic energy 
(red) generated by the APP detector for a (a) periodic vowel (b) aperiodic (c) breathy vowel 
(d) voiced fricative and (e) creaky vowel region. The relevant regions are highlighted in the 
dotted box. (right) Corresponding dip-profiles for a sample frame of the respective regions. 
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The key to detection of regions of irregular phonation, and pitch correction in such 

regions, is the dip summary or profile in those frames. Figure 2.3 demonstrates the dip 

profiles for the cases of a single frame of a vowel, fricative, breathy vowel, voiced fricative 

and a creaky frame. It may be noted that these profiles are obtained by adding together the 

dip strengths across all the channels for each frame. The vowel, being a periodic signal, 

shows strong dip clusters at multiples of pitch period. The maximum strength of the dip 

profile is noteworthy, as well as the distribution of the dips. Typically, this value is greater 

than 10 for periodic frames, because of the fact that most channels are periodic in nature 

and thus show the AMDF dip in the same location, giving an added strength of at least 10. 

Because of the well formed strong clusters, the decision is that the frame is periodic. The 

channels that contribute to this dip cluster are all called periodic, while the others are called 

aperiodic. Since most channels in periodic channels also show a periodic AMDF, thus, the 

APP detector spectro-temporal output is seen to be periodic (blue) in most of the vowel 

regions. The fricative, on the other hand, displays a random distribution of dips, which have 

a very low strength even upon summary across channels – this is clearly because the dips do 

not cluster to add up together. Thus, the typical value of the maximum dip in the summary 

profile is less than 1.5. Due to the lack of strong clusters, the APP detector decision is that 

the frame is aperiodic, and since the channels do not show any periodic behavior that 

contribute to any clusters, the APP spectro-temporal profile shows mostly aperiodic (red) 

behavior. In the case of the breathy vowel and the voiced fricative, the dips show a mixed 

behavior – there is clustering of some dips (which is due to the voiced (glottal) source at the 

low frequencies), and there is also some randomness in distribution of some other dips 

(which is due to the turbulence caused by the supra-glottal source, dominating at the higher 

frequencies). Thus, the strength of the dips is less than that of the periodic frame, but greater 
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than that of the aperiodic frame. Typical values of the dip maximum lie between 1 and 10. 

The corresponding decision made by the APP detector depends on the strength of clustering 

of dips. If the dips are clustered strongly enough, the decision is that the frame has some 

periodicity, and the channels contributing to the periodicity are marked as periodic in the 

spectro-temporal profile. The channels that do not contribute to the periodicity are called 

aperiodic, and they are identified in red in the spectro-temporal profile. As is expected, most 

of the periodic energy in the APP output profile is located at the lower frequencies, and 

most of the aperiodic energy is located at the higher frequencies.  

Finally, the case of the creaky frame is midway between that of the periodic frame 

and the aperiodic frame. It lacks the tightly packed dip structure of the periodic frame, but 

also lacks the randomness of the dip structure of the aperiodic frame because of an inherent 

structure in the voicing source. In the case of breathy vowels and voiced fricatives, the 

clusters are not strongly prominent, but are still tight in the sense that the dips that belong to 

periodic channels are located in a cluster that is very narrow. This is the reason why the APP 

detector identifies such regions as being periodic. However, for the creaky vowel, the 

clusters that are formed by the dips are much broader than would be for the periodic frames 

(the reason for this is explained shortly), and thus, the APP detector does not identify any 

“periodic” (or more precisely, phonation) structure in these dip profiles. The lack of tight 

clusters and the weakness of the maximum dip (which is usually around 1.5 and thus 

comparable to that of the aperiodic frame) cause the APP detector to make a decision of 

aperiodic for all creaky frames. As the corresponding frames’ channels are also called 

aperiodic, the spectro-temporal profile in such cases would show primarily aperiodic energy 

(red), as shown in the figure 2.3. 
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The root of the behavior of the APP Detector for frames with irregular phonation 

can be traced to the AMDF structure of such frames. Figure 2.4 shows the time waveform, 

the corresponding glottal waveform obtained by the Inverse Filtering technique [22] and the 

corresponding AMDF obtained by the APP Detector for one frame of the modal and creaky 

Signal with Strong 
Periodicity (Modal Vowel) 

Signal with Irregular Periodicity 
(Creaky Vowel) 

Figure 2.4 : A sample modal vowel and creaky vowel compared in terms of (i) 
spectrogram, (ii) periodicity (blue) /aperiodicity (red) profile, (iii) time waveform, (iv) 
source or glottal signal exciting the vocal tract and (v) AMDF of the signal and 
associated dip structure. The vowels being compared are the same (/e/) 
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(iii)

(iv)

(v)
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vowels shown in Figure 2.4. The most striking point here is that the AMDF closely captures 

the information in the glottal waveform – this is evident in the relative position of the peak 

of the glottal waveform and dips of the AMDF in the case of the modal vowel. This 

correspondence is not so exact for the creaky vowel, owing to the fact that the pitch shows 

some jitter and thus, the AMDF does not have exact alignment of the signal and its delayed 

version to give dips at exactly the pitch period. This causes the AMDF to have dips that do 

not cluster properly, and are not in alignment with their counterparts from other channels. 

Further, these dips are not as strong as in the case of periodic frames, due to the fact that the 

irregular vibration of the vocal folds results in a glottal pulse that has lower amplitude than 

modal phonation. The dips may also not be of equal strength. For example, in certain cases 

like diplophonia, where the glottal pulse consists of a main pulse followed by a delayed pulse 

reduced in amplitude, the AMDF shows two kinds of dips corresponding to each of the two 

different pulses – one stronger than the other, and each repeating after periods 

corresponding to their respective pulse. In all such cases of irregular phonation, the dips are 

of different strengths and at different locations. A summary measure of the dips across 

channels exhibits a dip profile significantly different from the modal vowel, due to the lack 

of periodicity and varying dip strengths at different lags.  

Owing to these differences in the glottal pulse of modal and irregular phonation, the 

summarized dip profile of irregular phonation exhibits dip clusters that are existent but not 

very well-defined, and at locations not equal to integral multiples of the pitch. It is not 

surprising that the APP Detector calls such frames aperiodic – these frames do indeed 

exhibit a profile that does not show tight clustering and has an overall dip strength 

comparable to the dip-profiles of aperiodic frames. The goal of this thesis is to modify the 

decision process of the APP detector in such a way that it accommodates the loose clusters 
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of the creaky vowel, but is still able to identify the fact that tight clusters imply presence of 

periodic (modal phonation) energy and lack of clusters implies aperiodic energy. Thus, the 

spectro-temporal profile of the APP detector must change from one that looks in 2.5 (b), to 

one that looks in 2.5 (c), where the green region represents a region of irregular phonation, 

as opposed to a blue region that represents periodic energy due to modal phonation and a 

red region that represents aperiodic energy due to turbulence. 

 

2.3 Recommended Specifications 

The APP detector has been designed to operate at various frame rates and window sizes as 

desired in potential applications. However, in order to detect creakiness, the set of 

specifications used should satisfy certain criteria, because of the inherent acoustic 

characteristics of this phenomenon. In particular, since it is known that the pitch falls 

Figure 2.5 : (a) Spectrogram of a segment of speech containing a creaky vowel, (b) 
Spectro-temporal profile of the old APP detector, which identifies the creaky 
vowel as being aperiodic, (c) Spectro-temporal profile of the modified APP 
detector, which identifies the creaky vowel as having irregular phonation and 
classifies it as being separate from aperiodicity due to turbulence 

(a) 

(b) 

(c) 
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relatively low during creaky regions, sometimes as low as 60Hz, it must be ensured that the 

window size is large enough to accommodate at least one pitch period – this will ensure 

formation of a loose cluster that can then be used to detect creakiness. When the sampling 

frequency is high, the window size must be large; when low, the window must be smaller. 

Typically, it is useful to have a window size 1.5 times that of the minimum pitch frequency 

expected – this will ensure proper formation of a cluster. 

Creakiness usually manifests itself for durations of less than 20 msec. Typical 

duration of creakiness in the TIMIT corpus is about 10 msec. Thus, if it is desired to 

properly identify the region of creakiness and not just an instance, it is necessary to have a 

high frame rate. If the frame is displaced by 2.5 msec, then for a 10 msec creaky region, four 

frames will be called creaky and thus identify a region. If the frame were displaced by 10 

msec (as is the typical frame rate for most speech processing applications), there would only 

be one frame which would be called creaky. This is not a very good idea, because finding just 

one frame as creaky does not give a method to eliminate any false alarms. If the frame rate 

were high, then any spurious locations of detection could be median-filtered and removed. 

In the approaches mentioned in the literature survey, features are extracted by moving the 

window over one sample, thus giving an extremely high frame rate. In the case of the APP 

system, a frame rate of 2.5 msec is recommended in order to reduce computational load and 

at the same time, ensure frames close enough to detect regions of creakiness and remove 

spurious false alarms. 
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Chapter 3 
 
ACOUSTIC CHARACTERISTICS FOR DETECTION OF IRREGULAR 
PHONATION 
 
 

Detection of regions of irregular phonation is not a trivial problem, and when 

potential applications include processing speech from real-time corpuses, provision must be 

made to either counter the influences of corrupting factors, or render the algorithm invariant 

to such factors. In this thesis, the algorithm has been designed to work on speech from 

telephone data and no prior assumptions are made about knowledge of regions of voicing or 

characteristics of channel. The general approach to the problem has been to first detect 

suspect regions of irregular phonation, and then to identify if such regions do indeed exhibit 

voicing, and if so, if the voicing is due to creakiness (voicing might, otherwise, be in the case 

of voiced fricatives or breathy vowels, and show a more periodic structure). This is done by 

taking into account a number of acoustic characteristics that could deliver hints about 

voicing and creakiness. Conventional approaches, namely the zero crossing rate and energy 

threshold, are used to separate the voiced regions from unvoiced. These prove inadequate to 

make a clear distinction between the two, as demonstrated in Figure 1.7. Therefore, the dip 

profile is also used to make the voiced/unvoiced decision. At this stage, the dip profile is 

tested for whether it is due to creakiness or due to voicing in breathiness or voiced fricatives. 

Once creakiness is suspected, an estimate of the pitch is made from the dip profile. 

Following this, creakiness is reconfirmed by using the pitch estimate to identify the 

confidence of creakiness in that dip profile. At the end of this stage, the decision of whether 

the frame is creaky or not is made. This entire procedure is shown in the following 

flowchart: 
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Each of the stages in this flowchart, and the motivation leading to their inclusion in 

the algorithm, is elaborated in this chapter. 

 

3.1 Detecting Suspect Regions of Irregular Phonation 

 

The APP detector consists of a pitch detector that looks at the dip profiles, and then 

gives voiced/unvoiced decisions and pitch estimates depending on the clustering of dips in 

that particular frame. If the frame is judged as voiced, then the main cluster is said to be that 

cluster which has a maximum, and which was used to estimate pitch. The channels which 

contribute to the main cluster are then identified, and the (normalized) energy of all these 

APP Detector Pitch Confidence < 25% ?

Spectral Slope > Threshold ? ZCR > Threshold ? 

Dip Profile shows some (wide) clustering? 

Estimate Pitch from maximum dip

Cluster dips above 1000 Hz

Sufficient channels contributing to dip profile? 

Creakiness Decision : Yes Pitch Estimate 

Voicing Detector 

Creakiness Detector 

Y

Y

Y

Y

Y : Yes 
In all decision stages, if the decision is a No, then the algorithm exits 

Figure 3.1 : Flowchart showing the main stages of the algorithm for detection of 
irregular phonation 
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channels is added together to obtain what is called the pitch confidence. Thus, the maximum 

possible pitch confidence would be equal to the number of channels present. In periodic 

frames, the pitch confidence is typically greater than 50% of the maximum possible. In 

regions of creakiness, voiced fricatives and breathy vowels, where there is some voicing but 

clustering is not as strong as that of the periodic frames, the pitch confidence lies between 

10% and 40% of the maximum possible. In creaky frames specifically, the pitch confidence 

is seen to be rarely greater than 25% of the maximum. For purely aperiodic frames, the pitch 

confidence is usually near zero and does not exceed 10% of the maximum. Thus, regions 

having pitch confidence greater than zero and less than 25% of the maximum possible are 

identified as suspect regions where creakiness could be possible. 

 

3.2 Energy Threshold 

 

Using an energy threshold is a common strategy applied for speech detection in 

many speech processing applications. In real and spontaneous speech data as in the case of 

telephone speech corpuses, the presence of background noise and instrument noise due to 

telephone microphone and recording instruments cause the existence of a non-zero random 

signal in the recorded speech signal. This random signal component can sometimes 

demonstrate a dip profile that appears very similar to that of irregular phonation – this is 

purely a coincidence and not due to voicing. Such instances of dip profiles must be 

eliminated from further analysis since they may be called creaky if subject to the dip profile 

analysis. A simple solution would be to apply an energy threshold that would suffice to 

separate speech from non-speech. In the original APP detector algorithm, a threshold of 

0.015 was empirically found to be apt for such separation, and it seems to suffice as a 
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threshold for creakiness as well. It was also seen that this threshold does an appreciably good 

job in separating some weak fricatives, glides and consonants from voiced regions. 

 

3.3 Zero Crossing Rate 

 

Another common strategy to separate fricatives from regions of voicing is to exploit 

the zero crossing rate (ZCR). Fricatives, having a more noise-like random nature, have a 

higher ZCR than voiced regions. Thus, in typical clean speech processing applications, the 

ZCR proves to be a good candidate for detection of voicing. However, in case of telephone 

speech, ZCR is not a good candidate. It is observed that fricatives can sometimes have the 

same ZCR as voiced regions. This is due to the channel and device noise that rides the 

voiced regions, causing the ZCR to increase and approach that of the fricatives. Figure 3.2 

demonstrates one such case, where the ZCR for a fricative is different from that of one 

voiced region, but is about the same as another voiced region. Thus, one needs a more 

complex analysis for using the ZCR than merely using a fixed threshold.  

It has been observed that in case of laughter and coughing, unlike the case of 

fricatives, noise is spread over all the frequencies and has an approximately flat spectrum, 

except at the really low frequencies (< 300Hz). Therefore, if the ZCR should be used, there 

should be a provision for accounting for the spectral spread of various phenomena – the 

noise due to fricatives (which occurs at frequencies above 2000 Hz) should be treated the 

same as that due to laughter (which occurs at almost all frequencies). However, if the ZCR 

were merely used taking all frequencies into account, the fricatives would show a lower ZCR 

than laughter, because laughter would consist of high frequency noise (equivalent to fricative 

noise) riding on a low frequency noise. In order to treat these phenomena at the same level  
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for ZCR processing, it is necessary to account for frequency of extent of these phenomena. 

A further problem that is encountered is that the ZCR of creakiness is very close to 

that due to fricatives. This is explained as follows: due to the significant damping of the 

vocal tract impulse response in creakiness, the speech signal becomes weaker in amplitude, 

and thus more susceptible to noise, than the modal voiced signal. Since the pulses exciting 

the vocal tract are placed far apart in creaky voicing, the vocal tract sometimes damps down 

completely and thus the signal has a speech component equaling that of the noise 

component. Thus, the noisy characteristics of the channel and recording device render the 

creaky signal having a ZCR that is nearer to that of the fricative. 

With these factors determining the behavior of the ZCR, a possible solution seems 

to split the signal into separate frequency regions and compare the ZCR in these spectral 

bands, rather than across the spectrum. This has a two pronged advantage. The first is that it 

gives a good way of comparing the ZCR due to frication to that due to laughter – for 

example, by looking at frequencies above 2000 Hz in both cases, these noise factors are both 

brought into a common platform for comparison with other phenomena like voicing etc. 

The second is that if the frequencies below 2000 Hz alone are used, the noise riding on the 

weak transients of the creaky voicing (which typically have great high frequency content, 

because of its “white” spectral nature) are filtered out significantly, and the resulting signal is 

more free of the imposing channel and device noises. Thus, noise due to laughter will now 

be better discernible from the noise in creaky voicing, the latter having been considerably 

reduced after filtering. The choice of 2000 Hz is motivated by the fact that strident fricatives 

show spectral energy at frequencies above 2000 Hz, and thus, the ZCR for fricatives could 

be attributed to being caused by spectral bands above this frequency. The temporal behavior 

of the ZCR obtained after filtering the signal for frequencies above 2000 Hz (called herein 
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the high-spectrum ZCR) for a fricative, modal vowel, creaky vowel and laughter, is shown in 

the figure 3.3. It is seen that the high-spectrum ZCR is different for the vowel regions (both 

modal and creaky), from that of the fricative and laughter regions. In addition, the fricative 

and laughter regions have a ZCR that fall in the same range, while the creaky vowel and 

modal vowel have a ZCR falling in the same range. An additional point to note is that the 

speech sample from the two figures are taken from two different speakers – the creaky 

samples from two different speakers are seen to be falling in the same range as well. It might 

be the case that the high-spectrum ZCR is a speaker-independent parameter that can be used 

with reasonable success for the task of separation of voiced regions from unvoiced regions. 

 

fricative modal vowel creaky vowel laughter 

Figure 3.3 : Spectrogram and high-spectrum ZCR of a region of speech, showing 
a fricative, modal vowel, creaky vowel and laughter. Approximate boundaries of 
these regions are marked with vertical lines. The speech file on the left and right 
are from two different speakers. 
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In the algorithm, motivated by the above reasons, three kinds of ZCR have been 

used – the full-spectrum ZCR (which gives a gross level separation from some undesirable 

sounds and hence proves useful sometimes), the ZCR for all frequencies above 2000 Hz 

(high-channels ZCR) and the ZCR for all frequencies below 2000 Hz (low-channels ZCR). A 

critical point here is determining the threshold that can be used to separate voiced regions 

from unvoiced and noisy regions. As has been observed from inspection of various speech 

files from different databases, such a universally applicable threshold is not valid, because of 

the variation of the noise (and hence the ZCR) characteristics over different channels, and 

the susceptibility of speech to such noise (which is a function of the speaker’s speaking 

strategy). Thus, a better idea is to arrive at a proper threshold for each speech signal 

separately. A useful strategy seems to be to store the three ZCR characteristics for the voiced 

and unvoiced regions and maintain their running average over frames. For each current 

frame, the average ZCR characteristic is calculated for the voiced and unvoiced frames that 

have passed and been identified until then. Then the threshold of ZCR for that specific 

frame is set to be the mid-point between these representative means. This procedure is 

followed for each of the suspected frames, using all the voiced and unvoiced regions 

obtained until then (including the purely periodic and aperiodic frames). If all three ZCR 

characteristics are classified as belonging to the voiced region, then the frame is classified as 

being voiced; if not, then unvoiced. It was observed that this apparently conservative 

decision rule in fact does not miss a significant number of creaky regions, and actually allows 

a leakage of unvoiced regions into voiced regions. In essence, it could be said that the false 

alarm rate is high and the false rejection rate is low using this strategy. 
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3.4 Spectral Slope 

 

While the above steps allow some separation between the voiced and unvoiced 

frames, they are still not adequate to ensure false alarm rate is low. Indeed, the above 

characteristics have been conditioned in such a way as to ensure that creaky regions are not 

rejected in the decision process, even if that allows certain unvoiced regions to the next 

stages of processing. A further issue is that in spontaneous speech, where co-articulation 

effects are significantly high on one hand and articulation of phonemes may not be accurate 

due to speaker tendencies on the other, there can exist other regions of speech where the 

consonants could take a form that closely matches that of irregular phonation. For example, 

there exist many instances where stops show a phonation pattern (and therefore, dip profile) 

very similar to that of a creaky vowel [12], and they would therefore be allowed by the ZCR 

constraints. Further, in case of some voiced stops, the voicing pattern also seems very similar 

to that of the creaky voicing, and could easily be mistaken for irregular phonation. (In fact, 

for certain cases, it is not clear whether to call such stops as having regular or irregular 

voicing. Such cases are classified as false alarms in this thesis, though there is reason to 

question if they are regular phonation. Please see chapter 4 for more discussion). There is a 

need to eliminate the acceptance of such consonants into the following stages of the 

algorithm.  

To achieve this, a useful parameter to use is the Spectral Tilt. Vowels are produced 

by a source signal whose spectrum has a falling slope, exciting a vocal tract whose spectrum 

contains several peaks (formants), which causes the speech spectrum to essentially have a 

falling slope. However, consonants are produced by forming constrictions in the front part 

of the vocal tract. This either increases the resonant frequencies of the vocal tract and causes 
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the speech spectrum to have a rising slope (like in case of fricatives), or causes the spectrum 

to be flat like in cases of stops which have an impulse like nature. As an illustration, Figure 

3.4 shows the spectral behavior of three different kinds of phonemes – a creaky vowel, a 

stop and a fricative. It can be seen that in the frequency region of 0 to 2000 Hz, the creaky 

vowel has a falling slope, while the stop and the fricative show a relatively flatter slope. At 

frequencies above 2000 Hz, the vowel still shows a slope though not as pronounced, and the 

stop shows a more or less flat slope. The fricative, however, shows a rising slope in this 

frequency range. We could thus exploit the spectral slope to separate voiced sounds from 

unvoiced sounds. Indeed, all voice qualities – breathy, creaky or modal – exhibit a falling 

slope, albeit at different slopes, thus characterizing voicing. 

Figure 3.4 : Comparison of 
spectral tilt of a creaky vowel 
(top left), voiced stop (top right) 
and fricative (bottom left). The 
slope changes from negative to 
near flat to positive 
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Important considerations for using this parameter then are – the range of 

frequencies over which to calculate the spectral slope, and the threshold value that can be 

used to separate out the voiced and unvoiced regions. One important detail to be considered 

is that this parameter should be independent of, or at least robust to, the channel being used 

or the recording device. The spectral characteristics of these devices can significantly 

influence the spectral tilt and thus render the parameter unusable. In order to make the 

parameters least susceptible to such effects, the range of frequencies over which the tilt is 

calculated is restricted to a small range – 100 to 2000 Hz. The motivation is that the range 

should include voicing information and thus include the lower frequencies, and yet contain a 

significantly large spectral band to ensure consistency of the parameter across that spectral 

range. The cutoff of 2000 Hz ensures that the spectral characteristics of various phonemes 

remain consistent in that range. The operating bandwidth of most devices also includes this 

range of frequencies, although the lower cutoff frequency may be slightly higher than 100 

Hz sometimes. Thus, it can be expected that this parameter will be sufficiently robust to any 

channel variations. The spectral tilt parameter is extracted by calculating the FFT of the 

windowed signal, and then calculating the slope of the spectrum between frequencies 100 to 

2000 Hz by fitting a line using Minimum Mean-Square Error (MMSE) criterion.  

The threshold for using spectral tilt to separate voiced and unvoiced regions was 

found using a linear support vector machine (LSVM). The spectral tilt parameter was 

calculated for 1000 frames each of voiced and unvoiced speech, from different databases 

including both clean and telephone speech, and this parameter was then fed to a LSVM for 

classification of the unvoiced and voiced. The entire set was used for both training and 

testing, and the minimum false rejection rate for the voicing class was obtained at an 
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effective threshold of -16 dB/octave for the spectral tilt. Thus, -16 dB/octave is used as the 

threshold for detection of voiced/unvoiced to eliminate frames that have consonants. 

 

3.5 Dip Profile – Eliminating Voiced Fricatives and Breathy Vowels 

 

Once the suspected creaky frames have been identified and any possible unvoiced 

frames have been eliminated, the first test for creakiness is performed. In this stage, the dip 

profile of the frame is analyzed for the pattern that should be characteristic of creaky regions 

– namely, loosely formed clusters that yield a high pitch period. It was observed that by this 

stage, the majority of the frames detected had irregular phonation, but some breathy vowels 

and voiced fricatives were also being detected. This can be explained by the fact that similar 

to the irregular phonation, the breathy vowels and voiced fricatives have some underlying 

periodic energy because of voicing, and this causes them to be identified as voiced, which is 

not an error after all. However, as had been pointed earlier, these frames have a dip profile 

that looks very similar to that of the creaky voicing, because of the voicing accompanied by 

the noise. If these frames are directly checked for their dip profile properties, they would 

also be called creaky. To eliminate the breathy sounds and voiced fricatives, the fact that can 

be exploited is that the voicing in these two cases will often be in frequencies 0 – 1000 Hz, 

while irregular phonation is expected to show its characteristic irregularity at all frequencies. 

This is because as mentioned in Chapter 1, the spectral roll-off of breathy voice is high, and 

thus, the source signal is not very strong at the higher frequencies. Even for modal voicing, 

the roll-off is higher than the creaky voicing. For the creaky voicing, which typically shows 

distinct impulse-like glottal pulses, the glottal spectrum is usually flatter and has strong 

spectral harmonics even at higher frequencies. This fact is also apparent from the 
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spectrogram of a creaky vowel, where the vertical striations arising from the glottal pulses 

show a strong presence at the higher frequencies as well. Thus, the dip profiles are obtained 

by summarizing across only those channels that span frequencies above 1000 Hz. 

The next step is to characterize the dip-profile that is unique to irregular phonation. 

This is done by finding all the local maxima in the dip-profile, and eliminating all those 

maxima that lie too close to each other – this is done in order to ensure that the 

corresponding pitch estimate remains below 150 Hz, as is expected for irregular phonation. 

Local maxima in the dip clusters are then identified and defined as cluster centers, and 

clusters are formed around these centers that are loose, in the sense that they are wider than 

expected for periodic clusters. For periodic clusters, a typical width of five lags on either side 

of the cluster center ensures more than 50% contributing to the cluster. In the case of 

irregular phonation, the width of the cluster is increased from 11 to 31, by allowing 10 lags 

on either side. Out of the total number of channels contributing to the dip cluster, some will 

contribute to the clusters thus formed, while others have dips lying outside the cluster. A 

score is made identify the channels which have a majority of their dips contributing to the 

clusters – a score of 1 is given if not more than one dip falls outside the clusters, and 0 

otherwise. The cluster center is then recalculated, using only those channels that have been 

identified above to have confidence 1. The motivation for this is that by eliminating the dips 

lying outside the clusters and allowing only channels that contribute to clusters, any potential 

aperiodic (arising from voiced fricatives & breathy vowels) channels are not allowed to 

contribute to the process. 

Redefining the cluster centers using only these channels, the channel scores of all the 

channels are calculated again. The channel scores are then added across frequency, and if at 

least 50% of the channels show a score of 1, the frame is declared to have the characteristic 
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dip-profile. It is obvious that this process ensures that aperiodic frames are eliminated – if a 

frame is aperiodic, it would have a large number of channels with their dips lying outside the 

clusters, and thus, the required channel threshold of 50% would not be crossed. The 

possibility of capturing turbulence is further reduced by conditioning the ratio of number of 

dips present within the cluster, to the number of non-zero dips, to exceed a threshold of 

40%. For frames with irregular phonation, the aperiodicity is not random, and therefore the 

number of non-zero dips lying inside the cluster will be higher compared to the cases of 

breathiness and voiced fricative, which show random aperiodicity and hence will have a large 

number of dips outside the cluster.  

Thus, at the end of this stage, a frame is classified as being either irregular or 

aperiodic. If the frame has been classified as having irregular phonation, it is then used for 

pitch detection in that frame. 

 

3.6 Pitch Estimation 

 

The next step would be to identify regions of voicing and then label these regions as 

creaky, if certain pitch constraints are satisfied. One of the most obvious solutions for 

detection of creaky regions in speech is to identify regions with significantly low or irregular 

pitch. Thus, pitch correction is a very useful step in the detection of creaky regions. The 

APP detector has a pitch detector algorithm that relies on the AMDF dip clusters to estimate 

the pitch in the voiced regions. However, since the APP detector does not see creaky regions 

as being periodic or voiced, it does not give any pitch estimates for such regions. This is not 

an uncommon problem with pitch detection algorithms – most pitch detection algorithms 

fail to detect the pitch correctly in regions of irregular phonation, due to various algorithmic 
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constraints, like in-built pitch memory, maximum allowed change in pitch etc. If these 

constraints would not be placed, then the pitch detection algorithm would not perform a 

good job in cases of spontaneous speech due to noise and distortion, and would be 

susceptible to pitch halving and doubling errors. However, enforcing such constraints does 

not allow detection of creaky regions (since absence of pitch implies absence of voicing, thus 

detection of creakiness and estimation of pitch must go hand in hand). 

If it were possible to detect voicing by some other means, and then declare that 

frame as being voiced, then it would be possible to either estimate the pitch first and then 

detect creakiness in that frame, or call that frame creaky because of presence of voicing and 

absence of pitch, and then proceed to find the pitch estimate. However, such a voicing-

detection scheme must be robust to channel distortions, noise due to various sources and 

other phenomena encountered in spontaneous speech, like coughing, laughter etc., in order 

to be put to practical use. Typical voicing detection techniques, like pitch estimation, zero 

crossing rate, zero crossing rate in different channels (frequency bands), energy thresholding, 

rate of energy change in different channels etc. do not perform up to expectations in case of 

spontaneous speech. Figure 1.7 illustrated this difficulty in the case of a speech file from the 

NIST 98 corpus, which consists of telephone speech. The speech signal in question contains 

instances of modal voicing, laughter, breathy vowels and creaky vowels. It may be seen that 

there is no possible combination of all of the above mentioned features that could lead to a 

separation of the voiced region from the unvoiced region. Furthermore, a comparison of the 

same features for the laughter, and the creaky region, prove the above mentioned parameters 

to be totally inadequate for separation of voiced and unvoiced regions. In fact, in spite of an 

extensive literature survey by the author, there have been no methods that proved efficient 

to separate voiced regions from unvoiced regions in such cases. 
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It becomes clear thus that pitch estimation is indeed a very difficult problem and can 

not be solved easily. Indeed, the nature of the problem is in itself rather tricky – what is 

needed is a pitch detection algorithm for creakiness detection, but such pitch detection can 

be done only when voicing (i.e., creakiness) is detected. In order to solve this problem, the 

approach taken in this work is to use the channels of the auditory filter-bank to make a vote 

about whether the particular frame is voiced or not. This is done by first considering the dip 

profile of the frame and forming loose clusters of dips and identifying how many channels 

contribute to the cluster. If the number of channels exceeds a certain threshold (40% of total 

channels contributing to the dip cluster), an initial guess is made about the frame being 

creaky. Then, conditioned on the satisfaction of some more acoustic properties detailed in 

the next chapter, the maximum of the cluster with most dip contribution is estimated to be 

the dip corresponding to the pitch period. The pitch frequency is calculated accordingly. 

Thus, an estimate of the pitch is made in suspected creaky frames. Once the pitch estimate is 

made, the confidence of creakiness is recalculated using this estimate. In this second pass, 

slightly narrower clusters are formed near this pitch period estimate, and the required 

threshold for the contributing channels is increased to 60%. If the frames exhibit a dip 

cluster confidence that exceeds this threshold, then the frame is judged to be creaky and the 

pitch estimate is retained. If the dip cluster fails to satisfy the required threshold of 

confidence, the pitch estimate is disposed and the frame is adjudged to be unvoiced. 

Thus, creakiness is used to first estimate pitch, and this pitch is then used to 

recalculate the confidence of creakiness of the frame. While calculation of creakiness 

happens to be a deciding factor in pitch estimation, it may be noted that this is not the only 

criterion, and that there are a significant number of other properly motivated acoustic 

characteristics that are also used to confirm creakiness, before pitch is estimated. Indeed, 
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pitch estimation is a consequence of those steps and is merely used to reconfirm the 

confidence of calling the current frame creaky. The following figure shows the pitch 

estimates obtained in the case of the same speech file as shown in Figure 3.5.  

Figure 3.5 : Pitch tracking accuracy of three algorithms in creaky regions 
(boundaries marked by vertical red lines). (i) waveform, (ii) spectrogram, (iii) 
pitch tracking using the ESPS software, (i)pitch track from the modified APP 
detector, (v)pitch track from the original version of the APP detector 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
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It may be seen that the ESPS pitch tracker, as well as the original version of the APP 

detector, fail to get the correct estimate of the pitch in creaky regions, while the modified 

APP detector gives the correct estimate. The ESPS pitch tracker fails in most creaky frames, 

and in one instance confuses the modal voice for creaky voice, yielding a low pitch. A 

comparison of the number of creaky frames whose pitch has been correctly identified by the 

original APP detector with that by the modified APP detector, shows that the pitch 

detection accuracy has increased. Especially in the last creaky region, the original APP 

detector almost completely loses the pitch track, but the modified APP detector is able to 

find a pitch track in some of the frames. In addition, the number of frames where pitch 

Figure 3.6 : Pitch tracking of the new APP detector algorithm in creaky regions 
(identified by vertical red lines). (i) waveform, (ii) spectrogram, (iii) pitch tracking 
using ESPS software, (iv) pitch track from the modified APP detector. The 
instantaneous pitch tracking accuracy of the algorithm may be noted. 

(i) 

(ii) 

(iii) 

(iv) 
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values are given when there actually is no voicing is also very small. Further, it may be seen 

in the second creaky region of Figure 3.5 (region between 1.2 and 1.3 sec) that the 

instantaneous changes in the pitch are being tracked very accurately. Figure 3.6 also shows 

that the pitch tracker is able to track instantaneously the irregular changes in pitch, while at 

the same time also maintaining a consistent pitch track with no halving or doubling errors in 

other regions. The algorithm does not necessitate the use of a memory for pitch estimation, 

as do most pitch detection algorithms – this is what allows pitch tracking even in regions of 

irregular pitch. 

It is also noteworthy that pitch estimates in the voiced regions, and unvoiced regions 

where there is no reason to suspect creakiness, are left unchanged. Thus, by modifying the 

pitch estimation algorithm, the pitch estimates can only be expected to get better and not be 

harmed in any way (in the voiced regions). This improvement is demonstrated in the figures 

above. However, a consequent problem is that in regions where the APP detector has also 

made pitch detection errors like other pitch trackers, no corrective measures could be taken 

since the pitch confidence was sufficiently high not to cause the pitch correction algorithm 

to be applicable there. An illustrative example is seen in Figure 3.7. Between the region of 

0.94 sec to 1.0 sec, it may be seen that the pitch period is 0.004 sec, and therefore the pitch 

estimate should be around 250 Hz. However, both the ESPS pitch tracker and the APP 

detector (modified) show a pitch track around 110 Hz. This kind of pitch halving error is 

probably due to the modulation of the envelope of the speech signal in that region. 

However, because the pitch confidence is high in that region (the pitch estimate is at twice 

the actual pitch period, and since there are dips there as well, its strength might override that 

of the first cluster of dips), the modified version does not try to correct the pitch there. 
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Figure 3.7 : Failure to correct pitch in certain regions, due to high pitch 
confidence. (i) waveform, (ii) spectrogram, (iii) pitch tracking using ESPS 
software, (iv) pitch track from the modified APP detector. The pitch period of 
0.004 sec (highlighted region in yellow) may be compared to the estimated pitch 
frequency of 109.59 Hz, which is a pitch halving error. This is because of high 
pitch confidence at twice the pitch period. 

(i) 

(ii) 

(iii) 

(iv) 

The next chapter describes the actual creakiness detection algorithm that precedes 

pitch estimation. 
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3.7 Final Decision Process : Combining Current Pitch Information and Dip 

Profile Decisions 

 

When a frame has been determined to be creaky, and the pitch has been estimated, it 

is rechecked for creakiness. This is done by first checking if the pitch estimate obtained is 

below the “normal” or modal pitch estimate for that speaker. For this, a running average of 

the pitch values in modal voicing is made for all the frames that have been processed so far. 

For each frame, all the pitch values for all the regions that have been identified as being 

voiced but not creaky are stored in memory, and their mean is taken as a threshold. If the 

current pitch estimate is less than some percentage (empirically set to be 75%) of this 

“normal pitch”, then the current frame could possibly be a creaky frame, as are characteristic 

of creakiness in particular and irregular phonation in general. Further, in some cases of 

irregular phonation, the pitch may not fall low, but the pitch track may be irregular, and 

show a big difference (as high as 30Hz) from its immediate previous value. Such changes are 

also tracked, by maintaining a running memory that stores the past 10 pitch values, and 

detects regions where the pitch has deviated significantly from the stored values. If the 

current pitch estimate exhibits such a behavior, then too the frame is classified as being 

possibly creaky.  

Only if either one of the two above conditions related to pitch is satisfied, the next 

creakiness check is made. The dip profile is again checked to verify if it shows the dip-profile 

behavior with the current pitch estimate. In this second pass, tighter clusters are formed (8 

lags on either side of the pitch period estimate) and the channel scores for this cluster are 

calculated. If the total number of channels contributing to the cluster now exceeds 60% of 

the total number of channels, then the frame is finally adjudged to be creaky, and the pitch 
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estimate obtained above is declared to be the pitch for that frame. Once the frame is called 

creaky, the energy of all the channels that have shown a score of 1, i.e., which contribute to 

the creakiness profile, are added together to give what is called the creakiness energy in the 

frame. This is the measure used to numerically characterize creakiness in that frame. 

Thus, the creakiness detection algorithm is a combination of various knowledge-

based acoustic features built upon an Aperiodicity, Periodicity and Pitch detector, rendering 

the APP system now capable of distinguishing aperiodicity due to turbulence from that due 

to irregular phonation. 

The next chapter discusses the performance of the Irregular Phonation detector, 

some failure modes, and its application to speaker ID experiments. 
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Chapter 4 
 
EXPERIMENTS & RESULTS 
 
 

The algorithm for detection of irregular phonation has been described in the 

preceding chapters. This chapter details the experiments that were performed to validate the 

performance of the algorithm, and an application of the creakiness parameter in speaker ID 

experiments. The first set of experiments is to verify the pitch detection accuracy of the 

modified APP detector. This is a first step validation of creakiness detection. The next set of 

experiments deals with finding the detection rate and false alarm rate of the creakiness 

detection algorithm. The final set of experiments demonstrate the improvement in the 

recognition rates in speaker ID experiments upon inclusion of the creakiness parameter  

 

4.1 Database Used For The Experiments 

 

In order to find the pitch estimation accuracy, a reference can be obtained from the 

standard pitch detection software available. In this thesis, the reference pitch has been 

obtained using the ESPS Wavesurfer software using the autocorrelation method. To find the 

creakiness detection accuracy, however, there is a need for a reference or ground truth which 

can be used to evaluate the performance. However, there is no available standard database 

that can be used for describing voice quality and testing the performance of the algorithm. 

Thus, ground truth needs to be marked by hand in one of the standard speech databases. In 

this thesis, the TIMIT database has been used for the first two experiments, as hand-marked 

transcription for irregular phonation in those speech files was available from Dr. Slifka at 

MIT. Since there is no clearly defined reference that marks irregular phonation, and since the 

boundaries and occurrences of such phonation are difficult to define, we have called all 



 58

those locations marked in the reference, as well as those identified by our algorithm but 

missed in the reference (confirmed by visual inspection by the author), as the total number 

of instances of irregular phonation. Specifically, the “test” subset of the TIMIT database was 

used. The number of files processed was 895, and it included 65 male and 45 female 

speakers from eight dialect regions (dr1 through dr8). The total actual number of instances 

of irregular phonation was 1,400. 

Since the long term goal of this work is to use the algorithm in real world speech 

applications, the algorithm has also been tested on spontaneous speech from telephone data. 

The NIST 98 database was used for performing the speaker ID experiments. The first two 

experiments were also performed on the NIST 98 database, to ensure that the algorithm 

works well in spontaneous speech. The “test” subset was used for the first two experiments, 

and 100 files of the NIST 98 database were hand marked for irregular phonation by the 

author, yielding 200 instances of irregular phonation, 100 for each gender. For both these 

tasks, the test session of the NIST 98 data was used, and the first 5 sec were extracted for 

each file and treated as one speech file. For the task of speaker identification, a subset of the 

database containing 250 male speakers and 250 female speakers was chosen. The training 

utterances are taken from the train/s1a/ directory and the testing utterances are taken from 

the test/30/ directory of the database. There is no handset variation between the training 

and the test utterances. The length of each training utterance is approximately 1 minute and 

the testing utterances are about 30 seconds in duration. An energy threshold was used to 

remove the silence portion (which sometimes has low amplitude background noise) from the 

speech. This resulted in training utterances of about 30 to 40 seconds and testing utterances 

of about 10 to 20 seconds. 
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A short comparison of the two databases would be in place here. The TIMIT 

database is clean speech sampled at 16 kHz, and contains speech from the same speaker. 

The speech is controlled, in that the phonemes are uttered clearly and except silence, there is 

little other non-speech in this database. On the other hand, the NIST 98 database is 

spontaneous speech sampled at 8 kHz. The speech is subject to telephone channel distortion 

that corrupts the amplitudes of the lower harmonics (up to around 300 Hz) and contains 

background noise. Further, effects like laughter, coughing etc are also seen in some files. 

Thus, this latter case presents a tougher challenge than the former.  

 

4.2 Experiment 1 – Accuracy of Pitch Estimation 

 

This experiment was performed on both the databases. As mentioned, the reference 

pitch is obtained from the ESPS Wavesurfer software using the autocorrelation method. The 

frame rate of both pitch tracks is the same, namely 2.5 msec. The window size for 

Wavesurfer was set to be the default (optimal). Pitch detection and all experiments with the 

APP detector are performed with a window size of 20 msec. 

As mentioned in section 2.3, the APP detector makes some errors and detects pitch 

in the unvoiced regions (even before the incorporation of the creakiness detection 

algorithm). Thus, the voiced regions and unvoiced regions have been compared separately.  

Comparison in the Voiced Regions 

The mode of comparison is as follows: in case of voiced regions, only those regions 

where the reference pitch detector has non-zero pitch estimates have been considered. The 

voiced regions include regions of both regular and irregular phonation. If, for a frame, the 

pitch values of the APP detector and the reference vary by more than 15 Hz or 10% of the 
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current pitch, whichever is minimum, then the pitch track of the APP detector for that 

frame is declared to be in error. It may be noted that the reference pitch detection is not 

always very accurate. It has been shown in Figure 2.5 that the pitch tracker fails to track the 

correct pitch in regions of creakiness. However, such regions have not been separated out in 

this task, since there can be no automatic way of determining if the reference pitch track is 

indeed correct, and it is manually very difficult to visually verify this for each of the errors. 

Thus, the numbers given below give a representative idea of the general pitch tracking 

performance. The following table shows the results for this test: 

# of frames where pitch was detected correctly # of frames 

Before modification After modification 

20,000 

(NIST) 

19,080 

(95.4%) 

19,660 

(98.3%) 

8,000 

(TIMIT) 

7,582 

(94.8%) 

7,795 

(97.4%) 

 

Table 4.1 : Pitch Estimation Accuracy of the modified APP detector, as 

compared to the earlier version 

Approximately 50 sec of voiced speech, from both male and female speakers, was 

taken from the NIST database. In the case of the TIMIT database, about 20 sec of voiced 

speech was taken, from speakers of both genders. It may be seen that the pitch detection 

accuracy has increased by about 3% in case of both databases. Recall that the reference 

tracker sometimes fails in tracking the correct pitch in creaky regions. This might mean that 

some mismatch can happen when the APP detector tracks the pitch correctly, but the 

reference is wrong. It could also mean that the APP detector pitch track is not accurate. 
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Assuming that the reference pitch track is always accurate and correct, the performance of 

the modified APP detector is then increased by about 3% for both databases. This implies in 

turn that there is at least a 3% improvement (and possibly more) in the actual pitch tracking 

accuracy. 

Comparison in the Unvoiced Regions 

The mode of comparison is as follows: in case of unvoiced regions, it is required to 

find out how many times the modified APP detector has detected a region as voiced and 

given a pitch track, in addition to what the earlier version of the APP detector used to do. 

Using the reference pitch tracker to identify regions of unvoiced speech, about 50 

sec of unvoiced speech in NIST and 20 sec in TIMIT was used for testing. The following 

table shows the results: 

 

Table 4.2 : Insertion of voiced decisions for unvoiced speech 

It is seen that the number of insertion errors has increased by a very small amount 

(<1%) for a large number of frames. This proves that the voiced / unvoiced decision made 

by the modified APP detector is almost as efficient as the original, and the number of frames 

which are judged as being voiced and for which pitch estimates are given, does not increase 

significantly. Once again, it is possible that the region marked as unvoiced by the reference 

# of unvoiced frames where pitch value was given # of frames 

Before modification After modification 

20,000 

(NIST) 

1,360 

(6.8%) 

1,440 

(7.2%) 

8,000 

(TIMIT) 

256 

(3.2%) 

272 

(3.4%) 
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pitch tracker is in fact creaky, but has been marked unvoiced due to the tracker’s failure to 

give a pitch reading in that case. If that were the case for any frame, then the region is 

actually voiced and thus, the insertion error is less than what is reported above. Thus, it 

could be said that the maximum possible increase in the insertion error rate is about 0.4%. 

These experiments indicate that the pitch tracking algorithm of the APP detector has 

been improved by the modifications described in chapters 2 and 3, at the expense of little 

debilitating effects. The next set of experiments details the creakiness detection accuracy. 

 

4.3 Experiment 2 – Detection of Irregular Phonation 

 

The following Figure 4.1 shows a sample run of the creakiness detector on a speech 

file. The areas identified as being creaky are marked in black on the spectrogram. It may be 

seen the creaky areas have all been successfully detected. 

The creakiness detection performance is evaluated using two metrics: the detection 

accuracy and the false alarm rate. Each of these will be presented below. 

Detection Accuracy of Irregular Phonation 

Two kinds of measures are used to measure the performance of the creakiness 

detector: the percentage of instances of creakiness detected, and the relative number of 

frames that have been correctly identified. These are defined below: 

Total number of creakiness instances detectedInstance detection accuracy  = 100%
Total number of hand-marked instances

×  

Total number of frames of creakiness detectedFrame detection accuracy  = 100%
Number of frames in the hand-marked instances

×  
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The following tables give a statistical summary of the performance of the creakiness 

detection algorithm, for the TIMIT database: 

 Total # of instances # Identified Percentage Identified

Male + Female 1,400 1285 91.8% 

Female 584 543 93.0% 

Male 816 742 90.9% 

 

Table 4.3a : Accuracy of detection of creakiness instances in the TIMIT database 

 

 Total # of frames # Identified Percentage Identified

Male + Female 26,408 23,564 89.2% 

Female 13,454 12,243 91.0% 

Male 12,954 11,321 87.4% 

 

Table 4.3b : Accuracy of detection of creakiness frames in the TIMIT database 

The following tables give a statistical summary of the performance of the creakiness 

detection algorithm, for the NIST 98 database: 

 Total # of instances # Identified Percentage Identified

Male + Female 200 183 91.5% 

Female 100 94 94.0% 

Male 100 89 89.0% 

 

Table 4.4a : Accuracy of detection of creakiness instances  in the NIST 98 database 
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 Total # of frames # Identified Percentage Identified

Male + Female 4,291 3,746 87.3% 

Female 2,337 2106 90.1% 

Male 1,954 1,649 84.4% 

 

Table 4.4b : Accuracy of detection of creakiness frames  in the NIST 98 database 

 

The creakiness instances detection accuracy is seen to be slightly above 90% for each 

of the two datasets, and is about the same for both genders. Both female and male samples 

are handled equally well by the algorithm, which confirms that irregular phonation possesses 

acoustic features that do not depend on gender. Further, the algorithm performs well even 

with the NIST 98 database, in spite of debilitating conditions. Errors were more for male 

speakers than female speakers, and this is attributed to the low pitch of male speakers, which 

may often cause the dips to scatter from clusters and thus manifest the sound as being 

similar to irregular phonation. Also, the inherently low pitch in males causes some of the 

creaky regions to be missed because creakiness detection is conditioned on the pitch falling 

below a certain threshold. In terms of identification of number of frames, the performance 

goes down slightly owing to the possibility that not all frames may be detected by the 

algorithm, as marked in the reference. Considering the possibility that some of the instances 

identified as creaky may be marked so for a larger number of frames than in the reference, 

this implies that the actual frame detection accuracy may be even lesser than the above 

reported numbers. 
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False Alarm Rate 

The false alarm rate can also measured in terms of two measures: percentage of 

instances inserted, and percentage of frames inserted. Each of these terms is defined below: 

Total number of instances of false alarms causedFalse Instances Rate  = 100%
Total number of actual creaky instances

×  

Total number of frames of false alarmsFalse Frames Rate  = 100%
Total number of frames - Total number of creaky frames

×   

In reality, it is the second term that actually defines the false alarm rate correctly. 

However, for this set of experiments, because the total number of frames is too large a 

number compared to the number of false alarm frames, this second measure becomes a 

number too small to be of significance. Thus, the second measure is redefined in the 

following way: 

Total number of frames of false alarmsFalse Frames Rate  = 100%
Total number of creaky frames

×  

The first and redefined second measures have been used to describe the false alarms. 

The false instances rate has been found to be 12.8% for the NIST 98 database, and 17.4% 

for the TIMIT database. Surprisingly, the false alarms are more for the cleaner database 

(TIMIT) than the one which has noise and distortions. Of all these false triggers, 35% were 

due to voiced fricative /sh/. About 40% of the false detections were due to stops being 

called irregular, while the remaining 25% of the false triggers were due to stops wherein the 

vowel preceding the stop was identified as creaky. Though we have currently included the 

detections in the latter category as false detections, studies have shown [11, 12] that there do 

exist cases of stops in both American English and other languages, where both voiced and 

unvoiced stops may be accompanied by irregular phonation. Further, it is possible that the 

end of vowels preceding such stops may also exhibit irregular phonation. Thus, it may 
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actually be the fact that the algorithm is capturing such instances of irregular phonation too, 

in which case the false triggering rate will actually be considerably low. In addition, it has also 

observed that we are identifying what we suspect are some glottal squeaks (4 instances). 

However, due to the lack of a standard reference, it is not possible to confirm these 

speculations at this juncture, and this count has been added to false triggers. 

Typically, each false alarm instance is about 3 to 4 frames long, as compared to actual 

creaky regions which are typically more than 10 frames long. However, a significant 

percentage (about 10%) of creaky regions are also short (of the same duration as the above 

false alarm instances) and thus, it is not possible to set a duration threshold for elimination 

of false alarms. The false instances rate of 12.8% translates to a false frame rate of 3.4% for 

the NIST 98 database, and the TIMIT false instances rate of 17.4% translates to a frame rate 

of 5.6% (which confirms that the false alarm instances are about one fourth of the duration 

of a creaky instance). 

 

4.4 Speaker Identification using Acoustic Parameters 

 

One of the potential applications of this parameter is to use it in speaker 

identification tasks. The creakiness parameter is a parameter that characterizes the source 

information of the speaker, and should hence be able to help in speaker identification. To 

verify if this parameter can help in speaker identification and if so, how it affects 

performance, this parameter has been used in combination with seven other acoustic 

parameters described in section 1.6. These parameters are the four formants, the amount 

periodic and aperiodic energies, and the spectral tilt. The speaker ID performance for the 

seven acoustic parameters was seen to be comparable with that of the standard MFCCs in 
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[6]. The creakiness parameter is added as an eighth parameter to this set, and the speaker ID 

performance of the seven APs is compared with that of the eight APs. 

The speaker models were constructed using the Gaussian Mixture Models (GMM) 

and were trained using maximum-likelihood parameter estimation [5]. The MIT-LL GMM 

system was used for constructing the speaker models. Various model orders were tested and 

it was empirically determined that the 32-mixture GMM gave the best performance. The test 

utterance was identified with the speaker whose model yields the highest likelihood for the 

test utterance. The accuracy of the system was computed using the identification errors 

made by the system. To obtain the accuracies for different population sizes, the 250 speakers 

of each gender were divided into groups where the number of speakers in each group is the 

population size. The accuracy for the particular population size is the average of the 

accuracies over all the groups. The following table gives the error rates of the seven APs 

versus the eight APs when used for speaker identification: 

Pop. 

Size 

Gender 

(# of test utt) 

Seven APs Eight APs 

Female (1379) 29.0 28.0 

Male (1308) 27.8 27.6 50 

Average 28.4 27.8 

Female (1104) 33.1 31.7 

Male (1093) 29.1 29.1 

 

100 

Average 31.1 30.4 

Female (1379) 34.6 32.6  

125 Male (1308) 30.0 30.0 
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Average 32.3 31.3 

Female (1379) 38.2 36.7 

Male (1308) 34.3 33.9 

 

250 

Average 36.3 35.3 

 
Table 4.5 : Error Rates for Speaker ID without and with the creakiness parameter 

The results in this table are shown in the following plot in Figure 4.2: 

 

It is seen that for various populations, the speaker identification error rate goes down 

slightly, upon introduction of the creakiness parameter. Though the improvement is typically 

Figure 4.2 : Improvement in speaker ID performance upon introduction of 
creakiness as the eighth parameter – the error rate has gone down or remained 
the same in all cases, for all population sizes and both genders 



 70

about 1% for female speakers and less than 1% for male speakers, this is because of the fact 

that creakiness occurs very sparsely and hence offers very less training and testing data. 

Indeed, the creakiness parameter consists of zeros in most regions and hence, when modeled 

using the GMM, should show a prominent Gaussian at zero for models of all speakers, thus 

rendering the parameter not significantly useful for speaker ID. However, if there existed a 

supervised approach that could exploit the creakiness parameter more appropriately for 

speaker ID, the creakiness parameter would hold some promise as a good acoustic 

parameter. This is demonstrated by the fact that speaker ID performance improves more for 

female speakers than for male speakers, though the creakiness detection accuracy does not 

differ as significantly. This might be explained by the fact that females, having a higher pitch, 

are thus being more distinctive of their identity whenever they exhibit creakiness. This 

information is probably captured by the creakiness parameter, which thus helps to 

characterize effectively some of the female speakers. Therefore, using a supervised approach 

to exploit the creakiness information could be one possible direction of future research in 

applications of this parameter. 

 

4.5 Error Analysis and Discussion 

 

Missed Detections 

The creakiness detection algorithm does not give perfect detection accuracy. Almost 

10% of creaky instances are not identified, and therefore there is still scope for improvement 

of the algorithm. The failure of the irregular phonation detector in such cases could be 

explained by several possible reasons. The first is when the location of irregular phonation is 

at the very beginning of the file – in this case, the algorithm fails to detect creakiness because 
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the AMDF can be computed only after a few initial frames. Also, even when creakiness is 

not at the very beginning but is in the first few seconds, it might still be missed on some 

occasions. This is because the voiced/unvoiced thresholds, which are determined adaptively 

using the values stored in memory are not yet well adjusted to the proper values. If 

creakiness occurs before adequate voiced and unvoiced regions are seen, the representative 

values for both these regions are not yet obtained and thus, the threshold calculated is not 

accurate to make a correct decision. Thus, some false insertions or false rejections could 

occur. In one case, if creakiness occurs after voiced regions, with no unvoiced regions until 

that point, then the unvoiced region threshold is biased towards the voiced threshold, and 

thus, the creaky region is called voiced. This might also sometimes result in some weak 

fricatives or voiced fricatives being called voiced – they need not be called creaky at the 

subsequent stages but they might be called voiced at this stage. In the contrast case, if 

creakiness follows an unvoiced region, the voiced threshold is not set appropriately. This 

causes the creaky region to be called unvoiced and causes a missed detection error. The next 

possible reason of missed detection is when the pitch falls so low that the analysis window 

used cannot capture even one full cycle – when that happens, the AMDF structure cannot 

capture the characteristic dip profile. A solution for this is to adaptively change the analysis 

window size. A fourth reason for false rejection could be due to some instances of 

creakiness which are not significantly different from modal voicing, or which have most of 

their voicing energy in the lower frequencies. Because only the higher frequency channels are 

used to cluster the dips, such creaky regions may be rejected since they do not have much 

voicing energy in the higher regions. 
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False Alarms 

 False alarms are mainly due to stops, and about one third of them are due to 

fricatives. Typically, when these kinds of consonants are adjacent to vowel regions, their 

characteristics get influenced by their neighboring phonemes due to co-articulation. Thus, a 

possible reason for these false alarms could be that the values of spectral tilt, ZCR etc. of 

these regions are near what would be expected for periodic regions, and this is what allows 

such regions past the voiced/unvoiced decision stage. The effect of voicing in the co-

articulated phonemes could exist in such frames, which possibly gives them a dip profile 

looking similar to that of the creaky frame. Another possible reason for false alarms could be 

as mentioned above – the voiced/unvoiced detector has not had enough number of samples 

to make representative thresholds for the voiced and unvoiced regions and thus, some 

unvoiced sounds are called voiced.  

While reasons for missed detections have been elaborated upon, it is hard to find 

appropriate solutions for some of these causes. For example, the voiced/unvoiced decisions 

are always hard in case of spontaneous speech, much more so in channels causing 

distortions. There is always an error in even the current state-of-the-art systems, and voicing 

detection accuracy is never 100% accurate. In such cases, the best solution is to rely on the 

optimal trade-off between false alarms and missed detections. In this work, though a ROC 

curve has not been used explicitly to determine the most optimal operating point, the 

parameters of the system were varied around the currently existing parameters, and the 

performance did not vary significantly in terms of missed detection and false alarm 

performances. 

A matter of consideration is also the performance of the algorithm when multiple 

speakers are present. It may be recalled that the creakiness detection algorithm relies on a 
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memory track of the pitch in voiced regions, in order to decide if a given region is creaky or 

not. When more than one speaker is present in a speech file, and their pitches differ 

significantly, then the average pitch threshold that is used for creakiness detection may 

become unusable to detect creakiness. For example, if a conversation has a male speaker 

followed by a female speaker, then the pitch memory would have significant number of low 

(around 100 Hz) and high (around 200 Hz) pitch values. In such a case, the pitch detection 

threshold would be lower than what it should be if the speech file had a single female 

speaker. In such cases, when the female speaker goes creaky, it might not be identified by the 

algorithm, because the threshold has been reduced by the presence of low pitch values due 

to the male voice. Similarly, a female speaker preceding a male speaker could cause false 

alarms during the male speaker’s turn for the same reason. Although this problem is not 

handled in this work, it is of noteworthy importance and will be an improvement in a future 

version of the system. 
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Chapter 5 
 
SUMMARY AND FUTURE DIRECTIONS 
 
 

This thesis has focused on the development of an algorithm that will automatically 

detect and numerically parameterize regions of irregular phonation (creakiness) in speech. 

This work is significantly different from other research efforts in this direction, in that it 

processes all regions of speech and not just the voiced regions. Further, it is meant to handle 

spontaneous speech with effects like channel distortions, non-speech like laughter etc. Thus, 

the scope and applications of this work are more far-reaching than other parallel efforts. 

The algorithm is an extension of the Aperiodicity, Periodicity and Pitch (APP) 

detector. The APP detector is now incorporated with the irregular phonation detector, and 

gives a periodicity, aperiodicity, creakiness profile that identifies the three regions 

respectively in speech. The pitch estimation algorithm in the APP detector has also been 

improved to correctly identify the pitch frequency in regions of creakiness. The creakiness 

detection performance is high and matches that of the best performance of other algorithms, 

and the pitch detection accuracy has also shown improvement. The number of false 

insertions, both in creakiness detection and in pitch estimation, is low, and counted frame-

wise, is less than 5%. This is a set of encouraging results and proves that the creakiness 

detection algorithm can be used for speech technology on real speech data. 

 

5.1 Future Research Directions 

Improving performance of the algorithm 

The creakiness detection algorithm shows about 10% missed detection rate, and this 

implies that there is still some work to be done to improve the detection rate. However, the 

problem happens to be very difficult, as creakiness and irregular phonation are not discrete 
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steps over modal phonation, but are actually a part of a continuous spectrum with breathy 

phonation on the other end. As such, it is difficult to define the occurrences of irregular 

phonation and associated acoustic properties in various cases. Further, because of various 

effects like co-articulation and channel distortions, some of the acoustic features that 

characterize creakiness do not manifest themselves in some instances. In order to improve 

the detection accuracy, it is thus necessary to investigate for further acoustic cues that would 

help identify creakiness, and incorporate them into the APP detector. Further, some of the 

signal processing strategies of the APP detector should also be modified in order to catch 

instances that have been missed. This should, however, be done in a way that the current 

performance of the APP detector is not deteriorated, which is not an easy task considering 

the fact that pitch values from 60Hz to 350 Hz should all be detected and recognized. Thus, 

an adaptive signal processing scheme should be incorporated into the APP detector, which 

toggles between various sets of signal processing parameters (like window size, frame rate 

etc) to find the optimal set to process a particular region of speech. In addition, the 

voiced/unvoiced detector can also be improved by incorporating additional conditions, to 

reduce the false insertion rate. Finally, the degradation in performance that is expected when 

multiple speakers are present in the speech file should also be handled. One possible way to 

do this is to rely on creakiness to identify turn taking in the speech signal (or rely on other 

methods) and then set separate threshold for each speaker, to identify creakiness in the 

following regions. 

Application to speaker ID 

In terms of applications, the creakiness parameter has shown to be of use for speaker 

identification. The improvement in performance may not be marked, but it proves that the 

parameter is helping in speaker recognition by modeling some of the speakers’ inherent 
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voice qualities and speaking strategies. However, the creakiness parameter is zero for most 

of the frames, since creakiness is not a very common occurrence. This, when modeled in 

usual statistical frameworks like the Gaussian Mixture Models (GMM)(, gives a large 

Gaussian centered at zero, which might override the effects of other peaks nearby. However, 

the GMM  does not have the provision to supply non-applicable data, and therefore, the 

performance of speaker ID is not optimal when creakiness is used as described above. Thus, 

there is a need to find a better scheme of modeling the data, and to use a semi-supervised 

approach, wherein the creakiness parameter is used only when applicable (i.e., non zero). A 

possible modeling scheme could be the Hidden Markov Model (HMM), or a more general 

approach like the Dynamic Bayesian Networks (DBN) [23]. In either case, it remains true 

that modeling this parameter should be done in a more useful and applicable way. 

Application to ASR 

The application of creakiness to speaker ID motivates its use for ASR as well. In 

landmark-based ASR [ref], the features that are used are acoustically motivated, as the ones 

that have been used in this thesis for the speaker identification experiments. During the 

extraction of such parameters, creakiness might cause some hindrance because of the 

difference in phonation that generates slightly different acoustic cues than expected. 

Detection of creakiness before extraction of such features could help reduce such 

confusions, by provision of alternative features for such regions, or compensating the effect 

that creakiness has. Further, identifying regions of creakiness can also help in identifying 

turn-taking in spontaneous speech, as speakers often tend to get creaky when they pass the 

turn to the next speaker. 

Application to diagnosis of voice disorders 
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An important application of the irregular phonation detector is to help identify voice 

disorders by non-intrusive methods. The algorithm runs purely on the speech signal 

produced by the speaker, by looking at specific acoustic cues that would manifest themselves 

because of the activity at the vocal folds. This motivates the idea that the activity at vocal 

folds can be understood in an implicit way, and the specific cues found in the speech 

produced might give an idea about the specific physiological disorder that the speaker has, at 

the vocal folds. 
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