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ABSTRACT

Using the recently introduced concept of homogeneous indices, we obtain a generaliza-
tion to descriptor systems of the Brasch-Pearson Theorem for pole placement by dynamic

compensation.
I. INTRODUCTION

There has been a continuing interest in descriptor systems, i.e. generalized linear models

of the form
FEi(t) = Az(t) + Bu(t)

y(t) = C=(t) (1)

where E, A, B,C are constant matrices of dimensions n X n, n X n, n X m, p X n, and E is
possibly singular. (Seee.g. [1] [2] [3].) Recently, Shayman and Zhou [4] have presented a unified
theory of control synthesis for generalized linear systems using constant-ratio proportional and

derivative (CRPD) feedback - i.e., feedback of the form
u = F(cosfz —sin %) + v (2)

where # is a real parameter and F is a gain matrix. Analogous CRPD output feedback is

obtained by replacing z and Z with y and ¥ in (2).

The purpose of the present paper is to show how the approach in [4] can be extended to in-

clude dynamic compensation. Recently, we introduced the concept of homogeneous indices (5],

a generalization of the concept of Kronecker indices. Using the homogeneous indices, we will
derive a generalization to descriptor systems of the well-known result of Brasch and Pearson

[6] concerning pole placement by dynamic compensation for regular state-space systems:

Theorem (Brasch-Pearson [6]): Let (A, B,C) be controllable and observable, and let v denote

the observability index of (C, A). Let A be a self-conjugate set of n + v — 1 complex numbers.

Then there exists a (v — 1)-dimensional dynamic compensator

z=Fz+v
.u=Hz+ Ky
v=Gy (3)
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such that when coupled with the system
z = Az + Bu

y=Cz (4)

the resulting closed-loop plant matrix

A+ BKC BH
GC F

has A as its set of eigenvalues.
II. BACKGROUND

We briefly review terminology and results from [4] and [5] which will be needed in the
sequel. However, some of the notation to be used differs from that in these references. We

refer to (1) as a regular system if F is nonsingular, a singular system if E is singular, and

an admissible system if | sE — A |# 0. A regular system is always admissible, but a singular

system may or may not be admissible.

Let 3-(n) == {(E, A) € R™" x R™*"}, Y (n) := {(E, 4) € Y (n) : (E, A) is admissible},
and for each § € R, let ) ,(n) := {(E,A) € }.(n) : | cosE — sinfA |# 0}. For each § € R,
>_4(n) is an open and dense subset of 3 (n); 325, . (n) = X_4(n); 1(n) = oe[LOJ )Zo(n). Thus,
{34(n):0€[0,m)} is a covering of }_(n) by a family of open and dense subsets.

We denote by i:(n, m), »_(n,m), > 4(n,m) the spaces of triples (E, A, B) in }?(n) P
R™™, Y (n)xIR™ ™, and Y ,(n) XIR™™™ respectively. We denote by ‘Z(n, m,p),y_(n,m,p),
Y ¢(n,m,p) the spaces of quadruples (E, 4, B, C) in i(n) XR™™ x RP*™, 3" (n) x R™™ x
RP*", and Y ,(n) x R™™ x RP*™ respectively. Note that Y ,(n,m,p) consists of those

systems (1) which are regular.
Next, we define a group of symmetries of the covering {3,(n)}, transformations which

map these subsets into each other. For each ¢ € R, define a mapping Ry : i(n) — z(n) by
R4(E, A) := (cos ¢E + sin ¢ A, — sin ¢E + cos pA).

It is easy to check that (R4)~! = R_4. The set )_(n) of admissible systems is invariant under
Ry, and Ry maps )_,(n) isomorphically onto 3_,, ,(n).
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For our purposes, it is useful to have a definition of system eigenvalue which treats all the
points in the extended complex plane in a symmetric manner. This leads us to a definition
given in [4] for -the multiplicity of oo as a system eigenvalue which is different from that
which is commonly used. It is usual to say that « is a finite eigenvalue of multiplicity ¢ of
(E,A) € Y (n) if 0 is an eigenvalue of algebraic multiplicity ¢ of the matrix aE — A. If E
is singular, then oo is an eigenvalue of (E, A), and its multiplicity is defined to be rank E -
deg det (sE — A) - i.e. the number of independent impulsive modes. Thus, according to these

usual definitions, (E, A) has rank E eigenvalues, counting multiplicities.

To understand the different definition which we employ, it is useful to recall the identi-
fication of the extended complex plane, €|J{c0}, with the complex projective space CP(1).
Define an equivalence relation ~ on €% — {(0,0)} whereby (X, u) ~ (A, 4) if and only if there
exists a nonzero complex number S such that (i,ﬁ) = B(A,u). (Equivalently, €CP(1) can
be regarded as the set of all lines through the origin in €2.) If (A, u) € €% — {(0,0)}, we
denote by [(A, )] the corresponding element of €P(1) — i.e., the equivalence class containing
(A, 1). We refer to (), 1) as the homogeneous coordinates of [(A,u)]. If (A, ) ~ (:\, A), then
A= :\/ fi. Consequently, we can identify CP(1) with the extended complex plane via the
map [(A, )] = A/p. If p = 0, then [(}, p)] is identified with the point at infinity in the complex

plane.

Let (E,A) € }_(n). We will say that [(A, )] € CP(1) is a system eigenvalue of (E, A) if

and only if 0 is an eigenvalue of the matrix AE — pA. In this case, we define the multiplicity
of [(A, 1)] to be the algebraic multiplicity of 0 as an eigenvalue of AE — uA. If (A, u) ~ (A, 4),
then 0 is an eigenvalue of AE — pA of multiplicity ¢ if and only if 0 is an eigenvalue of AE-pA

of multiplicity g. Thus, the system eigenvalues and their multiplicities are well-defined.

Since [(A, p)] is identified with the extended complex number & = A/u, we will also refer
to a as a system eigenvalue of multiplicity ¢ when [{, p)] is such. If 4 # 0, then a is a
(ﬁhite) complex number and is a system eigenvalue of multiplicity ¢ if and only if 0 is an
eigenvalue of aE — A of multiplicity ¢. This coincides with the usual definition of a finite
eigenvalue of a generalized linear system. If g = 0, then & = oo and is a system eigenvalue
of multiplicity ¢ if and only if O is an eigenvalue of E of multiplicity ¢. It follows easily (for

example, using the Weierstrass decomposition) that the total number of system eigenvalues
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(according to our definition) is n regardless of the value of rank E. If E is singular, this is
greater than the number of independent dynamic modes. However, this alternative definition

of system eigenvalue is very useful for control synthesis [4].

Next, we consider the question of how the system eigenvalues transform under system

rotation. Define r¢ : €2 — C? by
re(A, 1) = ((cos #)A + (sin ¢) 1, — (sin @)X + (cos $)u).

Proposition 1 [4]: Let (E, A) € >>(n), and let (E,A) := R4(E, A). Then [(A,p)] is an eigen-

value of (E, A) of multiplicity ¢ if and only if [r_¢ (2, )] is an eigenvalue of (E, A) of multiplicity
g. Equivalently, the extended complex number « is an eigenvalue of (E, A) of multiplicity ¢ if

and only if the extended complex number & is an eigenvalue of (E’, A) of multiplicity ¢, where

. (cosd)a—sing
= (sin ¢)a + cos ¢

(E, A, B,C) € Y_(n,m,p) is controllable if every state in R™ is reachable in positive time
from the initial state z(0—) = 0. (E, A, B,C) is observable if only the initial state z(0-) =0
gives y(0—) = 0 and the free response identically zero on [0, 00). (For a detailed discussion of
controllability and observability for descriptor systems, see [7]).

Proposition 2 [4]: Let (E, A, B,C) € Y(n,m,p), and let (E, A) := R4(E, A). Then (E, 4,
B, C) is controllable (observable) if and only if (E, A, B, C) is controllable (observable).

Recently, we have introduced the concept of homogeneous indices [5] as a generalization
to descriptor systems of the Kronecker indices of regular systems. They are defined as follows:
Associate to (E, A, B) € i:(n, m) the degree one matrix polynomial in two variables given by
[AE — pA, B]. Let 1 be a column vector with entries in the ring R[, p] of polynomials in two

variables which is a minimal degree nonzero solution to the equation
[AE — pA, Blz =0. (5)

Let z; be a minimal degree solution which is linearly independent over R[A, ] of z;. Let
23 be a minimal degree solution which is linearly independent of {z1,22}. Proceeding in

this way, we obtain a sequence 23,---,2g (¢ <n+ m) of solutions, which we refer to as a
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fundamental series of solutions of (5). The degrees §; < --- < §; of z1,--, 2, are independent

of the choice of fundamental series. We refer to (61,-+-,8,) as the homogeneous indices of the

system (E, A, B).
Proposition 3 [5]: Let (E, A, B) € ¥.(n,m) and let (£, A) := R4(E, A). Then (E, A, B) and

(l:}‘, A, B) have the same set of homogeneous indices.

Proposition 4 [5]: Let (E, A, B) be a controllable regular system. Then the homogeneous
indices of (E, A, B) are equal to the Kronecker indices of (E~1A, E"!B).

Let (C, A) be an observable pair. The observability index of (C, A) is defined [8] to be

v:= min {5: ﬁ ker CA*™! = 0}.
i=1
Obviously, 1 < v < n.
Remark 1: It follows that v is the largest Kronecker index of the controllable dual pair (A4', C').
By Proposition 4, v is equal to the largest homogeneous index of the controllable regular system
(1,4',C).
III. MAIN RESULTS

To motivate the generalization which will be derived, we make the following three obser-
vations on the nature of the Brasch-Pearson Theorem: (1) It concerns systems belonging to
the set Y ,(n,m,p) of regular systems, an open and dense subset of the space ) (n,m,p) of
admissible systems. (2) It establishes pole-assignability on the extended complex plane with
one point deleted, namely the point at infinity. (3) The upper bound on the order of the
dynamic compensator is one less than the observability index of (C, A) — i.e., one less than
the largest homogeneous index of the system (I, A’,C").

Our first result establishes pole placement using a generalized dynamic compensator and
constant-ratio proportional and derivative connections.
Theorem 1: Let (E,A,B,C) € Y, ,(n,m,p) be controllable and observable, and let v be
the largest homogeneous index of (E’, A’,C'). Let A be a self-conjugate set of n + v — 1
numbers from € |J{oo} — {ctnf}. Then there exists a (v — 1)-dimensional generalized dynamic
compensator ‘

Mz=Fz+4v



u = K(cosfy — sin 0y) + H(cos§z — sin §2)
v = G(cos By — sin 0y) (6)

with (M, F) € ¥_,(v — 1) such that when coupled with the generalized system
Eiz = Az + Bu

y=0Cxz (7)
the resulting closed-loop composite system has A as its set of eigenvalues.

Remark 2: For each fixed choice of 8, the result in Theorem 1 is analogous to the Brasch-
Pearson Theorem: It establishes pole assignment for the controllable and observable systems
belonging to the open and dense subset Y ,(n,m,p), and the poles can be placed anywhere
in the extended complex plane with one point deleted (namely ctnf). The upper-bound on
the dimension of the compensator is one less than the largest homogeneous index of the
dual system. In the special case when § = 0, Theorem 1 reduces to the Brasch-Pearson
Theorem. Since {}_,(n,m,p) : § € [0,7)} is a covering of }_(n,m,p), Theorem 1 applies to
every admissible general linear s&stem which is controllable and observable. In fact, since an
admissible system (E, A, B, C) belongs to }_,(n,m,p) for all but at most finitely-many values
of @ in [0, ), we can always choose 8 to be arbitrarily small, in which case the derivative terms

in the CRPD connections in (6) can be regarded as small perturbations.
Proof of Theorem 1: Let (E,A) := R_¢(E,A). Since (E,A,B,C) € ¥ ,(n,m,p),
(E, A, B, C) € Y o(n,m,p) — ie. (E, A,B,C’) is a regular system. Since controllability

and observability are preserved by system rotation (Proposition 2}, (E‘, A, B, C) is both con-
trollable and observable. Since the homogeneous indices are invariant under system rotation
(Proposition 3), v is the largest homogeneous index of R_4(E',A',C') = (E”,A’ ,C'). Since
(E’ JALC! ) is a controllable regular system, it follows from Proposition 4 that v is the largest
Kronecker index of the pair ((£')~1A’,(E')~1C"), and hence the observability index of the
observable pair (CE~!, AE~1!) (Remark 1). It is trivial to verify that (CE~1, AE~1) and
(C, E-1A) have the same observability index. Thus, v is the observability index of the ob-
servable pair (C, E~1A).
Define a mapping 7¢ : €CJ{oo} — CU{oo} by

7o) = (cosf)a + sin 8
rela) = —(sin )+ cosf’

(8)
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Let A := 7 (A). Since ctnf ¢ A, A does not contain the point at infinity. Thus, A is a self-
conjugate set of n + v — 1 complex numbers. We apply the Brasch-Pearson Theorem to the

controllable and observable state-space system
i=FE1Az+ E By

y=Cz (9)

There exists a (v — 1)-dimensional dynamic compensator

z=Fz+v
u=Hz+ Ky
v =Gy (10)

such that when coupled with (9), the closed-loop plant matrix

_[E-*A+ E-'BKC E-'BH
Q= Ge F ] (11)

has A as its set of eigenvalues.

Let (M, F) := Re(I,F) € ¥,(v — 1). Consider the interconnection of the compensator
(6) with the system (7). The resulting closed-loop system is of the form

with

N . |E+sin0BKC sinéBH
= | sinsGC M

P A+cosBKC cosdBH
- cos0GC F )

Using the fact that the system eigenvalues of a generalized system are invariant under left-

multiplication by a nonsingular matrix, we have
A= Spec @ =0(I,Q)
__([E o] [A+BKC BH
~—%\|o. 1|’| ccC F
= o(R-¢(N, P)),
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where “Spec” denotes the spectrum of a square matrix, and “o ” denotes the set of system
eigenvalues (counting multiplicities) of a generalized system. Thus, it follows from Proposition
1 that

o(N,P) =7_¢(A) = A.

‘ |
Remark 3: Since R_4(N, P) is a regular system — i.e., an element of ) ,(n+ v — 1) — it
follows that the closed-loop composite system (N, P) belongs to Y ,(n + v — 1).

For a given @ (such that (E,A) € Y_,(n)), the closed-loop system eigenvalues can be
placed arbitrarily in the extended complex plane except at the point ctn 4. In particular,
we can require that all the closed-loop eigenvalues be finite. Then the closed-loop composite

system is a regular system.

However, it is conceivable that the compensator
Mz=Fz+v (12)

could turn out to be a singular system, even when the closed-loop composite system is
regular. We will show that it is possible to achieve approximate eigenvalue assignment

with arbitrary precision subject to the additional condition that the compensator dynamics

(12) be regular. In order to prove this, we need a preliminary result which establishes that the

system eigenvalues, as we have defined them, depend continuously on the system matrices.

We begin by describing the natural topology on the space of all possible sets of system
eigenvalues. For each (E,A) € Y. (n),o(F,A) is an unordered set of n extended complex

numbers, with repetitions allowed. Consequently, it is the space of all such sets which we
must topologize.

Let (X, px) be a metric space, and let X, denote the set consisting of all sets {z;,- -, Tn}

of n possibly repeated elements from X. Define a metric p on X, by

p({m1e e znds (a1, 20}) o= mmin max px (2 2a();

where S,, denotes the group of permutations on n letters. It is easily verified that p satisfies

the axioms for a metric. Let (Y, py) be a metric space, and let f : X — Y. Then f induces a
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map f : X — ¥, with f({z1,--+,2,}) := {f(z1),--- s f(zn)}. Tt is easy to show that if f is
continuous, then f is continuous (with respect to the induced metrics on X, and f/n)

Let X now denote the extended complex plane €|J{oo}. Let 1 : €P(1) — X be the map

which identifies the extended complex plane with the complex projective space CP(1) — i.e.,

(A u]) = A/p.

The standard gap metric on CP(1) [8] induces a metric on X by the requirement that the

map ¢ be an isometry.

By restriction, we can view the map 4 as a diffeomorphism of €% — {(0,0)}. 74 induces

a diffeomorphism of €P(1) which we denote by 79. We have
Fo([A ]) = [((cos B)A + (sin O) i, —(sin 8) X + (cos 8) u)].

The map 7y : X — X defined earlier can be expressed as the composition

— . A |
Tg —10Trp 01 .

Consequently, 7y is a homeomorphism of the extended complex plane X,

We are now prepared to prove that the set o(E, A) of system eigenvalues depends contin-

uously on the admissible generalized linear system (E, A).

Lemma 1: The map o : ¥(n) — X,, is continuous.

Proof: Let {(E}, A;)}32, be a sequence in ) (n) which converges to (E, A) € 3 (n). We will
show that {o(E;, A;)}32, converges to ¢(E, A) in Xn. Choose 8 such that (E, A) € ¥",(n).
Since Y, (n) is open, the sequence {(E;, A;)} is contained in ) ,4(n) once j becomes sufficiently
large.

Let (E;,4A;) := R_¢(E;,A;), and let (E,A) := R_4(E,A) € Y ,(n). Since R_g is
continuous, the sequence {(E;, A;)} converges to (E,A). For sufficiently large j, (E;, A;) €
> o(n). From now on, we assume j is large enough so that this is the case.

Since (E;,A;) and (E, A) are regular systems, o(Ej, A;) and o(E, A) are finite — ie.,

belong to €, c X, — and

o(E;, A;) = Spec E;1A,
o(E,A) = Spec EA.
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Since {EJ” 1/1,-} converges to 1A, the standard fact that the spectrum of a square matrix

is a continuous function of the matrix implies that {o (£}, 4;)} converges to o(E, A).

Let ?..o denote the map on X, induced by 7_g. Since 7_4 is a homeomorphism of X,

oo ~

7 _g is a homeomorphism of X,,. By Proposition 1, we have

A A ~

o(Ej, A;) = o(Re(Ej, A;)) =7 _o (0(Ej, Ay))

o(E, A) = o(Re(E, A)) =7 _g (o(E, A)).

Since 7 _g is continuous, this implies that {o(Ej, A;)} converges to o(E, A). H|
Remark 4: The preceding result illustrates one of the motivations for our unconventional
definition of the multiplici'ty of 0o as a system eigenvalue. (See the discussion in Section 2).
With the conventional definition, even the cardinality of the set of system eigenvalues (which

would be rank E) is discontinuous at every singular system (E, A).

We will now show that approximate eigenvalue assignment with arbitrary precision is
possible while satisfying the additional requirement that the compensator dynamics be regular.

Given any positive integer k, let p denote the induced metric on X k-

Theorem 2: Let (E, A, B,C) € )_,(n,m,p) be controllable and observable, and let v be the
largest homogeneous index of (E’, A’,C’). Let A be a self-conjugate set of n + v — 1 numbers
from €|J{co} — {ctn 8}, and let € > 0 be given. Then there exists § > 0 such that for every

¢ satisfying 0 <| ¢ — 8 |< §, there exists a (v — 1)-dimensional dynamic compensator
M:=Fz+v
u = K (cos ¢y — sin ¢y) + H(cos ¢z — sin ¢2)

v = G(cos ¢y — sin ¢g) (13)

with (M, F) € ¥_4(v — 1) N 3o(v — 1) such that when coupled with the generalized system
Eiz = Az + Bu

y=Cz (14)

the set A of eigenvalues of the resulting closed-loop composite system is such that ﬁ(X, A)<e
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Remark 5: Since (M, F) € 3 ,(v — 1), the compensator is a regular system.

Proof of Theorem 2: Let F,G, H,K,N, P be as in the proof of Theorem 2. Set G := G, H :=
H,K := K. For each ¢ € R, define (M(4), F(¢)) := R4(I, F). Let (N(¢), P(¢)) denote the
(n+v —1)-dimensional generalized linear system obtained by interconnecting the compensator
()i = F(9)z+v
u = K(cos gy — sin ¢y) + H(cos ¢z — sin ¢3)

v = G(cos ¢y — sin ¢y) (15)
with the system (14). Then

o | E+singBKC sin¢BH
N(¢)= l: sin G C M(¢) ]

S/ _ | A+cos¢gBKC cos¢pBH
P(¢) = [ cos ¢GC F(¢) ]

Since (E, A) € >_4(n), there exists § > 0 such that (E, A) € 3_,(n) whenever | ¢—0 |< 6.

Since

cos$(9) — sin 6P(4) = | < TeineA G,

it follows that (N (), P(¢)) € 3. 4(n + v — 1) for all such ¢. In particular, (N (), P(4)) is
admissible. Since N(¢) and P(¢) are continuous functions of ¢, it follows from Lemma 1 that
the mapping ¢ — o(N(¢), P(4)) is a continuous mapping of the open interval (8 — 6,8 + 6)
into Xp4,_1. Since (N(8),P(6)) = (N, P) and o(N, P) = A, we can choose § > 0 smaller if
necessary so that if | ¢ — 8 |< 6, then 5(c(N(¢), P(¢)),A) < e

Since (M(9),F(#)) = Ry(I,F) and (I,F) € Lo(v - 1),(M(¢),F(¢)) € 4w - 1).
(M(4),F(¢)) € (v — 1) if and only if (I,F) € > _4(v — 1), which is true for all but at
most a discrete set of ¢. Consequently, we can choose 6 > 0 smaller if necessary so that
(—M_(¢),—F(<;S)) € Y o(v —1) whenever 0 <| ¢ — 8 |< 6. O
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