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 Urban forests are increasingly a focus of interest as urbanized populations grow 

and urban areas expand. Urban forests change as trees are planted, grow, die, and are 

removed. These processes alter a city's tree cover over time, but this inherent dynamism 

is poorly understood. Better understanding of how tree cover is a variable land cover 

component will enhance knowledge of the urban environment and provide new 

perspectives for management of urban resources.  

 In this study, tree cover variability within a major urban center was observed over 

a 20 year period. Changes in tree cover proportion were measured in the District of 

Columbia between 1984-2004 utilizing highly calibrated satellite remote sensing data. 

Testing of alternate methodologies demonstrated that an approach utilizing support vector 

regression provided most consistent accuracy across land use types. Tree cover maps 

were validated using aerial photography imagery and data from field surveys.  

 Between 1984-2004, the city-wide tree cover remained between 22.1(+/-2.9)% and 

28.8(+/-2.9)% of total land surface area. The District of Columbia did not experience an 

overall increase or decrease in total tree canopy area. Spatial patterns of tree cover 

variability were investigated to identify local scale changes in tree cover and connections 

with urban land use. Within the city, greatest variability was observed in low density 



 

residential zones. Tree cover proportion in these zones declined 7.4(+/-5.4)% in the years 

between 1990-1996 and recovered after 1996.  

 Changes in tree cover were observed with high resolution aerial photography to 

determine relative contribution from fluctuation in the number of standing trees and 

changes in crown sizes. Land cover conversion removed dense tree cover from 50.2 

hectares of the city's land surface between 1984-2004. 

 The results demonstrate that tree cover variability in the District of Columbia 

occurred primarily within low population density residential areas. Neighborhoods within 

these zones were analyzed to identify factors correlated with tree cover. Implications of 

the results include enhanced understanding of the possible impact of urban forest 

management, and how a focus on low density residential zones is appropriate in setting 

goals for expansion of urban tree cover.  
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CHAPTER I 

INTRODUCTION 

Urban Forests 

  Urban forests consist of woody vegetation and associated plant life within 

densely populated human settlements. Despite the widespread presence of human-built 

structures and impervious surfaces in cities, urban areas contain a significant amount of 

vegetated land. Urban forests include tree cover in park lands and individual trees on 

streets and private property among a wide range of impervious surfaces within the urban 

environment (Rowntree 1984, 1986). Urban forests differ from traditionally defined 

forests due to the complex mixture of land cover types that define urbanized landscapes 

(Miller 1998). Within urban areas the prevalence of tree cover varies from lightly 

forested industrial zones to highly forested parks and residential areas. Tree cover 

occupies approximately 27% of the land area in US urban areas (Nowak and Crane 

2001). By combining city-wide averages from municipal planning documents, the total 

size of urban forest cover in the United States has been estimated at approximately 70 

million acres, including trees along streets, within parks, and on privately owned land 

(Clegg 1982). 

 Urban centers are home to more than half the Earth's people, and the urban 

population is growing more than twice as fast as the rural population (United Nations 

1997, 2007). Urban areas cover about 3% of the total area of the conterminous United 

States (Defries et al. 1999; Imhoff et al. 2004), which is equivalent to about one third the 

surface area managed by the US. Forest Service. Within the United States urban 

development is accelerating faster than population growth (U.S. Department of Housing 

and Urban Development 2000), and 83% of the U.S. population resides within urban 
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metropolitan areas (U.S. Census 2007).  As the extent of urban land continues to grow, 

the importance of urban tree cover and its impact on ecosystem dynamics will increase in 

magnitude (Nowak et al. 2005). 

 Tree cover proportion within cities is a fundamental structural attribute of the 

urban environment (Nowak 2004).  Tree cover proportion is a central factor in 

determining the ecologic function of the urban forest (Nowak and Dwyer 2007; Zipperer 

et al. 1997). Tree cover is a dynamic part of ecosystems that changes through time in 

response to anthropogenic and other factors.  

 Although urban vegetation has been widely examined in previous studies, there 

are limited numbers of reliable assessments of urban tree cover variability. The lack of 

knowledge on interannual changes in urban tree canopy is due in large part to the scale 

difference with city tree data and remote sensing data. The majority of past studies have 

observed tree cover as a static component of urban areas. While management authorities 

have many tools to evaluate amounts of tree cover and its ecosystem impact, interannual 

tree cover variability at the city or neighborhood scale is not well understood. It is 

currently a challenge to link street-level maintenance programs to wide-scale forest 

impact. 

 Spatially and temporally explicit mapping of urban tree cover variability would 

provide important new understanding of the urban environment. Tree cover observations 

can determine if static tree cover proportions are an appropriate assumption for urban 

ecosystem studies. Reliable maps of past urban tree cover variability would have 

implications for management. Better understanding of how urban tree cover changes 

through time would make it possible to better evaluate forest management decisions and 

their environmental impact. 
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District of Columbia Study Area 

 The District of Columbia is the capital of the United States, home to 617,000 

residents (U.S. Census 2011), and the location of employment for approximately 740,000 

people (Bureau of Labor Statistics 2012). The District of Columbia is an urban 

jurisdiction containing a full range of population densities and urban land use patterns. 

During the study period of 1984-2004, the city experienced significant population loss 

and demographic change. 

 The District of Columbia provides a unique opportunity to observe urban tree 

cover variability in a small area with diverse land tenure systems. As the national capital, 

Washington DC holds great interest for institutional and environmental stakeholders. As 

a result, a unique range of data is available on the city's forest resources. This includes 

survey and air photography not available for other large US cities.  

 Within the District of Columbia, federal and local government agencies and 

nongovernmental organizations have an extensive history in being engaged in 

maintaining trees and tree cover (Choukas-Bradley and Alexander 1987; D.C. 

Government 2012d), even as the city has experienced different oversight and planning 

strategies in its history. Washington DC is home to a strong non-profit urban forest 

advocacy community (Casey Trees 2003) with extensive resources and communications 

activity.  

 

Study Overview 

Objectives 

 The objectives of this study are to discover the extent to which tree canopy is a 

dynamic land cover component of the urban environment and how this dynamism is 
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spatially variable in the context of urban land use patterns. This study also aims to 

improve observations of urban tree cover for understanding past variability. To achieve 

these objectives, the study includes a comparative assessment of remote sensing methods 

for observing tree cover, an analysis of urban tree cover temporal variability in the 

District of Columbia between 1984-2004, and an analysis of spatial variability of tree 

cover in the context of urban land use patterns.  

 

Research Approach 

 The first phase of this research focuses on improving accuracy of urban tree cover 

measurements. Methods for observing proportional tree cover within a major urban 

center are explored for mapping proportional tree cover in 2000 for an entire city. This is 

accomplished through a comparative analysis of static urban tree cover in the District of 

Columbia. Two methods are applied to satellite remote sensing data to evaluate them for 

urban tree cover mapping. Validation of both techniques is performed with spatial tree 

cover from field surveys and public geospatial data on standing tree cover.  

 The second phase of the research study measures temporal dynamics of urban tree 

cover in the District of Columbia between 1984-2004. City-wide and local patterns of 

tree cover change are mapped with calibrated satellite observations every two years 

during the study period. Multitemporal validation and fine scale observations are made 

with image maps derived from aerial photography.  

 In the final phase of the research, the spatial variability of tree cover and land use 

patterns are examined. Spatial patterns of tree cover variability and urban land use are 

compared to understand local scale context for tree cover variability within low density 

residential zones, medium density zones, and high density zones. Residential property use 
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and population data are compared to tree cover at the neighborhood scale. Possible 

implications for tree cover management are explored. 

 

Spatial and Temporal Scale 

 The study area is the District of Columbia, a densely populated urban jurisdiction 

with tree canopy covering approximately 30% of its land surface area. Diverse types of 

data are available due to the city's status as the national capital. The District of Columbia 

is large enough to include diverse land use patterns including high density commercial 

uses, low density residential areas, and closed canopy forested park lands.  

 This study aims to observe tree cover 1984-2004. This temporal scale is 

appropriate to capture changes in tree cover occurring over multiple years. A 20-year 

study period is also appropriate to observe possible management and demographic 

changes. The years 1984-2004 were a period of immense human change when the city 

lost approximately 20% of its population. 

 

Scope of This Research 

 To understand tree cover variability in an urban setting, alternate satellite remote 

sensing techniques were applied to observing past variability in proportional tree cover 

area within the District of Columbia. Links between tree cover variability, urban land use 

patterns, and zoning restrictions were investigated to determine possible links to tree 

cover variability.  

 Observations of tree cover changes were used in this study to illustrate the 

possible impact from land cover change on tree cover within the city. However, this 

research study was not aimed directly at understanding development strategies or specific 
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projects that remove dense tree cover. 

 To better understand spatial variability, tree cover observations were analyzed in 

the context of urban land use and zoning restrictions. An analysis of selected 

demographic factors in urban neighborhoods provided insight for future work on the 

social processes that impact urban forests. The social factors involved in direct human 

uses of urban forests were beyond the scope of this study.  

 Weather and climate may play a role in urban tree cover variability but were 

beyond the scope of the current study. The possible impact of weather is interrelated with 

factors lacking sources of comprehensive data, such as management and species 

composition.  

 

Contrast to Previous Work 

 The current study observed tree cover proportion as it varied within an urban 

setting. The majority of previous studies of urban forests have focused on observing static 

tree cover, spectral dynamics, or utilizing observations made in field survey plots. The 

studies that have measured change in urban tree cover (Nowak and Greenfield 2012; 

Walton 2008a; Poracsky and Lackner 2004) have compared tree cover on two or three 

dates. The current study measured tree cover every two years over a 20 year period to 

understand interannual variability.  

 Previous studies have utilized statistical estimates of uncertainty with air 

photography (Nowak and Greenfield 2012; Gillespie et al. 2012), field surveys (Nowak et 

al. 2006; Howard and Alonzo 2009), or satellite remote sensing (Walton, Nowak, and 

Greenfield 2008). These studies used statistical estimates of uncertainty without 

validation or comparisons to independent measurements to test the precision of tree cover 
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estimates. In contrast, the current study measured uncertainty by utilizing multitemporal 

validation with high resolution aerial photography. These data were utilized to make 

consistent measurements of uncertainty based on independent observations, which were 

then applied to multitemporal tree cover observations.  
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CHAPTER II 

BACKGROUND 

 

Defining Urban Tree Cover 

 The method of quantifying forest cover can vary with the intended scale of 

observation. Physical measurements of canopy density and structure are appropriate at 

fine scales where observation of individual trees is needed. The total leaf or canopy 

surface area can be used to quantify tree cover in large areas. Generalized quantities such 

as proportional vegetation cover are useful when observing large areas at coarser scales, 

including the current research study.  

 Proportional tree canopy area is widely used in studies of the urban environment 

and resource management plans. This quantity is the proportion of land surface occupied 

by tree crown as viewed from above, which can vary from 0-100%. More specifically, 

tree canopy area is defined as the two-dimensional orthogonal projection of tree canopy 

onto the ground surface plane (Walton, Nowak, and Greenfield 2008). This is a useful 

way to quantify urban tree cover because it describes the spatial extent of forest in a 

given area, it is simple to compare between locations and time periods, it is a standard 

measure widely used by management authorities, and it is utilized in urban ecosystem 

studies as a fundamental metric of the urban environment (Zipperer et al. 1997). 

 Cover of shrubs can be included in the definition of urban tree cover. Some 

reports have assumed shrubs to be a part of urban forest cover (Walton, Nowak, and 

Greenfield 2008; O'Neil-Dunne 2009), while studies based on field surveys have mapped 
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shrubs separately from tree cover (Nowak et al. 2006). Many studies have not explicitly 

addressed the question.  

 In the current study, shrubs smaller than two meters in diameter are considered to 

be separate from tree cover. This threshold was chosen based on the spatial resolution of 

the air photography used to produce the vector GIS tree data. Any shrubs smaller than the 

two meter threshold were not easily visible or separable from surface vegetation in these 

images.   

 

Frameworks for Understanding Urban Land Cover 

 Conceptual models of urban spaces are useful for understanding the complex 

mixture of surface types in cities. All cities contain a mixture of trees, grass cover, bare 

soil, pavement, and buildings. Measuring the proportions of each land surface type is a 

fundamental method of describing the physical structure of a city. Past studies have 

utilized conceptual frameworks for understanding the physical makeup of urban 

landscapes.  

 A widely applied method for conceptualizing urban spaces for application with 

remote sensing is the V-I-S model (Ridd 1995). This model defines the urban landscape 

as the sum of three components: Vegetation, Impervious, and Soil. This ternary model 

was designed with remote sensing applications in mind and has been widely utilized to 

describe the spectral properties of urban spaces. 

 The V-I-S model has been used to study diverse urban spaces, from semiarid 

areas (Phinn et al. 2002) to temperate zones (Lu and Weng 2004). The initial application 

of the V-I-S model was in an urbanizing arid area (Ridd 1995). Although grass and trees 

occupy different functional parts of the urban ecosystem, the V-I-S model does not 
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discriminate between the two. The problem of discriminating different types of 

vegetation is important especially in heterogeneous urban areas. 

 The V-I-S model has difficulty encompassing the wide range of reflectance values 

of impervious surfaces, which contain the widest range of reflectance values in urban 

areas (Herold et al. 2004). One method for extending the V-I-S approach to better define 

impervious spectral response is the incorporation of shaded and unshaded responses for 

impervious surfaces (Rashed, Weeks, and Gadalla 2001).  

 Defining alternative three-endmember generalizations for urban spectral response 

is another approach to solving the problem of reflectance variation. A three-endmember 

generalization for urban areas has been observed with the six reflective Landsat bands 

and with the four spectral bands available from IKONOS (Small 2001, 2003). In these 

studies, urban surfaces were assumed to consist of vegetation, high albedo, and low 

albedo surfaces. A positive correlation between a vegetation spectral response and 

proportional vegetation cover mapped using high resolution data was demonstrated, but 

with uncertainty ranging up to 10% vegetation cover, in large part due to confusion 

between tree and grass cover (Small and Lu 2006). A similar three-endmember approach 

can also be extended to discriminate urban grass and tree cover with moderate accuracy, 

utilizing estimates of tree shadow derived from airborne LIDAR data (Tooke et al. 2009). 

 The Substrate Vegetation Dark (SVD) model was introduced by (Small and Lu 

2006) as an alternate to the V-I-S model. The SVD model describes spectral domain of 

urban areas as proportional values of bright, dark, and vegetated responses. While the 

SVD model neatly agrees with the spectral data found in satellite remote sensing data, it 

fails to describe the physical nature of an urban area. Studies that utilize a generalized 
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three-endmember spectral model of urban spaces (Small 2001, 2003) do not provide 

estimates of physical land cover attributes that can be readily detected from a remote 

sensing perspective. 

 The Normalized Difference Vegetation Index (NDVI) can be used to estimate 

fractional vegetation cover with an assumed linear relationship (Arthur-Hartranft, 

Carlson, and Clarke 2003; Gillies et al. 2003). Comparisons between NDVI to fractional 

vegetation cover have shown that the relationship is not useful for estimating land cover 

at levels NDVI >0.4 (Small 2001).  

 

Environmental Impact of Urban Forests 

Carbon Dynamics 

 Urban forests play a role in global climate by sequestering atmospheric carbon. 

Urban forests contain 700 million tons of carbon and sequester 22.8 million tons annually 

in the 48 conterminous United States (Nowak and Crane 2001). Carbon storage in a 

single mid-size city can total about 150,000 tons (Myeong, Nowak, and Duggin 2006).  

 Urban forests are responsible for about 8% of the sequestration of atmospheric 

carbon by forests in the 48 conterminous United States (Pataki et al. 2003). This 

proportion will grow as urbanization expands. This is especially true for the heavily 

urbanized northeastern United States as the expansion of non-urban forest cover slows.  

Agricultural abandonment in the northeastern US allowed forests to expand by 

approximately 40% during the 20th century (Ramankutty, Heller, and Rhemtulla 2010). 

However, forest cover expansion slowed significantly by 1990 as few previously cleared 

agricultural spaces remained available for forest expansion (Ramankutty, Heller, and 

Rhemtulla 2010). 
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 Urban growth replaces existing vegetation and agriculture, impacting net primary 

production (NPP), the increase of vegetation biomass over time. Urbanization has 

decreased NPP in the United States by about 1.6% compared to pre-urban times, which is 

roughly equivalent to the positive impact on NPP resulting from agriculture in non-urban 

areas (Imhoff et al. 2004). In the southeastern United States, urbanization during the 

1990s decreased NPP by about 0.4% (Milesi et al. 2003). At the same time urban areas 

can exhibit extended growing seasons and higher photosynthetic production near the start 

and end of growing seasons, likely caused by higher temperatures, irrigation, and 

introduction of exotic species (Imhoff et al. 2000; Milesi, Potter, et al. 2005).   

 

Air Quality 

 Forest cover plays a role in impacting urban air quality. Atmospheric particulates 

are intercepted by leaf surfaces, which can improve air quality by removing particulates 

smaller than 10 µm diameter linked to respiratory illness (McPherson 1992). 

Approximately 470 tons of particulates are removed by tree cover annually in New York 

City (Nowak, Crane, and Dwyer 2002). One study found that planting half a million trees 

in Tucson would remove 6,500 tons of particulates per year from the air (McPherson 

1991). Urban forests also absorb ozone, sulfur dioxide, and nitric acid (Nowak, Crane, 

and Dwyer 2002); approximately 12g of these pollutants annually per square meter of 

canopy can be absorbed (Nowak and Crane 2000). 

 Many tree species are high emitters of Volatile Organic Compounds (VOCs) 

(Benjamin et al. 1997), which photochemically react with anthropogenic nitric oxide to 

produce ozone. VOCs emitted by trees are hydrocarbon compounds that include two 
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classes of compounds known as isoprenes and monoterpenes (Rasmussen 1972). 

Between 0.5-8% of carbon fixed in photosynthesis is contained in isoprenes (Tingey et al. 

1979; Monson and Fall 1991). Biogenic hydrocarbons are 2-3 times more reactive than 

those emitted during gas combustion (Carter 1994). These compounds are largely 

responsible for a visible haze of ozone over many partially wooded areas (Went 1960) 

and are a significant component of haze in fully wooded protected areas such as Great 

Smoky Mountains National Park (Shaver, Tonnessen, and Maniero 1994). 

 Emission rates vary by a factor of four between species (Benjamin et al. 1997). 

Only some plant families emit hydrocarbons. About 50 of the 400 existing plant families 

emit monoterpenes (Seiger 1981; Charlwood and Charlwood 1991). The reasons that 

trees produce hydrocarbons are poorly understood. VOCs appear to protect against 

photosynthetic damage and are toxic to some herbivores (Harborne 1988). Monoterpenes 

protect against some pathogens (Walter et al. 1989) and isoprenes may increase thermal 

tolerance (Sharkey and Singsaas 1991). 

 Emission of VOCs by urban forests can have significant air quality impact. Even 

without anthropogenic hydrocarbons, existing biogenic sources would make it difficult or 

impossible for Atlanta to meet federal air quality standards (Chameides et al. 1988). In 

the Houston area, biogenic sources accounted for more than 20 percent of total VOC 

emissions during the early 1990s (Texas Natural Resource Conservation Commission 

1994). In the northeastern US, lower temperatures due to forest cover may reduce total 

VOC emissions, offsetting increases due to the presence of more trees (Nowak et al. 

2000). High-emitting species common in Washington DC include red oak (Quercus 

rubra) and London plane tree (Platanus x acreifolia). 
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Local Climate and Hydrology 

 Forest cover impacts urban climate by reducing surface temperature and 

absorbing runoff precipitation. Trees lower surface temperature in urban areas by shading 

solar radiation and transpiring water vapor into the atmosphere (Scott, Simpson, and 

McPherson 1999). Urban tree cover has the potential for energy conservation by 

shielding buildings from wind in the winter and providing shade in the summer (Parker 

1981). Methods of mapping these impacts have been incorporated into geospatial 

software tools marketed to forest management authorities (American Forests 2009). 

 Increased evapotranspiration by urban forests decreases temperature. The impact 

on the urban heat island effect has long been observed (Lowry 1967; Landsberg 1981). 

Nanjing, China claimed a decrease in temperature by 3ºC by planting 34 million trees in 

the late 1940s (EPA 1992). 

 Urban forests absorb and transpire water that would otherwise flow into storm 

drainage systems. Tree roots take up runoff and act as a reservoir for increased water 

flow into drainage systems. A modeling study in a Baltimore watershed showed that the 

proportion of rainfall intercepted by forest varied between 17-19% depending on the total 

canopy leaf area (Wang, Endreny, and Nowak 2008). An environmental advocacy group 

has estimated that each city-wide 5% increase in urban tree canopy reduces total storm 

runoff by 2% (American Forests 1999). However, these values have not been tested.   

 

Ecosystem Services 

 Some biophysical functions of urban forests can be defined as "ecosystem 

services", such as absorbing storm runoff absorption and air pollution mitigation. 
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Advocacy by environmental groups has calculated these services as worth billions of 

dollars annually in large metropolitan areas (American Forests 1999). In these estimates, 

a single tree with a crown radius of 10 feet can annually provide about $94 worth of 

water runoff services and $1.25 for air pollution removal. The hypothetical replacement 

cost of urban trees can also be calculated. Cities with a population of just 100,000 can 

contain trees valued this way at $4.8 million (Nowak, Crane, and Dwyer 2002). Cities 

such as the District of Columbia cite environmental impacts in forest management plans 

(D.C. Government 2010a, 2012d).  

 

Social and Public Impact of Urban Forests 

 Trees play a central role in determining the aesthetic nature of streetscapes and 

forming perceptions of desirability of urban neighborhoods. Neighborhoods with larger 

amounts of tree cover are viewed more positively by most residents (Ulrich 1986; 

Tyrväinen et al. 2005). Planning practices that incorporate significant amounts of urban 

tree cover are an important factor in the maintenance and increase of residential property 

values (Lullik 2000; Anderson and Cordell 1988). The visual appeal of tree cover is 

highly valued by urban residents, especially residential zones and areas with sidewalk-

accessible retail spaces. Urban tree cover impacts perceptions of neighborhood safety and 

can play a role in reducing street crime (Prow 1999; Donovan and Prestemon 2010). 

 Property values and educational attainment of residents have been found to be 

correlated to health and mortality of street trees (Torres 2011). Street tree mortality has 

also been compared to demographic factors and subjective assessment of private property 

maintenance (Clapp 2010). Tree cover changes within urban residential neighborhoods 

have been analyzed to identify demographic and physical characteristics associated with 
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high  tree mortality (Lowry, Baker, and Ramsey 2012). Other studies have examined how 

social factors interconnect with the physical urban structure (Grove, Troy, et al. 2006) 

and crime statistics (Troy, Grove, and O'Neil-Dunne 2012).  

  

Management of Urban Forest Resources 

Government Management 

 Urban jurisdictions have responded to aesthetic desires of residents and 

environmental concerns by devoting resources to maintaining tree cover. Management 

goals for most of large US cities aim to maximize forest cover. Because of their visibility, 

public street trees are a primary focus of these efforts. The District of Columbia contains 

more than 130,000 street trees (Casey Trees 2003), which are the responsibility of the 

Urban Forestry Administration (UFA), a unit of the Department of Transportation (D.C. 

Government 2007b, 2010b).   

 On private lands, local governments create and enforce regulations limiting the 

removal of trees. The DC comprehensive plan includes environmental protection 

elements designed to protect the city's tree cover. The plan also called for city-wide forest 

canopy goals to be set (D.C. Government 2006). In 2009, the DC Department of 

Environment and Department of Transportation jointly adopted the goal of achieving 

40% total tree canopy for the city by 2035 (D.C. Government 2010a).  

 Despite the demands in urban settings for healthy tree cover, resources devoted to 

tree maintenance significantly decreased in many large cities in the 1970s and 1980s 

(Tschantz and Sacamano 1994). In many cities during the 1990s renewed interest grew in 

maintaining urban forest resources (McPherson 1993; McPherson et al. 1997). Fiscal 

constraints on the District of Columbia government caused a decline in resources devoted 
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to tree management in the 1990s (Johannsen 1998). 

 Management authorities have developed efforts to map standing trees. A national 

survey of municipal street tree programs estimated that the United States has 60 million 

street trees, with about the same number of empty street spaces available for additional 

trees (Keilbaso et al. 1988). The National Capital Planning Commission has contracted 

for the mapping of all trees in the District of Columbia using air photography in the same 

period (D.C. Government 2007a).  

 OASIS, an intergovernmental collaboration in New York City, has collected and 

distributes field data on tree cover across the city. The DC Green Infrastructure 

Collaborative, modeled on OASIS, aims to map trees and "green" roofs throughout the 

District of Columbia (DCGIC 2007). The DC Department of Environment and 

Department of Planning developed a planning initiative for environmental policy that 

includes setting goals for increases in tree planting on public and private land (D.C. 

Government 2012d). 

 Government management of trees on public lands can play a role in tree cover 

changes. Due to their high visibility and impact on local scale tree cover, shade trees on 

public land adjacent to streets and sidewalks are a significant focus of interest.  

 

Non-Government Advocacy 

Non-governmental organizations engage in advocacy to promote maintenance and 

expansion of urban forests. Casey Trees, a non-profit organization located in Washington 

DC, engages in advocacy and education efforts focusing on the city's tree cover. This 

organization comprehensively surveyed Washington DC street trees in 2000 (Casey Trees 
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2003). 

 Many urban jurisdictions, including the majority of the nation's large cities, have 

chosen to follow guidelines of the "Tree City USA" program sponsored by the National 

Arbor Day Foundation. Tree City USA certification requires jurisdictions to declare a 

responsible agency for maintaining tree cover, create legal structure for this body to 

implement policy, and provide an annual tree maintenance budget of at least $2 per capita 

(Arbor Day Foundation 2007). At the county or local level, every jurisdiction in the 

Washington metropolitan area including the District of Columbia is a "Tree City".  The 

similar "Tree Campus USA" program was intended for universities (Arbor Day 

Foundation 2012). In the Washington metropolitan area, American University in 

northwest DC and the University of Maryland, College Park have joined the Tree 

Campus USA program.  

 Public awareness of urban forest dynamics in some cities was shaped by reports 

from the advocacy group American Forests showing significant declines in urban forests. 

Landsat-based observations of forest change in the District of Columbia showed a 40% 

decline in tree cover in the District of Columbia over a 30 year period (American Forests 

2002b). A similar methodology was applied to several other US urban areas, indicating 

an average 30% decline of tree cover for urban areas in the eastern United States 

(American Forests 2001, 2003b). The subpixel classification module in Erdas remote 

sensing software was used to perform these analyses (Erdas Inc. 2010). The methodology 

included no data calibration, accuracy assessment, or validation.  

 

Efforts to Set Goals for Urban Forest Cover 

 Urban jurisdictions set goals for the total amount of tree cover. Environmental 
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advocacy organizations have promoted targets calling for 40% total tree cover in urban 

areas east of the Mississippi, with 50% in suburban residential areas, 25% in urban 

residential areas, and 10-15% in urban cores (American Forests 2002b, 2003a). Roanoke, 

Virginia (Urban Forestry Task Force 2003) and Montgomery Country, Maryland 

(Montgomery County 2000) selected these targets as future goals for urban forest cover.  

 Several other cities have declared specific forest canopy goals (Table 1). Boston 

set a goal of planting 100,000 trees (City of Boston 2007) and Salt Lake City 1 million 

trees (Salt Lake City 2007). Beijing embarked on an ambitious program of planting 

"greenbelts" to increase urban forest cover, with limited success (Yang and Jinxing 

2007). Tucson, Arizona made plans for 500,000 new trees (McPherson and Haip 1989).  

Stuttgart, Germany developed a tree planting program with goals to increase forest cover 

in the 1970s (Akbari et al. 1992).  Los Angeles planned 5 million new trees in the 1990s 

(Akbari et al. 1992), but announced a more limited goal of 1 million in the subsequent 

decade (McPherson et al. 2007, 2011). 

 The development of realistic and achievable targets for urban forest canopy 

requires analysis of the space available for future tree growth (Raciti et al. 2006). 

Geospatial data have been used to determine the space available for forest canopy 

expansion in Vancouver, Washington (Kaler and Ray 2005) and Portland, Oregon 

(Poracsky and Lackner 2004). Urban forest goals for Los Angeles were evaluated using 

remote sensing data to show that physical space exists for 1.3 million new trees 

(McPherson et al. 2007), which would increase forest canopy from 21 to 33%. 

Combinations of high resolution remote sensing and GIS data were used to evaluate 

space available for forest canopy in Baltimore (Galvin, Grove, and O'Neil-Dunne 2006b), 



 

 20 

Annapolis (Galvin, Grove, and O'Neil-Dunne 2006a), and New York City (Grove, 

O'Neil-Dunne, et al. 2006).  

 

Table 1. Proposed Urban Tree Canopy Goals 
 

Reference City Mapping Method Goal (Current) 
Galvin et al. 2006b Baltimore IKONOS, GIS  45%   (20%) 
Kaler and Ray 2005 Vancouver WA LC stratification  28%   (20%) 
Poracky, Lackner 2004 Portland OR LC stratification  45%   (25%) 
Grove et al. 2006 New York FOS Toolbox  30%   (23%) 
McPherson et al. 2011 Los Angeles GIS placement  28%   (21%) 
O'Neil-Dunne 2009 Washington DC High res. class.  40%  (30-35%) 

 
 

 The DC comprehensive plan includes environmental protection elements designed 

to protect the city's tree cover (D.C. Government 2006). This plan, intended to guide 

future zoning and land use in the city, called for mapping of tree canopy and setting 

proportional canopy targets. A goal of 40% total tree canopy cover was set in 2009 (D.C. 

Government 2010a), which is aligned with a neighboring jurisdiction (Montgomery 

County 2000) and recommendations from environmental advocacy groups (Casey Trees 

2010). 

 Available space for new tree growth in the District of Columbia has been 

measured, showing the city can accommodate more than 20,000 additional street trees 

(Casey Trees 2003) and that space exists to theoretically double current tree cover to 67% 

land surface area (O'Neil-Dunne 2009, 2010). However, estimates of existing tree cover 

in these reports have not been validated or included accuracy assessments. The latter 

reports define tree cover as including shrubs, and therefore may overestimate tree cover 

compared to field surveys that exclude shrubs (Nowak et al. 2006).  
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Urban Tree Maintenance 

 The primary goals for urban forestry include maintaining trees for aesthetic 

reasons at the neighborhood scale. Maintaining trees in an urban setting requires attention 

to location of individual trees relative to surrounding impervious surfaces such as roads 

and sidewalks.  

 It is common for 10% of newly planted urban trees to die within a year of planting 

(Impens and Delcarte 1979).  New urban trees are particularly vulnerable to drought 

stress (Gilbertson and Bradshaw 1990) and competition from weeds (Gilbertson and 

Bradshaw 1985). Soil compaction can limit root growth, and water logging can be caused 

by compacted subsoil and poorly designed planting pits (Hunt, Bradshaw, and Walmsley 

1991). Salt runoff can cause significant problems for street trees in cities where it is used 

for de-icing (Dobson 1991). 

 Tree planting in urban environments can take place to support different types of 

urban forests for short-term or long-term rotation (Bradshaw, Hunt, and Walmsley 1995). 

Examples of short term rotation areas are industrial areas in need to rapidly growing tree 

cover with sufficient soil moisture and nutrients. Longer-term rotation would be more 

appropriate for publicly owned areas not likely to be developed. Tree species with slower 

growth rates would be appropriate for these areas (Bradshaw, Hunt, and Walmsley 1995). 

Species widely used for long term rotation in the District of Columbia include red maple 

(Acer rubrum), red oak (Quercus rubra) and London planetree (Platanus x acerifolia) 

(Bradshaw, Hunt, and Walmsley 1995).  
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The growing season for urban forests can be lengthened due to higher urban 

temperatures and maintenance. Compared to biomes not dominated by human activities, 

urban vegetation begins to green up earlier and enters dormancy later. Greening of urban 

forests can begin about 10 days earlier and end 20-25 days later than non-urban 

deciduous forests (Zhang et al. 2003).  

 

Management for Disease and Insect Control 

 Limiting defoliation caused by insects and disease is a primary aim of urban 

forest management. The gypsy moth (Lymantria dispar) has played a role in defoliation 

in the northeastern United States since its accidental release in Massachusetts in 1869. 

The larval stage of the insect consumes significant leaf material during outbreaks. 

Typical gypsy moth defoliation events occur over 2-4 years. Light gypsy moth 

defoliation can remove 30% of the canopy leaf area in a way that may not be visually 

detectable from ground observers, while more significant events can remove more than 

50% canopy leaf area (Hoover 2001). After defoliation, most deciduous trees produce 

new leaf buds and foliage in the following months. The refoliation events create stress for 

trees, which can be compounded in subsequent years of insect defoliation or climate 

impact. This can  negatively impact canopy area for the years following peak defoliation 

(Hoover 2001).  

 Local and federal government agencies take steps to control other impacts of 

disease and insects, including in the Washington DC area. Dutch elm disease is a fungal 

infection spread by the elm bark beetle. In the early 20th century there may have been 

more than 40,000 Ulmus trees on DC streets (Choukas-Bradley and Alexander 1987). 

Dutch elm disease has killed at least 25,000 since 1950, and by 2008 only about 8,200 
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elm trees remained on the city's streets (U.S. Forest Service 2010a). Since that time the 

DC Urban Forestry Administration has developed plans to replace dead trees with 

disease-resistant elms (D.C. Government 2007b). A 2009 survey by the DC Urban 

Forestry Administration and USDA Forest Service found extensive bacterial leaf scorch 

in maple, oak, and elm species (D.C. Government 2010b). Although ash species make up 

only a small percentage of DC street trees, in 2011 the USDA added the District of 

Columbia to the quarantine area to control spread of the Emerald Ash Borer (Agrilus 

planipennis) (D.C. Government 2011a). 

 

Mapping of Urban Tree Cover 

Estimates From Field Plot Observations 

The total amount of tree coverage in a city can be estimated by scaling up 

observations made at small survey plots. The most prominent examples are found in a 

series of modeling exercises performed by the U.S. Forest Service Northern Research 

Station that quantitatively estimated the proportional amount of tree cover in large North 

American cities (Nowak et al. 2000; Nowak, Crane, and Dwyer 2002; Nowak et al. 

2006). Tree cover estimates ranged from a minimum of 7% (Calgary) to a maximum of 

36% (Atlanta). New York was estimated to be 21% covered by tree canopy, while 

Baltimore and Washington DC were estimated to contain 25% and 29%, respectively. 

The model used in these analyses required randomly distributed 20x20 meter plots, 

stratified by land cover type (Nowak and Crane 2000). While broad characterizations of 

urban forest are possible using this approach, these methods do not produce the spatially 

explicit maps that could be used to investigate distribution of urban forest or how it 

changes through time. 
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 For analyses using plot-based survey data, tree data are collected within small 

plots and then extrapolated to a wider area. The number and location of plots varies 

between studies. The CityGreen software used for many regional analyses (American 

Forests 2009) includes only general guidance for choosing site locations or their spatial 

distribution. The i-Tree software package (U.S. Forest Service 2010b), developed as an 

enhancement of the UFORE model (Nowak and Crane 2000), requires randomly 

distributed plots 1/10 acre in size. Plots locations can be stratified by land cover type.  

 Washington DC's urban forest has been characterized using this approach (Nowak 

et al. 2006). Survey data were collected in summer 2004 at 201 plots stratified by land 

use as defined by the DC zoning code. Tree cover proportion was mapped for each 

census tract by calculating zoning types within each tract. Tree cover proportion varied 

between 0%-65% in different census tracts.  

 It is also possible to identify urban vegetation units and then establish camera 

stations for monitoring change (Rogers and Rowntree 1988), but this method is not 

practical for city-wide observations due to cost and complexity. 

 Aerial photography is useful for mapping urban forests because the imagery scale 

allows individual trees to be visible (Walton, Nowak, and Greenfield 2008). Randomly 

distributed plots can be observed and scaled up to the entire study area (Walton 2008a; 

Nowak et al. 1996). Using this approach, trees are counted at points on airphotos, which 

can be scaled up to an entire jurisdiction, resulting in city-wide estimates of tree cover. 

This approach has been applied for estimating urban tree cover in upstate New York 

cities for validation of satellite remote sensing (Walton 2008a). 
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 Spatially Explicit Observations 

 The use of remote sensing allows spatially explicit measurements to be made 

across the city and wider areas. By combining land cover proportions measured utilizing 

air photography and estimates of impervious surface area derived from observations of 

nighttime urban lights from the Defense Metrological Satellite Program, land surface 

within U.S. urban areas has been found to be evenly split between vegetation and 

impervious surfaces (Milesi, Running, et al. 2005).  

 Moderate resolution data can be used to map urban vegetation at a scale more 

useful for understanding the urban environment. Applications have included the use of 

spectral vegetation indices (Arthur-Hartranft, Carlson, and Clarke 2003; Gillies et al. 

2003), per-pixel statistical clustering (Guindon, Zhang, and Dillabaugh 2004; Weber and 

Puissant 2003), decision tree classifiers (Goetz et al. 2004; Goetz et al. 2003), and 

subpixel mixture models (Weng, Lu, and Schubring 2004; Small 2003; Wu 2004).  

 Land cover classification of Landsat data estimated tree cover between 1-16% 

within different sections of Indianapolis (Weng, Lu, and Schubring 2004). A comparison 

of several methods for mapping of urban tree cover in Syracuse, New York showed that 

tree cover estimates were generally consistent when mapped with Landsat data and a 

subpixel technique, per-pixel classification of high resolution data, and with field survey 

plots (Walton, Nowak, and Greenfield 2008). However, estimates derived with 

continental-scale data at 1 kilometer resolution were unreliable (Walton, Nowak, and 

Greenfield 2008). 

 Image texture information makes use of the variation of pixel values in 

surrounding pixels to better characterize land cover, which has been utilized to better 

discriminate cover types in spectrally complex urban areas (Zhang 2001; Myeong, 
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Hopkins, and Nowak 2001).  

 LIDAR scanning data can be incorporated into per-pixel classification. However, 

when this combination was applied with high resolution satellite data for mapping tree 

cover in Indianapolis, it did not improve classification accuracy above 80% (Baller 

2008). 

 

High Resolution Mapping 

 High spatial resolution data can be used to map urban land cover. In Montgomery 

County, Maryland high resolution multispectral data from the IKONOS satellite were 

used with a decision tree classifier to map tree cover, with 38% of this suburban 

landscape classified as tree canopy (Goetz et al. 2003). This map was used to train a 

regression tree classifier to map impervious surfaces and tree cover over the entire 

Chesapeake Bay watershed using Landsat data (Goetz et al. 2004).    

 Although the raw per-pixel accuracy of the Montgomery County classification 

was high, the total spatial extent of predicted tree cover (49,522 ha) was about 34% 

greater than tree cover mapped in the validation data (36,849 ha) (Goetz et al. 2003). This 

was likely due to the ability of the IKONOS data to detect very small groups of trees 

absent in the planimetric data used for validation, and spectral confusion between tree 

and grass cover. Urban and suburban tree cover was excluded from the training data, 

because the goal of the study was to identify fully forested areas instead of urban forests 

(Goetz et al. 2003). High spatial resolution can negatively impact accuracy of urban tree 

cover mapping because canopy density and structure can vary significantly between 

small pixels, while such variability is less evident in moderate resolution data such as 

Landsat (Goetz et al. 2003). The lack of high spatial resolution mid-infrared data in 
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sources such as IKONOS limits their use for discriminating tree and grass cover. 

 

Object-Oriented Techniques 

 Object-oriented classification of high resolution data is an approach that makes 

use of spatial information content of imagery. The shapes of objects such as trees can be 

used to identify them in remote sensing data. This type of approach has been applied for 

analysis of the urban forest of Baltimore (Galvin, Grove, and O'Neil-Dunne 2006b), New 

York City (Grove, O'Neil-Dunne, et al. 2006), and Dunedin, New Zealand (Mathieu, 

Freeman, and Aryal 2007). High resolution image data have been applied to urban forest 

mapping with eCognition software (Mathieu, Freeman, and Aryal 2007; Grove, O'Neil-

Dunne, et al. 2006). 

 Object-oriented approaches have proven useful for forest stand delineation 

(Radoux and Defourny 2007) and mapping of heterogeneous forests (Van Coille, 

Verbeke, and De Wulf 2007). One study found that the incorporation of spatial data was 

needed to discriminate individual tree crowns, mostly due to similar tree and grass 

responses in the near infrared (Hirschmugl et al. 2007). While feature extraction is useful 

with high resolution data, testing with hyperspectral data and QuickBird data have shown 

that spectral resolution may be more important than spatial resolution for urban 

applications (Gamba and Dell'Acqua 2007). A study of urban land cover in the Phoenix 

area found that object-oriented techniques applied to four-channel high resolution 

satellite data produced accurate classifications, although 15% of reference tree pixels 

were misclassified as grass (Myint et al. 2011).  

 Other data sources can be combined with object-oriented approaches. 

Incorporation of Light Detection and Ranging (LIDAR) data allowed parcels to be 
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classified in the Gwynns Falls watershed in Baltimore City and County, Maryland with 

92% accuracy (Zhou and Troy 2008). 

 Using high spatial resolution data and feature extraction techniques based on 

application of eCognition software (Definiens 2007), the city of Baltimore was mapped 

as being 20% covered by tree canopy, with more than one third of the total within 

residential areas (Galvin, Grove, and O'Neil-Dunne 2006b). The tree canopy of New 

York City was mapped in a similar way (Grove, O'Neil-Dunne, et al. 2006). This analysis 

revealed the city to be 24% covered by tree canopy, more than half of which was found in 

public parks and along sidewalks.  

 Object-oriented methods were applied to high resolution data to map tree cover in 

the District of Columbia (O'Neil-Dunne 2009). The results show details of the city's tree 

cover, with individual trees visible in the data. However, no accuracy assessment or 

validation was performed. Tree cover mapped in this way totaled 35% for DC, 

contrasting with 28-29% proportion as mapped by plot-based measurements (Howard and 

Alonzo 2009; Nowak et al. 2006). The differences may be due to shrub cover mapped as 

tree cover in the object-oriented results. Shrub cover mapped using plot surveys (Howard 

and Alonzo 2009; Nowak et al. 2006) is approximately equal to the difference in tree 

cover proportion measured with high resolution data. 

 High spatial resolution observations by themselves have some shortcomings for 

detecting urban forest dynamics due to limited temporal coverage and the lack of middle 

infrared measurements. The temporal coverage available from high resolution satellite 

data products begins only in 1999, while moderate resolution Landsat data extend to 

1984. While high resolution data and object-oriented techniques are useful for future 

urban forest monitoring, this research will focus on utilizing the Landsat data record to 
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investigate how urban forests have changed through time in the past. 

 

Urban Tree Cover Variability 

Challenges to Understanding Urban Forest Dynamics 

 Interannual variability in urban tree cover is not well understood. Comparing urban 

forest maps at different scales can lead to inaccurate assessments of standing tree cover 

and canopy dynamics. After a city-sponsored program to plant 3,000 new trees, the city 

of Roanoke, Virginia claimed an increase in total tree cover proportion from 32% to 48% 

between 2002-2008 (City of Roanoke 2010). However the claimed increase is unlikely, 

as each new tree would need to account for an average 1.4 acres of canopy. The data used 

to compare tree cover in 2002 and 2008 differ in source data and scale. The 2002 

assessment was a per-pixel classification of 4 meter resolution IKONOS satellite data 

(American Forests 2002a). The 2008 assessment was performed by the Virginia 

Department of Forestry, based on an object-oriented classification of 1 meter resolution 

air photography (Virginia Department of Forestry 2010).  

 Geospatial software products are used to assess the value and function of urban 

forests (i.e. (American Forests 2009). These tools incorporate spatial data on tree canopy 

in small sites, calculating the value of a group of trees for its shading, pollution removal, 

and reducing storm runoff. These results are then extrapolated to an entire city or 

metropolitan area (American Forests 2009). Despite being used by urban jurisdictions, 

the mapping portions of these tools have not been assessed in the scientific literature. 

 

Fine Scale Observations 

 An analysis of 20 U.S. cities showed tree cover declines in 19 cities, but the 
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observed declines were modest and exceeded the standard error of tree cover 

measurements in only two of the cities (Nowak and Greenfield 2012). This study utilized 

air photography surveys from two dates separated by 3-7 years. Baltimore was included 

in the study but Washington DC was not. For Baltimore, combined tree and shrub cover 

was observed to change from 30.4% to 28.5% between 2001-2005, a 1.9% change. This 

equates to annual tree cover loss for Baltimore of 0.48%. The mean annual decrease for 

all 20 cities was reported as 0.27%. However, the standard error for all measurements 

was approximately 1% (Nowak and Greenfield 2012). Uncertainty was statistically 

estimated but not derived from survey or remote sensing data.  

 Preliminary District of Columbia reports showed that city-wide tree cover 

changed by 2% between 2006-2011 (D.C. Government 2012a; O'Neil-Dunne 2012). 

Changes within different DC wards ranged from -8% in ward 3 to +7% in ward 4 (D.C. 

Government 2012a). These analyses were performed utilizing object-oriented 

classification (D.C. Government 2012a) and human image interpretation (O'Neil-Dunne 

2012). However, error assessments and validation were not performed and a specific 

descriptions of the methodologies were not reported (D.C. Government 2012a; O'Neil-

Dunne 2012). 

 An analysis of urban forest dynamics in Portland, Oregon showed that total tree 

cover changed from 25.1% to 26.3% between 1972-2002 (Poracsky and Lackner 2004). 

Unsupervised classification was applied to Landsat data on three dates (1972, 1991, 

2002). Proportional tree cover in 15% increments was classified in different parts of the 

city. Classification accuracy was not high (69%) compared to visually inspected 

airphotos. Calibration was not performed for the satellite remote sensing data. Although 

major forest removal may have been observable using these methods, it was not possible 
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to reliably confirm minor changes in urban forest canopy, because tree cover was 

classified in 15% increments and total canopy area was observed to change by less than 

5% (Poracsky and Lackner 2004).  

 Airphotos were interpreted to measure possible changes in tree cover within cities 

and towns in western upstate New York (Walton 2008a). Tree cover in 36 cities was 

mapped using manually interpreted points on airphotos. This was used as validation data 

for application of satellite remote sensing data. The airphoto validation data showed that 

6 of the populated places included in the analysis had slight increases in tree cover 

ranging between 5-10% from 1994-2002, The other 30 had no significant changes 

(Walton 2008a). The validation data were produced by interpretation of random points on 

airphotos. Therefore the results are estimates of total tree cover proportion instead of 

spatially explicit maps of changes in tree cover.  

 

Field Surveys 

 Plot-based estimates can be repeated at different times to describe changes in a 

city's tree cover. Tree cover observed at plots in 2004 were used to estimate total tree 

cover at 28.6% land surface for DC (Nowak et al. 2006). This analysis was repeated in 

2009 using the same 201 plots (Howard and Alonzo 2009), showing 28.1% total tree 

cover. Between 2004-2009 the number of trees was observed to increase from 1.93-2.88 

million, with standard error of 223,000 and 288,000, respectively. Most of the increase 

occurred in smaller size trees. Changes including proportional tree cover were not 

observed to be statistically significant (Howard and Alonzo 2009). Only the increase in 

number of trees exceeded standard error. However, such a significant increase in tree 

numbers in only five years has not been validated with other observations. 
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Change in Number and Size of Trees 

 Both the number of standing trees and change in the size of tree crowns are 

aspects of tree cover dynamics. Knowledge of the relative importance of these two 

factors would provide important guidance for forest managers when allocating resources 

for tree planting and maintenance. 

 Numbers of trees in urban neighborhoods fluctuates as trees are planted, removed, 

and replaced. The mortality of street trees can be as high a 34% within two years of 

planting (Nowak, McBride, and Beatty 1990). Mortality of newly planted street trees in 

the District of Columbia averages approximately 10% annually (D.C. Government 

2012c). Street trees planted by a non-governmental organization in the District of 

Columbia experienced 21% mortality within 3 years of planting (Torres 2011). 

 Tree cover change over 80 years observed with air photography indicated that the 

number of trees in arid Los Angeles grew by 250% between the 1920s and 2006 

(Gillespie et al. 2012). However, the low spatial resolution of historical air photography 

limited precision of historical tree measurements (Gillespie et al. 2012).  

 The growth of tree crowns would impact overall tree cover. Urban street trees can 

grow in height at an annual rate of 0.2 meters (Lukaszkiewicz and Kosmala 2008), but 

there are few measurements of urban tree crown fluctuations at high precision. One study 

measured mean growth of crown radius for unshaded Tilia trees in an urban setting at 0.1 

meter per year (Larsen and Kristoffersen 2002).  

 

Uncertainty of Urban Tree Cover Observations 

 Studies of urban forest dynamics have typically utilized statistical estimates of 
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uncertainty such as standard error to define precision of observations. In studies using 

field surveys (Nowak et al. 2006; Howard and Alonzo 2009), standard error was 

calculated as: 

         Equation 1 

 

where s is the sample standard deviation and n is the number of samples.  

 Studies using only standard error to estimate uncertainty without supporting data 

have reported high precision observations, including a change in the number of District of 

Columbia trees by approximately 32% over five years (Howard and Alonzo 2009; Nowak 

et al. 2006). However, a study that performed repeated measurements of urban tree 

counts using historical air photography found errors between 14%-43% compared to field 

surveys (Gillespie et al. 2012). 

 Studies of air photography (Nowak and Greenfield 2012; Gillespie et al. 2012) 

and satellite remote sensing (Walton, Nowak, and Greenfield 2008) have utilized a 

modified calculation for standard error: 

 

        Equation 2  

 

where p is the proportion of land surface occupied by a land cover type and n is the 

number of samples. Standard error calculated this way for tree cover observations in 

Baltimore was 1.0%, which was used as a threshold to report changes in city-wide tree 

cover of 1.9% (Nowak and Greenfield 2012). Standard error for tree cover measurements 

in Syracuse ranged between 1.8%-2.5% (Walton, Nowak, and Greenfield 2008). 
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However, these studies did not include independent observations to demonstrate that 

urban tree cover could be observed with 1% precision.  

 

Global and Continental Scale Observations 

 The use of global and continental scale remote sensing products has been 

explored for estimation of urban vegetation abundance. Tree cover proportion has been a 

widely used quantity for global scale studies. A global review showed that vegetation 

cover in urban areas varies from 76-82% from satellite observations taken 13 years apart 

(Zeng et al. 2003). 

 Data from the Advanced Very High Resolution Radiometer (AVHRR) sensor 

have been used to map global scale tree cover (Defries, Hansen, and Townshend 2000). 

At 8km resolution, it is possible to observe land cover variations exceeding 10%, but it 

cannot detect the minor changes likely caused by anthropogenic factors (Defries, Hansen, 

and Townshend 2000). Fractional forest cover has also been mapped for the 

conterminous US with 1km AVHRR data (Zhu and Evans 1994). Comparisons between 

both low resolution products show fractional forest cover ranging between 26-42% for 

the mid-Atlantic region of the US in 1991 (Zhu and Evans 1994; Defries, Hansen, and 

Townshend 2000).  

 Global scale AVHRR observations were used to estimate urban tree cover in the 

48 conterminous US states (Dwyer et al. 2000). This report estimated urban tree cover 

averaging 27.1% for US cities. However, the results underestimated tree cover in many 

urban areas, especially in smaller urban centers (Dwyer et al. 2000). 

 The Landsat-based National Land Cover Database (NLCD) 2001 produced by the 

USGS indicates land cover proportions in that year for the United States (Homer et al. 
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2007). These data have been found to not produce reliable estimates of urban tree cover 

in cities in upstate New York (Walton 2008a). Both the NLCD and AVHRR products 

were found to underestimate urban tree cover and cannot be used to develop reliable 

estimates of urban tree cover dynamics (Greenfield, Nowak, and Walton 2009). Urban 

vegetation changes are most likely not observable using AVHRR or NLCD data, and any 

significant trends are not possible to observe (Walton 2008a). 

 Data from the MOderate Resolution Imaging Spectroradiometer (MODIS) sensor 

has been used to produce global maps of fractional vegetation cover (Hansen et al. 2003). 

To make an assessment of course scale tree cover variability in the District of Columbia, 

MODIS tree cover products were downloaded from the Global Land Cover Facility 

(Hansen et al. 2006). These data indicate that tree cover within the District of Columbia 

varied between 19-21% of land surface area from 2000-2005. This estimate fluctuates 

about 10% below values based on field surveys and finer scale remote sensing. This 

underestimation of urban tree cover is similar to that found in another study attempting to 

apply global scale data to mapping urban vegetation (Walton 2008a). 

 Tree cover maps derived from MODIS data were not intended for application at 

the scale needed to detect forest changes within an urban jurisdiction. Better-calibrated 

data at a more appropriate scale were needed to understand how and where tree cover 

changed within the District of Columbia.  

 

Spectral Dynamics of Urban Vegetation 

 The spectral response of urban vegetation can be measured from satellite data to 

provide a measure of a city's "greenness". This can also provide broad measurements of 

changes over time. In New York City, the spectral signature of urban vegetation was 
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correlated with total number of standing trees as mapped by municipal management 

agencies (Small and Lu 2006).  Another study measured vegetation reflectance for New 

York City at three dates over a 20-year period (Small et al. 2010) and identified areas  

experiencing decreases and increases in vegetation spectral response. However, neither of 

the above studies included measurements of physical changes in tree cover. Although tree 

cover is one component of the spectral response of urban vegetation, turf grass present in 

cities would be expected to also play an important role.  

 

Spatial Variability of Urban Tree Cover Dynamics 

 Changes in tree cover would be expected to vary between areas of the city with 

different types of land use and population density. Knowledge of the spatial variability of 

urban tree cover dynamics would provide important tools for understanding links 

between those changes and the nature of the human-built urban structure.  

 Reviews of the spatial variability of forests within cities are limited, as most studies 

have utilized methodologies that produce results for an entire jurisdiction or large 

sections of a city. Previous studies have compared tree cover in different political sub-

units within the District of Columbia, but these did not investigate changes over time 

(Nowak et al. 2006; O'Neil-Dunne 2009). In Portland, Oregon some neighborhoods were 

observed to have slightly increased tree cover between 1991-2002 compared to other 

parts of the city (Poracsky and Lackner 2004). The study period roughly corresponded 

with a city tree planting program, but other fluctuations may have had larger impact as 

the majority of plantings took place in already well-forested neighborhoods (Poracsky 

and Lackner 2004).  

 



 

 37 

Remote Sensing Background 

Spectral Sensitivity 

 Advancing understanding of urban forests requires accurate mapping of urban tree 

cover. Remote sensing observations are well suited to perform analysis of urban land 

cover. The spectral response of trees in remote sensing data can be utilized to identify 

their presence and extent. Urban vegetation includes grass and trees, which contain 

different spectral responses due to shortwave infrared absorption and significant shade 

effects (Lu and Weng 2004). Tree cover has low reflectance in visible wavelengths and 

high reflectance in near infrared wavelengths, similar to the response seen with grass 

cover. Tree reflectance is lower than grass in shortwave infrared wavelengths, allowing a 

degree of discrimination between tree and grass in spectral data.  

 

Table 2.  Landsat spectral characteristics 
 
Band  Wavelength Spectrum Application 
Band 1 0.45-0.52 µm Visible, Blue Bathymetry, Ocean Color 

Band 2 0.52-0.60 µm Visible, Green Cartography, Vegetation  

Band 3 0.63-0.69 µm Visible, Red Cartography, Photosynthesis 

Band 4 0.76-0.90 µm Near Infrared Vegetation Mapping 

Band 5 1.55-1.75 µm Shortwave IR  Soil Moisture, Tree/Grass Discrimination 

Band 7 2.08-2.35 µm Shortwave IR Mineralogy, Tree/Grass Discrimination 

 
 

 

 Remote sensing data from the Thematic Mapper (TM) on the Landsat 5 satellite 

and the Enhanced Thematic Mapper plus (ETM+) on Landsat 7 are used in this study. 

Both sensors acquire observations of radiance in six channels ranging from 0.45-2.35 µm 

wavelengths (Table 2).  
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 Several features of trees are spectrally detectable using satellite remote sensing 

data. In visible wavelengths between 0.4-0.7 µm, tree cover can be discriminated by 

absorption and shadowing effects. This wavelength range is referred to as 

Photosythetically Active Radiation (PAR). Radiation between 0.6-0.7 µm, seen as the 

color red in human vision, is strongly absorbed by chlorophyll pigment. In near infrared 

wavelengths longer than 0.7 µm, vegetation reflects strongly due to refractive effects of 

cell walls within plant leaves. In shortwave infrared wavelengths, tree cover reflects less 

strongly than grass due to absorption by leaf water (Woolley 1971), and shadowing of 

stems and branches (Ranson and Daughtry 1987).  

 High spatial resolution sensors on satellite platforms such as IKONOS provide 

observations using similar visible and near infrared channels that can be compared 

between sensors (Song 2004), although not including shortwave infrared. Significant 

differences in radiometric response have been demonstrated between Landsat and 

IKONOS data (Goward et al. 2003). Calibration sites should be selected near the 

classification area due to spectral variation within each satellite scene, preventing the use 

of calibration sites spatially far removed from mapping targets (Olthof and Fraser 2007).  

 Landsat data have been applied in past studies to map urban land cover change 

and tropical deforestation. Collections of Landsat data were utilized in systematic 

mapping of forest removal in the Amazon Basin (INPE 2000) and in Bolivia (Steininger 

et al. 2000). Landsat observations are scaled appropriately to detect tropical deforestation, 

and comprehensive Landsat coverage of large areas has been shown to be useful for 

accurate mapping of deforestation (Tucker and Townshend 2000).  

 Time series Landsat data have been used to investigate forest disturbance history 

(Cohen, Yang, and Kennedy 2010; Kennedy, Yang, and Cohen 2010) and understanding 
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and predicting forest structure change (Pflugmacher, Cohen, and Kennedy 2012). Time 

series Landsat data have been developed and applied for understanding forest dynamics 

over large areas (Huang, Goward, Masek, Gao, et al. 2009; Goward et al. 2008).  

 

Subpixel Land Cover Estimation 

 Spatial extent of tree canopy within pixels can be detected using remote sensing 

data. Although the spatial heterogeneity of urban areas presents challenges for mapping 

urban forests, remote sensing techniques can be used to estimate the prevalence of land 

cover types within pixels.  

 Transformations of remote sensing data have been used to convert reflectance 

values into estimates of vegetation proportions within urban spaces. Applications for 

urban areas have included combinations of multiple affine transformations to detect land 

cover types (Zha, Gao, and Ni 2003), specific transformations to investigate urban 

spectral properties (Goward and Wharton 1984), and principal components to indicate 

spectral dynamics (Small 2002). Spectral mixture analysis (SMA) techniques are 

mathematically similar and are used to determine the proportional amount of land cover 

types within single pixels (Settle and Drake 1993). This approach has a long history of 

use with remote sensing data (Horwitz et al. 1971). Each pixel in SMA is assumed to 

consist of a combination of different land cover types with distinct spectral responses, or 

"endmembers". Spectral data are transformed to estimate the prevalence of those land 

cover types within each pixel: 

       Equation 3 
 
 
where i is the number of spectral channels; k = 1,....,n is the number if endmembers, Ri is 
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the spectral reflectance of band i in a pixel containing one or more endmembers; fk is the 

proportion of endmember k within that pixel; Rik is the spectral reflectance of endmember 

k within that pixel in band i; εi is a error term. Application of SMA requires that the 

number of endmembers be equal or less than the number of spectral channels. 

Linear SMA can be applied to estimate the abundance of vegetation cover in 

dense urban areas (Wu 2004; Small 2001). Assuming a generalized three-endmember 

urban spectral signature, SMA techniques can be used to estimate vegetation and 

impervious fractions (Weng and Lu 2007). 

When applied to Landsat and IKONOS data, the SMA approach can provide 

measures of subpixel urban vegetation, although tree and grass remain difficult to 

separate without data in shortwave IR wavelengths (Song 2007). Application of SMA is 

particularly difficult in urban areas due to their spatial and spectral heterogeneity. 

Multiple scattering within pixels can introduce significant nonlinearity for unmixing 

vegetation endmembers (Borel and Gerstl 1994).  

 

Spectral Variability 

A significant challenge facing application of SMA is the variation of spectral 

response of each land cover component (Somers et al. 2011). Because SMA is trained on 

spectral data assumed to be “pure” examples of the substance in question, the choice of 

training data can be an important source of uncertainty and error. This is especially true 

for impervious surfaces, which have a large range of reflectance values (Herold et al. 

2004). Variation in spectral response can impact SMA results even when little has 

changed in the physical proportion of land cover types. This can lead to uncertainty 

between land cover dynamics or spectral variability of invariant land cover.    
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  Spectral patterns can be successfully discriminated using principal components 

(Wu 2004) and other noise-reduction algorithms (Small 2001) applied to remote sensing 

data before application of SMA methods. In this way, urban landscape can be defined by 

proportion cover of vegetation, high albedo, and low albedo surfaces (Small 2002, 2001). 

For these applications, endmembers are described by spectral response so they do not 

correspond directly to physical components of the urban environment.  

 Nonlinear mixture models can be used with SMA to account for nonlinear 

responses from vegetation abundance (Somers, Cools, et al. 2009; Chen and Vierling 

2006). However, the nature of spectral response from varying abundance of different 

vegetation cover is not well known, and the majority of studies utilizing SMA methods 

have applied linear mixture models (Somers et al. 2011).   

 Studies have also selected a stable subset of endmember spectral features, to 

identify only spectral regions less impacted by spectral variability (Asner and Lobell 

2000). Utilizing only stable spectral responses in SMA can increase accuracy of subpixel 

vegetation cover in orchards (Somers et al. 2010). 

 Differential weighting of spectral bands can be applied to SMA to increase 

separability of land cover types (Chang and Ji 2006; Somers, Delalieux, et al. 2009). 

These methods make use of the fact that responses for many land cover types are more 

divergent in infrared wavelengths than visible wavelengths. Similar in concept are 

methods that perform SMA on transformations of the original spectral data. Urban 

spectral responses, when normalized to each channel's mean, can improve separability of 

land cover fractions (Wu 2004; Wu and Murray 2003). However this reduces the 

information content of the original data. It is also possible to use the calculated second 

derivative of spectral response as a way to better separate land cover fractions (Zhang, 
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Rivard, and Sanchez-Azofeifa 2004). An iterative procedure can be applied to select 

optimal endmember spectra from a larger spectral library (Rogge et al. 2006). SMA can 

incorporate models of light transfer within tree canopy to better estimate forest cover 

proportion (Peddle and Smith 2005) and reduce soil moisture impact on unmixing results 

(Somers, Delalieux, et al. 2009). Multiple endmembers can be included in calculations 

for each component abundance, iteratively identifying the best fit model for each pixel 

(Roberts et al. 1998). This approach has been applied for subpixel mapping of urban land 

cover (Powell et al. 2007; Rashed et al. 2003).  

Another way to address the problem of endmember variation is to incorporate 

probability into the SMA model. Bayesian techniques assess the state of knowledge 

instead of assessing knowledge of a natural system. Probabilities are assigned to the 

correctness of land cover fractions, making it possible to assess the reliability of SMA 

results (Song 2005). Testing this approach with simulated remote sensing data has shown 

promise for using probability density functions instead of constant spectral endmembers 

(Song 2007).  

 

Support Vector Methods - Classification 

 Support Vector Machines (SVM) are a group of applications for classification 

developed from machine learning theory. When applied to remote sensing data, 

classification techniques aim to determine land cover type of each pixel. Data points near 

the margins of each class ("support vectors") are used to determine class boundaries 

(Vapnik 1995) with maximal distance in feature space between support vectors. SVM 

applied to remote sensing data are relatively insensitive to data dimensionality (Pal and 

Mather 2004), and require only small training sets (Foody and Mathur 2004; Foody et al. 
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2006; Huang, Davis, and Townshend 2002).  

  Because they do not assume a statistical distribution for training data, Support 

Vector Machines can be superior at identifying spectrally complex signatures compared 

to maximum likelihood or neural network classifiers (Pal and Mather 2005; Huang, 

Davis, and Townshend 2002). SVM has been demonstrated to provide higher accuracy 

than decision trees (Chan, Huang, and DeFries 2001) and can outperform a neural 

network classification (Foody and Mather 2004). SVM can be used to automate forest 

classification at high accuracy (Huang et al. 2008), and can be applied to nighttime light 

data to map extent of urban areas (Cao et al. 2009). 

 For urban areas, hyperspectral classifications can use a fuzzy possibilitic model 

(Chanussot, Benediktsson, and Fauvel 2006) or methods incorporating spatial 

information (Wang, Waske, and Benediktsson 2009) to develop multiple per-pixel 

solutions that are then compared for final results. An SVM classification was performed 

on airborne hyperspectral data for three urban areas including central Washington DC 

with moderate classification accuracy (Fauvel, Chanussot, and Benediktsson 2009a).  

 Classification with SVM can be used in situations with large amounts of 

hyperspectral remote sensing data but limited training data (Chi et al. 2009; Benediktsson 

et al. 2008). SVM can be used for classification of hyperspectral data to process the large 

amounts of data, and applied for its better tolerance to noise (Plaza et al. 2009). Accuracy 

of SVM per-pixel classification of hyperspectral data has been found to be higher than 

results from other methods for urban land surfaces (Waske et al. 2010). SVM can 

incorporate multispectral and radar data for per-pixel land cover classification (Waske 

and Benediktsson 2007).  

 Spatial data can also be incorporated with SVM for land cover classification 



 

 44 

(Fauvel, Chanussot, and Benediktsson 2009b), which can improve per-pixel classification 

accuracy approximately 4% in urban areas (Fauvel et al. 2008). The SVM approach can 

be separated into a multi-stage process, with a classification followed by application of 

spatial data to refine results (Tarabalka, Chanussot, and Benediktsson 2009; Tarabalka, 

Benediktsson, and Chanussot 2009). This can increase SVM per-pixel classification 

accuracy from 81% to 91% (Tarabalka et al. 2010).  

 

Support Vector Methods - Land Cover Proportion 

 Support vector machines can also be applied for estimating the subpixel 

proportion of land cover types. Margins in linear SVM are mathematically similar to 

linear SMA, and can produce identical results in most cases (Brown, Gunn, and Lewis 

1999).  A linear SMA classification has the property of defining the maximum margin 

between “pure” pixels, as with SVM. The alternative approach of Support Vector 

Regression (SVR) can be applied to data indicating the actual mixtures instead of “pure” 

pixels, providing a more flexible approach (Brown, Lewis, and Gunn 2000).  

 Support vector regression (SVR) is an application of support vector machines for 

linear and nonlinear regression, which is useful for estimating areas within pixels (Smola 

and Scholkopf 2004). SVR requires that spectral data be transformed into high-dimension 

feature space. As with support vector machine classification, SVR finds the optimal 

solution using data points (“support vectors”) to define the class or land cover type. 

When applying SVR, data within a pre-determined zone are ignored when calculating the 

regression relationship. The norm is then minimized for a given margin width: 
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      Equation 4 

 

where i = 1,....,l is the number of support vectors; ζ is the distance of support vectors 

from the "tube" margin and C is a cost parameter to determine closeness of fit.  

 

 
 
 

Figure 1. Support vector regression with hypothetical two-dimensional data.  
Solid line indicates the regression model and dashed lines show the margins of the 

insensitive zone. 
 

 Support vector regression uses a subset of points to calculate the regression model 

(Figure 1). Only data points outside the insensitive zone (width indicated by ε) are used 

in calculating the regression model. The goal of SVR is to minimize ζ, the distance of 

each of these support vectors. The width of the insensitive zone ε can be adjusted to 

produce a close fit or to enable better generalization. As with support vector machine 

classification, the goal is to characterize a set of data based on its "shape" in multi-

dimensional space, instead of using a statistical measure for the "center" of the training 
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data.  

 Other machine learning algorithms have been developed for subpixel area 

estimation. The proprietary Cubist algorithm (Rulequest Research 2008) was used to 

produce the USGS National Land Cover Database (Homer et al. 2007). The Random 

Forests algorithm (Breiman 2001) is a model aggregating approach that has been applied 

to classification of agricultural crops in remotely sensed data (Pal 2005). SVR has been 

found to produce similar but more accurate estimates of urban tree cover when compared 

to Cubist and Random Forests (Walton 2008b).  

 Both SMA and SVR share the goal of estimating the fractional amount of a land 

cover type based on training data. However they have several important differences. 

Compared to SMA, SVR methods are less sensitive to noise and exhibit superior 

generalization properties. This is especially true for fractional land cover estimation. 

SMA uses training data only at “pure” sites 100% covered by the land cover type, and the 

spectral homogeneity of those sites is assumed. This places a significant limitation on 

SMA, because complete spectral purity is rarely to be found in satellite remote sensing 

data especially in urban settings. In SVR, training data can consist of the full range of the 

land cover type, from 0%-100%. This makes the algorithm sensitive to spectral changes 

in that full range, allowing SVR to potentially perform better at estimating fractional tree 

cover in spectrally complex urban settings.  

 

Support Vector Methods - Kernel and Parameters 

 The target data must be transformed into feature space before application of 

support vector regression or classification. This transformation is usually nonlinear. 

Different kernel functions are available for this task. The Radial Basis Function (RBF), 
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sigmoid, and polynomial kernels have been applied for support vector classification. The 

RBF kernel can provide higher and more stable SVM classification accuracy than the 

polynomial kernel, especially using a low order polynomial (Huang, Davis, and 

Townshend 2002). The application of SVM for classification has been experimented with 

custom designed kernels to produce classification maps that appear "cleaner", but an 

accuracy difference was not observed (Mercier and Lennon 2003). The RBF kernel was 

selected for application of SVR in a previous study of urban forest cover (Walton 2008b). 

The RBF kernel is: 

 

    k(xi, xj) = exp(-γ||xi - xj||2)   Equation 5 

 

where xi, xj  are data points and γ is a defined parameter.   

 Two other parameters must be defined for SVR (Equation 4), the C (cost) 

parameter and ε, which defines the width of the insensitive zone. The cost parameter 

defines the trade-off between allowing errors and forcing closeness of fit. Higher values 

of C increase the cost of inaccurate predictions and forces a close fit that may not 

generalize well. Higher values of ε make it possible for the regression to include or 

exclude possible support vectors.  

 Parameter values can be selected directly from the training data (Cherkassy and 

Ma 2002) and optimization search algorithms can be used to determine optimal SVR 

parameters (Üstün et al. 2005). Comparison of multiple approaches for selecting 

parameters has shown that high accuracy can be achieved with minor differences in 

computational complexity (Villa et al. 2008).  

 For most applications of SVR, a cross-validation procedure should be used to find 
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the optimal parameter values (Stone 1974). In implementing parameter cross-validation, 

values for each parameter are tested iteratively within a specified range. A random 

selection of the training data is used to test the regression with initially proposed 

parameter values. Parameter values are then tested in each direction from the first value. 

If the fit of the model improves, the new values are defined and the test is repeated. This 

procedure is run iteratively, with the parameter values altered after each run until the best 

accuracy is found.  

 While support vector classification is implemented as part of some remote sensing 

software packages, parameter cross-validation and support vector regression are not 

included in currently available commercial remote sensing software.  

 

Summary 

 Tree cover in urban areas has important influence on the urban physical and social 

environment. Interest in urban forests has spurred governments and non-governmental 

organizations to devote resources to maintaining, examining, and expanding urban tree 

cover. Urban vegetation has been observed utilizing field surveys and remote sensing 

data. Many studies has analyzed the proportion of urban land surface covered by 

vegetation. Relatively few studies has focused on tree cover dynamics in urban areas. 

Remote sensing techniques have been applied for mapping urban tree cover, including 

spectral mixture analysis for subpixel land cover estimation. Support vector regression, 

based on machine learning classification techniques, shows promise for estimating land 

cover proportions but has not been tested specifically for measuring urban tree cover. 
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CHAPTER III 

STUDY AREA: THE DISTRICT OF COLUMBIA 

 

Urban Development 

 Laid out in the 1790s as the United States capital, Washington DC lies at the 

confluence of the Potomac and Anacostia Rivers (Figure 2). In the first half of the 20th 

century the world's largest urban concentration developed in the northeastern United 

States, with Washington DC as its southern node (Tunnard 1958; Gottmann 1961). 

Despite rapid urbanization this area still contained forests and agriculture that covered 

more than 80% of the region in the 1950s (Gottmann 1961). By the next decade forests 

still covered about 50% of the northeastern United States (Von Eckardt 1964). Even as 

late as 1970, the urbanized northeastern United States contained approximately 20% 

impervious surfaces, the remainder being split evenly between forest and agriculture 

(Browning 1974).  

 Regional spatial growth of the Washington metropolitan area continued through 

the late 20th century. Multitemporal comparisons showed a 61% increase in developed 

land in the Chesapeake Bay watershed between 1990-2000, with about one third of the 

growth occurring on forested land (Jantz, Goetz, and Jantz 2005).   

 The second half of the 20th century was a period of declining population in the 

District of Columbia itself. Economic and population growth diffused into the 

surrounding suburbs, a process experienced in most US metropolitan areas. From 1970 to 

2005 the District of Columbia lost about 27% of its population, from 756,000 to 550,000 

(U.S. Census 2007). The District of Columbia population increased in the following 
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years, exceeding 601,000 by 2010 (U.S. Census 2011). 

 

Figure 2. District of Columbia map.  
 

DC Wards 

 The District of Columbia is divided into eight wards for purposes of political 

representation in the DC Council, Advisory Neighborhood Commissions (ANCs), and the 

elected public school board (Figure 3). Wards are used for allocating and recording 

municipal services such as parking restrictions, property records, real property taxation, 
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and public schools. ANCs are elected neighborhood boards playing advisory roles in 

reviewing developments such as zoning adjustments, construction plans, and alcohol 

permits. Ward boundaries are redrawn after each US census to reflect population shifts, 

as each is required to have approximately equal population. The ward boundaries used in 

this research were in effect beginning in 2002. For consistency these boundaries were 

applied for all analysis in this research, although actual ward boundaries shifted after 

each census.  

 

Figure 3. DC Wards 
 

 DC wards contain significant socioeconomic diversity (Table 3). Ward 3 has long 

had the highest income levels compared to other wards. Per capita income in ward 3 was 

more than twice that of any other ward during 1984-2004 (D.C. Government 2002a; U.S. 

Census 2011). Property values were highest in wards 3 and ward 2, which includes the 

downtown area. Median residential property values in ward 3 exceeded property values 

in wards 4 and 5 by 200%, and wards 7 and 8 by 400% (Tatian 2007). Owner occupation 
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of residential property lots exceeds 80% in some neighborhood in wards 3 and 4, but 

averages below 30% in wards 7 and 8 (Tatian 2007).  

 
Table 3.  DC ward population and housing data from 2000 U.S. Census.  

 
Population Housing Units Ward 

Total  per 
ha. 

Change 
1980-2000  

Mean 
Income  
($) 

Median 
Home 
Value ($) 

Occupied 
by Owner  

Detached  
 

Vacant 
 

1 73,364 113 +2.3 % 23,760 171,295 28.4 % 2.5 % 9.3 % 
2 68,869 46 +8.4 % 42,660 451,419 32.2 % 3.0 % 8.1 % 
3 73,718 30 +9.4 % 58,584 448,957 49.4 % 26.7 % 4.0 % 
4 75,179 31 -10.2 % 27,075 163,800 61.7 % 29.4 % 6.4 % 
5 71,440 31 -20.7 % 19,173 130,235 49.0 % 17.8 % 12.8 % 
6 68,035 25 -12.3 % 28,636 169,802 41.0 % 3.4 % 10.0 % 
7 70,527 44 -24.0 % 16,956 104,088 41.1 % 18.0 % 12.7 % 
8 70,927 31 -26.0 % 12,630 97,837 21.4 % 6.2 % 15.9 % 

 
 

 A study of socioeconomic factors across eight wards in the District of Columbia 

found that rent costs and educational attainment of residents were the socioeconomic 

factors most highly correlated to street tree health and mortality (Torres 2011). This 

analysis was performed using census data that included mean income, unemployment 

rates, and percentage of youth population. It did not extend to other demographic factors 

possibly linked to the state of tree cover on private property, such as rates of owner 

occupation and property vacancy.  

 

Land Ownership 

 The largest landowners in the District of Columbia are the federal and District 

governments, which collectively own 57% of the city's land surface (D.C. Government 

2010b). The federal government alone owns 59% of all nonresidential land in the District 

of Columbia (Tatian 2007). The federal and DC governments collectively own 67% of 
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nonresidential land in ward 8, the highest proportion among DC wards (Tatian 2007).  

 Several entities in the District of Columbia hold ownership of significant parts of 

the city’s forests. The federal government holds 43% of total tree cover area and the DC 

government holds just 7%, with the remainder in private hands (O'Neil-Dunne 2010). 

The DC Parks Department oversees about 800 acres and maintains a small tree 

management budget (D.C. Government 2010a). 

 The National Park Service (NPS) oversees densely forested Rock Creek Park and 

Fort Dupont Park. These two park units alone account for 5% of the city's land surface 

area and about 18% of the city tree area (O'Neil-Dunne 2010). While there has been no 

systematic monitoring of canopy changes, NPS staff has collected data indicating number 

of trees lost and replaced. However only limited data for Rock Creek are available during 

1984-2004. The management goal of the NPS is to limit tree losses to 3% annually 

(Defeo 2011). Tree mortality can be higher in stressed sites. On NPS land within the 

urban core, losses can be as high as 6% within 6 years (Defeo 2011). 

 Data collected by NPS indicates interannual variability of tree losses. For 

example, between 2009-2010 1.3% of elm trees were lost on NPS land. Between 2010-

2011, 2.6% elms were lost (Defeo 2011). NPS-maintained cherry trees around the 

National Mall and tidal basin averaged 50-year life spans when they were planted. In 

recent years the average life span is approximately 35 years (Defeo 2011). While these 

data were not collected during the 1984-2004 period of the current study, they provide 

insight into possible canopy impact.   

 

Forests of the District of Columbia 

 Forests in the District of Columbia contain more than 300 tree species (Choukas-
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Bradley and Alexander 1987). Forests of the District of Columbia were analyzed in 2004 

using field plots and city-wide maps of land cover types (Nowak et al. 2006). This 

analysis estimated the total number of trees at 1,928,000, covering 28.6% of DC's land 

area. Of the total number of the standing trees, 61% were in public parks. The remainder 

stood in heterogeneous land cover environments typical of an urban setting (Nowak et al. 

2006). This forest cover removed approximately 540 tons of particulate pollution 

annually. Carbon storage totaled 523,000 tons, with 16,200 tons off gross carbon 

sequestration annually. The most common species were American beech (Fagus 

grandifolia) (14.1 %), red maple (Acer rubrum) (6.4 %), boxelder (Acer negundo) (5.5 

%), tulip tree (Liriodendron tulipifera)  (5.2 %), and flowering dogwood (Cornus florida)  

(3.7 %). 56% of all trees were 6 inches or less in diameter. Less than 3% of trees had a 

diameter greater than 30 inches (Nowak et al. 2006). This analysis was repeated in 2009 

using the same methodology, showing minor changes in tree cover (Howard and Alonzo 

2009).  

 Tree data for the District of Columbia are available from plot-based surveys 

(Nowak et al. 2006), the District government's GIS data online access system (D.C. 

Government 2007a), and street tree surveys (Casey Trees 2003).  The plot-based surveys 

estimate total number of trees within park areas, the DC GIS data include counts of 

standing trees in private property outside parks, and the Casey Trees data count number 

of trees on public streets. Adding the three sources indicates the proportion of standing 

trees within park areas, private property, and public streets (Figure 4).   
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Figure 4. Proportion of trees in DC and low density residential zones. 

 

 

 The total number of trees in federal and DC park lands was estimated from plot-

based measurements at 1.18 million, or 61% of the total. Most of the remaining trees in 

the DC GIS data (32% of the total) were standing within private property lots. Within low 

density residential zones as defined by the DC zoning code, 72% of standing trees in the 

DC GIS data were located within private property. The remaining trees were located 

within the right-of-way for public streets.    

 Broad observations of the species diversity of managed trees are possible by 

analyzing data collected on street trees. In the late 19th century street trees in the 

urbanized part of Washington DC were dominated by maples (Acer spp.), which 

comprised 39% of street trees at that time (Greene 1880). Poplar (Populus grandidentata) 

and linden (Tilia americana) each comprised about 10% of the city's street trees (Greene 

1880).  

 In 2002, maple remained a dominant species of street tree along with oak (Quercus 

spp.), each of which comprised 35% of street trees (Casey Trees 2003). Another 14% 

were Elm (Ulmus spp.), while Ginkgo (Ginkgo biloba) and Zelkova (Zelkova serrata) 

each comprised about 4% of street trees (Casey Trees 2003) and sycamore/plane tree 

(Platanus spp.) comprised about 2%. The remaining 6% of the District's street trees 
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included species of dogwood, ash, locust, cherry, pear, beech, cedar, spruce and pine. A 

few examples of redwood, cypress, and hemlock were found (Casey Trees 2003). By 

2010, the proportion of maples and oak had changed to 38% and 31%, respectively 

(Corletta 2010). In recent years the District of Columbia Urban Forestry Administration 

has attempted to diversify street trees by reducing maple planting and increasing 

purchases of dozens of other species including ginkgo, dawn redwood, willow oak, and 

locust (D.C. Government 2012c). 

 

Tree Cover Variability 

 Recent tree cover change in the District of Columbia has been measured utilizing 

field survey plots and high resolution satellite data. Reports suggest minor city-wide 

changes in tree cover but the accuracy of these estimates was not evaluated. Plot-based 

field surveys estimated that total District of Columbia tree cover varied 28.6-28.1% 

between 2004 and 2009 (Howard and Alonzo 2009). A District of Columbia government 

report from the Urban Forest Administration utilized high resolution remote sensing data 

and object-oriented classification to estimate that city-wide tree cover increased 2.1% 

between 2006-2011 (D.C. Government 2012a). Another analysis of the same remote 

sensing data, performed at an independent laboratory under contract by the non-

governmental organization Casey Trees, utilized human image interpretation to estimate 

that tree cover decreased approximately 2% between the same two years (O'Neil-Dunne 

2012). Error assessments, validation, and specific descriptions of the methodology were 

not included in either of these reports. The two reports are potentially of concern for 

District of Columbia management and policy authorities because they indicate opposite 

trends in tree cover and contain no error assessments.  
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District of Columbia Forest Planning and Management  

Planning and Management History 

 The layout of Washington DC was based on plans developed by Peter L'Enfant, 

which called for a grid system of streets overlain by diagonal wide avenues. The Enfant 

plans included descriptions of the major avenues were to be lined with shade trees and 

wide enough to accommodate these trees. However, specific numbers or types of tree 

were not described (Choukas-Bradley and Alexander 1987; Berg 2008). 

 The earliest significant government effort at planting trees in the public spaces 

included in the L'Enfant plans took place during the Jefferson administration, when 

poplar trees were planted along on Pennsylvania Ave. between the Capitol and White 

House (Choukas-Bradley and Alexander 1987). In the 1870s the District government 

planted about 60,000 trees on streets and in parks.  

 In 1901 a U.S. Senate commission was formed to develop a vision for the 

monumental core of the city for the 20th century. The commission was chaired by 

Senator James McMillan and included landscape architect Frederick Law Olmsted, Jr., 

whose father had redesigned the U.S. Capitol grounds in 1873 (Gutheim and Lee 2006). 

The plan the commission developed, later known as the McMillan Plan, called for 

removing railways in the center of the city, extending the National Mall to the current 

locations of the Lincoln and Jefferson Memorials, and new landscaping in this central 

area. Without calling for specific numbers of trees, the Mall landscaping was to include 

tree cover along the length of the east-west axis of the Mall (Choukas-Bradley and 

Alexander 1987; Gutheim and Lee 2006). Notable tree planting programs in the 20th 

century include the donation of Japanese cherry trees in 1912 and plantings performed 
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under the umbrella of the Committee for a More Beautiful Capital in the 1960s (Choukas-

Bradley and Alexander 1987). The L'Enfant street network, the Olmsted capitol grounds 

design, and the McMillan Plan for the National Mall remain largely intact and still form 

the structure of central Washington DC. 

 Multiple agencies with the District of Columbia government have held tree 

maintenance responsibilities (Table 4). Since the 1950s an independent unit of the DC 

Department of Transportation has held responsibility for tree maintenance along the city's 

streets and roads. In 1972-1975 the Tree and Landscape Division of the DC 

Government's Highways and Traffic Department initiated a computerized management 

inventory system for street trees known as the Management Information System for 

TREes (MISTRE) (Johannsen 1975). Data were stored on paper cards and processed 

utilizing a computer operated for the Washington Area Law Enforcement System. The 

District of Columbia was the only major American city to develop such a system at the 

time (Johannsen 1998). The DC Department of Environment (DDOE) was created in 

2006. In 2010 it took responsibility for managing storm water runoff and began to take 

responsibility for DC government policy related to urban forest management (D.C. 

Government 2010c, 2011b). 

 

Table 4. DC Government agencies with tree responsibilities. 
 

Agency Dates Responsibilities 
Tree and Landscape Division 1950-1998 Street trees, highways, park landscaping 
Urban Forestry Administration 1998 - Street trees, private property inspections 
Department of Environment 2006 - Government-wide policy  
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Street Tree Maintenance 

 District of Columbia government agencies experienced changes in status and 

responsibility for street tree management. Until 1998 the Tree and Landscape Division 

(TLD) was responsible for street trees and utilized the MISTRE street tree inventory 

system. In the 1970s the TLD removed an average of approximately 3,000 dead or dying 

street trees annually, or between 2-3% of all street trees per year (Johannsen 1975). An 

average of approximately 3,000 trees continued to be planted and replaced annually by 

the TLD through the early 1980s (Johannsen 1998). 

 Management activity slowed significantly in the subsequent decade. The District 

of Columbia government experienced serious financial constraints during the 1990s and 

was placed under direct federal oversight beginning in 1995. TLD budgets for street tree 

maintenance decreased by approximately 80% between 1990-1993 (D.C. Government 

2002b). In 1994 only one maintenance contract was funded for topping of minimal 

numbers of dead trees (D.C. Government 2002b). During the early 1990s, 3,000-4,000 

street trees were lost annually to age or other causes and only approximately 500 were 

being replaced annually (Johannsen 1998). In the early 1990s the MISTRE inventory 

system was not actively updated and the data were not archived for later retrieval 

(Johannsen 1998). No street trees were planted 1994-1996 (D.C. Government 2002b), 

causing an annual net loss of approximately 3,000 street trees (Johannsen 1998). As the 

number of street trees being planted annually declined, the quality of planted trees also 

changed. The DC government tree nursery was closed by 1992. During the early 1990s 

almost all trees purchased for planting on streets were non-cultivar maple (D.C. 

Government 2002b). These were available at low cost but were not cultivated for optimal 

characteristics as an urban street tree, which would be expected to increase tree mortality. 
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 In 1998 responsibility for street tree maintenance was transferred to the newly 

created Urban Forestry Administration (UFA). Besides street tree maintenance, UFA 

arborists began inspection of trees on private property to issue permits for removal. The 

UFA significantly increased planting of new trees. Between 1999-2005 the Urban 

Forestry Administration developed a new tree inventory system (Godfrey 2003) and 

began new planting programs that lead to an annual net increase of approximately 2,500 

street trees (D.C. Government 2007b; Godfrey 2003). During those years the UFA 

contracted for the planting of about 14,000 new trees and removal of about 7,000 dead 

trees, with an annual budget of about 7 million dollars (D.C. Government 2007b). By 

2009 the UFA had grown to a staff of about 50 people with a budget of approximately $8 

million, a rate of per capita spending on urban trees exceeding other major eastern US 

cities (Arbor Day Foundation 2007). Between 2005-2012 annual tree plantings by the 

UFA totaled approximately 2,000, and exceeded 3,500 in some years (D.C. Government 

2012b; Corletta 2010). In April 2012 the number of street trees was 126,602 and total 

number of spaces for trees was 148,347 (D.C. Government 2012c).  

 

Insect Defoliation Management 

Monitoring and controlling gypsy moth defoliation is a central concern for 

management authorities in the Washington DC area. The range of the gypsy moth 

reached Washington DC by about 1983. The fastest expansion of the gypsy moth’s range 

ended by 1990 (Liebhold, Halverson, and Elmes 1992), and the most common forest 

impact has been found at elevations greater than 200m above sea level (Liebhold et al. 

1994). A peak in defoliation occurred during 1989-1992 for the multi-state region 

including Washington DC (U.S. Department of Agriculture 2003). Peak years for gypsy 
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moth defoliation in Maryland were 1993-1994 (Maryland Dept. of Agriculture 2008) and 

1995 in Virginia (Roberts 2008). In the years leading up to 1994, most gypsy moth 

defoliation in Maryland was found north and west of DC. By 1994 this had subsided and 

most defoliation had moved to southern Maryland and the Eastern Shore (Maryland Dept. 

of Agriculture 2008).  

 Quantitative spatial data for insect defoliation within the District of Columbia 

between 1984-2004 were not maintained by the U.S. Forest Service or the District 

government (Whiteman 2010). However, gypsy moth defoliation in nearby Maryland and 

Virginia was reported by respective state agencies. The Virginia area adjacent to the 

District of Columbia includes Fairfax, Loudon, Prince William, and Arlington Counties 

(Virginia Department of Forestry 2012). Maryland gypsy moth defoliation is reported in 

four zones by the Maryland Department of Natural Resources (Maryland Dept. of Natural 

Resources 2012). The central and southern zones adjacent to the District of Columbia 

include Montgomery, Prince George's, Anne Arundel, Calvert, Charles, St. Mary's, 

Howard, Frederick, Baltimore, Hartford, and Cecil Counties. Significant defoliation in 

the combined Maryland/Virginia area surrounding the District of Columbia occurred 

1989-1995 (Figure 5).  
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Figure 5. Total gypsy moth defoliated area for central and southern Maryland and 
Northern Virginia.  

 

 

 Within the District of Columbia, gypsy moth infestation in Rock Creek Park was 

high 1987-1988, although defoliation was limited (Favre, Sherald, and Schneeberger 

1993). Chemical and natural predators were used to control defoliation in Rock Creek 

Park. No defoliation was observed in the park during 1988 air surveys (Favre, Sherald, 

and Schneeberger 1993). The largest and most intense area of gypsy moth infestation in 

DC occurred in subsequent years west of Rock Creek, in the area north and west of 

Nebraska Ave. NW in northern ward 3. The residential area south of Pinehurst Circle 

experienced severe defoliation in 1986 (Favre, Sherald, and Schneeberger 1993). In the 

same period a secondary area of defoliation existed between Pennsylvania Ave. SE and 

Fort Dupont Park in the southern part of ward 7 (Johannsen 1998). In 1989-1990 the U.S. 

Forest Service and the DC government contracted for helicopter spraying treatment in 

these two areas (Whiteman 2010). 
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Tree Protection and Open Space Requirements 

Tree Protection Laws 

 Since January 2003 it has been illegal under DC law to remove, top, or destroy 

any tree with a circumference greater than 55 inches (D.C. Government 2007b). Removal 

of hazardous trees requires a permit issued by the UFA along with a payment and/or 

planting of new trees that equal or exceed the total circumference of the removed tree. If 

space is limited, new seedlings are required to be planted on other properties. Three 

species that are invasive or nuisance trees are issued removal permits without payment or 

replanting: tree of heaven (Ailianthus altissima), mulberry (Morus spp.), and Norway 

maple (Acer platanoides).  

 

Zoning Restrictions 

 Zoning laws in the District determine available space for tree growth outside of 

streets and parks. The DC Office of Zoning has defined 29 categories of zoning districts 

that allow different land uses and varying densities (D.C. Government 2006). Limits on 

lot occupancy by buildings are the primary method by which zoning districts set aside 

open space. There are 12 categories of commercial districts that allow 60-100% lot 

occupancy and 10 categories of residential districts that allow 40-75% lot occupancy. 

Although zoning restrictions were not intended for environmental impact, they determine 

the amount of space available for tree growth. 

 In the current study, “Open Space” zones are defined based on lot occupancy 

zoning restrictions. For instance, “60% Open Space” indicates zones where 60% of each 

property lot must remain free of structures.  
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Tree and Slope Overlay Zones 

Small areas of the District of Columbia have explicit tree protection restrictions. 

Within “tree and slope protection overlay" zones, buildings are limited to 30% lot 

occupancy and impervious surfaces limited to 50% of each property lot. Removal of trees 

with trunk circumference greater than 75 inches is prohibited unless it constitutes a safety 

hazard (D.C. Government 1992). The number of smaller trees that can be removed is 

restricted. Two overlay districts have covered the Wesley Heights and University Terrace 

neighborhoods in ward 3 since 1992 (labeled "TSP" in Figure 2). These districts were 

created within areas zoned "R-1-A", the most restrictive and lowest density residential 

zoning category. Lot occupancy may not exceed 40% and lots must be a minimum lot 

area of 7,500 square feet (D.C. Government 2007a, 2006). 

 

Summary 

 The District of Columbia is a major US city, and has a wide range of stakeholders 

as the national capital. Approximately 30% of the land surface area of the District of 

Columbia is covered by tree canopy. Responsibilities of different management authorities 

have changed multiple times in the 20th century. The DC legal code has contained 

statutes limiting the removal of trees and limiting the proportion of property lots that can 

be occupied by structures. Although preliminary observations of recent tree cover change 

have been made, the accuracy of these estimates has not been tested. Reliable 

observations of historic tree cover variability would advance understanding the urban 

environment and the development of public policy in the District of Columbia. 
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CHAPTER IV 

DATA AND METHODOLOGY 

 

Introduction 

 To investigate urban tree cover variability and its linkages to other components of 

the urban landscape, this research proceeded in three phases: 1) A comparative analysis 

was performed of static tree cover utilizing satellite remote sensing data, 2) Temporal tree 

cover variability over a 20 year period was observed utilizing time series satellite data, 

validated with map products derived from aerial photography, 3) The spatial patterns of 

tree cover variability in the context of urban land use were identified.  

 In the first phase of this study, two methodologies were tested to derive accurate 

maps of urban tree cover from satellite remote sensing data. Results from Spectral 

Mixture Analysis (SMA), a widely applied technique for urban land cover mapping, are 

compared to results from Support Vector Regression (SVR). Tree cover results were 

compared to validation data compiled from field surveys and tree cover data derived from 

air photography. The spatial pattern of error for each technique was investigated by 

segmenting the study area into land use categories using government zoning data.  

 In the next phase of this study, the SVR technique was then applied to calibrated 

Landsat satellite data to map tree cover on 11 dates between 1984-2004. Multitemporal 

validation was performed using air photography to determine tree cover changes that can 

be measured with high confidence. Increases and decreases in tree cover were mapped 

every two years between 1984-2004. Fine scale changes in standing trees were observed 

with image products derived from aerial photography.  
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 In the third phase of this study, the spatial variability of local scale tree cover 

changes was investigated. Connections between tree cover changes and spatial patterns of 

urban land use were identified. Differences in tree cover change between land use types 

as defined in zoning data were measured. Tree cover and variability was compared to 

selected demographic data in residential neighborhoods. Impact from land cover change 

was mapped, showing removal of dense tree cover between 1984-2004. Implications of 

tree cover observations for management and policy were explored.  

 

District of Columbia Data Sets 

Tree Cover Observations 

 Tree data from the District of Columbia were acquired from the District 

government's GIS data online access system (D.C. Government 2007a). They indicate the 

location of more than 380,000 trees throughout the city. This includes trees on public 

streets and on private property. The data were created by manually interpreting airphotos 

acquired in May 1999. The interpretation was performed by the geospatial technology 

company EarthData (now Fugro EarthData) under contract with the National Capital 

Planning Commission (D.C. Government 2007a). No tree attributes such as crown size 

were collected. The same source also includes a data layer indicating polygon coverage 

of closed-canopy forests. Only the polygon layer has been updated since initial 

production from 1999 imagery, which occurred in 2005 (D.C. Government 2007a). This 

was not utilized in the current study as it lies outside the study period.   

 These were supplemented with detailed data on District of Columbia street trees 

acquired by the nongovernmental organization Casey Trees. These data were collected in 

the field during summer 2000, and include the location and size of every street tree in 
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DC. Volunteers were issued GPS-enabled PDAs equipped with a District-wide GIS. Data 

on tree species, size, and health were recorded for all accessible street trees, totaling 

approximately 130,000 trees (Casey Trees 2003). In contrast to the DC GIS data, the 

Casey data include only street trees and not trees on private property. However the Casey 

data include attributes such as crown radius that are not included in the DC GIS data.  

 

Satellite Remote Sensing Data  

 Calibrated Landsat data of the District of Columbia from 1984-2004 were used 

for this study. A time series of Landsat observations were compiled and processed to 

document land changes over the last 30 years within the North American Forest 

Dynamics (NAFD) project to evaluate the role of forest disturbance in North American 

carbon dynamics (Goward et al. 2008). The NAFD project has mapped forest removal 

and regrowth across large areas (Goward et al. 2012).  The data were developed by 

applying an automated mapping approach for detecting forest disturbance (Huang, 

Goward, Masek, Thomas, et al. 2009). Disturbance maps have been validated using 

visual analysis and U.S. Department of Agriculture Forest Service Inventory and 

Analysis data, with 92% overall accuracy for identifying forest disturbance episodes 

(Thomas et al. 2011). 

 The NAFD Landsat data have been highly processed to address specific 

limitations of Landsat imagery when utilized in time series analyses, including 

atmospheric contamination and geographic registration errors. Atmospheric effects were 

addressed using the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) (Masek et al. 2006). Top of atmosphere reflectance is been calculated by 

using published calibration coefficients (Landsat Project Science Office 2000; Markham 
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and Barker 1986). Effects of atmospheric scattering were removed using a radiative 

transfer model (Vermote, Tanre, and Morcrette 1997) were atmospheric optical depth 

was measured by estimating visible reflectance from shortwave infrared reflectance. 

Geographic registration errors caused by topographic relief displacement were corrected 

by an orthorectification procedure (Gao, Masek, and Wolfe 2009). No corrections were 

applied for bi-directional reflectance (Masek et al. 2006).  

 Maps derived as part of the NAFD project show forest disturbance across North 

America, indicating the greatest rates of change in the southeastern United States (Masek 

et al. 2008). Analysis has been performed within experiment areas including the Great 

Lakes region (Huang, Goward, Schleeweis, et al. 2009) and Pacific Northwest (Huang et 

al. 2011). These observations applied across North America have demonstrated that 

approximately 1% of all forests experience anthropogenic disturbance each year (Masek 

et al. 2011). The spatial extent of the data allows forest stand age and disturbance history 

to be mapped across the North American continent (Pan et al. 2011). Analysis can reveal 

details of disturbance severity and history at regional scales and identify geographically 

specific carbon sinks within North America (Williams et al. 2012; Goetz et al. 2012). 

  As part of the NAFD project, sequences of Landsat scenes were compiled into 

Landsat Time Series Stacks (LTSS) covering mapping and validation sites across the 

United States (Huang, Goward, Masek, Gao, et al. 2009). Each LTSS consisted of 

Landsat scenes from every other year between 1982-2006 during the initial phase of the 

project. This temporal density was selected to allow for practical data processing and cost 

while capturing forest disturbance events (Huang, Goward, Masek, Gao, et al. 2009). 

However, some disturbance events would be expected to be missed with biennial 

sampling, so annual LTSS were developed for some of the experiment sites in the NAFD 
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project (Goward et al. 2012).  

 Landsat scene selection in NAFD was restricted to leaf-on periods each year 

between June and September. The period was extended to May-October for the southern 

United States (Huang, Goward, Masek, Gao, et al. 2009). For some locations it was 

required to utilize scenes from additional years to acquire cloud-free imagery (Huang, 

Goward, Masek, Gao, et al. 2009).  

 The NAFD data covering the Washington DC region consists of Landsat TM and 

ETM+ scenes acquired 1982-2004. This research utilized 11 scenes acquired on even-

numbered years 1984-2004 (Table 5). At two-year intervals, these data provide the 

necessary temporal resolution to discern urban tree cover dynamics. However, changes 

within individual growing seasons would not be observable with this approach.  

 The Washington DC LTSS scenes were acquired July-September, with two 

exceptions. The 1986 scene was acquired in May and the 1992 scene in October. Because 

late season acquisitions could lead to anomalous forest observations within an LTSS, the 

NAFD project replaced some scenes acquired late in the season with earlier images from 

the following or preceding year (Huang, Goward, Masek, Gao, et al. 2009). The LTSS 

covering Washington DC included a 1991 scene, but it was also acquired late in the 

season on 16 September (Goward et al. 2012). For the current study, biennial sampling 

was maintained to provide temporally consistent tree cover observations. Because this 

approach is limited by the available calibrated scenes, error may result from utilizing the 

scenes from different seasons. The possible impact of the difference in seasonality is 

discussed in the following chapter.  
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Table 5. Satellite remote sensing observations.  
 

Date Sensor Cloud cover 
(total scene) 

Cloud cover 
(DC only) 

Scene ID 

27 Aug 1984 L5 TM 0 % 0 % LT50150331984240XXX10 
29 May 1986 L5 TM 5 % 0.17 % LT50150331986150XXX10 
22 Aug 1988 L5 TM 0 % 0 % LT50150331988235AAA03 
12 Aug 1990 L5 TM 0 % 0 % LT50150331990224XXX04 
20 Oct 1992 L5 TM 0 % 0 % LT50150331992294XXX02 
23 Aug 1994 L5 TM 0 % 0.05 % LT50150331994235AAA02 
11 July 1996 L5 TM 0 % 0.5 % LT50150331996193XXX02 
2 Aug 1998 L5 TM 10 % 0.23 % LT50150331998214XXX03 
6 July 2000 L5 TM 0 % 0 % LT50150332000188AAA02 
6 Sept 2002 L7 ETM+ 15 % 1.0 % LE70150332002249EDC00 
19 Sept 2004 L5 TM 5 % 0 % LT50150332004263GNC01 

 
 

 

 It was not always possible to find cloud-free images in the eastern United States 

in the NAFD scene selection process (Huang, Goward, Masek, Gao, et al. 2009). Clouds 

covered at least 5% of total area for four of the Washington DC scenes (Table 5). For the 

current study focusing on the District of Columbia, clouds cover was much less abundant. 

In only one scene (2002) did cloud cover reach 1% of the study area. The 1994 and 1996 

scenes contained minor amounts of cloud cover in the District of Columbia despite the 

full scenes being reported as cloud-free (Table 5). The following chapter includes as 

assessment of the impact of clouds on tree cover results.  

 The processed Landsat data utilized in this study provided advantages compared 

to other available data. The Landsat data record is the longest existing record of 

multispectral satellite remote sensing data. The temporal coverage of the Landsat data 

extends decades, unlike to shorter record available for high resolution satellite data such 

as IKONOS and other sensors. Neither high resolution satellite data nor aerial 
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photography includes shortwave infrared channels that would permit reliable 

discrimination of tree and grass cover. Urban tree and grass cover exhibits different 

spectral responses due to absorption in the shortwave infrared (Lu and Weng 2004). 

Aerial photography has been available for greater periods of time, however these sources 

do not include multispectral data. 

 

Mapping Products Derived From Aerial Photography 

 Satellite observations of urban tree cover require validation from independent 

sources. Multitemporal acquisitions of high resolution image products permit 

identification of fine scale tree cover changes and provide a data source for validating 

city-wide observations. In this study, cartographic imagery derived from aerial 

photography was utilized to validate satellite observations and provide detailed 

information on tree cover within sample survey plots.  

 Airphoto coverage was acquired from the District of Columbia public GIS data 

online access system (D.C. Government 2007a) for every year available corresponding 

with the study period (Table 6). The 1999 image was closest in time to the 2000 Landsat 

image. The 1995 image was closest in time to the 1994 Landsat image. These 

orthorectified air photographs were distributed as mosaics covering the entire District of 

Columbia. Digital Orthophoto Quadrangles (DOQs) were acquired from the U.S. 

Geological Survey (U.S. Geological Survey 2011) for 1988 and 1994 (Table 6). 
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Table 6. Image products derived from aerial photography. 
 

Landsat Date Air Photo Date Data Resolution 
23 Aug 1988 5/5/88 - 5/23/89 DOQs (grayscale) 1 meter 
22 Aug 1994 5/7/93 - 4/17/94 - 5/2/94 DOQs (color) 1 meter 
22 Aug 1994 April 1995 DC Ortho 20 cm 
6 July 2000 May 1999 DC Ortho 20 cm 
6 Sept 2002 April 2002 DC Ortho 30 cm 
19 Sept 2004 April 2005 DC Ortho 15 cm 
 

  

 Aerial photography and satellite observations were acquired at different times 

during the study period. Aerial photography utilized for validation was acquired in April-

May of each year, while satellite data was acquired between July-September (Table 6). 

For two of the time steps in the study period (2000 and 2004), aerial photography was 

acquired in the previous or subsequent year as the satellite data.  

 Aerial photography was acquired during leaf-on periods each year, resulting in 

highly visible leaf canopy from above (Figure 6). It was not possible to avoid the 

difference in time between satellite and aerial image acquisition due to the limited 

available data. The implications of seasonal differences on tree cover results are 

discussed in the following chapter. 
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a. High density commercial, Ward 2 b. Medium density residential, Ward 6 

   

        
c. Low density residential, Ward 3  d. Low density residential, Ward 8 

 
Figure 6. Examples of 2005 air photography in validation plots. 

 

 Other sources of aerial photos were not useful for this study. National Agriculture 

Imagery Program (NAIP) data began only in 2003 (U.S. Department of Agriculture 

2009). Imagery from the National Aerial Photography Program (NAPP) and National 

High Altitude Program (NHAP) dates to 1980, although the majority was acquired during 

leaf-off periods. NAPP data are available for the District of Columbia for 1988, 1994, 

and 1998 (U.S. Geological Survey 2011). These same photographs were scanned from 
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the 1:40,000 scale films and orthorectified to produce the 1 meter resolution 1988 and 

1994 DOQ images (U.S. Geological Survey 2011).  

 The focus of the current study is observing the proportion of land surface area 

covered by tree canopy, defined as the two dimensional projection of tree canopy area 

divided by land surface area. Measurements of canopy area and number of trees are made 

for validation of satellite observations. Other physical quantities such as total leaf area 

cannot be measured with the air photography used in this study. Although other quantities 

may be of interest for future studies of the urban environment, total canopy area remains 

the focus in current research and urban management strategies, and is the quantity used in 

this study.  

 

District of Columbia Geospatial and Demographic Data 

 Geospatial data from the District of Columbia GIS data access system (D.C. 

Government 2007a) were utilized to delineate boundaries of DC wards, park lands, and 

land use restrictions as defined in the DC zoning code. These data were converted to 

projection information matching the Landsat observations using ArcGIS (ESRI 2011) and 

ENVI (Exelis 2012) programs. 

 Population and housing data were acquired from the U.S. Census (U.S. Census 

2010, 2011) and reports compiled largely from Census data for the District of Columbia 

government (D.C. Government 2002a). These data quantify population characteristics 

within each DC ward and census tract. In this study, a preliminary comparison was made 

between tree cover variability and five factors related to urban land use and population: 

population density, population change, owner occupation of housing units, rates of 

housing unit vacancy, and percent of housing units that were detached dwellings.  
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Methodology 

Introduction 

 To accomplish the research goals of advancing the understanding of temporal 

variability of urban tree cover, this study investigated methods of measuring urban tree 

cover, mapped temporal tree cover changes in the District of Columbia between 1984-

2004, and identified spatial patterns of tree cover changes in the urban context.  

 The first phase of this research was a comparative assessment of methods for 

mapping of static urban tree cover. The second phase of the study focused on applying 

remote sensing methodology with calibrated Landsat data to observe tree cover changes 

in the District of Columbia. The results were validated with complimentary observations 

from cartographic products derived from high resolution multitemporal aerial 

photography. In the third phase of the study, connections between tree cover variability 

and spatial patterns of urban land use were identified.  

 

Comparative Observations of Static Tree Cover  

Compilation of Validation Data 

 To validate the Landsat-scale maps of static urban tree cover, a dataset of standing 

trees was compiled by combining data from field surveys of street trees and airphoto 

interpretation performed by the DC government. The dataset indicates the location of 

standing tree canopy corresponding to the 2000 Landsat image. The combined tree data 

covers the entire District of Columbia, allowing validation to be performed for the entire 

study area. 

 Three data sets were combined to produce a map of standing trees: 1) Casey street 

tree data, 2) DC GIS tree locations recorded as points, and 3) DC GIS closed canopy 
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polygons.  

 Casey street tree data were used to create a data layer that indicated the location 

and crown size of each tree. Crown radius was recorded in 5 foot intervals. Of the 

approximately 380,000 trees in the DC GIS point data, approximately 130,000 were 

duplicated in the Casey street tree data and the remaining 250,000 were non-street trees. 

The median tree crown radius of duplicated street trees was 15 feet (4.6 meters), and 70% 

had a crown radius between 10-20 feet. Because the DC GIS data do not indicate tree 

size, the median crown radius from the trees duplicated in the two data sets was selected 

to represent all non-street trees. Both datasets were combined with the DC GIS polygon 

data indicating closed canopy forest to create a vector data layer of tree cover.  

 The vector data layers were combined into one binary raster with a cell size of 

one meter utilizing ENVI/IDL software. This raster layer was resampled to a Landsat-

scale 30 meter cell size. A 30 meter raster layer was created in ENVI with map limits 

matching the one meter binary raster. The value for each 30 meter cell was calculated as 

the proportion of one meter tree pixels contained within that cell. The final city-wide 

raster layer indicates the proportion of each 30 meter pixel occupied by tree cover 

between 0-100% (Figure 7). The 30 meter cell size was selected to make it possible to 

compare to full resolution Landsat data.  
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Figure 7. Tree cover validation data for 2000.  

 
 

Urban Tree Cover Remote Sensing Observations 

 Subpixel proportion of urban tree cover was mapped using spectral mixture 

analysis (SMA) and support vector regression (SVR) to test these two techniques and 

identify methods for accurate urban tree cover mapping. These two techniques were 

selected to test the relative performance of a methodology applied in many previous 

studies and one that has not been widely utilized in studies of the urban environment. 

The subpixel proportion of tree cover was estimated by applying a linear spectral 
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mixture model to the 2000 Landsat scene. Training locations were selected at 

homogeneous sites of tree, grass, impervious cover high albedo, and low albedo water. 

Training samples were selected using visual analysis of air photography. SMA was 

applied as implemented in ENVI software (Exelis 2012), where SMA functions using 

linear unmixing algorithms (Gong et al. 1991). SMA calculations were constrained so 

that total land cover equaled 100%.  

 The LIBSVM program (Chang and Lin 2010) was used for support vector 

regression. Landsat reflectance data were scaled and converted for input into the 

LIBSVM package. Processing and data manipulation were performed using ENVI/IDL 

software (Exelis 2012). IDL routines were created to convert satellite data to proper 

format for LIBSVM.  

 Training sites for SVR were selected by generating random points utilizing 

procedures within the ESRI ArcGIS software package (ESRI 2010). An initial set of 

points were stratified by tree cover proportion in the 2000 validation data to identify 

locations with the full range of tree cover values. Tree cover was then manually 

interpreted using aerial photography for the plots, each sized to be equivalent to a 3x3 

pixel Landsat window. Images were displayed and tree crowns were manually digitized 

using ENVI software (Exelis 2012). A set of 62 training data points resulted.  

 RBF kernel was selected and the LIBSVM cross-validation procedure was used to 

determine optimal parameters for support vector regression. After parameter validation 

was performed, the final SVR calculation was performed. LIBSVM was then used to 

calculate SVR estimates for each pixel in the 2000 Landsat data. 

 Tree cover error can be reported for each pixel because of the comprehensive 

validation data. Comparisons with validation data and scatter plots were produced using 
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3x3 pixel means, because per-pixel comparisons are not reliable due to geometric 

uncertainty inherent in Landsat-scale data. For the entire study area the root mean square 

error was calculated: 

      Equation 6 

 

where y and ŷ are the validation and estimated values for each observation, respectively, 

and n is the number of samples.  

 For both SMA and SVR the mean absolute error, RMSE, and coefficient of 

determination was calculated between the results and validation data. These measures are 

similar to that used in previous studies of urban forest change (Walton 2008a). 

 District of Columbia government zoning data (D.C. Government 2007a) were 

used to segment the city into land use categories. Mean error in park and non-park areas 

was measured. Spatial patterns of error with satellite measurements were identified by 

using zoning data to segment the city into zones of different density based on allowable 

lot occupancy: 60% open space requirement in low density residential areas, 40% open 

space required in medium density residential zones, and 25% or less in high density 

zones near the urban core and primary transportation routes. 

 

Temporal Tree Cover Variability 1984-2004 

Overview 

 Tree cover dynamics of the District of Columbia were mapped using the SVR 

approach applied to Landsat observations 1984-2004. Processing steps were performed 

using ENVI/IDL software (Exelis 2012) and the LIBSVM program (Chang and Lin 
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2010) was used for support vector regression. SVR was applied using the RBF kernel 

with same parameter values and training data derived for the 2000 Landsat data. High-

confidence measurements of local scale tree cover change were mapped across the 

District of Columbia. Cartographic image products derived from aerial photography were 

used for multitemporal validation and fine scale observations of tree cover change.  

 

Cloud Masking 

 The calibrated Landsat scenes were mostly cloud-free, but some clouds remained. 

Cloud and cloud shadow were masked in tree cover maps. Cloud cover is typically 

identified in Landsat data utilizing multiple filters incorporating thermal infrared data 

(Irish et al. 2006) and application of thresholds for visible and thermal infrared data 

(Hutchinson et al. 2005). Automated processes can perform highly accurate masking of 

clouds and cloud shadow with calibrated thermal infrared Landsat data (Huang et al. 

2010). 

 For the current study, minimal cloud cover was present in the satellite data and 

the analysis included a limited number of scenes. Therefore, a more simple process was 

utilized. Multitemporal data in visible wavelength Landsat band 1 were utilized to 

identify cloud cover. The ratio of reflectance value to the mean value across all years was 

calculated for each pixel. Any pixels with a ratio greater than 2 were flagged as clouds. 

The accuracy of the cloud masks was assessed visually. Cloud shadows were manually 

digitized. Maximum cloud cover (1% total area of the District of Columbia) was 

observed in the 2002 Landsat scene. Cloud and shadow area exceeded 0.4% of the study 

area in only the 1996 and 2002 Landsat scenes. When comparing tree cover between 

different dates, cloud pixels were assumed to contain the mean tree cover of the previous 
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and subsequent dates.  

 

Compilation of Tree Cover Change Maps 

 Support vector regression was applied to calibrated Landsat data for all scenes 

1984-2004. Data processing was performed with ENVI/IDL software (Exelis 2012). The 

SVR was applied with the LIBSVM program (Chang and Lin 2010). 

 Raster tree cover layers were overlaid to map tree cover dynamics over a 20 year 

time period. Change maps were produced using 3x3 raster cells spatially equivalent to 

3x3 Landsat pixels to account for geometric uncertainty of Landsat data. The tree cover 

uncertainty of SVR estimates within each cell for each time step was evaluated by 

utilizing the error distribution measured for the 2000 tree cover observation. To assess the 

uncertainty of tree cover estimates, the standard deviation of the error was calculated as: 

 

        Equation 7 

 

where µ is the mean value for the error and N is the number of observations.  

 Because validation data were available for every remote sensing pixel, the entire 

error distribution was utilized to calculate the z statistic for each pixel in the 2000 SVR 

observation:  

        Equation 8 

 

where x is the error for a single pixel, µ is the mean error for all pixels, and s is the 
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standard deviation of error for all pixels. This resulted in an error value in standard 

deviation units for each pixel. The z statistic was utilized to calculate confidence limits 

(p<0.05) for per-pixel tree cover observations: 

 

         Equation 9 

 

 This was performed for each 5% increment to calculate confidence limits as a 

function of tree cover. Therefore confidence limits were sensitive to different levels of 

tree cover. Each pixel contained a tree cover value, the associated error threshold for that 

5% tree cover range of estimated tree cover, and a value for tree cover change from the 

previous time step.  

 Change maps were produced by calculating which pixels contained tree cover 

change values exceeding confidence limits for each time step. For example, a pixel was 

be classified as tree cover increase if it changed from 20% to 35% and the confidence 

limits for that tree cover range was +/-14%. Tree cover gains or losses exceeding 

confidence limits were classified as tree change areas. These areas were mapped to show 

tree cover increases and decreases for each time step between 1984-2004. Cloud masks 

developed previously were used to remove cloud and cloud shadow from change maps.   

 The resulting maps were compiled to identify areas within the city that 

experienced tree cover change. Maps of tree cover change at this spatial resolution are at 

a scale appropriate for discrimination of trends between different neighborhoods, parks, 

and zones of high and low housing density. 
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Validation of Tree Cover Change Observations 

 Cartographic image products derived from aerial photography were utilized for 

validation of multitemporal satellite observations. The extensive vector data utilized to 

validate the 2000 static tree cover results was not available on other years. Therefore a  

procedure was developed to validate tree cover estimates at courser scale by comparing 

multitemporal satellite observations to aerial photography.  

 Validation of satellite observations was performed using aerial photography 

corresponding to satellite data acquisitions from four dates: 1988, 1994, 2000, and 2004. 

Images were displayed and tree crowns were manually digitized using ENVI software 

(Exelis 2012). Ellipses for each tree crown with visible leaf cover were digitized. Crowns 

with partial leaf cover were digitized, while trees with no leaf cover were not. Tree cover 

was then calculated as the proportion of each plot occupied by these ellipses.    

 

 
Figure 8. Location of validation plots. 
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 Validation was performed in 160 plots, randomly located on land surface area 

stratified by ward boundaries (Figure 8). Plots were located by generating random 

coordinates utilizing procedures within the ESRI ArcGIS software package (ESRI 2010). 

Each DC ward was assigned a number of random points corresponding to its proportion 

of the city's total land surface area. The total number of plots was selected to provide at 

least 10 sample plots within low density residential zones in each DC ward. Each plot 

was 90x90 meters to match the size of 3x3 Landsat pixel windows. 

 Only DOQ imagery is available for validation of the 1988 time step, compared to 

higher resolution orthophotography for the other time steps. One way to address the 

difference in resolution between the two sources of aerial photography is to apply a 

correction to the low resolution validation. The difference measured between the two 

types of imagery could be applied to the 1988 time step, when only the low resolution 

product is available. However, because the DOQ and orthophotos were collected near 

each other in time only once (1994-1995) it was only possible to perform a single 

comparison to assess the difference. In addition, some change in tree cover between 

acquisition of the DOQ and orthophotos would be expected. For these reasons, no 

correction was applied to the 1994 DOQ imagery. The possible implications of validating 

tree cover using the lower resolution aerial data are discussed in the following chapter.  

 This number of plots is similar to that used in previous field studies. For a 

previous study of Washington DC forests, 201 plots were used for a field survey (Nowak 

et al. 2006). An analysis of the number of survey plots for urban forest studies indicated 

that uncertainty decreased with increasing numbers of plots up to approximately 200 

plots (Nowak et al. 2008). This analysis also suggested a plot size of 0.04 hectare to 

allow rapid field surveys. 
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Multitemporal Uncertainty Assessment 

 The difference between SVR tree cover and air photography validation was 

calculated for 1988, 1994, 2000, and 2004. This resulted in four measurements of the 

difference between SVR estimates and high resolution air photography. From these 

measurements the t statistic distribution was utilized to determine confidence limits for 

error of tree cover estimates. Confidence limits were defined as: 

 

          Equation 10 

 

where

€ 

X  is the mean error measured with validation data, Sn is the standard deviation of 

the error measurements, and n is the sample size (4). Confidence limits for tree cover 

measurement were calculated to show high confidence observation of tree cover change 

(p<0.05). This resulted in an estimated mean and 95% confidence limits for the error in 

tree cover measurement. The same confidence limits were applied to all tree cover 

measurements in the multitemporal analysis. The confidence limits were recalculated for 

each area being analyzed, such as the entire DC land area, low density residential zones, 

or other land use category. In contrast to previous studies, this measure of uncertainty 

was based on multiple observations using independent validation data.  

 

Observations with Fine Scale Image Data 

 Observations of tree cover based on high resolution aerial photography were 

made to identify fine scale changes in tree cover. Besides providing validation of satellite 
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observations, the aerial photography measurements were used to produce independent 

observations of tree cover change. Tree cover proportion was measured within all the air 

photography plots used for validation (Figure 8). The spatial distribution of the plots 

made it possible report tree cover city-wide and within land use types. Tree cover values 

for the four air photography dates (1988, 1994, 2000, and 2004) were recorded for the 

entire city and within land use categories in each DC ward. Tree cover was calculated as 

the mean value among randomly distributed plots within each area.  

 

Fluctuation in Size and Number of Trees  

 To better understand fine scale changes in urban tree cover, the change in number 

of standing trees and crown sizes were evaluated to determine how each contributes to 

tree cover variability. Standing trees were counted and crown sizes mapped using high 

resolution aerial photography collected on two dates separated by 10 years. This was 

performed using vector digitizing tools in ENVI software (Exelis 2012) within the 90x90 

meter plots used to validate SVR tree cover within low density residential zones. The 

analysis was performed using the 55 plots in low density residential zones, which contain 

the majority of the land surface area and tree cover within the District of Columbia. The 

number of trees and the crown radius of each tree were digitized on aerial photography 

from 1995 and 2005. These two dates were selected because high resolution photography 

was available, because they are separated by a decade, and because they represent a low 

and high amount of tree cover observed with satellite data.    
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Spatial Patterns of Tree Cover and Urban Land Use 

Overview 

 The temporal variability of tree cover was observed in the previous section of this 

study. The current phase of this research focuses on spatial variation of tree cover and its 

connections with urban structure. Tree cover change observations were compared to 

spatial patterns of urban land use and population to better understand how variability of 

urban tree cover is interconnected with urban settlement and environment. The 

connections between tree cover variability and resource management and oversight were 

examined by comparing tree cover in zones with different management regulations. The 

analysis included a comparison of tree cover change with neighborhood-scale 

demographic data. 

 

Land Use Zones 

 Tree cover variability and land use patterns were evaluated. DCGIS data were 

used to stratify the study area into land use categories defined by the District of Columbia 

zoning code sets a maximum allowable "lot occupancy", or proportion of each property 

lot that may contain structures. District of Columbia zoning laws set a maximum lot 

occupancy for private property ranges between 60-100% for commercial land uses and 

40-75% for residential uses. The remaining open space in each lots can include trees, 

grass, and impervious surfaces.  

 Zoning data also describe types of land ownership, including categories of 

government land ownership and park lands. Within each of these categories the lot 

occupancy is defined based on desired density. This is not true with park areas, which do 

not have lot occupancy requirements because individual property lots do not exist there.  
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 Tree cover variability was compared between land use types by segmenting the 

study area into lot occupancy categories. Mean, maximum, and minimum tree cover were 

compiled for zones requiring 60%, 40%, and 0-25% open space in property lots. Separate 

results were also reported for each DC ward.  

 

Residential Zones 

 Tree cover variability was analyzed in detail within low and medium density 

residential zones that occupy most of the District of Columbia. Medium density zones 

with 40% open space requirements exist mostly in DC wards 1 and 6, while the 60% 

open space zones are spread across five wards surrounding the urban core (Figure 9). 

 

 

 

Figure 9. DC Wards with residential zones. Low density residential zones (left) and 
medium density residential zones (right) in gray. 

   

 

 Mean tree cover within each land use zone was calculated from SVR results 
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between 1984-2004. Uncertainty of tree cover estimates was evaluated using the same 

methodology applied to the entire study area, but incorporating observations from 

validation plots with each land use category.  

 Tree cover variability within tree and slope overlay zones was compared to 

changes outside those zones to identify possible differences. These zones were 

investigated because they are the only explicit legal restrictions for tree removal in the 

DC legal code tied to a specific spatial extent (D.C. Government 1992). Mean tree cover 

and variability were calculated for tree and slope zones and areas outside the overlay 

zones of the same residential zoning density. These areas were zoned "R-1-A" in the DC 

code, the lowest density zoning for residential areas. Tree cover values were extracted 

from DC zoning polygons using ENVI/IDL software.  

 

Land Cover Change  

Tree cover maps were overlaid to identify areas where dense tree cover receded or 

expanded. Raster layers showing the extent of dense tree cover were overlaid to produce 

maps showing areas of at least 90x90 meters that experienced a change between >75% 

tree cover and <25% tree cover. Cells with >75% and < 25% stable tree cover in both 

1984-1986 were compared to the same areas in 2002-2004. Change in both directions 

was mapped. Cells identified as tree cover losses were compared to geographically 

corresponding cells in all satellite observations between 1984-2004. The first date each 

cell changed from tree to non-tree was recorded to determine the year of status change for 

that cell. Change areas were overlain and mapped using ENVI/IDL software (Exelis 

2012). 

Polygons experiencing change were stratified by DC ward using DC government 
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geospatial data (D.C. Government 2007a) using ENVI vector processing tools (Exelis 

2012). The area of land cover change and dates for changes within each ward were 

compiled. The surface area experiencing change was reported for each ward, along with 

the year of the changes in each ward.  

 

Residential Property Use and Population 

 To extend the ward-based analysis of urban tree cover to finer scale, tree cover 

proportion was compared to demographic data from the U.S. Census from 2000 (U.S. 

Census 2010) compiled by the District of Columbia government (D.C. Government 

2002a). 

 Five factors were selected for comparison to mean tree cover: Population density, 

population change between 1980-2000, proportion of housing units occupied by owners, 

proportion of units vacant, and proportion of housing units that were detached houses. 

These variables were selected because they have possible links to tree cover and because 

their relationships with urban vegetation have not been tested in previous research. Linear 

regression was performed for each factor to test the relationship between tree cover and 

demographic data.  

 Tree values for census tracts were taken from tree raster data in cells spatially 

matching the polygon extent of census tracts. Data were processed using vector tools in 

ENVI software (Exelis 2012) and ArcGIS (ESRI 2011) software. The analysis was 

performed in the five DC wards (3, 4, 5, 7, and 8) where low density residential was the 

dominant land use type (Figure 9). Census tracts were grouped into DC wards. Tree cover 

and demographic differences within low density residential zones were identified 

between wards. 
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Summary 

 Calibrated satellite remote sensing data and cartographic image products derived 

from aerial photography were utilized to observe tree cover in the District of Columbia. 

The first phase of the methodology tested Spectral Mixture Analysis (SMA) and Support 

Vector Regression (SVR) methodologies for observing urban tree cover from satellite 

remote sensing data. The second phase applied the SVR technique to map temporal 

changes in tree cover between 1984-2004. High resolution aerial photography was 

utilized for multitemporal validation. The third phase of this study analyzed the spatial 

variability of tree cover changes and spatial patterns of urban land use. Public geospatial 

data were utilized to segment the study area to compare tree cover changes in zones of 

different densities and land use types. 
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CHAPTER V 

RESULTS AND DISCUSSION 

 

Introduction 

 Results are presented in three phases: 1) A comparative analysis of static urban 

tree cover, which includes comparative testing and analysis of remote sensing of static 

urban tree cover. The relative accuracy of two alternate approaches is discussed. 2) 

Observations of temporal change in District of Columbia tree cover between 1984-2004 

as observed with satellite remote sensing and aerial photography. 3) Analysis of tree 

cover within the context of the spatial patterns of urban land use. Connections between 

tree cover variability and spatial patterns of urban land use and resource management are 

identified.  

 

Static Tree Cover Mapping 

Spectral Mixture Analysis 

 Application of Spectral Mixture Analysis (SMA) resulted in a tree cover estimate 

for each satellite pixel between 0-100%. The resulting map of proportional tree cover 

shows spatially variable tree cover across the District of Columbia (Figure 10). 
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Figure 10. SMA Tree cover proportion 
 

 

 In the SMA map, densely forested parks areas such as Rock Creek Park lie in the 

northern part of the city (Figure 10). Moderate amounts of tree cover are visible in 

residential zones of the city. The urban core and some corridors in outer sections of the 

city have the lowest tree cover proportions.   
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 The total tree cover proportion estimate for the District of Columbia was 32.9% 

land surface area, and RMS error of the SMA estimates was 21.0% land surface area. The 

SMA results and validation data for all 3x3 pixel windows (n=21851) are positively 

correlated (R2=0.75) but nonlinear (Figure 11).  

 

 

 
 

Figure 11. SMA tree cover estimates vs. validation data. 
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 Comparisons between SMA and the validation data show that SMA overestimates 

tree cover, especially at intermediate tree cover values (Figure 12). A least-squares 

polynomial fit (y=-0.439x2 + 1.416x + 0.023) demonstrates the nonlinearity of the SMA 

results. SMA error is greatest when tree cover proportion is approximately 30%-40%. 

That tree cover range is typical for the low density residential areas of the District of 

Columbia.  

 

 

 

Figure 12. SMA tree cover and validation data. Mean values and one standard 
deviation shown in each 5% bin.  
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 Error for SMA observations was determined for each 5% bin of estimated tree 

cover (Figure 13). SMA error across all tree cover values at the per-pixel scale was 

highly variable. Lower variability at high values for tree cover estimates is likely due to 

spectrally similar responses of closed canopy tree cover with training data.  

 

 

 

Figure 13. Error distribution of SMA tree cover estimates. Mean error and 
confidence limits for each 5% tree cover bin. 
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Support Vector Regression 

 The application of Support Vector Regression (SVR) resulted in a map of 

proportional tree cover for the District of Columbia (Figure 14). Fine-scale differences in 

tree cover are more visible in the SVR results in densely developed zones of the city.  

 

 

 
Figure 14.  SVR Tree cover proportion 
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 The total tree cover estimate for the District of Columbia was 26.8% land surface 

area, compared to 27.0% for the validation data. Root mean square error of the SVR 

estimates compared to validation data is 7.7% land surface area. The relationship between 

SVR results and validation data for all 3x3 pixel windows is more linear than SMA 

results (Figure 15).  

 

 

    
 

Figure 15. SVR tree cover vs. validation data. 
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 SVR produces more linear and consistent estimates of tree cover compared to 

SMA. The SVR tree cover results better match the validation data, but with a wide 

distribution of error still evident (Figure 16). RMS error was about one third as high for 

SVR compared to SMA (7.7% land area, compared to 21%). Fit to validation data was 

closer with results from SVR (R2=0.91) than SMA (R2=0.75).   

 

 

 
Figure 16. SVR tree cover and validation data. Mean values and one standard 

deviation shown in each 5% bin. 
 
 

 

 Within a range of values 40-60% tree cover, error distribution is wider (Figure 

16). Variability is lower at tree cover extremes that are spectrally simple to discriminate. 

Error for SVR observations was determined for each 5% bin of estimated tree cover 
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(Figure 17). Error was greatest at tree cover values between 45-80% land surface area.  

 

 

Figure 17. Error distribution of SVR tree cover estimates. Mean error and 
confidence limits for each 5% tree cover bin. 

 
 

  

 

Spatial Variability of Error 

 The use of comprehensive validation data makes it possible to evaluate the spatial 

distribution of error using the SMA and SVR techniques. The spatial patterns of errors 

were compared to the physical layout of the urban study area to determine if the 

techniques provided consistent error across land use types.  

 Validation data for the District of Columbia was compared to SMA results to 

produce a map of spatial variability of tree cover error (Figure 18). SMA error is variable 
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and related to land use type. With the SMA approach, tree cover is overestimated in areas 

with extensive forest and grass, while tree cover is underestimated in more higher density 

areas. Densely forested Rock Creek Park exhibits low error, which is likely a result of the 

model being trained on homogeneous tree cover.  

 

 

 
Figure 18. SMA Error Map 
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 In contrast the SMA results, SVR error is lower and more consistent across 

different land use types (Figure 19). Tree cover is underestimated in much of the urban 

core and some large park units. Tree cover estimates exceeded validation data in many 

outer sections of the city and in smaller park units near the urban core. 

 

 
Figure 19. SVR Error Map 
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 Error from SVR and SMA was stratified into land use categories using DC 

government zones data (Figure 20). The data shown include the entire population of data 

points in the study area. SVR results more closely match validation data while error from 

SMA results is more widely distributed.  

 

 

 

Figure 20. Tree cover error mean and standard deviation in land use categories 
defined by DC zoning code.  

 

 

 Tree cover estimates from SVR were stratified into DC wards. Mean tree cover 

and standard deviation of error were calculated for each DC ward in park and non-park 

areas (Figure 21). Tree cover proportion was greatest in wards 3 and 4 in the northern 

part of the District of Columbia. Lowest tree cover proportions were in wards 2 and 6 in 

the central part of the city.  
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Figure 21. SVR tree cover in DC wards.  
Mean tree cover and error standard deviation shown. 

 

 

Assessment of SMA and SVR Approaches 

 Tree cover estimates from SVR had higher overall accuracy than SMA. The 

consistent error with the SVR results allows this technique to be used to discern tree 

cover differences between sections of the city.  

 The SMA technique overestimates tree cover in the middle range of values, 

possibly due to confusion between tree and grass cover. Enhancements of SMA are 

available to provide higher accuracy for estimating land cover proportions. For instance, 

it may be possible to better discriminate tree and grass using nonlinear SMA techniques. 

However, the scatter of results near the 40-60% tree cover would still have been present 

(Figure 16). SMA techniques may not be able to address tree/grass spectral confusion 

because they are trained on homogeneous tree cover. The SVR methodology addresses 

the problem of tree/grass confusion by incorporating spectral information from a range of 

tree cover proportions.  
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SVR Parameters 

 Parameters for SVR were calculated using a cross validation procedure. The 

parameter values were: C=0.268, γ=0.649, e =0.064. The values for C and ε are below the 

default LIBSVM values, while γ is higher. The low value for ε indicates that the SVR 

used a relatively large number of support vectors in the model. Although one of the 

strengths of support vector techniques is the ability to describe complex data with small 

numbers of samples (support vectors), this did not occur in this research. The low value 

for the ε parameter indicates a narrow insensitive range. The number of support vectors 

used in the 2000 data (44) exceeded 70% the number of original training samples (62). 

The C parameter defines the trade-off between closeness of fit and good generalization. 

The low value indicates the most accurate solution was one that placed more importance 

in generalization than closeness of fit. 

 An earlier study that applied SVR to estimate urban tree cover proportion (Walton 

2008b) utilized the "e1071" library of the R statistical software package (Dimitriadou et 

al. 2006), which was developed from the same LIBSVM tool used in this research. A 

systematic parameter cross-validation procedure was not applied in that earlier study, but 

parameters were chosen after experimenting with a subset of the data (Walton 2008b).  

 

Comparative Assessment of Urban Tree Cover 

 Tree cover proportion in the District of Columbia was estimated using several 

methods in previous studies (Table 7). Comparisons including results from the current 

study indicate broad agreement across different types of methodologies and data types.  
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Table 7. District of Columbia tree cover results. 
 

Previous Studies 
Plot-Based Estimate (Nowak et al. 2006) 28.6% cover, 1.9 million trees (2004) 

Plot-Based Estimate (Howard, Alonzo 2009) 28.1% cover, 2.6 million trees (2009) 

High Resolution Object-Oriented Technique 
(O'Neil-Dunne 2009) 
 

34.8% (2006) (includes shrub cover) 

Current Research 
Remote Sensing  (SVR results) 26.2% cover (2000) 

Remote Sensing  (SMA results) 32.9% (2000) 

Field Survey, Airphoto Mapping  
(Validation data) 

27.0% cover (2000) 
 

 
  

 Results from field surveys (Nowak et al. 2006; Howard and Alonzo 2009) and the 

moderate resolution SVR observations used in the current study both estimate total tree 

cover proportion for DC at just under 30% (Table 7). The estimate from object-oriented 

classification was 34.8% land surface area (O'Neil-Dunne 2009). The original data were 

provided for examination for this study at its original 0.6 meter spatial resolution by staff 

at Casey Trees.  

 Three factors influence the higher total tree cover measured using high resolution 

data. First, tree cover variability occurred between the dates of the two observations but 

its magnitude is unknown. Second, the definition of forest is different: At least some 

amount of shrub cover is included in the object-oriented classification and not the other 

results. The results from field surveys estimate trees and shrubs covering 28.6% and 7.8% 

of the DC land surface, respectively (Nowak et al. 2006). This totals 34.6%, closely 

matching the object-oriented results (34.8%). Third, the spatial scale of observations may 



 

 107 

impact the results. Issues of scale require more study to better understand how to 

compare different measures of urban forest cover.  

 

Temporal Tree Cover Variability 1984-2004  

Local Patterns of Tree Cover Change 

 The SVR methodology was applied to the processed Landsat data. Confidence 

limits (p<0.05) for detecting per-pixel tree cover change between satellite observations 

were calculated from the error distribution of SVR results (Figure 17). The confidence 

limits vary by tree cover estimate (Table 8). The precision of mapped tree cover changes 

was therefore variable across the study area. Changes exceeding confidence limits for 

each 3x3 Landsat pixel window were classified as tree cover change. 

 

Table 8. Confidence limits for SVR tree cover. 
 

Tree Cover Conf. Limits Tree Cover Conf. Limits 
0%-5% +/- 6.6 50%-55% +/- 21.6 
5%-10% +/- 10.2 55%-60% +/- 25.0 
10%-15% +/- 11.2 60%-65% +/- 21.8 
15%-20% +/- 11.8 65%-70% +/- 23.8 
20%-25% +/- 14.4 70%-75% +/- 21.8 
25%-30% +/- 15.0 75%-80% +/- 20.6 
30%-35% +/- 17.2 80%-85% +/- 16.4 
35%-40% +/- 18.0 85%-90% +/- 13.6 
40%-45% +/- 19.8 90%-95% +/- 12.2 
45%-50% +/- 21.0 95%-100% +/- 7.4 

 

 
 Combining SVR results produced maps of tree cover change for the District of 

Columbia 1984-2004. The maps show areas where a high confidence observation of tree 

cover change took place between each time step in the District of Columbia (Figure 22).  
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Figure 22a     Figure 22b 
 
 
 

     
Figure 22c     Figure 22d 
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Figure 22e     Figure 22f 

 
 
 

     
Figure 22g     Figure 22h 
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Figure 22i     Figure 22j 

 
Figure 22. Maps of District of Columbia tree cover change. 
Red indicates tree cover decrease. Blue indicates increase.  

 

 

Tree Cover Observations with Fine Scale Image Data 

 Tree cover was digitized from aerial photography in sample plots to measure 

overall tree cover proportion in the District of Columbia. Measurements were made on 

four dates corresponding to satellite observations (1988, 1994, 2000, and 2004). The 

mean value for randomly distributed plots shows that tree cover varied by 3.6% total land 

surface area for the entire District of Columbia (Figure 23). Tree cover variability was 

greatest in low density residential areas required to maintain 60% open space within 

property lots. Tree cover varied by 6.8% land surface area in these zones between the 

four measurement years (Figure 23). 
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Figure 23. Tree cover variability from observations derived from air photography.  
 

 

Tree Cover Uncertainty 

 Error for multitemporal tree cover mapping was determined for four dates 

corresponding to acquisition of satellite data and aerial photography: 1988, 1994, 2000, 

and 2004. The mean and 95% confidence limits for the difference between the two 

observations were calculated for the entire study area and for different land use zones 

(Figure 24).  

 

 

Figure 24. Tree cover error mean and confidence limits. 
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 The mean error and confidence limits were calculated for the entire District of 

Columbia (-0.4+/-2.9%), low density residential zones (0.4+/-2.7%), medium density 

residential zones (-0.2+/-2.7%), park areas (-1.3+/-3.6%), and non-park areas (-0.04+/-

2.9%). These confidence limits were used as a measure of the accuracy of the SVR 

technique. Confidence limits were applied to all tree cover measurements within each 

zone.  

 The current study utilizes an approach including validation with independent 

observations to develop reliable estimates of uncertainty in tree cover measurements. 

Previous studies not utilizing validation with independent observations may have 

overestimated the precision of tree cover measurements. Uncertainty in previous studies 

has often been estimated utilizing statistical measures such as standard error. Previous 

studies have claimed tree cover change in Baltimore of 1.9% (Nowak and Greenfield 

2012) and change in tree numbers in the District of Columbia of 950,000 trees (Howard 

and Alonzo 2009; Nowak et al. 2006). Although these changes exceeded the standard 

error, neither study incorporated multitemporal validation.  

 Due to large sample sizes, utilizing standard error with remote sensing data may 

result in estimates of error that exceed the precision of the techniques being used. The 

satellite scenes utilized in the current study covering the District of Columbia exceed 

20,000 pixels each. Calculated in the same way as previous studies of urban tree cover 

utilizing aerial photography in sample plots (Nowak and Greenfield 2012), the standard 

error for application of SVR to the 2000 Landsat data in the current study would be 0.3% 

land surface area.  
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City-Wide Tree Cover Variability 

 Total tree cover within the entire District of Columbia varied by 6.7(+/-5.8)% 

total land surface area (Figure 25), equivalent to 1065(+/-922) hectares of tree canopy. 

Between 1984-2004 the District of Columbia did not experience trends of increase or 

decrease in overall tree cover. The average change between time steps was 1.7% land 

surface area, or 270 hectares of tree canopy area. 

 

 

 
Figure 25. DC tree cover variability from SVR satellite observations.  

Difference and confidence limits shown.  
 
 

 

 

Fluctuation in Size and Number of Trees  

 To better understand fine scale changes in urban tree cover, standing trees and 

crown sizes of trees were mapped using high resolution cartographic products derived 

from aerial photography collected on two dates separated by 10 years. This was 

performed in sample plots within the low density residential zones that experienced tree 

cover changes exceeding city-wide variability (Figure 23).  
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 The number of trees in low density residential zones increased 4.3 trees per 

hectare between 1995-2005 (Figure 26). Of the total number of standing trees, 84% were 

identified in air photography acquired on both dates.  

 

 

Figure 26. Change in number of standing trees. 

 

 

 The mean crown radius increased by 0.3 meters between 1995 and 2005 (Figure 

27). Trees that were lost or gained had smaller mean crown radius (2.2 meters) than 

persistent standing trees (4.8 meters). The mean crown radius of new trees visible only in 

2005 was 0.9 meters smaller than trees appearing only in the 1995 photography. 

However, the precision of individual crown size measurement was limited by the spatial 

resolution of the aerial photography. Edges of tree crowns could be identified within 

approximately two pixels, or +/-40 cm.   
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Figure 27. Mean and standard deviation of tree crown radius.  
 

 

 The total change in number of trees was divided by number of years between 

aerial photography observations to evaluate the magnitude of the change in numbers of 

trees. The annual change per hectare between 1995-2005 was 0.4 trees, or a mean gain of 

one tree per hectare every 2.5 years. In low density residential zones of DC, one hectare 

is the size of approximately 1-2 city blocks.  

 The change in number of standing trees and changes in tree crown size contribute 

to tree cover variability. Tree cover measured by air photography increased by 6.8% land 

surface area between 1995-2005. Assuming invariant crown sizes, the change in tree 

numbers would have increased tree cover by 2.5% land surface area between 1995-2005, 

or 37% of the observed increase. Changes in tree sizes were responsible for the remainder 

of the tree cover change, although precise measurements of changes in crown size were 

limited by air photography resolution. Small crown sizes of newly planted trees are likely 
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to be less visible in the aerial photography because of the limited spatial resolution of the 

imagery.  

 More precise field measurements are needed to detect changes in crown size that 

would impact urban tree cover. Past urban tree field surveys in the District of Columbia  

(Nowak et al. 2006; Howard and Alonzo 2009) measured crown radius in 5 foot 

increments. Repeated surveys at high precision may be more able to detect small changes 

in tree crown size than using aerial image data. 

 

Remote Sensing of Urban Tree Cover 

Spectral Variability in Satellite Observations 

 Error in tree cover estimates is partially the result of spectral confusion in areas 

with complex land cover heterogeneity. Spectral variability was explored by plotting 

initial training data against estimated tree cover fraction (Figure 28). The reflectance in 

all six reflective Landsat bands is well defined at 100% tree cover. Reflectance values at 

0% tree cover are extremely variable due to the wide range of land cover types present in 

the absence of trees. A wider range of reflectance values exists at intermediate amounts 

of tree cover.  
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Figure 28. Mean reflectance and standard deviation of SVR training data and tree 
cover. 

 

 The wide range of reflectance around 40-60% tree cover makes variation of error 

more likely for tree cover estimates using remote sensing methods. The SMA results 

generally overestimate tree cover in this range, while the SVR results perform better at 

generalizing complex spectral data.  

 The choice of spectral training data is an important source of error in remote 

sensing applications. Selecting variable spectral signatures may result in uncertainty 

when estimating the proportion of that land cover type. Observations may be just as 

sensitive to spectral changes within training data as actual changes in fractional land 

cover. Because SVR performs generalization of complex spectra, it may be better suited 

for incorporating variable spectral patterns than SMA methods.  

 The satellite observations used in this study were calibrated to surface reflectance 

using an approach developed for identifying forest disturbance (Masek et al. 2006). 

Although this processing was designed to remove impact of atmospheric scattering, some 
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variation in reflectance would be expected to remain due to solar geometry and other 

factors (Masek et al. 2006). Significant variation would introduce uncertainty in urban 

tree cover estimates in different years.  

 In the absence of land cover change, well-calibrated data should have little 

variation in reflectance across multiple dates. To assess reflectance variation of the 

calibrated Landsat data, the mean standard deviation of reflectance values across all dates 

was calculated for pixels in multitemporal sample plots (Figure 29). Variation is low in 

visible wavelength channels and higher in the infrared.  

 

 

Figure 29. Reflectance variation in calibrated Landsat data. 
 

 

 An earlier analysis of a time series stack consisting of 13 LEDAPS-processed 

Landsat scenes showed similar spectral variation in band 4 but lower variation in other 

channels (Huang, Goward, Masek, Gao, et al. 2009). In that analysis, the standard 

deviation in visible bands 1, 2, and 3 for coniferous forest targets did not exceed 0.5% 
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reflectance (Huang, Goward, Masek, Gao, et al. 2009). The greater variability in the 

training data analyzed in the current study is likely due to the fact that the training pixels 

represent a wide range of urban land cover types, unlike the coniferous forest stands used 

in the earlier analysis.  

 

 

Figure 30. Ratio of reflectance standard deviation to mean reflectance for all DC 
training data, DC data for 100% tree cover, and data from an earlier study. 
 

 

 Expressed as the ratio of standard deviation to mean reflectance, the relative 

variability of the calibrated Landsat data is similar in the earlier study (Huang, Goward, 

Masek, Gao, et al. 2009) and the current analysis of DC tree cover (Figure 30). Similar 

reflectance variation was also observed for the subset of the DC data containing only 

fully forested pixels. The relative variation in reflectance was highest in band 3 for all 

three groups of data. Higher variation in bands 1 and 2 is likely due to land cover patterns 

typical in an urban setting.  
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Figure 31. Tree cover observations in low density residential zones. 
 

 To evaluate the possible impact of spectral variability, SVR tree cover estimates 

in the sample plots were compared to air photography measurements from different years 

(Figure 31). Among dates with high resolution air photography, the minimum tree cover 

in low density residential zones was observed in 1994 and the maximum in 2004. The 

relationships between SVR tree cover and air photography validation in the two years 

were similar to each other (Figure 31) and the city-wide relationship with 2000 validation 

data (R2=0.91, RMSE=7.7, see Figure 15).  

 

Impact of Cloud Cover 

 Cloud cover can prevent remote sensing methods from detecting tree cover 

because it obscures the land surface. Although the Landsat data were processed to 

remove atmospheric effects, some visible cloud cover remained. To correct for this 

impact, masks were developed for cloud and cloud shadow as described in the previous 
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chapter. Maximum cloud cover was in the 2002 image, in which cloud cover occupied 

1.0% of the DC land surface. Limited cloud and cloud shadow were found in four other 

scenes. The remaining Landsat scenes contained no visible cloud cover (Figure 32). No 

relationship was found between cloud cover and estimated tree cover (R2=0.0002), 

suggesting that the presence of cloud cover in each scene did not significantly impact tree 

cover estimates outside visible cloud cover.   

 

 

Figure 32. Tree cover variability and cloud cover. 
 
 

 
Satellite Observation Geometric Issues 

 The Landsat data utilized in this study contained some geometric distortions. 

Image pixels did not precisely correspond between some dates. This became visible only 

by overlapping scenes. The 1988 image contained a swath of approximately 15 pixels 

that was shifted 3-5 pixels to the east. This impacted the 1988 data cutting across the 

central portion of ward 8 in southern DC. The 1994 image contained missing pixels in a 2 

pixel swath stretching from central ward 3 to the western boundary of DC.  

 Geometric variation between Landsat scenes prevented quantitative per-pixel 

comparisons. Although full resolution data are appropriate for visual analysis of 

individual scenes, per-pixel comparisons were not reliable for studying changes between 
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image dates. Uncertainty in image geometry prevents reliable per-pixel comparisons in 

land cover classification (Townshend et al. 2000). Some studies of urban vegetation 

dynamics have used mean values of 40x40 Landsat pixels for validation (Song 2005, 

2007). However, averaging reflectance over too large an area would limit the spatial 

information content of the results. Visual inspection of the calibrated Landsat data used in 

this study revealed no geometric distortions causing an offset greater than 1 pixel in any 

direction. All comparisons with validation data were performed using 3x3 pixel means.  

 

Impact of Seasons 

 Landsat images were collected during leaf-on season, but on different dates than 

aerial photography. Aerial photography used for validation was acquired early in each 

growing season. On three dates (2000, 2002, 2004) air photography was collected one 

year removed from the timing of satellite acquisitions (Table 2 and Table 5). Tree canopy 

changes may have occurred between the time of air photo and satellite image acquisition, 

a possible source of uncertainty for tree cover estimates. More frequent highly calibrated 

Landsat data and high resolution air photography would allow comparisons to be made 

closer in time.  

 Changes in seasonality and sun illumination may be a source of error in tree cover 

estimates. Lower sun angle would be expected to increase shadows within tree canopy. 

This spectral impact may cause anomalous values for urban tree cover as shadows cover 

turf grasses and other land cover types.  

 Of the 11 Landsat scenes utilized in this study, nine were acquired between 

ordinal dates 188-249. The two remaining scenes were collected on May 29 (1986) and 

October 20 (1992).  
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Figure 33. Satellite acquisition date and observed tree cover for entire District of 
Columbia and 60% open space zones.  

 

 

 The relationship between satellite acquisition date and tree cover was tested by 

comparing the ordinal date of scene acquisition with tree cover estimate for each Landsat 

scene (Figure 33). Despite the spread of acquisition dates, no strong correlation exists 

between satellite-based tree cover estimates and the timing of image acquisitions during 

each growing season (R2 = 0.05). The early 1986 tree cover observation falls in the 

middle of the tree cover estimates. Although overall tree cover was similar across dates, 

the tree cover estimate for the 1992 image in low density residential zones was high 

compared to other dates.  
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Figure 34. Satellite acquisition date and mean reflectance for the entire District of 
Columbia in four Landsat bands.  

 

 Individual Landsat channels were investigated to determine relationships to 

satellite acquisition dates. No strong relationship was observable in visible wavelength 

band 3 or mid-infrared band 7 (Figure 34). Scenes acquired later in the year contained 

lower reflectance in mid-infrared band 5 and near-infrared band 4. The impact of 

acquisition date is most prominent in band 4. A similar relationship between reflectance 

and date of scene acquisition was measured as part of a previous analysis of LEDAPS-

processed Landsat data (Huang, Goward, Masek, Gao, et al. 2009). 

 Scene comparisons suggest that the date of satellite acquisition was not the 

determining factor in SVR tree cover estimates. The 1992 and 2004 scenes were the latest 

acquisitions and contained lowest band 4 reflectance. These two scenes had comparable 

mean reflectance values (Figure 34) while the 1992 tree cover estimate was higher 

(Figure 33). The 1994 and 1988 scenes were acquired on the same date and have similar 

mean reflectance values, but the 1994 tree cover estimate was lower. Both the 1988 and 
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1990 tree cover estimates are similar to the 1992 estimate (Figure 25) despite the fact that 

they were acquired in August. Validation with air photography indicates less extensive 

tree cover in 1994-1995 compared to 2000.   

 The October date of the 1992 Landsat scene corresponds to a high tree cover 

estimate (Figure 25), which may play a role in the mapped 1992-1994 tree cover change 

(Figure 22e). Tree cover may be overestimated in the 1992 observation due to tree 

shadowing effects. Decline in tree cover during the early 1990s in low density residential 

zones was validated with aerial photography, but at a courser temporal resolution. If tree 

cover is overestimated with the 1992 scene, this would cause the estimates of tree cover 

decline to be incorrectly concentrated in the 1992-1994 change map (Figure 22e) instead 

of spread over 1990-1994. This uncertainty means that tree cover decline in outer 

sections of the city during the early 1990s may have been more gradual and taken place 

over 1990-1996.  

 

Aerial Photography Temporal and Spatial Scale 

 Seasonal differences are a potential source of uncertainty for applications of aerial 

photography. Aerial photography in this study was acquired in April and May, while 

satellite data were acquired between July-September (Table 6). It was not possible avoid 

this difference due to limited available data. Comparing tree cover measured with aerial 

photography and satellite data (Figure 31) shows no systematic error for different time 

steps. 

 Aerial photography utilized in this study was acquired for planning purposes and 

to map details for the built environment, and not all imagery was acquired at optimal 

times in the season to show maximal extent of tree cover. Acquisition in April or May 
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could miss greening of many tree species, which could be source of error in mapping tree 

crowns with aerial photography. 

 Validation image products were derived from aerial photography at two spatial 

resolutions. Orthophotography corresponding to satellite acquisitions in 1994, 2000, and 

2004 was archived at 15-20cm resolution, while the 1988 DOQ photography had 1 meter 

resolution (Table 6). Although it proved possible to identify tree crowns in the DOQ 

imagery, the lower spatial resolution impacted the visual appearance and clarity of 

individual trees. To assess the impact of the lower resolution aerial photography, the 

DOQ imagery from 1994 was compared to the orthorectified imagery from 1995. Tree 

crowns were manually interpreted and digitized in the imagery in 90x90 meter sample 

plots. The interpretation was performed with the same methodology and sample plots 

utilized in the multitemporal validation phase in this study. Tree crowns and forest 

canopy were digitized in ENVI software (Exelis 2012). Each type of aerial imagery was 

evaluated several weeks apart at the same workstation and display.  

 

 

Figure 35. Mean and 2 standard deviations of difference between tree cover mapped 
from DOQ and orthophoto imagery.  
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 The comparison between DOQ and orthophoto tree cover demonstrated that the 

low resolution of the DOQ imagery had a modest but negative impact on the ability of a 

human interpreter to identify urban tree cover (Figure 35). Some tree cover is missed in 

the lower resolution data. The city-wide difference between the two image sources was 

2.7% land surface area. For medium density residential 40% open space zones, the mean 

difference was 4.0%, while for park areas the mean difference was 1.2% land surface 

area (Figure 35). Tree cover in open park areas is possibly easier to interpret compared 

with residential sections of the city occupied by trees and attached buildings.   

 In this study no correction was applied to account for the resolution difference 

between the two sources of aerial photography, because it was not possible to repeat the 

comparison for more than one time step (1994-1995) to assess the uncertainty of the 

measured difference. DOQ photography was the only validation imagery available 

corresponding to the 1988 satellite acquisition. The total DC tree cover measured by 

satellite observation exceeded measurement by DOQ aerial photography by 2.5% land 

surface area (Figure 25). If higher resolution validation data were available for 1988, and 

assuming tree cover were mapped with the same degree of difference measured in 1994, 

the 1988 satellite observation of mean tree cover would instead have been 0.2% greater 

than validation. However these amounts are well within the uncertainty as determined by 

multitemporal validation (Figure 25).  

  

Spatial Patterns of Tree Cover Variability and Urban Land Use 

Introduction 

 This phase of the research examines how tree cover dynamics vary spatially 
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across the city and how they are linked to the spatial patterns of urban land use within a 

major city. As with the city-wide analysis, tree cover was mapped using fine scale 

cartographic image products derived from aerial photography on four dates during the 

study period. The large number of survey plots allowed for validation to be performed 

within selected land use categories. The analysis focuses on the low density residential 

zones that occupy the majority of the land surface in the District of Columbia and contain 

greater tree cover variability than higher density land use types.   

 

Spatial Variability of Urban Tree Cover  

 Tree cover observations were segmented by land use category as defined in the 

DC zoning code. The results indicate tree cover variability within different allowable lot 

occupancy levels, from open space parks to property lots where structures can occupy 

100% of available space. 

  Within the District of Columbia, total tree cover proportion was greater in park 

areas but variability was similar between park and non-park areas (Figure 36). Tree cover 

totaled approximately half of land surface area within parks. Tree cover varied within 

park areas between 46.4(+/-3.6)% to 54.2(+/-3.6)%. Tree cover outside park areas ranged 

between 17.9(+/-2.9)% to 24.2%(+/-2.9)%.  
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Figure 36. Minimum and maximum tree cover in park and non-park areas. Error 
bars indicate SVR uncertainty. 

 
 

 The difference between maximum and minimum tree cover was calculated for all 

non-park areas in different land use zones and DC wards. Comparing maximum and 

minimum tree cover showed that tree cover was more variable in zones required to 

maintain a greater proportion of open space within each property lot (Figure 37). The 

60% open space zones, the lowest density residential zoning in the District of Columbia, 

contained greatest tree variability while zones with 25%, 20%, and 0% open space 

requirements contained the least. Within the 60% open space zones, wards 3 and 4 in 

northern DC contained greatest tree cover variability (Figure 37).  
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Figure 37. Tree Cover Variability in Wards and Land Use Zones 1984-2004.  

 

 

Low and Medium Density Residential Zones 

 Residential zones were investigated to analyze the sections of the city containing 

the highest magnitude changes in tree cover. Low density residential zones with the 

greatest tree cover variability (Figure 37) also had higher proportions of tree cover. In 

both the 60% and 40% zones, tree cover occupies approximately half the remaining open 

space (Figure 38). This observation corresponds to coarse scale observations that urban 

open spaces are evenly split between tree and grass cover (Milesi, Running, et al. 2005). 

Greater tree cover variability was found in low density residential zones requiring 60% 

open space (Figure 38) within each property lot that can be occupied by tree, grass, or 

impervious surfaces.  
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Figure 38. Minimum and maximum tree cover in low density 60% open space zones 
and medium density 40% open space zones. Error bars indicate SVR uncertainty. 

 

 

 Tree cover varied 10.8(+/-5.4)% in zones required to maintain 60% open space 

(Figure 39). The lowest tree cover observed 1994-1996. For 60% open space zones the 

1984-2004 mean tree cover was 29.2% with mean variation between time steps of 2.5% 

land cover.  

 The greatest tree cover proportion was observed in 1992, corresponding to a late 

satellite acquisition data. This may be a source of uncertainty as noted previously for the 

city-wide results. Excluding the 1992 observation, the magnitude of the overall change 

1984-2004 is reduced by 0.7%, well within the uncertainty (+/-2.6%) measured with 

aerial photography.  
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Figure 39. Tree cover variability in low density residential zones from SVR satellite 

observations. Difference and confidence limits shown.  
 
 

 

 Tree cover variability in 40% open space zones was also observed  (Figure 40). 

Within 40% open space zones the 1984-2004 the mean change between sequential 

observations was 1.3% land surface area. Total tree cover variability in these zones did 

not exceed 9.7% land cover between 1984-2004.  

 

 
 

Figure 40. Tree cover in medium density residential zones from SVR satellite 
observations. Difference and confidence limits shown.  
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 Tree cover in residential areas varied between DC wards. Within low density 

residential zones, ward 3 contained the most tree cover. Tree cover variability was 

greatest in wards 3 and 4 (Figure 41).  

 

 
 

Figure 41. Minimum and maximum tree cover in residential zones in DC wards. 
Error bars indicate SVR uncertainty. 

 

 Tree cover variability and average tree cover was least extensive in ward 8. In the 

medium residential zones required to maintain 40% open space, no significant differences 

in tree cover variability were observed between wards 1 and 6.  

 The rate of change in number of standing trees in low density residential zones 

was previously observed with aerial photography in this research as 0.4 trees per hectare 

annually between 1995-2005. The rate of change in tree cover observed in satellite data 

was higher previous to 1995 (Figure 39), which are years lacking high resolution air 

photography. Assuming invariant tree crown sizes, an annual rate of change of 0.7 trees 
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per hectare would account for the minimum tree cover change observed in low density 

residential zones with satellite data between 1990-1996.  

 

Tree and Slope Zones 

Tree cover variability within tree and slope zones was analyzed to identify 

possible impact of these zones. Tree and Slope overlay zones are the city's only spatially 

defined legal restrictions for tree removal, and provide a test of this type of resource 

management.  

Tree and slope protection overlay zones were compared to areas of the same 

zoning density and residential land use outside the overlay districts (Figure 42). A 

difference in overall tree cover was found, with tree cover within the overlay zones 

containing an average 5.9% more land surface area than outside the zones. However, no 

significant difference was observed before and after 1992, when the two overlay zones 

were created. This suggests that the higher tree cover within the two overlay zones is 

likely the result of pre-existing conditions. 

 

 

Figure 42. Minimum and maximum tree cover in tree and slope protection overlay 
zones. Error bars indicate SVR uncertainty. 
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Land Cover Change 

 Areas transitioning between >75% to <25% were identified by overlaying tree 

cover maps from the beginning and end of the study period. Increases of dense tree cover 

occurred in several locations (Figure 43). These show the spatial extent of areas changing 

from less than 25% to greater than 75% tree cover. Increases in the dense tree cover 

between 1984-2004 occurred in a total of 16.7 hectares. 

 

 

Figure 43. Gains in dense tree cover 1984-2004.  
 

 

 Several areas covered by dense tree canopy experienced land cover change and tree 

cover loss 1984-2004 (Figure 44). Between 1984-2004 the District of Columbia lost 

dense forests in 50.2 hectares of land surface area.  
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Figure 44. Losses in dense tree cover 1984-2004.  

 
 

 

 The areas undergoing removal of dense tree cover were concentrated within wards 

3, 5, and 8. The locations changed during the study period. In the early periods of this 

study, most projects were located in the northern parts of the city in wards 3 and 5. Land 

cover change shifted partially to ward 8 in southeast DC during later years (Table 9).  
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Table 9. Land cover change area in hectares within DC wards.  

 
Years Change 

Total 
Ward 

2  
Ward 

3 
Ward 

4 
Ward 

5  
Ward 

7 
Ward 

8 
1984-1988 9.6 2.4 4.1  3.2   
1988-1992 18.7 0.8 6.5 1.6 4.1  5.7 
1992-1996 1.6  1.6     
1996-2000 3.2    3.2   
2000-2004 17.0  1.6  7.3 0.8 7.3 
All Years 50.2 3.2 13.8 1.6 17.8 0.8 13.0 

                
 

 

 These examples of land cover change suggest that land cover change has remained 

an agent of change for urban forests, despite the fact that the District of Columbia has 

long been a densely populated city.  

 

Residential Property Use and Population 

 To investigate possible connections between neighborhood characteristics and 

spatial patterns of urban tree cover within DC wards, selected variables from U.S. Census 

data were compared to tree cover proportions and variability. Housing unit vacancy and 

20-year population change were the demographic factors most related to the 1984-2004 

mean tree cover (Table 10). Owner occupation was correlated to tree cover but not with 

high significance. Population density and proportion of detached homes were correlated 

to each other but were not significantly related to tree cover.  
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Table 10. Demographic variables and tree cover.  

 
Demographic 

Variable 
Tree Cover 

relationship (R2)  
Significant 

(p<0.05) 
Population Change 0.99 yes 
Vacancy 0.92 yes 
Owner Occupation 0.57 no 
Detached Homes 0.53 no 
Population Density 0.03 no 

 
 

 

 Tree cover and demographic factors in wards 3 and 4 were divergent from values 

in wards 5,7, and 8. Wards 3 and 4 included low density residential census tracts in 

northern and western DC, while wards 5, 7, and 8 cover the eastern and southern sections 

of the city (Figure 9). Wards 3 and 4 contained greater tree cover and higher tree cover 

variability than wards 5, 7, and 8. Wards 3 and 4 contained fewer vacant properties, 

higher proportions of owner-occupied housing units, and greater tree cover. Population 

change was more negative in wards 5, 7, and 8. Housing unit vacancy was the 

demographic variable related to tree cover that had a significant difference (t=4.1, 

p<0.01) between the two groups of DC wards.  

 These preliminary results suggest connections between demographic factors such 

as population loss and rates of property vacancy and tree cover variability in residential 

areas. However, the human factors involved in interactions between urban residents and 

tree cover are beyond the scope of this research. Future research is required to understand 

the specific connections between neighborhood scale demographics and urban tree cover.  
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Discussion of Management and Tree Cover Variability 

Analysis of Tree Cover Management 

 Because quantitative data records of government management were not available, 

it was not possible to measure the impact on tree cover dynamics from management. 

However, it is possible to broadly assess the potential implications of tree cover 

observations for two aspects of management: insect defoliation management and 

maintenance of tree resources on public spaces. This discussion is a preliminary step 

towards bridging the gap between spatial analysis and public policy and resource 

management. Future research and more extensive data will be required to identify causal 

factors.  

 

Insect Defoliation Management 

 Years of decreased tree cover in DC low density residential zones corresponded 

with some, but not all, years of peak gypsy moth defoliation reported by management 

authorities in surrounding states. Although spatial data for insect defoliation do not exist 

for the District of Columbia between 1984-2004, such data do exist for the surrounding 

area of central Maryland and northern Virginia. The total defoliation in a multi-county 

area surrounding the District of Columbia peaked in 1990 but remained high 1989-1995 

(Figure 5). Tree cover in low density residential areas in the District of Columbia 

declined during this period (1990-1996) and recovered in subsequent years. However, a 

strong statistical relationship was not found between observed DC tree cover change in 

low density residential zones and single season defoliation area (R2=0.19) or two-year 
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mean defoliation area (R2=0.23) for all years 1984-2004. Identification of a stronger 

relationship may require defoliation data collected within the study area.  

At the local scale, one specific zone of gypsy moth defoliation within the District 

of Columbia was identified in this study. The Pinehurst Parkway area south of Pinehurst 

Circle and west of Rock Creek Park experienced severe gypsy moth defoliation between 

1986-1988 (Favre, Sherald, and Schneeberger 1993). The reported spatial extent of the 

defoliation corresponds to an area of tree cover decline in the 1986-1988 tree cover map 

(marked "A" in Figure 22b).   

Defoliation in other parts of the city may be responsible for tree cover change 

observations in this study. However, no spatial data exist to confirm where non-park 

areas would have experienced defoliation. Because much of the urban tree cover in the 

District of Columbia is managed, defoliation may be limited even during infestation 

events. The temporal resolution of the Landsat data may also not be optimal to observe 

impact from short-term insect defoliation. Some amount of defoliation would not be 

observed with satellite data in this study because images were acquired every two years. 

 The October acquisition date for the 1992 may introduce error and elevate that 

estimate of tree cover proportion due to increased shadowing. A decrease in tree cover 

was observed in low density residential areas between 1992-1996 (Figure 39). However, 

due to the limited temporal resolution of the Landsat data and the seasonality issue with 

the 1992 scene, it is difficult to determine the timing of the tree cover decrease with 

greater precision using archival satellite data. The actual timing of that tree cover decline 

in low density residential zones may have taken place between 1990-1996 instead of 

being confined to 1992-1996. This uncertainty lowers the precision with which it is 

possible to determine links to insect defoliation.  
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Street Tree Maintenance 

 The middle of the study (1992-1996) was the period of greatest tree cover 

declines in low density residential zones. This period corresponds to years of decreased 

budgets for street tree maintenance and replacement. While it is not possible evaluate a 

causal impact because of the lack of quantitative data and incomplete records, the 

potential proportion of tree cover variability caused by changing numbers of street trees 

can be estimated. Budget records indicate no street tree replacement 1993-1996. This 

would lead to an annual net decline of approximately 3,000 street trees, totaling 9% of all 

street trees over those years. Assuming the same proportion of street trees as a total of all 

trees observed in 2000 (Figure 4), the lost street trees would therefore reduce the number 

of trees by 2.5% within low density residential zones. Tree cover observed using SVR 

satellite measurements in those zones was 7.4(+/-5.4)% lower in 1996 compared to 1990. 

 Interpretation of the role of street tree maintenance in canopy variability is limited 

by the low spatial resolution of the archival satellite data. The 90 meter pixel size of these 

observations does not permit discrimination of street and non-street tree cover in the 

maps of tree cover change between each observation. Because management records are 

incomplete and street trees are responsible for a limited portion of overall tree cover 

variability, future research is needed to determine links between this type of government 

management and urban tree cover variability.  

 

Summary 

 A Support Vector Regression (SVR) methodology estimated tree cover with 

lower and more consistent error across land use types compared to Spectral Mixture 
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Analysis (SMA). Consistency of error across land use types is of high importance for 

understanding vegetation within an urban setting. Between 1984-2004 the city-wide tree 

cover varied between 22.1(+/-2.9)% and 28.8(+/-2.9)% of the total land surface area. The 

impact of cloud cover, spectral variability, and seasonal effects were analyzed. Seasonal 

effects were observed in one satellite scene acquired late in the year. Within the District 

of Columbia, spatial variability of tree cover dynamics was observed in different land use 

types. Greatest variability occurred in low density residential zones. Tree cover 

proportion in these zones declined 7.4(+/-5.4)% in the years between 1990-1996. The 

fluctuation in the number of standing trees and changes in crown sizes were both 

responsible for portions of tree cover change in low density residential zones. Between 

1984-2004, land cover conversion removed dense tree cover from 50.2 hectares of the 

city's land surface. Selected demographic variables and aspects of management history 

were compared to tree cover dynamics to illustrate connections between these factors in 

the urban environment.  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

Urban Tree Cover Temporal Variability  

 Interannual tree cover variability 1984-2004 was observed for the District of 

Columbia using moderate resolution satellite data. City-wide tree cover varied between 

22.1(+/-2.9)% and 28.8(+/-2.9)% of the total land surface area. This variability is 

equivalent to 1065(+/-922) hectares of tree canopy area. For the entire city, total tree 

canopy area did not increase or decrease between 1984-2004. Variability did not exceed 

12.5% land surface area. Average variation between consecutive observations was 1.7% 

land surface area, or a 6.9% change in the tree cover proportion. Tree cover measured by 

high resolution aerial photography varied by only 3.6% total land surface area for the 

District of Columbia.  

 During the study period 1984-20004, tree cover in the District of Columbia varied 

but did not experience an overall increase or decrease. In contrast to past reports of 

District of Columbia tree cover at city-wide scale (American Forests 2002b) and 

preliminary fine-scale measurements (D.C. Government 2012a; O'Neil-Dunne 2012), the 

results of this study are validated with independent observations to assess precision of 

tree cover values across time steps.  

 

Spatial Variability of Tree Cover Dynamics 

 Within the District of Columbia, spatially explicit mapping of tree cover 

variability indicated local scale areas experiencing gains or losses in tree cover. 
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Observations were stratified into land use categories to identify areas of high variability. 

Within park areas maintained by federal and DC government agencies, tree cover totaled 

approximately half of land surface area and varied between 46.4(+/-3.6)% and 54.2(+/-

3.6)%. Outside park areas, tree cover varied between 17.9(+/-2.9)% and 24.2%(+/-2.9)%.  

 Urban tree cover variability in the District of Columbia 1984-2004 occurred 

largely within the city's low density residential areas. Tree cover was more variable in 

zones required to maintain a greater proportion of open space within each property lot. 

Greatest tree cover variability occurred within low density residential zones required to 

maintain 60% open space. Zones with 0-25% open space requirements contained the least 

tree cover and tree cover variability.  

 Tree cover in low density residential zones decreased by 7.4(+/-5.4)% land 

surface area between 1990-1996 and increased after 1996. Within these zones, wards 3 

and 4 in northern DC contained greatest tree cover variability. Tree cover variability and 

average tree cover was least extensive in ward 8 in the southeastern part of the city. In the 

medium residential zones required to maintain 40% open space, no significant differences 

in tree cover variability were observed between different DC wards. No significant 

differences were observed in the city's tree and slope zones designed to protect dense tree 

cover in residential zones. 

 

Urban Tree Cover Variability Factors 

 Land cover conversion was an agent of tree cover change in the District of 

Columbia between 1984-2004. Between 1984-2004, 50.2 hectares of dense tree cover 

was removed within the District of Columbia. During the same period 16.7 hectares 

experienced expansion of dense tree cover, for a net decrease of 33.5 hectares.  
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 Within low density residential zones, changes in numbers of standing trees 

occurred primarily among smaller trees. The number of trees and crown sizes were 

measured with cartographic imagery derived from aerial photography. Observations 

separated by 10 years indicate a net increase in the number of standing trees by 4.3 trees 

per hectare during the second half of the study period. Trees that were lost or gained 

during this period had smaller mean crown radius than persistent standing trees.  

 Connections between demographic factors in low density residential zones and 

spatial patterns of urban tree cover were investigated. Sections of the District of 

Columbia with trends of population loss and high rates of property vacancy contained 

lower proportional tree cover during a 20 year period. While these preliminary results 

show correlation and not causation, they suggest paths for future research into other 

factors. Housing unit vacancy and population change may impact tree cover over long 

periods by playing a role in the maintenance of trees on private property.  

 

Management and Policy Implications  

Urban Tree Cover Management  

 The results of this research provide data useful for formulating effective strategies 

for maintaining and expanding urban forest cover. Comparing changes in the number of 

standing trees and crown sizes indicates that both tree growth and replacement can have 

observable impact on overall tree cover. This suggests the importance of both planting 

new trees and growth of current trees for maintaining overall tree cover.  

 The results of this research included maps of local scale fluctuations in tree cover. 

These maps are of potential use to authorities for formulating management plans by 

enhancing understanding of tree cover impact from development and land use changes.  
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 Although land cover change removed dense tree cover in only 50.2 hectares of the 

city’s land area, this impact is surprising given that Washington DC has contained fully 

“developed” land for a century. Although heavily developed and densely populated, the 

District of Columbia potentially continues to be altered by land cover change. Land cover 

conversion takes part as part of construction and development projects, potentially 

removing tree cover. Understanding how large construction projects remove dense urban 

forests could enhance management and protection of a city’s tree cover. Jurisdictions 

seeking to maintain forest cover may need to weigh economic development goals against 

tree protection when formulating or approving large development projects. 

 

Tree Canopy Goals 

The District of Columbia government has set a goal of achieving 40% total tree 

cover (D.C. Government 2010a, 2012d). This target was earlier developed by 

environmental advocacy organizations, which promoted a target of 40% total tree cover 

in cities and 25% in urban residential areas (American Forests 2002b, 2003a). Tree cover 

in the District already exceeds 25% for many low density residential areas. Reaching 

40% total tree cover proportion would require more than 216,000 new trees to be planted 

(Casey Trees 2010). Reliable estimates of tree cover and how it changes are required for 

setting specific tree cover goals. 

 A focus on tree cover goals in low density residential zones would potentially be 

more useful than city-wide goals. Tree cover and variability is greatest in ward 3 in the 

northwestern section of the District of Columbia. Although similar in total population and 

topography, wards 7 and 8 east of the Anacostia River contain approximately 40% less 

tree cover than ward 3 (Figure 41).  By calculating the total surface area and tree cover 
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area of each ward, the possible city-wide gains in tree cover can be determined. 

Increasing tree cover in low density residential zones within wards 4, 5, 7, and 8 to the 

levels of ward 3 would increase total District of Columbia tree cover by approximately 

4% total land area. 

 

Evaluating Ecosystem Impact  

 Urban jurisdictions including the District of Columbia cite the ecosystem impact 

of tree cover in their management plans (City of Boston 2007; City of Alexandria 2012; 

D.C. Government 2012d) and have utilized software packages such as i-Tree to estimate 

that impact (U.S. Forest Service 2010b). The i-Tree package incorporates measurements 

at field survey plots to estimate biophysical impact city-wide. Tree cover variability 

impacts values for some ecosystem functions such as interception of aerosol pollution. 

Other impacts such as carbon sequestration are less directly linked to tree cover area. 

 The i-Tree package utilizes the 2001 National Land Cover Database (NLCD) to 

map tree cover proportion, which provides unreliable results in urban areas (Greenfield, 

Nowak, and Walton 2009; Walton 2008a). Documentation for i-Tree encourages users to 

observe differences between NLCD and tree cover field measurements to correctly 

interpret results (U.S. Forest Service 2010b). Using more accurate tree cover maps would 

improve accuracy for estimating biophysical impact of urban forests.  

 Currently the i-Tree package does not incorporate variable measures of tree cover. 

Tree cover variability observed for District of Columbia would have only a minor impact 

on city-wide estimates of values such as interception of aerosol pollution and carbon 

sequestration. Tree cover variability would have larger impact when using a package 

such as i-Tree to map ecosystem impact in smaller areas. In particular it would alter 
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estimates of surface temperature impact from shaded tree cover area. The magnitude of 

the impact depends on the mix of tree species and other factors. This issue may require 

attention as management authorities make use of programs such as i-Tree.  

 

Application of Remote Sensing Methods 

 Tree cover of the District of Columbia was mapped using two methods applied to 

calibrated satellite remote sensing data. Support Vector Regression (SVR) produced 

results with lower and more spatially consistent error than Spectral Mixture Analysis 

(SMA) for observing urban tree cover. Results from SMA overestimated tree cover in 

low population density areas. In contrast, accuracy across land use types was more 

consistent with SVR. The consistent reliability across land use types provides an 

important advantage, which allows SVR results to be used for identifying tree cover 

changes between different regions within a city.  

 Possible sources of uncertainty in tree cover estimates were investigated. Relative 

spectral variability of the calibrated Landsat data in visible and infrared channels was 

found to be similar to a previous study (Huang, Goward, Masek, Gao, et al. 2009). 

Despite spectral variation, tree cover estimates were consistently related to aerial 

photography validation in different time steps.  

 The  results from this study suggest the importance of using calibrated data for 

multitemporal analysis. The satellite remote sensing data used in this study (Goward et al. 

2008) were calibrated to minimize the impact of atmospheric scattering (Masek et al. 

2006). This type of calibration was not performed in a previous report that suggested 

significant changes in District of Columbia tree cover (American Forests 2002b).  This 

previous study compared Landsat satellite images acquired by the Multispectral Scanner 
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(MSS) in 1973 and the Thematic Mapper (TM) sensor in 1997 (American Forests 2002b). 

MSS data lack shortwave infrared channels, which could lead to overestimation of tree 

cover due to spectral similarity with turf grasses common in urban landscapes. The 

presence of atmospheric haze is another possible source of error, which would tend to 

decrease detected tree cover. Visual inspection of the 1997 Landsat TM scene 

downloaded from the U.S. Geological Survey (U.S. Geological Survey 2011) indicates 

observable amounts of atmospheric haze. The American Forests report (American Forests 

2002b) may therefore overestimate 1973 tree cover due to spectral confusion and 

underestimate 1997 tree cover due to atmospheric scattering effects. Avoiding these 

errors requires consistent spectral data calibrated to surface reflectance. 

 Reflectance in visible channels was not related to scene acquisition date, but 

scenes acquired later in the year contained lower reflectance in shortwave infrared and 

near-infrared channels. This was most prominent for the 1992 satellite observation. This 

introduces uncertainty for observing the timing of tree cover declines in the early 1990s, 

although tree cover change was validated with independent observations.  

 

Directions for Future Research 

 Measures of tree cover variability could be used to enhance understanding of the 

urban environment in future studies. The results of this study provide new understanding 

of urban areas by making measurements of interannual tree cover variability over decadal 

periods within a major urban center. Reporting static values for tree cover proportion may 

ignore important dynamism occurring within the urban environment. 

 The relationship between tree cover variability and land use in other cities could 

be investigated in future work. This study found that greatest tree cover variability was 

found within low density residential zones. Finding the same relationship in other cities 
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would suggest that urban tree cover variability can be found mostly within low density 

residential areas, while other land use types contain more consistent tree cover.  

 High resolution data show spatial details not available in the Landsat-scale 

observations utilized in this study. However, the lack of shortwave infrared channel in 

these data sources is a significant limitation for discriminating tree and grass cover. 

Addition of high resolution data in the shortwave infrared would be a significant advance 

for understanding urban vegetation cover. This capability will be included in the 

WorldView-3 satellite, planned for launch in 2014 (DigitalGlobe 2012).  

 A possible direction for future research would be to investigate tree cover changes 

within growing seasons by utilizing multiple acquisitions of high resolution satellite data. 

Unlike the current study of past tree cover variability, future monitoring of urban tree 

cover could rely on available high resolution satellite data for fine scale validation. 

Future research could include analysis of finer scale data based on the aerial 

survey sketch maps used for monitoring of insect defoliation. Spatial data derived from 

those surveys (Liebhold et al. 1996) could also be utilized for comparison to satellite 

remote sensing observations. Because defoliation was indicated in aerial surveys only if 

defoliation reaches 30%, it is possible that more modest impact was spatially extensive. 

 Application of object-oriented classification with high resolution data, shortwave 

infrared response, and LIDAR may hold promise for future monitoring of urban tree 

cover, providing a complement to the results of this research. Data from LIDAR sensors 

could be utilized to evaluate the spatial variation of measures of canopy structure such as 

LAI in urban forests.  

 In this study SVR was trained on fractional canopy coverage, a quantity widely 

utilized in research studies of the urban environment. Training SVR using physical 
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canopy measurements such as leaf area index (LAI) is worth exploring in future research 

with data sources sensitive to canopy structure such as LIDAR.  

 This study compared SVR with linear SMA to determine if improvements were 

possible in remote sensing of urban tree cover. A more comprehensive analysis in the 

future could include comparative assessments with other methodologies, including 

nonlinear spectral mixture analysis and object-oriented classification with moderate 

spatial resolution data.  

 Available software tools place limits on the practical application of the SVR 

methods for large areas. The LIBSVM program used for this study lacks a simple user 

interface and was not intended for large volumes of remote sensing data. At least one 

remote sensing software package, ENVI (Exelis 2012), includes support vector 

capabilities. However, this package implements only support vector classification, not 

support vector regression or parameter validation procedures. Implementation of SVR 

methods in commercial software packages would be a significant advance. 
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