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1. Introduction

We consider a rigid body to which a long, flexible appendage is attached. A coordinate
reference frame is fixed in the rigid body with the origin at the center of mass of the rigid
body. The flexible attachment is assumed to lie along the second coordinate axis when the
configuration is at rest. ( see figure 1.) The equations of motion for such a configuration, under
suitable assumptions and with the appendage modeled as a linear extensible shear beam, are
derived by Krishnaprasad and Marsden in [2]. In deriving the equations of motion they use
Hamiltonian methods in the context of Poisson manifolds and reduction. (see [2] for the
explicit formula for the Poisson brackets involved.) -

If we assume that the momentum of the system which arises from the appendage rotating
with the rigid body is negligible, then our Hamiltonian is of the form

H:%J_IP'P-F%/Z“ M 411 f Kar §5ds (1.1)

Jds

We assume that J is the inertia matrix of the rigid body and that pg is the uniform mass per
unit length of the attached appendage of length £. The reduced phase space is coordinatized
at any time by w, the convected angular velocity vector of the rigid body; r(s), the convected
displacement of the shear beam at a point s, 0 < s < ¢; and m(s) the momentum density of
shear beam at the point s. The vector p is the body angular momentum vector of the rigid

body, thus p = Jw. Finally, K is the diagonal matrix of elastic coeflicients.
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Figure 1. The Geometry of the Configuration
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In our investigation we are interested in the stability of the system about equilibria points.

These equilibria will satisfy,

Jr ¢ or dar
0=Jwx x K— —r(f) xK é —xK—d .
wxwta ds|,_, () e2+/0 Jds as “* (1.2)
1
0= —m+rxw (1.3)
Po
32
O:Kés—;+mxw (1.4)
Two boundary values are associated with these equations,
0 0
a
or = 11| =ey, and r =|la| =a (1.4)
95|,y 0 s=0 0

In [2], a stability algorithm based on the Energy-Casimir method was applied to a spe-
cific family of equilibria (see section 4.2 below). The essence of the stability algorithm is to
recognize that the relevant Poisson structure { -, - } admits nontrivial Casimirs i.e. functions
F that Poisson—commute with any function of the phase space. It follows that these are also
conserved quantities for the dynamics of (1.1). Specific Casimirs C4 may be found such that
the relative equilibria defined by (1.2) — (1.4) are critical points of (H + Cy) on the reduced
phase space. Formal stability follows from establishing definiteness conditions for the second
variation D?(H + C4) at the relative equilibria. To establish rigorous nonlinear stability, one
has to carry out certain convexity estimates as in [2].

The purpose of this paper is to establish a systematic procedure for carrying out the formal
stability step for arbitrary equilibria satisfying the equations (1.2) — (1.4). This has useful
applications in the engineering context where the model at hand represents the mechanics of a
spinning spacecraft with a flexible attachment (such as a boom for carrying instruments or an
antenna). See [2] for related remarks and references. The procedure derived here recovers the

results of [2] when applied to the specific example considered there. (see section 4.2 below.)



2. Computation of the First and Second Variations

In this section we compute the first and second variations of the Hamiltonian plus the

Casimir function, H + C4. From the previous definitions of these we know
2 d 8
HZ%J—lp.erg/ lfm(s)II" ” ds+ 1 /K i (2.1)
0

and the Casimir function may be taken to be

2
Cy = %¢(|lp+/(; r x m ds|2). (2.2)

We will denote the first and second variations by D(H + C4), and D?(H + C4). Note that
because of the distributed nature of the system we are dealing with we will need to compute

variational derivatives instead of ordinary gradients.

2.1. Computation of the First Variation

For the integrals in the Hamiltonian we consider variational differentials defined by

Df(z) = lim fz + k) ~ £(2) = /‘5 8. bz ds. (2.3)

e—0 € éx

Thus, letting

fot / Im()|? . -

pPo
then
t1
ng(m):/ —m - émds. (2.5)
o Po
Similarly, let
JOr
- .z .6
fa(x) = / KT g, (2.6)
dér
-——d 2.7
Drte) = [ K2 2T g (27)

If we integrate this equation by parts with the boundary conditions ér(€) = ér(0) = 0, we get

Dfs(r / Ko -érds. (2.8)



For the integral term in the Casimir function we are taking variational derivatives of a cross

product term. If we define _
¢
a2 = ||p +f r » mds|?, (2.9)
0

then

[4 [4

r X émds +/ ér X mds). (2.10)

0

Dla|* = 2a- (6p+ |

0

If we combine all of the above we get the expression for the first variation

e
1
D(H—{—Cd,):J_lp-&p—{—/ p—m ﬁmds——/ K—— -érds
o PO

¢'(|e)|?) @ (6p +/O r x émds +/0 ér x mds). {2.11)

2.2. Computation of the Second Variation

For the second variation, the starting point is the expression for the first variation. The

terms arising from the original Hamiltonian are straight forward to compute, they are

DI 'p.6p)=J3"'6p- ép, (2.12)
¢
D / —m - émds) = / i6m émds, (2.13)
0
825r
/ K'a? ér dS / K—— - érds. (2.14)
Note that we can use the boundary conditions on ér to get
¢ 2
0°6r dér Oér
¥ s. .
/OKaS2 rds = / k2T T s (2.15)

Next we consider the component which arises from the Casimir function which we added to

the Hamiltonian. From the first factor of this term we compute,
£ £
D¢' (@) =2¢"(||¢||?) @- (6p + / rx émds+ | ér xmds). (2.16)
0 0

From the second factor of the Casimir term we compute

e ¢
D(a-(5p+/ rx émds+ [ ér x mds)) =
0 0

¢ e
||5p+/ r><5mds+/ ér x mdsl|®
0 0

+2(p+/0

5

£ 14

r x mds) - (/0 ér x dmds). (2.17)



We use the above to get the expression for the second variation

L
DZ(H+C¢)——-J‘15p-6p+/ —6m - 6mds+/ AL
o Po ds Os

+24" (o) (a- (6p+/ r><6mds+/ 6t x m ds))?

£
+¢(lal) {60+ [ xx bmds + o x s
0 0

+2(p+/£rxmds)-(/Cerémds)}. (2.18)

3. Computation of a Stability Criterion

ek

The conditions which assure that the first variation D(H + Cy) at an equilibrium is zero

are

¢'(llec]|*)a” = —w*, (3.1)
# (o) a* x x* = ——ma*, (5:2)
# (o) a* x me = -k (33)
where w® = J1p*¢, and
a° =p°+ /Oere x m€ ds. (3.4)

We use the superscript e to denote evaluation at an equilibrium. If we dot (3.1) with a® we

have
we - ot

#llacl) = -5 (55)

If we evaluate the first variation at an equilibrium, incorporating the above, then we can derive

conditions which assure the stability of the equilibrium. In the following sequence of steps we

demonstrate how this is done.

Step 1 : Evaluate the Second Variation at an Equilibrium
Recall the second variation. If we use the above to substitute for ¢'(||@®]|?) in this ex-

pression and rearrange slightly we find that

¢ dér

~fm- 6mds+/ Ka‘Sr 9T is
£0 Jds

D? (H+C¢)(p ;re,me) — I~ %6p- 5p+/ Js

0
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w®-a

2
[leee|
we - at

[/
2 ae-(/ ér X ém ds)
llell 0

) )
6P +/ r° x émds +/ 6r x m° ds”2
0 0

A £
+28"(l0) (- (6p + | r°x bmdo+ [ brxm®ds)),
0 [¢]

(3.6)
which corresponds to expression (5.5) in Krishnaprasad and Marsden [2]. In that paper, ¢ is
required to satisfy the condition:

we - af
¢"(llo°l|*) = —— - (3.7)
2|ec||
which is consistent with (3.5). In the following development we impose no conditions on

¢"(||Ote||2) at this time.

Step 2: Expand Terms Containing bp
We first note that the fourth and sixth terms in (3.6) can be expanded. For the fourth
term we have

we

af 2
la e”2 i p+/ re ><5mds+/ ér x m® ds||?

- _ugp.gp
Jlece]|”
w® - at 4 . JJ .
-2 62¢$p-( r’* x émds+ [ ér x m°ds)
||a I 0 0

” ”2 ||/ re ><5mds+/ ér x m®ds||? (3.8)
ae

while for the sixth term
[4 £
2¢II(||ae||2) (e®- (ép +/ r® x émds + ér x m° ds))2
) 0
= 2¢"(||la°}|*)(a* - 6p)*
)

2
+ 46" (lo*]?) (o° - 6p) (@ - ([ r° x 6mds+/ 6t x m® ds))
0 0
£

¢
+ 2¢" (||e®]|?) (a° - (/ r° X émds +/ 6r x m*® ds))?
0 0 :

(3.9)



Step 8: Collect Terms Containing ép
Now, collect together terms in which the quantity ép appears. Our expression for the

second variation at an equilibrium can then be written

€., ne L L
D*(H + Cy) = [J_l5p-6p - ﬁ(&p-5p+26p . (/ r° x 6mds+/ ér x m*ds))
a‘ 0 0
¢ e
+ 28" (le]|*) {(a® - 6p)? + 2(a® - 6p)(a° - (/ r® x émds +/ ér x m° ds))}}
0 0

e . pt 12 12
-2 012 ”/ l'e><6mds+/ 6r><m"ds”2
lles]|” ™ Jo 0
£ ]
+ 2¢" (J|le]|?) (e - (/ r¢ x émds +/ ér x m® ds))?
0 0 -
4 2 P
e e 1
w 02 ae.(/ 6rx6mds)+/ —6m-6mds+/ K% %ds
||exe]] 0 o Po o ds Os
(3.10)

Step 4: Complete the Square

The term in square brackets which contains the §p terms can be rewritten

- we.ac € € €
e T e 0aip e
12

- 4
W 26" ([|ac]?)a ® ac)6p - (/ r* x 6mds+/ 6r x m* ds)
0 o}

2
lje=ll

+2(-

(3.11)

In this expression we use ® to denote the tensor product and I the identity. Note that a® ® a°

is a tensor of rank 2. We can complete the square for this expression provided the quantity
w’ - af
1o T1424"(|lef]|P)ef ® af (3.12)

[l ||

has an inverse.

We next assume this inverse exists and define the two symmetric matrices M and N by,

MM =17 - T2 (et 0o
231 (3.13)
M = - S 2 (o ot @
2Q. (5.14)



Completing the square for the term in brackets we now get

[ 12
[ . }=||M6p+N(/ r°x&mds+f ér x m°ds) ||?
0 o

e ¢ ¢ e
—NTN(/ r‘x&mds+/ 6r><m°ds)-(/ r‘x&mds+/ ér x m°® ds)
0 0 0 0

(3.15)

The term in braces is bounded below by a perfect square when NTN > 0. For this to be the
case we need to assume that the inverted matrix, J_'! is positive definite, in general it need
not be. Note that this assumption will impose conditions on ¢"(||a¢||?). The requirements
on the parameters in this matrix to assure it is strictly positive definite will be expre-g'sed in
the form of inequalities. These inequalities will be the first conditions that we need to assure

stability.

Step 5: The Reformulated Second Variation

The second variation at an equilibrium is thus of the form

D*(H+ Cy) = (square)
£ £
~NTN( r"x&mds+/ ér x m°® ds)
0 0

£ £
(/ re><5mds+/ ér x m° ds)
0 0
£
- 2||(/ re xamds+/ 6x x me ds)|?
||°=°|| 0

¢ ¢
+2¢"(||ef]|*)a* @ a®( [ r® x émds+ / ér X m° ds)
0 0

e
( re xémds-i—/ ér x m° ds)

e 4
_o¥i e (/ §r x 6m ds) + / L sm. 5mds+/ T CALICALIN
e o Po ds s

(3.16)

Where we note that

lle<]|

I+2¢"(|le]|*)a” @ )



(~1_w°-a‘ we . at

o2 I+2¢"(fle’[|*)ef ® &)~ (- W 2¢"(|le°||*)e" ® a%)

= QeJeQe (3.17)

Step 6: Collect Integrals of Cross Products

Collecting terms containing the integrals of cross products the second variation can be

written
D*(H+ Cy) = (square)

e ¢
—(QJ. Qe — Q. ¢ x émd é °d
(QeJ.Q Q)(/Orxms—}—/o r x m°ds)

-

12 L
(/ r‘x&mds+/ br x m°ds)
0

€, e £ £
~2g——g-a‘-(/ 6rx6mds)+/ lb"m><5mds+/ Kaaér-aérd
0 0 i

lae]® po 9s
(3.18)
Step 7: A Vector Identity
Observe that a simple vector identity enables us to write
w® - af ¢ ¢ ot we
2——a°-(| 6rxémds)=2 (—-—a“x&r)-&m ds
[l 0 o=l
[
=2 5 rg(& @) o s (3.19)
llees]|?

where we have used the skew-symmetric matrix S(x) associated with the cross-product

0 —X3 T
S(x)=| =zs 0 —x; (3.20)
—Z9 I 0
Step 8: A Quadratic Form
Now define the symmetric matrix
A
R:QeJch - Qe (321)

We will see below, that an eigenvalue estimate (3.23) relies on having R nonnegative definite.

We thus require that conditions on the parameters of the problem and ¢"(||a°||?) hold such

10



that J;! defined in (3.13) is positive definite and R defined in (3.21) is nonnegative definite.
The latter will assure that R has a square root R'/2, We will examine these assumptions

again in remark 2 below.
Expanding the second term in (3.18), we can re-express it as a quadratic form,

14

¢ e
R(/r ><6mds+/ 6r x m°ds) - ( re ><6mds+/ ér x m°® ds)
0

/ / R(S(r*(s))ém(s) — S(m*(s))ér(s)) - (S(r*(0))ém(0) — S(m*(0))ér(0)) dsdo
:/0 /0 [m™(s) &r(s)] [—SSTT((I;(;S()S)))] R[S(r*(0)) —S(m*(0))] {6;:((:))] ds do

ek

- /0 ‘ /O “l6mT(s) 6xT(s)] AT(s)A (o) [55‘;‘((0"))] ds do (3.22)

We now can find a lower bound on the above. The bound we want is obtained from an

eigenvalue inequality which we introduce by way of the following lemma

Step 8: An FEigenvalue Inequality

Lemma(3.1): Let A(s) € L}*"(0,£), and x(s) € LF(0,€) then

/ / () AT (5)A (0)x(0) dods < /O ()1 /0 “IN(0) dolx(s) ds,  (3.23)

where AZ(s) is the maximum eigenvalue of AT(s)A (s).

Proof: Let | - || denote the standard norm in Euclidean space and also the induced matrix

norm associated with it. Then

/OL/O‘XT(S)AT(S) (0)x(o )dads</ / ixT (s) A7 (s) A (0)x(0)| do ds
< [ [ 1A@x@ 1AEx () dods
< [1a@l e@lds [ 1a@ Ix)ldo

where we have used ||A(s)x(s})]| < ||A(s)||||x(s)||. We can now use the Schwarz inequality

£ 12 14
([ 1A@I Ixe)ide)? < [ A@IFs [ (o) as



Finally noting that the value of ||A(s)|| is simply the square root of the maximum eigenvalue
of AT (s)A(s) establishes the result. g

If we let A?(s) be the maximum eigenvalue of

ST(r*(s))RS(x*(s))  —S7(r*(s))RS(m*(s))
AT(s)A(s) = (3.24)
~ST(m*(s))RS(r*(s)) ST (m*(s))RS (me(s))

and let A% = foe A2(s) ds then we have by way of lemma 3.1 a lower bound on the second

variation

D*(H + C4) (pe,re,me) > (squarc)

4 I
—Az/ 5m’-"5mds—,\2/ érTérds -
0 0

(2
2/0 smTs((& @ )" H®le) )6r ds

4
+ / 1 smTomds + / IR (3.25)
o Po ds Os

Step 9: A Poincaré Type Inequality

If we assume that K is diagonal and use a Poincaré-type inequality
4
/ K‘%r 59153 ds > ¢ / Kér - 6r ds, (3.26)

with ¢ = (J5)?, then the second variation can be bounded below as
D*(H + Cy¢)(pe,re,mey > ( square )

£ 4
—,\2/ 6mT6mds——)\2/ érTérds
0 0

t o rg (ot ®at)w
/5 s Do ds

+/ —5mT5mds+c/ srTKérds (3.27)

Step 10: Rewrite The Lower Bound

We can reformulate the lower bound in a clearer form as follows
D*(H + C4)(pere,me) = (square)
1 Y2 a‘ar
2 P_OI - IA ““S( ”acuz W ) Sm 8m
+ / ) | @ (329)
o |-ST(fERffw) K -1IN T T

12



If we define the matrix

1 12 o gal
;;I —-1IA —S(TI&”-,—Q, we)
D(p°,r°,m°) = 3 (3.29)
-ST(qa@frws)  K-IX
then we can state the following theorem ;
Theorem(3.2): If the matrix R = Q.J.Q, — Q. defined in (3.21) exists and is nonnegative
definite, J, defined in (3.13) is positive definite. and the matrix D defined in equation (3.29) is
positive definite, then the system described by equations (1.2)-(1.4) is nonlinearly (formally)

stable at the equilibrium point (p®, r®, m®).

Remark 1: This result establishes only formal stability, since it is based on the the definiteness
of second variation. To establish rigorous stability of the nonlinear system one generally needs
to examine convexity estimates as is done in [2].

Remark 2: Note that if Q. ! exists and we use the matrix inversion lemma [4, p.656] we obtain

the following

(Q:l +J)—1 = Qe - QeJch

=-R (3.30)

Recall that we already have an assumption of nonnegative definiteness on R. Thus we need

to specify conditions on the parameters and ¢"(]|@¢||?) such that

J7'+Q.>0 (3.31)

T+Q ) t<o (3.32)

which are the same conditions as R > 0 and J. > 0. In the examples of the next section Q.
is singular.

Remark 8: A better result can be had by observing that AT (s)A(s) is frequently in the form
of a block diagonal matrix

A (s)A1(s) 0
AT(5)A(s) = (3.33)
0 AT (s)Ax(s)

13



where 0 < k < 6 and because of the semidefiniteness of AT A(s) some of the diagonal blocks

may be zero. If we let A?(s) be the maximum eigenvalue of AT (s)A;(s), 0 < ¢ < k then we

can define . oroa .
P_OI '—S( |ac“’z_we) IA% 0
D' = - (3.34)
_ST(%e%w) K o 12

Thus, if the conditions of theorem (3.2) are satisfied and also the matrix D’ defined in equation
(3.34) is positive definite, then the system described by equations (1.2)-(1.4) is (formally)
nonlinearly stable at the equilibrium point (p¢, r¢, m¢). In theorem (3.2) this will mean the

special choice A%(s) = max{\%(s),...,A%(s)}. =

4. Some Examples

In this section we apply theorem (3.2) to specific equilibria of (1.1) - (1.3). We will assume
that that the linear extensible shear beam lies along the same direction as the second principal
axis of inertia of the rigid body. From geometric considerations the position of the shear beam
will cause the principal axes of the rigid-body-shear-beam configuration to lie in the same
directions as those of the rigid body. In this case the addition of the shear beam will have
the effect of increasing the moments of inertia about the first and the third principal axes.
Because the linear extensible shear beam cannot deflect laterally the principal axes of the of
the configuration remain fixed for any longitudinal extension of the shear beam. Thus, for
this configuration there are three axes about which the equilibria can exist. These axes will

correspond to the three principal axes of the rigid body.

4.1. A Trivial Equilibrium

The simplest case to be considered is when the rotation takes place about the axis along

which the linear extensible shear beam lies. In this case the equilibrium will be

w® = UJ; éz (41)
r® = (a2 + s) é,, 0<s<? (4.2)
mé=20 (4.3)

14



This describes the linear-extensible-shear-beam being unstretched.
What follows is a special case of the second variation computed in Step 1 of the previous
section. In this and the following example we will assume ¢” (||@°||?) is the same as in [2], thus

recall from (3.7) that if this is the case then

" e(12y we-a°
¢ (leIP) = 5o

And the two quantities, J;'!, and Q., which we define in Step 4 are

we - af af ® af
Jol=3"1- (I — ) 4.4
T\~ el L e
we . af a® @ o’
Q= e (I el ) (4.5)

For our example, if we first compute

af = ].22(1.)2 éz (46)
then
a*Tw® = 55y (wl)? and  a*Ta® =5, (wd)? (4.7)
from which we immediately compute
e .eT 1 0 O
1-22 _—lo o0 o (4.8)
oo 00 1
and finally,
[ _J11J22 0 0
—1 J22—711
J; = J22 O (4.9)
0 0 .23322'2
L J22 7733
L0 o
J22
Q=0 0 O (4.10)
0 0 -
L. J22

For J, to be positive definite we require j2; > 711, and 722 > Jss. This will assure positive

elements along the diagonal in the inverse above.

15



Thus, the quantity Q.J.Q. which appears in the reformulated second variation of Step 5

will be,
p _ J—l c!cTWe aeaeT -1 (aeTwc)2 aeacT
QJ. Q. = - aCTa‘( a‘Ta‘) (a‘Tae)z( - aeTac)
1 1
L0 o0 1 1
1 1 J22 0 0 ?22; 0 0
= 0 == 0 — 0O 0 O 0 0 O
222 1 0 0 1 0 0 1
o o T2z 332
[ didza 0 = 0 0
J22—J11 R 22
= 0 J22 0 0 0 0
_Jasjaz 1
o o i flo o 3
[ . ..7'11 _ 0 0 =
J22(d2z—J11)
— 0 0 0 (4.11)
|0 0 SGardon)

where we have used equation (3.17) and the fact that J, and Q. are diagonal.

We also need the skew symmetric matrix which appears in Step 7. Thus, we compute

0 0 wj
S(ZeZw)=| 0 0 0 (4.12)
-wi 0 O

Now we compute R, which is defined in Step 8.

atTwe aeaeT
R=Q.J.Q. I-
Q Q + aeTae( aeTae)
[ S 0 L o0 o0
.722(.722_.711) J22
— 0 0 0 +10 0 O
] 1
| 0 0 5ilha—des 0 0 3
-1
Je22—I11 0 0
- 0 0 0 (4.13)
0 0 —L
. J22—333
which, along with the definition of S(- (3.20), we can now use to compute
2.0 0
T Ja2— Jaa
S*(r°) 0 0 (4.14)
Jaz—J11' 2
ST (r*)RS(m®) =0 (4.15)
ST(m*)RS(m*®) =0 (4.16)

16



These matrices are used to form the matrix AT(s)A(s) in (3.34), note that it has only the
two nonzero elements (computed in (4.15)). These correspond to the first and second diagonal
elements. Hence, AT(s)A(s) is a diagonal matrix and the nonzero eigenvalues are these two
elements. As a consequence we will use the modified bound described in Remark 3. Thus, the
eigenvalue inequality is easily obtained.

After using the Poincaré inequality of Step 9 we proceed to the final step and construct

the D' matrix in (3.34)

-1 1 £ .2
Po  Jaa—7dss fO r57ds 0 0 Y —w3
0 L 0 0 0
Po P -a,
2
D — 0 0 plo — jzziju Jorstds w$ 0 0
0 0 wj (3)%ks O 0
0 0 0 0 (35)%ky 0
5 — w3 0 0 0 0 (32) %k |
(4.17)
To assure that the D’ matrix is positive definite we require
¢ o2
Je2 — J11 > Po/ rg-ds (4.18)
0
¢ e
J22 — J33 > Po/ rg ds (4.19)
0

and also,

(i S /0 T;st> (é’%)zkz > (w5)? (4.20)

Po J22 — 733

1 1 /e e2 T2 2

R — récds ) (—) ke > (ws 4.21
(m | s ) () ke > (3) (4:21)

Physically the first two conditions are classical stability conditions on the stable axes of rotation
for a rigid body. The term on the right is the additional inertia due to the flexible appendage
which adds inertia about both the first and third axes. The second two inequalities are
conditions on the admissible rotation rates of the configuration. They have an interesting

physical interpretation.
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4.2. A Non-Trivial Equilibrium

For the second example we will consider rotations of the rigid-body-shear-beam configu-
ration about the first or third principal axes of inertia. We will examine the case when the
rotation is about the first principal axis of inertia, rotations about the third axis are similar.

This corresponds to the example in Krishnaprasad and Marsden [2].

e ~

w® = (4.22)

- e
SIII1/ wl COS1/ w S—

re éz (423)

e
fowi cos(4/ > w1£

sin(y/ f2wis) cos(y/ grwi(s — £))
) =

k £04,8 cos( wfl)

®
—
)

I
©
(o]

(>
-
[

(4.24)

In these equations we have 0 < s < £. For simplicity we will denote the nonzero element of r
as 7§, and that of m as m§.

We first compute

2
a® = jjwi +/ romgz ds &; (4.25)
0
thus
[4
a*Tw® = (jwt +/ romg ds)w; (4.26)
0
I
a’Tal = (F11ws +/ rim$ ds)? (4.27)
0
Subsequently we will denote the first element of & by a;. We now compute
e eT 0 0O
-2 =010 (4.28)
o a 00 1
and finally, J7! and Q. defined in Step { are
-1
w00
-1 ay—jrow
e 0 (4.29)
0 0 o ._.7.33‘4’;
J3z oy
0 0 O
Q.=1{0 2+ 0 (4.30)
0 o «
X o



For J; 1 to be positive definite we require
ay > Jow; and ay > Jasw; (4.26)

These conditions will hold if 733 > 722, and 711 > 733 and will assure positive elements along
the diagonal in the inverse above. These conditions are the same as (5.10) in [2].

Then from equation (3.17) we have

Q.1.Q. = (J_l aTwe a acacT)>"‘1 (EaeTwe)z - aeaeT)>

o T at o aT ot aeTae)2 atTac
1 -1
o 00 0 0 0 R I A
_ o L o]0 & o 0 =~ 0 =
- j22 1 o1 we t (we)2
o o L 0 0 WU 0 )
L 0 0 “lro 0 0
1 . (w$)?
_ |0 @ziw g 0 5 O
J2z21 ] 1 (w°)2
al_233w 1
L 0 0 Jaszoy : 0 0 af
w1 ) g2z
= 0 [+ 3} al—jggwi O (4.31)
0 0 (We] !2j33
L o) al—j33w‘l’
The skew symmetric matrix of Step 7is
- 0 0 0
S(getgew?) =0 0 —wi (4.32)
0 wi O
Now we compute R as defined in Step 8,
acTwc aeaeT'
R=Q.J.Qc+ aTacl (I- aeTae)
[0 O 0 0 0 o0
= |0 by 0 + 0 Z‘i‘ 0
0 0 b33 0 0 .“_’i.
L o
(0 0 o0
= [0 722 O (4.33)
[0 0 733
where we have
wi wi '
Y22 = . and VY33 = —————— 4.34
oy — J22Wy ay — Ja33wi (4.34)
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Note that these are not the same as the ~;, and +; terms which appear in [2].

We can now compute

’1337‘5 0 0

ST(x*)RS(r)=| 0 0 O (4.35)
0 00

ST(r*)RS(m®) =0 (4.36)
y22m$% 0 0

ST(m)RS(m®) = 0 0 0 (4.37)
0 0 0

From this we can compute the matrix AT(s)A (s) in (3.24), note that it has only two nonzero
elements. These correspond to second and fourth diagonal elements. Hence, AT(s)A&(s) is
a diagonal matrix and the nonzero eigenvalues are these two elements. As in the previous
example we will use the modified bound described in Remark 3.

We can construct the D' matrix in (3.34)

(L s [yrsds 0 0 0 0 0 ]
0 = 0 0 0 ~w$
1 e
D' = 0 0 5 ° wi 0 (4.38)
0 0 0 (35)%z— 22 fyms%ds 0 0
0 0 w§ 0 (35)%ky 0
i 0 —w§ 0 0 0 (F5)%k, |
To assure that the D' matrix is positive definite we require
1 4
:1—3; > po/o 7‘;2 ds (4.39)
T\2 ky ¢ 2
—} — > s d 4.40
(25) 22 /(; m3 s ( )
and
kz T, 2 ey 2
—\= 4.41
) > ) (4.42)
ky T.2 ey 2
—= (= 4.
25> @) (1.42)

These conditions are exactly those of (5.14) in Krishnaprasad and Marsden and they assure

stability about the equilibrium which also satisfies (4.26).
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Finally a remark about the difference between [2] and our development. If we integrate the
matrix we call AT (s)A(s) then the elements of the integrated matrix would correspond to 72,
and 7; in the paper of Krishnaprasad and Marsden. This suggests modifying the procedure in

the previous section to look at the eigenvalues of the integrated matrix rather than integrating

the eigenvalues.
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