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Chapter 1

Introduction

1.1 Overview

Traveling wave thermoacoustic engines (TWTAEs) are a type of heat engine

operating on the Stirling cycle. Unlike traditional Stirling engines, the TWTAE does

not have pistons, nor does it have moving parts. As a result, thermoacoustic Stirling

engines have less viscous losses than Stirling engines with pistons, or other Stirling

engine models with liquid pistons. The ultimate goal of these Stirling engines is to

create an efficient and effective way to create electrical energy from waste heat.

As a heat engine which converts heat energy into acoustic energy, study of

the TWTAE lies within the field of study known as thermoacoustics. This field

also covers study of devices such as standing wave thermoacoustic engines and ther-

moacoustic refrigerators. One of the canonized texts on thermoacoustics was G.W.

Swift’s classical textbook [1].

Extensive efforts have been exerted to develop and analyze various configura-

tions of thermo-acoustic engines [1]. The motivation behind these efforts is the fact

that these engines are in effect clean, compact, environmentally friendly, and low

cost devices. The Bell Telephone Laboratories (BTL) can be credited to the devel-

opment of a “standing wave” class of such thermoacoustic engines whereby steady

heat energy was transformed into self-sustained oscillating pressure waves which are

1



then converted into electricity using reversed acoustical speakers [2], [3]. In spite of

the simplicity and reliability of the BTL concepts, their conversion efficiency were

relatively low (<10%) and the generated pressure oscillations were relatively weak.

In order to overcome these limitations, Ceperley [4], [5] , introduced a radically dif-

ferent concept for achieving higher efficiencies whereby the produced acoustic waves

were forced to undergo phasing similar to inherently reversible and thus highly ef-

ficient Stirling engine [6].The resulting class of thermoacoustic engines is called the

traveling wave engines which will be the focus of this thesis.

Generally, the conversion of the acoustic energy into electricity is achieved by

coupling the TWTAE with electromagnetic transducers of the moving-magnet type.

This type of transducers are typically heavy and inefficient due to Joule heating

resulting from the electrical resistance of the coil, eddy currents generated in the

laminations around which the coil is wound, as well as to magnetic hysteresis in the

lamination. Due to these serious limitations, the present thesis has attempted to

consider piezoelectric transducers as a viable alternative for direct conversion of the

acoustic energy into electricity because of their numerous attractive attributes. Dis-

tinct among these attributes, are their high conversion efficiency, light weight, and

high reliability as they have no moving parts. Furthermore, piezoelectric transducers

as they can operate efficiently at high frequencies, lead to the design of thermoa-

coustic engines with more compact acoustic resonators. Because of these distinct

advantages, this thesis will focus on studying the characteristics of the efficient trav-

eling wave thermoacoustic engines coupled with piezoelectric transducers in order

to effectively harvest the thermal energy and convert it into electric energy.
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1.2 Scope of the Thesis

The thesis is organized in nine chapters. In Chapter 2, a brief literature

review is presented including some of the attempts to model the TWTAE such as

the classical work of Yazaki [7], Backhaus and Swift [8], [9], and recently by A.T.A.M

deWaele [10].

In his publication, deWaele presented a method for converting the TWTAE

from a complicated continuous thermoacoustic system to a simplified discrete model

where components of the TWTAE are replaced by lumped-parameter elements.

This thesis reproduces the analysis performed by deWaele in Chapter 3 and in

Appendix A. Further analysis is performed on a prototype of the TWTAE, which

has been built at the Smart Systems Laboratory at the University of Maryland. By

using the lumped-parameter approach, deWaele generated a fourth-order differential

expression describing the behavior of the pressure within the engine. Also, deWaele

presented a theory in which the transient behavior of the TWTAE, the regenerator

hot-end temperature, and oscillating pressure amplitude are predicted.

The lumped-parameter model as theorized by A.T.A.M. deWaele is then fur-

thered in Chapter 4 and Appendix B whereby an electrical analog of the traveling

wave energy harvester is developed. By using the circuit analogy, the same fourth-

order differential expression can be created, but with the added benefit of being

easily integrated with other electrical elements. Chapter 4 presents also an analy-

sis of the TWTAE combined with a piezoelectric disk attached to the end of the

TWTAE resonator. By using the circuit analogy, the piezo disk’s mechanical and
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electrical behavior is integrated into the circuit analogy for the TWTAE.

Chapter 5 presents an axisymmetric finite element model (FEM) of the piezo-

electric disk coupled with an aluminum resonator cap. The method for the axisym-

metric finite element model for the system is derived from sources published by K.C.

Rocky et al. [11], and Ashida and Tauchert [12]. The developed FEM, is used to

predict the resonant frequencies of the combined aluminum-piezo disk system is as-

sessed, then compared with experimental results obtained by a laser vibrometer and

white noise frequency response. Also, a two-port impedance matrix that describes

the electro-mechanical coupling of the combined system is derived. This matrix is

then used in the DeltaEC analysis developed in Chapter 6.

Chapter 6 presents a numerical analysis using DeltaEC (Design Environment

for Low-Amplitude ThermoAcoustic Energy Conversion) [13]. By using DeltaEC,

comparisons of the predictions of the pressure amplitude, operating frequency, and

regenerator hot-end temperature are made against both the lumped-parameter anal-

ysis and the experimental results.

The results of the experimental setup described in Chapter 7 are discussed in

Chapter 8. Chapter 8 also compares the pressure amplitudes, temperatures and fre-

quencies determined theoretically from the lumped-parameter models, and from the

numerical analysis from DeltaEC. MATLAB codes, ANSYS text files and extended

derivations are included in the Appendices at the end of the thesis.

In this thesis, these theoretical transient plots are developed and compared

with the experimental results measured by the pressure transducers and thermo-

couples attached to the prototype engine. These results are displayed in Chapter

4



8.

Chapter 9 summarizes the conclusions arrived at and sets forth the recommen-

dations for future work and possible extensions of this thesis
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Chapter 2

Literature Review

2.1 Overview

Research intoTWTAEs began when Ceperly [4] published a paper exploring

the possibilities of a traveling acoustic wave passing through a regenerator. The

source of the acoustic wave was a loudspeaker; therefore, the experiment was of a

purely academic interest. Ceperly did however, present the idea of a thermoacoustic

engine with a positive feedback loop where the regenerator would amplify its own

spontaneous thermoacoustic oscillations. Ceperly, for a number of reasons, did not

manage to record a power gain greater than one, but he managed to demonstrate

the potential of traveling wave engines.

The TWTAE with a looped tube was constructed in 1998 by T. Yazaki et al.

[7]. The paper published successfully demonstrated traveling wave engines superior-

ity over standing wave engines. While the engine depicted in the paper did not have

precisely the phase variation necessary to fully carry out the Stirling cycle, trav-

eling wave oscillations demonstrated improved efficiency over their standing wave

counterparts.

The TWTAE was greatly improved with Backhaus and Swift’s design in 1999

[8],[9]. The design incorporated improvements such as the thermal buffer tube which

removed heat and allowed only acoustic energy to pass into the feedback loop. The
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feedback loop itself was improved; its shape was altered to create the necessary phase

variation needed to better carry out the Stirling cycle. Furthermore, its theoretical

efficiency is reported at 0.3 which is very high for thermoacoustic engines.

Backhaus et al. in 2004 constructed an engine with the same components

identified in the paper published with Swift in 1999 [14]. This engine connected

with a linear alternator to generate electricity. Backhaus reported experimental

efficiencies as high as 0.18.

In 2009, A.T.A.M. de Waele published a paper demonstrating a new method of

modeling thermoacoustic engines [10]. Previously, most modeling was done using the

circuit analogy of thermoacoustic components. This paper, however, decomposed

the engine into lumped element components. With this method, a fourth-order

differential equation was derived, and from this, operating properties were assessed.

2.2 Thermoacoustic Concepts and Prototypes

Several TWTAEs have been constructed and reported in literature. This sec-

tion will report on the literature chronologically, focusing on physical constructions

and prototypes. A particular emphasis will be placed on any predictive modeling

performed by the publications, with experimentation and results following.

2.2.1 A pistonless Stirling engine-The traveling wave heat engine

In 1978 Peter H. Ceperly [4] published a paper entitled “A pistonless Stirling

engine-The traveling wave heat engine.” This paper attempted to determine the
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acoustic effects of an acoustic wave traveling through a regenerator where a temper-

ature gradient was present. This paper discusses the viability of a Stirling engine

operating using this concept, and discusses the differences between traveling wave

thermoacoustics and the established standing wave engines. The paper reports an

approximation for the theoretic behavior of a regenerator in a traveling wave, rather

than the performance of a constructed traveling wave engine.

Concept

Unlike later concepts where a feedback loop in the engine provides the input

acoustic energy for the regenerator, this study created the acoustic wave using a

loudspeaker, operating at 190 Hz. This can be seen below in Figure 2.1.

Figure 2.1: Setup of Ceperly’s traveling wave heat engine study [4].

Also indicated in Figure 2.1 is the flexible tube, the section of tubing referred

to in the paper as the reflectometer, and the regenerator. The approximate locations
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of the microphones used to record the gain of the regenerator are also shown. The

flexible tubing is used to transmit sound from the loudspeaker, but not vibrations

in the walls. The reflectometer is used to calibrate the gain measurements. The

regenerator, which is designed to be shorter than the wavelength of the traveling

wave, is made of steel wool and a heating element for creating the temperature

gradient.

As mentioned before, Ceperly’s setup was created for academic purposes, to

study the gain of traveling acoustic waves through a regenerator. Ceperly proposed

constructing a TWTAE, which includes a feedback loop to supply acoustic energy

to the regenerator. This can be seen below in Figure 2.2.

Figure 2.2: Ceperly’s suggestion of a traveling wave engine with a positive feedback
loop [4]

The design in Figure 2.2 was realized and analyzed by many future publica-

tions.
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Modeling

The predictive model Ceperly employs in this paper is based on volumetric flow

and power gains of the gas due to the temperature differential in the regenerator.

The paper treats volumetric flow gain g as the ratio between volume flow entering

the regenerator and that leaving the regenerator. By using the notation Ii as the

volumetric flow entering the regenerator, and Io as the volumetric flow leaving the

regenerator:

g =
Io
Ii

(2.1)

Because the dimensions of the setup by Ceperly are all smaller than the wave-

length of oscillations and because of conservation of mass, the mass flow rate entering

the regenerator is assumed to be equal to the mass flow rate leaving the regenerator.

By using the relationship for mass flow rate to volumetric flow rate [15]

ṁ = ρI (2.2)

where in Eq. (2.2), ṁ is the mass flow rate and ρ is the density of the gas. Applying

conservation of mass through the regenerator:

ṁi = ṁo (2.3)

and applying Eq. (2.2) to Eq. (2.3):

ρiIi = ρoIo (2.4)
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Rearranging gives:

g =
Io
Ii

=
ρi
ρo

(2.5)

Ideal gas law states [15]:

ρ =
Mp

RT
(2.6)

In Eq. (2.6) M is the molar mass of the gas, p is the pressure, R is the universal

gas constant, and T is the temperature in Kelvins. Applying Eq. (2.6) to Eq. (2.5)

yields:

g =
piTo
poTi

(2.7)

Ceperly then uses an electrical analogy to simplify the expression for volumet-

ric gain. This analogy entails treating volumetric flow as current, and pressure as

voltage. This is discussed in greater detail in Chapter 4. The components of the

engine then have equivalent resistance and often compliance or inductance. Ceperly

treats the tubing as a resistance to flow Rt and the regenerator as both a resistor Rp

and an amplifier. The lumped parameter electrical analogy for the model published

can be seen in Fig. 2.3.

In the figure, the loudspeaker, the source of acoustic energy in the experiment,

is represented by a sinusoidal voltage source. By using Ohm’s law, it can be seen

that if pi is the pressure before the regenerator, and po is the pressure afterwards:
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Figure 2.3: Lumped parameter model of Ceperly’s thermoacoustic heat engine [4]

pi = RtIi (2.8)

and:

pi − po = RpIi (2.9)

Rearranging and substituting Eq. (2.8):

po = It(Rt −Rp) (2.10)

Inserting into Eq. (2.7):

g =
RtIiTo

Ii (Rt −Rp)Ti

=
To
Ti

(
1− Rp

Rt

)−1
(2.11)

Ceperly makes the assumption that that the flow resistance due to the regen-

erator (Rp) is much smaller than the resistance du to the tubing (Rp � Rt). This
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leads to Eq. (2.11) to be approximated as

g =
To
Ti

(
1− Rp

Rt

)−1
≈ To

Ti
(1− 0)−1

=
To
Ti

(2.12)

which leads to the relation

g =
piTo
poTi

≈ To
Ti

(2.13)

which implies the following approximation

pi
po
≈ 1 (2.14)

Because of this, the power gain G, defined as the ratio of output to input

power can be approximated as:

G =
poIo
piIi

(2.15)

Therefore, incorporating Eq. (2.15) into Eq. (2.1) yields the following approx-

imation:

G ≈ g ≈ To
Ti

(2.16)
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Results

By using eq. (2.16), estimations for the power gain of the regenerator are

easy to predict using the temperatures of the hot and ambient heat exchangers on

either side of the regenerator. By using three microphones, one to measure the

acoustic power moving towards the regenerator, acoustic power reflected from the

regenerator, and the power transmitted through the regenerator, the power gain was

measured. Theoretic gain was measured as:

Gmeasured =
Pout

Pin − Preflected
(2.17)

Listed in Table 2.1 is the chart of results obtained by Ceperly from his exper-

imentation.

Temperatures Gmeasured

Input
(◦C)

Output
(◦C)

Difference
(◦C)

Theoretically
expected
gain

Measured
Gain

Measured
gain nor-
malized by
first entry

90 90 0 1.00 0.81 1.00
150 90 -60 0.86 0.70 0.86
90 150 +60 1.16 0.90 1.11

Table 2.1: Results of gain measurements from Ceperly traveling thermoacoustic
wave study [4]

The measurements depicted in Table 2.1 are for 3 separate situations. The first

row of the figure represents the situation where the input and output are heated

to the same temperature, and there is no temperature differential. The 2nd row

represents the situation where the gain is expected to be less than one, in other

words, the temperature gradient dampens the acoustic energy entering the regener-
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ator. The 3rd row represents the situation where positive gain is expected. As can

be seen from the figure, the regenerator behaves as expected. When the regenerator

is oriented as a damper, the acoustic power is damped relative to the first row where

no gradient is present. When the regenerator is oriented such that acoustic power

is expected to be amplified, this is indeed the case, relative to the first row where

no gradient is present.

Because the measured gain does not match the theoretic gain due to unac-

counted losses, the model represented is not a very accurate prediction for the be-

havior of a traveling wave thermoacoustic engine. Possible ways to improve power

gain would be to use a higher temperature gradient, and to match the source fre-

quency to the resonant frequency of the apparatus. A way to improve the fidelity

of the model would be to more accurately predict the losses due to the regenerator.

2.2.2 Traveling Wave Thermoacoustic Engine in a Looped Tube

In 1998, T. Yazaki et al. [7] published a paper entitled “Traveling Wave

Thermoacoustic Engine in a Looped Tube.” This paper reported the construction

of a looped tube with a differentially heated regenerator, similar to the designed

by Ceperly in an earlier paper, seen in Fig. 2.2. This tube acts as a pistonless

Stirling engine; a traveling wave engine. Unlike Ceperly’s experiment, where a

loudspeaker was used, the acoustic energy is provided by spontaneous oscillations

in the regenerator. The looped tube allows positive feedback of the acoustic energy.

The energy returns to the cold end of the regenerator and amplifies the acoustic
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wave. A schematic for Yazaki’s looped Stirling engine is seen in Fig. 2.4.

Prototype

Figure 2.4: Yazaki’s looped tube with differentially heated regenerator [7]

The tube shown in Fig. 2.4 is constructed mainly of 20.1 mm inner radius

tubing, with a section of 18.5 mm inner radius glass tubing. The glass is included in

order to use a laser Doppler velocimetry to measure the velocity of the working gas.

Heat exchangers are attached to the wall of the tube at TH and TC at either end

of the regenerator. Pressure sensors were placed along the wall at different points

with the goal of identifying the wavelength and direction of wave propagation.

Results

The set up was built in order to observe two characteristic variables of ther-

moacoustic engines: onset spontaneous oscillation temperature ratio TH/TC, and the
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phase difference between velocity and pressure Φ at various locations around the

tube.

It is assumed that spontaneous oscillations are initiated when the difference

across the regenerator is great enough, or in other words, when the ratio of TH/TC

is large enough. The paper then attempted to experimentally plot the relationship

between the parameter ωτ and the ratio TH/TC. The variable ω represents the an-

gular frequency of the gas oscillation and was determined experimentally for each

measurement. The variable τ is defined as the time required for thermal equilibrium

in the cross section of the flow channel. It is also defined as:

τ =
r2

2α
(2.18)

In Eq. (2.18), α is the thermal diffusivity of gas, defined as:

α =
κ

cpρm
(2.19)

In this equation, κ is the thermal conductivity, cp is the thermal capacity, and

ρm is the mean density of the gas. For measurements, the temperature (TH+TC)
2

was

used to determine these values. In order to vary ωτ , the pressure was increased,

thereby increasing ρm, reducing α, and finally increasing τ . Seen below in Fig. 2.5

is the log-log plot of the measured ratio TH/TC which initiates oscillations for each

ωτ .

From the plot, for each value of ωτ , the ratio TH/TC above which spontaneous

oscillation occurs is seen. This plot can be used to determine whether spontaneous
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Figure 2.5: Yazaki’s log-log plot of onset temperature ratio with respect to operating
frequency [7].

oscillations due to engine operating conditions are expected to occur. Also, the value

for ωτ that minimizes the ratio TH/TC needed is experimentally can be approximated.

Finally, it was noted that the ratio TH/TC needed to generate spontaneous oscillations

is reduced for a traveling wave engine as opposed to a standing wave engine. The

comparison was made by repeating measurements yet putting a stiff barrier in the

engine thereby changing the looped engine to a standing wave engine.

By using the twenty-four pressure transducers located at various points around

the loop (transducer locations can be seen in Fig. 2.4), both the phase variation

between the volumetric velocity and pressure are measured, as well as work flow at

multiple points in the loop. Fig. 2.6 represents these plots versus location in the

loop for both the standing wave engine and traveling wave engine.

In both plots the location of the regenerator is depicted. It has been well
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Figure 2.6: Yazaki’s plot of phase and work flow versus position on looped tube [7].

documented that traveling wave engines can be more efficient and powerful than

standing wave engines and the lower of the two plots clearly confirms this assump-

tion. The increase in work flow denoted by ∆I is similar for both the standing wave

and traveling wave engine, but the work flow is higher for traveling wave engine

varieties. The top plot demonstrates the flaws in Yakazi’s design for a traveling

wave engine. As can be seen, for the traveling wave engine, and specifically about

the regenerator, the phase variation (Φ) is not 0. This is problematic because it is

required that phase variation (Φ) be as close to zero as possible about the regener-

ator for the efficient Stirling cycle to be leveraged. This problem has been solved

in later papers by introducing non-uniform tube sections in an attempt to tune the
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phase variation for their engine.

2.2.3 A thermoacoustic Stirling heat engine and A thermoacoustic-
Stirling Engine: Detailed study

In 1999, S. Backhaus and G.W. Swift published papers entitled “A thermoa-

coustic Stirling heat engine” [8] and also “A thermoacoustic-Stirling heat engine:

Detailed study” [9] where they construct a TWTAE which involves many improve-

ments over Yazaki’s design. These include a resonator section of the engine, iner-

tance in the feedback loop, and a buffer tube with a 2nd heat exchanger. The two

published papers report on the same engine. The schematic for the heat engine can

be seen in Fig. 2.7.

Prototype

The inertance and compliance in the feedback loop influences the phase of the

acoustic wave fed back through to the regenerator so that the working gas more

closely undergoes the Stirling cycle. This design also includes a 2nd cold exchanger

and a buffer tube, preventing heat from the hot end of the regenerator from escaping

into the feedback loop and resonator. The regenerator is made up of 120 mesh

stainless steel screens. The overall hydraulic radius of the regenerator is ∼ 42 µm,

which is smaller than the thermal penetration depth of helium pressurized to 30 bar,

estimated at 300 µm. While operating, the engine produces acoustic oscillations at

80 Hz.
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Figure 2.7: Backhaus and Swift’s thermoacoustic traveling wave heat engine. a)
Scale drawing of engine. b) Close up of looped torus shaped section of engine [8]

Modeling

Backhaus and Swift’s design was inventive in that they attempted to use the

feedback loop geometry to adjust the phase difference between the volume velocity

and acoustic pressure at the regenerator. The way in which this was done included

a narrower section in the feedback loop creating an inertance and an expanded

section to create a compliance. Afterwards, using circuit analysis to manipulate the

21



frequency response of the system to improve its performance. Fig. 2.8 depicts the

circuit analogy of the engine displayed in Fig. 2.7.

Figure 2.8: Circuit analogy for Backhaus and Swift’s traveling wave thermoacoustic
engine [8]

In the circuit analogy, as discussed by Ceperly, the current in the circuit is

equated to volumetric velocity, and the voltage is equated to pressure. By using the

expression for volumetric velocity gain in the regenerator determined by Ceperly [4],

where the regenerator provides a volumetric velocity input of

Uregen = U1c

(
Th
Tc
− 1

)
(2.20)

Backhaus and Swift then attempt to solve for U1c, the volumetric velocity

entering the cold end of the regenerator. The expression derived is reported as

U1c =
ω2LC

R

p1c
1 + iωL/R

(2.21)

In Eq. (2.22), p1c refers to the pressure in the engine immediately before the

cold end of the regenerator. The term L is the inertance of the feedback loop,
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and the terms C is the compliance of the feedback loop. The term R is defined as

the flow resistance due to the regenerator. The equation derived is independent of

temperatures Th and Tc, and is dependant only on geometry of the engine. It is

noted in the paper that if ωL is small in comparison with R, then by looking at the

denominator on the right hand side, it can be seen that U1c becomes in phase with

p1c, which is the phasing requirement for the Stirling cycle. The paper reports this

as a suggested method for adjusting the phasing of the engine. Furthermore, the

relationship between the volumetric flow into the feedback loop and the volumetric

flow into the regenerator is given:

U1c

Ufb
=
ωL

R
(2.22)

This implies that as L increases relative to R, the volumetric flow through the

regenerator, U1c, increases as well.

Results

The papers by Backhaus and Swift [8], [9] report on the efficiency and output

power of their design and attempt to demonstrate the viability of traveling wave

thermoacoustic engines. By using strategically placed microphones, Backhaus and

Swift attempted to measure the power delivered to the resonator- the location where

the energy will be harvested- versus the temperature of the hot heat exchanger. This

graph is represented in Fig. 2.9.

Fig. 2.9 is a plot of the thermal efficiency, η, measured as the power delivered
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Figure 2.9: Backhaus and Swift plot of engine efficiency vs. hot heat exchanger
temperature [8]

to the resonator, Ẇres, divided by power needed to heat the hot heat exchanger,

Q̇h, to the temperature shown on the x-axis. The figure also plotted the efficiency

across different size openings for the jet pump located before the cold heat exchanger

of the regenerator. Based on the plots, it appears that a smaller opening can im-

prove efficiency of the engine despite an increase in flow resistance; an interesting

connection.

Backhaus and Swift [9], through a variety of techniques such as measuring

and computer analysis attempted to determine the amount of power that is lost

through different components of the engine. Their tabulations can be seen in Table

2.2. As expected, the greatest power loss is due to the regenerator both through

viscous losses due to a tightly packed regenerator, and to thermal losses due to heat

removed by the cold heat exchangers. Power is also lost due to the high temperature
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used; a steep temperature gradient between the hot heat exchanger and the ambient

room is created.

pref/pm = 0.061 pref/pm = 0.10
Th,gas = 725◦C Th,gas = 725◦C

Element Process Method Ẋlost (W ) Fraction Ẋlost (W ) Fraction

Regenerator Viscous/Thermal loss DeltaE 238 0.14 393 0.13
Heat leak Measured 163 0.09 172 0.06

Feedback inertance minor loss DeltaE 62 0.04 296 0.10
Viscous/Thermal loss DeltaE 36 0.092 145 0.05

Thermal buffer tube Residual streaming Measured 82 0.05 25 0.01
Radiation Measured 69 0.04 78 0.03
Metallic conduction Measured 52 0.03 55 0.02
Boundary-layer transport DeltaE 7 <0.01 18 ¡0.01
Flow straightener DeltaE 2 <0.01 12 <0.01

Insulation Heat leak Measured 82 0.05 87 0.03
Main cold heat exchanger Temperature difference Measured 57 0.03 181 0.06

Viscous loss DeltaE 4 <0.01 11 <0.01
Sec. cold heat exchanger Minor/Viscous loss DeltaE 34 0.02 144 0.05
Jet pump Minor/Viscous loss DeltaE 30 0.02 130 0.04
Resonator and load Delivered power Measured 710 0.41 890 0.30

Input energy (1 − Thhx/Twater) Q̇h Measured 1724 1.00 2968 1.00

Unaccounted Ẇlost 44 0.03 200 0.07

Table 2.2: Backhaus and Swift’s calculated losses in traveling wave engine due to
individual components [9]

Backhaus and Swift accomplish many things with the two paper published in

1999. They devised a method using the geometry of the feedback loop to improve

and tune the power output and efficiency of a traveling wave thermoacoustic engine.

The paper reports values for efficiency and power. Specifically they report for their

engine design that at its most efficient, 710 W were delivered with an efficiency of

0.3, while at its most powerful, 890 W were delivered with an efficiency of 0.22.

There is a good effort at determining specific losses due to individual components

of the engine.

While a method of tuning the phasing and output power of the engine using

the geometry of the feedback loop is proposed, direct analytical expressions for the

inertance and compliance of the feedback loop based on engine geometry are not

determined in these publications. These are required to better analyze the engine.
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2.2.4 Acoustic field in a thermoacoustic Stirling engine having a
looped tube and resonator

Yuki Ueda, Tetsushi Biwa, Uichiro Mizutani and Tachi Yazaki [16] published

another paper in 2002 entitled “Acoustic field in a thermoacoustic Stirling engine

having a looped tube and resonator.” The paper reports construction of a traveling

wave thermoacoustic engine for the purpose of measuring pressure, velocity, and the

phase difference between the two different points within the engine. The schematic

for this engine can be seen in Fig. 2.10.

Prototype

Figure 2.10: Traveling wave thermoacoustic engine built by Yuki Ueda et al. [16]

Ueda’s engine is much closer to the engine built by Yazaki in 1998 than the

engine built by Swift and Backhaus in 1999. It is a relatively simple construction

with a Pyrex loop and resonator of uniform 40 mm diameter cross section. Un-

like Swift and Backhaus’ construction, there is no inertance or compliance in the

feedback loop, and no buffer tube to return the gas temperature to ambient in the

looped tube and resonator.
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Results

Pressure and velocity measurements taken by Ueda et al. were performed along

the center axis depicted in Fig. 2.10. The plots associated with these measurements

seen below in Fig. 2.11 begin at x = −104, which based on Fig. 2.10 is the very end

of the resonator where it meets the reservoir tank. Then the value of x increases

along the resonator to the torus section of the engine and travels counter-clockwise

around the loop. In Fig. 2.11, the regenerator location is indicated. Pressure

measurements were taken using pressure sensors at the ends of thin tubes attached

to various locations around the engine. The cross -sectional mean velocity was

measured using a laser Doppler velocimeter. The pressure (p) and velocity (U) were

recorded simultaneously, and phase variation (Φ) with respect to location is also

recorded. By using these measured values, work flow (I) was calculated and plotted

using the following relationship:

I =
1

2
Apu cos (Φ) (2.23)

In Eq. (2.23), A refers to the cross sectional area, p refers to pressure, u

represents mean velocity, and represents phase variations.

Because the cross section of the torus section is uniform, the phase was not

tuned as closely as possible to match the ideal Stirling phase variation (Φ = 0).

As a result, the second plot depicts a phase variation of approximately -20◦ about

the regenerator. Also of note, the work flow rate in the resonator is nearly zero for

the length of the resonator. While Swift and Backhaus managed to direct a large
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Figure 2.11: Ueda’s plot of pressure amplitude, phase difference, and work flow vs.
position [16].

amount of acoustic energy into the resonator, very little is reported in this paper.

Ueda et al. make the claim that the negative phase change about the regenerator

plays an important role in creating a large ∆I across the regenerator, but this claim

is largely unsupported.
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2.2.5 ‘Work flow measurements in a thermoacoustic engine

In 2001 Yuki Ueda, Tetsushi Biwa, Uichiro Mizutani and Tachi Yazaki [17]

published a paper that outlined the method for experimentation used in their 2002

study. The paper, entitled “Work flow measurements in a thermoacoustic engine”

reports on pressure and velocity measurements for a TWTAE similar to the one

published in the 2002 paper but with slight differences. The diagram for their

engine can be seen below in Fig. 2.12.

Figure 2.12: T. Biwa, Y. Ueda, T. Yazaki, U. Mizutani’s traveling wave thermoa-
coustic engine [17]

The looped tube is made of uniform 37 mm inner diameter Pyrex with three

copper elbows and one copper t-shaped joints. The resonator has a 78 mm inner

diameter. The 35 mm regenerator is made up of a ceramic stack with 1.03 × 1.03

mm square channels. Some important differences between this design and the one

reported in 2002 are the size and shape of the resonator, and the location of the

regenerator with respect to the resonator and feedback loop.
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Results

By using pressure transducers, the pressure amplitude is recorded along both

x1 and x2. The two variables begin in the same location indicated above in Fig.

2.12. The variable x1 then travels along the resonator to its termination, while x2

returns to the origin via the feedback loop. The plot of pressure versus position can

be seen in Fig. 2.13.

Figure 2.13: Biwa’s plot of pressure amplitude vs. position [17]

As seen in the image, x1 and x2 are identical until the two axes diverge at

the dashed line. As can be seen, x1, which travels along the resonator, possesses

standing wave modes as evidenced by the pressure node. The pressure along x2

gradually returns to the initial pressure amplitude of the origin.

30



2.2.5.1 Investigation on traveling wave thermoacoustic heat engine
with high pressure amplitude

D. Sun, L. Qiu, W. Zhang, W. Yan and G. Chen [18] published a paper,

in 2004, entitled “Investigation on traveling wave thermoacoustic heat engine with

high pressure amplitude.” The paper reports construction of a traveling wave ther-

moacoustic engine that possesses similar components to that designed by Backhaus

and Swift seen in Figure 9. The purpose of their engine was to attempt to find a

relationship between filling pressure, heating power, and the pressure amplitude at

various points in the engine. The schematic for the engine constructed by Sun et

al. can be seen in Fig. 2.14.

Concept
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Fig. 2.14 shows the traveling wave thermoacoustic engines cooling heat ex-

changer (1), the thermal buffer tube (4), the secondary cooling exchanger at the

bottom of the buffer tube (5), the feedback tubes (6), the compliance (7), jet pump

(8), and straightener tubes (9). The feedback and compliance tubes are not shaped

in a beneficial manner Backhaus and Swifts engine to achieve the correct Stirling

zero phase difference between the velocity and the pressure. Backhaus and Swift

install both a narrower section (inertance) and a wider section (compliance) in the

feedback loop to accomplish this. The regenerator (2) and heater (3) is shown in

more detail below in Fig. 2.15. The points where pressure amplitudes were measured

are labeled P1-P6.

Figure 2.15: Side view of regenerator and heater in traveling wave thermoacoustic
engine built by D. Sun et al. [18]

Fig. 2.15 shows the schematic of the relative locations of the 70 mm long regen-
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erator and the 100 mm long heater to one another. The heater has 24 holes where

heating cartridges are placed. The regenerator was made by cutting rectangular

channels into a stainless steel cylinder.

Results

As depicted in Fig. 2.14, pressure was recorded at five locations about the

engine. By using these pressure readings, a transient plot of pressure versus time

was generated. This can be seen below in Fig. 2.16.

Figure 2.16: D. Sun et al.’s transient pressure amplitude vs. time plot [18]

In Fig. 2.16, the transient pressure chart of a traveling wave engine warming

up from ambient temperature, a demonstration of spontaneous oscillations present

in regenerators is shown. After heating the regenerator at 900 W using the 24 heater

cartridges, the threshold temperature was met and oscillations spontaneously occur

at approximately 1200s. As the temperatures continued to increase, so did the
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pressure amplitudes for the five pressure sensor locations.

Figure 2.17: Spectral analysis of D. Sun’s traveling wave thermoacoustic engine [18]

Fig. 2.17 presents the spectral plots of the TWTAE. In the plot, the first

three resonant modes of the system as a whole are clear. Attempts at analytically

modeling the TWTAE are absent from this publication.

2.3 Summary

This chapter has presented a brief summary of the basics of traveling wave

thermoacoustic engines and their typical design features as well as their performance

characteristics.
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Chapter 3

Lumped-Parameter Model of the TWTAE

The modeling method that will be most closely inspected is the lumped-

paramter approach derived by A.T.A.M. de Waele [10] in a paper published in

2009. The paper begins with the thermoacoustic engine described by Backhaus and

Swift [8],[9] in 1999. The labeled schematic can be seen in Fig. 3.1

Figure 3.1: Diagram of model traveling wave thermoacoustic engine analyzed by
A.T.A.M. de Waele [10].

The sections labeled in the figure are the compliance tube (c), the connect-

ing tube (d), the pulse tube (t), and the resonance tube (R). The inertance and

regenerator are also shown. Because the dimensions of the engine are smaller than

the wavelength if the oscillations, it is assumed that the system can decomposed

into discrete compartments. The connecting tube, the compliance, and the pulse
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tube, labeled (c), (d), and (t) respectively, are transformed into discrete volumes

connected by isobaric tubes. The inertance is transformed into a piston whose mass

(Mi) is that of the gas within its volume. The resonance tube is transformed into a

piston, whose mass (MR) is that of the gas within the resonance tubes volume. The

diagram of the transformed system is shown in Fig. 3.2.

Figure 3.2: Discretized model of traveling wave thermoacoustic engine analyzed by
de Waele [10].

In the figure, the regenerator and the three heat exchangers (Tt representing

the hot exchanger, and Ta representing the ambient heat exchangers) hold over from

Fig. 3.1. The component labeled (b) represents a buffer volume and accounts for

losses in the system. The volume (b) is connected by a valve with flow conductance

C. As a convention, volumes the pressures in volumes (c), (d), (t) are defined as pc,

pd, and pt respectively. The terms
∗
Vc,

∗
Vd,

∗
Vt, and

∗
Vb, all denoted with an asterisk,

represent volume flow rates depicted at various points in Fig. 3.2. By assumption,
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because volumes (d), (t), and (R) are connected by frictionless, isobaric tubes. In

Appendix A, the derivation of the single fourth-order differential expression which

defines the pressure δpt is shown. This expression, repeated below is:

0 =
d4δpt
dt4

+ a3
d3δpt
dt3

+ a2
d2δpt
dt2

+ a1
dδpt
dt

+ a0δpt (3.1)

Where:

a3 = weC0 + τtweCr + wcCr

a2 = weaR + wcCrweC0 + (we + wc)ai

a1 = wcCrweaR + wcaiweC0

a0 = wcaiweaR (3.2)

The only variable in this expression is τc, the critical temperature ratio. Re-

placing dδpt
dt

with Pts, and rearranging Eq. (3.1):

Pt

(
−a3s3

s4 + a2s2 + a1s+ a0

)
= 1 (3.3)

3.1 Typical Performance Characteristics

Fig. 3.3 displays the root locus plot for Eq. (3.3). By using a3 as the gain

for the root locus plot, the point on the root locus plot where the graph crosses

the jω will give the point where the system becomes unstable, that is to say, where

oscillations begin.
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Figure 3.3: Root locus plot of the 4th order differential expression derived by deWaele
[10] and confirmed in Appendix A.

Figure 3.4: Close up of root locus plot of Eq. (3.3), showing gain of 1.69× 103

Fig. 3.4 displays a close up of the the root locus plot and a marker displaying

the gain for where the system becomes unstable. By using Eq. (3.1), the critical

temperature ratio can be determined. From the critical temperature ratio, given
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the ambient temperature the regenerator hot-end temperature can be determined.

DeWaele then attempted to determine the transient temperature and pressure re-

sponses vs. time as the system transitions from a static system to an oscillatory one.

From conservation of energy the expression for temperature in there regenerator can

be described by:

CH
dTt
dt

= Q̇t − Q̇c −
∗
Ht (3.4)

In Eq. (3.4), the term CH refers to the heat capacity of the regenerator, Tt

refers to the hot end of the regenerator, Q̇t and Q̇c refer respectively to heat entering

and leaving the system. Finally, the term
∗
H is the enthalpy flow rate in the system

defined as:

∗
Ht =

∗
Vhδpt (3.5)

And also:

Q̇c = κa
Ar
Lr

(Tt − Ta) (3.6)

The expression for
∗
Vh can be shown from Appendix A:

d
∗
Vh
dt

+

∗
VhaiTa
TtCr

=
(

1

wt
+

1

wd
+

1

wR

)
d2δpt
dt2

+ C0
dδpt
dt

+ aRδpt (3.7)

It can be seen from Eq. (3.1), Eq. (3.4) and Eq. (3.7), that for 3 unknowns:
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δpt,
∗
Vh, and Tt, there are 3 distinct differential equations. By using a MATLAB’s

ODE45 (Dormand-Prince) solution method, a numerical solution for Tt and p1 (the

amplitude of δpt) can be generated. Fig. 3.5 depicts the transient response of

the thermoacoustic engine where the regenerator has a presumed heat capacitance

CH = 0.21 as a heat in put of Q̇t = 500W is applied as published by deWaele. Fig.

3.6 is the verification performed in this paper using Eq. (3.1), Eq. (3.4) and Eq.

(3.7). The MATLAB code and Simulink block diagram shown in Appendix C.2.

Figure 3.5: Figure 7 from deWaele’s paper displaying the theoretical transient re-
sponse of the traveling wave thermos acoustic engine [10].

Similar to Fig. 3.5 and Fig. 3.6, Fig. 3.7 depicts the transient response of

the thermoacoustic engine where the regenerator has a presumed heat capacitance

CH = 21 as a heat in put of Q̇t = 2000W is applied as published by deWaele. Fig.

3.8 is the verification performed in this paper using Eq. (3.1), Eq. (3.4) and Eq.

(3.7). In his publication, deWaele refers to Fig. 3.7 as a “more realistic” transient
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Figure 3.6: Recreated verification of Figure 7 from deWaele’s paper

response.

Figure 3.7: Figure 8 from deWaele’s paper displaying the “more realistic” theoretical
transient response of the traveling wave thermos acoustic engine [10].

Meanwhile, similar transient plots are generated for a prototype of the TWTAE,
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Figure 3.8: Verification of Figure 8 from deWaele’s paper.

which is described in Chapter 7. Plots of numerical solutions for Tt and p1, (the

amplitude of δpt) are shown in Fig. 3.9 and Fig. 3.10.

Figure 3.9: Plot of Tt and p1 vs. time fora prototype of the traveling wave thermoa-
coustic engine as described in chapter 7. CH = 0.21 and Q̇t = 500W .
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In Fig. 3.9, an important characteristic is the oscillation of both the tempera-

ture and pressure for this system. The explanation for this oscillation is that, as the

temperature increases in the hot-end of the regenerator, when the critical tempera-

ture is reached, the system becomes unstable and pressure oscillations begin. Then

as enthalpy carries heat out of the system due to volume flow, the system loses tem-

perature and the oscillations reduce, which in turn causes the temperature to rise

again. Ultimately the system will settle into a steady state where the temperature

is settling around a constant temperature and the pressure oscillatory amplitude

also settles. According to deWaele, a “more accurate” model of the system can be

approximated with CH = 21. For a higher thermal capacitance, the system reacts

more slowly to temperature change. This is shown in Fig. 3.10.

Figure 3.10: Plot of Tt and p1 vs. time for a prototype of the traveling wave
thermoacoustic engine as described in chapter 7. CH = 21 and Q̇t = 2000W .

The important aspects of these two plots in Fig. 3.9 and Fig. 3.10 is the rising
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and falling action of the plots. According to this theory, there exists a “threshold”

power input which would cause the oscillations to start, then die off due to enthalpy

as heat leaves the system, and then start again as the temperature rises due to the

power input. Chapter 8 shows the temperature and pressure plots that are derived

from the experimental setup described in Chapter 7 which attempt to confirm this

theory. The volume flow rate for both situations, CH = 0.21 and CH = 21 are shown

in Fig. 3.11 and Fig. 3.12 respectively. These are compared with Chapter 6, which

shows results from from DeltaEC simulations.

Figure 3.11: Plot of volume flow rate vs. time for a prototype of the traveling wave
thermoacoustic engine as described in Chapter 7. CH = 0.21 and Q̇t = 500W .

According to the DeltaEC analysis from Chapter 6, it can be seen that the

volume flow through the regenerator was calculated to have a linear relationship

with input power. From Fig. 6.3 it was approximated that the flow rate has values

between 3.65×10−3 and 4×10−3 m3/s corresponding to input powers between 300W
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Figure 3.12: Plot of volume flow rate vs. time for a prototype of the traveling wave
thermoacoustic engine as described in Chapter 7. CH = 21 and Q̇t = 2000W .

and 360W. From Fig. 3.11, the lumped capacity model approximates that the

volume flow rate settles somewhere between 0.01 and 0.07 m3/s, depending on where

the measurement is taking place, with the volume flow rate of the pulse tube settling

at about 0.04 m3/s, or about 10 times the volume flow rate estimated from DeltaEC.

By using an input heat power of 354.7W, the same as the maximum input

power used in the experiments in Chapter 8, a thermal capacitance of CH = 0.021

yields an oscillating pressure amplitude plotted in Fig. 3.13 , and a volume flow rate

in Fig. 3.14. As can be seen from these figures, the steady state pressure amplitude

is predicted to be 628.9 hPa, which is equivalent to 9.12 psi. The volume flow rate

predicted to be between 0.008 m3/s and 0.057 m3/s depending on which point in the

TWTAE is being measured. Changing CH in the model does not have an impact

steady-state pressure amplitude predictions, but does have an impact on the time
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it takes for the system to reach steady-state.

Figure 3.13: Plot of pressure amplitude vs. time for a prototype of the traveling wave
thermoacoustic engine as described in Chapter 7. CH = 0.021 and Q̇t = 354.7W .

Figure 3.14: Plot of volume flow rate vs. time for a prototype of the traveling wave
thermoacoustic engine as described in Chapter 7. CH = 0.021 and Q̇t = 354.7W .
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3.2 Summary

This chapter has presented the basics of a lumped-parameter model of a trav-

eling wave thermoacoustic engine. The model is based on deWaele’s analysis. The

predictions of the threshold of onset of self-sustained oscillations and transient per-

formance characteristics are presented. Application of the model to the analysis of

the TWTAE is also presented.
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Chapter 4

Electric Analog of the TWTAE
4.1 Electric Analog of the TWTAE with Piezoelectric Disc Attached

to Resonator End Cap

Analogies exist between acoustic modeling and electric circuit modeling [19].

This is done because acoustic equations regarding pressure and volume flow bear

the same format as electric equations regarding voltage and current flow. Tab. 4.1

represents the acoustic terms and the analogous electric equivalents. Expressions

for determining analogous capacitance and inductance are given later in the chapter

in Eq. (4.1) and Eq. (4.4).

Acoustic networks AC electric networks

pressure p1 voltage V1
volume flow rate U1 current I1

compliance C capacitance C
inertance L inductance L

flow resistance R resistance R

acoustic power Ė2 electric power Ẇ2

Table 4.1: Analogous acoustic and electric components for system modeling [19].

The traveling wave engine diagram described by A.T.A.M. de Waele is shown

in Fig. 3.1 with the pulse tube, compliance, connecting tube, and resonator labeled

respectively as sections t, c, d, and R. A.T.A.M. de Waele then uses a lumped-

parameter model to discretize the system as shown in Fig. 3.2. In this model, the

pulse tube, compliance, and connecting tube are transformed into lumped-parameter
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volumes. The inertance is transformed into a piston, while the resonator is modeled

as both an inertance and a piston. Each section can be modeled as an inertance,

compliance, and a resistance, but for simplification purposes, the resistance is ne-

glected. Also the compliance portions of the inertance is neglected as is the inertial

aspect of the compliance section and connector section. The resonator is modeled

as both a compliance and inertance.

The system can also be modeled as an electrical analog seen in Fig. 4.1.

Included in this model is a piezo diaphragm sealing the resonator tube.

Figure 4.1: Electric analog lumped-parameter model of traveling wave thermoacous-
tic engine.

In Fig. 4.1, the term C represents equivalent capacitance of an acoustic cham-

ber. For sections i = t, R, d, c, the equivalent capacitance is defined as:
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Ci =
Vi
ρ0c20

(4.1)

In Eq. (4.1), V is the volume of the section, ρ is the density of the air in the

section, and c is the speed of sound. And because:

c2 =
γp

ρ
(4.2)

Eq. (4.1) can be rewritten as:

Ci =
Vi
γp

(4.3)

where in Eq. (4.2) and Eq. (4.3), γ is the specific heat ratio and p is the pressure.

As for the term labelled Li in Fig. 4.1, the equivalent impedance in an acoustic

tube is given as:

Li =
ρ0li
Ai

(4.4)

where in Eq. (4.4), li is the length of the section modeled as an inductor and Ai

is the cross sectional area of the section. Also the flow conductance, labelled Cr in

Fig. 4.1 is defined as:

Cr =
1

ηaZr
(4.5)

The equivalent resistance of the regenerator section is defined as 1/Cr . In Eq.

(4.5), ηa is the viscocity of air at room temperature. Also, Zr is defined as:
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Zr =
zrlr
Ar

(4.6)

In Eq. (4.6), zr is the specific flow resistance or the regenerator, lr is the

length of the regenerator and Ar is the cross sectional area of the regenerator. The

capacitance of the piezo-diaphragm at the end of the resonator Cp is calculated as:

Cp =
εAR
tp

(
1− k2

)
(4.7)

where k is given as:

k =
dcE

ε
(4.8)

where ε is the permittivity, t is the thickness of the piezo-diaphragm, cE is the elastic

modulus, d is the piezo strain constant, and AR is the area of the diaphragm. Also

from Fig. 4.1:

Kp =
cEAR
tp

(4.9)

Also the equivalent inductance due to the mass of the piezo-diaphragm, MD

is given as:

MD =
mp

A2
R

(4.10)

In this expression, mp is defined as the mass of the piezo-diaphragm. The

resonant frequency of the system is given as:
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ω2
n =

cEAR
tpmp

=
Kp

mp

=
Kp

A2
RMD

(4.11)

The turning ratio, φ, is given as:

φ = −dKp

AR
(4.12)

Figure 4.2: Electric analog lumped-parameter model of traveling wave thermoacous-
tic engine, simplified piezo model.

Further simplification of the circuit analog diagram can be performed, as seen
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in Fig. 4.2. In this figure, Z is the equivalent impedance of the load resistor RL in

parallel with the piezo capacitance Cp. This, in the Laplace domain is given as:

Z = − RL

1 +RLCps
(4.13)

The circuit analysis of Fig. 4.2 is performed in Appendix B. This appendix

leads to the following expression for Vt:

0 = Vt
(
s5 + a4s

4 + a3s
3 + a2s

2 + a1s+ a0
)

(4.14)

where the coefficients a0 through a4, as given in Eq. (B.20), are:

a4 =
1

RLCp
(1 + τCrweRLCp + wcCRRLCp)

a3 =
1

RLCp

 τCrwe +RLCp(aiwe + aiwc + aRwe)

+wcCr + ω2
nRL(Cp + d2Kp)



a2 =
1

RLCp

 ω2
n + (aiwe + aRwe + wcai) + τCrweω

2
nRL(Cp + d2Kp)

+Crwcω
2
nRL(Cp + d2Kp) + aRwcweCrRLCp



a1 =
1

RLCp

 Crwcω
2
n + ai(we + wc)ω

2
nRL(Cp + d2Kp) + aRwewcCr

+aRaiwewcRLCp + τweCrω
2
n


a0 =

1

RLCp

(
ai(we + wc)ω

2
n + aRaiwcwe

)
(4.15)

4.2 Electric Analog of the TWTAE without Piezoelectric Disc

The system can also be modeled for when the piezo-diaphragm is not present

and is replaced with a rigid end, or in other words, when RL = Cp = Z = Kp = 0.

54



The diagram for such a situation is seen in Fig. 4.3.

Figure 4.3: Electric analog lumped-parameter model of traveling wave thermoacous-
tic engine without piezo diaphragm end cap.

Continuing the derivation, as outlined in detail in Appendix B, for the situation

described in Fig. 4.3, it can be seen that the expression for Vt becomes:

0 = Vt
(
s4 + a3s

3 + a2s
2 + a1s+ a0

)
(4.16)

where the coefficients a0 through a3 in Eq. (B.23) are:
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a3 = τCrwe + wcCr

a2 = aiwe + aiwc + aRwe

a1 = aRwcweCr

a0 = aRaiwcwe (4.17)

Therefore:

0 = Vt



s4

+ (τCrwe + wcCr) s
3

+ (aiwe + aiwc + aRwe) s
2

+ (aRwcweCr) s

aRaiwcwe



(4.18)

Eq. (4.18) is precisely the same as that derived by deWaele [10]. The pri-

mary difference between the expressions is that for the model where a piezo disc is

present, the end cap is considered a dynamic system capable of deformation, while

for the model without the piezo disc, the end cap is considered static. The term

LR represents the inductance due to the air piston in the piezo-free case, while MD

is the inductance due to a dynamic end cap mass in the case where the piezo is

present. Both terms do not exist simultaneously in either model.
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4.3 Summary

This chapter has presented an electrical analog of the TWTAE which is coupled

with a piezoelectric disc to harvest the acoustic energy. The developed analog can

be used to, in general, predict the performance of the TWTAE but in particular,

determine the threshold of onset of self-sustained oscillations.
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Chapter 5
Axisymmetric Finite Element Model of a Composite Piezoelectric
Disc

5.1 Finite Element Formulation

This chapter attempts to perform a finite element analysis of a composite

piezoelectric disc consisting of an aluminum disc of diameter of 2.16in, and a thick-

ness of 0.015in with a Lead-Zirconate-Titanate piezo-disc 1.25in in diameter and

0.0075in thick bonded to it. The schematic for this can be seen in Fig. 5.1.

Figure 5.1: Schematic drawing of a composite piezo disc: (a) top view (b) profile
view.

The composite piezo system will be analyzed using concentric, axially sym-

metric elements of uniform thickness. The process will be following the method

outlined by K.C. Rocky et al. [11]. A generic axially symmetric element can be seen

in Fig. 5.2
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Figure 5.2: Circular plate element: (a) top view of element of width L showing two
radii of lengths ri and rj (b) profile cross section of element of width L showing radii
of lengths ri and rj and disc thickness t (c) profile cross section of element showing
location of node i and node j for the element and radial displacement u1 and in
plane displacement w1.

In Fig. 5.2, the coordinate s, is the only degree of for a axially symmet-

ric system. The shape functions for the in-plane displacement u and the normal

displacement w is given as follows:

u = α1 + α2s

w = α3 + α4s+ α5s
2 + α6s

3

dw

ds
= α4 + 2α5s+ 3α6s

2 (5.1)

The α’s for each equation are coefficients for the shape functions, unique to

each element. At node 1 of each element, s = 0, and the expressions become:

ui = α1
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wi = α3(
dw

ds

)
i

= α4 (5.2)

At node 2 for each element, s = L, therefore the expressions become:

uj = α1 + α2L

wj = α3 + α4L+ α5L
2 + α6L

3

(
dw

ds

)
j

= α4 + 2α5L+ 3α6L
2 (5.3)

Therefore, Eq. (5.2) and Eq. (5.3) in matrix form can be expressed as:



ui

wi(
dw
ds

)
i

uj

wj(
dw
ds

)
j



=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 L 0 0 0 0

0 0 1 L L2 L3

0 0 0 1 2L 3L2





α1

α2

α3

α4

α5

α6



(5.4)

Rearranging Eq. (5.40 to solve for the column vectors of shape function coef-

ficients:
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

α1

α2

α3

α4

α5

α6



=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 L 0 0 0 0

0 0 1 L L2 L3

0 0 0 1 2L 3L2



−1

ui

wi(
dw
ds

)
i

uj

wj(
dw
ds

)
j



(5.5)

The inverse of the 6× 6 matrix above in Eq. (5.5) is:



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 L 0 0 0 0

0 0 1 L L2 L3

0 0 0 1 2L 3L2



−1

=



1 0 0 0 0 0

− 1
L

0 0 1
L

0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 − 3
L2 − 2

L
0 3

L2 − 1
L

0 2
L3

1
L2 0 − 2

L3
1
L2



(5.6)

Defining the displacements u and w at any point in the element, using the

shape functions from Eq. (5.1):
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
u

w

 =

 1 s 0 0 0 0

0 0 1 s s2 s3





α1

α2

α3

α4

α5

α6



(5.7)

Therefore, replacing the column vector of α coefficients in Eq. (5.7) with the

expression from Eq. (5.5) in conjunction with Eq. (5.6):


u

w

 =

 1 s 0 0 0 0

0 0 1 s s2 s3





1 0 0 0 0 0

− 1
L

0 0 1
L

0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 − 3
L2 − 2

L
0 3

L2 − 1
L

0 2
L3

1
L2 0 − 2

L3
1
L2





ui

wi(
dw
ds

)
i

uj

wj(
dw
ds

)
j


(5.8)

Let:
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[Ns] =

 1 s 0 0 0 0

0 0 1 s s2 s3





1 0 0 0 0 0

− 1
L

0 0 1
L

0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 − 3
L2 − 2

L
0 3

L2 − 1
L

0 2
L3

1
L2 0 − 2

L3
1
L2



(5.9)

Also, let the elemental nodal deflection vector for each element be defined as:

{δe} =

{
ui wi

(
dw
ds

)
i
uj wj

(
dw
ds

)
j

}T
(5.10)

Therefore, Eq. (5.8) becomes:


u

w

 = [Ns]{δe} (5.11)

5.2 Mass Matrix Formulation

The kinetic energy, KEe for each element in the disc system can be determined

from the equation:

KEe =
1

2

∫
V

ρ

{
u̇ ẇ

}
u̇

ẇ

 dV (5.12)
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where in Eq. (5.12), ρ is the density of the material of the element, and:

{
u̇ ẇ

}
= {δ̇e}T [Ns]

T (5.13)

and:


u̇

ẇ

 = [Ns]{δ̇e} (5.14)

Therefore, Eq. (5.12) becomes:

KEe =
1

2

∫
V

ρ{δ̇e}T [Ns]
T [Ns]{δ̇e}dV (5.15)

Since {δ̇e} and {δ̇e}T are not dependent on s, both terms can be moved outside

of the integral:

KEe =
1

2
{δ̇e}T

∫
V

ρ[Ns]
T [Ns]dV {δ̇e} (5.16)
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Because the element is a disc shaped as seen in Fig. 5.2, the integral expression

in Eq. (5.16) becomes:

KEe =
1

2
{δ̇e}T

rj∫
ri

ρ[Ns]
T [Ns]2πrtdr{δ̇e} (5.17)

The radius from the center axis, r, for the element in terms of s can be defined

using the following:

r = ri + s (5.18)

Meaning:

dr = ds (5.19)

By using Eq. (5.18) and Eq. (5.19), Eq. (5.17) becomes:

KEe =
1

2
{δ̇e}T

 L∫
0

ρ[Ns]
T [Ns]2π(ri + s)tds

 {δ̇e} (5.20)

The expression for kinetic energy for each element can be written as:

KEe =
1

2
{δ̇e}T [Me] {δ̇e} (5.21)

where in Eq. (5.21), [Me] refers to the element mass matrix. Therefore, from Eq.

(5.21):
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[Me] =

L∫
0

ρ[Ns]
T [Ns]2π(ri + s)tds (5.22)

Since the inner radius, ri, is going to be different for each element in the

system, the mass matrix for each element must be calculated individually.

5.3 Stiffness Matrix Formulation

Beginning with the expression for potential energy in each element, PEe:

PEe =
1

2

∫
V

STdV (5.23)

In Eq. (5.23), S refers to the middle surface strain in the element, and T is the

middle surface stress. K.C. Rocky et al. [11] identifies {S(r, s)} for a disc element

(φ = 90◦) as follows:

{S(r, s)} =



εs

εθ

χs

χθ


=



d
ds

0

1
r

0

0 − d2

ds2

0 −1
r
d
ds




u

w

 (5.24)

In Eq. (5.24), εs, is the in plane strain, εθ is the hoop strain, χs is the in plane

curvature, and χθ is the hoop curvature. Incorporating Eq. (5.11) and Eq. (5.18):
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{S(r, s)} =



εs

εθ

χs

χθ


=



d
ds

0

1
ri+s

0

0 − d2

ds2

0 − 1
ri+s

d
ds


[Ns]{δe} (5.25)

For convention, define:

[B] =



d
ds

0

1
ri+s

0

0 − d2

ds2

0 − 1
ri+s

d
ds


[Ns] (5.26)

Therefore, Eq. (5.25) becomes:

{S(r, s)} =



εs

εθ

χs

χθ


= [B]{δe} (5.27)

Similarly for T , K.C. Rocky et al. [11] identifies {T (r, s)} for a disc element

(φ = 90◦) as follows:
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{T (r, s)} =



σs

σθ

Ms

Mθ


=

E

(1− ν2)



1 ν 0 0

ν 1 0 0

0 0 t2

12
ν
t2

0 0 νt2

12
t2

12





εs

εθ

χs

χθ


(5.28)

In Eq. (5.28), σs and σθ refers to in plane and hoop stress respectively, while

Ms and Mθ refer to in plane and hoop moments. Define the following convention:

[D] =
E

(1− ν2)



1 ν 0 0

ν 1 0 0

0 0 t2

12
ν
t2

0 0 νt2

12
t2

12


(5.29)

Therefore with Eq. (5.27) and Eq. (5.29), Eq. (5.28) becomes:

{T (r, s)} = [D][B]{δe}

= [D]{S(r, s)} (5.30)

By using the following expression:

ST = {S(r, s)}T{T (r, s)} (5.31)
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Therefore Eq. (5.23) becomes:

PEe =
1

2

∫
V

{S(r, s)}T{T (r, s)}dV (5.32)

Therefore, using Eq. (5.27) and Eq. (5.30), Eq. (5.32) becomes:

PEe =
1

2

∫
V

{δe}T [B]T [D][B]{δe}dV (5.33)

Since {δe} and {δe}T are not dependent on s, both terms can be moved outside

of the integral:

PEe =
1

2
{δe}T

∫
V

[B]T [D][B]dV {δe} (5.34)

Because the element is a disc shaped as seen in Fig. 5.2, the integral expression

in Eq. (5.34) becomes:

PEe =
1

2
{δe}T

rj∫
ri

[B]T [D][B]2πrtdr{δe} (5.35)

By using Eq. (5.18) and Eq. (5.19), Eq. (5.34) becomes:

PEe =
1

2
{δe}T

 L∫
0

[B]T [D][B]2π(ri + s)tds

 {δe} (5.36)

The expression for potential energy for an element can be written as:

PEe =
1

2
{δe}T [Ke] {δe} (5.37)

where, in Eq. (5.35), [Ke] is the element stiffness matrix. Therefore, from Eq.

(5.34):
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[Ke] =

L∫
0

[B]T [D][B]2π(ri + s)tds (5.38)

5.4 Formulation of Global Mass and Stiffness Matrices of Base Layer

In the previous two sections, the mass and stiffness matrices have been defined

for each axisymmetric disc element. For each element, there exists a 6×1 elemental

nodal deflection vector {δe} =

{
ui wi

(
dw
ds

)
i
uj wj

(
dw
ds

)
j

}T
. For the entire

system, encompassing all nodes, define the nodal deflection vector as:

{δ} =

{
u1 w1

(
dw
ds

)
1
u2 w2

(
dw
ds

)
2
· · · uN wN

(
dw
ds

)
N

}T
(5.39)

This nodal deflection vector corresponds to a disc with N − 1 elements and N

nodes. The vector therefore is of 3N × 1 dimension. The corresponding global mass

and stiffness matrices are therefore of 3N × 3N dimension. Formulation of each of

these global matrices will now be discussed. Each of the 6 × 6 elemental matrices

can be broken down into 3 × 3 quadrants. For example, the following elemental

mass matrix can be broken down into four 3× 3 matrices:

[Mi] =

 [Mi,i]i [Mi,j]i

[Mj,i]i [Mj,j]i

 (5.40)

Similarly for a stiffness matrix:
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[Ki] =

 [Ki,i]i [Ki,j]i

[Kj,i]i [Kj,j]i

 (5.41)

For the global mass and stiffness matrices, at shared nodes between elements,

element matrix quadrants are added together. This is illustrated for the global

3N × 3N mass and stiffness matrices below in Eq. (5.42) and Eq. (5.43).

[Mb] =



[M1,1]1 [M1,2] 03×3 . . . . . . 03×3

[M2,1]1 [M2,2]1 [M2,3]2
. . . . . .

...

+ [M2,2]2

03×3 [M3,2]2 [M3,3]2 + . . .
. . . . . .

...

...
. . . . . . . . . . . . 03×3

... . . .
. . . . . . . . .+ [MN−1,N ]N−1

[MN−1,N−1]N−1

03×3 . . . . . . 03×3 [MN,N−1]N−1 [MN,N ]N−1


(5.42)

Similarly for a stiffness matrix:
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[Kb] =



[K1,1]1 [K1,2] 03×3 . . . . . . 03×3

[K2,1]1 [K2,2]1 [K2,3]2
. . . . . .

...

+ [K2,2]2

03×3 [K3,2]2 [K3,3]2 + . . .
. . . . . .

...

...
. . . . . . . . . . . . 03×3

... . . .
. . . . . . . . .+ [KN−1,N ]N−1

[KN−1,N−1]N−1

03×3 . . . . . . 03×3 [KN,N−1]N−1 [KN,N ]N−1


(5.43)

This concept can be similarly applied to multilayered elements. For nodes that

share both aluminum and piezo components, the global matrix matrix components

adds stiffness and mass matrices for both the piezo and aluminum layers.

5.5 Stiffness Matrix for Piezo Elements

While the mass matrices for piezo elements can be calculated in the same

manner as the base layer, the piezo stiffness matrices have an additional electric

component that needs to be accounted for. Because of this, the piezo voltage, V , is

included in the element displacement vector {δe}.

{δe} =

{
ui wi

(
w
ds

)
i
uj wj

(
w
ds

)
j
V

}T
(5.44)

Many of the previous equations require adjustments as a result of this change.

Eq. (5.8) and Eq. (5.9) becomes:
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

u

w

V


=



1 s 0 0 0 0 0

0 0 1 s s2 s3 0

0 0 0 0 0 0 1





1 0 0 0 0 0 0

− 1
L

0 0 1
L

0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 − 3
L2 − 2

L
0 3

L2 − 1
L

0

0 2
L3

1
L2 0 − 2

L3
1
L2 0

0 0 0 0 0 0 1



{δe}

= [Ns]{δe} (5.45)

From Eq. (5.24) and Eq. (5.25):

{S(r, s)} =


εs

εθ

 =


d
ds

tb
2
d2

ds2
0

1
r

0 0





u

w

V


= [B2]{δe} (5.46)

From Ashida and Tauchert [12], the constitutive equations for an axisymmetric

piezo disc can be expressed as follows:

σs = c11εs + c12εθ + c13εz − e1Ez − β1T

σθ = c12εs + c11εθ + c13εz − e1Ez − β1T

Dz = e1εs + e1εθ + e3εz + η3Ez (5.47)

where in Eq. (5.47):
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c11 =
cE

1− υ2p

c12 =
υpc

E

1− υ2p

e1 = cEd31

η3 = εT33(1− k231) (5.48)

Assuming the strain in the z direction is neglected, the constitutive equations

can be expressed as:


σs

σθ

 =

 c11 c12

c12 c11



εs

εθ

−

e1

e1

Ez

Dz =

{
e1 e1

}
εs

εθ

+ η3Ez (5.49)

Replacing Ez with the following expression and incorporating Eq. (5.46):

Ez =
V

t

=

{
0 0 1

t

}


u

w

V


=

{
0 0 1

t

}
[Ns]{δe} (5.50)

Therefore, Eq. (5.49) becomes:
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
σs

σθ

 =

 c11 c12

c12 c11

 [B2]{δe} −


e1

e1


{

0 0 1
t

}
[Ns]{δe}

Dz =

{
e1 e1

}
[B2]{δe}+ η3

{
0 0 1

t

}
[Ns]{δe} (5.51)

Now define:

{Sp} =


εs

εθ

−
 c11 c12

c12 c11


−1

e1

e1

Ez

= [B2]{δe} −

 c11 c12

c12 c11


−1

e1

e1


{

0 0 1
t

}
[Ns]{δe}

=

[B2]−

 c11 c12

c12 c11


−1

e1

e1


{

0 0 1
t

}
[Ns]

 {δe}
= [A]{δe} (5.52)

and:

{Tp} =

 c11 c12

c12 c11

 [A] {δe} (5.53)

and:

Ep = Ez =

{
0 0 1

t

}
[Ns]{δe}

= [E]{δe}
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Dp = η3Ez = η3

{
0 0 1

t

}
[Ns]{δe}

= η3[E]{δe} (5.54)

Also, define:

[C] =

 c11 c12

c12 c11

 (5.55)

The potential energy of the system is given as:

PE =
1

2

∫
V

TpSpdV −
1

2

∫
V

DpEpdV (5.56)

Incorporating Eq. (5.52), Eq. (5.53), Eq. (5.54) into Eq. (5.56):

PE =
1

2

∫
V

{δe}T [A]T [C][A]{δe}dV −
1

2

∫
V

{δe}T [E]Tη3[E]{δe}dV (5.57)

Rearranging Eq. (5.56) so that {δe} is outside the integral, and adjusting the

integral for an axially symmetric disc element:

PE =
1

2
{δe}T

rj∫
ri

[A]T [C][A]2πrtdr{δe} −
1

2
{δe}T

rj∫
ri

[E]Tη3[E]2πrtdr{δe} (5.58)

76



By using Eq. (5.18) and Eq. (5.19) in Eq. (5.58):

PE =
1

2
{δe}T

L∫
0

[A]T [C][A]2π(ri + s)tds{δe} −
1

2
{δe}T

L∫
0

[E]T η3[E]2π(ri + s)tds{δe}

=
1

2
{δe}T

 L∫
0

(
[A]T [C][A]2π(ri + s)t− [E]T η3[E]2π(ri + s)t

)
ds

 {δe} (5.59)

And from Eq. (5.37) it can be shown that the piezo element stiffness matrix

can be expressed as:

[Kep] =

L∫
0

(
[A]T [C][A]− [E]Tη3[E]

)
2π(ri + s)tds (5.60)

5.6 Global Piezo Mass and Stiffness Matrix Formulation

Formulation of the global stiffness matrix for the piezo diaphragm is similar to

the process of matrix formulation in section 5.4, except that for the piezo stiffness

elements described in section 5.5 the element nodal deflection vector has an added

degree of freedom V at the end of the deflection vector. As before, matrix compo-

nents at shared nodes are added together, but now all elements share the voltage

node. Let the global deflection vector be a (3N +1)× (3N +1) vector encompassing

all nodes be defined as follows:

{δ} =

{
u1 w1

(
dw
ds

)
1
u2 w2

(
dw
ds

)
2
· · · uN wN

(
dw
ds

)
N

V

}T
(5.61)

This nodal deflection vector corresponds to a disc with N − 1 elements and

N nodes. The voltage (V ) component is a node shared by all piezo elements and is
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added onto the end of the global deflection vector described in Eq. (5.39). Retroac-

tively, this adds an additional row and column of zeros to the mass and stiffness

global matrices of the base layer, [Mb] and [Kb], and the global mass matrix of the

piezo layer, [Mp]. For the purpose of global matrix formulation, and similarly to Eq.

(5.41), the 7× 7 piezo stiffness element [Kep] is divided into subcomponents:

[Kep] =



[Ki,i]i [Ki,j]i {Ki,V }i

[Kj,i]i [Kj,j]i {Kj,V }i

{KV,i}Ti {KV,j}Ti {KV,V }i


(5.62)

In Eq. (5.62), {Ki,V }i and {Kj,V }i are vectors of size 3 × 1 and {KV,i}Ti and

{KV,j}Ti are of size 1 × 3. Also, {KV,V }i is a 1 × 1 scalar term. Afterwards, the

global piezo stiffness matrix is then compiled with matrix components from shared

nodes added together, in a similar fashion to Eq. (5.43):
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[Kb] =

[K1,1]1 [K1,2] 03×3 . . . . . . 03×3 {K1,V }1

[K2,1]1 [K2,2]1 [K2,3]2
. . . . . .

... {K2,V }1

+ [K2,2]2 + {K2,V }2

03×3 [K3,2]2 [K3,3]2
. . .

. . .
... {K3,V }2

+ . . . + . . .

...
. . .

. . .
. . .

. . . 03×3

...

... . . .
. . .

. . . . . .+ [KN−1,N ]N−1 . . .+

[KN−1,N−1]N−1 {KN−1,V }N−1

03×3 . . . . . . 03×3 [KN,N−1]N−1 [KN,N ]N−1 {KN,V }N−1

{KV,1}T1 {KV,2}T1 {KV,3}T2 . . . . . .+ {KV,N}TN−1 {KV,V }1 + . . .

+ {KV,2}T2 + . . . {KV,N−1}TN−1 + {KV,V }N−1


(5.63)

The global piezo mass matrix [Mp] is constructed exactly as the global mass

matrix for the base layer, [Mb], from Eq. (5.42), except with piezo material proper-

ties instead of aluminum.

5.7 Equation of Motion and Input Forces

The general equation of motion for a system is:

[
[Mb] + [Mp]

] {
δ̈
}

+
[
[Kb] + [Kp]

]
{δ} = {Q}

[M ]
{
δ̈
}

+ [K]{δ} = {Q}
(5.64)
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In Eq. (5.64), [M ] is the sum of global mass matrix for the base and piezo

layer and [K] is the sum of the global stiffness matrices for the base and piezo layers.

{Q} represents the vector of input forces acting on the disc. The forces acting on

the disc result only from the pressure in the resonator tube, meaning the only rows

of {Q} that are non zero correspond with the wi rows in the global deflection vector

{δ}. The value for each non-zero row of {Q} corresponding to node i in the system

can be approximated as follows:

Fi = ptAni (5.65)

In Eq. (5.65), Pt is the pressure in the resonator tube as is defined in Chapters

3 and 4, and where Ani is the area of each node as circumscribed by axially symmetric

lines midway between node i and nodes i − 1 and i + 1. Therefore, for node i

corresponding to radius ri with length L defining the distance between nodes (rj−ri),

Ani can be expressed as:

Ani = π(ri +
L

2
)2 − π(ri −

L

2
)2

= 2πriL (5.66)

But in the case where ri = 0, as in the center of the disc at node 1:

An1 = π
L2

4
(5.67)

And in the case of the Nth node, where r = R, the radius of the disc:
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AnN = πR2 − π(R− L

2
)2

= π

(
RL− L2

4

)
(5.68)

Therefore the vector {Q} can be expressed as:

{Q} = pt

{
0 An1 0 . . . 0 Ani 0 . . . 0 AnN 0 0

}T

= pt{Q∗} (5.69)

Considering boundary conditions, since the disc is anchored at the outer radius,

or in other words, since the Nth node is fixed, the rows and columns of [M ], [K], and

{Q} corresponding with the terms uN , wN , and
(
dw
ds

)
N

in {δe} are eliminated. Also,

because the system is axisymmetric it is assumed that u1 and
(
dw
ds

)
1
, corresponding

to the center of the disc is also equal to zero and the corresponding rows and columns

are also eliminated.

5.8 Reformatting Electric Displacement Equation

In this section, static condensation, (Guyan Reduction) is performed on the

system. Beginning by reformatting the second line of Eq. (5.44).

Dz =

{
e1 e1

}
[B2]{δe}+ η3

{
0 0 1

t

}
[Ns]{δe}

= {E1}T{δe}+ {E2}T{δe}

= {Eeq}T{δe} (5.70)
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In Eq. (5.70), the term {Eeq}T is a 1× 7 vector. The term Dz is the electric

displacement for each element corresponding to the element deflection vector {δe}.

Therefore, it can be stated for each element:

Q1 =

r2∫
r1

D1dA =

L∫
0

{Eeq}T 2π(r1 + s){δ1}ds = {Eeq}T1 {δ1}

Q2 =

r3∫
r2

D2dA =

L∫
0

{Eeq}T 2π(r1 + s){δ2}ds = {Eeq}T2 {δ2}

...

QN−1 =

rN∫
rN−1

DN−1dA =

L∫
0

{Eeq}T 2π(r1 + s){δN−1}ds = {Eeq}TN−1 {δN−1}

(5.71)

Then it can be said:

Dpiezo =
Q

A
=

1

A
(Q1 +Q2 + . . .+QN−1)

=
1

A

 {Eeq}
T
1 {δ1}+ {Eeq}T2 {δ2}+ . . .

+ {Eeq}TN−1 {δN−1}

 (5.72)

In Eq. (5.72), Q is the charge on the entire piezo disc, and A is the area of

the piezo disc, or in other words, A = πR2. As stated before, the term {Eeq}T is a

1× 7 vector. Decomposing this term:
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{Eeq}Ti =

{
Eeq(1)i Eeq(2)i Eeq(3)i Eeq(4)i Eeq(5)i Eeq(6)i Eeq(7)i

}
(5.73)

Therefore, by substituting {δi} from Eq. (5.44), Eq. (5.72) can be restated:

Dpiezo =
1

A

[
Eeq(1)1u1 + Eeq(1)2u2 + . . .+ Eeq(1)N−1uN−1

]

+
1

A

[
Eeq(2)1w1 + Eeq(2)2w2 + . . .+ Eeq(2)N−1wN−1

]

+
1

A

[
Eeq(3)1

(
dw
ds

)
1

+ Eeq(3)2
(
dw
ds

)
2

+ . . .+ Eeq(3)N−1
(
dw
ds

)
N−1

]

+
1

A

[
Eeq(4)1u2 + Eeq(4)2u3 + . . .+ Eeq(4)N−1uN

]

+
1

A

[
Eeq(5)1w2 + Eeq(5)2w3 + . . .+ Eeq(5)N−1wN

]

+
1

A

[
Eeq(6)1

(
dw
ds

)
2

+ Eeq(6)2
(
dw
ds

)
3

+ . . .+ Eeq(6)N−1
(
dw
ds

)
N

]

+
1

A
[Eeq(7)1 + . . .+ Eeq(7)N−1]V (5.74)

Rearranging Eq. (5.74):

Dpiezo =
1

A
[Eeq(1)1]u1 +

1

A
[Eeq(2)1]w1 +

1

A
[Eeq(3)1]

(
dw

ds

)
1

+
1

A
[Eeq(4)1 + Eeq(1)2]u2 +

1

A
[Eeq(5)1 + Eeq(2)2]w2

+
1

A
[Eeq(6)1 + Eeq(3)2]

(
dw

ds

)
2

+
1

A
[Eeq(4)2 + Eeq(1)3]u3

+ . . .

+
1

A
[Eeq(4)N−2 + Eeq(1)N−1]uN−1 +

1

A
[Eeq(5)N−2 + Eeq(2)N−1]wN−1

+ [Eeq(6)N−2 + Eeq(3)N−1]

(
dw

ds

)
N−1

+
1

A
[Eeq(4)N−1]uN
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+
1

A
[Eeq(5)N−1]wN +

1

A
[Eeq(6)N−1]

(
dw

ds

)
N

+
1

A
[Eeq(7)1 + . . .+ Eeq(7)N−1]V (5.75)

which can be reformatted into:

Dpiezo =
Q

A
= {Etotal}T {δ} (5.76)

The term {δ} from the second line of Eq. 5.76 is the global deflection vector

from Eq. (5.55). Therefore {Etotal}T is a vector of size 1× (3N + 1) corresponding

to {δ}. Therefore, from Eq. (5.75), the components of {Etotal}T can be expressed

as:

Etotal(1) =
1

A
[Eeq(1)1]

Etotal(2) =
1

A
[Eeq(2)1]

Etotal(3) =
1

A
[Eeq(3)1]

Etotal(4) =
1

A
[Eeq(4)1 + Eeq(1)2]

Etotal(5) =
1

A
[Eeq(5)1 + Eeq(2)2]

Etotal(6) =
1

A
[Eeq(6)1 + Eeq(3)2]

Etotal(7) =
1

A
[Eeq(4)2 + Eeq(1)2]

...

Etotal(3N − 5) =
1

A
[Eeq(4)N−2 + Eeq(1)N−1]

Etotal(3N − 4) =
1

A
[Eeq(5)N−2 + Eeq(2)N−1]

Etotal(3N − 3) =
1

A
[Eeq(6)N−2 + Eeq(3)N−1]
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Etotal(3N − 2) =
1

A
[Eeq(4)N−1]

Etotal(3N − 1) =
1

A
[Eeq(5)N−1]

Etotal(3N) =
1

A
[Eeq(6)N−1]

Etotal(3N + 1) =
1

A
[Eeq(7)1 + . . .+ Eeq(7)N−1] (5.77)

5.9 Model Reduction

Model reduction of this system begins by transforming Eq. (5.64) into the

frequency domain as follows:

[M ]
{
δ̈
}

+ [K]{δ} = {Q}
[
−ω2 [M ] + [K]

]
{δ} = {Q} (5.78)

Solving for Q̇ by transforming Eq. (5.76) into the frequency domain yields:

Q̇ = I = iωA {Etotal}T {δ} (5.79)

Applying the boundary conditions discussed in section 5.7, to both Eq. (5.78)

and Eq. (5.79), the rows and columns of [−ω2 [M ] + [K]] corresponding to the

terms uN , wN , and
(
dw
ds

)
N

, u1 and
(
dw
ds

)
1

are eliminated. Additionally, the columns

of {Etotal}T and the rows of {Q} are similarly eliminated. This transforms {δ} into

a new (3N − 4)× 1 vector as follows:
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{δ} =

{
w1 u2 w2

(
dw
ds

)
2
· · · uN−1 wN−1

(
dw
ds

)
N−2

V

}T
(5.80)

A new expression is created combining Eq. (5.78) and Eq. (5.79):

 −ω
2 [M ] + [K]

iωA {Etotal}T

 {δ} =


Q

I

 (5.81)

Then {δ} is the reordered into primary and secondary points, specifically, the

first term in {δ}, w1 is moved to the second to last term:

{δ} =

{
u2 w2

(
dw
ds

)
2
· · · uN−1 wN−1

(
dw
ds

)
N−2

w1 V

}T

=

{
δs δp

}T
(5.82)

In Eq. (5.82), {δs} is the first 3N − 6 terms of the new, reordered {δ} vector

and {δp} is the last two, specifically w1 and V . This reordering requires to first

column of

 −ω2 [M ] + [K]

iω {Etotal}T

 to be moved to the second to last column. Next the

rows of

 Q

I

 and

 −ω2 [M ] + [K]

iω {Etotal}T

 are reordered such that the first row is moved to
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become the second to last as well. This results in the rearrangement of Eq. (5.81)

to look like:

 Kss Ksp

Kps Kpp



δs

δp

 =


Qs

Qp

 =



Q(2)

...

Q(3N − 6)

Q(1)

I



(5.83)

The sizes of the matrix components from Eq. (5.83) are as follows: [Kss] is of

size (3N − 5)× (3N − 6), [Ksp] is of size (3N − 5)× 2, [Kps] is of size 2× (3N − 6),

and [Kpp] is of size 2×2. Also, Qs is of size (3N−5)×1. Note that from Eq. (5.69),

Q(1) = An1pt Taking the first row of Eq. (5.83):

[Kss]{δs}+ [Ksp]{δp} = {Qs} (5.84)

Multiplying this expression by [Kss]
T :

[Kss]
T [Kss]{δs}+ [Kss]

T [Ksp]{δp} = [Kss]
T{Qs} (5.85)

Now solving for {δs}:

{δs} = −
[
[Kss]

T [Kss]
]−1

[Kss]
T [Ksp]{δp}+

[
[Kss]

T [Kss]
]−1

[Kss]
T{Qs} (5.86)

Taking the second row of Eq. (5.83):
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[Kps]{δs}+ [Kpp]{δp} = {Qp} (5.87)

Incorporating {δs} from Eq. (5.86) into Eq. (5.87) and simplifying:

[
[Kpp]− [Kps]

[
[Kss]

T [Kss]
]−1

[Kss]
T [Ksp]

]
{δp}

= −[Kps]
[
[Kss]

T [Kss]
]−1

[Kss]
T{Qs}+ {Qp}

(5.88)

For convention call:

[R] =

[
[Kpp]− [Kps]

[
[Kss]

T [Kss]
]−1

[Kss]
T [Ksp]

]
(5.89)

where [R] is a 2× 2 matrix. Also for convention, because Qs is a (3N − 5)× 1 that

is function of pt:

pt


Qs1

Qs2

 = −[Kps]
[
[Kss]

T [Kss]
]−1

[Kss]
T{Qs} (5.90)

Therefore using Eq. (5.90), Eq. (5.89) and substituting the expression for

{Qp}from Eq. (5.83), Eq. (5.88) can be rewritten as:

[R]{δp} = pt


Qs1

Qs2

+


An1pt

I

 =

 Qs1 + An1 0

Qs2 1



pt

I

 (5.91)

Rearranging and substituting the expression for {δp} from Eq. (5.83):
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 Qs1 + An1 0

Qs2 1


−1

[R]


w1

V

 =


pt

I


[
F (iω)

]
w1

V

 =


pt

I

 (5.92)

In Eq. (5.92),
[
F (iω)

]
is a 2×2 matrix in the frequency domain. For convention

set:

[
F (iω)

]
=

 Fiω(1) Fiω(2)

Fiω(3) Fiω(4)

 (5.93)

Therefore from Eq. (5.92):

 Fiω(1) Fiω(2)

Fiω(3) Fiω(4)



w1

V

 =


pt

I

 (5.94)

Therefore, rearranging this expression yields:

 Fiω(1)− Fiω(2)Fiω(3)
Fiω(4)

Fiω(2)
Fiω(4)

−Fiω(3)
Fiω(4)

1
Fiω(4)



w1

I

 =


pt

V

 (5.95)

Eq. (5.95) presents a two-part impedance matrix of the coupled electrome-

chanical system of the composite piezoelectric diaphragm. The next section of the
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chapter will show some plots from this finite element analysis.

5.10 Plots from Finite Element Model

The frequency response of V and w1 from the reduced system, assuming the

piezo is unloaded, is seen in Fig. 5.3. This being the case, the current across the

piezo is zero, and the voltage can be easily calculated for a sinusoidal pressure input

in Eq. (5.95). For a two element system, the most basic finite element model for

the system, the calculated first mode peak for the aluminum-piezo combined disc

is located at 1,532 Hz for both the center of the disc and the voltage across the

piezo-disc.

Figure 5.3: Frequency response plot for w1 and V from the reduced system model,
2 element system.

To confirm the results from Fig. 5.3, a laser-vibrometer was used to calculate
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the displacement amplitude of the center of the piezo disc due to sinusoidal forcing

input from a shaker. Experimental set-up is discussed in Chapter 7. Samples were

manually taken every 50Hz from the laser-vibrometer. This is plotted in Fig. 5.4

over the frequency range of 600-1600 Hz.

Figure 5.4: Frequency response of the composite piezoelectric disc as determine by
the laser vibrometer.

The laser vibrometer gives a plot of the displacement amplitude at a given

input frequency. The displacement amplitude of the piezo-disc as seen by the laser

vibrometer is shown in Fig. 5.5. The image shows the displacement amplitude of

the top half of the composite piezo disc combined system as analyzed by the laser

vibrometer. Since the system is symmetrical, the bottom half is assumed to be a

mirror image of the top half. Also seen in Fig. 5.5 is the black and white image of

the stinger connected to the shaker used to excite the system. As can be seen in the
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figure, at 1300Hz the center of the disc is calculated to oscillate with an amplitude

of 177.3nm. The image shows that the oscillation at 1300Hz is the first mode of

vibration for the disc system.

Figure 5.5: Displacement amplitude as measured by laser vibrometer at 1300 Hz.

The plot of the disc system as modeled by ANSYS calculates the first mode

of vibration to be 1250Hz, as seen in Fig. 5.6. The text file used for the ANSYS

simulation and the next three modes of oscillation for the disc can be seen in Ap-

pendix D. ANSYS produces a finer mesh than the relatively simple two element

model discussed in this chapter, and the figure clearly shows the disc in the first

mode of oscillation.

Another plot of the frequency response of the system was generated by exciting

the disc system using the shaker, but instead of exciting at specific frequencies, a

white-noise input was applied to the shaker. Then, using Fast Fourier Transform

(FFT) of the open circuit output from the electrodes of the piezo-disc, a frequency
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Figure 5.6: Plot of first mode of composite piezoelectric disc system as measured by
ANSYS. Frequency is calculated to be 1250 Hz.

plot was generated. This is seen in Fig. 5.7 and shows a peak centered at 1220Hz.

Tabulating these methods of calculating the first mode of vibration in Tab. 5.1,

it can be seen that while the two element FEM model gives an estimate for the first

mode of vibration in the ballpark of the experimental values, the ANSYS model,

with a finer mesh of elements gives a very close calculation of the experimental

values.

Mode 1 Natural Frequencies: Theory and Experiment

Theoretical Experimental

2 Element ANSYS White-noise Laser-Vibrometer
FEM frequency response analysis

frequency (Hz) 1532 1250 1220 ∼1300

Table 5.1: Theoretical and experimental first natural frequency of the composite
piezoelectric disc
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Figure 5.7: Frequency response of the composite piezoelectric disc due to white noise
input.

5.11 Using the FEM Model to Interface with DeltaEC

DeltaEC requires the real and imaginary impedance input from the aluminum

and piezo combined structure. In order to determine this, the two-part impedance

matrix needs to be modified to include the volume flow rate due to movement of the

disc instead of the deflection w. The equation for volume flow rate for each element

can be determined as follows:

∗
Ve =

rj∫
ri

ẇ2πrdr (5.96)

Which, incorporating equation 5.45 and 5.18 and 5.19 can be written as:
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∗
Ve =

L∫
0

{
0 1 0

}
[Ns]{δ̇e}2π(ri + s)ds

=

L∫
0

{
0 1 0

}
[Ns]2π(ri + s)ds{δ̇e}

= {Zeq}T {δ̇e} (5.97)

In Eq. (5.97), the term {Zeq}T is a 1 × 7 vector. Therefore, it can be stated

for each element:

∗
V1 = {Zeq}T1 {δ̇1}

∗
V2 = {Zeq}T2 {δ̇2}

...

∗
VN−1 = {Zeq}TN−1 { ˙δN−1} (5.98)

Then, it can be said:

∗
V =

∗
V1 +

∗
V2 + . . .+

∗
VN−1

= {Zeq}T1 {δ̇1}+ {Zeq}T2 {δ̇2}+ . . .+ {Zeq}TN−1 {δ̇N−1} (5.99)

As stated before, {Zeq}T is a 1× 7 vector. Decomposing this term:

{Zeq}Ti =

{
Zeq(1)i Zeq(2)i Zeq(3)i Zeq(4)i Zeq(5)i Zeq(6)i Zeq(7)i

}
(5.100)
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Therefore, by substituting {δi} from Eq. (5.44), Eq. (5.99) can be restated:

∗
V = iω

[
Zeq(1)1u1 + Zeq(1)2u2 + . . .+ Zeq(1)N−1uN−1

+Zeq(2)1w1 + Zeq(2)2w2 + . . .+ Zeq(2)N−1wN−1

+Zeq(3)1

(
dw

ds

)
1

+ Zeq(3)2

(
dw

ds

)
2

+ . . .+ Zeq(3)N−1

(
dw

ds

)
N−1

+Zeq(4)1u2 + Zeq(4)2u3 + . . .+ Zeq(4)N−1uN

+Zeq(5)1w2 + Zeq(5)2w3 + . . .+ Zeq(5)N−1wN

+Zeq(6)1

(
dw

ds

)
2

+ Zeq(6)2

(
dw

ds

)
3

+ . . .+ Zeq(6)N−1

(
dw

ds

)
N

+ [Zeq(7)1 + . . .+ Zeq(7)N−1]V

]
(5.101)

Rearranging Eq. (5.101):

∗
V = iω [Zeq(1)1]u1 + iω [Zeq(2)1]w1 + iω [Zeq(3)1]

(
dw

ds

)
1

+iω [Zeq(4)1 + Zeq(1)2]u2 + iω [Zeq(5)1 + Zeq(2)2]w2

+iω [Zeq(6)1 + Zeq(3)2]

(
dw

ds

)
2

+ iω [Zeq(4)2 + Zeq(1)3]u3

+ . . .

+iω [Zeq(4)N−2 + Zeq(1)N−1]uN−1 + iω [Zeq(5)N−2 + Zeq(2)N−1]wN−1

+ [Zeq(6)N−2 + Zeq(3)N−1]

(
dw

ds

)
N−1

+ iω [Zeq(4)N−1]uN

+iω [Zeq(5)N−1]wN + iω [Zeq(6)N−1]

(
dw

ds

)
N

+iω [Zeq(7)1 + . . .+ Eeq(7)N−1]V (5.102)

which can be reformatted into:
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∗
V = iω {Ztotal}T {δ} (5.103)

The term {δ} from Eq. (5.103) is the global deflection vector from Eq. (5.55).

Therefore {Ztotal}T is a vector of size 1× (3N + 1) corresponding to {δ}. Therefore,

from Eq. (5.102), the components of {Ztotal}T can be expressed as:

Ztotal(1) = iω [Zeq(1)1]

Ztotal(2) = iω [Zeq(2)1]

Ztotal(3) = iω [Zeq(3)1]

Ztotal(4) = iω [Zeq(4)1 + Zeq(1)2]

Ztotal(5) = iω [Zeq(5)1 + Zeq(2)2]

Ztotal(6) = iω [Zeq(6)1 + Zeq(3)2]

Ztotal(7) = iω [Zeq(4)2 + Zeq(1)2]

...

Ztotal(3N − 5) = iω [Zeq(4)N−2 + Zeq(1)N−1]

Ztotal(3N − 4) = iω [Zeq(5)N−2 + Zeq(2)N−1]

Ztotal(3N − 3) = iω [Zeq(6)N−2 + Zeq(3)N−1]

Ztotal(3N − 2) = iω [Zeq(4)N−1]

Ztotal(3N − 1) = iω [Zeq(5)N−1]

Ztotal(3N) = iω [Zeq(6)N−1]

Ztotal(3N + 1) = iω [Zeq(7)1 + . . .+ Zeq(7)N−1] (5.104)

97



By using Eq. (5.79) and Eq. (5.103):


∗
V

I

 = iω


{Ztotal}T {δ}

A {Etotal}T {δ}

 (5.105)

Decomposing this expression by extracting the last term from {δe}, that is, V

from Eq. (5.105):


∗
V

I

 = iω


 Ztotal(1) . . . Ztotal(3N)

AEtotal(1) . . . AEtotal(3N)

 {δ}3N +


Ztotal(3N + 1)

AEtotal(3N + 1)

V


= iω
{

[ZE]3N {δ}3N + {ZE}3N+1 V
}

(5.106)

where:

[ZE]3N =

 Ztotal(1) . . . Ztotal(3N)

AEtotal(1) . . . AEtotal(3N)

 (5.107)

and:

{ZE}3N+1 =


Ztotal(3N + 1)

AEtotal(3N + 1)

 (5.108)

In Eq. (5.106), the term {δ}3N refers to the first 3N terms of {δ}. Therefore,

from Eq. (5.78), with grouping terms, it can be stated that:
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[−ω2 [M ] + [K]] {δ} = {Q∗}pt [−ω2 [M ] + [K]]δδ [−ω2 [M ] + [K]]δV

[−ω2 [M ] + [K]]V δ [−ω2 [M ] + [K]]V V



δ3N

V

 =


{Q∗}3Npt

0

 [ωMK]δδ [ωMK]δV

[ωMK]V δ [ωMK]V V



δ3N

V

 =


{Q∗}3Npt

0



(5.109)

For convention, say [−ω2 [M ] + [K]] = [ωMK]. In Eq. 5.109, [ωMK]δδ refers

to the first 3N rows and columns of [−ω2 [M ] + [K]], [ωMK]δV refers to the first 3N

rows of the last column of [ωMK], while [ωMK]V δ refers to the first 3N columns

of the last row of the matrix, and [ωMK]V V refers to the last term in the matrix.

Also, {Q∗}3N refers to the first 3N terms of {Q∗} as defined in Eq. (5.70). Applying

the boundary conditions discussed in section 5.7, to Eq. (5.109), the rows and

columns of [ωMK] corresponding to the terms uN , wN , and
(
dw
ds

)
N

, u1 and
(
dw
ds

)
1

are eliminated. Additionally, the columns of {Etotal}T , {Ztotal}T , and the rows of

{Q∗}3N are similarly eliminated.

From the first row of Eq. (5.109):

[ωMK]δδ {δ}3N + [ωMK]δV V = {Q∗}3Npt (5.110)

which reduces to:

{δ}3N = − [ωMK]−1δδ [ωMK]δV V + [ωMK]−1δδ {Q
∗}3Npt (5.111)
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Therefore, Eq. (5.107) can be restated as:


∗
V

I

 = iω


[ZE]3N [ωMK]−1δδ {Q∗}3Npt

+
[
{ZE}3N+1 − [ωMK]−1δδ [ωMK]δV

]
V

 (5.112)

Therefore:
∗
V

I

 = iω

 {[ZE]3N [ωMK]−1δδ {Q∗}3N
}

,


{ZE}3N+1

− [ωMK]−1δδ [ωMK]δV




pt

V


(5.113)

Therefore, the 2×2 matrix from which the impedance for the aluminum piezo

combined disc is determined, [Zp] can be defined as:

[Zp] = iω

[ {
[ZE]3N [ωMK]−1δδ {Q∗}3N

}
,
{
{ZE}3N+1 − [ωMK]−1δδ [ωMK]δV

} ]
(5.114)

Therefore:


∗
V

I

 = [Zp]


Pt

V

 (5.115)

Rearranging this expression:


Pt

V

 = [Zp]
−1


∗
V

I

 (5.116)
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The result of this analysis gives a 2 × 2 matrix coupling the mechanical and

electrical impedance of the composite piez-disc system which make up the end cap

of the resonator section of the TWTAE. At 91.6Hz, the acting frequency of the

pressure oscillations in the TWTAE, the expression for [Zp]
−1 was determined to

be:


Pt

V

 =

 0− 4.006× 108i 0 + 1.100× 105i

0− 1.260× 106i 0− 4.000× 104i




∗
V

I

 (5.117)

These values are the implemented in the IEDUCER segment of the DeltaEC

code shown in Chapter 6.

5.12 Summary

This chapter has presented an axisymmetric finite element model of a com-

posite piezo-disc which is used to convert the acoustic energy of the thermoacoustic

engine into electrical energy. The model is used to develop a two-part impedance

matrix of the piezo-disc which can be easily integrated with the software DeltaEC to

predict the performance to the TWTAE. The predictions of the developed FEM are

validated against the predictions of the commercial software package ANSYS and

experimentally using a scanning laser vibrometer. The predictions of the model are

shown to be in excellent agreement with ANSYS prediction as well as experimental

results.
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Chapter 6

DeltaEC Numerical Analysis of the TWTAE

DeltaEC is a software which is capable of numerically analyzing sophisticated

acoustic systems and solving for complex pressure and volume flow rate [13]. The

system assumes the systems behave sinusoidally and determines the frequency and

amplitude. The text file code upon which DeltaEC used to analyze this lab’s

TWTAE is written below in Section 6.1. Meanwhile, the user defined gas mix-

ture used for the code is seen below. The gas mixture used is 0% helium and 100%

air.

6.1 DeltaEC traveling wave thermoacoustic engine code

Fig. 6.1 and Fig. 6.2 shows the DeltaEC model of the experimental prototype

of the TWTAE which is described in Chapter 7.
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Figure 6.1: Schematic of looped portion of the TWTAE analyzed by DeltaEC.

The code of the DeltaEC software which is used to model the prototype of the

TWTAE is listed in Table 6.1.
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Figure 6.2: Schematic of resonator portion of the TWTAE analyzed by DeltaEC.

Meanwhile the gas mixture text file used for the DeltaEC program is shown

in Table 6.1.
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Table 6.1 - DeltaEC Code

\Save6_no_surface_piezo_354_7W.out

!Created@18:00:58 27-Sep-2011 with DeltaEC version 6.2b3 under win32,

using Win 5.1.2600 (Service Pack 3) under Python DeltaEC.

!--------------------------------- 0 ---------------------------------

BEGIN the setup

8.2737E+05 a Mean P Pa

89.195 b Freq Hz G

300.07 c TBeg K

1.9557E+05 d |p| Pa G

0.0000 e Ph(p) deg

0.0000 f |U| m^3/s

0.0000 g Ph(U) deg

0.0000 i Ndot mol/s

0.0000 j nL

air_0.tpm Gas type

!--------------------------------- 1 ---------------------------------

TBRANCH Split up the flow

-4.1073E+07 a Re(Zb) Pa-s/m^3 G 1.9557E+05 A |p| Pa

6.5203E+07 b Im(Zb) Pa-s/m^3 G 0.0000 B Ph(p) deg

0.0000 d NdotBr mol/s 2.5378E-03 C |U| m^3/s

0.0000 e NLdotB mol/s -122.21 D Ph(U) deg

-132.27 E HtotBr W

-132.27 F EdotBr W

132.27 G EdotTr W

!--------------------------------- 2 ---------------------------------

DUCT 180 bend plus brass connecting flange (pg 27 book 4)

3.0000E-04 a Area m^2 Mstr 1.6876E+05 A |p| Pa

6.1399E-02 b Perim m 2a 2.1973 B Ph(p) deg

0.2600 c Length m 9.2381E-03 C |U| m^3/s

-97.824 D Ph(U) deg

-132.27 E Htot W

stainless Solid type -135.65 F Edot W

!--------------------------------- 3 ---------------------------------

CONE 4" to 3" Concentric reducer (pg 36 book 4)

3.0000E-04 a AreaI m^2 Mstr 1.6856E+05 A |p| Pa

6.1368E-02 b PerimI m 3a 2.2101 B Ph(p) deg

1.0000E-03 c Length m 9.2582E-03 C |U| m^3/s

2.0000E-04 d AreaF m^2 Mstr -97.803 D Ph(U) deg

5.0134E-02 e PerimF m 3d -132.27 E Htot W

stainless Solid type -135.66 F Edot W
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DeltaEC Code Continued

!--------------------------------- 4 ---------------------------------

DUCT 3" FB Duct - Length given in concept.skf

2.0000E-04 a Area m^2 Mstr 1.6831E+05 A |p| Pa

5.0134E-02 b Perim m 4a 2.2259 B Ph(p) deg

1.0000E-03 c Length m 9.2743E-03 C |U| m^3/s

-97.786 D Ph(U) deg

-132.27 E Htot W

stainless Solid type -135.68 F Edot W

!--------------------------------- 5 ---------------------------------

CONE 3.5" to 3" Long radius reducing elbow (pg 36 book 4)

2.0000E-04 a AreaI m^2 Mstr 1.6811E+05 A |p| Pa

5.0134E-02 b PerimI m 5a 2.2387 B Ph(p) deg

1.0000E-03 c Length m 9.2943E-03 C |U| m^3/s

3.0000E-04 d AreaF m^2 Mstr -97.764 D Ph(U) deg

6.1413E-02 e PerimF m 5d -132.27 E Htot W

stainless Solid type -135.7 F Edot W

!--------------------------------- 6 ---------------------------------

DUCT FB connector/part of tee (Pg 55 book 4 concept.skf)

3.0000E-04 a Area m^2 Mstr 1.1188E+05 A |p| Pa

6.1414E-02 b Perim m 6a 6.2867 B Ph(p) deg

0.2600 c Length m 1.4609E-02 C |U| m^3/s

-93.596 D Ph(U) deg

-132.27 E Htot W

stainless Solid type -140.26 F Edot W

!--------------------------------- 7 ---------------------------------

SOFTEND End of feedback branch

0.0000 a Re(z) 1.1188E+05 A |p| Pa

0.0000 b Im(z) 6.2867 B Ph(p) deg

0.0000 c Htot W 1.4609E-02 C |U| m^3/s

-93.596 D Ph(U) deg

-132.27 E Htot W

-140.26 F Edot W

-0.11821 G Re(z)

0.6785 H Im(z)

300.07 I T K

-0.32112 J p20HL Pa

0.0000 K nL

!--------------------------------- 8 ---------------------------------

DUCT Change Me

3.0000E-04 a Area m^2 Mstr 1.9593E+05 A |p| Pa

6.1399E-02 b Perim m 8a -7.2465E-02 B Ph(p) deg

1.0000E-02 c Length m 2.3007E-03 C |U| m^3/s

54.031 D Ph(U) deg

132.27 E Htot W

ideal Solid type 132.15 F Edot W
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DeltaEC Code Continued

!--------------------------------- 9 ---------------------------------

MINOR minor loss here

2.9364E-05 a Area m^2 G 1.8975E+05 A |p| Pa

0.8000 b K+ -2.7367 B Ph(p) deg

7.0000E-02 c K- 2.3007E-03 C |U| m^3/s

54.031 D Ph(U) deg

132.27 E Htot W

119.62 F Edot W

!--------------------------------- 10 ---------------------------------

DUCT jetting space

3.0000E-04 a Area m^2 Mstr 1.9086E+05 A |p| Pa

6.1435E-02 b Perim m 10a -3.0809 B Ph(p) deg

5.0000E-02 c Length m 1.3615E-03 C |U| m^3/s

20.494 D Ph(U) deg

132.27 E Htot W

ideal Solid type 119.08 F Edot W

!--------------------------------- 11 ---------------------------------

HX Change Me

3.0000E-04 a Area m^2 1.9095E+05 A |p| Pa

0.6800 b GasA/A -3.3629 B Ph(p) deg

2.5000E-02 c Length m 1.2202E-03 C |U| m^3/s

3.4000E-04 d y0 m -0.91343 D Ph(U) deg

-232.9 e HeatIn W G -100.64 E Htot W

0.0000 f SolidT K 116.40 F Edot W

0.0000 g FracQN 300.07 G GasT K

235.55 H SolidT K

ideal Solid type -100.64 I H2k W

!--------------------------------- 12 ---------------------------------

DUCT Regen cold end dead space due to ribs (pg 91 book 3)

3.0000E-04 a Area m^2 Mstr 1.9095E+05 A |p| Pa

6.1410E-02 b Perim m 12a -3.3745 B Ph(p) deg

1.7500E-03 c Length m 1.2189E-03 C |U| m^3/s

-3.2006 D Ph(U) deg

-100.64 E Htot W

stainless Solid type 116.38 F Edot W

!--------------------------------- 13 ---------------------------------

STKSCREEN Regenerator (pg 92 book 3) (Ks frac est:pg 20 book 4)

3.5500E-04 a Area m^2 1.2753E+05 A |p| Pa

0.6800 b VolPor 9.1551 B Ph(p) deg

3.7500E-02 c Length m 3.6692E-03 C |U| m^3/s

6.7512E-05 d rh m -34.537 D Ph(U) deg

0.3000 e ksFrac -100.64 E Htot W

169.17 F Edot W

300.07 G TBeg K

812.94 H TEnd K

stainless Solid type -100.64 I H2k W
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DeltaEC Code Continued

!--------------------------------- 14 ---------------------------------

DUCT All regen hot end dead space (pg 92 book 3)(area is avg)

3.0000E-04 a Area m^2 Mstr 1.2740E+05 A |p| Pa

6.1398E-02 b Perim m 14a 9.0999 B Ph(p) deg

7.0000E-03 c Length m 3.7598E-03 C |U| m^3/s

-36.004 D Ph(U) deg

-100.64 E Htot W

stainless Solid type 169.05 F Edot W

!--------------------------------- 15 ---------------------------------

HX HHX (pg 93 book 4) heat xfer area used/not acoustic area

3.0000E-04 a Area m^2 1.2473E+05 A |p| Pa

0.6700 b GasA/A 9.1257 B Ph(p) deg

4.2000E-02 c Length m 4.1979E-03 C |U| m^3/s

3.4000E-04 d y0 m -43.142 D Ph(U) deg

301.00 e HeatIn W OP 200.36 E Htot W

0.0000 f SolidT K 160.22 F Edot W

0.0000 g FracQN 812.94 G GasT K

848.15 H SolidT K

stainless Solid type 200.36 I H2k W

!--------------------------------- 16 ---------------------------------

DUCT hhx dead space (pg 94 book 3) stainless used for Qdot

3.0000E-04 a Area m^2 Mstr 1.2471E+05 A |p| Pa

6.1419E-02 b Perim m 16a 9.1180 B Ph(p) deg

1.0000E-03 c Length m 4.2123E-03 C |U| m^3/s

-43.297 D Ph(U) deg

200.36 E Htot W

stainless Solid type 160.20 F Edot W

!--------------------------------- 17 ---------------------------------

STKDUCT Straight section of pulse tube (pg 101 bk 4)

3.5000E-04 a Area m^2 Mstr 1.2200E+05 A |p| Pa

6.6336E-02 b Perim m 17a 8.3554 B Ph(p) deg

7.0000E-02 c Length m 5.3972E-03 C |U| m^3/s

6.4500E-05 d WallA m^2 -52.505 D Ph(U) deg

200.36 E Htot W

160.31 F Edot W

812.94 G TBeg K

300.07 H TEnd K

stainless Solid type 200.36 I H2k W

!--------------------------------- 18 ---------------------------------

RPN how much heat must be rejected here? Resonator is insulated

0.0000 a G or T 1182.5 A ChngeMe

15e -1483.50565298 + ~
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DeltaEC Code Continued

!--------------------------------- 19 ---------------------------------

HX Change Me

3.0000E-04 a Area m^2 1.1785E+05 A |p| Pa

0.6700 b GasA/A 7.7353 B Ph(p) deg

2.5000E-02 c Length m 5.6621E-03 C |U| m^3/s

2.5000E-04 d y0 m -54.273 D Ph(U) deg

-75.00 e HeatIn W 125.36 E Htot W

0.0000 f SolidT K 156.59 F Edot W

0.0000 g FracQN 300.07 G GasT K

286.06 H SolidT K

ideal Solid type 125.36 I H2k W

!--------------------------------- 20 ---------------------------------

DUCT PT connector (see pg 55 book 4 and concept.skf)

3.0000E-04 a Area m^2 Mstr 1.1188E+05 A |p| Pa

6.1414E-02 b Perim m 20a 6.2867 B Ph(p) deg

6.0000E-02 c Length m 6.5598E-03 C |U| m^3/s

-58.523 D Ph(U) deg

125.36 E Htot W

stainless Solid type 156.18 F Edot W

!--------------------------------- 21 ---------------------------------

UNION Rejoin

7 a SegNum 1.1188E+05 A |p| Pa

6.0649E+04 b |p|Sft Pa =21A 6.2867 B Ph(p) deg

7.7486 c Ph(p)S deg =21B 2.0330E-02 C |U| m^3/s

300.07 d TSoft K =21G -82.911 D Ph(U) deg

-0.80185 e p20HLS Pa =21H -6.9023 E Htot W

0.0000 f nLSoft 15.925 F Edot W

300.07 G T K

-0.32112 H p20HL Pa

0.0000 I nL

!--------------------------------- 22 ---------------------------------

DUCT Initial section of resonator

3.0000E-04 a Area m^2 Mstr 8.5453E+04 A |p| Pa

6.1419E-02 b Perim m 22a 6.1984 B Ph(p) deg

7.0000E-02 c Length m 2.1337E-02 C |U| m^3/s

-82.961 D Ph(U) deg

-6.9023 E Htot W

stainless Solid type 13.368 F Edot W

!--------------------------------- 23 ---------------------------------

DUCT Continuation of resonator

3.0000E-04 a Area m^2 Mstr 1.5419E+04 A |p| Pa

6.1416E-02 b Perim m 23a -171.87 B Ph(p) deg

0.2500 c Length m 2.2631E-02 C |U| m^3/s

-83.048 D Ph(U) deg

-6.9023 E Htot W

stainless Solid type 3.5989 F Edot W
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DeltaEC Code Continued

!--------------------------------- 24 ---------------------------------

CONE 7 degree cone - 10.02" final diameter

3.0000E-04 a AreaI m^2 Mstr 5.2878E+04 A |p| Pa

6.1417E-02 b PerimI m 24a -172.95 B Ph(p) deg

0.2500 c Length m 1.6958E-02 C |U| m^3/s

2.0300E-03 d AreaF m^2 Mstr -83.063 D Ph(U) deg

0.15971 e PerimF m 24d -6.9023 E Htot W

stainless Solid type 0.88259 F Edot W

!--------------------------------- 25 ---------------------------------

DUCT 10" duct P8

2.0300E-03 a Area m^2 Mstr 5.9783E+04 A |p| Pa

0.15971 b Perim m 25a -172.99 B Ph(p) deg

0.3000 c Length m 1.8595E-14 C |U| m^3/s

-4.3972 D Ph(U) deg

-6.9023 E Htot W

stainless Solid type -5.4485E-10 F Edot W

!--------------------------------- 26 ---------------------------------

IEDUCER Change Me

0.0000 a Re(Ze) ohms 5.9783E+04 A |p| Pa

-4.0000E+04 b Im(Ze) ohms -172.99 B Ph(p) deg

0.0000 c Re(T1) V-s/m^3 1.8595E-14 C |U| m^3/s

1.2600E+06 d Im(T1) V-s/m^3 -4.3972 D Ph(U) deg

0.0000 e Re(T2) Pa/A -6.9023 E Htot W

1.1000E+05 f Im(T2) Pa/A -5.4485E-10 F Edot W

0.0000 g Re(Zm) Pa-s/m^3 -9.2515E-15 G WorkIn W

4.0058E+08 h Im(Zm) Pa-s/m^3 0.4120 H Volts V

1.0300E-05 i |I| A IP 1.0300E-05 I Amps A

0.0000 j Ph(I) deg -90.00 J Ph(Ze) deg

1.1330 K |Px| Pa

90.000 L Ph(Px) deg

!--------------------------------- 27 ---------------------------------

HARDEND end of duct

0.0000 a R(1/z) =27G 5.9783E+04 A |p| Pa

0.0000 b I(1/z) =27H -172.99 B Ph(p) deg

0.0000 c Htot W 1.8595E-14 C |U| m^3/s

0.0000 d Ndot mol/s -4.3972 D Ph(U) deg

-6.9023 E Htot W

-5.4485E-10 F Edot W

-5.0104E-13 G R(1/z)

1.0113E-13 H I(1/z)

0.0000 I Ndot mol/s
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DeltaEC Code Continued

! The restart information below was generated by a previous run

! and will be used by DeltaEC the next time it opens this file.

guessz 0b 0d 1a 1b 9a 11e

xprecn 1.9504E-05 -1.8686 357.16 167.49

4.3719E-10 -2.3176E-03

targs 21b 21c 21d 21e 27a 27b

mstr-slave 16 2 -2 3 -9 4 -2 5 -9 6 -2 8 -2 10 -2 12 -2

14 -2 16 -2 17 -2 20 -2 22 -2 23 -2 24 -9 25 -2

! Plot start, end, and step values. May be edited if you wish.

! Outer Loop: | Inner Loop .

pltvar 15e 26i 0b 0d 1a 1b 9a 11e

354.7 301 -0.02685 0 1.03e-005 1.1444e-006

Table 6.1: Code used by DeltaEC to analyze TWTAE

User-Defined gas code used by DeltaEC

! m_helium(kg/mole) m_air(kg/mole) gamma_helium gamma_air:

0.004 28.97e-3 1.6667 1.4

! k pure helium (W/m-K):

0. 0. 0. 0. 0. .0025672 0.716

! k pure air (W/m-K):

0. 0. 0. 0. 0. 5.0499e-6 1.5

! mu pure helium (kg/m-s):

0. 0. 0. 0. 0. 0.412e-6 0.68014

! mu pure air (kg/m-s):

0. 0. 0. 0. 0. 3.5526e-9 1.5

! k mixture (W/m-K):

0.

! mu mixture (kg/m-s):

0.

! D12 (m2/s):

0.53E-4 0. 1.72

! kT:

0.0267 1.0 1.0

Table 6.2: User defined gas code used by DeltaEC
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6.2 DeltaEC Results

Fig. 6.3 displays the performance characteristics of the TWTAE prototype as

predicted by the DeltaEC software.

The figure shows the effect of the input thermal heat in watts on the pressure

amplitude (labeled (a) in Fig. 6.3), temperature (labeled (b) in Fig. 6.3), frequency

of self-sustained oscillation (labeled (c) in Fig. 6.3), and volume flow rate (labeled

(d) in Fig. 6.3).

Comparisons between DeltaEC predictions and the predictions of the lumped-

parameter model as well as the experimental results are reported in Chapter 8.

6.3 Summary

This chapter has presented a model of the experimental prototype of the

TWTAE using DeltaEC software.

The predictions of the basic performance characteristics of the experimental

prototype are determined for different levels of input thermal power that induce

self-sustained oscillations.

These predictions will be evaluated against the predictions of the lumped-

parameter model and against the experimental results in Chapter 8.
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Figure 6.3: Results of the DeltaEC simulation displaying pressure amplitude (a),
Hot-end temperature (b, pressure oscillation frequency and volume flow rate
through the regenerator (d) as each varies according to input power.
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Chapter 7

Experimental Setup

7.1 Traveling wave thermoacoustic engine construction

The experimental set up constructed by D. Sun et. al. in 2004 possesses

many similarities to the prototype of the TWTAE constructed at the Smart Sys-

tems Laboratory at the University of Maryland (UMD). The design also has similar

components as those described by Backhaus and Swift in 1999. The design includes

a feedback loop with an inertance, and a buffer tube with an ambient or cold tem-

perature heat exchangers bracketing the hot heat exchanger. The heat source for

the UMD prototype TWTAE are four heating cartridges at the hot heat exchanger

location, similar to D. Sun’s set up. The ambient heat exchanger uses water to

remove heat from the engine. The schematic drawing of the UMD prototype can be

seen in Fig. 7.1 and Fig. 7.2.

Fig. 7.1 shows the torus section of the UMD TWTAE. The regenerator section

is shown in Fig. 7.2. Dimensions and parts are labelled in the figures. The engine

design is several times smaller than other realizations which are discussed in the

literature review in Chapter 2. After heating, the engine creates pressure oscillations

and is acceptable in terms of performing experimental verification of theoretical

analyses.

An image of the actual construction can be seen in Fig. 7.3. Some notable
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Figure 7.1: Schematic drawing for the UMD traveling wave thermoacoustic engine,
torus section.

Figure 7.2: Schematic drawing for the UMD traveling wave thermoacoustic engine;
resonator.
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aspects include the transparent plastic resonator to the right of the figure. The

plastic tubing used for the cold heat exchangers are also visible. Not shown in

the image is the location behind the resonator used to pressurize the engine to

approximately 100psi.

Figure 7.3: Physical realization of traveling wave thermoacoustic engine.

The components of the engine, shown in Fig. 7.3 are more properly labelled

for the analyses performed in Chapter 3 and Chapter 4 in Fig. 7.4.

Figure 7.4: Labeling of the TWTAE to correspond to theoretical analyses.

Two components of the engine are isolated for inspection. Fig. 7.5 shows the
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ambient heat exchanger used in the engine. The ambient heat exchanger is made of

copper and has laser-etched grooves in the center of the disc which allow air to pass

through. The copper between the channels acts as a heat sink for the air. This heat

is then removed from the heat exchanger by cold water running through an inner

channel separate from the laser etched channel. The hole allowing water through

the cold heat exchanger is visible in the outer surface of the heat exchanger.

Figure 7.5: Closeup of ambient heat exchanger. There are two cold heat exchangers
in this engine.

Fig. 7.6 shows the stacked screen cylinder used in the regenerator. The regen-

erator requires a porous medium with high thermal conductivity characteristics in

order to create the temperature gradient necessary for thermoacoustic oscillations.

Some engines use steel wool for this material, for example. This engine uses a hollow

cylinder filled with steel meshes cut into circles stacked on top of one another. Three

of the screens are taken out for inspection and are seen below the cylinder in Fig.

7.6.

Fig. 7.5 shows the ambient heat exchanger used in the regenerator. The hot-
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Figure 7.6: Closeup of the stack screen, the most important component of the the
regenerator.

heat exchanger is wrapped around the hot end of the regenerator and is powered

using four resistance heater cartridges. These are powered in parallel from the AC

wall outlet. The resistance across the heater cartridges mounted in parallel was

measured to be R = 20.3Ω. The maximum voltage that the wall outlet is capable

of providing is 120V. Because AC power is supplied, the root mean squared voltage

(VRMS) is calculated by dividing the supplied AC voltage by
√

2. The maximum

power supplied to the engine is then calculated as follows:

Pmax =
V 2
RMS

R
=

(120V )2

2 · 20.3Ω

= 354.7W (7.1)

The power that is supplied to the engine can be adjusted as a percentage of

this maximum value using a VariAC. This VariAC can be seen in Fig. 7.8 as the
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red box with the black dial sitting to the left of the TWTAE.

7.2 Pressure and Piezo-Voltage Experimental Setup

In Chapter 3, the lumped-parameter model is used to create plots demon-

strating the transient pressure and temperature versus time for the UMD TWTAE.

Chapter 6 also has utilized DeltaEC to numerically predict these plots. The exper-

imental setup described in this chapter is used to verify these figures. The pressure

and piezo output voltages are measured using pressure transducers and a 1.25in di-

ameter piezo-electric disc attached to the end of the resonator. Simultaneously, the

temperature of the hot heat exchanger was measured using a thermocouple. The

placement of these sensors attached to the TWTAE can be seen in Fig. 7.7.

Figure 7.7: Locations of sensors attached to TWTAE.

Outputs from all the sensors of this experimental setup can be seen in Chapter

8. Chapter 8 compares the hot heat exchanger pressure and temperature responses

due to changing power inputs.
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7.3 Modal Characteristics of the Composite Piezo Disc System

From Chapter 5, the resonant frequency of the composite piezo disc is theo-

retically determined from the developed axisymmetric FEM. Fig. 5.3, displays the

frequency response of the disc modeled by two finite elements as described in that

chapter. This was compared with the outputs from ANSYS as shown in Fig. 5.6.

Table 5.1 tabulates the natural frequencies from two experimental methods, and

compares those values with the corresponding theoretical values. The experimental

values were determined from FFT response to a white noise input, and also from

the output of a scanning laser vibrometer. The setup for these experiments are seen

in Fig 7.8.

Figure 7.8: Setup of disc natural frequency experiment.

A soft plastic stinger connects the end of the shaker to the center of the disc

sitting at the end of the TWTAE. For the white noise response experiment, the

shaker is provided a white noise input from an analyzer, and then FFT is performed

on the voltage output from the piezo disc. The frequency plot for this can be seen
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in Fig. 5.7.

Figure 7.9: Reverse view of Fig. 7.8, orientation of laser vibrometer (located behind
shaker with stinger attached) is seen.

Fig. 7.9 shows the reverse view of Fig. 7.8. Seen here is the relative position

of the laser vibrometer to the shaker which excites the composite piezo disc system.

The location on the piezo-disc where the stinger is attached is seen in Fig. 7.10.

Also seen in this figure are the wires which connect to the electrodes of the piezo

disc from which the voltage is measured.

The laser vibrometer uses a camera to create a mesh on the surface of the

piezo discwhose velocity or displacement amplitude is to be measured. The laser

vibrometer then at each point in the mesh captures the displacement and velocity

profile vs. time and creates a contour plot of the amplitude. A screen capture of

the contour plot is seen in Fig. 5.5.
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Figure 7.10: Closeup of the stinger attachment to the center of the piezo disc system.

7.4 Summary

This chapter has presented the detailed design features of the UMD experimen-

tal prototype of the TWTAE. Also included in this chapter is the instrumentation

utilized to monitor the system performance.
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Chapter 8

Results

8.1 Pressure Transducer, Piezo Voltage and Thermocouple Plots

This chapter displays the results of the experimental setup described in Section

7.2. The experiments aim at validating the theoretical predictions generated in

Chapter 3. Recall from Chapter 3 that an important component to Fig. 3.9 and

Fig. 3.10 was the oscillating nature of the pressure amplitude and regenerator hot-

end temperature. The theory is that there is some threshold temperature at which

the pressure oscillations begin in the engine, but then the action of oscillation causes

the heat to fall due to enthalpy. The results of this chapter attempt to verify or

disprove this theory. Beginning by determining the frequency of the oscillations and

the noise from the sensors, Fig. 8.1 displays the FFT of the voltage output from the

pressure transducers when the engine experiences an input power of 354.7W. This

is the maximum amount of power that the can be supplied to the engine according

to Eq. 7.1.

As can be seen from the voltage output of the pressure transducers in the

frequency domain, there is a strong peak at 60Hz, the frequency of the AC current

supplied from the electrical outlets. The next peak is at 91.64Hz, corresponding to

the first mode frequency at which the TWTAE oscillates. This frequency is verified

in Fig. 8.2. Other peaks seen in the figure are multiples of the 60Hz.
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Figure 8.1: FFT of unfiltered pressure data for Pavg = 354.7W input power.

Figure 8.2: FFT of unfiltered piezo data for Pavg = 354.7W input power.

Fig. 8.2 shows the frequency domain voltage output of the piezo disc attached

to the end of the TWTAE resonator. The piezo disc output is not affected by
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noise from AC power lines and as a result, only the 91.64Hz peak of theTWTAE

oscillations are seen. The noise from the AC power lines seen in Fig. 8.1, the

peaks at multiples of 60Hz, require the pressure measurements to be filtered with

a software bandpass filter from the LabVIEW library. Even so, the measurements

are noticeably noisy.

Figure 8.3: Pressure vs. time for Pavg = 354.7W input power.

Because the pressure oscillations are sinusoidal, the signal can be more easily

interpreted by time averaging multiple local maximums (peaks) together in order

to get an idea of the system amplitude as it changes with time. Fig. 8.3 shows

the bandpass filtered pressure transducer output across time. Fig. 8.4 shows the

pressure output amplitude of Fig. 8.3 in psi by averaging 20 peaks. The pressure

transducers read an oscillating amplitude about the mean pressure of about 2.4 psi.

Fig. 8.5 show the peak averaged amplitude plot of the piezo voltage output
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Figure 8.4: Pressure amplitude vs. time for Pavg = 354.7W input power.

for a maximum power input (354.7W). The plot continues to rise slightly over the

40 seconds pictured. Presumably this means the system has not yet reached steady

state and that as the temperature continued to rise, so would the amplitude of the

pressure and voltage oscillations. Even without a load resistor across the electrodes

of the piezo disc, the amplitude of the output voltage was slightly higher than 0.4V.

As can be seen Fig. 8.5 and in Fig. 8.6, which shows 9 periods of piezo voltage

oscillation, the output of the piezo disc is not encumbered by noise.

After demonstrating that the maximum amount of output power results in

stable oscillations, the next plots attempt to find the power setting which causes

the temperature in the hot end of the heat exchanger to hover about the threshold

temperature. This threshold temperature will presumably cause the pressure mea-

sured in the system to begin oscillating, and as the theory purported in Chapter 3,
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Figure 8.5: Piezo voltage amplitude vs. time for Pavg = 354.7W input power.

Figure 8.6: Piezo voltage vs. time oscillations over 9 periods for Pavg = 354.7W
input power.

stop oscillating as the temperature decreases due to enthalpy and once again begin

oscillating due to temperature increase. Fig. 8.7 and Fig. 8.8 shows the bandpass
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filtered and peak averaged amplitude of the pressure transducer output, respectively,

of the TWTAE with the power input at 85% of the maximum (301.5W). The engine

was oscillating at that point when the power input was dropped abruptly to 85% of

its maximum. These plots show the pressure output as the oscillations die out.

Figure 8.7: Pressure vs. time for Pavg = 301.5W input power.

The peak averaged piezo output voltage for an input power of 301.5W can

be seen in Fig. 8.9. Note that although Fig. 8.8 still reads a positive pressure

amplitude after the drop off, Fig. 8.9 shows that oscillation have clearly died. The

theory indicates that the amplitudes for all three figures, Fig. 8.7, Fig. 8.8, and

Fig. 8.9, should all increase as the temperature rises. It can be seen in Fig. 8.9 and

Fig. 8.8 that the amplitude of the piezo voltage and pressure does not rise again,

indicating that this power input is too low to restart oscillations.

At 90% of the maximum power input to the engine, 319.2W, there is sufficient
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Figure 8.8: Pressure amplitude vs. time for Pavg = 301.5W input power.

Figure 8.9: Piezo voltage amplitude vs. time for Pavg = 301.5W input power.

power to initiate oscillations, as can be seen in the bandpass filtered and peak

averaged amplitude of the pressure transducers seen in Fig. 8.10 and Fig. 8.11
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respectively. These figures demonstrate that, similar to the plots of the engine

operating at 85% of maximum, that the oscillations do not stop and start due to

enthalpy, but once the threshold temperature is met the oscillations level toward

steady state. Fig. 8.12 shows the peak averaged piezo voltage amplitude for this

power setting. Plots for initiating oscillations for power settings below 90% are not

shown, for an input power of 319.2W was the minimum determined power setting

which would initiate oscillations.

Figure 8.10: Pressure vs. time for Pavg = 319.2W input power.

In order to more closely determine the temperature threshold, the tempera-

ture output from the hot end of the regenerator is monitored with a thermocouple

to determine when steady state is reached in the engine. The following plots show

the peak-averaged voltage amplitude of the piezoelectric disc plotted with the ther-

mocouple output. For each of these plots, the oscillations were initiated using the
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Figure 8.11: Pressure amplitude vs. time for Pavg = 319.2W input power.

Figure 8.12: Piezo voltage amplitude vs. time for Pavg = 319.2W input power.

maximum power input, then the power input was dropped and the system was al-

lowed to reach steady state as determined by the thermocouples. Fig. 8.13 shows
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the hot-end temperature approaching steady state in conjunction with the piezo

voltage output due to power input of 319.2W (90% of maximum). As can be seen

in Fig. 8.14, which is a closeup for the system between 800-1100 seconds, between

925 and 1100 seconds both the piezo voltage and the temperature increase. The

reason for this temperature increase was due to the air conditioning in the room

switching off, and the reduced convection about the engine allowed the temperature

to increase. The temperature increase did not occur because the reduced pressure

oscillations in the regenerator which in turn caused a reduction in enthalpy.

Figure 8.13: Piezo-voltage amplitude and regenerator hot-end temperature vs. time
for Pavg = 319.2W input power.

Because the engine was capable of maintaining pressure oscillations at steady

state due to a power input of 319.2W, the input power was then reduced to 312.1W.

The next 20 minutes saw the piezo voltage amplitude and hot end temperature drop-

ping steadily, but oscillations were maintained. Fig. 8.15 represents this situation.
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Figure 8.14: Close-up piezo-voltage amplitude and regenerator hot-end temperature
vs. time for Pavg = 319.2W input power.

As can be seen, at the 1300s mark, the air conditioning unit in the room once again

shut off, and the temperature once again began to rise. Fig. 8.16 shows the piezo

voltage and temperature plots for an input power of 305.0W. As can be seen, there

is insufficient input power to maintain steady oscillations.

The theory discussed in Chapter 3, where enthalpy due to pressure oscillations

causes the temperature to drop and therefore oscillation amplitude to die down,

which in turn causes the temperature to rise, was not exhibited in the results of the

experiments shown in this chapter. As oscillations were maintained and the input

power was decreased, leading to a drop in both temperature and oscillations, the

only time the temperature began to rise again was due to the air conditioning in the

room shutting off during its cycle. The reduction in air movement and cooling within

the room caused the temperature to rise within the engine, and also caused the
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Figure 8.15: Piezo-voltage amplitude and regenerator hot-end temperature vs. time
for Pavg = 312.1W input power.

Figure 8.16: Close-up piezo-voltage amplitude and regenerator hot-end temperature
vs. time for Pavg = 305.0W input power.
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oscillation amplitude to rise as well. The theory of a single threshold temperature,

one which would cause this inverting rising and falling action of both the pressure

oscillation amplitude and the temperature to rise and fall relative to one another,

does not appear to be easily found.

A noteworthy observation which resulted from the experiment is the location

of the threshold temperature which initiates and ceases oscillation. The lowest

discovered input power required for the UMD engine to initiate oscillation was 90%

of the maximum, or 319.2W. This was not repeatable and often the power needed

to initiate oscillations was 92% of the maximum power input, or 326.3W. This

corresponded to a temperature of 487◦. Input power below this amount did not

seem to be able to initiate oscillations. In the reverse direction, the temperature

threshold which ceased pressure oscillations was not the same. With an input power

of 312.1W, and a temperature of about 483◦, oscillations were able to be maintained

at steady state. Instead of having a precise threshold temperature at the brink of

pressure oscillations, one which would cause the root locus plot in Fig. 3.4 to

move into the right side of the imaginary axis, this observation suggests a range

of temperatures within which pressure oscillations cannot be initiated, but can be

maintained. This implies that a lower input power is required to maintain pressure

oscillations than is necessary to initiate them. There is no theory available to reflect

this observation, and developing an analytical model to support this observation is

left to future work.
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8.2 Experimental and Theoretical Results Comparison

This section will compare the results from the following models: the lumped-

parameter model discussed from Chapter 3, the DeltaEC model from Chapter 6, and

the experimental results from this chapter. The theoretical and experimental results

for the FEM of the aluminum-piezo combination disc is compared in Chapter ?? and

will be excluded from this section. Beginning with a comparison of the operating

frequency of the TWTAE, Table 8.1 compares the frequency determined from the

root locus plot from Fig. 3.3, the DeltaEC output, and the FFT plot from Fig. 8.2.

Lumped-parameter DeltaEC Experimental FFT

269.8 Hz 89.195 Hz 91.64 Hz

Table 8.1: Theoretical and experimental operating frequencies of TWTAE compar-
ing lumped-parameter model, numerical DeltaEC analysis and piezoelectric FFT
response.

As can be seen, the numerical DeltaEC analysis gives a very accurate approx-

imation of the operating frequency of the TWTAE. From Fig. 6.3, there is minor

change in operating frequency depending on input power (which in turn affects hot-

end regenerator temperature), but the change is insignificant over the input power

range. Table 8.2 compares the TWTAE oscillating pressure amplitude determined

from the theoretical transient response of Fig. 3.9 and Fig. 3.13 , the DeltaEC plots

from Fig. 6.3, and experimental results from Fig. 8.4, Fig. 8.8 and Fig. 8.11. Plots

for the lumped-parameter model for thermal power inputs of 301.5W and 319.2W

are not shown, but the results are indicated in the table.

The lumped-parameter model, from Fig. 3.9, when modeled at 500 W gener-
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Input Power Lumped-parameter DeltaEC Experiment

301.5W 8.0 psi 16.25 psi No Oscillation
319.2W 8.3 psi 17 psi 1.9 psi
354.7W 9.12 psi 18 psi 2.4 psi
500W 11.1 psi - -

Table 8.2: Theoretical and experimental oscillating pressure amplitudes of TWTAE
comparing lumped-parameter model, numerical DeltaEC analysis and pressure
transducer output.

ates a steady state oscillating pressure amplitude of 11.1 psi. At 301.5W heat input,

the pressure amplitude is predicted to be 8.0 psi. These values come after a period of

oscillations before the pressure amplitude settles around a steady state value. This

behavior is not observed in the pressure transducer output. Over the input power

range inspected, DeltaEC provides an oscillating pressure corresponding linearly to

the power input, but the calculated pressure amplitude is much higher than the

measured pressure from the transducers. The reason for this difference could be

the effect of noise and improper orientation of the pressure transducers, or perhaps

DeltaEC is not accounting appropriately for losses in the TWTAE. A problematic

aspect of the DeltaEC model is the inability to analyze a situation where oscillations

are not present, unlike the lumped-parameter model. By default, DeltaEC assumes

oscillations exist and determines a solution which matches the inputs.

Input Power Lumped Capacity DeltaEC Experiment

305.0W 1030 ◦C 542 ◦C 475 ◦C
312.1W 1030 ◦C 545 ◦C 484 ◦C
319.2W 1030 ◦C 548 ◦C 487 ◦C
500W 1030 ◦C - -

Table 8.3: Theoretical and experimental regenerator hot-end temperature compar-
ing lumped-parameter model, numerical DeltaEC analysis and thermocouple output.
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Table 8.3 compares the regenerator hot-end temperature determined from the

theoretical transient response of Fig. 3.9, the DeltaEC plots from Fig. 6.3, and Ex-

perimental results from Fig. 8.14, Fig. 8.15, and Fig. 8.16. The lumped-parameter

model transient plot of Fig. 3.9 shows the hot-end temperature oscillating about

and eventually settling to the temperature of 1030 ◦C, the threshold temperature

determined from the root locus plot in Fig. 3.3. This temperature is what is consid-

ered the threshold temperature which moves the system from the stable to unstable

region of the s-plane in the lumped-parameter model. This value is far above the

threshold temperature determined from experimental thermocouple outputs. Ad-

ditionally, these steady-state values do not change over the range of power inputs

suggesting a problem with the lumped-parameter model. The DeltaEC results are

approximately 60 ◦C above the measured temperature. This difference could be due

to systematic errors in the thermocouple measuring apparatus. It could be due to

thermocouple placement; the thermocouple was placed outside the regenerator, and

the internal temperature is hotter.

8.3 Discussion of Experimental Errors

There are several possible sources of experimental errors in the experiments

described in Chapter 7. The most obvious source is the noise experienced by the

pressure transducers. They noise is clearly affecting the pressure measurements

and it is unclear just how great the effect is. Another source of error is potential

pressure loss in the TWTAE. Over the course of several hours, due to small leaks
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in the engine, the equilibrium pressure, p0, is reduced and will affect pressure and

piezo-voltage readings.

As far as temperature readings for this chapter are concerned, because the

thermocouples are outside the engine, it is expected that the temperature readings

are below the actual value within the regenerator. This could explain the difference

between the DeltaEC approximations and the experimental results.

Another source of error that is difficult to quantify is the degradation of the

engine through use. Because the regenerator uses such high heat, and the pressure

inside the engine is so high, the stacked screens become terrible oxidized while the

engine is used. Because it is unclear how degraded the stacked screens are within the

enclosed engine, it is very possible that the thermal contact within the regenerator

becomes successively reduced every time the TWTAE is used, affecting pressure

readings. Furthermore, the piezo discs are also prone to breaking. As can be seen in

several plots, while initially the piezo disc provided voltages above 0.4V at maximum

power input and 0.32V for 90% power input, these readings were greatly reduced

in subsequent testings. This is possibly due to small fractures which are difficult to

detect and affect the voltage readings.

8.4 Summary

This chapter has presented the experimental performance characteristics of a

prototype of the TWTAE. The onset of self-sustained oscillations is demonstrated

experimentally and the threshold of such oscillations is determined under various
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scenarios. The experimental threshold agrees closely with the predictions of the

DeltaEC model but not with those of the lumped-paramter model.

Similarly the experimental magnitude of the pressure and temperature of

the self-sustained oscillation condition match closely with those predicted by the

DeltaEC model.
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Chapter 9

Conclusions and Future Work

9.1 Overview

This thesis has covered theoretical and numerical methods for analyzing per-

formance characteristics of the traveling wave thermoacoustic engine (TWTAE). In

2009, A.T.A.M. deWaele published a paper proposing a lumped-parameter method

for determining the volume flow rate and pressure amplitude of a TWTAE, and also

proposes a transient response model in which thermal considerations are included

[10]. This thesis has analyzed this lumped-parameter model, and expanded it to an

equivalent electrical circuit which represents the TWTAE. This equivalent circuit

is capable of incorporating a piezoelectric disc seamlessly. The lumped-parameter

model was used to derive analytical values for transient operating properties for

oscillating pressure amplitude and frequency, regenerator hot-end temperature, and

volume flow rate for a prototype of the TWTAE which was built and tested in the

course of this study.

In Chapter 6, this thesis has employed a numerical approach to analyzing

the TWTAE. By using DeltaEC [13], properties of the TWTAE were predicted,

such as oscillating pressure amplitude, operating frequency, and regenerator hot

end temperature. The DeltaEC model included a representation for the composite

piezo end cap for the regenerator. This can be seen in the segment IEDUCER of the
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model. To use the IEDUCER segment, a 2× 2 matrix defining the electromechanical

impedance of the composite piezo-disc is required. In order to find the four values

of this matrix, an axisymmetric finite element model was developed in Chapter 5.

These values can be seen in Eq. 5.117.

In order to validate the predictions of the finite element model, the first mode

natural frequency determined from the frequency plot in Fig. 5.3 (1532 Hz), is

compared with values determined from excited white noise FFT response in Fig.

5.7 (1220 Hz), laser vibrometer response in Fig. 5.5 (∼1300 Hz), and ANSYS finite

element analysis (1250 Hz). From these measurements, it was determined that the

ANSYS FEM analysis is a very good approximation of the experimental results, and

the two element FEM from Chapter 5 is considered as a first step towards a more

accurate model.

Comparisons are made between the lumped-parameter model, the numerical

DeltaEC model, and the experimental results. These results are compared in Sec-

tion 8.2. For the frequency, the lumped-parameter model oscillations are estimated

at 269.8Hz, while the DeltaEC model nearly matches the experimental FFT re-

sponse of the pressure transducer output are determined at 89.195 Hz and 91.64 Hz

respectively.

Over the range of input powers analyzed, the pressure amplitude for DeltaEC

was related linearly with the input power, ranging between 16.25 psi to 18 psi for

input powers between 301.5W and 354.7W. The experiment, on the other hand, mea-

sures 2.4 psi pressure amplitude for 354.7W, and no oscillations for an input power

of 301.5W. The lumped-parameter model was estimated to settle at approximately

142



11.6 psi for an input thermal power of 500W. The differences between results could

be due to a number of factors, including noisy pressure transducers, imprecision in

the DeltaEC model, and estimation errors within the lumped-parameter model. For

example, when changing the value for heat capacitance CH in the lumped-parameter

model, the pressure oscillations converge to a lower value. This implies that results

could be more closely related to the experimental output with a better estimate of

thermal capacity. Another problematic consideration is that the DeltaEC model

was unable to account for situations where oscillations were not present.

For regenerator hot-end temperature measurements, the lumped-parameter

model estimates the temperature threshold at 1030 ◦C. Meanwhile for power inputs

between 305W and 319.2W, the DeltaEC model estimated hot-end temperatures

between 542 ◦C and 548 ◦C. From thermocouple readings, for the same power in-

puts, temperature readings were between 475 and 487 ◦C. Differences could be due

to estimation errors in the DeltaEC model regarding heat losses and temperature

distribution, or the external placement of the thermocouples could cause the experi-

mental readings to be cooler than the actual internal temperature of the regenerator.

As far as a threshold temperature existing between a quiet engine and pressure os-

cillations, it was observed that a temperature value of 483 ◦C was sufficient to

maintain pressure oscillations, but a temperature value of 487 ◦C was required to

initiate oscillations. This may be a small enough gap to determine that an exact

threshold temperature may exist between these two values, but the control over the

input power and environmental conditions is not fine enough to achieve this precise

value.
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The values for volume flow rate through the regenerator from Fig. 6.3 was

approximated to have values between 3.65× 10−3 and 4× 10−3 m3/s corresponding

to input powers between 300W and 360W. Meanwhile, from the lumped-parameter

model, the volume flow rate through the pulse tube settled at about 0.04 m3/s, or

about 10 times the volume flow rate estimated from DeltaEC. The volume flow rate

was not determined experimentally, and that process is left to future work.

This thesis analyzes a TWTAE using several theoretical and numerical meth-

ods. The lumped-parameter model published by deWaele presents a method for de-

termining transient values for pressure oscillation amplitude and volume flow rate.

The generated transient behavior, where the pressure amplitude appears to act like

an underdamped second order system where oscillations rise and fall before settling

at a steady-state value was not exhibited in the experimental transient plots. It

was observed that a precise temperature threshold which explicitly which separates

a quiet engine from an oscillating engine, does not appear to exist. It does appear

as though a range of temperatures exist which can maintain oscillations but cannot

initiate them. There are many potentially identified faults in the lumped-parameter

model. It could be that the lumped-parameter assumption, where certain compo-

nents act exclusively as inertances or compliances break down as the engines size is

reduced, as is the case in the UMD TWTAE prototype. Another explanation could

be an overexagerated emphasis on the rolls of enthalpy flow rate in the transient

response model. If this term were reduced, perhaps the model would behave more

like a first order system like the experimental results suggest. Additionally, cer-

tain terms in the model are difficult to determine and therefore modeling becomes
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imprecise.

The DeltaEC model presents excellent results for frequency, but the pressure

amplitude and temperature are reported higher than the experimental values. This

could be due to a number of approximation errors in the DeltaEC model. The

two element FEM model used to model the composite piezo disc is a good first

step towards an accurate model, but the estimated frequency is too high. The

model is not robust and is too susceptible to small adjustments which greatly affects

the frequency plot. The ANSYS model, alternatively, presents a very accurate

representation of the first mode natural frequency. This implies that the two element

FEM model needs better development and as a result, its representation in the

DeltaEC model does not yet give accurate values for piezo-voltage.

9.2 Future Work

There are some aspects of this thesis that can be strengthened or expanded

upon. The theoretical outcome of Chapter 3, in which the pressure oscillations in the

TWTAE rise and fall in conjunction with the regenerate hot end temperature was

not demonstrated experimentally. This implies a potential flaw in the heat transfer

modeling, potentially by placing too strong an emphasis on the role of enthalpy.

More can be done to strengthen the heat transfer aspects of the lumped-parameter

model. The concept of a threshold temperature, a temperature which incites os-

cillations did not correspond with the temperature which ceases oscillations. The

observation, then, is that there exists a range of temperatures in which oscillations
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can be maintained but not initiated. Theory which demonstrates this observation

is not in place and requires a re-evalutaion of the lumped-parameter model. By

using the circuit analogy to simplify the process can be done, but incorporating an

accurate representation of the piezo disc to estimate output voltages has not yet

been performed.

Also from a theoretical standpoint, the finite element model of the compos-

ite piezo disc can be made to be more robust, as small changes in thickness and

radius values have a large effect on the performance of the finite element model.

Furthermore, the finite element model currently employs only 2 elements, and a

larger number of elements, such as ANSYS employs, could result in a more accurate

representation of the composite piezo disc system.

Further experimental analysis can be performed, such as particle image ve-

locimetry (PIV) of the resonator section, which can confirm the volume flow rate as

theorized in Chapter 3. This can be performed in conjunction with sharper filtering

processes in order to get a crisper output from the pressure transducers.

Finally, geometric adjustments can be made to the TWTAE in order to match

the composite piezo disc with the operating frequency of the engine. Incorporating

a load resistor or a shunted network across the electrodes of the piezo disc will also

change the impedance properties of the composite piezo disc system. This can be

done in conjunction with geometric modifications of the engine so that resonant

operant conditions are met.
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Appendix A

Derivation of A.T.A.M. deWaele’s Equations

This appendix describes in detail the verification of deWaele’s equations de-

rived from his lumped-parameter model [10]. Beginning with the assumption that

the volumes (d), (t), and (R) are connected by frictionless, isobaric tubes, as seen

in Fig. 3.2, it can be said that

pt = pd = PR (A.1)

Taking the time derivative yields:

dpt
dt

=
dpd
dt

=
dpR
dt

(A.2)

As a convention, define:

δpt = pt − po (A.3)

In Eq. (A.3), po is the initial pressure in the system. Also as convention,

define:

pr = pt − pc (A.4)

Therefore pr can be thought of as the pressure across the inertance piston Mi.

As mentioned before, the masses of “pistons” Mi and Mr are defined as the mass of

the gas within the column. Therefore:
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Mi = ρ0AiLi (A.5)

and:

Mi = ρ0AiLiMi = ρ0AiLi (A.6)

where ρ0 is the density of air at initial pressure, Ai is the cross sectional area of

the inertance, Li is the length of the inertance. By using Newton’s 2nd law, the

acceleration of mass Mi is defined as:

Mi
d2xi
dt2

= (pt − pc)Ai = prAi (A.7)

In Eq. (A.7) xi is the defined as the position of the inertance piston, and the

force acting on the piston is the pressure across the piston, pr, multiplied by the

area of the piston, Ai. The variable t refers to time. Similarly, for the piston in the

resonator:

MR
d2xR
dt2

= (pt − p0)AR = δptAR (A.8)

where xR is the position of the resonator piston along the axis of the resonator, and

δpt is the pressure across the resonator piston. Given that the volume of section (d)

is the initial volume plus the displacement volume of the inertance piston:

Vd = Vd0 + Aixi (A.9)

Rearranging Eq. (A.9) in terms of xi:
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xi =
Vd
Ai
− Vd0
Ai

(A.10)

Taking the 2nd derivative of Eq. (A.10) in terms of t, knowing that Vd0 and

Ai are constants:

d2xi
dt2

=
1

Ai

d2Vd
dt2

(A.11)

Inserting Eq. (A.11) into Eq. (A.7) yields:

Mi
1

Ai

d2Vd
dt2

= prAi (A.12)

and therefore:

d2Vd
dt2

= pr
A2
i

Mi

(A.13)

Using the same process for Vr with Eq. (A.8):

d2VR
dt2

= δpt
A2
R

MR

(A.14)

Incorporating the following conventions:

aR =
A2
R

MR

(A.15)

and:

ai =
A2
i

Mi

(A.16)
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Then Eq. (A.13) and Eq. (A.14) become:

d2Vd
dt2

= aipr (A.17)

and:

d2VR
dt2

= aRδpt (A.18)

In determining the volume flow rates for
∗
Vc,

∗
Vd,

∗
Vt, and

∗
Vb, earh of the compo-

nents of the decomposed model are identified as one of the three flow situations. The

first is where volume flows into and out of a control volume. The second is a situa-

tion where volume flows into a volume with a moving piston, and the third is where

volume flows from (or into) a volume connected by a valve with flow conductance

C. These are depicted below in Fig. A.1:

From Fig. A.1, the element labeled (a) is the generalized model of the pulse

tube, or the component (t) from Fig. 3.2. The element labeled (b) is the generalized

model of the compliance, the feedback tube, and the resonator tube; components (c),

(d), and (R) respectively from Fig. 3.2. The element labeled (c) is the generalized

model of the buffer tube; component (b) from Fig. 3.2.

A.T.A.M. de Waeles paper describes the relationship for volume flow rates
∗
V1

and
∗
V2 of element (a) from Fig. A.1 and is given as [10]:

∗
V1 =

∗
V2 +

V

γp

dp

dt
(A.19)

In Eq. (A.19), V refers to the volume of the element; in this case a fixed
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Figure A.1: Three generalized component models as analyzed by A.T.A.M. de Waele
[10].

volume, p refers to the pressure of the element, and γ is the specific heat ratio of

the working gas. This relationship works on a few assumptions. First, the process

that takes place in element (a) from Fig. A.1 is that of an adiabatic ideal gas.

Secondly, the oscillations about the initial pressure, p0 are small relative to p0. Also,

each element is considered discrete and well mixed, meaning the pressure, density,

and temperature in the element is considered uniform at all points. To prove this

equation, consider the fixed size control volume V . The mass m of the air in the

control volume is defined as:
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m = ρV (A.20)

In Eq. (A.20), ρ is the density of the air in the control volume. Because the

inlet and outlet flow rates are not necessarily equal, the system may gain or lose

mass. The time differential of Eq. (A.20) is:

dm

dt
=
dρ

t
V +

dV

dt
ρ (A.21)

But for element (a), the volume is invariable, therefore:

dV

dt
= 0 (A.22)

Therefore, Eq. (A.21) becomes:

dm

dt
=
dρ

dt
V (A.23)

Which therefore implies:

dρ

dt
=

1

V

dm

dt
(A.24)

This first order approximation relationship between the pressure and the den-

sity is fairly accurate for small pressure oscillations about the initial pressure p0.

The relationship is given as [27]:

p = c2ρ (A.25)
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In Eq. (A.25), c is the speed of sound defined for an ideal, adiabatic gas is

defined as [27]:

c =

√
γp

ρ
(A.26)

For the derivation, c is considered a constant independent of time because

of the small magnitude of the pressure oscillations relative to the initial pressure.

Taking the time derivative of Eq. (A.25):

dp

dt
= c2

dρ

dt
(A.27)

Combining Eq. (A.24) and Eq. (A.27):

dp

dt
=
c2

V

m

dt
(A.28)

Now define the time derivative of the mass in the control volume as the dif-

ference between the mass flow rate entering the control volume subtracted by the

mass flowing out of the control volume:

dm

dt
=
dm1

dt
− dm2

dt
(A.29)

The relationship between mass flow rate and volume flow rate are defined as

follows [15]:

dm

dt
= ρ

∗
V (A.30)

This gives:
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dm

dt
= ρ

( ∗
V1 −

∗
V2
)

(A.31)

Which combined with Eq. (A.28) and Eq. (A.26) to become Eq. (A.19),

which verifies the volume flow governing equation for element (a) from Fig. A.1.

As the process is assumed to be adiabatic, meaning no heat is transferred from the

engine aside from the heat exchangers, it is logical that the derived expression in

Eq. (A.19) does not depend on temperature. The expression for volume flow rates

of element (b) from Fig. A.1 is reported as [10]:

∗
V1 = vA+

V

γp

dp

dt
(A.32)

In Eq. (A.32), v is the velocity of the piston depicted in element (b) of Fig.

A.1, while A is the cross sectional area of the volume. In this case, consider the

control volume time dependant on the position of the piston. The volume is assumed

to be adiabatic, and it is also assumed that the pressure oscillations about p0 are

small relative to p0. Again, it is assumed that pressure, density, and temperature

are uniform within the control volume. Because of these assumptions, Eq. (A.25)

and Eq. (A.26) hold. Begin by assuming that the rate of change of the control

volume is dependent on the motion of the piston:

dV

dt
= vA (A.33)

Combining Eq. (A.34) with Eq. (A.21):
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dm

dt
=
dρ

dt
V + vAρ (A.34)

In Eq. (A.29), it is assumed that:

dm2

dt
= 0 (A.35)

Therefore with Eq. (A.26), Eq. (A.27) and Eq. (A.30), Eq. (A.35) becomes

Eq. (A.32) as reported by deWaele. The expression for volume flow rates of element

(c) from Fig. A.1 is reported as [10]:

0 = C (p− p0) +
V

γp

dp

dt
(A.36)

In this case, the control volume is a constant. Therefore in this situation,

Eq. (A.23) is valid. The volume is again assumed to be adiabatic, and it is also

assumed that the pressure oscillations about p0 are small relative to p0. Again, it

is assumed that pressure, density and temperature are uniform within the control

volume. Because of these assumptions, Eq. (A.25) and Eq. (A.26) hold. It is

assumed that the volume flow rate leaving the tank is dependant on the pressure

across the valve multiplied by the flow conductance. Therefore:

∗
V = C (p− p0) (A.37)

Because the figure only depicts mass leaving the tank, from Eq. (A.29 let:

dm1

dt
= 0 (A.38)
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and let:

dm2

dt
= −ρ

∗
V (A.39)

By combining Eq. (A.37) and Eq. (A.39) with Eq. (A.29):

dm

dt
= −ρC (p− p0) (A.40)

Which combines with Eq. (A.24), Eq. (A.26) and Eq. (A.27) to give Eq.

(A.36). By using the expressions derived in Eq. (A.19), Eq. (A.32), and Eq.

(A.36), the volume flow rates for
∗
Vc,

∗
Vd,

∗
Vt, and

∗
Vb can be determined. Beginning

with
∗
Vb, it is assumed that the buffer volume is large enough that the pressure inside

remains approximately p0. Therefore, with flow conductance C0, and the pressure

across the valve values at δpt:

∗
Vb = C0δpt (A.41)

Introducing a new convention, because the pressure oscillations about p0 are

small compared the p0, the values for V/γp in Eq. (A.19), Eq. (A.32), and Eq. (A.36)

will be replaced by average values V0/γp. Therefore, for i = R, c, d, and t, let:

wi =
γp0
Vi0

(A.42)

Therefore, for the pulse tube component labelled (t) in Fig. A.1, using Eq.

(A.19) and Eq. (A.42):
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∗
Vh =

∗
Vt +

1

wt

dpt
dt

(A.43)

Therefore, for the feedback tube component labelled (d) in Fig. A.1, using Eq.

(A.32) and Eq. (A.42):

∗
Vd =

1

wd

dpd
dt

+ vA (A.44)

Therefore Eq. (A.44) in conjunction with Eq. (A.34) gives:

∗
Vd =

1

wd

dpd
dt

+
dVd
dt

(A.45)

Taking into account Eq. (A.2):

∗
Vd =

1

wd

dpt
dt

+
dVd
dt

(A.46)

By similar process as for the component labelled (d), it can be seen that the

equation describing the volume flow rate through resonator component, labelled (R)

in Fig. A.1 can be derived as:

∗
VR =

1

wR

dpt
dt

+
dVR
dt

(A.47)

and for the component labelled (c) in Fig. A.1, incorporating Eq. (A.32), Eq.

(A.34) gives:

−
∗
Vc =

1

wc

dpc
dt

+
dVc
dt

(A.48)

and since:
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dVc
dt

= −dVd
dt

(A.49)

Therefore:

∗
Vc = − 1

wc

dpc
dt

+
dVd
dt

(A.50)

It is assumed that the regenerator in the engine, with an input volumetric flow

rate of
∗
Vc and an outlet flow rate of

∗
Vh, is without volume and is therefore treated

like a node point. By conservation of mass, it must be that:

dmc

dt
=
dmh

dt
(A.51)

Incorporating Eq. (A.30) into Eq. (A.51):

∗
Vhρh =

∗
Vcρc (A.52)

Assuming that even though the regenerator is without volume,
∗
Vc enters the

regenerator at temperature Ta. Because there is excellent thermal contact within

the regenerator due to the small hydraulic radius of the regenerator medium, this

is a safe assumption. Also assume that
∗
Vh leaves the regenerator at the hot heat

exchanger with a temperature Tt. It is given that one of the definitions of density

is as follows [15]:

ρ =
Mp

RT
(A.53)
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In Eq. (A.53), M refers to the molar mass of air. R refers to the universal gas

constant, p is the pressure, and T is the absolute temperature. Both M and R are

the same for both
∗
Vc and

∗
Vh. Because it is assumed that the regenerator is without

volume, then the pressures must also be the same. Therefore, using Eq. (A.53) in

Eq. (A.52), the relationship between
∗
Vc and

∗
Vh can be described as:

∗
Vh = τt

∗
Vc (A.54)

where in Eq. (A.54), τt is the ratio between the hot (Tt) and cold (Ta) heat exchanger

temperatures. De Waele [10] presents a linear approximation for in terms of the

pressure drop across the regenerator (pr):

∗
Vc = −Crpr (A.55)

In Eq. (A.55), Cr is the flow conductance of the regenerator defined:

Cr =
1

ηaZr
(A.56)

In Eq. (A.56), ηa is the viscocity of air at room temperature, and Zr is defined

as:

Zr =
zrLr
Ar

(A.57)

where in Eq. (A.57), Lr is the length of the regenerator, Ar is the cross sectional

area of the resonator, and zr is the specific flow resistance. Also note that:
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dδpt
dt

=
dpt
dt

(A.58)

Using Eq. (A.54), Eq. (A.55) and Eq. (A.58), Eq. (A.43) becomes:

−τtCrpr =
∗
Vt +

1

wt

dδpt
dt

(A.59)

Which can be rearranged to be:

∗
Vt = −τtCrpr −

1

wt

dδpt
dt

(A.60)

Eq. (A.58) also alters Eq. (A.46) and Eq. (A.47) to be:

∗
Vd =

1

wd

dδpt
dt

+
dVd
dt

∗
VR =

1

wR

dδpt
dt

+
dVR
dt

(A.61)

The volumes in the model are connected by frictionless isobaric connections.

Performing nodal conservation of mass analysis at the following point in the engine

yields an expression relating
∗
Vd,

∗
Vt,

∗
VR and

∗
Vb.

Figure A.2: Isobaric connection between components (t), (d), (b) and (R.) [10]
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By applying conservation of mass at the juncture depicted in Fig. A.2, and

treating the terms flowing towards the junction as positive and those flowing away

as negative, the following expression is related:

∗
Vt =

∗
Vd +

∗
Vb +

∗
VR (A.62)

Which, with Eq. (A.60), Eq. (A.61) and Eq. (A.41) yields:

τtCrpr +
1

wt

dδpt
dt

+
1

wd

dδpt
dt

+
dVd
dt

+
1

wR

dδpt
dt

+
dVR
dt

+ C0δpt = 0 (A.63)

Combining like terms in Eq. (A.63) gives:

τtCrpr +
(

1

wt
+

1

wd
+

1

wR

)
dδpt
dt

+
dVd
dt

+
dVR
dt

+ C0δpt = 0 (A.64)

Introducing the following notation:

we =
γp0

Vt + Vd0 + VR0

(A.65)

Then, incorporating Eq. (A.65) into Eq. (A.64) with some rearranging yields:

−dδpt
dt

= τtweCrpr + we
dVd
dt

+ we
dVR
dt

+ weC0δpt (A.66)

Meanwhile, combining Eq. (A.50) and Eq. (A.55) yields:

Crpr =
1

wc

dpc
dt
− dVd

dt
(A.67)

Replacing dpc
dt

with dpt
dt
− dpr

dt
in Eq. (A.67):
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Crpr =
1

wc

(
dpt
dt
− dpr

dt

)
− dVd

dt
(A.68)

Combining Eq. (A.66) with Eq. (A.68):

wcCrpr +
dpr
dt

+ wc
dVd
dt

= −
(
τtweCrpr + we

dVd
dt

+ we
dVR
dt

+ weC0δpt

)
(A.69)

Rearranging and combining like terms gives:

−dpr
dt

= (we + wc)
dVd
dt

+ (wcCr + τtweCr) pr + weC0δpt + we
dVR
dt

(A.70)

Meanwhile, taking the time derivative of Eq. (A.66) yields:

−d
2δpt
dt2

= τtweCr
dpr
dt

+ we
d2Vd
dt2

+ we
d2VR
dt2

+ weC0
dδpt
dt

(A.71)

Substituting Eq. (A.17) and Eq. (A.18) into Eq. (A.71) and rearranging

gives:

d2δpt
dt2

+ weC0
dδpt
dt

+ weaRδpt = −τtweCr
dpr
dt
− weaipr (A.72)

Also, differentiating Eq. (A.70) with respect to time gives:

−d
2pr
dt2

= (we + wc)
d2Vd
dt2

+ (wcCr + τtweCr)
pr
dt

+ weC0
δpt
dt

+ we
d2VR
dt2

(A.73)

Substituting Eq. (A.17) and Eq. (A.18) into Eq. (A.73) and rearranging

gives:
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−weC0
δpt
dt
− weaRδpt =

d2pr
dt2

+ (wcCr + τtweCr)
pr
dt

+ (we + wc) aipr (A.74)

Eq. (A.73) and Eq. (A.74) are two independent differential equations with two

unknown variables pr and δpt. The following depicts the procedure for eliminating pr

to create one equation governing the parameter δpt, that is, the pressure oscillation

of the pulse tube and resonator about the initial pressure p0. Defining the following

conventions:

a = (τtweCr + wcCr)

b = (we + wc) ai

c = −weC0

f = −weaR (A.75)

Additionally, define the following conventions:

k = weC0

l = weaR

m = −τtweCr

n = −weai (A.76)

Substitution of Eq. (A.75) into Eq. (A.74) yields:

c
δpt
dt

+ fδpt =
d2pr
dt2

+ a
pr
dt

+ bpr (A.77)
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and substitution of Eq. (A.76) into Eq. (A.72) yields:

d2δpt
dt2

+ k
dδpt
dt

+ lδpt = m
dpr
dt

+ npr (A.78)

Multiplying Eq. (A.78) with the following operator:

Oa =
d2

dt2
+ a

d

dt
+ b (A.79)

Yields:

(
d2

dt2
+ a

d

dt
+ b

)(
d2δpt
dt2

+ k
dδpt
dt

+ lδpt

)
=

(
d2

dt2
+ a

d

dt
+ b

)(
m
dpr
dt

+ npr

)
(A.80)

Due to the linearity of differential operators, the right hand side of Eq. (A.80)

can be rearranged:

(
d2

dt2
+ a

d

dt
+ b

)(
d2δpt
dt2

+ k
dδpt
dt

+ lδpt

)
=

(
m
d

dt
+ n

)(
d2pr
dt2

+ a
dpr
dt

+ bpr

)
(A.81)

By combining Eq. (A.77) with Eq. (A.81):

(
d2

dt2
+ a

d

dt
+ b

)(
d2δpt
dt2

+ k
dδpt
dt

+ lδpt

)
=

(
m
d

dt
+ n

)(
c
δpt
dt

+ fδpt

)
(A.82)

Eq. (A.82) is now a single degree of freedom fourth order differential equation.

By expanding the equation and condensing terms:

0 =
d4δpt
dt4

+ a3
d3δpt
dt3

+ a2
d2δpt
dt2

+ a1
dδpt
dt

+ a0δpt (A.83)
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where:

a3 = k + a

a2 = l + ak −mc+ b

a1 = al −mf − nc+ bk

a0 = bl − nf (A.84)

Replacing values for a, b, c, f , k, l, m, and n from Eq. (A.75) and Eq. (A.76)

yields:

a3 = weC0 + τtweCr + wcCr

a2 = weaR + wcCrweC0 + (we + wc)ai

a1 = wcCrweaR + wcaiweC0

a0 = wcaiweaR (A.85)
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Appendix B

Algebraic Analysis of Chapter 4

B.1 TWTAE Electric Analogue With Piezo End Cap

Beginning with Fig. 4.2, the following electric relationships can be described.

For current flowing through the regenerator:

I2 = τI1 (B.1)

In Eq. (B.1), τ is the ratio between the absolute hot and cold ends of the

regenerator, TH/TC, as derived earlier by both Ceperly [4] and here in Chapter 3. In

this case, τ represent current gain as defined by Eq. (A.54) and by the acoustic-

electric analogies in Tab. 4.1. Continuing with other components of Fig. 4.2, define

ItdR as the sum of the currents through capacitor elements Ct, Cd, and CR. To

calculate the current across a capacitor for each of these components:

It = VtCts

Id = VtCds

IR = VtCRs (B.2)

Therefore:
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ItdR = It + Id + IR

= Vt (Ct + Cd + CR) s (B.3)

By using Kirchoff’s voltage law:

I2 = I3 + I4 + ItdR (B.4)

and also:

I4 = Ic + I1 (B.5)

To calculate current across a resistance, as in the case of I1:

I1 = −(Vt − Vc)Cr (B.6)

and to calculate the current across an inductor as in the case of I4:

I4 = (Vt − Vc)
1

Lis
(B.7)

and to calculate the current across the capacitor labelled Cc as in the case of Eq.

(B.2):

Ic = VcCcs (B.8)

Calculating the current I3:
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I3 = Vt
s

MDs2 + Zφ2s+ Kp

A2
R

(B.9)

By using the convention Vr = Vt − Vc, and combining Eq. (B.1), Eq. (B.3),

Eq. (B.7) and Eq. (B.9) into Eq. (B.4):

−τVrCr = Vt
s

MDs2 + Zφ2s+ Kp

A2
R

+ Vr
1

Lis
+ Vt(Ct + Cd + CR)s (B.10)

Using the convention Vr = Vt − Vc, and combining Eq. (B.6), Eq. (B.7) and

Eq. (B.8) into Eq. (B.5) yields:

Vr
1

Lis
= (Vt − Vr)Ccs− VrCr (B.11)

Separating Vr and Vt terms in Eq. (B.11):

Vr = Vt

(
CcLi

CcLis2 + CrLis+ 1

)
(B.12)

Separating Vr and Vt terms in Eq. (B.10) and applying Eq. (B.12):

−Vt
(

CcLi
CcLis2 + CrLis+ 1

) −τCrLiMDs
3 + [MD + τCrLiZφ

2]s2

+
[
Zφ2 + τCrLi

Kp

A2
R

]
s+ Kp

A2
R



= Vt

 (Ct + Cd + CR)MDLis
2 + [Ct + Cd + CR]Zφ2Lis[

Li + (Ct + Cd + CR)Kp

A2
R
Li

]
 (B.13)

Introducing the following convention:

1

we
= Ct + Cd + CR (B.14)
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and:

1

wc
= Cc (B.15)

Simplifying Eq. (B.13) and incorporating Eq. (B.14) and Eq. (B.15):

0 = Vt



(
1

wcwe
MDL

2
i

)
s4

+
(

1
wc
τCrMDL

2
i + 1

we
CrMDL

2
i + 1

wcwe
L2
iZφ

2
)
s3

+


1
wc
MDLi + 1

wc
τCrL

2
iZφ

2 + 1
we
MDLi

+ 1
we
CrL

2
iZφ

2 + 1
wc
L2
i + 1

wcwe

Kp

A2
R
L2
i

 s2

+
(

1
wc
LiZφ

2 + 1
wc
τCrL

2
i
Kp

A2
R

+ 1
we
LiZφ

2 + CrL
2
i + 1

we
CrL

2
i
Kp

A2
R

)
s

+CcLi
Kp

A2
R

+ Li + 1
we

Kp

A2
R
Li



(B.16)

Simplifying further and including Eq. (4.13):
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0 = Vt



(
1

wcwe
L2
iMDRLCp

)
s5

+
(

1
wc
τCrL

2
iMDRLCp + 1

wcwe
L2
iMD + 1

we
CrL

2
iMDRLCp

)
s4

+



1
wc
τL2

iCrMD + 1
wc
LiMDRLCp + 1

we
CrL

2
iMD

+ 1
we
MDLiRLCp + 1

wcwe
L2
iRLφ

2 + 1
wc
L2
iRLCp

+ 1
wcwe

Kp

A2
R
L2
iRLCp


s3

+



1
wc
LiMD + 1

wc
τCrL

2
iRLφ

2 + 1
wc
τCrL

2
i
Kp

A2
R
RLCp

+ 1
we
MDLi + 1

we
CrL

2
iRLφ

2 + 1
wc
L2
i

+ 1
wcwe

Kp

A2
R
L2
i + CrL

2
iRLCp + 1

we

Kp

A2
R
CrL

2
iRLCp


s2

+


1
wc
LiRLφ

2 + 1
wc
τCrL

2
i
Kp

A2
R

+ 1
wc

Kp

A2
R
LiRLCp + 1

we
LiRLφ

2

+CrL
2
i + 1

we

Kp

A2
R
CrL

2
i + LiRLCp + 1

we

Kp

A2
R
LiRLCp

 s
+ 1
wc

Kp

A2
R
Li + 1

we

Kp

A2
R
Li + Li



(B.17)

Using Eq. (4.4) and Eq. (4.10), the following conventions can be made:

aR =
A2
R

mp

=
1

MD

ai =
A2
i

Mi

=
1

Li
(B.18)

Then, incorporating Eq. (4.12) and Eq. (B.18), Eq. (B.17) can be simplified

to the following format:

0 = Vt
(
s5 + a4s

4 + a3s
3 + a2s

2 + a1s+ a0
)

(B.19)

where the coefficients a0 through a4 in Eq. (B.20) are:
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a4 =
1

RLCp
(1 + τCrweRLCp + wcCRRLCp)

a3 =
1

RLCp

 τCrwe + aiweRLCp + wcCr

+aRRL
d2K2

p

A2
R

+ aRweRLCp + aRRLCp
K2

p

A2
R



a2 =
1

RLCp



aiwe + τaRweCrRL
d2K2

p

A2
R

+ τaRweCr
K2

p

A2
R
RLCp + wcai

+aRwcCrRL
d2K2

p

A2
R

+ aRwe + aR
K2

p

A2
R

+aRwcCr
K2

p

A2
R
RLCp



a1 =
1

RLCp



aRaiweRL
d2K2

p

A2
R

+ τaRweCr
K2

p

A2
R

+ aRaiwe
K2

p

A2
R
RLCp

+aRaiwcRL
d2K2

p

A2
R

+ aRwewcCr + aRwcCr
K2

p

A2
R

+aRaiwewcRLCp + aRaiwc
K2

p

A2
R
RLCp


a0 =

1

RLCp

(
aRaiwe

K2
p

A2
R

+ aRaiwcwe + aRaiwc
K2
p

A2
R

)
(B.20)

Finally, including Eq. (4.11) the following can be stated:

ω2
n =

Kp

A2
RMD

=
aRKp

A2
R

(B.21)

Using Eq. (B.21), Eq. (B.20) can be simplified to:

a4 =
1

RLCp
(1 + τCrweRLCp + wcCRRLCp)

a3 =
1

RLCp

 τCrwe +RLCp(aiwe + aiwc + aRwe)

+wcCr + ω2
nRL(Cp + d2Kp)



a2 =
1

RLCp

 ω2
n + (aiwe + aRwe + wcai) + τCrweω

2
nRL(Cp + d2Kp)

+Crwcω
2
nRL(Cp + d2Kp) + aRwcweCrRLCp


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a1 =
1

RLCp

 Crwcω
2
n + ai(we + wc)ω

2
nRL(Cp + d2Kp) + aRwewcCr

+aRaiwewcRLCp + τweCrω
2
n


a0 =

1

RLCp

(
ai(we + wc)ω

2
n + aRaiwcwe

)
(B.22)

B.2 TWTAE Electric Analogue Without Piezo End Cap

As for the diagram described by Fig. 4.3, while RL = Cp = Z = Kp = 0, LR

can be defined as:

LR =
ρ0lR
AR

(B.23)

Beginning with Eq. (B.16) and replacing MD with LR the expression can be

condensed to:

0 = Vt



(
1

wcwe
LRL

2
i

)
s4

+
(

1
wc
τLRL

2
i + 1

we
CrMDL

2
i

)
s3

+
(

1
wc
LRLi + 1

we
LRLi + 1

wc
L2
i

)
s2

+ (CrL
2
i ) s

Li



(B.24)

and with the following conventions:

ai =
1

Li

aR =
1

LR
(B.25)

Then Eq. (B.24) can be reduced to:
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0 = Vt



s4

+ (τCrwe + wcCr) s
3

+ (aiwe + aiwc + aRwe) s
2

+ (aRwcweCr) s

aRaiwcwe



(B.26)

Which is identical to the expression reported by deWaele [10].
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Appendix C

Example MATLAB code

C.1 MATLAB code for Chapter 5

This chapter displays the MATLAB code used to determine the 2× 2 matrix

coupling
∗
V and I with Pt and V in Chapter 5. The material and geometric properties

used for this code are given in Tab. C.1.
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Piezo-disk FE material and geometric properties

Property Symbol Value Unit

Disk Geometries

base layer outer radius Ro 0.027432 m
piezo layer outer radius Ri 0.015875 m
base layer thickness tb 0.00127 m
piezo layer thickness tp 0.0001905 m

Material Properties Base Layer

base layer density ρb 2700 kg/m3

Young’s modulus of base layer Eb 70E9 N/m2

Poisson’s ratio of base layer υb 0.334

Material Properties Piezo Layer

piezo elastic modulus cE 6.6E10 N/m2

piezo compliance sE = 1/cE 1.515E-11 m2/N
electromagnetic coupling factor K31 0.35
piezo-strain constant d31 -190E-12 m/V
permittivity εT33 1.945E-8 Farad/m
density of piezo ρp 7600 kg/m3

Poisson’s ratio of piezo υp 0.5

c11 = cE

1−υ2
p

8.8E10 N/m2

c12 =
υpcE

1−υ2
p

4.4E10 N/m2

e1 = cEd31 -12.54 N
mV

η3 = εT33(1−K2
31) 1.7067E-8 Farad/m

Table C.1: Geometric and material properties for combined aluminum-piezo disk
FEM

1 %% Piezo and Disk Finite Element
2 %This M−File attempts to determine the values of the 2x2 matrix ...

coupling
3 %a vector of w 1 and I with P t and V.
4 close all
5 clear
6 clc
7 %% Material Properties, Geometries and the like
8 %Geometries
9 Ro = 0.054864/2;%m, 2.16 in
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10 Ri = 0.03175/2; %m, 1.25 in
11 Ap = pi*Riˆ2;
12 tb = 0.0003307; %m, 0.015 in
13 tp = 0.0003; %m 0.0075in
14 %%
15 % Material Properties: Beam
16 rhob = 2700; %kg/mˆ3
17 Eb = 70E9; % N/mˆ2
18 poissonb = 0.334;
19 %%
20 % Material properties: Piezo
21 cE = 6.6E10; % N/mˆ2
22 sE = 1/cE;
23 K31 = 0.35;
24 d31 = −190E−12; %m/V
25 eps = 1.945E−8; %Farad/m
26 rhop = 7600; %kg/mˆ3
27 poissonp = 0.5;
28

29 c11 = cE/(1−poissonpˆ2);
30 c12 = poissonp*cE/(1−poissonpˆ2);
31 e1 = cE*d31;
32 eta3 = eps*(1−K31ˆ2);
33

34 %%
35 % Beginning matrix formulation for Np piezo elements and Nb ...

additional base
36 % elements.
37 Np = 1;
38 Nb = 1;
39 NumNodes = Np + Nb +1;
40 L1 = ones(1,Np)*(Ri/Np);
41 L2 = ones(1,Nb)*(Ro−Ri)/Nb;
42 L vec = [L1 L2];
43 ri vec = zeros(1,length(L vec)+1);
44 for n = 1:length(L vec)
45 ri vec(n+1)=sum(L vec(1:n));
46 end
47 syms s L
48 Fnum = 10000;
49 W = zeros(Fnum,1);
50 F11 = zeros(Fnum,1);
51 F12 = zeros(Fnum,1);
52 F21 = zeros(Fnum,1);
53 F22 = zeros(Fnum,1);
54 F11abs = zeros(Fnum,1);
55 F12abs = zeros(Fnum,1);
56 F21abs = zeros(Fnum,1);
57 F22abs = zeros(Fnum,1);
58 w1 = zeros(Fnum,1);
59 V1 = zeros(Fnum,1);
60

61 N = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1 0 0; 1 L 0 0 0 0; 0 0 1 L ...
Lˆ2 ...
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62 Lˆ3 ; 0 0 0 1 2*L 3*Lˆ2];
63 Ns = [1 s 0 0 0 0; 0 0 1 s sˆ2 sˆ3]*inv(N);
64 %%
65 % Base layer mass matrix:
66 M global base = zeros(3*NumNodes,3*NumNodes);
67 for n = 1:length(L vec)
68 L iter = L vec(n);
69 r i = ri vec(n);
70 Ns L = subs(Ns,L,L iter);
71 Me = int(rhob*Ns L'*Ns L*2*pi*(r i+s)*tb,s,1E−12,L iter);
72 M global base(3*n−2:3*n+3,3*n−2:3*n+3) = Me + ...
73 M global base(3*n−2:3*n+3,3*n−2:3*n+3);
74 end
75 %M global base
76 %Base layer stiffness matrix
77 %B = zeros(4,6);
78 D = (Eb/(1−poissonbˆ2))*[1 poissonb 0 0; poissonb 1 0 0; 0 0 ...

(tbˆ2)/12 ...
79 poissonb/(tbˆ2); 0 0 poissonb*(tbˆ2)/12 (tbˆ2)/12];
80 K global base = zeros(3*NumNodes,3*NumNodes);
81 for n = 1:length(L vec)
82 L iter = L vec(n);
83 r i = ri vec(n);
84 Ns L = subs(Ns,L,L iter);
85 B(1,:) = diff(Ns L(1,:),s);
86 B(2,:) = (1/(r i+s))*Ns L(1,:);
87 B(3,:) = −diff(diff(Ns L(2,:),s),s);
88 B(4,:) = −(1/(r i+s))*diff(Ns L(2,:),s);
89 K int = B'*D*B*2*pi*(r i+s)*tb;
90 K int = subs(K int,conj(s),s);
91 %check(1,n)=K int(1,1);
92 Ke = int(K int,s,1E−12,L iter);
93 K global base(3*n−2:3*n+3,3*n−2:3*n+3) = Ke + ...
94 K global base(3*n−2:3*n+3,3*n−2:3*n+3);
95 end
96 %pretty(simplify((check(1))))
97 % K global base
98

99 %
100 %Piezo layer mass matrix
101 M global piezo = zeros(3*NumNodes,3*NumNodes);
102 for n = 1:length(L1)
103 L iter = L vec(n);
104 r i = ri vec(n);
105 Ns L = subs(Ns,L,L iter);
106 Me = int(rhop*Ns L'*Ns L*2*pi*(r i+s)*tp,s,1E−12,L iter);
107 M global piezo(3*n−2:3*n+3,3*n−2:3*n+3) = Me + ...
108 M global piezo(3*n−2:3*n+3,3*n−2:3*n+3);
109 end
110

111 %%
112 %Piezo stiffness layer
113 N = [1 0 0 0 0 0 0; 0 0 1 0 0 0 0; 0 0 0 1 0 0 0; 1 L 0 0 0 0 0; ...
114 0 0 1 L Lˆ2 Lˆ3 0; 0 0 0 1 2*L 3*Lˆ2 0; 0 0 0 0 0 0 1];
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115 N inv = inv(N);
116 Ns = [1 s 0 0 0 0 0; 0 0 1 s sˆ2 sˆ3 0; 0 0 0 0 0 0 1]*N inv;
117

118 K global piezo = zeros(3*NumNodes+1,3*NumNodes+1);
119 C = [c11 c12; c12 c11];
120 for n = 1:length(L1)
121 L iter = L vec(n);
122 r i = ri vec(n);
123 Ns L = subs(Ns,L,L iter);
124 B2(1,:) = diff(Ns L(1,:),s)−(tb/2)*diff(diff(Ns L(2,:),s),s);
125 B2(2,:) = (1/(r i+s))*Ns L(1,:);
126 A = B2 − inv(C)*[e1;e1]*[0 0 1/tp]*Ns L;
127 E = [ 0 0 1/tp]*Ns L;
128 K int = A'*C*A*2*pi*(r i+s)*tp− E'*eta3*E*2*pi*(r i+s)*tp;
129 %K int = subs(K int,conj(s),s);
130 check(1,n)=K int(1,1);
131 Ke = int(K int,s,1E−12,L iter);
132 K global piezo(3*n−2:3*n+3,3*n−2:3*n+3) = Ke(1:6,1:6) + ...
133 K global piezo(3*n−2:3*n+3,3*n−2:3*n+3);
134 K global piezo(3*n−2:3*n+3,end)= ...

K global piezo(3*n−2:3*n+3,end)...
135 +Ke(1:6,end);
136 K global piezo(end,3*n−2:3*n+3)= ...

K global piezo(end,3*n−2:3*n+3)...
137 +Ke(end,1:6);
138 K global piezo(end,end)=K global piezo(end,end)+ Ke(end,end);
139 end
140

141 %K global piezo
142

143 %%
144 % Equation of Motion
145 %−wˆ2M+K = Q
146 Msize = size(M global base+M global piezo);
147 M = zeros(Msize(1)+1,Msize(2)+1);
148 M(1:end−1,1:end−1)=M global base+M global piezo;
149 %M(end)=1;
150 K base = zeros(Msize(1)+1,Msize(2)+1);
151 K base(1:end−1,1:end−1)=K global base;
152 K = K base+K global piezo;
153 syms V in
154 Q = [zeros(length(M)−1,1);0.00];
155 for n=1:NumNodes
156 if n==1
157 Q(3*n−1,1) = pi*(ri vec(n+1)ˆ2)/4;
158 elseif n==NumNodes
159 Q(3*n−1,1) = pi*ri vec(n)ˆ2−pi*(ri vec(n)/2+ri vec(n−1))ˆ2;
160 else
161 Q(3*n−1,1) = pi*(ri vec(n)/2+ri vec(n+1))ˆ2 ...
162 −pi*(ri vec(n)/2+ri vec(n−1))ˆ2;
163 end
164 end
165

166 %%
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167 %Reformatting D
168 Eeqi = zeros(length(L1),7);
169 for n = 1:length(L1)
170 L iter = L vec(n);
171 r i = ri vec(n);
172 Ns L = subs(Ns,L,L iter);
173 B2(1,:) = diff(Ns L(1,:),s)−(tb/2)*diff(diff(Ns L(2,:),s),s);
174 B2(2,:) = (1/(r i+s))*Ns L(1,:);
175 E eq = [e1 e1]*B2 + eta3*[0 0 1/tp]*Ns L;
176 Eeqi(n,:)=int(2*pi*(r i+s)*E eq,s,1E−12,L iter);
177 end
178

179 E total = zeros(1,length(M));
180 for n = 1:Np+1
181 if n==1
182 E total(n) = Eeqi(n,1);
183 E total(n+1) = Eeqi(n,2);
184 E total(n+1) = Eeqi(n,3);
185 elseif n==Np+1
186 E total(3*n−2) = Eeqi(Np,4);
187 E total(3*n−1) = Eeqi(Np,5);
188 E total(3*n) = Eeqi(Np,6);
189 else
190 E total(3*n−2) = Eeqi(n−1,4)+Eeqi(n,1);
191 E total(3*n−1) = Eeqi(n−1,5)+Eeqi(n,2);
192 E total(3*n) = Eeqi(n−1,6)+ Eeqi(n,3);
193 end
194 end
195

196 E total(end) = sum(Eeqi(:,end));
197 %%
198 %Reformatting ZEp
199 Zeqi = zeros(length(L vec),7);
200 for n = 1:length(L vec)
201 L iter = L vec(n);
202 r i = ri vec(n);
203 Ns L = subs(Ns,L,L iter);
204 Z eq = [0 1 0]*Ns L;
205 Zeqi(n,:)=int(2*pi*(r i+s)*Z eq,s,1E−12,L iter);
206 end
207

208 Z total = zeros(1,length(M));
209 for n = 1:Np+1
210 if n==1
211 Z total(n) = Zeqi(n,1);
212 Z total(n+1) = Zeqi(n,2);
213 Z total(n+1) = Zeqi(n,3);
214 elseif n==Np+1
215 Z total(3*n−2) = Zeqi(Np,4);
216 Z total(3*n−1) = Zeqi(Np,5);
217 Z total(3*n) = Zeqi(Np,6);
218 else
219 Z total(3*n−2) = Zeqi(n−1,4)+Zeqi(n,1);
220 Z total(3*n−1) = Zeqi(n−1,5)+Zeqi(n,2);
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221 Z total(3*n) = Zeqi(n−1,6)+ Zeqi(n,3);
222 end
223 end
224

225 Z total(end) = sum(Zeqi(:,end));
226

227

228 %%
229 % Row reduction and new matrix formulation
230 w2M Ksize=size(M);
231 w2M Ksize=w2M Ksize(1);
232 Q([1 3 w2M Ksize−3 w2M Ksize−2 w2M Ksize−1],:)=[];
233 Q 3N = Q(1:end−1);
234 E total(:,[1 3 w2M Ksize−3 w2M Ksize−2 w2M Ksize−1])=[];
235 Z total(:,[1 3 w2M Ksize−3 w2M Ksize−2 w2M Ksize−1])=[];
236 f i = logspace(2,5,Fnum);
237

238 %% Frequency response
239 freq = zeros(size(f i));
240 for f = 1:Fnum
241 f
242 w = 2*pi*f i(f);
243 freq(f) = f i(f);
244 w2M K = −wˆ2*M+K;
245

246 w2M K([1 3 w2M Ksize−3 w2M Ksize−2 w2M Ksize−1],:)=[];
247 w2M K(:,[1 3 w2M Ksize−3 w2M Ksize−2 w2M Ksize−1])=[];
248 w2M K 3N = w2M K(1:end−1,1:end−1);
249 %%%%%
250 % disp = 13789.5146*inv(w2M K)*Q;
251 % w1 = abs(disp(1));
252 % V1 = abs(disp(end));
253 %%%%%%
254

255

256 NewMatrix = [w2M K; 1i*w*E total];
257 %vpa(NewMatrix,2)
258 %
259 % Row rearrangement:
260 NewMatrixSize=size(NewMatrix);
261 NewMatrix=[NewMatrix(:,2:NewMatrixSize(2)−1), NewMatrix(:,1),...
262 NewMatrix(:,end)];
263 NewMatrix=[NewMatrix(2:NewMatrixSize(1)−1,:); NewMatrix(1,:);...
264 NewMatrix(end,:)];
265 %Q = [Q([2:end],1);Q(1)];
266 %vpa(NewMatrix,2)
267

268 NewMatrixSize=size(NewMatrix);
269 Kss = NewMatrix([1:NewMatrixSize(1)−2],[1:NewMatrixSize(2)−2]);
270 Ksp = NewMatrix([1:NewMatrixSize(1)−2],...
271 [NewMatrixSize(2)−1:NewMatrixSize(2)]);
272 Kps = NewMatrix([NewMatrixSize(1)−1:NewMatrixSize(1)],...
273 [1:NewMatrixSize(2)−2]);
274 Kpp = NewMatrix([NewMatrixSize(1)−1:NewMatrixSize(1)],...
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275 [NewMatrixSize(2)−1:NewMatrixSize(2)]);
276 NewMatrix2=[Kss Ksp; Kps Kpp];
277 Check = NewMatrix−NewMatrix2;
278 KssTKssinv = inv(Kss'*Kss);
279 R = Kpp − Kps*KssTKssinv*Kss'*Ksp;
280

281 Qs = Q([2:end],1);
282

283 Qs12 = −Kps*KssTKssinv*Kss'*Qs;
284 Qmatrix = [Qs12(1)+Q(1),0;0,1];
285 Fiw = inv(Qmatrix)*R;
286

287 F2x2 = [Fiw(1)−Fiw(2)*Fiw(3)/Fiw(4), Fiw(2)/Fiw(4);...
288 −Fiw(3)/Fiw(4), 1/Fiw(4)];
289

290 W(f)=w;
291 F11(f) = F2x2(1,1);
292 F21(f) = F2x2(2,1);
293 F12(f) = F2x2(1,2);
294 F22(f) = F2x2(2,2);
295 F11abs(f) = abs(F2x2(1,1));
296 F21abs(f) = abs(F2x2(2,1));
297 F12abs(f) = abs(F2x2(1,2));
298 F22abs(f) = abs(F2x2(2,2));
299 w 1 = 13789.5146/F2x2(1,1);
300 w1(f)=abs(w 1);
301 V1(f) = abs(w 1*F2x2(2,1));
302

303 A dd = w2M K 3N;
304 A dV = w2M K(1:end−1,end);
305 A Vd = w2M K(end,1:end−1);
306 A VV = w2M K(end,end);
307

308 ZE = [1i*w*Z total;1i*w*E total];
309 ZE 3N = ZE(:,1:end−1);
310 ZE end = ZE(:,end);
311 Zp = [ZE 3N*inv(A dd)*Q 3N, −ZE 3N*inv(A dd)*A dV+ZE end]
312

313

314 end
315

316 figure
317 loglog(freq,w1,'b','LineWidth',4)
318 title('w 1 and V vs. f, 2 element FEM')
319 xlabel('f (Hz)')
320 grid
321 hold on
322 loglog(freq,V1,'r','LineWidth',4)
323 legend('w 1 (m)','V 1(V)','Location','NorthEast')
324

325 %%
326 % Output of laser vibrometer:
327

328 frequencies = 100:50:2250;
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329 DisplAmp = 1E6*[7.097E−6,...
330 2.053E−6,...
331 1.319E−6,...
332 923.2E−9,...
333 696.6E−9,...
334 531.2E−9,...
335 990.6E−9,...
336 140.9E−9,...
337 119.5E−9,...
338 88.16E−9,...
339 83.29E−9,...
340 113.4E−9,...
341 44.52E−9,...
342 23.95E−9,...
343 26.31E−9,...
344 33.52E−9,...
345 48.12E−9,...
346 32.92E−9,...
347 35.91E−9,...
348 61.07E−9,...
349 41.08E−9,...
350 42.40E−9,...
351 58.28E−9,...
352 35.71E−9,...
353 177.3E−9,...
354 135.1E−9,...
355 50.95E−9,...
356 30.92E−9,...
357 25.14E−9,...
358 15.54E−9,...
359 14.13E−9,...
360 11.83E−9,...
361 12.01E−9,...
362 10.74E−9,...
363 10.78E−9,...
364 9.867E−9,...
365 9.039E−9,...
366 9.31E−9,...
367 6.885E−9,...
368 5.628E−9,...
369 5.564E−9,...
370 6.546E−9,...
371 7.093E−9,...
372 7.888E−9];
373 figure
374 plot(frequencies,DisplAmp,'g','LineWidth',4)
375 xlabel('f (Hz)')
376 ylabel('\mum')
377 title('Frequency response of center of disk as seen by laser ...

Vibrometer')
378 grid on
379 xlim([600 1600])
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C.2 MATLAB code for Chapter 3

This MATLAB code reproduces Figure 7 and Figure 8 from the paper deWaele

published.

1 % Andrew Roshwalb
2 % This M−Flie will attempt to verify the transient plots ...

presented by
3 % A.T.A.M. de Waele in their paper. These are shown in figures ...

7 and 8 of
4 % their papers.
5 clear
6 clc
7 close all
8

9 DR = 0.102; %m (Resonator Diameter)
10 Lac = 2; %m (Length ac resonator)
11 Dr = 0.0889; %m (Regenerator Diameter)
12 Lr = 0.073; %m (Length of regenerator)
13 zr = 3.6E9; %mˆ−2 (Specific impedance)
14 Lt = 0.24; %m (Length of pulse tube)
15 Dt = 0.078; %m (Diameter of pulse tube)
16 Ld0 = 0.209; %m (Average length of space d)
17 Dd = 0.085; %m (Diameter of space d)
18 Li = 0.256; %m (Length of inertance tube)
19 Di = 0.078; %m (Diameter of inertance tube)
20 Vc0 = 0.00283; %mˆ3 (Average volume of space c)
21 Ta = 300; %K (Ambient temperature)
22 po = 3e6; %Pa (Average pressure)
23 gamma = 1.67; % (Specific heat ratio)
24 na = 20e−6; %micro−s Pa (Viscocity at Ta)
25 rho0 = 4.81; %kg/mˆ3 (density)
26

27 % The following values are then dervied from the previous ...
parameters:

28 LR0=2*Lac/pi; % m (Initial length of resonator)
29 AR = pi*(DR/2)ˆ2; %mˆ2 (Area of resonator)
30 MR = AR*LR0*rho0; % kg (mass of air in resonator)
31 Ai = pi*(Di/2)ˆ2; %mˆ2 (Area of inertance tube)
32 Mi = Ai*Li*rho0; % kg (mass of air in resonator)
33 Ar = pi*(Dr/2)ˆ2; % mˆ2 (area of regenerator)
34 Zr = zr*Lr/Ar; % impedance of regenerator
35 Cr = 1/(na*Zr);
36 At = pi*(Dt/2)ˆ2; %mˆ2 (Area of pulse tube)
37 Vt = At*Lt; %mˆ3 (volume of pulse tube)
38 wc = gamma*po/Vc0; %convention
39 Ad = pi*(Dd/2)ˆ2; %mˆ2 (Area of connectiing tube)
40 Vd0 = Ad*Ld0; %mˆ3 (Initial volume of connecting tube)
41

42 VR0 = AR*LR0; %mˆ3 (Initial volume of regenerator)
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43 we = gamma*po/(Vt+Vd0+VR0); % convention
44 aR = ARˆ2/MR; % convention
45 ai =Aiˆ2/Mi; % convention
46 Co=0.1*Cr;
47

48 KaAr Lr = 0.085; %W/K
49 tau c = 2.6755;
50 Ttc=Ta*tau c;
51 v=103;
52 tp=1/v;
53 Ch = 0.21; % J/K
54 Qt= 500; %W
55 % a3 = we*Co + wc*Cr + tau t*we*Cr;
56 a2 = aR*we + ai*wc + ai*we + wc*we*Cr*Co; % coefficient a 2
57 a1 = wc*we*(Cr*aR+Co*ai); % coefficient a 1
58 ao = wc*we*aR*ai; % coeffficient a 0
59 b1 = we*Co+wc*Cr;
60 b2 = we*Cr;
61 wt= gamma*po/Vt;
62 wd = gamma*po/Vd0;
63 wR = gamma*po/VR0;
64 % First determine temperature and pressure as it approaches ...

tau critical.
65 % It is given that the initial temperature Tt is 600K and the inital
66 % pressure is 50e2 Pa
67 Tti = 600;
68 pti = 50e2;
69 time = 2;
70 gain = 10ˆ−2;
71 sim('de waele trans')
72 ∆ pt = [tout, yout(:,1)];
73 Thot = [tout, yout(:,2)];
74 L = 20;
75 numbersegments = length(tout)/L;
76 numbersegments = floor(numbersegments);
77 for k=1:numbersegments
78 sample = ∆ pt(1+(k−1)*L:k*L,:);
79 sample = sortrows(sample,2);
80 ∆ ptmax(k,:)=sample(end,:);
81 end
82

83 plot(Thot(:,1),Thot(:,2),'Linewidth',2)
84 hold on
85 plot(∆ ptmax(:,1),∆ ptmax(:,2),'r','Linewidth',2)
86 Tcritical = tau c*ones(size(tout));
87 plot(tout,Ttc,'g','Linewidth',2)
88 axis([0 2 0 1500])
89 title('Recreation of Figure 7 from ATAM de Waele')
90 xlabel('t(s)')
91 legend('T t (K)','p 1 (hPa)','T c (K)')
92 grid
93 hold off
94

95 Ch = 21;
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96 Qt = 2000;
97 gain = 10ˆ−3;
98 Tti = 750;
99 pti = 50e2;

100 time = 6;
101 sim('de waele trans')
102 ∆ pt = [tout, yout(:,1)];
103 Thot = [tout, yout(:,2)];
104 L = 20;
105 numbersegments = length(tout)/L;
106 numbersegments = floor(numbersegments);
107 for k=1:numbersegments
108 sample = ∆ pt(1+(k−1)*L:k*L,:);
109 sample = sortrows(sample,2);
110 ∆ ptmax(k,:)=sample(end,:);
111 end
112 figure
113 plot(Thot(:,1),Thot(:,2),'Linewidth',2)
114 hold on
115 plot(∆ ptmax(:,1),∆ ptmax(:,2),'r','Linewidth',2)
116 Tcritical = tau c*ones(size(tout));
117 plot(tout,Ttc,'g','Linewidth',2)
118 axis([0 6 0 1000])
119 title('Recreation of Figure 8 from ATAM de Waele')
120 xlabel('t(s)')
121 legend('T t (K)','p 1 (kPa)','T c (K)')
122 grid

This MATLAB code produces figures equivalent to Figure 7 and Figure 8 from

the paper deWaele published but for the TWTAE described in Chapter 7.

1 % Andrew Roshwalb
2 % This M−Flie will attempt to reproduce the transient plots ...

similar to those
3 % shown in figures 7 and 8 ofA.T.A.M. deWaele's publications, ...

but specifically
4 % for this lab's TWTAE
5 clear
6 clc
7 close all
8

9 DR = 0.32/pi; %m (Resonator Diameter)
10 RR = DR/2; %m (Resonator Radius
11 RRr = 6.14e−2/(2*pi); %m (cone, smaller radius)
12 Lcone = 0.203; % m (cone length)
13 Lcone eq = Lcone*(RRˆ2+RR*RRr+RRrˆ2)/(3*RRˆ2); %m (equivalent ...

cone length)
14 LR smallerduct = 0.3; %m
15 LR smallerduct eq = LR smallerduct*RRrˆ2/(RRˆ2);
16 LR largerduct = 0.2413; %m
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17 LR eq = LR largerduct + LR smallerduct eq + Lcone eq;...
18 %m (Length ac resonator)
19 Dr = sqrt(4*3e−4/pi); %m (Regenerator Diameter)
20 Lr = 3e−2; %m (Length of regenerator)
21 zr = 3.6E9; %mˆ−2 (Specific impedance)
22 Lt = 6.14e−2; %m (Length of pulse tube)
23 Dt = Dr; %m (Diameter of pulse tube)
24 Ld0 = 0.314; %m (Average length of space d)
25 Lc0 = 0.314; %m (Average length of space c)
26 Dd = Dr; %m (Diameter of space d)
27 Dc = Dr; %m (Diameter of space c)
28 Li = Ld0/4; %m (Length of inertance tube)
29 Di = Dr/2; %m (Diameter of inertance tube)
30 Vc0 = Lc0*pi*(Dc/2)ˆ2; %mˆ3 (Average volume of space c)
31 Ta = 300; %K (Ambient temperature)
32 po = 6e5; %Pa (Average pressure)
33 gamma = 1.67; % (Specific heat ratio)
34 na = 20e−6; %micro−s Pa (Viscocity at Ta)
35 rho0 = 4.81; %kg/mˆ3 (density)
36

37 % The following values are then dervied from the previous ...
parameters:

38 LR0=LR eq; % m (Initial length of resonator)
39 Lac = LR0*pi/2;
40 AR = pi*(DR/2)ˆ2; %mˆ2 (Area of resonator)
41 MR = AR*LR0*rho0; % kg (mass of air in resonator)
42 Ai = pi*(Di/2)ˆ2; %mˆ2 (Area of inertance tube)
43 Mi = Ai*Li*rho0; % kg (mass of air in resonator)
44 Ar = pi*(Dr/2)ˆ2; % mˆ2 (area of regenerator)
45 Zr = zr*Lr/Ar; % impedance of regenerator
46 Cr = 1/(na*Zr);
47 At = pi*(Dt/2)ˆ2; %mˆ2 (Area of pulse tube)
48 Vt = At*Lt; %mˆ3 (volume of pulse tube)
49 wc = gamma*po/Vc0; %convention
50 Ad = pi*(Dd/2)ˆ2; %mˆ2 (Area of connectiing tube)
51 Vd0 = Ad*Ld0; %mˆ3 (Initial volume of connecting tube)
52

53 VR0 = AR*LR0; %mˆ3 (Initial volume of regenerator)
54 we = gamma*po/(Vt+Vd0+VR0); % convention
55 aR = ARˆ2/MR; % convention
56 ai =Aiˆ2/Mi; % convention
57 Co=0.1*Cr;
58

59 KaAr Lr = 0.085; %W/K
60

61 Ch = .021; % J/K
62 Qt= 301.5; %W
63 % a3 = we*Co + wc*Cr + tau t*we*Cr;
64 a2 = aR*we + ai*wc + ai*we + wc*we*Cr*Co; % coefficient a 2
65 a1 = wc*we*(Cr*aR+Co*ai); % coefficient a 1
66 ao = wc*we*aR*ai; % coeffficient a 0
67 b1 = we*Co+wc*Cr;
68 b2 = we*Cr;
69 wt= gamma*po/Vt;
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70 wd = gamma*po/Vd0;
71 wR = gamma*po/VR0;
72

73 %%
74 % Finding the
75 %rlocus(tf([0 1 0 0 0 ],[1 0 a2 a1 ao]));
76 % grid on
77 tau c = (1.69e3−we*Co−wc*Cr)/(we*Cr);
78 Ttc=Ta*tau c; %K
79 v=1.25e3/(2*pi);
80 tp=1/v;
81 % First determine temperature and pressure as it approaches ...

tau critical.
82 % It is given that the initial temperature Tt is 600K and the inital
83 % pressure is 50e2 Pa
84 Tti = 600;
85 pti = 50e2;
86 time = 0.8;
87 gain = 10ˆ−2;
88 sim('Velocities')
89 ∆ pt = [tout, yout(:,1)];
90 pc = [tout, yout(:,4)];
91 Thot = [tout, yout(:,2)];
92 L = 25;
93 numbersegments = length(tout)/L;
94 numbersegments = floor(numbersegments);
95 for k=1:numbersegments
96 sample = ∆ pt(1+(k−1)*L:k*L,:);
97 sample = sortrows(sample,2);
98 ∆ ptmax(k,:)=sample(end,:);
99 sample2 = pc(1+(k−1)*L:k*L,:);

100 sample2 = sortrows(sample2,2);
101 pcmax(k,:)=sample(end,:);
102 end
103 figure(2)
104 plot(Thot(:,1),Thot(:,2),'LineWidth',2)
105 hold on
106 plot(∆ ptmax(:,1),∆ ptmax(:,2),'r','LineWidth',2)
107 plot(pcmax(:,1),pcmax(:,2),'k','LineWidth',2)
108 Tcritical = tau c*ones(size(tout));
109 plot(tout,Ttc,'g','LineWidth',2)
110 % axis([0 2 0 1500])
111 title(['Pressures, T h o t, Ch = ',num2str(Ch),', Q = ...

',num2str(Qt)])
112 xlabel('Time − t(s)')
113 legend('T t (K)','p 1 (hPa)','p c(hPa)','T c (K)')
114 grid on
115 hold off
116 figure(3)
117 grid on
118 VR dot = [tout,yout(:,5)];
119 Vd dot = [tout,yout(:,6)];
120 Vc dot = [tout,yout(:,7)];
121 Vt dot = [tout,yout(:,8)];
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122 Vh dot = [tout,yout(:,9)];
123 L = 50;
124 numbersegments = length(tout)/L;
125 numbersegments = floor(numbersegments);
126 for k=1:numbersegments
127 sample = VR dot(1+(k−1)*L:k*L,:);
128 sample = sortrows(sample,2);
129 VR dotmax(k,:)=sample(end,:);
130 sample2 = Vd dot(1+(k−1)*L:k*L,:);
131 sample2 = sortrows(sample2,2);
132 Vd dotmax(k,:)=sample2(end,:);
133 sample3 = Vc dot(1+(k−1)*L:k*L,:);
134 sample3 = sortrows(sample3,2);
135 Vc dotmax(k,:)=sample3(end,:);
136 sample4 = Vt dot(1+(k−1)*L:k*L,:);
137 sample4 = sortrows(sample4,2);
138 Vt dotmax(k,:)=sample4(end,:);
139 sample5 = Vh dot(1+(k−1)*L:k*L,:);
140 sample5 = sortrows(sample5,2);
141 Vh dotmax(k,:)=sample5(end,:);
142 end
143 plot(VR dotmax(:,1),VR dotmax(:,2),'c',...
144 Vd dotmax(:,1),Vd dotmax(:,2),'b',...
145 Vc dotmax(:,1),Vc dotmax(:,2),'r',...
146 Vt dotmax(:,1),Vt dotmax(:,2),'g',...
147 Vh dotmax(:,1),Vh dotmax(:,2),'k','LineWidth',2)
148 grid on
149 legend('VR d o t','Vd d o t','Vc d o t','Vt d o t','Vh d o t')
150 xlabel('Time − t(s)')
151 title(['Volume flow, Ch = ',num2str(Ch),', Q = ',num2str(Qt)])
152 ylabel('mˆ3/s')

C.3 Simulink block diagram used for transient response figure
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Appendix D

ANSYS Code

This chapter displays the ANSYS code used to determine the resonant fre-

quencies of the piezo-aluminum disk system described in Chapter 5. The code is as

follows:

!/CWD,’C:\Akl\UMD_Summer_2011\experiments_Impedance_metamaterials_cell

\ansys models\cell_only_impulse’

/FILNAME,Andrew_Model_Modal_Analysis,0

/title, Andrew Diaphragm Model

/nopr

/com,

/CONFIG,NRES,25000

/CONFIG,NBUF,4

/PREP7

/UNITS, MKS

!*** Data (Dimensions and Applied Volts)

!***************************************

inch=25.4e-3

Lp= 1.25/2*inch

Hp= 0.0075*inch

Ld= 2.16/2*inch

Hd= 0.015*inch

vtop = 100 !Voltage applied to the top of the PZT layer

vbot = 0 !Voltage applied to the bottom of the PZT layer

seltol,5e-7 !Selection tolerance

!*** Element Type and Material Properties

!****************************************

et,1,PLANE223,1001,,1 ! AxiSymmetric piezoelectric

element, plane stress

et,2,PLANE183 ! AxiSymmetric diaphragm element

KEYOPT,2,1,0

KEYOPT,2,3,1

KEYOPT,2,6,0
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KEYOPT,2,10,0

MP,EX,2,70e9 ! Diaphragm material

MP,PRXY,2,0.31

MP,DENS,2,2700

!MP,DAMP,2,0.000135

/com -- Material matrices for PZT4

(polar axis along Y-axis): ANSYS input

/com

/com [c11 c13 c12 0 0 0 ] [ 0 e31 0 ]

/com [c13 c33 c13 0 0 0 ] [ 0 e33 0 ]

/com [c12 c13 c11 0 0 0 ] [ 0 e31 0 ]

/com [ 0 0 0 c44 0 0 ] [e15 0 0 ]

/com [ 0 0 0 0 c44 0 ] [ 0 0 e15]

/com [ 0 0 0 0 0 c66] [ 0 0 0 ]

c11=13.2e10

c12=7.1e10

c13=7.3e10

c33=11.5e10

c44=2.6e10

c66=3e10

tb,anel,1 !Define structural table

tbdata,1,c11,c13,c12 !Input elastic stiffness matrix [c]

tbdata,7,c33,c13

tbdata,12,c11

tbdata,16,c44

tbdata,19,c44

tbdata,21,c66

e13=-4.1

e33=14.1

e15=10.5

tb,piez,1 !Define Piez. table

tbdata,2,e13 !Input Piezoelectric stress matrix [e]

tbdata,5,e33

tbdata,8,e13

tbdata,10,e15

tbdata,15,e15

MP,perx,1,804.6 !Permittivity (x direction)

MP,pery,1,659.7 !Permittivity (y direction)

MP,perz,1,804.6 !Permittivity (z direction)

MP,dens,1,7500 !Density
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!*** Local Coordinate System

local,11 ! Coord. system for lower layer: polar axis +Y

!*** MODELING

!************

!Modeling Lower piezoelectric and diaphragm elements

!***************************************************

csys,11 ! Activate coord. system 11

rect,0,Lp,0,Hp ! Create area for upper layer (xL, xR, yL, yU)

rect,0,Ld,-Hd,0

aglue,1,2 ! Glue layers

numcmp,all

! Area # 1 ---> Piezoelectric layer

! Area # 2 ---> Aluminum Diaphragm

!*** MESHING

!***********

! AATT, MAT, REAL, TYPE, ESYS, SECN

esize,1*Hp ! Specify the element size for the piezo elements

! Meshing Lower Piezos

!*********************

AATT, 1,,1,11,

amesh, 1 ! Mesh Area # 1

allsel,all

! Meshing Diaphragms

!*******************

AATT, 2,,2,11,

amesh, 2 ! Mesh Area # 2

allsel,all

!*** Boundary Conditions

!*** Diaphragm and Cavity Walls

!******************************

nsel,r,loc,x,Ld

D,all,ux,0,,,,uy

!*** Piezoelectric Layer

!***********************

asel,s,,,1

nsla,,1

nsel,r,loc,y,0

!D,all,volt,vbot
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cp,1,volt,all

asel,s,,,1

nsla,,1

nsel,r,loc,y,Hp

cp,2,volt,all

!D,all,volt,vbot

allsel,all

fini

/SOLU

ANTYPE,2 !Modal Analysis

MODOPT,LANB,4

EQSLV,SPAR

MXPAND,4, , ,0

MODOPT,LANB,10,0,1e6, ,OFF

solve

/POST1

SET,LIST,2

In addition to the first mode plot shown in Fig. 5.6, the next 3 modes of

vibration were found to be as 5,318 Hz, and 12,701 Hz. These can be seen in Fig.

D.1, Fig. D.2.
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Figure D.1: Calculated frequency of 2nd mode of combined piezo-aluminum disk
system at 5,318 Hz

Figure D.2: Calculated frequency of 3rd mode of combined piezo-aluminum disk
system at 12,701 Hz
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