
ABSTRACT

Title of Dissertation: TOWARDS RELIABLE AND EFFICIENT
REPRESENTATION LEARNING

Chen Zhu
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Tom Goldstein
Department of Computer Science

Large-scale representation learning has achieved enormous success during the past

decade, surpassing human-level accuracy on a range of benchmarks including image

recognition and language understanding. The success is supported by advances in both the

algorithms and computing capabilities, which enables training large models on enormous

amounts of data. While the performance continues to improve on existing benchmarks

with larger model and training dataset sizes, the reliability and efficiency of large models

are often questioned for deployment in practice. Uncensored datasets can have been poi-

soned to manipulate model behavior, while practical deployment requires models to be

trained or updated quickly on the latest data, and to have low latency for inference.

This dissertation studies how to improve the reliability and efficiency of represen-

tation learning. On reliability, we study the threats of data poisoning and evasion attacks

and how to defend against these threats. We propose a more vicious targeted clean-label

poisoning attack that is highly effective even when the target architecture is unknown. To

defend against such threats, we develop a k-NN based method in the feature space to filter

out the poison examples from the training set, which effectively reduces the success rate

of poisoning attacks at an insignificant cost of accuracy. For evasion attack, we demon-

strate a new threat model against transfer learning, where the attack can be successful

without knowledge of the specific classification head. In a broader sense, we also propose

methods to enhance the empirical and certified robustness against evasion attacks.

For efficiency, our study focuses on three dimensions: data efficiency, convergence

speed and computational complexity. For data efficiency, we propose enhanced adver-

sarial training algorithms as a general data augmentation technique to improve the gen-

eralization of models given the same amount of labeled data, where we show its efficacy

for Transformer models on a range of language understanding tasks. For convergence

speed, we propose an automated initialization scheme to accelerate the convergence of

convolutional networks for image recognition and Transformers for machine translation.

For computational complexity, to scale Transformers to long sequences, we propose a

linear-complexity attention mechanism, which improves the efficiency while preserving

the performance of full attention on a range of language and vision tasks.

TOWARDS RELIABLE AND EFFICIENT REPRESENTATION
LEARNING

by

Chen Zhu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Tom Goldstein, Chair/Advisor
Professor Behtash Babadi, Dean’s Representative
Professor David Jacobs
Professor Furong Huang
Professor Rachel Rudinger
Professor John P. Dickerson

© Copyright by
Chen Zhu

2022

Acknowledgments

During my journey towards a Ph.D. degree, I was fortunate to meet various people

that made this journey more fulfilling and special. I owe my gratitude to every one of

them, and I apologize in advance to anyone I forget to mention in this acknowledgement.

First and foremost, I want to thank my advisor, Tom Goldstein, who provided me

everything I could ask for from an advisor. He is an intelligent and open-minded person,

who has made everything much easier for me. He has very broad interests and knowledge

in many aspects of machine learning, from theory to various applications. He seldom

teaches me what to do directly, but I have learned a lot by simply watching what he

has done. His pursuit for intuitive and innovative ideas with long-term impacts, and his

openness to all the interesting machine learning problems, will continue to guide my

future research. I really appreciate him for being supportive for almost all my research

ideas, as well as my internships outside the campus. It was a great pleasure to work with

such an intelligent and nice person.

I also need to thank all the professors and colleagues I met in the graduate schools

at UMD and ShanghaiTech, from whom I learned lots of useful skills. Ronny Huang was

the main collaborator of my first paper published at UMD. He sparkled my interest and

research ideas in poisoning attacks and defenses. He also gave me lots of support and

suggestions for life, and we became good friends since after. I would like to thank all

ii

my wonderful colleagues at UMD, including Ali Shafahi, Kezhi Kong, Micah Goldblum,

Jonas Geiping, Amin Ghiasi, Jiuhai Chen, Hamid Kazemi, Phillip Pope, Ahmed Abdelka-

der, Huimin Zeng, Hengduo Li, and Liam Fowl, who motivated me to work on a diverse

set of research topics, and even gave me inspirations for new projects. The classes taught

by Furong Huang and Soheil Feizi improved my understandings of machine learning

foundations, and provoked my thoughts on adversarial robustness and poisoning attacks.

I enjoyed working with Xuchen You, Nirat Saini, Samyadeep Basu, Renkun Ni and Ping-

yeh Chiang on the interesting course projects for these classes. In addition, Furong’s

group meeting was a place for me to dive into theories of reinforcement learning, tensor

methods and certified robustness. I want to thank Yanchao Sun, Jingling Li, Jiahao Su

and Chen Chen for the impressive presentations. I was lucky to become a TA for David

Jacobs’s deep learning class in my first semester, from which I had my first glimpse of

teaching in the US. Thanks to Behtash Babadi, Rachel Rudinger and John P. Dickerson

for being my committee members and raised interesting questions for further studying.

The experience at ShanghaiTech was unforgettable and taught me to be fearless. I learned

3D vision and compressive sensing from my advisor Yi Ma, as well as the fundamentals

of AI and NLP from my co-advisor Kewei Tu, which led to the publication of my very

first papers in the research career. A lot of other studying experiences at ShanghaiTech

also strengthened my interest in research, including learning computational imaging and

computer graphics from Jingyi Yu, writing operating systems in Rust from Hao Chen, and

taking all the challenging classes with Shi Jin.

I was fortunate to have the opportunities to collaborate with researchers from the

industry through internships. Thanks to Zheng Xu, who helped me a lot at UMD and

iii

introduced me to Federated Learning at Google. I feel fortunate to collaborate with Greg

Yang to study the large depth limit of neural networks. I appreciate the support from Ping

Wei, Chaowei Xiao, Mohammad Shoeybi, Anima Anandkumar and Bryan Catanzaro to

study long-range Transformers at Nvidia. I had a great time studying the memorization

of large language models with Ankit Singh Rawat, Manzil Zaheer, Daliang Li, Felix Yu,

and Srinadh Bhojanapalli. I had an unforgettable experience interning with Yu Cheng,

Zhe Gan, Siqi Sun and Jingjing Liu at Microsoft, which enhanced my interest in NLP and

led to impactful publications. I gained lots of insighs about Bayesian deep learning and

generative models from David Wipf, Bin Dai and Tingran Wang at MSRA. Special thanks

to Jianguo Li, who gave me the first internship opportunity at Intel Labs and became my

first exploration in deep learning. Over the years of experiences in the industry, I have

also met and learned a lot from Jiacheng Xu, Yandong Li, Yang Zhang, Wenhu Chen,

Liqun Chen, Hao Li, Yizhe Zhang, Weizhu Chen, Sheng Zha, Yashar Mehdad, Chengxi

Ye, Jingzhao Zhang, Wei Hu, and Dianqi Li.

My life would not have been so easy without the care and support of my family and

friends. Thanks to my parents and relatives for supporting me over the years, even when

they were in their own difficulties. Thanks to Shuang Ma and our dog Elfie, who made me

a happier and more thoughtful person. My life would not have been so fulfilling without

them. I am thankful to the care and joy brought by my friends in life: Xiao Su, Nannan

Su, Xiangxing Lu, Maryna Holovanova, Kaiyu Yue, Jiaxuan Zong, Shiyi Lan, Xiaozhen

Lin, Zeyad Emam, Kaiyan Shi, Andy Chou, Junru Wu, Wei Li, Jia Zheng, Yanbin Dong,

Minye Wu, Yu Zhang, and Lai Jiang.

iv

Table of Contents

Acknowledgements ii

Table of Contents v

List of Tables viii

List of Figures xi

List of Abbreviations xvii

Chapter 1: Introduction 1
1.1 Background . 1

1.1.1 Progress of Large-scale Representation Learning 1
1.1.2 Reliability of Representation Learning 3
1.1.3 Efficiency of Learning at Scale 3

1.2 Organization . 5
1.3 Contributions . 5

Chapter 2: Threat and Defense against Targeted Data Poisoning Attacks 8
2.1 Definition of Targeted Poisoning Attacks, the Threat Model 8
2.2 A Transferable Attack . 10

2.2.1 Overview . 10
2.2.2 Revisit Feature Collision Attack 12
2.2.3 Challenges of Targeted Poisoning Attacks 14
2.2.4 Better transferability with Convex Polytope Attack 16
2.2.5 An Efficient Algorithm for Convex Polytope Attack 21
2.2.6 Multi-Layer Convex Polytope Attack 23
2.2.7 Improved Transferability via Network Randomization 24
2.2.8 Experiments . 25

2.3 A defense in the supervised setting . 32
2.3.1 Overview . 32
2.3.2 Intuition behind Deep k-NN Defense 33
2.3.3 Deep k-NN defense against Clean-Label Poisoning 34
2.3.4 Evaluation . 37
2.3.5 Ablation Studies and Best Practices 43

Chapter 3: Improving Data Efficiency with Adversarial Training 50

v

3.1 Related Works . 51
3.1.1 Adversarial Training . 51
3.1.2 Adversarial Examples in Natural Languages 52

3.2 Adversarial Training for Pre-trained Language Models 53
3.2.1 Where to add the perturbation? 53
3.2.2 PGD-based Adversarial Training 54

3.3 FreeLB: Better Efficiency through Gradient Accumulation 55
3.4 Improving Dropout for Adversarial Training 59
3.5 Experiments for FreeLB . 60

3.5.1 Datasets . 60
3.5.2 Results . 63
3.5.3 Ablation Study and Analysis . 65

Chapter 4: Improving Stability and Efficiency with Automated Initialization 70
4.1 Introduction . 71

4.1.1 Related Works . 71
4.1.2 Our contributions . 74

4.2 GradInit: an Automated Initialization . 75
4.2.1 Efficient Learning-based Initialization via Constrained Optimization 76
4.2.2 Solving the Constrained Problem 77
4.2.3 Stochasticity of mini-batching 79
4.2.4 Setting and Enforcing the Constraint 80
4.2.5 Setting the norm constraint through first-order analysis 81
4.2.6 Why a constraint and not a penalty? 81

4.3 Experiments . 82
4.3.1 Image Datasets with Various Architectures 83
4.3.2 Training the Original Transformer Model without Warmup 93

4.4 Rethinking the Learned Initializations 97
4.4.1 Magnification Effect of BN . 97
4.4.2 Visualizing the Learned Initializations 99

Chapter 5: Reducing Complexity of Transformer Models 104
5.1 Introduction . 105

5.1.1 Related Works . 106
5.1.2 Our contributions . 109

5.2 Long-short Transformer . 110
5.2.1 Preliminaries and Notations . 111
5.2.2 Short-term Attention via Segment-wise Sliding Window 112
5.2.3 Long-range Attention via Dynamic Projections 113
5.2.4 Aggregating Long-range and Short-term Attentions 116
5.2.5 Long-short Term Attention for Autoregressive Models 118

5.3 Experiments . 119
5.3.1 Bidirectional Modeling on Long Range Arena and IMDb 119
5.3.2 Autoregressive Language Modeling 124
5.3.3 ImageNet Classification . 126

vi

5.3.4 Robustness Evaluation on ImageNet-derived Datasets. 129
5.4 Conclusion . 133

vii

List of Tables

2.1 Comparing the effectiveness of baseline defenses aggregated for all model
architectures in Feature Collision Attack 38

2.2 Comparing the effectiveness of baseline defenses aggregated for all model
architectures in Convex Polytope Attack 42

3.1 Results (median and variance) on the dev sets of GLUE based on the
RoBERTa-large model, from 5 runs with the same hyperparameter but
different random seeds. ReImp is our reimplementation of RoBERTa-
large. The training process can be very unstable even with the vanilla
version. Here, both PGD on STS-B and FreeAT on RTE demonstrates
such instability, with one unconverged instance out of five. 62

3.2 Results on GLUE from the evaluation server, as of Sep 25, 2019. Met-
rics are the same as the leaderboard. Number under each task’s name is
the size of the training set. FreeLB-BERT is the single-model results of
BERT-base finetuned with FreeLB, and FreeLB-RoB is the ensemble of
7 RoBERTa-Large models for each task. References: 1: [1]; 2: [2]; 3: [3];
4: [4]. 62

3.3 Results on ARC and CommonsenseQA (CQA). ARC-Merge is the com-
bination of ARC-Easy and ARC-Challenge, “MTL” stands for multi-task
learning and “Ens” stands for ensemble. Results of XLNet + RoBERTa
(MTL+Ens) and AristoRoBERTaV7 (MTL) are from the ARC leader-
boards. Test (E) denotes the test set results with ensembles. For CQA, we
report the highest dev and test accuracies among all models. The mod-
els with 78.81/72.19 dev/test accuracy (as in the table) have 71.84/78.64
test/dev accuracies respectively. 64

3.4 The median and standard deviation of the scores on the dev sets of RTE,
CoLA and MRPC from the GLUE benchmark, computed from 5 runs with
the same hyper-parameters except for the random seeds. We use FreeLB-
m to denote FreeLB with m ascent steps, and FreeLB-3∗ to denote the
version without reusing the dropout mask. 66

viii

3.5 Median of the maximum increase in loss in the vicinity of the dev set sam-
ples for RoBERTa-Large model finetuned with different methods. Vanilla
models are naturally trained RoBERTa’s. M-Inc: Max Inc, M-Inc (R):
Max Inc (R). Nat Loss (N-Loss) is the loss value on clean samples. No-
tice we require all clean samples here to be correctly classified by all
models, which results in 227, 850 and 355 samples for RTE, CoLA and
MRPC, respectively. We also give the variance in the Appendix. 67

3.6 The median and standard deviation of the scores on the dev sets of STS-B,
SST-2, QNLI, QQP and MNLI from the GLUE benchmark, each com-
puted from 5 runs with the same hyper-parameters except for the random
seeds (except for the results with YOPO on QQP, which are from 4 runs).
Also note here we use a step size of α for the adversary of YOPO-m-n,
so YOPO effectively uses a step size of nα. We use FreeLB-m to de-
note FreeLB with m ascent steps, and YOPO-3-n to denote YOPO with
n shallow-layer ascents. 68

3.7 Results (median) on the dev sets of GLUE from 5 runs with the same hy-
perparameter but different random seeds. RoBERTa-FreeLB and ALBERT-
FreeLB are RoBERTa-large and ALBERT-xxlarge-v2 models fine-tuned
with FreeLB on GLUE. All other results are copied from [5]. 68

4.1 Accuracies on CIFAR-10 using different overlapping ratios of S̃ and S
for GradInit. 79

4.2 Using GradInit without the gradient norm constraint with different over-
lapping ratios r to initialize and train a VGG-19 (w/ BN). For both r = 0.5
and r = 1, we tried τ from the range of 1 × 10−4 to 2 × 10−2. The first
two rows show the results with the best final test accuracy Accbest among
different τ ’s, while the last row shows using a larger τ for r = 1. 79

4.3 Time cost and accuracy (average of 4 runs) for running one epoch of reg-
ularization/constrained form of GradInit. 82

4.4 First epoch (Acc1) and best test accuracy over all epochs (Accbest) for
models on CIFAR-10. We report the mean and standard error of the test
accuracies in 4 experiments with different random seeds. Best results in
each group are in bold. 87

4.5 First epoch (Acc1) and best test accuracy over all epochs (Accbest) for
models on CIFAR-10. We report the mean and standard error of the test
accuracies in 4 experiments with different random seeds. Best results in
each group are in bold. For WRN, we have additionally used MixUp
during training to enhance the results, but we do not consider mixup for
GradInit to test its transferability to different training regularizations. Its
result with MetaInit comes from the MetaInit paper. 87

4.6 Comparing the results of GradInit with fixed BN scale parameters (Fix
BN) and only rescale the BN parameters (Only BN). 90

ix

4.7 Comparing the results with multiplying each weight matrix with a learn-
able scaler (Learning Scalars) on CIFAR10. The VGG-19 model is not
able to converge unless we reduce the initial learning rate to 0.01, which
obtained worse final accuracy. The ResNet-110 model’s Acc0 was 10%
for 2 of the 4 runs. 91

4.8 Acc1/Accbest of ResNet-50 models on ImageNet. Result of MetaInit comes
from Dauphin and Schoenholz [6] and we reimplemented the rest. 92

4.9 Acc1, Accbest for different versions of MetaInit (4 runs). “rand.”: using
random data. “real”: using real data. 92

4.10 A comparison of GradInit with with the results from the papers (top 4
rows), and our reimplementation of Admin for training the Post-LN Trans-
former model on the IWSLT-14 De-EN dataset. “Standard” refers to train-
ing with standard initialization and warmup. 93

5.1 Accuracy (%) and FLOPs (G) on Long Range Arena (LRA), with the
model configs annotated (see Table 5.2 for details). All results are aver-
ages of 4 runs with different random seeds. 120

5.2 Configurations of our method corresponding to the best results (Transformer-
LS (best)) in Table 5.1. 120

5.3 Comparing the robustness of the models under test-time insertions and
deletions. DP refers to long-range attention via Dynamic Projection, and
Win. refers to sliding window attention. 120

5.4 Comparing the results of pretrained language models fine-tuned on IMDb. 120
5.5 Comparing our model (Transformer-LS) with other methods on the image-

based tasks of LRA. For the results of other models, we take their highest
scores from [7] and [8]. 122

5.6 Comparing the test scores and latency of models on LRA, implemented
in JAX. 122

5.7 BPC (↓) of smaller models on enwik8 and text8 (left), and larger models
on enwik8 (right). 126

5.8 Test accuracies on ImageNet, ImageNet Real [9], and ImageNet V2 [10]
of models trained on ImageNet-1K. Grey-colored rows are our results.
CvT∗-LS denotes our long-short term attention based on the non-official
CvT implementation. ViL models with LS suffixes are our long-short term
attention based on the official ViL implementation with relative positional
bias. We also provide the latency of models tested using batch size 32 on
the same V100 GPU. Our improvements over ViL is mainly from a better
implementation of the short-term attention. 127

5.9 Robustness evaluation on various ImageNet datasets. Top-1/Acc.: Top-
1 accuracy. mCE: Mean Corrupution Error. Mixed-same/Mixed-rand:
accuracies on MIXED-SAME/MIXED-RAND subsets. 130

5.10 Corruption Error (CE) on ImageNet-C 130
5.11 Robustness evaluation on ImageNet-9. We report Top-1 Accuracy. 131

x

List of Figures

1.1 (a) The recent LaMDA model [11] can generate high-quality dialogues
that matches humans, but still lags behind in terms of safety and ground-
ness metrics. (b) Doing neural architectural search on a medium-sized
Transformer produces 5x carbon footprint as a US car’s lifetime [12, 13]. . 2

2.1 An illustrative example of a linear SVM trained on two-dimensional data
with training sets poisoned by Feature Collision Attack and Convex Poly-
tope Attack respectively. 14

2.2 A qualitative example of the difference in poison images generated by
Feature Collision (FC) Attack and Convex Polytope (CP) Attack. The
target class’s patterns are more obvious in the FC Attack poisons. 17

2.3 Loss curves of Feature Collision and Convex Polytope Attack on the sub-
stitute models and the victim models, tested using the target with index
2. Dropout improved the minimum achievable test loss for the FC attack,
and improved the test loss of the CP attack significantly. 24

2.4 Qualitative results of the poisons crafted by FC and CP. Each group shows
the target along with five poisons crafted to attack it, where the first row
is the poisons crafted with FC, and the second row is the poisons crafted
with CP. In the first group, the CP poisons fooled a DenseNet121 but FC
poisons failed, in the second group both succeeded. The second target’s
image is more noisy and is probably an outlier of the frog class, so it is
easier to attack. The poisons crafted by CP contain fewer patterns of xt

than with FC, and are harder to detect. 26
2.5 Success rates of FC and CP attacks on various models. Notice the first six

entries are the gray-box setting where the models with same architecture
but different weights are in the substitute networks, while the last two
entries are the black-box setting. 29

2.6 Success rates of Convex Polytope Attack, with poisons crafted by substi-
tute models trained on the first 2400 images of each class of CIFAR10.
The models corresponding to the three settings are trained with samples
indexed from 1201 to 3600, 1 to 4800 and 2401 to 4800, corresponding
to the settings of 50%, 50% and 0% training set overlaps respectively. . . 30

2.7 Success rates of Convex Polytope Attack in the end-to-end training set-
ting. We use S2 for the substitute models. 31

xi

2.8 Proposed Deep k-NN defense (k = 3) correctly removing a poisoned
example by comparing the class labels of poison with its k neighbors.
Since a majority of the k points surrounding the poison do not share the
same class label as the poison, it is removed. 33

2.9 The Deep k-NN Defense is model-agnostic, achieving high defense suc-
cess rate and test classification accuracy. 40

2.10 Feature space visualization of the Deep k-NN Defense against a Convex
Polytope Attack on DPN92. 42

2.11 Ablation studies on the effect of k (left) and class imbalance (right). (Top
Left) Defense success rate increases to 100% for all models as normalized-
k ratio increases beyond 1.0 for all architectures. (Middle Left) Matthew’s
correlation coefficient is highest for all models when normalized-k ratio
is between 0.4 and 2.0. (Bottom Left) Accuracy on the CIFAR-10 test
split drops as normalized-k value increases beyond 4 times the number of
examples per class. (Top Right) Defense and performance metrics under
class imbalance. Defense success rate is stabilized when the target class
training examples are first replicated to match the size of other classes.
(Middle Right) Matthews correlation coefficient is also less dependent on
the size of the target class when data replication is on. (Bottom Right)
Test accuracy is highest when replicating the target examples to match
the size of other classes. 45

4.1 Top row: results of ResNet-110 on CIFAR-10. Bottom row: results of
ResNet-50 on ImageNet. Left two columns: compare the relative cross-
batch gradient variance on the training set for the BN and Conv/FC layers
before and after GradInit. Right two columns: weight norms before and
after GradInit. Ratio between points in the same layer reflects the scale
factor. Note each of the residual blocks has 2 and 3 Conv and BN lay-
ers for the ResNet-110 and ResNet-50, respectively. The initial relative
gradient variance are reduced for all layers except the final linear layer in
both settings. The strategies are similar on two different datasets. Within
each residual block, the last BN layer has the smallest scaling factors, and
the scales of all Conv layers are surprisingly increased. Best viewed in
color. 89

4.2 Comparing the convergence of Kaiming Initialization and GradInit on
CIFAR-10, for models trained with SGD (left three) and Adam (right).
. 89

4.3 BLEU scores for the Post-LN Transformer without learning rate warmup
using Adam on IWSLT-14 DE-EN under different learning rates ηmax (y
axis) and β2 (x axis). Each result is averaged over 4 experiments. 95

xii

4.4 Averaged per-dimension weight magnitudes (∥Wi∥/di) and standard de-
viation of their gradient (σ(gi)) for each layer i of the VGG-19 (w/ BN)
on CIFAR-10. The ratio between the weight magnitudes of GradInit and
Kaiming Initialization is the learned scale factor of GradInit in each layer.
The standard deviation is computed over the minibatches, with a batch
size of 128, with the BN in its training mode. This VGG-19 on CIFAR-10
has only one FC layer, but it has the same number of convolutional layers
(16) as its ImageNet version. All the weights are indexed from shallow
to deep, so the first 16 entries of the Linear Weights are of Conv layers,
while the 17th is the FC layer. Due to the magnification effect of BN,
σ(g1)/σ(g16) for the Conv layers is higher than it is in VGG-19 without
BN, shown in Figure 4.6. GradInit learns to reduce the magnification ef-
fect of BN layers by scaling up all the Conv layers and most of the BN
layers, given it has greatly down scaled the last two BN layers and the
final FC layer to reduce the variance in the forward pass. 100

4.5 Averaged per-dimension weight magnitude (∥Wi∥/di) and standard devi-
ation of their gradient ((σ(gi))) of the Batch Normalization (BN) layers
and the linear layers of the ResNet-110 on CIFAR-10. All the layers are
indexed from shallow to deep. The linear layers include all Conv lay-
ers (2 for each of the residual blocks) and the final FC layer. The ratio
between the weight magnitudes of GradInit and Kaiming Initialization is
the learned scale factor of GradInit in each layer. The gradient variance is
computed with a batch size of 128. GradInit finds a combination of weight
norms where the gradient variance is reduced for all layers. Specifically, it
learns to further scale down the second BN layer of each residual block in
deeper layers, which is a useful strategy, as deeper layers should have less
marginal utility for the feature representations, and scaling down those
layers helps to alleviate the growth in variance in the forward pass [14].
GradInit also learns to scale up weights of the first BN layer and all the
Conv layers in each residual block, which alleviates the magnification ef-
fect of the BN layers on the gradient variance during backpropagation,
happening if their input features in the forward pass have small variances.
The jump on the curves occur when the dimension of the convolutional
filters changes. 100

4.6 Averaged per-dimension weight magnitude (∥Wi∥/di) and standard devi-
ation of their gradient ((σ(gi))) of the VGG-19 (left two) and ResNet-110
(right two) without BN on CIFAR-10, evaluated with a batch size of 128.
For VGG-19 (w/o BN), σ(gi) increases at Conv layers with different input
and output dimensions during backpropagation. For ResNet-110 without
GradInit, the gradient variance is very high due to the cumulative effect of
skip connections during the forward pass. In this scenario, to reduce the
gradient variance, there is no reason to increase the weights, so GradInit
downscales the weights for all layers in both architectures, unlike the case
with BN. 101

xiii

4.7 Averaged per-dimension weight magnitudes (∥Wi∥/di) and standard de-
viation of their gradient (σ(gi)) for each linear layer i in DenseNet-100
(w/o BN). All the layers are indexed from shallow to deep. The linear
layers include all convolutional layers and the final fully connected layer.
Inside each dense block, each layer concatenates all the preceding fea-
tures, so their input dimension increases, the weight dimension increases
and the weight norm increases. Compared with Figure 4.6, DenseNet-100
does not significantly increase the gradient variance during backpropaga-
tion. The standard deviation of the gradient is reduced by around 106 with
GradInit, which explains why it is possible to train DenseNet-100 (w/o
BN) without gradient clipping after using GradInit. The major source of
gradient reduction of GradInit comes from reducing the weights in each
layer. 101

4.8 Averaged per-dimension weight magnitudes (∥Wi∥/di) and standard de-
viation of their gradient (σ(gi)) for each (BN or linear) layer i in the
DenseNet-100 (w/ BN). All the layers are indexed from shallow to deep.
The linear layers include all convolutional layers and the final fully con-
nected layer. The major source of variance reduction comes from down-
scaling the final FC layer. 101

4.9 Weight norm and averaged per-dimension standard deviation of each weight
of the normalization layers and linear layers in the Post-LN Transformer.
Here, GradInit sets A to Adam. The Transformer has 6 Transformer
blocks in its encoder and decoder. In each plot, we first list the val-
ues for weights in the encoder, and then those in the decoder. Inside
each encoder, we first list the weights from the self attention layers and
then the those from the FFN layers. Inside each decoder, we first list the
weights in the order of self attention, encoder attention and FFN. In gen-
eral, GradInit reduces the variance for all the weights, except for some of
the Query-Projection and Key-Projection weights in the decoder, which
are inside the softmax operations in the self attention blocks. The major
source of gradient variance reduction comes from downscaling the final
LN weights of the decoder, as well as the linear layers of each resid-
ual branch (Out-Projection and Value-Projection weights, FFN.FC1 and
FFN.FC2 weights) in each block. The general strategy is to reduce the
norms of Out-Projection, Value-Projection and the FFN layers, which re-
duces the magnitude of the feature in the residual branch and better pre-
serves the signal in the main branch during forward pass, which improves
the stability of training. See detailed analysis by Liu et al. [15]. 102

xiv

4.10 Weight norm and averaged per-dimension standard deviation of each weight
of the normalization layers and linear layers in the Post-LN Transformer.
Here, GradInit sets A to SGD. The Transformer model and the way each
weight is permuted are the same as in Figure 4.9. Again, in general, Gra-
dInit reduces the variance for most of the weights, except for some of the
Query-Projection and Key-Projection weights in the decoder, which are
inside the softmax operations in the self attention blocks. Different from
the patterns in the Adam version, which downscale all the weights in ev-
ery layer except for the Query-Projection and Key-Projection weights, the
SGD version of GradInit mostly reduces the weights in the final Trans-
former block of the decoder. Similar as the case for Adam, the general
strategy is to reduce the norms of Out-Projection, Value-Projection and
the FFN layers, which reduces the magnitude of the feature in the resid-
ual branch and better preserves the signal in the main branch during for-
ward pass, which improves the stability of training. See detailed analysis
by Liu et al. [15]. 103

5.1 Long-short term attention of a single attention head. Here, the sequence
length n = 8, hidden dimension d = 3, local window segment size w = 2,
and rank of dynamic projection r = 3. Within the figure, K(V) denotes
key K or value V . In the left figure, we virtually replicate K or V ∈ Rn×d

into n rows, and highlight the keys and values within the attention span
(denoted as K̃(Ṽ)) of all n queries Q for the short-term attention. In the
middle figure, all queries attend to the same projected keys K̄ and values
V̄ within the long-term attention. In the right figure, K̃(Ṽ) and K̄(V̄) are
first normalized with two sets of LayerNorms, and the queries attend to
normalized K̃(Ṽ) and K̄(V̄) within their attention span simultaneously. . 110

5.2 An illustration of our sliding window attention in 1D autoregressive and
bidirectional models. Here, we use a group size w = 2. Each token
inside each group are restricted to attend to at most 2w tokens. In the
bidirectional model, they attend to w tokens from the home segment, and
w/2 tokens to the left and right of the home segment respectively. In
the autoregressive model, they attend to w tokens to the left of the home
segment, as well as all tokens within the home segment that is not a future
token. 112

5.3 Left: Ratios of the average ℓ2 norms of the local window to global low-
rank key/value embeddings at initialization. Without DualLN, the sparse
and low-rank embeddings have a magnitude mismatch. With DualLN,
the ratios will be 1.0 at every layer, which will facilitate optimization.
Right: The validation loss of Transformer-LS with and without DualLN
on enwik8 and text8. 117

xv

5.4 An illustration of effective attention span (colored regions) in Transformer-
LS when the segment size for the low-rank attention is ℓ = 4, and the seg-
ment size for the sliding window attention is w = 2. Left: the attention
span of only the low-rank attention (segment-wise dynamic projection).
Right: the attention span of the aggregated attention. 119

5.5 Running time and memory consumption of Transformer-XL (full atten-
tion) and our Transformer-LS on Char-LM. We increase the sequence
length until we use up the 32GB of memory on a V100 GPU. Transformer-
LS is the same smaller model in Table 5.7. We use dashed lines to repre-
sent the full attention Transformer and solid lines to represent our model.
We use different colors to represent different batch sizes. 126

5.6 Pairwise cosine similarity between patch embeddings at different layers of
CvT-13 and CvT∗-LS-13, averaged on 50k images of ImageNet validation
set. The larger cosine similarities at deeper layer suggest that the feature
representation is less diverse. 130

xvi

List of Abbreviations

SGD Stochastic Gradient Descent

xvii

Chapter 1: Introduction

1.1 Background

1.1.1 Progress of Large-scale Representation Learning

In the past decade, large-scale representation learning has made significant pro-

gresses, surpassing human-level accuracy on a range of benchmarks, including image

recognition [16], speech recognition [17], and language understanding [18]. The progress

is empowered by the advances in both the algorithms and compute powers, which enable

training large neural networks at large scales. For algorithms, innovations in the neu-

ral architectures (skip connections [19], normalizations [20, 21] and attentions [22, 23]),

together with better initialization and optimization schemes [16, 24, 25], have signifi-

cantly improved the stability of deeper neural networks. Novel neural architectures also

seem to improve the modeling capabilities for certain domains, e.g., Transformers [23]

achieve higher parameter efficiency than LSTMs [26] for sequence modeling. VAEs [27],

GANs [28] and diffusion models [29] introduce new algorithms and training objectives

for neural networks to generate high-fidelity voice and images. New algorithms for unsu-

pervised learning [30–32] have also enabled learning feature representations from large

amounts of unlabeled data across multiple modalities [33]. Meanwhile, specialized hard-

1

wares and techniques for training neural networks [34, 35] have enabled training sig-

nificantly larger models on larger scales of data. Most recent researches explore wide

Transformer-based language models with up to trillions of parameters trained on TBs of

text data, where these large language models [11, 36–38] can generate shockingly good

responses, demonstrate zero-shot better capabilities on question answering and language

understanding than many state-of-the-art supervised baselines, and can even be used to

generate code from descriptions. The performance of these language models seems to

scale as a power-law of the model size, dataset size, and the amount of compute used for

training [39], which encourages more explorations at even larger scales.

With these advances, neural networks have already been deployed in many applica-

tions in practice, including autonomous driving, voice assistant and Google search. How-

ever, their reliability and efficiency is often questioned. In this dissertation, we summarize

our recent works that tackle these challenges.

(a) (b)

Figure 1.1: (a) The recent LaMDA model [11] can generate high-quality dialogues that
matches humans, but still lags behind in terms of safety and groundness metrics. (b)
Doing neural architectural search on a medium-sized Transformer produces 5x carbon
footprint as a US car’s lifetime [12, 13].

2

1.1.2 Reliability of Representation Learning

In most practical applications, the models are usually only trained to maximize per-

formance metrics on the collected data, without considering the potential failure cases

or adversaries. Without censorship, the collected data might have been manipulated or

poisoned to cause misbehaviors, e.g., Tay, the Microsoft chat bot, went offline shortly

after learning to generate inflammatory and offensive tweets from malicious user re-

sponses [40]. Equipped with carefully annotated data and the ability to consult ex-

ternal knowledge sources, the most recent, large LaMDA model [11] matches humans

in terms of quality metrics, but still falls behind in the safety and groundedness met-

rics (Figure 1.1). Moreover, vision models are susceptible to adversarial examples [41],

where imperceptible perturbations to clean images can change the prediction of the model

completely. Adversarial training improves the robustness against such adversarial exam-

ples [42], at the cost of accuracy on clean examples [43].

1.1.3 Efficiency of Learning at Scale

Efficiency is never an outdated dimension for improvements. The data collection

process can be costly and time-consuming. For example, natural language understanding

can involve hundreds of different languages, hundreds of different tasks and numerous

domains. It is impractical to expect enough labeled data is available for every scenario,

but large organizations or companies may need to provide service to as many scenarios

as possible. Therefore, given the same amount of data, we want to improve the data

efficiency and make the metrics as high as possible. Various data augmentations have been

3

the pillars for high-performance vision models [44], but for language, few augmentation

techniques are available that can guarantee consistent improvements on all datasets [45,

46].

Another important factor of efficiency is the training efficiency. Given the same

level of computing power, this is mainly affected by the number of training iterations

required for convergence and the computational complexity of the model’s forward and

backward passes. In addition, efforts for hyper-parameter tuning should also be counted

into the training cost. Inefficient training procedures can cause significant environmental

impacts. [12] showed that the carbon footprint of doing neural architecture search for a

213M-parameter Transformer model is five times as that of a US car’s lifetime. With bet-

ter theoretical understandings of the infinite width limit of neural networks in the feature

learning regime [47], Yang et al. [48] have enabled transferring the best hyper-parameters

from smaller networks to wider networks through better layer-dependent initializaitons

and learning rates, which significantly reduces the cost of hyper-parameter tuning, en-

abling transferring the optimal hyper-parameter of a 40M model to a 6.7B GPT-3 model

that outperforms the original 6.7B GPT-3 model. Although the analysis unveils param-

eterizations that enable transferring, the smaller networks still needs to be tuned to find

best hyper-parameters. Some novel architectures like the original post-LN Transformer

require tuning the learning rate schedules to converge well [23, 49], thus it will be more

ideal to design a mechanism that alleviates tuning efforts for any architecture.

To be efficient, the model itself should have fewer computations in its forward and

backward passes. The complexity of the attention blocks in Transformers scale quadrati-

cally with input sequence length, which limits its applications on long sequences of text

4

data and high resolution images. For graph neural networks, the number of neighbor-

hoods needed for message passing scales exponentially with depth, making it difficult to

preserve all the neighbors for message passing.

1.2 Organization

In this dissertation, we first introduce our efforts on understanding and improv-

ing the reliability of large-scale representation learning in Chapter 2. To draw attention

to this issue, we first show a more vicious poisoning attack that transfers across archi-

tectures. We also propose an effective defense mechanism against such attacks in the

supervised setting. Then, we introduce our efforts on improving the efficiency of repre-

sentation learning, through improving the data efficiency (Chapter 3), convergence speed

(Chapter 4) and computational complexity (Chapter 5).

1.3 Contributions

Our technical contributions are summarized as following.

• To call for attention to the threat of data poisoning attacks, we demonstrate an ap-

proach to produce transferable clean-label targeted poisoning attacks. Our method

creates poison images that form a convex hull around the target image in the feature

space of substitute models, which has better success rate than the previous feature

collision attack [50] in the black-box setting, and it becomes even more powerful

when enforced in multiple intermediate layers of the network, with high success

rates in both transfer learning and end-to-end training contexts. We also show reg-

5

ularizations such as Dropout can further improve transferability.

• We propose a novel Deep k-NN defense for clean-label poisoning attacks in the

supervised setting. We evaluate it against state-of-the-art clean-label data poisoning

attacks, using a slate of architectures and show that our proposed strategy detects

99% of the poison instances without significant downgrade of overall performance.

• To improve the data efficiency, we propose a versatile adversarial training algorithm

that applies successfully to multiple different domains where it can be difficult to

find “legitimate” data augmentation. By accumulating the parameter gradients in

every gradient ascent step on the input data, our algorithm significantly improves

the generalization of models for Natural Language Understanding [51], Vision-and-

Language tasks [52] and graph neural networks [53].

• To accelerate the convergence and improve the training stability, we propose an

automated initialization scheme [54] that: (1) enables training 1202-layer ResNets

without degeneration, (2) enables training the Post-LN Tranformer without learning

rate warmup for both Adam and SGD. We also give a first-order analysis for hyper-

parameter selection that alleviates the tuning efforts.

• To reduce the complexity of Transformer models, we propose a linear-complexity

attention mechanism which integrates both the short-range window attention and

the long-range low-rank approximated attention. We propose a DualLN technique

to combine attentions from the two sources, which accelerate the convergence and

improves the results. We also take the first step towards generalizing the low-rank

6

attentions to autoregressive models. Our model achieves state-of-the-art results on

autoregressive language modeling, language understanding and ImageNet classifi-

cation.

7

Chapter 2: Threat and Defense against Targeted Data Poisoning Attacks

In this chapter, we first show a more vicious poisoning attack against image clas-

sification models that transfers across architectures in Section 2.2, corresponding to our

work [55]. Then, we show a highly effective defense against such attack in the supervised

setting where training data is labeled in Section 2.3, corresponding to our work [56]. In

principle, the attack could be applied to unsupervised settings, but the defense relies on

labeled data.

2.1 Definition of Targeted Poisoning Attacks, the Threat Model

In this chapter, we consider the same threat model for both the attack and defense.

Like the poisoning attack of [50], the attacker in our setting injects a small number of

perturbed samples (whose labels are true to their class) into the training set of the victim.

The attacker’s goal is to cause the victim network, once trained, to classify a test image

(not in the training set) as a specified class. We consider the case of image classification,

where the attacker achieves its goal by adding adversarial perturbations δ to the images.

δ is crafted so that the perturbed image x+ δ shares the same class as the clean image x

for a human labeler, while being able to change the decision boundary of the DNNs in a

certain way.

8

Unlike [50] or [57], which requires full or query access to the victim model, here we

assume the victim model is not accessible to the attacker, which is a practical assumption

in many systems such as autonomous vehicles and surveillance systems. Instead, we need

the attacker to have knowledge about the victim’s training distribution, such that a similar

training set can be collected for training substitute models.

We consider two learning approaches that the victim may adopt. The first learning

approach is transfer learning, in which a pre-trained but frozen feature extractor ϕ, e.g.,

the convolutional layers of a ResNet [19] trained on a reference dataset like CIFAR or

ImageNet, is applied to images, and an application-specific linear classifier with param-

eters W , b is fine-tuned on the features ϕ(X) of another dataset X . Transfer learning of

this type is common in industrial applications when large sets of labeled data are unavail-

able for training a good feature extractor. Poisoning attacks on transfer learning were first

studied in the white-box settings where the feature extractor is known in [50, 58], and

similarly in [59, 60], all of which target linear classifiers over deep features.

The second learning approach is end-to-end training, where the feature extractor

and the linear classifier are trained jointly. Obviously, such a setting has stricter require-

ments on the poisons than the transfer learning setting, since the injected poisons will

affect the parameters of the feature extractor. [50] uses a watermarking strategy that su-

perposes up to 30% of the target image onto about 40 poison images, only to achieve

about 60% success rate in a 10-way classification setting.

9

2.2 A Transferable Attack

2.2.1 Overview

Deep neural networks require large datasets for training and hyper-parameter tun-

ing. As a result, many practitioners turn to the web as a source for data, where one can

automatically scrape large datasets with little human oversight. Unfortunately, recent

results have demonstrated that these data acquisition processes can lead to security vul-

nerabilities. In particular, retrieving data from untrusted sources makes models vulnerable

to data poisoning attacks wherein an attacker injects maliciously crafted examples into

the training set in order to hijack the model and control its behavior.

We call for attention to this security concern. We explore effective and transferable

clean-label poisoning attacks on image classification problems. In general, data poison-

ing attacks aim to control the model’s behavior during inference by modifying its training

data [50, 58, 61, 62]. In contrast to evasion attacks [41, 63, 64] and recently proposed

backdoor attacks [65–67], we study the case where the targeted samples are not modified

during inference.

Clean-label poisoning attacks differ from other poisoning attacks [60, 68] in a crit-

ical way: they do not require the user to have any control over the labeling process.

Therefore, the poison images need to maintain their malicious properties even when la-

beled correctly by an expert. Such attacks open the door for a unique threat model in

which the attacker poisons datasets simply by placing malicious images on the web, and

waiting for them to be harvested by web scraping bots, social media platform operators, or

10

other unsuspecting victims. Poisons are then properly categorized by human labelers and

used during training. Furthermore, targeted clean label attacks do not indiscriminately

degrade test accuracy but rather target misclassification of specific examples, rendering

the presence of the attack undetectable by looking at overall model performance.

Before this work, clean-label poisoning attacks have been demonstrated only in

the white-box setting where the attacker has complete knowledge of the victim model,

and uses this knowledge in the course of crafting poison examples [50, 61]. Black-box

attacks of this type have not been explored; thus, we aim to craft clean-label poisons

which transfer to unknown (black-box) deep image classifiers.

It has been demonstrated in evasion attacks that with only query access to the victim

model, a substitute model can be trained to craft adversarial perturbations that fool the

victim to classify the perturbed image into a specified class [57]. Compared to these

attacks, transferable poisoning attacks remain challenging for two reasons. First, the

victim’s decision boundary trained on the poisoned dataset is more unpredictable than the

unknown but fixed decision boundary of an evasion attack victim. Second, the attacker

cannot depend on having direct access to the victim model (i.e. through queries) and must

thus make the poisons model-agnostic. The latter also makes the attack more dangerous

since the poisons can be administered in a distributed fashion (e.g. put on the web to be

scraped), compromising more than just one particular victim model.

Here, we demonstrate an approach to produce transferable clean-label targeted poi-

soning attacks. We assume the attacker has no access to the victim’s outputs or parame-

ters, but is able to collect a similar training set as that of the victim. The attacker trains

substitute models on this training set, and optimizes a novel objective that forces the poi-

11

sons to form a polytope in feature space that entraps the target inside its convex hull. A

classifier that overfits to this poisoned data will classify the target into the same class as

that of the poisons. This new objective has better success rate than feature collision [50]

in the black-box setting, and it becomes even more powerful when enforced in multiple

intermediate layers of the network, showing high success rates in both transfer learning

and end-to-end training contexts. We also show that using Dropout when crafting the

poisons improves transferability.

2.2.2 Revisit Feature Collision Attack

2.2.2.1 Definition

Feature collision attacks, as originally proposed in [50], are a reliable way of pro-

ducing targeted clean-label poisons on white-box models. The attacker selects a base ex-

ample xb from the targeted class for crafting the poisons xp, and tries to make xp become

the same as the target xt in the feature space by adding small adversarial perturbations to

xb. Specifically, the attacker solves the following optimization problem (2.1) to craft the

poisons:

xp = argmin
x
∥x− xb∥2 + µ∥ϕ(x)− ϕ(xt)∥2, (2.1)

where ϕ is a pre-trained neural feature extractor. The first term enforces the poison to

lie near the base in input space, and therefore maintains the same label as xb to a human

labeler. The second term forces the feature representation of the poison to collide with

12

the feature representation of the target. The hyperparameter µ > 0 trades off the balance

between these terms.

If the poison example xp is correctly labeled as a member of the targeted class and

placed in the victim’s training dataset χ, then after training on χ, the victim classifier

learns to classify the poison’s feature representation into the targeted class. Then, if xp’s

feature distance to xt is smaller than the margin of xp, xt will be classified into the same

class as xp and the attack is successful. Sometimes more than one poison image is used

to increase the success rate.

2.2.2.2 Improving Transferability with Ensembling

Unfortunately for the attacker, different feature extractors ϕ will lead to different

feature spaces, and a small feature space distance dϕ(xp,xt) = ∥ϕ(xp)− ϕ(xt)∥ for one

feature extractor does not guarantee a small distance for another.

Fortunately, the results in [69] have demonstrated that for each input sample, there

exists an adversarial subspace for different models trained on the same dataset, such that

a moderate perturbation can cause the models to misclassify the sample, which indicates

it is possible to find a small perturbation to make the poisons xp close to the target xt

in the feature space for different models, as long as the models are trained on the same

dataset or similar data distributions.

With such observation, the most obvious approach to forge a black-box attack is

to optimize a set of poisons {x(j)
p }kj=1 to produce feature collisions for an ensemble of

models {ϕ(i)}mi=1, where m is the number of models in the ensemble. Such a technique

13

Feature Collision Attack Convex Polytope Attack

Figure 2.1: An illustrative example of a linear SVM trained on two-dimensional data with
training sets poisoned by Feature Collision Attack and Convex Polytope Attack respec-
tively.

was also used in black-box evasion attacks [70]. Because different extractors produce fea-

ture vectors with different dimensions and magnitudes, we use the following normalized

feature distance to prevent any one network from dominating the objective due to such

biases:

LFC =
m∑
i=1

k∑
j=1

∥ϕ(i)(x
(j)
p)− ϕ(i)(xt)∥2
∥ϕ(i)(xt)∥2

. (2.2)

2.2.3 Challenges of Targeted Poisoning Attacks

Targeted poisoning attacks are more difficult to pull off than targeted evasion at-

tacks. For image classification, targeted evasion attacks only need to make the victim

model misclassify the perturbed image into a certain class. The model does not adjust

to the perturbation, so the attacker only needs to find the shortest perturbation path to

the decision boundary by solving a constrained optimization problem. For example, in

the norm-bounded white-box setting, the attacker can directly optimize δ to minimize the

cross entropy loss LCE on the target label yt by solving δt = argmin||δ||∞≤ϵ LCE(xt +

14

δ, yt) with Projected Gradient Descent [42]. In the norm-bounded black-box setting, with

query access, the attacker can also train a substitute model to simulate the behavior of the

victim via distillation, and perform the same optimization w.r.t. the substitute model to

find a transferable δ [57].

Targeted poisoning attacks, however, face a more challenging problem. The at-

tacker needs to get the victim to classify the target sample xt into the alternative target

class ỹt after being trained on the modified data distribution. One simple approach is to

select the poisons from class ỹt, and make the poisons as close to xt as possible in the

feature space. A rational victim will usually overfit the training set, since it is observed

in practice that generalization keeps improving even after training loss saturates [71]. As

a result, when the poisons are close to the target in the feature space, a rational victim is

likely to classify xt into ỹt since the space near the poisons are classified as ỹt. However,

as shown in Figure 2.1, smaller distance to the target does not always lead to a successful

attack. In Figure 2.1, the two striped red dots are the poisons injected to the training set,

while the striped blue dot is the target, which is not in the training set. All other points

are in the training set. For feature collision attack, even when the poisons are the closest

points to the target, the optimal linear SVM will classify the target correctly and the attack

fails in the left figure. The Convex Polytope attack, to be introduced below, will enforce

a small distance of the line segment formed by the two poisons to the target. When the

line segment’s distance to the target is minimized, the target’s negative margin in the re-

trained model is also minimized if it overfits. In fact, being close to the target might be

too restrictive for successful attacks. Indeed, there exists conditions where the poisons

can be farther away from the target, but the attack is more successful.

15

2.2.4 Better transferability with Convex Polytope Attack

One problem with the feature collision attack is the emergence of obvious patterns

of the target in the crafted perturbations. Unlike prevalent objectives for evasion attacks

which maximize single-entry losses like cross entropy, feature collision [50] enforces

each entry of the poison’s feature vector ϕ(xp) to be close to ϕ(xt), which usually results

in hundreds to thousands of constraints on each poison image xp. What is worse, in the

black-box setting as Eq. 2.2, the poisoning objective forces a collision over an ensemble

of m networks, which further increases the number of constraints on the poison images.

With such a large number of constraints, the optimizer often resorts to pushing the poison

images in a direction where obvious patterns of the target will occur, therefore making xp

look like the target class. As a result, human workers will notice the difference and take

actions. Figure 2.2 shows a qualitative example in the process of crafting poisons from

images of hook to attack a fish image with Eq. 2.2. Elements of the target image that are

evident in the poison images include the fish’s tail in the top image and almost a whole

fish in the bottom image in column 3.

Another problem with Feature Collision Attack is its lack of transferability. Feature

Collision Attack tends to fail in the black-box setting because it is difficult to make the

poisons close to xt for every model in the feature space. The feature space of different

feature extractors should be very different, since neural networks are using one linear

classifier to separate the deep features ϕ(x), which has a unique solution if ϕ(x) is given,

but different networks usually have different accuracies. Therefore, even if the poisons xp

collide with xt in the feature space of the substitute models, they probably do not collide

16

Target

(a) Base Images (b) FC Perturbations (c) CP Perturbations (d) FC Poisons (e) CP Poisons

∥δ∥1/n = 18.7,∥δ∥∞ = 26

∥δ∥1/n = 19.0,∥δ∥∞ = 26

∥δ∥1/n = 16.8,∥δ∥∞ = 26

∥δ∥1/n = 15.6,∥δ∥∞ = 26

Figure 2.2: A qualitative example of the difference in poison images generated by Feature
Collision (FC) Attack and Convex Polytope (CP) Attack. The target class’s patterns are
more obvious in the FC Attack poisons.

with xt in the unknown target model, due to the generalization error. As demonstrated

by Figure 2.1, the attack is likely to fail even when xp has smaller distance to xt than

its intra-class samples. It is also impractical to ensemble too many substitute models to

reduce such error. We provide experimental results with the ensemble Feature Collision

Attack defined by Eq. 2.2 to show it can be ineffective.

We therefore seek a looser constraint on the poisons, so that the patterns of the target

are not obvious in the poison images and the requirements on generalization are reduced.

Noticing [50] usually use multiple poisons to attack one target, we start by deriving the

necessary and sufficient conditions on the set of poison features {ϕ(x(j)
p)}kj=1 such that

the target xt will be classified into the poison’s class.

Proposition 1. The following statements are equivalent:

1. Every linear classifier that classifies {ϕ(x(j)
p)}kj=1 into label ℓp will classify ϕ(xt)

into label ℓp.

2. ϕ(xt) is a convex combination of {ϕ(x(j)
p)}kj=1, i.e., ϕ(xt) =

∑k
j=1 cjϕ(x

(j)
p), where

17

c1, . . . , ck ≥ 0,
∑k

j=1 cj = 1.

Proof. 2 =⇒ 1:

For multi-class problems, the condition for ϕ(x) to be classified as ℓp is

w⊤
ℓpϕ(x) + bℓp > w⊤

i ϕ(x) + bi, for all i ̸= ℓp.

Each of these constraints is linear, and is satisfied by a convex half-space. The region that

satisfies all of these constraints in an intersection of convex half-spaces, and so is convex.

Under condition (2), ϕ(xt) is a convex combination of points in this convex region, and

so ϕ(xt) is itself in this convex region.

1 =⇒ 2:

Suppose that (1) holds. Let

S = {
∑
i

ciϕ(x
j
p)|

∑
i

ci = 1, 0 ≤ ci ≤ 1}

be the convex hull of the points {ϕ(xj
p)}kj=1. Let ut = argminu∈S ∥u − ϕ(xt)∥ be the

closest point to ϕ(xt) in S. If ∥ut−ϕ(xt)∥ = 0, then (2) holds and the proof is complete.

If ∥ut − ϕ(xt)∥ > 0, then define the classifier function

f(z) = (ut − ϕ(xt))
⊤(z− ut).

Clearly f(ϕ(xt)) < 0. By condition (1), there is some j with f(ϕ(xj
p)) < 0 as well.

18

Consider the function

g(η) =
1

2
∥ut + η(ϕ(xj

p)− ut)− ϕ(xt)∥2.

Because ut is the closest point to ϕ(xt) in S, and g is smooth, the derivative of g with

respect to η, evaluated at η = 0, is 0. We can write this derivative condition as

g′(0) = (ut − ϕ(xt))
⊤(ϕ(xj

p)− ut) = f(ϕ(xj
p)) ≥ 0.

However this statement is a contradiction, since f(ϕ(xj
p)) < 0.

In words, a set of poisons from the same class is guaranteed to alter the class label

of a target into theirs if that target’s feature vector lies in the convex polytope of the poison

feature vectors. We emphasize that this is a far more relaxed condition than enforcing a

feature collision—it enables the poisons to lie much farther away from the target while

altering the labels on a much larger region of space. As long as xt lives inside this region

in the unknown target model, and {x(j)
p } are classified as expected, xt will be classified

as the same label as {x(j)
p }.

With this observation, we optimize the set of poisons towards forming a convex

polytope in the feature space such that the target’s feature vector will lie within or at least

19

close to the convex polytope. Specifically, we solve the following optimization problem:

minimize
{c(i)},{x(j)

p }

1

2

m∑
i=1

∥ϕ(i)(xt)−
∑k

j=1 c
(i)
j ϕ(i)(x

(j)
p)∥2

∥ϕ(i)(xt)∥2

subject to
k∑

j=1

c
(i)
j = 1, c

(i)
j ≥ 0, ∀i, j,

∥x(j)
p − x

(j)
b ∥∞ ≤ ϵ,∀j,

(2.3)

where x
(j)
b is the clean image of the j-th poison, and ϵ is the maximum allowable

perturbation such that the perturbations are not immediately perceptible.

Eq. 2.3 simultaneously finds a set of poisons {x(j)
p }, and a set of convex combina-

tion coefficients {c(i)j } such that the target lies in or close to the convex polytope of the

poisons in the feature space of the m models. Notice the coefficients {c(i)j } are untied,

i.e., they are allowed to vary across different models, which does not require ϕ(i)(xt) to

be close to any specific point in the polytope, including the vertices {x(j)
p }. Given the

same amount of perturbation, such an objective is also more relaxed than Feature Colli-

sion Attack (Eq. 2.2) since Eq. 2.2 is a special case of Eq. 2.3 when we fix c
(i)
j = 1/k. As

a result, the poisons demonstrate almost no patterns of the target, and the imperceptibility

of the attack is enhanced compared with feature collision attack, as shown in Figure 2.2.

In Figure 2.2, Both attacks aim to make the model mis-classify the target fish image on

the left into a hook. We show two of the five hook images that were used for the attack,

along with their perturbations and the poison images here. Both attacks were successful,

but unlike FC, which demonstrated strong regularity in the perturbations and obvious fish

patterns in the poison images, CP tends to have no obvious pattern in its poisons.

The most important benefit brought by the convex polytope objective is the im-

20

proved transferability. For Convex Polytope Attack, xt does not need to align with a

specific point in the feature space of the unknown target model. It only needs to lie within

the convex polytope formed by the poisons. In the case where this condition is not satis-

fied, Convex Polytope Attack still has advantages over Feature Collision Attack. Suppose

for a given target model, a residual1 smaller than ρ will guarantee a successful attack2.

For Feature Collision Attack, the target’s feature needs to lie within a ρ-ball centered at

ϕ(t)(x
(j∗)
p), where j∗ = argminj∥ϕ(t)(x

(j)
p) − ϕ(t)(xt)∥. For Convex Polytope Attack,

the target’s feature could lie within the ρ-expansion of the convex polytope formed by

{ϕ(t)(x
(j)
p)}kj=1, which has a larger volume than the aforementioned ρ-ball, and thus tol-

erates larger generalization error.

2.2.5 An Efficient Algorithm for Convex Polytope Attack

We optimize the non-convex and constrained problem equation 2.3 using an alter-

nating method that side-steps the difficulties posed by the complexity of {ϕ(i)} and the

convex polytope constraints on {c(i)}. Given {x(j)
p }kj=1, we use forward-backward split-

ting [72] to find the the optimal sets of coefficients {c(i)}. This step takes much less

computation than back-propagation through the neural network, since the dimension of

c(i) is usually small (in our case a typical value is 5). Then, given the optimal {c(i)} with

respect to {x(j)
p }, we take one gradient step to optimize {x(j)

p }, since back-propagation

through the m networks is relatively expensive. Finally, we project the poison images to

be within ϵ units of the clean base image so that the perturbation is not obvious, which is

1For FC, it is minj∥ϕ(t)(x
(j)
p)− ϕ(t)(xt)∥; for CP, it is ∥∑j c

(t)
j ϕ(t)(x

(j)
p)− ϕ(t)(xt)∥

2When the residual is small enough, ϕ(t)(xt) will not cross the decision boundary if poisons are classi-
fied as expected.

21

implemented as a clip operation. We repeat this process to find the optimal set of poisons

and coefficients, as shown in Algorithm 1.

In our experiments, we find that after the first iteration, initializing {c(i)} to the

value from the last iteration accelerates its convergence. We also find the loss in the tar-

get network to bear high variance without momentum optimizers. Therefore, we choose

Adam [73] as the optimizer for the perturbations as it converges more reliably than SGD

in our case. Although the constraint on the perturbation is ℓ∞ norm, in contrast to [74]

and the common practices for crafting adversarial perturbations such as FGSM [75], we

do not take the sign of the gradient, which further reduces the variance caused by the

flipping of signs when the update step is already small.

Algorithm 1 Convex Polytope Attack

Data: Clean base images{x(j)
b }kj=1, substitute networks {ϕ(i)}mi=1, and maximum pertur-

bation ϵ.
Result: A set of perturbed poison images {x(j)

p }kj=1.
Initialize c(i) ← 1

k
1, x(j)

p ← x
(j)
b

while not converged do
for i=1,. . . ,m do

A← [ϕ(i)(x
(1)
p), . . . , ϕ(i)(x

(k)
p)]

α← 1/∥A⊤A∥2
while not converged do

c(i) ← c(i) − αA⊤(Ac(i) − ϕ(i)(xt))
project c(i) onto probability simplex

end
end
Gradient step on x

(j)
p with Adam

Clip x
(j)
p so that the infinity norm constraint is satisfied.

end

22

2.2.6 Multi-Layer Convex Polytope Attack

When the victim trains its feature extractor ϕ in addition to the classifier (last layer),

enforcing Convex Polytope Attack only on the feature space of ϕ(i) is not enough for a

successful attack as we will show in experiments. In this setting, the change in feature

space caused by a model trained on the poisoned data will also make the polytope more

difficult to transfer.

Unlike linear classifiers, deep neural networks have much better generalization on

image datasets. Since the poisons all come from one class, the whole network can proba-

bly generalize well enough to discriminate the distributions of xt and xp, such that after

trained with the poisoned dataset, it will still classify xt correctly. As shown in Fig-

ure 2.7, when CP attack is applied to the last layer’s features, the lower capacity models

like SENet18 and ResNet18 are more susceptible to the poisons than other larger capac-

ity models. However, we know there probably exist poisons with small perturbations

that are transferable to networks trained on the poison distribution, as empirical evidence

from [69] have shown there exist a common adversarial subspace for different models

trained on the same dataset, and naturally trained networks usually have large enough

Lipschitz to cause mis-classification [41], which hopefully will also be capable of shift-

ing the polytope into such a subspace to lie close to xt.

One strategy to increase transferability to models trained end-to-end on the poi-

soned dataset is to jointly apply Convex Polytope Attack to multiple layers of the network.

The deep network is broken into shallow networks ϕ1, ..., ϕn by depth, and the objective

23

now becomes

minimize
{c(i)l },{x(j)

p }

n∑
l=1

m∑
i=1

∥ϕ(i)
1:l(xt)−

∑k
j=1 c

(i)
l,jϕ

(i)
1:l(x

(j)
p)∥2

∥ϕ(i)
1:l(xt)∥2

, (2.4)

where ϕ
(i)
1:l is the concatenation from ϕ

(i)
1 to ϕ

(i)
l . Networks similar to ResNet are broken

into blocks separated by pooling layers, and we let ϕ(i)
l be the l-th layer of such blocks.

The optimal linear classifier trained with the features up to ϕ1:l (l < n) will have worse

generalization than the optimal linear classifier trained with features of ϕ, and therefore

the feature of xt should have higher chance to deviate from the features of the same class

after training, which is a necessary condition for a successful attack. Meanwhile, with

such an objective, the perturbation is optimized towards fooling models with different

depths, which further increases the variety of the substitute models and adds to the trans-

ferability.

2.2.7 Improved Transferability via Network Randomization

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Av
er

ag
e

Lo
ss

Loss with Feature Collision Attack
Training Loss without Dropout
Loss in Victim without Dropout
Training Loss with Dropout
Loss in Victim with Dropout

0 100 200 300 400
Steps

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Av
er

ag
e

Lo
ss

Loss with Convex Polytope Attack
Training Loss without Dropout
Loss in Victim without Dropout
Training Loss with Dropout
Loss in Victim with Dropout

Figure 2.3: Loss curves of Feature Collision and Convex Polytope Attack on the substitute
models and the victim models, tested using the target with index 2. Dropout improved
the minimum achievable test loss for the FC attack, and improved the test loss of the CP
attack significantly.

24

Even when trained on the same dataset, different models have different accuracy

and therefore different distributions of the samples in the feature space. Ideally, if we

craft the poisons with arbitrarily many networks from the function class of the target

network then we should be able effectively minimize Eq. 2.3 in the target network. It is,

however, impractical to ensemble a large number of networks due to memory constraints.

To avoid ensembling too many models, we randomize the networks with Dropout [76],

turning it on when crafting the poisons. In each iteration, each substitute network ϕ(i) is

randomly sampled from its function class by shutting off each neuron with probability p,

and multiplying all the “on” neurons with 1/(1 − p) to keep the expectation unchanged.

In this way, we can get an exponential (in depth) number of different networks for free in

terms of memory. Such randomized networks increase transferability in our experiments.

One qualititative example is given in Figure 2.3.

2.2.8 Experiments

In the following, we will use CP and FC as abbreviations for Convex Polytope At-

tacks and Feature Collision attacks respectively. The code for the experiments is available

at https://github.com/zhuchen03/ConvexPolytopePosioning.

Datasets. In this section, all images come from the CIFAR10 dataset. If not

explicitly specified, we take the first 4800 images from each of the 10 classes (a total

of 48000 images) in the training set to pre-train the victim models and the substitute

models (ϕ(i)). We leave the test set intact so that the accuracy of these models under

different settings can be evaluated on the standard test set and compared directly with the

25

https://github.com/zhuchen03/ConvexPolytopePosioning

Group 1

Group 2

Figure 2.4: Qualitative results of the poisons crafted by FC and CP. Each group shows
the target along with five poisons crafted to attack it, where the first row is the poisons
crafted with FC, and the second row is the poisons crafted with CP. In the first group,
the CP poisons fooled a DenseNet121 but FC poisons failed, in the second group both
succeeded. The second target’s image is more noisy and is probably an outlier of the frog
class, so it is easier to attack. The poisons crafted by CP contain fewer patterns of xt than
with FC, and are harder to detect.

26

benchmarks. A successful attack should not only have unnoticeable image perturbations,

but also unchanged test accuracy after fine-tuning on the clean and poisoned datasets.

As shown in the supplementary, our attack preserves the accuracy of the victim model

compared with the accuracy of those tuned on the corresponding clean dataset.

The remaining 2000 images of the training set serve as a pool for selecting the

target, crafting the poisons, and fine-tuning the victim networks. We take the first 50

images from each class (a total of 500 images) in this pool as the clean fine-tuning dataset.

This resembles the scenario where pretrained models on large datasets like Imagenet [77]

are fine-tuned on a similar but usually disjoint dataset. We randomly selected “ship”

as the target class, and “frog” as the targeted image’s class, i.e., the attacker wants to

cause a particular frog image to be misclassified as a ship. The poison images x(j)
p across

all experiments are crafted from the first 5 images of the ship class in the 500-image

fine-tuning dataset. We evaluate the poison’s efficacy on the next 50 images of the frog

class. Each of these images is evaluated independently as the target xt to collect statistics.

Again, the target images are not included in the training and fine-tuning set.

Networks. Two sets of substitute model architectures are used in this paper. Set

S1 includes SENet18 [78], ResNet50 [19], ResNeXt29-2x64d [79], DPN92 [80], Mo-

bileNetV2 [81] and GoogLeNet [82]. Set S2 includes all the architectures of S1 except

for MobileNetV2 and GoogLeNet. S1 and S2 are used in different experiments as speci-

fied below. ResNet18 and DenseNet121 [83] were used as the black-box model architec-

tures. The poisons are crafted on models from the set of substitute model architectures.

We evaluate the poisoning attack against victim models from the 6 different substitute

model architectures as well as from the 2 black-box model architectures. Each victim

27

model, however, was trained with different random seeds than the substitute models. If

the victim’s architecture appears in the substitute models, we call it a gray-box setting;

otherwise, it is a black-box setting.

We add a Dropout layer at the output of each Inception block for GoogLeNet, and

in the middle of the convolution layers of each Residual-like blocks for the other net-

works. We train these models from scratch on the aforementioned 48000-image training

set with Dropout probabilities of 0, 0.2, 0.25 and 0.3, using the same architecture and

hyperparameters (except for Dropout) of a public repository3. The victim models that we

evaluate were not trained with Dropout.

Attacks. We use the same 5 poison ship images to attack each frog image.

For the substitute models, we use 3 models trained with Dropout probabilities of 0.2,

0.25, 0.3 from each architecture, which results in 18 and 12 substitute models for S1

and S2 respectively. When crafting the poisons, we use the same Dropout probability

as the models were trained with. For all our experiments, we set ϵ = 0.1. We use

Adam [73] with a relatively large learning rate of 0.04 for crafting the poisons, since the

networks have been trained to have small gradients on images similar to the training set.

We perform no more than 4000 iterations on the poison perturbations in each experiment.

Unless specified, we only enforce Eq. 2.3 on the features of the last layer.

For the victim, we choose its hyperparameters during fine-tuning such that it overfits

the 500-image training set, which satisfies the aforementioned rational victim assumption.

In the transfer learning setting, where only the final linear classifier is fine-tuned, we use

Adam with a large learning rate of 0.1 to overfit. In the end-to-end setting, we use Adam

3https://github.com/kuangliu/pytorch-cifar

28

https://github.com/kuangliu/pytorch-cifar

SENet18 ResNet50 ResNeXt29 DPN92 MobileNetV2 GoogLeNet ResNet18 DenseNet121
Network

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Success Rates of Feature Collision and Convex Polytope Attacks
Feature Collision Attack
Convex Polytope Attack

Figure 2.5: Success rates of FC and CP attacks on various models. Notice the first six
entries are the gray-box setting where the models with same architecture but different
weights are in the substitute networks, while the last two entries are the black-box setting.

with a small learning rate of 10−4 to overfit.

2.2.8.1 Comparison with Feature Collision

We first compare the transferability of poisons generated by FC and CP in the trans-

fer learning training context. The results are shown in Figure 2.5. We use set S1 of sub-

stitute architectures. FC never achieves a success rate higher than 0.5, while CP achieves

success rates higher or close to 0.5 in most cases. A qualitative example of the poisons

crafted by the two approaches is shown in Figure 2.4.

2.2.8.2 Importance of Training Set

Despite being much more successful than FC, questions remain about how reliable

CP will be when we have no knowledge of the victim’s training set. In the last section,

we trained the substitute models on the same training set as the victim. In Figure 2.6 we

provide results for when the substitute models’ training sets are similar to (but mostly

29

SENet18 ResNet50 ResNeXt29 DPN92 MobileNetV2 GoogLeNet ResNet18 DenseNet121
Network

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Success Rates with Different Training Set Overlaps
50% Overlap, 24000
50% Overlap, 48000
0% Overlap, 24000

Figure 2.6: Success rates of Convex Polytope Attack, with poisons crafted by substitute
models trained on the first 2400 images of each class of CIFAR10. The models corre-
sponding to the three settings are trained with samples indexed from 1201 to 3600, 1 to
4800 and 2401 to 4800, corresponding to the settings of 50%, 50% and 0% training set
overlaps respectively.

different from) that of the victim. Such a setting is sometimes more realistic than the

setting where no knowledge of the victim’s training set is required, but query access to

the victim model is needed [57], since query access is not available for scenarios like

surveillance. We use the less ideal S2, which has 12 substitute models from 4 different

architectures. Results are evaluated in the transfer learning setting. Even with no data

overlap, CP can still transfer to models with very different structure than the substitute

models in the black-box setting. In the 0% overlap setting, the poisons transfer better to

models with higher capacity like DPN92 and DenseNet121 than to low-capacity ones like

SENet18 and MobileNetV2, probably because high capacity models overfit more to their

training set. Overall, we see that CP may remain powerful without access to the training

data in the transfer learning setting, as long as the victim’s model has good generalization.

30

SENet18 ResNet50 ResNeXt29 DPN92 MobileNetV2 GoogLeNet ResNet18 DenseNet121
Network

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Success Rates with Different CP Attacks
CP Attack on Last Layer
CP Attack on Multiple Layers

Figure 2.7: Success rates of Convex Polytope Attack in the end-to-end training setting.
We use S2 for the substitute models.

2.2.8.3 End-to-End Training

A more challenging setting is when the victim adopts end-to-end training. Unlike

the transfer learning setting where models with better generalization turn out to be more

vulnerable, here good generalization may help such models classify the target correctly

despite the poisons. As shown in Figure 2.7, CP attacks on the last layer’s feature is

not enough for transferability, leading to almost zero successful attacks. It is interesting

to see that the success rate on ResNet50 is 0, which is an architecture in the substitute

models, while the success rate on ResNet18 is the highest, which is not an architecture in

the substitute models but should have worse generalization.

Therefore, we enforce CP in multiple layers of the substitute models, which breaks

the models into lower capacitie ones and leads to much better results. In the gray-box

setting, all of the attacks achieved more than 0.6 success rates. However, it remains

very difficult to transfer to GoogLeNet, which has a more different architecture than the

substitute models. It is therefore more difficult to find a direction to make the convex

31

polytope survive end-to-end training.

2.3 A defense in the supervised setting

2.3.1 Overview

In this section, we initiate the study of defending against clean-label poisoning

attacks on neural networks by considering feature collision [50] and convex polytope

attacks [55] on the CIFAR-10 dataset. Although poison examples are not easily detected

by human annotators, we exploit the property that adversarial examples have different

feature distributions than their clean counterparts in higher layers of the network, and that

those features often lie near the distribution of the target class. This intuition lends itself

to a defense based on k nearest neighbors in feature space, in which the poison examples

are detected and removed prior to training. Further, the parameter k yields a natural lever

for trading off between the number of undetected poisons and number of discarded clean

images when filtering the training set.

Our contributions can be outlined as follows.

• We propose a novel Deep k-NN defense for clean-label poisoning attacks. We

evaluate it against state-of-the-art clean-label data poisoning attacks, using a slate

of architectures and show that our proposed strategy detects 99% of the poison

instances without significant downgrade of overall performance.

• We reimplement a set of general data poisoning defenses [84], including L2-Norm

Outliers, One-Class SVMs, Random Point Eviction, and Adversarial Training as

32

baselines and show that our proposed Deep k-NN defense is more robust at detec-

tion of poisons in the trained victim models.

• From the insights of two ablation studies, we assemble guidelines for implementing

Deep k-NN in practice. First we provide instructions for picking an appropriate

value for k. Second, we provide a protocol for using the Deep k-NN defense when

class imbalance exists in the training set.

2.3.2 Intuition behind Deep k-NN Defense

As seen in Figure 2.8, poisons are surrounded by feature representations of the

target class rather than of the base class. For instance, when k = 3 and npoison = 2, each

poison will almost always have a plurality of its neighbors as a non-poison in the target

class. Since the plurality label of a poison’s neighbors does not match the label of the

poison itself, the poison can be removed from the dataset or simply not used for training.

More generally, if k > 2npoison, then we would expect the poisons to be outvoted by

Figure 2.8: Proposed Deep k-NN defense (k = 3) correctly removing a poisoned example
by comparing the class labels of poison with its k neighbors. Since a majority of the
k points surrounding the poison do not share the same class label as the poison, it is
removed.

33

members of the target class and be filtered from the training set. Note that by setting k >

2npoison, the poisons’ label cannot be the majority, but may still be the plurality, or mode,

of the Deep k-NN set if the nearest neighbors of the current point are in multiple classes.

Empirically, however, we do not observe this to be the case. Extracted features tend to

be well-clustered by class; thus there are usually only 2 unique classes in the Deep k-NN

neighborhood, base class and target class, with the target class being larger. Therefore, in

order to successfully defend against adversarial manipulation, a victim needs only to set

a sufficiently large value of k without needing to know exactly how many poisons there

are a-priori. We further elucidate on the effect of k in Section 2.3.5.

2.3.3 Deep k-NN defense against Clean-Label Poisoning

In this section, we formally introduce the Deep k-NN defense as well as a set of

other baseline defenses against clean-label targeted poisoning attacks. We compare the

effectiveness of each defense against both feature collision attacks and convex polytope

attacks in Section 2.3.4.

We use xt to denote the input space representation of the target image that an adver-

sary tries to misclassify. The target has true label lt but the attacker seeks to misclassify it

as having label lb. We use xb to denote a base image having label lb that is used to build a

poison after optimization. We use xw to denote a base image watermarked with a target

image, that is γ · xt + (1 − γ) · xb. To a human observer this image will retain the label

lb when γ is sufficiently low. We use ϕ(x) to denote the activations of the penultimate

layer of a neural network. We refer to this as the feature layer or feature space and ϕ(x)

34

as features of x.

Deep k-NN Defense: For each data point in the training set, the Deep k-NN defense takes

the plurality vote amongst the labels of that point’s k nearest neighbors in feature space. If

the point’s own label is not the mode amongst labels of its k nearest neighbors, the point

is flagged as anomalous, and is not used when training the model. We use Euclidean

distance to measure the distance between data points in feature space. See Algorithm 2.

Algorithm 2 Deep k-NN Defense
Result: Filtered training set X train′

Let Sk(x
(i)) denote a set of k points such that for all points x(j) inside the set and points

x(l) outside the set, |ϕ(x(l))− ϕ(x(i))|2 ≥ |ϕ(x(j))− ϕ(x(i))|2
X train ′ ← {}
for Data points x(i) ∈ X train do

Let l denote the label of x(i) and let l(Sk(x
(i))) denote the labels of the points in

Sk(x
(i))

if l ∈ mode(l(Sk(x
(i)))) then

X train ′ ← X train ′ ∪ {x(i)};
else

Omit x(i) from X train ′;
end

end

L2-Norm Outlier Defense: The L2 norm outlier defense removes an ϵ > 0 fraction of

points that are farthest in feature space from the centroids of their classes. For each class

of label l ∈ L, with size sl = |x(j) s.t. l(j) = l|, we compute the centroid cl as

cl =
1

sl

∑
x(j)s.t.l(j)=l

ϕ(x(j))

and remove ⌊ϵsl⌋ points maximizing |ϕ(x(j)) − cl|2. The L2 norm defense relies on the

position of the centroid to filter outliers. However, the position of the centroid itself is

prone to data poisoning if the per-class data size is small. This defense is adapted from

35

traditional poison defenses not specific to neural networks [84].

One-Class SVM Defense: The one-class SVM defense examines the deep features of

each class in isolation by applying the one-class SVM algorithm [85] to identify outliers

in feature space for each label in the training set. It utilizes a radial basis kernel and is

calibrated with a value ν = 0.01.

Random Point Eviction Defense: The random point eviction defense is a simple exper-

imental control. It filters out a random subset of all training data. We remove 1% of our

training data for the feature collision attack and 10% of our training data on the convex

polytope attack. If the poisoning attack is sensitive to poisons being removed, the random

defense may be successful, at the cost of losing a proportionate amount of the unpoisoned

training data.

Adversarial Training Defense: Thus far, we have only considered defenses which filter

out examples prior to training. We consider here another defense strategy that does not

involve filtering, but rather involves an alternative victim training procedure. Adversarial

training, used often to harden networks against evasion attacks [42, 64], has been shown

to produce neural network feature extractors which are less sensitive to weak features

such as norm-bounded adversarial patterns [86]. We explore here whether a victim’s use

of an adversarially trained feature extractor would yield features that are robust to clean-

label data poisoning. Instead of the conventional loss over the training set, adversarial

training aims to optimize

min
θ
Lθ(X + δ∗),where δ∗ = argmax

δ<ϵ
Lθ(X + δ),

36

where θ, X , and δ are the weights, training input, and adversarial perturbations, respec-

tively, and Lθ is some training loss (i.e., cross-entropy). In our experiments, we perform

adversarial training following the standard procedure in [42], using an ℓ∞ PGD adversary

of 20 steps and ϵ = 8.

2.3.4 Evaluation

In this section, we evaluate the effectiveness of our Deep k-NN defense and base-

line defenses against the feature collision [50] and convex polytope [55] attacks on the

CIFAR-10 dataset [87]. All model architectures, data splits, and hyperparameters are

taken directly from the evaluation setups used in [50, 55]. We define the defense success

rate as the number of times the poisoning attack fails to cause the target example to be

misclassified, divided by the number of attempts. We only consider sets of poisons that

lead to successful attacks in the undefended case so by definition the undefended defense

success rate is 0%.

2.3.4.1 Defense against Feature Collision Attacks

Attack Procedure We randomly select 50 images in the base class. For each base

image with input representation xb, we compute the watermark base xw ← γ · xt + (1−

γ) ·xb, then optimize p with initial value w using a forward-backward splitting procedure

to solve

xp = argmin
x
|ϕ(x)− ϕ(xt)|22 + β|x− xw|22

37

The hyperparameter β is fixed at 0.1. The resulting poisons xp are both close to the target

image xt in feature space, and close to the watermarked input xw in image space. To

ensure statistical significance, we craft 16 of these collections of 50 poisons and evaluate

each collection independently.

Defense Procedure As in the original setup [50], we first train a modified AlexNet

to convergence using only clean data. Next we apply our defenses on the set of clean data

plus poisons to obtain a filtered dataset. That filtered dataset is then used to fine tune the

pretrained model over 10 epoch with a batch size of 128. We evaluate the performance of

all defenses described in Section 2.3.3 against collections of 50 poisons that successfully

cause a targeted misclassification.

Results As seen in Table 2.1, the Deep k-NN defense with k = 5000, successfully

identifies all but one poison across multiple attacks, while filtering just 0.6% of the clean

images from the training set. As a result, after victim training, models defended by Deep

k-NN have defense success rates of 100%. In contrast, the L2-norm defense only identi-

fies roughly half the feature collision poisons using ϵ = 0.01. Both the One-Class SVM

and the Random Point Eviction defenses are unable to detect a majority of the feature

collision poisons.

Table 2.1: Comparing the effectiveness of baseline defenses aggregated for all model
architectures in Feature Collision Attack

Defense Strategy Poisons
Re-
moved

Clean
Images
Removed
(%)

Defense
Success
Rate (%)

CIFAR-10
Test Accu-
racy (%)

Deep k-NN (k = 5000) 799/800 0.6 100.0 74.6
L2-Norm Outliers 395/800 1.0 50.0 74.6
One-class SVM 168/800 1.0 37.5 74.5
Random Point Eviction 84/800 10.0 12.5 74.5

38

2.3.4.2 Defense against Convex Polytope Attacks

Attack Procedure. Following the procedure in [55], the CIFAR-10 dataset is

split into 48000 images for pretraining, and 500 images for fine-tuning. The poison base

images are taken from the remaining split of 1500 images.

Since the attacker does not know the victim model parameters, they first pretrain

their own model to convergence using the same subset of 48000 CIFAR-10 images used

for pretraining. Next, an adversary uses this surrogate model to craft 5 poisons using the

convex polytope method. To ensure statistical significance, 102 collections of 5 poisons

are crafted.

When crafting convex polytope poisons, multiple surrogate models with different

architectures are ensembled, so that the generated poisons generalize to victim archi-

tectures that the poisons were not crafted on. Our results are based on eight architec-

tures: two of which are not used in crafting the poisons (black box setting), and six

which use random initialization (grey box setting). The grey-box architectures are DPN92

[80], GoogLeNet [82], MobileNetV2 [81], ResNet50 [88], ResNeXT29-2x64d [79], and

SENet18 [78], while the black-box architectures are DenseNet121 [83] and ResNet18

[88].

Defense Procedure. The victim model is first pretrained to convergence using

a random initialization unknown to the attacker on the 48000 pretraining images from

CIFAR-104. Our defenses are applied to the 500 fine-tuning images plus poisons to obtain

a filtered fine-tuning set5. Finally, this filtered dataset is used to fine-tune the victim

4We use conventional training loss for all except the adversarial training defense.
5There is no filtering in adversarial training.

39

Model Architecture

0.0

0.2

0.4

0.6

0.8

1.0

De
fe

ns
e

Su
cc

es
s R

at
e

Deep K-NN
L2-Norm Outliers
One Class SVM

Random Point Eviction
Adversarial Training

Den
seN

et1
21

DPN
92

Goo
gLe

Net

Mob
ileN

etV
2

ResN
et1

8

ResN
et5

0

ResN
eX

t29
_2x

64
d

SE
Net1

8

Model Architecture

0.0

0.2

0.4

0.6

0.8

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Figure 2.9: The Deep k-NN Defense is model-agnostic, achieving high defense success
rate and test classification accuracy.

40

model.

Again, the performance of all defenses is reported only on collections of poisons

that lead to a successful attack in the undefended case. Since the attacker did not have

access to the victim architecture or model parameters during crafting of the poisons, the

defenses are evaluated independently for each individual victim architecture.

Results. The aggregate results of each defense strategy on all 8 architectures

are shown in Table 2.2. Both the Deep k-NN and L2-Norm defense filter out nearly all

poisons, while incorrectly removing 4.3% and 9.1% of the clean training examples, re-

spectively. Compared to feature collision poisons, convex polytope poisons trigger more

false positive detections (i.e. clean images removed) across all defense methods, leading

to fewer remaining clean examples and reduced test accuracy.

Surprisingly, the L2-Norm defense is much better able to detect convex polytope

poisons compared to feature collision poisons; it detects almost as many as Deep k-NN

. However, it has a lower specificity because it removes more clean images, resulting in

half-percent lower test accuracy. These results are broken down for each victim architec-

ture in Figure 2.9. The Deep k-NN attack is successful on all architectures with perfect

defense success rate. L2-norm Outliers and Adversarial Training perform almost as well.

Other strategies largely fail to be a viable defense.

We evaluate the effectiveness of adversarial training on the Convex Polytope-crafted

poisons. In Table 2.2 and Figure 2.9, adversarially trained feature extractors—trained

naively to provide resistance against only evasion attacks—do in fact help mitigate poi-

soning attacks as well. To our knowledge, this is the first time adversarial training has

been shown to provide resistance against data poisoning (i.e. training time) attacks and is

41

a direction for future work.

−6 −5 −4
3.5

4.0

4.5

5.0

5.5

6.0

D
is

ta
n

ce
al

on
g

or
th

on
or

m
al

Target unfiltered

Poison Filtered

Target

Target filtered

4 5 6

Base unfiltered

Base

Base filtered

Distance along centroids

Figure 2.10: Feature space visualization of

the Deep k-NN Defense against a Convex

Polytope Attack on DPN92.

The defense however significantly

hurts test set accuracy (as is common

for adversarially trained networks), which

drops to 85% on average, compared with

94% on the same architectures without ad-

versarial training. In scenarios when ad-

versarial training for evasion attack robust-

ness is not required, such as in situations

when adversaries cannot control test time

inputs, the Deep k-NN defense provides the poisoning resistance without the burden of

decreased generalization performance.

Table 2.2: Comparing the effectiveness of baseline defenses aggregated for all model
architectures in Convex Polytope Attack

Defense Strategy Poisons
Re-
moved

Clean
Images
Removed
(%)

Defense
Success
Rate (%)

CIFAR-10
Test Accu-
racy (%)

Deep k-NN (k = 50) 510/510 4.3 100.0 93.9
L2-Norm Outliers 509/510 9.1 99.0 93.4
One-class SVM 114/510 7.1 29.9 91.7
Random Point Eviction 47/510 10.0 33.2 91.3
Adversarial Training - - 98.6 85.2

2.3.4.3 Feature Space Visualization

The favorable results of Deep k-NN defense also afford us an opportunity to un-

derstand anomaly detection in deep networks more generally via observing the effects

42

in feature representations. A feature space visualization of the penultimate layer of the

network is shown in Figure 2.10, with both filtered poisons and non-poisons displayed.

Specifically, Figure 2.10 shows a projected visualization in the feature space of

the fine tuning set in the target (blue) and base (green) classes.Following the projection

scheme used in [50], where the x-axis is the direction along the line connecting the cen-

troids of the target and base class features and the y-axis is the component of the pa-

rameter vector (i.e. decision boundary) orthogonal to the between-centroids vector, the

deep features of the DPN92 network are projected into a two-dimensional plane. The

“x” markers denote poisons that are filtered out by the defense and would have otherwise

almost formed a convex polytope around the target (blue triangle). The Deep k-NN acts

with high specificity: all the poisons are filtered, while only 2 outlying clean points in the

target class (not shown) are also filtered. No points in the base class are filtered.

2.3.4.4 Limitations of the Deep k-NN Defense

The Deep k-NN defense exploits feature space clustering seen in feature collision

and convex polytope attacks. It may not be as effective if this initial condition is not met.

We view this as a strong and simple baseline defense for poisoning attacks that shows the

need for more sophisticated and adaptive attacks.

2.3.5 Ablation Studies and Best Practices

We now turn to ablation studies to gain insight into best practices for using the Deep

k-NN defense under realistic situations. All results are reported on the convex polytope

43

attack for CIFAR-10 as described in [55] on all 8 architectures discussed previously. We

specifically focus on the convex polytope attack method since it is shown to act as a

stronger poison on black-box threat models, and study the transfer learning case to mimic

the common practice of using pre-trained feature-extractors trained on large datasets.

We again closely mimick the setup in [55] using the first 4800 images in each class to

train a model from scratch and then using the next 50 images of each class (making a

fine-tuning set size of 500) to fine-tune the model. The Adam optimizer with a learning

rate of 0.1 is used. In both studies, we assign frogs as the target class and ships as the base

class. The first 5 ship images from the fine-tuning set are replaced with the 5 poisoned

ships. Each set of 5 poisoned ships has an associated target frog image that is neither in

the training nor fine-tune set. We use the standard CIFAR-10 test split to measure test

accuracy.

2.3.5.1 Choosing a Value of k

In our first study, we vary the value of k used in the Deep k-NN defense. Since

dataset sizes vary, as well as the number of classes, we normalize k against the number of

data points per class. Specifically, we measure all metrics against a normalized-k ratio,

such that normalized-k = k/N where k is the number of nearest neighbors considered by

the Deep k-NN and N is the maximum number of examples for any class in the fine-tune

set.

As seen in Figure 2.11 (top left and middle left), the defense success rate and MCC

begin to reach maximum levels at normalized-k = 0.2, corresponding to an (unnormal-

44

0.0
4 0.1 0.2 0.4 1.0 1.5 1.8 2.0 2.2 2.5 4.0 8.0

Normalized-K Ratio

0.6

0.8

1.0
De

fe
ns

e
Su

cc
es

s R
at

e Defense Success Rate

DenseNet121
DPN92
GoogLeNet
MobileNetV2

ResNet18
ResNet50
ResNeXt29_2x64d
SENet18

0.0
40.10.1

40.20.2
40.3 0.4 0.5 0.7 1.0

Class Balance Ratio

0.4

0.6

0.8

1.0

De
fe

ns
e

Su
cc

es
s R

at
e Replicate Imbalance = False

0.0
40.10.1

40.20.2
40.3 0.4 0.5 0.7 1.0

Class Balance Ratio

Replicate Imbalance = True

0.0
4 0.1 0.2 0.4 1.0 1.5 1.8 2.0 2.2 2.5 4.0 8.0

Normalized-K Ratio

0.00

0.25

0.50

0.75

1.00

M
CC

Deep-KNN Poison Filtering Success

0.0
40.10.1

40.20.2
40.3 0.4 0.5 0.7 1.0

Class Balance Ratio

0.4

0.6

0.8

M
CC

Replicate Imbalance = False

0.0
40.10.1

40.20.2
40.3 0.4 0.5 0.7 1.0

Class Balance Ratio

Replicate Imbalance = True

0.0
4 0.1 0.2 0.4 1.0 1.5 1.8 2.0 2.2 2.5 4.0 8.0

Normalized-K Ratio

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

Test Accuracy After Filtering and Fine-tuning

0.0
40.10.1

40.20.2
40.3 0.4 0.5 0.7 1.0

Class Balance Ratio

0.80

0.85

0.90
Te

st
 A

cc
ur

ac
y

Replicate Imbalance = False

0.0
40.10.1

40.20.2
40.3 0.4 0.5 0.7 1.0

Class Balance Ratio

Replicate Imbalance = True

Figure 2.11: Ablation studies on the effect of k (left) and class imbalance (right). (Top
Left) Defense success rate increases to 100% for all models as normalized-k ratio in-
creases beyond 1.0 for all architectures. (Middle Left) Matthew’s correlation coefficient
is highest for all models when normalized-k ratio is between 0.4 and 2.0. (Bottom Left)
Accuracy on the CIFAR-10 test split drops as normalized-k value increases beyond 4
times the number of examples per class. (Top Right) Defense and performance metrics
under class imbalance. Defense success rate is stabilized when the target class training
examples are first replicated to match the size of other classes. (Middle Right) Matthews
correlation coefficient is also less dependent on the size of the target class when data repli-
cation is on. (Bottom Right) Test accuracy is highest when replicating the target examples
to match the size of other classes.

ized) k of twice the number of poisons, k = 10 = 2npoison. This confirms our intuition

in Section 2.3.2: when k > 2npoison, poisons will be marked anomalous since the poison

class cannot be the majority label in the neighborhood and is unlikely to be the plural-

ity because the neighborhood usually only contains two unique classes. Of course, the

victim must set a value of k without knowledge of the number of poisons employed by

45

the attacker. Fortunately we observe that defense success rate remains at 100% as the

normalized-k ratio increases beyond k = 0.2. Specifically, we see that after a normalized-

k value greater than 1.0 (k = 50) (i.e. the situation where Deep k-NN considers more

neighbors than the per-class number of examples) the convex polytope attack is ineffec-

tive on all models. However, there are limitations. Despite successfully detecting all the

poisons, an extremely large k could lead to adverse effects on model test performance if

too much clean data is removed (i.e. too many false positives).

To take both positives and negatives into account, we again invoke the MCC metric

in Figure 2.11 (middle left) to measure the trade-off between detecting poisoned images

and removing clean images. The maximum correlation coefficient for all models occurs

for normalized-k values in the range of 1 and 2. This makes intuitive sense. On one hand,

for k smaller than the class size, Deep k-NN could fail to look within a large enough

neighborhood around a data point to properly judge its conformity. For example, a poison

point may lie within a small, yet very tight cluster of other poison points of the same

class and be improperly marked as benign even though the poison cluster itself may lie

within a much larger cluster of clean target points. On the other hand, for k larger than 2

times the class size, the neighborhood may be too large and contain too many data points

from a competing class. For example, the current target point may lie in a cluster of other

target points, but since the neighborhood is so large that it contains all the target points

as well as all the points in the nearby poison class cluster, the current target point will be

improperly marked as anomalous.

This upper threshold of normalized-k = 2 is confirmed by looking at test accuracy

performance in Figure 2.11 (bottom left). We note that performance is highest in the

46

normalized-k region from 0.2 to 2. It slightly decreases after a normalized-k ratio of 2

and sharply decreases after 4. This shows that a model’s ability to generalize suffers when

too many legitimate data points are removed under sufficiently large values of k. Based

on these experiments, we recommend using a normalized-k value between 1 and 2 for

optimal success in defending against poisoning attacks while minimizing false positives.

2.3.5.2 Dealing with Class Imbalance

In our second study, we consider the effectiveness of our defense on datasets with an

imbalanced number of examples per class. Given an imbalanced dataset, the target class

could be either the majority class or a minority class. The easiest case for the defender

is when the target is the majority class. In this case, so long as k is set sufficiently large,

there will be more than enough target training examples to cause the poisons in their

midst (in feature space) to be marked as anomalous after running Deep k-NN . In this

section, we will consider the worst case, wherein the target class is the smallest minority

class in the dataset. Without applying any protocol to balance out the classes, there may

not be enough target class neighbors when running Deep k-NN to know that the poisons

clustered in their midst are anomalous.

A typical way to deal with imbalanced classes is to upweight the loss from examples

in the minority classes or, equivalently, sample examples from minority classes at a higher

rate that is inversely proportional to the fraction of the dataset that their class occupies. We

consider a simple and equivalent modification of the latter protocol: given an imbalanced-

class dataset, the examples in each class are replicated by a factor of N/n, where n is the

47

number of examples in that class and N is the maximum number of examples in any

class. After this operation, the dataset will be larger, but once again balanced. We study

the effect of this data replication protocol on imbalanced classes. Specifically, we set

the number of examples in the target class (frog) to n < N while leaving the number of

examples in all other classes as N . We then replicate the frog examples by a factor of

N/n such that its size match the size of the other classes. Finally, we plot the defense

success rate against the class imbalance ratio n/N in Figure 2.11 (top right). The value

of normalized-k is fixed at 2 (k = 100) for this experiment.

Figure 2.11 (top right, left panel) shows the defense success rate when no protocol

is applied prior to running Deep k-NN : the success rate suffers for class balance ratios

below 0.7. When our data replication protocol is applied before the Deep k-NN defense,

the defense success rate is near perfect regardless of the class balance ratio. These results

show that our minority class replication protocol, combined with the Deep k-NN defense,

is very effective at removing poisons in an imbalanced class dataset. Our replication-

based balancing protocol normalizes the number of examples considered by the Deep

k-NN defense in feature space.

Next, we observe the MCC as a function of class imbalance in the absence of any

protocol in Figure 2.11 (middle right, left panel). When the ratio is small, then the only

thing that can hurt MCC is the misdetection of the targets as being anomalous. On the

other hand, when the ratio is large, there is no class imbalance. MCC performs worst

when there is a modest underrepresentation of the target class. That is where both the

targets and the poisons can cause false negatives and false positives. When the replication

protocol is applied in Figure 2.11 (middle right), the MCC experiences an improvement,

48

although the relative improvement is small. Interestingly, we observe that data replication

stabilizes the MCC against class imbalance; the MCC is essentially a flat curve in Figure

2.11 (middle right).

All models experience better test accuracy on the CIFAR-10 test set when repli-

cating target examples as shown in Figure 2.11 (bottom right). Despite only having n

unique points in feature space, replicating them boosts model performance to be similar

to the control experiment with a class balance ratio of 1.0. At lower class balance values,

replicating data in unbalanced classes improves test accuracy by 8%. Based on these ex-

periments, we recommend the protocol of replicating images of underrepresented classes

to match the maximum number of examples in any particular class prior to running Deep

k-NN . Defense success rate and model generalizability are both improved and stabilized

by this protocol.

49

Chapter 3: Improving Data Efficiency with Adversarial Training

In this chapter, we revisit our works on using adversarial training as an augmenta-

tion to improve the generalization of models for Natural Language Understanding [89].

The techniques of this work has been successfully applied to Vision-and-Language tasks [52]

and graph tasks [53].

Adversarial training was originally proposed as a means to enhance the security

of machine learning systems [90], especially for safety-critical systems like self-driving

cars [91]. During adversarial training, mini-batches of training samples are contaminated

with adversarial perturbations (alterations that are small and yet cause misclassification),

and then used to update network parameters until the resulting model learns to resist

such attacks. Here, we turn our focus away from the security benefits of adversarial

training, and instead study its effects on generalization. While adversarial training boosts

the robustness, it is widely accepted by computer vision researchers that it is at odds with

generalization [43], with classification accuracy on non-corrupted images dropping as

much as 10% on CIFAR-10, and 15% on Imagenet [42, 92]. Surprisingly, people observe

the opposite result for language models [51, 93, 94], vision-ang-language tasks [52] and

graph tasks [53], showing that adversarial training can improve both generalization and

robustness in these domains.

50

3.1 Related Works

3.1.1 Adversarial Training

To improve the robustness of neural networks against adversarial examples, many

defense strategies and models have been proposed, in which PGD-based adversarial train-

ing [42] is widely considered to be the most effective, since it largely avoids the the obfus-

cated gradient problem [95]. It formulates a class of adversarial training algorithms [75]

into solving a minimax problem on the cross-entropy loss, which can be achieved reliably

through multiple projected gradient ascent steps followed by a SGD (Stochastic Gradient

Descent) step.

Despite being verified by Athalye et al. [95] to avoid obfuscated gradients, Qin

et al. [96] shows that PGD-based adversarial training still leads to highly convolved and

non-linear loss surfaces when K is small, which could be readily broken under stronger

adversaries. Thus, to be effective, the cost of PGD-based adversarial training is much

higher than conventional training. To mitigate this cost, Shafahi et al. [97] proposed a

“free” adversarial training algorithm that simultaneously updates both model parameters

and adversarial perturbations on a single backward pass. Using a similar formulation,

Zhang et al. [98] effectively reduce the total number of full forward and backward prop-

agations for obtaining adversarial examples by restricting most of its adversarial updates

in the first layer.

51

3.1.2 Adversarial Examples in Natural Languages

Adversarial examples have been explored primarily in the image domain, and re-

ceived many attention in text domain recently. Previous works on text adversaries have

focused on heuristics for creating adversarial examples in the black-box setting, or on spe-

cific tasks. Jia and Liang [99] propose to add distracting sentences to the input document

in order to induce mis-classification. Zhao et al. [100] generate text adversaries by pro-

jecting the input data to a latent space using GANs, and searching for adversaries close

to the original instance. Belinkov and Bisk [101] manipulate every word in a sentence

with synthetic or natural noise in machine translation systems. Iyyer et al. [102] propose

a neural paraphrase model based on back-translated data to produce paraphrases that have

different sentence structures. Different from previous work, ours is not to produce actual

adversarial examples, but only take the benefit of adversarial training for natural language

understanding.

We are not the first to observe that robust language models may perform better

on clean test data. Miyato et al. [93] extend adversarial and virtual adversarial training

[103] to the text domain to improve the performance on semi-supervised classification

tasks. Ebrahimi et al. [104] propose a character/word replacement for crafting attacks, and

show employing adversarial examples in training renders the models more robust. Ribeiro

et al. [105] show that adversarial attacks can be used as a valuable tool for debugging

NLP models. Cheng et al. [94] also find that crafting adversarial examples can help

neural machine translation significantly. Notably, these studies have focused on simple

models or text generation tasks. Our work explores how to efficiently use the gradients

52

obtained in adversarial training to boost the performance of state-of-the-art transformer-

based models.

3.2 Adversarial Training for Pre-trained Language Models

3.2.1 Where to add the perturbation?

Pre-trained large-scale language models, such as BERT [1], RoBERTa [4], AL-

BERT [5] and T5 [106], have proven to be highly effective for downstream tasks. We

aim to further improve the generalization of these pre-trained language models on the

downstream language understanding tasks by enhancing their robustness in the embed-

ding space during finetuning on these tasks. We achieve this goal by creating “virtual” ad-

versarial examples in the embedding space, and then perform parameter updates on these

adversarial embeddings. Creating actual adversarial examples for language is difficult;

even with state-of-the-art language models as guidance (e.g., [94]), it remains unclear

how to construct label-preserving adversarial examples via word/character replacement

without human evaluations, because the meaning of each word/character depends on the

context [105]. Since we are only interested in the effects of adversarial training, rather

than producing actual adversarial examples, we add norm-bounded adversarial perturba-

tions to the embeddings of the input sentences using a gradient-based method. Note that

our embedding-based adversary is strictly stronger than a more conventional text-based

adversary, as our adversary can make manipulations on word embeddings that are not

possible in the text domain.

For models that incorporate various input representations, including word or sub-

53

word embeddings, segment embeddings and position embeddings, our adversaries only

modify the concatenated word or sub-word embeddings, leaving other components of the

sentence representation unchanged. 1 Denote the sequence of one-hot representations of

the input subwords as Z = [z1, z2, ...,zn], the embedding matrix as V , and the language

model (encoder) as a function y = fθ(X), where X = V Z is the subword embeddings,

y is the output of the model (e.g., class probabilities for classification models), and θ de-

notes all the learnable parameters including the embedding matrix V . We add adversarial

perturbations δ to the embeddings such that the prediction becomes y′ = fθ(X + δ). To

preserve the semantics, we constrain the norm of δ to be small, and assume the model’s

prediction should not change after the perturbation. This formulation is analogous to [93],

with the difference that we do not require X to be normalized.

3.2.2 PGD-based Adversarial Training

Standard adversarial training seeks to find optimal parameters θ∗ to minimize the

maximum risk for any δ within a norm ball as:

min
θ

E(Z,y)∼D

[
max
∥δ∥≤ϵ

L(fθ(X + δ), y)

]
, (3.1)

where D is the data distribution, y is the label, and L is some loss function. We use the

Frobenius norm to constrain δ. For neural networks, the outer “min” is non-convex, and

the inner “max” is non-concave. Nonetheless, [42] demonstrated that this saddle-point

problem can be solved reliably with SGD for the outer minimization and PGD (a stan-

1“Subword embeddings” refers to the embeddings of sub-word encodings such as the popular Byte Pair
Encoding (BPE) [107].

54

dard method for large-scale constrained optimization, see [108] and [72]), for the inner

maximization. In particular, for the constraint ∥δ∥F ≤ ϵ, with an additional assumption

that the loss function is locally linear, PGD takes the following step (with step size α) in

each iteration:

δt+1 = Π∥δ∥F≤ϵ (δt + αg(δt)/∥g(δt)∥F) , (3.2)

where g(δt) = ∇δL(fθ(X + δt), y) is the gradient of the loss with respect to δ, and

Π∥δ∥F≤ϵ performs a projection onto the ϵ-ball. To achieve high-level robustness, multi-

step adversarial examples are needed during training, which is computationally expensive.

The K-step PGD (K-PGD) requires K forward-backward passes through the network,

while the standard SGD update requires only one. As a result, the adversary generation

step in adversarial training increases run-time by an order of magnitude—a catastrophic

amount when training large state-of-the-art language models.

3.3 FreeLB: Better Efficiency through Gradient Accumulation

In this work [51], we propose a novel adversarial training algorithm, FreeLB, that

promotes higher invariance in the embedding space, by adding adversarial perturbations

to word embeddings and minimizing the resultant adversarial risk inside different regions

around input samples. To validate the effectiveness of the proposed approach, we apply

it to Transformer-based models for natural language understanding and commonsense

reasoning tasks. Experiments on the GLUE benchmark show that when applied only to

the finetuning stage, it is able to improve the overall test scores of BERT-base model from

78.3 to 79.4, and RoBERTa-large model from 88.5 to 88.8. In addition, the proposed

55

approach achieves state-of-the-art single-model test accuracies of 85.44% and 67.75% on

ARC-Easy and ARC-Challenge. Extensive experiments further demonstrate that FreeLB

can be generalized and boost the performance of RoBERTa-large and ALBERT on other

tasks as well.

Algorithm 3 “Free” Large-Batch Adversarial Training (FreeLB-K)
Input: Training samples X = {(Z, y)}, perturbation bound ϵ, learning rate τ , ascent

steps K, ascent step size α
Initialize θ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
δ0 ← 1√

Nδ
U(−ϵ, ϵ);

g0 ← 0;
for t = 1 . . . K do

Accumulate gradient of parameters θ:
gt ← gt−1 +

1
K
E(Z,y)∈B[∇θ L(fθ(X + δt−1), y)];

Update the perturbation δ via gradient ascend:
gadv ← ∇δ L(fθ(X + δt−1), y);
δt ← Π∥δ∥F≤ϵ(δt−1 + α · gadv/∥gadv∥F);

end
θ ← θ − τgK ;

end
end

In the inner ascent steps of PGD, the gradients of the parameters can be obtained

with almost no overhead when computing the gradients of the inputs. From this obser-

vation, FreeAT [97] and YOPO [98] have been proposed to accelerate adversarial train-

ing. They achieve comparable robustness and generalization as standard PGD-trained

models using only the same or a slightly larger number of forward-backward passes as

natural training (i.e., SGD on clean samples). FreeAT takes one descent step on the

parameters together with each of the K ascent steps on the perturbation. As a result,

FreeAT may suffer from the “stale gradient” problem [109], where in every step t, δt

does not necessarily maximize the model with parameter θt since its update is based on

56

∇δL(fθt−1(X + δt−1), y), and vice versa, θt does not necessarily minimize the adversar-

ial risk with adversary δt since its update is based on ∇θL(fθt−1(X + δt−1), y). Such a

problem may be more significant when the step size is large.

Different from FreeAT, YOPO accumulates the gradient of the parameters from

each of the ascent steps, and updates the parameters only once after the K inner ascent

steps. YOPO also advocates that after each back-propagation, one should take the gradi-

ent of the first hidden layer as a constant and perform several additional updates on the

adversary using the product of this constant and the Jacobian of the first layer of the net-

work to obtain strong adversaries. However, when the first hidden layer is a linear layer

as in their implementation, such an operation is equivalent to taking a larger step size

on the adversary. The analysis backing the extra update steps also assumes a twice con-

tinuously differentiable loss, which does not hold for ReLU-based neural networks they

experimented with, and thus the reasons for the success of such an algorithm remains

obscure. We give empirical comparisons between YOPO and our approach in Sec. 3.5.3.

To obtain better solutions for the inner max and avoid fundamental limitations on

the function class, we propose FreeLB, which performs multiple PGD iterations to craft

adversarial examples, and simultaneously accumulates the “free” parameter gradients

∇θL in each iteration. After that, it updates the model parameter θ all at once with

the accumulated gradients. The overall procedure is shown in Algorithm 3, in which

X + δt is an approximation to the local maximum within the intersection of two balls

It = BX+δ0(αt) ∩ BX(ϵ). By taking a descent step along the averaged gradients at

57

X + δ0, ...,X + δK−1, we approximately optimize the following objective:

min
θ

E(Z,y)∼D

[
1

K

K−1∑
t=0

max
δt∈It

L(fθ(X + δt), y)

]
, (3.3)

which is equivalent to replacing the original batch X with a K-times larger virtual batch,

consisting of samples whose embeddings are X + δ0, ...,X + δK−1. Compared with

PGD-based adversarial training (Eq. 3.1), which minimizes the maximum risk at a single

estimated point in the vicinity of each training sample, FreeLB minimizes the maximum

risk at each ascent step at almost no overhead.

Intuitively, FreeLB could be a learning method with lower generalization error than

PGD. [110] have proved that the generalization error of a learning method invariant to a

set of T transformations may be up to
√
T smaller than a non-invariant learning method.

According to their theory, FreeLB could have a more significant improvement over nat-

ural training, since FreeLB enforces the invariance to K adversaries from a set of up

to K different norm constraints,2 while PGD only enforces invariance to a single norm

constraint ϵ.

Empirically, FreeLB does lead to higher robustness and invariance than PGD in the

embedding space, in the sense that the maximum increase of loss in the vicinity of X

for models trained with FreeLB is smaller than that with PGD. See Sec. 3.5.3 for details.

In theory, such improved robustness can lead to better generalization [111], which is

consistent with our experiments. [96] also demonstrated that PGD-based method leads to

highly convolved and non-linear loss surfaces in the vicinity of input samples when K is

2The cardinality of the set is approximately min{K, ⌈ ϵ−E[∥δ0∥]
α ⌉+ 1}.

58

small, indicating a lack of robustness.

3.4 Improving Dropout for Adversarial Training

Usually, adversarial training is not used together with dropout [112]. However, for

some language models like RoBERTa [4], dropout is used during the finetuning stage.

In practice, when dropout is turned on, each ascent step of Algorithm 3 is optimizing

δ for a different network. Specifically, denote the dropout mask as m with each entry

mi ∼ Bernoulli(p). Similar to our analysis for FreeAT, the ascent step from δt−1 to δt

is based on ∇δL(fθ(mt−1)(X + δt−1), y), so δt is sub-optimal for L(fθ(mt)(X + δ), y).

Here θ(m) is the effective parameters under dropout mask m.

The more plausible solution is to use the same m in each step. When applying

dropout to any network, the objective for θ is to minimize the expectation of loss under

different networks determined by the dropout masks, which is achieved by minimizing

the Monte Carlo estimation of the expected loss. In our case, the objective becomes:

min
θ

E(Z,y)∼D,m∼M

[
1

K

K−1∑
t=0

max
δt∈It

L(fθ(m)(X + δt), y)

]
, (3.4)

where the 1-sample Monte Carlo estimation should be 1
K

∑K−1
t=0 maxδt∈It L(fθ(m0)(X +

δt), y) and can be minimized by using FreeLB with dropout mask m0 in each ascent step.

This is similar to applying Variational Dropout to RNNs as used in [113].

59

3.5 Experiments for FreeLB

In this section, we provide comprehensive analysis on FreeLB through extensive

experiments on three Natural Language Understanding benchmarks: GLUE [114], ARC

[115] and CommonsenseQA [116]. We also compare the robustness and generalization of

FreeLB with other adversarial training algorithms to demonstrate its strength. Additional

experimental details are provided in the Appendix.

3.5.1 Datasets

GLUE Benchmark. The GLUE benchmark is a collection of 9 natural language

understanding tasks, namely Corpus of Linguistic Acceptability (CoLA; [117]), Stan-

ford Sentiment Treebank (SST; [118]), Microsoft Research Paraphrase Corpus (MRPC;

[119]), Semantic Textual Similarity Benchmark (STS; [120]), Quora Question Pairs (QQP;

[121]), Multi-Genre NLI (MNLI; [122]), Question NLI (QNLI; [123]), Recognizing Tex-

tual Entailment (RTE; [124]; [125]; [126]; [127]) and Winograd NLI (WNLI; [128]). 8

of the tasks are formulated as classification problems and only STS-B is formulated as

regression, but FreeLB applies to all of them. For BERT-base, we use the HuggingFace

implementation3, and follow the single-task finetuning procedure as Devlin et al. [1]. For

RoBERTa, we use the fairseq implementation4. Same as Liu et al. [4], we also use single-

task finetuning for all dev set results, and start with MNLI-finetuned models on RTE,

MRPC and STS-B for the test submissions.
3https://github.com/huggingface/pytorch-transformers
4https://github.com/pytorch/fairseq

60

ARC Benchmark. The ARC dataset [115] is a collection of multi-choice science

questions from grade-school level exams. It is further divided into ARC-Challenge set

with 2,590 question answer (QA) pairs and ARC-Easy set with 5,197 QA pairs. Questions

in ARC-Challenge are more difficult and cannot be handled by simply using a retrieval

and co-occurence based algorithm [115]. A typical question is:

Which property of a mineral can be determined just by looking at it?

(A) luster [correct] (B) mass (C) weight (D) hardness.

CommonsenseQA Benchmark. The CommonsenseQA dataset [116] consists of

12,102 natural language questions that require human commonsense reasoning ability to

answer. A typical question is :

Where can I stand on a river to see water falling without getting wet?

(A) waterfall, (B) bridge [correct], (C) valley, (D) stream, (E) bottom.

Each question has five candidate answers from ConceptNet [129]. To make the

question more difficult to solve, most answers have the same relation in ConceptNet to

the key concept in the question. As shown in the above example, most answers can be

connected to “river” by “AtLocation” relation in ConceptNet. For a fair comparison with

the reported results in papers and leaderboard5, we use the official random split 1.11.

Task-specific training details. For tasks with ranking loss like ARC, Common-

senseQA, WNLI and QNLI, add the perturbation to the concatenation of the embeddings

of all question/answer pairs.

Additional tricks are required to achieve high performance on WNLI and QNLI for

the GLUE benchmark. We use the same tricks as [4]. For WNLI, we use the same WSC
5https://www.tau-nlp.org/csqa-leaderboard

61

Table 3.1: Results (median and variance) on the dev sets of GLUE based on the
RoBERTa-large model, from 5 runs with the same hyperparameter but different random
seeds. ReImp is our reimplementation of RoBERTa-large. The training process can be
very unstable even with the vanilla version. Here, both PGD on STS-B and FreeAT on
RTE demonstrates such instability, with one unconverged instance out of five.
Method MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Mcc) (Pearson)
Reported 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4
ReImp - - - 85.61 (1.7) 96.56 (.3) 90.69 (.5) 67.57 (1.3) 92.20 (.2)
PGD 90.53 (.2) 94.87 (.2) 92.49 (.07) 87.41 (.9) 96.44 (.1) 90.93 (.2) 69.67 (1.2) 92.43 (7.)
FreeAT 90.02 (.2) 94.66 (.2) 92.48 (.08) 86.69 (15.) 96.10 (.2) 90.69 (.4) 68.80 (1.3) 92.40 (.3)
FreeLB 90.61 (.1) 94.98 (.2) 92.60 (.03) 88.13 (1.2) 96.79 (.2) 91.42 (.7) 71.12 (.9) 92.67 (.08)

Table 3.2: Results on GLUE from the evaluation server, as of Sep 25, 2019. Metrics are
the same as the leaderboard. Number under each task’s name is the size of the training
set. FreeLB-BERT is the single-model results of BERT-base finetuned with FreeLB, and
FreeLB-RoB is the ensemble of 7 RoBERTa-Large models for each task. References:
1: [1]; 2: [2]; 3: [3]; 4: [4].
Model Score

CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE WNLI AX
8.5k 67k 3.7k 7k 364k 393k 108k 2.5k 634

BERT-base1 78.3 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 65.1 34.2
FreeLB-BERT 79.4 54.5 93.6 88.1/83.5 87.7/86.7 72.7/89.6 85.7/84.6 91.8 70.1 65.1 36.9
MT-DNN2 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9/87.4 96.0 86.3 89.0 42.8
XLNet-Large3 88.4 67.8 96.8 93.0/90.7 91.6/91.1 74.2/90.3 90.2/89.8 98.6 86.3 90.4 47.5
RoBERTa4 88.5 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8/90.2 98.9 88.2 89.0 48.7
FreeLB-RoB 88.8 68.0 96.8 93.1/90.8 92.4/92.2 74.8/90.3 91.1/90.7 98.8 88.7 89.0 50.1
Human 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0/92.8 91.2 93.6 95.9 -

data provided by [4] for training. For testing, [4] also provided the test set with span

annotations, but the order is different form the GLUE dataset. We re-order their test set

by matching. For the QNLI, we follow [4] and formulate the problem as pairwise ranking

problem, which is the same for CommonsenseQA. We find the matching pairs for both

training set and testing set by matching the queries in the dev set. We predict “entailment”

if the candidate has the higher score, and “not entailment” otherwise.

62

3.5.2 Results

GLUE. We summarize results on the dev sets of GLUE in Table 3.1, compar-

ing the proposed FreeLB against other adversatial training algorithms (PGD [42] and

FreeAT [97]). We use the same step size α and number of steps m for PGD, FreeAT and

FreeLB. FreeLB is consistently better than the two baselines. Comparisons and detailed

discussions about YOPO [98] are provided in Sec. 3.5.3. We have also submitted our re-

sults to the evaluation server, results provided in Table 3.2. FreeLB lifts the performance

of the BERT-base model from 78.3 to 79.4, and RoBERTa-large model from 88.5 to 88.8

on overall scores.

ARC. For ARC, a corpus of 14 million related science documents (from ARC Cor-

pus, Wikipedia and other sources) is provided. For each QA pair, we first use a retrieval

model to select top 10 related documents. Then, given these retrieved documents6, we

use RoBERTa-large model to encode ⟨s⟩ Retrieved Documents ⟨/s⟩ Question + Answer

⟨/s⟩, where ⟨s⟩ and ⟨/s⟩ are special tokens for RoBERTa model7. We then apply a fully-

connected layer to the representation of the [CLS] token to compute the final logit, and

use standard cross-entropy loss for model training.

Results are summarized in Table 3.3. Following Sun et al. [130], we first finetune

the RoBERTa model on the RACE dataset [131]. The finetuned RoBERTa model achieves

85.70% and 85.24% accuracy on the development and test set of RACE, respectively.

Based on this, we further finetune the model on both ARC-Easy and ARC-Challenge

6We thank AristoRoBERTa team for providing retrieved documents and additional Regents Living En-
vironments dataset.

7Equivalent to [CLS] and [SEP] token in BERT.

63

Table 3.3: Results on ARC and CommonsenseQA (CQA). ARC-Merge is the combina-
tion of ARC-Easy and ARC-Challenge, “MTL” stands for multi-task learning and “Ens”
stands for ensemble. Results of XLNet + RoBERTa (MTL+Ens) and AristoRoBERTaV7
(MTL) are from the ARC leaderboards. Test (E) denotes the test set results with ensem-
bles. For CQA, we report the highest dev and test accuracies among all models. The
models with 78.81/72.19 dev/test accuracy (as in the table) have 71.84/78.64 test/dev ac-
curacies respectively.

ARC-Easy ARC-Challenge ARC-Merge CQA
Dev Test Dev Test Dev Test Dev Test Test (E)

RoBERTa (Reported) - - - - - - 78.43 72.1 72.5
RoBERTa (ReImp) 84.39 84.13 64.54 64.44 77.83 77.62 77.56 - -
FreeLB-RoBERTa 84.91 84.81 65.89 65.36 78.37 78.39 78.81 72.2 73.1
AristoRoBERTaV7 (MTL) - 85.02 - 66.47 - 78.89 - - -
XLNet + RoBERTa (MTL+Ens) - - - 67.06 - - - - -
FreeLB-RoBERTa (MTL) 84.91 85.44 70.23 67.75 79.86 79.60 - - -

datasets with the same hyper-parameter searching strategy (for 5 epochs), which achieves

84.13%/64.44% test accuracy on ARC-Easy/ARC-Challenge. And by adding FreeLB

finetuning, we can reach 84.81%/65.36%, a significant boost on ARC benchmark, demon-

strating the effectiveness of FreeLB.

To further improve the results, we apply a multi-task learning (MTL) strategy using

additional datasets. We first finetune the model on RACE [131], and then finetune on

a joint dataset of ARC-Easy, ARC-Challenge, OpenbookQA [132] and Regents Living

Environment8. Based on this, we further finetune our model on ARC-Easy and ARC-

Challenge with FreeLB. After finetuning, our single model achieves 67.75% test accuracy

on ARC-Challenge and 85.44% on ARC-Easy, both outperforming the best submission

on the official leaderboard9.

CommonsenseQA. Similar to the training strategy in Liu et al. [4], we construct

five inputs for each question by concatenating the question and each answer separately,

8https://www.nysedregents.org/livingenvironment
9https://leaderboard.allenai.org/arc/submissions/public and https://leaderboard.allenai.org/arc easy/

submissions/public

64

then encode each input with the representation of the [CLS] token. A final score is cal-

culated by applying the representation of [CLS] to a fully-connected layer. Following the

fairseq repository10, the input is formatted as: ”⟨s⟩ Q: Where can I stand on a river to

see water falling without getting wet? ⟨/s⟩ A: waterfall ⟨/s⟩”, where ’Q:’ and ’A:’ are the

prefix for question and answer, respectively.

Results are summarized in Table 3.3. We obtained a dev-set accuracy of 77.56%

with the RoBERTa-large model. When using FreeLB finetuning, we achieved 78.81%, a

1.25% absolute gain. Compared with the results reported from fairseq repository, which

obtains 78.43% accuracy on the dev-set, FreeLB still achieves better performance. Our

submission to the CommonsenseQA leaderboard achieves 72.2% single-model test set

accuracy, and the result of a 20-model ensemble is 73.1%, which achieves No.1 among

all the submissions without making use of ConceptNet.

3.5.3 Ablation Study and Analysis

In this sub-section, we first show the importance of reusing dropout mask, then

conduct a thorough ablation study on FreeLB over the GLUE benchmark to analyze the

robustness and generalization strength of different approaches. We observe that it is un-

necessary to perform shallow-layer updates on the adversary as YOPO for our case, and

FreeLB results in improved robustness and generalization compared with PGD.

Importance of Reusing Mask. Table 3.4 (columns 2 to 4) compares the results of

FreeLB with and without reusing the same dropout mask in each ascent step, as proposed

in Sec. 3.4. With reusing, FreeLB can achieve a larger improvement over the naturally

10https://github.com/pytorch/fairseq/tree/master/examples/roberta/commonsense qa

65

Table 3.4: The median and standard deviation of the scores on the dev sets of RTE, CoLA
and MRPC from the GLUE benchmark, computed from 5 runs with the same hyper-
parameters except for the random seeds. We use FreeLB-m to denote FreeLB with m
ascent steps, and FreeLB-3∗ to denote the version without reusing the dropout mask.

Methods Vanilla FreeLB-3∗ FreeLB-3 YOPO-3-2 YOPO-3-3
RTE 85.61 (1.67) 87.14 (1.29) 88.13 (1.21) 87.05 (1.36) 87.05 (0.20)
CoLA 67.57 (1.30) 69.31 (1.16) 71.12 (0.90) 70.40 (0.91) 69.91 (1.16)
MRPC 90.69 (0.54) 90.93 (0.66) 91.42 (0.72) 90.44 (0.62) 90.69 (0.37)

trained models. Thus, we enable mask reusing for all experiments involving RoBERTa.

Comparing the Robustness Table 3.5 provides the comparisons of the maximum

increment of loss in the vicinity of each sample, defined as:

∆Lmax(X, ϵ) = max
∥δ∥≤ϵ

L(fθ(X + δ), y)− L(fθ(X), y), (3.5)

which reflects the robustness and invariance of the model in the embedding space. In

practice, we use PGD steps as in Eq. 3.2 to find the value of ∆Lmax(X, ϵ). We found

that when using a step size of 5 · 10−3 and ϵ = 0.01∥X∥F , the PGD iterations converge

to almost the same value, starting from 100 different random initializations of δ for the

RoBERTa models, trained with or without FreeLB. This indicates that PGD reliably finds

∆Lmax for these models. Therefore, we compute ∆Lmax(X, ϵ) for each X via a 2000-

step PGD.

Samples with small margins exist even for models with perfect accuracy, which

could give a false sense of vulnerability of the model. To rule out the outlier effect and

make ∆Lmax(X, ϵ) comparable across different samples, we only consider samples that

all the evaluated models can correctly classify, and search for an ϵ for each sample such

66

Table 3.5: Median of the maximum increase in loss in the vicinity of the dev set samples
for RoBERTa-Large model finetuned with different methods. Vanilla models are naturally
trained RoBERTa’s. M-Inc: Max Inc, M-Inc (R): Max Inc (R). Nat Loss (N-Loss) is the
loss value on clean samples. Notice we require all clean samples here to be correctly
classified by all models, which results in 227, 850 and 355 samples for RTE, CoLA and
MRPC, respectively. We also give the variance in the Appendix.

Methods RTE CoLA MRPC
M-Inc M-Inc (R) N-Loss M-Inc M-Inc (R) N-Loss M-Inc M-Inc (R) N-Loss
(10−4) (10−4) (10−4) (10−4) (10−4) (10−4) (10−3) (10−3) (10−3)

Vanilla 5.1 5.3 4.5 6.1 5.7 5.2 10.2 10.2 1.9
PGD 4.7 4.9 6.2 128.2 130.1 436.1 5.7 5.7 5.4
FreeLB 3.0 2.6 4.1 1.4 1.3 7.2 3.6 3.6 2.7

that the reference model can correctly classify all samples within the ϵ ball.11 However,

such choice of per-sample ϵ favors the reference model by design. To make fair com-

parisons, Table 3.5 provides the median of ∆Lmax(X, ϵ) with per-sample ϵ from models

trained by FreeLB (Max Inc) and PGD (Mac Inc (R)), respectively.

Across all three datasets and different reference models, FreeLB has the small-

est median increment even when starting from a larger natural loss than vanilla mod-

els. This demonstrates that FreeLB is more robust and invariant in most cases. Such

results are also consistent with the models’ dev set performance (the performances for

Vanilla/PGD/FreeLB models on RTE, CoLA and MRPC are 86.69/87.41/89.21, 69.91/70.84/71.40,

91.67/91.17/91.17, respectively).

Comparing with YOPO. The original implementation of YOPO [98] chooses the

first convolutional layer of the ResNets as f0 for updating the adversary in the “s-loop”.

As a result, each step of the “s-loop” should be using exactly the same value to update

the adversary,and YOPO-m-n degenerates into FreeLB with a n-times large step size.

11For each sample, we start from a value slightly larger than the norm constraint during training for ϵ,
and then decrease ϵ linearly until the model trained with the reference model can correctly classify after a
2000-step PGD attack. The reference model is either trained with FreeLB or PGD.

67

Table 3.6: The median and standard deviation of the scores on the dev sets of STS-B,
SST-2, QNLI, QQP and MNLI from the GLUE benchmark, each computed from 5 runs
with the same hyper-parameters except for the random seeds (except for the results with
YOPO on QQP, which are from 4 runs). Also note here we use a step size of α for the
adversary of YOPO-m-n, so YOPO effectively uses a step size of nα. We use FreeLB-m
to denote FreeLB with m ascent steps, and YOPO-3-n to denote YOPO with n shallow-
layer ascents.

Methods Vanilla FreeLB-3 YOPO-3-2 YOPO-3-3
STS-B 92.20 (.2) 92.67 (.08) 92.60 (.17) 92.60 (0.20)
SST-2 96.56 (.3) 96.79 (.2) 96.44 (.2) 96.33 (.1)
QNLI - 94.98 (.2) 94.96 (.1) -
QQP - 92.60 (.03) 92.55 (.05)∗ 92.50 (.02)∗

MNLI - 90.61 (.1) 90.59 (.2) 90.45 (.2)

Table 3.7: Results (median) on the dev sets of GLUE from 5 runs with the same hy-
perparameter but different random seeds. RoBERTa-FreeLB and ALBERT-FreeLB are
RoBERTa-large and ALBERT-xxlarge-v2 models fine-tuned with FreeLB on GLUE. All
other results are copied from [5].

Method MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Mcc) (Pearson)

BERT-large 86.6 92.3 91.3 70.4 93.2 88.0 60.6 90.0
XLNet-large 89.8 93.9 91.8 83.8 95.6 89.2 63.6 91.8
RoBERTa-large 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4
RoBERTa-FreeLB 90.6 95.0 92.6 88.1 96.8 91.4 71.1 92.7
ALBERT-xxlarge-v2 90.8 95.3 92.2 89.2 96.9 90.9 71.4 93.0
ALBERT-FreeLB 90.9 95.6 92.5 89.9 97.0 92.4 73.1 93.2

To avoid that, we choose the layers up to the output of the first Transformer block as f0

when implementing YOPO. To make the total amount of update on the adversary equal,

we take the hyper-parameters for FreeLB-m and only change the step size α into α/n for

YOPO-m-n. Table 3.4 shows that FreeLB performs consistently better than YOPO on all

three datasets. Accidentally, we also give the results comparing with YOPO-m-n without

changing the step size α for YOPO in Table 3.6. The gap between two approaches seem

to shrink, which may be caused by using a larger total step size for the YOPO adversaries.

We leave exhaustive hyperparameter search for both models as our future work.

68

Improving ALBERT. To further explore its ability to improve more sophisticated

language models, we apply FreeLB to the fine-tuning stage of ALBERT-xxlarge-v2 [5]

model on the dev set of GLUE. The implementation is based on HuggingFace’s transform-

ers library. The results are shown in Table 3.7. Our model are able to surpass ALBERT

on all datasets.

69

Chapter 4: Improving Stability and Efficiency with Automated Initializa-

tion

Innovations in neural architectures have fostered significant breakthroughs in lan-

guage modeling and computer vision. Unfortunately, novel architectures often result in

challenging hyper-parameter choices and training instability if the network parameters

are not properly initialized. A number of architecture-specific initialization schemes have

been proposed, but these schemes are not always portable to new architectures. In this

chapter, we present GradInit [54], an automated and architecture agnostic method for

initializing neural networks. GradInit is based on a simple heuristic; the norm of each

network layer is adjusted so that a single step of SGD or Adam with prescribed hyperpa-

rameters results in the smallest possible loss value. This adjustment is done by introducing

a scalar multiplier variable in front of each parameter block, and then optimizing these

variables using a simple numerical scheme. GradInit accelerates the convergence and

test performance of many convolutional architectures, both with or without skip connec-

tions, and even without normalization layers. It also improves the stability of the original

Transformer architecture for machine translation, enabling training it without learning

rate warmup using either Adam or SGD under a wide range of learning rates and momen-

tum coefficients.

70

4.1 Introduction

The initialization of network parameters has a strong impact on the training stabil-

ity and performance of deep neural networks. Initializations that prevent gradient explo-

sion/vanishing in back propagation played a key role in early successes with feed-forward

networks [16, 133]. Even with cleverly designed initialization rules, complex models with

many layers or multiple branches can still suffer from instability. For example, the orig-

inal Transformer model [23] does not converge without learning rate warmup using the

default initialization [15, 134, 135]; RoBERTa [4] and GPT-3 [36] have to tune the β2

parameter of Adam for stability when the batch size is large. Recent innovations have

shown that architecture-specific initializations, which are carefully derived to maintain

stability, can promote convergence without needing normalization layers [14, 135–138].

Unfortunately, the reliance on analytically derived initializations makes it difficult to real-

ize the benefits of these methods when performing architecture search, training networks

with branched or heterogeneous components, or proposing altogether new architectures.

4.1.1 Related Works

Controlling the norms of network parameters at initialization has proven to be an ef-

fective approach for speeding up and stabilizing training. Glorot and Bengio [133] studied

how the variance of features evolves with depth in feed-forward linear neural networks

by assuming both activations and weight tensors are independent and identical random

variables. They developed a technique in which the variance of each filter scales with

its fan-in (the number of input neurons). This style of analysis was later generalized to

71

the case of ReLU networks [16]. These two analyses are most effective for feed-forward

networks without skip connections or normalization layers. Based on the orthogonal ini-

tialization scheme [139], Mishkin and Matas [140] proposed an iterative procedure to

rescale the orthogonally initialized weights of each layer in feedforward networks so that

the activations of that layer have unit variance. However, this method fails to prevent

the blowup of activations with depth for ResNets [6]. Recently, Gurbuzbalaban and Hu

[141] proposed initialization schemes such that the network can provably preserve any

given moment of order s ∈ (0, 2] for the output of each layer. The motivation is that the

stochastic gradient updates can result in heavy-tailedness in the distribution of the net-

work weights with a potentially infinite variance, but finite s-order moment [142]. Again,

these initialization schemes can only be applied for feed-forward neural networks.

For more complex architectures, normalization layers [20, 143] and skip connec-

tions [19] stabilized training dynamics and improved the state-of-the-art. Similarly, learn-

ing rate warmup is a common trick for training large Transformers [23]. These methods

make training tractable for some models, but do not eliminate the high initial gradient

variance that destabilizes training when the network is deep [14, 136, 137] or when the

normalization layers are not carefully positioned [134].

Several authors have proposed better initializations for networks with skip connec-

tions. This is often achieved by replacing the normalization layers with simpler scaling

or bias operations, and scaling the weight matrices in each layer so that the variance of

activations does not increase with depth [14, 136–138]. Similar analysis has been applied

to self attention in Transformers [135]. Without removing the normalization layers, it

is possbile to stabilize the initial parameter updates by introducing carefully initialized

72

learnable scale factors to the skip connections [15] or the residual branches [144]. How-

ever, such techniques are often restricted to one specific architecture such as ResNets.

Recently, Dauphin and Schoenholz [6] proposed a task-agnostic and automatic ini-

tialization method, MetaInit, for any neural network achitecture. MetaInit optimized the

norms of weight tensors to minimize the “gradient quotient”, which measures the effect

of curvature near the initial parameters, on minibatches of random Gaussian samples.

However, as training data is usually accessible for most tasks of interest, it is simpler and

potentially more efficient to use the training data for initialization. MetaInit also involves

the gradient of a Hessian-vector product that requires computing a “gradient of the gra-

dient” multiple times in tandem, which is very computationally intensive. Our proposed

method distinguishes itself from MetaInit in the following ways: (i) Our method is more

computationally efficient. MetaInit involves computing third-order derivatives, results in

long computing times and high memory usage. The memory overhead of MetaInit is more

of an issue for networks with normalization layers. For the relatively small-scale CIFAR-

10 problem with batch size 64, MetaInit requires three GPUs (RTX 2080Ti), while the

proposed GradInit needs just one. (ii) Our method takes the stochasticity of minibatches

into consideration. MetaInit uses the local curvature evaluated on a single minibatch,

which fails to capture the variance of the loss/gradient between two different stochastic

minibatches. (iii) Our method considers the training dynamics of different optimization

algorithms including the learning rate and the direction of the gradient step, and effec-

tively handles different optimizers including SGD and Adam.

73

4.1.2 Our contributions

In this work, we propose a simple method for learning the initialization of a network

with any architecture. Typically, initialization schemes draw parameters independently

from a zero-mean distribution, with the variance of each distribution set to pre-determined

values depending on the dimensions of the layers [16, 133]. Rather than deriving a closed-

form expression for the these distribution parameters, our method re-scales each random

weight tensor (e.g. convolution kernels) directly by a learned scalar coefficient. This

small set of coefficients is optimized to make the first step of a stochastic optimizer (e.g.

SGD or Adam) as effective as possible at minimizing the training loss, while preventing

the initial gradient norm from exploding. In addition, this process is designed to take

into account the direction, step size, and stochasticity of the optimizer. Finally, after the

variance has been learned for each parameter tensor, the random network parameters are

re-scaled and optimization proceeds as normal. We empirically find that our methods can

make the initialization fall into a smooth loss region, reduce the inter-sample gradient

variance, and accelerates training.

Our proposed method, GradInit, is architecture agnostic, and works with both Adam

and SGD optimizers. In the vision domain, we show it accelerates the convergence and

test performance of a variety of deep architectures, from the vanilla feed-forward VGG

net to ResNet, with or without Batch Normalization. It is efficient and scalable, finding

good initializations using less than 1% of the total training time in our experiments, and it

improves the initialization of ResNet-50 on ImageNet to obtain better final test accuracy.

In the language domain, GradInit enables training the original Transformer model [23]

74

using either Adam or SGD without learning rate warmup for machine translation, which

is commonly acknowledged to be difficult [134, 145]. As an extreme example of the

capabilities of GradInit, we use it to initialize and train a 1202-layer ResNet that achieves

significantly higher test accuracy than ResNet-110, which other initialization methods

have failed to achieve.

Finally, by visualizing the initial norms and gradient variances of the weights before

and after GradInit is applied, we show that GradInit is a useful tool for identifying poten-

tial causes for instability at initialization, such as those imposed by normalization layers,

and we summarize interesting scale patterns learned by GradInit that can be helpful for

designing better initialization rules.

4.2 GradInit: an Automated Initialization

We aim to develop an initialization scheme applicable to arbitrary network architec-

tures. Since previous works [6, 14, 16, 133, 136, 138] have shown that the initial weight

norms effectively control the initial gradient norm on average, our method rescales the

randomly initialized weight matrices using learnable scale factors.1

Using a small number of gradient descent steps on these scale factors, the proposed

GradInit method chooses the initialization scalars so that the loss after the first gradient

step taken by a stochastic optimizer (SGD or Adam) is as low as possible. The process

of learning initialization coefficients accounts for the chosen learning rate, optimizer, and

other parameters. To prevent gradient explosion, our method enforces a constraint that

1For convenience, we refer to weight vectors/matrices/tensors as “weight matrices”, which includes the
scale vectors of the normalization layers, the bias vectors, the weight matrices of the fully connected layers,
and the convolution kernels.

75

the gradient norm is no larger than a constant γ.

Note that for scale-invariant weights, e.g., convolution kernels before BN layers,

rescaling still changes their learning dynamics by changing their effective learning rate [146,

147]. Empirically, GradInit goes beyond simply preventing exploding or vanishing gradi-

ents; it also reduces the gradient variance, making the initialization fall into a smooth loss

region with small gradient variance so that training is fast, see discussion about Figure 4.1

and comparisons in Figure 4.2.

4.2.1 Efficient Learning-based Initialization via Constrained Optimiza-

tion

We begin by filling all the weight matrices {W1, . . . ,WM} of the network with val-

ues drawn from independent zero-mean Gaussian distributions, except for the scales and

biases of the normalization layers (if any), which are initialized to 1 and 0 respectively.

During the initialization process, we keep {W1, . . . ,WM} constant, but we multiply each

Wi with a learnable non-negative scale factor αi (initialized to 1). After initialization, we

rescale the weights by the learned scale factors, and start training without the learnable

scale factors just as normal. We use m = {α1, . . . , αM} to denote the set of scale factors,

and θm = {α1W1, . . . , αMWM} is the set of rescaled weight matrices.

Let L(S;θ) = 1
|S|

∑
x∈S ℓ(x;θ) be the average loss of the model parameterized by

θ on a minibatch of samples S, where |S| is the number of samples in the minibatch. We

use gS,θ = ∇θL(S;θ) as a shorthand for the gradient of θ. During standard training, this

gradient is preprocessed/preconditioned by the optimization algorithm A, and then used

76

to update the network parameters. GradInit solves the following constrained optimization

problem:

minimize
m

L(S̃;θm − ηA [gS,θm]),

subject to ∥gS,θm∥pA ≤ γ,

(4.1)

where S and S̃ are two different minibatches, η is a prescribed learning rate for the op-

timization algorithm A, pA is the ℓp-norm associated with A, and γ is the upper bound

for the norm. For the first gradient step, Adam uses A[gS,θm] = sign(gS,θm) [148], while

SGD uses A[g(S;θm)] = γg(S;θm)/∥g(S;θm)∥2. We show how to choose γ and pA

without tuning in Section 4.2.4. We discuss the formulation of this problem and how to

solve it below.

4.2.2 Solving the Constrained Problem

The problem equation 4.1 is solved using a stochastic gradient descent method in

which we sample new mini-batches on each iteration. Since the proposed method uses

gradient updates to compute the initialization, we dub it GradInit. We propose a simple

solver to optimize objective equation 4.1 in Algorithm 4. A key feature of our method is

that is makes a simple approximation: after gS,θm is computed on the forward pass of an

iteration, we treat A[gS,θm] as a constant and do not back-propagate through A[gS,θm] on

the backward pass. We make this choice to keep computing costs low, and because it is

not possible to back-propagate through the non-differentiable sign function for Adam.

To enforce the constraint in equation 4.1, we test whether the constraint is sat-

77

Algorithm 4 GradInit for learning the initialization of neural networks.
Input: Target optimization algorithm A and learning rate η for model training, initial model pa-

rameters θ0, learning rate τ of the GradInit scales m, total iterations T , upper bound of
the gradient γ, lower bound for the initialization scalars α = 0.01.

Output: Learned scales mT+1.
m1 ← 1
for t = 1 to T do

Sample St from training set;
Lt ← 1

|St|
∑

xk∈St
ℓ(xk;θmt), gt ← ∇θLt;

if ∥gt∥pA > γ then
mt+1 ←mt − τ∇mt∥gt∥pA ;

else
Sample S̃t from training set;
L̃t+1 ← 1

|S̃t|
∑

xk∈S̃t
ℓ(xk;θmt − ηA[gt]);

mt+1 ←mt − τ∇mtL̃t+1;
end
Clamp mt+1 using α;

end

isfied after computing g(S;θm). If not, we take a gradient descent step to minimize

∥g(S;θm)∥pA , which involves computing second order derivatives. If the constraint is

satisfied, then we instead compute a gradient descent step for the loss. In addition, we

set a lower bound α = 0.01 for all αi. We find that this prevents scalars from landing on

small values during minimization and keeps the GradInit optimizer stable. In our experi-

ments, we find the only layer that ever hit this lower bound is the final FC layer on some

networks (see the figures in Section 4.3.1). We find this procedure converges reliably

within 2000 iterations for ImageNet, and fewer than 400 iterations for CIFAR-10, taking

less than 1% of the total training time on both problems. We also find it works well to set

the step size τ to values within the range between 10−3 and 10−1. During initialization,

the gradient norm constraint is satisfied for the majority of iterations. The choice of γ, pA

will be discussed in Section 4.2.4.

78

Table 4.1: Accuracies on CIFAR-10 using different overlapping ratios of S̃ and S for
GradInit.

Model |S̃∩S|
|S| Acc1 Accbest

VGG-19
w/o BN

(20.03 M)

0 21.9 ± 4.4 94.5 ± 0.1
0.5 29.3 ± 0.6 94.7 ± 0.02
1 28.7 ± 1.0 94.5 ± 0.1

Table 4.2: Using GradInit without the gradient norm constraint with different overlapping
ratios r to initialize and train a VGG-19 (w/ BN). For both r = 0.5 and r = 1, we tried τ
from the range of 1× 10−4 to 2× 10−2. The first two rows show the results with the best
final test accuracy Accbest among different τ ’s, while the last row shows using a larger τ
for r = 1.

Model
(#Params) r = |S̃ ∩ S|/|S| τ ∥g∥2 Acc0 Accbest

VGG-19
w/ BN

(20.04 M)

0.5 4× 10−3 8.63 ± 0.20 38.37 ± 1.45 94.78 ± 0.08
1 1× 10−4 11.56 ± 0.05 13.81 ± 2.47 94.45 ± 0.07
1 4× 10−3 190.62 ± 7.65 10.30 ± 0.15 93.70 ± 0.17

4.2.3 Stochasticity of mini-batching

The objective in equation 4.1 uses two different mini-batches; S is used to compute

the gradient, and S̃ is used to compute the loss. Ideally, S and S̃ should be independently

sampled from the training set to capture the randomness of the stochastic optimizer. How-

ever, when the network has large initial gradient variance, the gradients on S and S̃ usually

differ a lot, and for S̃, the gradient update step θm − ηA [gS,θm] becomes more similar

to adding random perturbations to the parameters. We find our objective less effective

at accelerating convergence in this case, as shown by the first-epoch accuracy (Acc1) in

Table 4.1. On the other hand, the randomness is not captured if S = S̃. For this case,

we consider removing the gradient norm constraint of GradInit (by setting γ to∞) while

using overlapping ratios r = 1 and r = 0.5 respectively for a VGG-19 (w/ BN) model,

to highlight the different degrees of reliance of the two approaches on the gradient con-

79

straint. As shown in Table 4.2, when r = 1, we have to use the smallest τ , which results

in minimum change to the scale factors, to obtain results that are not significantly worse

than the baseline (Kaiming initialization listed in Table 4.4). It is easy for these large

over-parameterized models to overfit a single minibatch with the scale factors. When

r = 1, GradInit learns a greedy strategy, which increases the gradient as much as possible

to enable a steeper descent that sometimes can reduce the loss on the same minibatch by

more than 50% in just one iteration. The greedy strategy tends to blow up of the gradi-

ent norm at initialization, which hinders convergence and results in a higher dependence

on the gradient norm constraint γ. However, when we use τ = 0.5, GradInit is able to

improve the baseline without any gradient norm constraint.

Without excessive tuning, we find that we get more reliable behavior for different

architectures when S̃ is a mixture of 50% samples from S and 50% re-sampled training

data, and use this setting by default unless otherwise stated.

4.2.4 Setting and Enforcing the Constraint

The constraint in equation 4.1 is included to prevent the network from minimizing

the loss in a trivial way by blowing up the initial gradient. In other words, we want the

optimizer to achieve small loss by choosing an effective search direction rather than by

taking an extremely large step in a sub-optimal direction.

80

4.2.5 Setting the norm constraint through first-order analysis

We show that pA and γ can be set easily with a rule of thumb and without a param-

eter search. From the first-order approximation, we expect the first gradient step to result

in a change in the loss on S as following:

L(S; θm−ηA[gS,θm])−L(S; θm) ≈ −ηA[gS,θm]TgS,θm =

−η∥gS,θm∥22, if A is SGD,

−η∥gS,θm∥1, if A is Adam.

(4.2)

To effectively bound the approximated change in Eq. 4.2, we choose ℓpA to be the ℓ2

and ℓ1 norm for SGD and Adam respectively, so when the constraint is satisifed, the

maximum change in the loss, according to our local approximation, is ηγ2 for SGD and

ηγ for Adam. We recommend setting γ such that ηγ2 = 0.1 for SGD and ηγ = 0.1 for

Adam. According to the linear approximations, this limits the gradient magnitude so that

the first step of SGD can decrease the loss by at most 0.1. This simple rule was used

across all vision and language experiments.

4.2.6 Why a constraint and not a penalty?

Instead of formulating GradInit as a constrained optimization, one can alternatively

formulate it as minimizing the objective with a gradient penalty: minimize
m

L(S̃;θm −

ηA [gS,θm]) + λ∥gS;θm∥pA , where λ > 0 is the penalty strength. The penalized objective

has two drawbacks compared to the constrained one in Eq. 4.1. First, every gradient

descent step on the penalized objective involves second-order gradients due to the gradient

81

Table 4.3: Time cost and accuracy (average of 4 runs) for running one epoch of regular-
ization/constrained form of GradInit.

Model
VGG-19
w/o BN

VGG-19
w/ BN

ResNet-110
w/o BN

ResNet-110
w/ BN

Time (s) 82 vs. 56 100 vs. 62 169 vs. 103 269 vs. 195

λ = 10−4 32.3, 94.6 10.6, 93.1 33.7, 93.9 32.4, 95.2
λ = 10−2 30.4, 94.5 10.4, 93.0 36.7, 94.1 32.6, 95.3
λ = 1 18.2, 74.7 38.5, 95.1 30.7, 94.2 36.5, 95.3
γ = 1 29.3, 94.7 47.8, 95.1 36.2, 94.6 38.2, 95.4

regularization, while the constrained form does not need second-order gradients when the

constraint is satisfied. Second, it is difficult to choose a good λ that works well for all

architectures. By contrast, we set γ by analyzing the first-order approximation mentioned

above, and find the same γ works well for different architectures. The results supporting

these two points are given in Table 4.3.

4.3 Experiments

We evaluate GradInit on benchmark datasets for image classification and machine

translation tasks. For image classification, five different architectures are evaluated for

CIFAR10 [149], and ResNet-50 is evaluated for ImageNet [150]. For machine translation,

we use GradInit to find good initializations for a Post-LN Transformer without any change

to its original architecture on IWSLT-14 De-En [151]. We observe that the method can

remove the necessity of any form of learning rate warmup for both Adam and SGD.

We conduct our experiments in PyTorch. We use the fairseq library for machine

translation [152]. All the experiments on CIFAR-10 and IWSLT-14 DE-EN can run with

one single NVIDIA RTX 2080 Ti GPU with 11GB of RAM.

82

GradInit first initializes the weights using Kaiming initialization [16] for all the

Conv and FC layers for image classification. For machine translation, we use the default

Xavier initialization [133]. We optimize the scale factors {αi} with Adam [73] using the

default momentum parameters.

4.3.1 Image Datasets with Various Architectures

The introduction of Batch Normalization (BN) [20] and skip connections makes it

relatively easy to train common CNNs for image classification to achieve high accuracy.

Despite this, we show that when the network is very deep, the network is unstable even

when both BN and skip connections are used, and GradInit can significantly improve the

stability. The results on CIFAR-10 are given in Table 4.4 and results on ImageNet are

given in Table 4.8.

4.3.1.1 Settings

Settings. On CIFAR-10, we focus on the feedforward VGG net and the prevalent

and powerful ResNet, with and without BN layers. For networks without BN, we use

learnable biases in all layers. For ResNet, we additionally evaluate a deep 1202-layer

version. We give results for other architectures (Wide ResNet, DenseNet) in Table 4.5.

We compare with four different methods/settings: 1) Kaiming Initialization [16]; 2) First

train the network for one epoch with a constant learning rate equal to the starting learning

rate, labelled as “+1 epoch (Const. LR)” in Table 4.4; 3) First train the network for one

epoch with a linear warmup learning rate, labbeled as “+1 epoch (Warmup)” in Table 4.4;

83

4) MetaInit [6].

On ImageNet, we use the ResNet-50 model [19]. We compare with Kaiming Ini-

tialization, FixUp initialization [136] and MetaInit. For the ResNet-50 without BN, we

follow the architecture of FixUp for fair comparisons, but we still use the original Kaim-

ing initialization as the starting point of GradInit.

Architectures. The base architectures include a popular variant of VGG-19 [153]

with BN for CIFAR-10, which includes all the sixteen convolutional layers but only one

fully connected layer; a ResNet-110 [19] with base width 16 and two Conv layers in

each residual block, as well as its 1202-layer verison with the same depth configurations

as FixUp; a 28-layer Wide ResNet [154] with Widen Factor 10 (WRN-28-10) ; and a

DenseNet-100 [83]. To isolate the effect of BN, we also consider removing the BN layers

from these three networks and adding learnable bias parameters in their place. To com-

pare with a strong initialization scheme that is tailor-made for an architecture family, we

consider a 110-layer FixUpResNet [136]. FixUpResNet removes the BN from ResNet,

replacing it with bias parameters and a learnable scale parameter after the second con-

volutional layer of each block. FixUp initializes the weights of the second convolutional

layer in each residual block, and of the final fully connected layer, to zero. It also scales

the first convolutional layer in each residual block by 1/
√
M . This causes the gradient to

be zero in the first step for all layers except for the final FC layer. When testing GradInit

on this architecture, we adopt the non-zero Kaiming initialization to all convolutional and

FC layers. The results are given in Table 4.5.

Hyperparameters. We set A to SGD and η = 0.1 (the same as the base learning

rate) for GradInit in all image classification experiments. On CIFAR-10, we train net-

84

works with a batch size of 128. We find MetaInit often takes 2 to 3 times as much memory

as GradInit. We run GradInit or MetaInit for one epoch on the data, which takes less than

1% of the total training time. For GradInit, according to our analysis in Section 4.2.4, we

fix the gradient norm constraint γ = 1 in all these experiments. Therefore, as in MetaInit,

the only hyperparameter that needs to be tuned is the learning rate τ of the scale factors.

We do a grid search on τ in the range [10−3, 10−1], and report the results with the best

average final test accuracy on 4 runs. After GradInit initialization, we use a learning rate

of 0.1 and the cosine annealing learning rate schedule without restart [155] to train the

model for 200 epochs, where the learning rate decays after each iteration and decays to 0

in the last iteration. Due to their high initial gradient variance (see Figure 4.6), we have

applied gradient clipping (maximum norm is 1) to all non-BN networks so that they con-

verge without GradInit under the same schedule. We use batch size 128 to train all mod-

els, except for DenseNet-100, where the recommended batch size is 64.2 We use random

cropping, random flipping and cutout [156] for data augmentation. We do not use dropout

in any of our experiments. We set weight decay to 10−4 in all cases. As in Algorithm 4,

each scale factor is initialized to 1 and we set lower bounds α = 0.01. For each architec-

ture, we try τ from {10−3, 2×10−3, 5×10−3, 10−2, 2×10−2, 5×10−2, 10−1}, and report

the results of 4 runs with the best τ . We find the best τ for VGG-19 (w/o BN), VGG-19

(w/ BN), ResNet-110 (w/o BN), ResNet-110 (w/ BN), FixUpResNet, DenseNet-100 (w/o

BN), DenseNet-100 (w/ BN) are 10−2, 10−1, 5× 10−2, 5× 10−3, 2× 10−2, 5× 10−3, 10−2

respectively.

On ImageNet, we train the ResNet-50 model for 90 epochs with a total batch size

2https://github.com/gpleiss/efficient_densenet_pytorch

85

https://github.com/gpleiss/efficient_densenet_pytorch

of 256 on 4 GPUs. Due to the difference in the library for training and the number of

GPUs used, which affects the BN statistics, our baseline top-1 accuracy of ResNet-50 (w/

BN) on ImageNet is 0.79% lower than [157]. We use SGD with a starting learning rate

of 0.1 and decay the learning rate by 10 after the 30th and 60th epoch. We use random

cropping and flipping as data augmentation. For experiments without BN, we additionally

apply MixUp [158] with α = 0.7 for all models, for fair comparisons FixUp. We train

the models for 90 epochs and decay the learning rate by a factor of 10 every 30 epochs.

To fit into the memory, we use a batch size of 128 for GradInit. We simply run GradInit

for 2000 iterations, which is less than half an epoch. Considering ImageNet and CIFAR-

10 has 1000 and 10 classes respectively, the cross entropy loss of a random guess on

ImageNet is 3 times as large as the loss on CIFAR-10, so a proper initial gradient norm

for ImageNet may be 3 times as large as that for CIFAR-10. Therefore, we set γ = 3 for

ImageNet. Since τ = 10−2 worked the best for ResNet-110 (w/ BN) on CIFAR-10, we

tried τ ∈ {1 × 10−3, 3 × 10−3, 5 × 10−3, 10−2} on ImageNet, and chose τ = 3 × 10−3,

which maximizes the test accuracy of first epoch.

4.3.1.2 Results and Analysis

GradInit further stabilizes feedforward nets with BN. BN does stabilize VGG-

19 and allows training without gradient clipping, but with an average first-epoch test

accuracy of only 12.57 and an average final test accuracy lower than the version without

BN (see Table 4.4), it does not seem to eliminate the instability of Kaiming initialization.

As shown in Figure 4.4, its initial gradient variance is still relatively high compared with

86

Table 4.4: First epoch (Acc1) and best test accuracy over all epochs (Accbest) for models
on CIFAR-10. We report the mean and standard error of the test accuracies in 4 experi-
ments with different random seeds. Best results in each group are in bold.

Model

(# Params)

VGG-19
w/o BN

(20.03M)

VGG-19
w/ BN

(20.04M)

ResNet-110
w/o BN
(1.72M)

ResNet-110
w/ BN

(1.73M)

ResNet-1202
w/ BN

(19.42M)

Kaiming
Acc1 29.1 ± 1.5 12.6 ± 0.6 16.1 ± 2.1 23.2 ± 0.9 12.9 ± 2.8
Accbest 94.5 ± 0.1 94.4 ± 0.1 94.2 ± 0.1 95.0 ± 0.2 94.4 ± 0.6

+1 epoch
(Const. LR)

Acc1 37.2 ± 1.1 19.6 ± 4.0 21.0 ± 3.8 32.5 ± 3.8 12.6 ± 2.8
Accbest 94.4 ± 0.1 94.5 ± 0.1 93.9 ± 0.4 94.7 ± 0.3 94.0 ± 0.4

+1 epoch
(Warmup)

Acc1 37.4 ± 1.2 53.5 ± 2.9 19.8 ± 0.5 48.7 ± 1.1 28.1 ± 1.3
Accbest 94.4 ± 0.1 94.7 ± 0.1 94.1 ± 0.1 95.1 ± 0.1 95.4 ± 0.2

MetaInit
Acc1 30.5 ± 0.9 35.1 ± 0.6 14.6 ± 2.2 29.0 ± 1.5 11.7 ± 1.6
Accbest 94.6 ± 0.1 94.6 ± 0.1 94.2 ± 0.1 94.8 ± 0.1 95.0 ± 0.5

GradInit
Acc1 29.3 ± 0.6 47.8 ± 1.8 36.2 ± 0.8 38.2 ± 0.9 29.0 ± 1.1
Accbest 94.7 ± 0.1 95.1 ± 0.1 94.6 ± 0.1 95.4 ± 0.1 96.2 ± 0.1

Table 4.5: First epoch (Acc1) and best test accuracy over all epochs (Accbest) for models
on CIFAR-10. We report the mean and standard error of the test accuracies in 4 exper-
iments with different random seeds. Best results in each group are in bold. For WRN,
we have additionally used MixUp during training to enhance the results, but we do not
consider mixup for GradInit to test its transferability to different training regularizations.
Its result with MetaInit comes from the MetaInit paper.

Model

(# Params)

WRN-28-10
w/ BN

(36.49M)

FixUpResNet
N/A

(1.72M)

DenseNet-100
w/o BN
(0.75M)

DenseNet-100
w/ BN

(0.77M)

Kaiming
Acc1 43.1 ± 2.7 38.2 ± 0.8 35.5 ± 0.6 51.2 ± 1.5
Accbest 97.2 ± 0.1 95.4 ± 0.1 94.0 ± 0.1 95.5 ± 0.1

MetaInit
Acc1 - 21.5 ± 0.6 35.1 ± 0.2 46.7 ± 4.0
Accbest 97.1 95.0 ± 0.1 94.4 ± 0.1 95.5 ± 0.1

GradInit
Acc1 46.3 ± 0.4 35.0 ± 0.7 37.2 ± 1.1 58.2 ± 0.9
Accbest 97.3 ± 0.1 95.4 ± 0.1 94.9 ± 0.1 95.5 ± 0.1

87

GradInit. BN could magnify the gradient variance when the variance of its input features

(in the forward pass) is smaller than 1 (see Section 4.4.1). GradInit reduces the gradi-

ent variance by 4 orders of magnitude compared to Kaiming initialization , resulting in

significantly higher test accuracy after the first epoch (47.79% vs. 12.57%), which also

has an impact on the final test accuracy (95.13% vs. 94.41%). The reduction in gradient

variance is achieved mainly by scaling down the weights of the final FC layer and the

last 2 BN layers, so that the variance of the activations is reduced in the forward pass.

This learned behavior is consistent with the strategy of FixUp, where the final FC layer is

initialized to 0. Another source of gradient variance reduction is achieved by increasing

the weight norms of the remaining Conv and BN layers, so that the variance of the inputs

to the BN layers is increased and the gradient magnifying effect of BN is alleviated in the

backward pass. This reduced the ratio σ(g1)/σ(g16) from 204.9 to 164.8 for the Conv

layers in Figure 4.4. By contrast, FixUp only reduces the weight norms, which may not

always be the best solution for networks with normalization layers.

Deep residual networks still need better initializations. We also gain significant

improvements from GradInit for ResNet-110 and ResNet-1202. In ResNets, the skip

connections cause the variance of activations to accumulate as the ResNet goes deeper,

even for the version with BN [14]. This issue is more significant when the ResNet scales

to 1202 layers, from which we can see that with Kaiming initialization, the first-epoch

accuracy of ResNet-1202 is quite low, and the final test accuracy is even worse than

the shallower ResNet-110, matching the observations of He et al. [19]. Warmup is even

more effective than MetaInit at accelerating the convergence and improving the final test

accuracy of ResNet-1202, but GradInit still outperforms its final test accuracy by 0.8%,

88

0 15 30 45 60 75 90 105
Layer

100

101

102

�
(g

i)
/|E

[g
i]
|

�(gi)/|E[gi]| of ResNet-110 Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

100

101

102

�
(g

i)
/|E

[g
i]
|

�(gi)/|E[gi]| of ResNet-110 BN weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

101

2⇥ 100

3⇥ 100

4⇥ 100

6⇥ 100

||W
i||

||Wi|| of ResNet-110 BN weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

10�1

100

101

||W
i||

||Wi|| of ResNet-110 Linear weights

Kaiming’s

GradInit

0 6 12 18 24 30 36 42 48
Layer

10�2

10�1

100

101

102

103

�
(g

i)
/|E

[g
i]
|

�(gi)/|E[gi]| of ResNet50 Linear weights

Kaiming’s

GradInit

0 6 12 18 24 30 36 42 48
Layer

100

101

102

||W
i||

||Wi|| of ResNet50 Linear weights

Kaiming’s

GradInit

0 6 12 18 24 30 36 42 48
Layer

10�2

10�1

100

101

102

�
(g

i)
/|E

[g
i]
|

�(gi)/|E[gi]| of ResNet50 BN weights

Kaiming’s

GradInit

0 6 12 18 24 30 36 42 48
Layer

100

101

||W
i||

||Wi|| of ResNet50 BN weights

Kaiming’s

GradInit

Figure 4.1: Top row: results of ResNet-110 on CIFAR-10. Bottom row: results of
ResNet-50 on ImageNet. Left two columns: compare the relative cross-batch gradient
variance on the training set for the BN and Conv/FC layers before and after GradInit.
Right two columns: weight norms before and after GradInit. Ratio between points in
the same layer reflects the scale factor. Note each of the residual blocks has 2 and 3
Conv and BN layers for the ResNet-110 and ResNet-50, respectively. The initial relative
gradient variance are reduced for all layers except the final linear layer in both settings.
The strategies are similar on two different datasets. Within each residual block, the last
BN layer has the smallest scaling factors, and the scales of all Conv layers are surprisingly
increased. Best viewed in color.

Figure 4.2: Comparing the convergence of Kaiming Initialization and GradInit on
CIFAR-10, for models trained with SGD (left three) and Adam (right).

89

and the resulting ResNet-1202 finally achieved higher accuracy than ResNet-110.

The learned layer-wise rescaling patterns of GradInit are even more interesting for

ResNets with BN. For ResNets with BN, recall that we have two Conv layers and two

BN layers in each residual block. As shown in Figure 4.1, GradInit learns to increase the

weight norms of all the linear layers except for the final FC layer, instead of decreasing

as for the case without BN (see Figure 4.6). A more unique pattern is the collaborative

behavior of the BN weights, where the second BN in each residual block is usually scaled

down while the first BN is always scaled up. In deeper layers, the joint effect of these

two BN weights is to downscale the activations and reduce their variance in the forward

pass, with a more significant reducing effect as the layers get deeper. Intuitively, the

marginal utility of adding a new layer decreases with depth. Therefore, for deeper layers,

GradInit learns to further downscale the residual branch, and prevents the variance from

increasing too much in the forward pass. Inside each residual block, increasing the scale

factors of the first BN helps to reduce the magnification effect of the second BN on the

gradient; forcing the input activations to the second convolution to have variance larger

than 1 ensures its variance after the following convolution layer does not go below 1,

avoiding the magnification effect that the second BN has on the gradient variance. See

Section 4.4.1 for more discussions about the magnifying effect.

Table 4.6: Comparing the results of GradInit with fixed BN scale parameters (Fix BN)
and only rescale the BN parameters (Only BN).

Kaiming GradInit GradInit (Fix BN) GradInit (Only BN)
Model Acc0 Accbest Acc0 Accbest Acc0 Accbest Acc0 Accbest

VGG-19 (w/ BN) 12.6 ± 0.6 94.4 ± 0.1 47.8 ± 1.8 95.1 ± 0.1 13.1 ± 0.9 94.6 ± 0.1 14.4 ± 2.1 94.4 ± 0.1
ResNet-110 (w/ BN) 23.2 ± 0.9 95.0 ± 0.2 38.2 ± 0.9 95.4 ± 0.1 24.7 ± 3.1 94.7 ± 0.3 25.4 ± 3.1 94.6 ± 0.3

Generalizing to Adam. Models in previous experiments are trained with SGD. We

90

Table 4.7: Comparing the results with multiplying each weight matrix with a learnable
scaler (Learning Scalars) on CIFAR10. The VGG-19 model is not able to converge unless
we reduce the initial learning rate to 0.01, which obtained worse final accuracy. The
ResNet-110 model’s Acc0 was 10% for 2 of the 4 runs.

Model Learning Scalars GradInit
Acc0 Accbest Acc0 Accbest

VGG-19 (w/ BN, lr=0.1) 10.0 ± 0.0 10.0 ± 0.0 47.8 ± 1.8 95.1 ± 0.1
VGG-19 (w/ BN, lr=0.01) 50.6 ± 0.8 93.4 ± 0.1 - -
ResNet-110 (w/ BN) 21.5 ± 6.9 94.7 ± 0.1 38.2 ± 0.9 95.4 ± 0.1

also consider the case when A is Adam and use AdamW [159] to train the ResNet-110

(w/ BN) model on CIFAR-10. Following [160], we use a cosine annealing learning rate

schedule with initial learning rate 3 × 10−3 and weight decay 0.2. For GradInit, we set

γ = 25. The Acc1 and Accbest of Kaiming initialization and GradInit are (36.6 ± 4.7,

94.9 ± 0.1) and (40.2 ± 0.2, 95.3 ± 0.1), respectively. We also show the per-epoch test

accuracy in Figure 4.2.

The importance of rescaling BN layers. The scale parameters of BN layers usu-

ally controls the variance of activations and gradients in the forward and backward passes,

while the linear layers right before the BN layers are scale-invariant. Although changing

the magnitudes of the scale-invariant layers affect their learning dynamics [146, 147],

we find it important for GradInit to rescale both BN and other linear layers, as shown in

Table 4.6.

The importance of GradInit’s objective. GradInit is designed to rescale the lay-

ers to solve the constrained optimization problem in Eq. 4.1. Simply letting the model

to learn to rescale the layers cannot improve the results, and sometimes further causes

instability, as shown in Table 4.7. We hypothesize that the bad results with VGG are due

to a mismatch between the scales/norms of the gradients of the scalars and the weights.

91

To make this alternative work, we may need to set different learning rates for the scalars

and the weights, which adds to the difficulty of hyperparameter tuning. Note we do not

learn the scalars when training networks initialized by GradInit.

Table 4.8: Acc1/Accbest of ResNet-50 models on ImageNet. Result of MetaInit comes
from Dauphin and Schoenholz [6] and we reimplemented the rest.

Kaiming FixUp MetaInit GradInit

w/ BN 14.6/75.9 - - 19.2/76.2
w/o BN - 18.0/75.7 -/75.4 19.2/75.8

GradInit scales to ImageNet. As shown in Table 4.8, GradInit also accelerates

convergence and improves test accuracy of ResNet-50 on ImageNet, with or without BN

layers, despite having to use a smaller batch size for GradInit than training due to our

GPU memory limit. The acceleration achieved by GradInit is even more significant than

FixUp, even on the network with the architecture designed for the initialization.

Improved Implementation of MetaInit. MetaInit was originally designed to be

task-agnostic, and learns to initialize the network with random samples as inputs. Here,

for fair comparisons, we also feed training data to MetaInit, as this should intuitively

improve MetaInit for the specific task, and use Adam with the same gradient clipping

to optimize the weight norms for MetaInit. Originally, MetaInit [6] uses signSGD with

momentum [161], but we found using Adam with the hyperparameters above can give

better results for MetaInit. Table 4.9 shows the comparison before and after the changes.

Table 4.9: Acc1, Accbest for different versions of MetaInit (4 runs). “rand.”: using random
data. “real”: using real data.

config vgg19 w/o BN vgg19 w/ BN res.110 w/o BN res.110 w/ BN
rand. + signSGD 29.08, 94.36 15.62, 94.53 15.91, 93.91 24.47, 94.93
real + signSGD 30.89, 94.41 16.58, 94.46 16.21, 94.29 26.28, 94.95
real + Adam 30.48, 94.62 35.09, 94.64 14.55, 94.19 29.00, 94.76

92

4.3.2 Training the Original Transformer Model without Warmup

For a Transformer model to converge, either an explicit or implicit learning rate

warmup stage is needed, especially for the original Transformer architecture. It is ob-

served that this Post-LN architecture tends to outperform the Pre-LN model [15] while

having higher gradient variance at initialization [134]. Is it believed that this high variance

makes a warmup stage inevitable. Previous works that removes the warmup stage often

involves architectural changes, e.g., removing Layer Normalizations, since it can surpris-

ingly cause instability [134]. Here, we show that with a proper initialization, we can do

away with the warmup stage for the original Post-LN Transformer without any modifica-

tion to the architecture. Table 4.10 summarizes the architectural changes and best results

of methods for improving the initialization of Post-LN Transformers. We compare the

stability of the GradInit and Admin initialization methods without warmup in Figure 4.3.

Table 4.10: A comparison of GradInit with with the results from the papers (top 4 rows),
and our reimplementation of Admin for training the Post-LN Transformer model on the
IWSLT-14 De-EN dataset. “Standard” refers to training with standard initialization and
warmup.

Method Remove LN wskip Warmup Optimizer BLEU

Standard [15] ✓ RAdam 35.6
FixUp [136] ✓ ✓ Adam 34.5
T-FixUp [135] ✓ Adam 35.5
Admin [15] ✓ RAdam 35.7

Admin ✓ Adam 36.1
Admin ✓ SGD 33.7
GradInit ✓ Adam 36.0
GradInit Adam 36.1
GradInit SGD 35.6

Dataset, Architecture, & Hyperparameters.

IWSLT’14 DE-EN [151] is a German to English translation dataset that has 160k

93

training examples. Our Transformer model is inherited from [23], which is a Post-LN

Transformer placing its Layer Normalization after the summation of the skip connection

and the residual branch. It has a 512-dimensional word embedding layer and 1024 dimen-

sions in its hidden FFN layer. We also apply GradInit to the variant from Admin [15],

where a learnable vector wskip is element-wise multiplied with each dimension of the

skip connection, but we initialize it to 1 for GradInit. Please refer to [15] for how Admin

initializes these weights. Following [15], we use a linearly decaying learning rate sched-

ule that decays from the maximum learning rate ηmax to 0 as the model trains for 100K

iterations. For training with SGD, we set the prescribed learning rate ηmax = 0.15, and

use η = 0.15, γ = 1 for GradInit. We do a grid search on ηmax for Admin and report its

best result in Table 4.10. For training with Adam, we set η = 5 × 10−4, γ = 103 for the

objective of GradInit, so that ηγ is O(10−1) as discussed in Section 4.2.4. We train the

initialized model ηmax and β2 as listed in Figure 4.3. We evaluate the BLEU score every

epoch, and report the best BLEU scores throughout training for each run. For GradInit,

we set the maximum number of iterations T to 780. By comparison, the warmup stage

usually takes 4000 iterations, and we find that if we use 780 steps for warmup, the model

does not converge with ηmax ≥ 3 × 10−4. For ηmax = 2 × 10−4 with 780-step warmup,

the BLEU score is 35.4, worse than GradInit’s 36.0, showing the advantage of GradInit

against warmup.

Stability after removing warmup for Adam. In Figure 4.3, the training process

becomes more unstable as β2 grows larger. From the analysis of RAdam [162], this is

because the variance of the gradient has a stronger impact on the adaptive learning rate

when β2 is closer to 1. Therefore, the largest β2 < 1 that maintains the performance of

94

0.98 0.99 0.995

2× 10−4

3× 10−4

4× 10−4

5× 10−4

35.4 35.4 35.5

35.8 35.9 35.9

36.1 36.1 27.1

0.4 0.4 0.2

Admin (w/ wskip)

0.98 0.99 0.995

35.3 35.3 35.3

35.7 35.8 35.7

36.0 36.0 35.9

35.9 36.0 36.0

GradInit (w/ wskip)

0.98 0.99 0.995

35.3 35.5 35.4

35.8 35.9 35.7

35.9 36.0 36.0

35.6 36.1 8.9

GradInit (w/o wskip)

34.0

34.5

35.0

35.5

36.0

Figure 4.3: BLEU scores for the Post-LN Transformer without learning rate warmup
using Adam on IWSLT-14 DE-EN under different learning rates ηmax (y axis) and β2 (x
axis). Each result is averaged over 4 experiments.

the trained model reflects the stability of the initialization. We can see GradInit results in

more stable models than Admin in general, though their best performance numbers are

almost the same. In addition, we find wskip can help stabilize training in extreme hyper

parameter settings, e.g., at ηmax = 5× 10−4 and β2 = 0.995 in Figure 4.3, GradInit with

wskip obtains a good average BLEU score of 36.0, while without wskip only succeeded

in obtaining a BLEU score > 35 for one out of four experiments, resulting in an average

BLEU score of 8.9. We also find the network is unable to be trained without learning rate

warmup if we just fix wskip to its initial value given by Admin and leave the initialization

of other parameters unchanged. Nevertheless, with GradInit, we do not need to modify the

architecture of Post-LN Transformer to obtain the same good result as Admin. For a closer

look at the stabilization mechanism, we show the weight norms and gradient variance at

initialization of the original Post-LN architecture using GradInit and Xavier initialization

in Figure 4.9 of Section 4.4.2. For Xavier initialization, the gradient variance is relatively

higher for all encoder layers, so GradInit downscales the encoder layer weights more in

general. For the LN weights, GradInit only downscales the final LN of both the encoder

95

and decoder, which reduces the variance of the encoder and decoder during the forward

pass. Another strategy GradInit learns is to downscale the weights of the output projection

and the FFN layers, so that the residual branch is relatively down-weighted compared with

the skip connection, similar to Admin.

Removing warmup without architectural change. Another widely observed phe-

nomenon is that adaptive methods such as Adam seem to be much better than SGD for

training Transformer-based language models [145]. Table 4.10 shows that, with GradInit,

we can find a good initialization for the Post-LN Transformer on IWSLT-14 DE-EN that

trains using SGD without learning rate warmup nor gradient clipping, and achieves per-

formance close to Adam trained using the same type of learning rate schedule. By com-

parison, Admin also makes the Transformer trainable with SGD, but the BLEU score is

lower than the one initialized with GradInit. By comparing Figures 4.9 and 4.10, we find

GradInit for Adam and SGD adopts different rescaling patterns, with the Adam version

depending more on downscaling the residual branches through the FFN and output pro-

jection layers than the SGD version, and the SGD version downscaling more in the final

FFN block of the decoder. This highlights the importance of considering the optimization

algorithm A in GradInit, and also indicates the presence of different ways to reduce the

initial gradient variance.

96

4.4 Rethinking the Learned Initializations

4.4.1 Magnification Effect of BN

Intuitively, if we stop the gradient passing through the mean and bias of the BN

layer during backpropagation, the BN layer will magnify the gradient variance when the

variance of its input features is smaller than 1 in the forward pass. Here we show its

magnification effect analytically for the practical case where the gradient is not stopped

for the mean and bias of the BN layer. From the input to the output, the layers are usually

ordered as Linear, BN, Activation. Without loss of generality, we assume the linear layer

before BN is X = ZW + b, where the output features X = [x1, ...,xn]
T ∈ Rn×d, the

input activations Z ∈ Rn×k, n is the number of samples and d, k are the dimension of each

feature vector. Batch Normalization normalizes each activation vector xi as following

yi = γ
xi − µ√
σ2 + ϵ

+ β, (4.3)

where all operators are element-wise, γ,β ∈ Rd are learnable parameters usually initial-

ized to 1 and 0 respectively, ϵ > 0 is a small constant for numerical stability, and

σ2 =
1

n

n∑
i=1

(xi − µ)2,µ =
1

n

n∑
i=1

xi. (4.4)

For most initialization schemes, b is initialized to 0. ϵ is often small and ignorable. Under

these two assumptions, each yi is invariant to the rescaling of W . Rescaling W changes

the scale of xi, σ and µ homogeneously. Therefore, among all the parameters of the

97

network, if we only change W by rescaling it into αW (α > 0), then yi does not change,

and consequently, Var[yi],
∂L
∂yi

and Var[∂L
∂yi

] do not change, but σ2 becomes α2σ2. To see

the magnification effect on the gradient variance during backward propagation, we first

find the relation between ∂L
∂yi

and ∂L
∂(αxi)

under different scales α. In fact,

∂L

∂(αxi)
=

γ

n
√
α2σ2 + ϵ

[
n
∂L

∂yi

−
n∑

j=1

∂L

∂yj

− yi − β

γ

n∑
j=1

∂L

∂yj

· yj − β

γ

]
, (4.5)

where, again, all operations are element-wise. Therefore, when α is larger, the variance

of the input feature α2σ2 is larger, and the gradient variance becomes smaller after prop-

agated through this BN layer. Since Z remains the same, Var
[

∂L
∂W

]
becomes smaller.

This explains why GradInit learns to enlarge the weights of Conv layers in the VGG-19

(w/ BN) experiments. Further, to simplify the analysis and show its magnification effect

on gradient variance when α2σ2 < 1, let γ = 1,β = 0, and we assume each dimen-

sion of ∂L
∂yi

is i.i.d., and yi is independent from ∂L
∂yi

, which is not necessarily a stronger

assumption than [16, 133], then

Var

[
∂L

∂(αxi)

]
=

1

n2(α2σ2 + ϵ)
Var

[
n
∂L

∂yi

−
n∑

j=1

∂L

∂yj

− yi

n∑
j=1

∂L

∂yj

· yj

]

=
1

n2(α2σ2 + ϵ)
Var

[
(n− 1− y2

i)
∂L

∂yi

−
n∑

j=1,j ̸=i

(1 + yiyj)
∂L

∂yj

]

≥ 1

n2(α2σ2 + ϵ)

{
(n− 1)2Var

[
∂L

∂yi

]
+

n∑
j=1,j ̸=i

Var

[
∂L

∂yj

]}

=
n(n− 1)

n2(α2σ2 + ϵ)
Var

[
∂L

∂yi

]
,

(4.6)

98

where the inequality comes from the assumption that yi is independent from ∂L
∂yi

and

the fact that Var[(X + a)Y] ≥ Var[X] + a2Var[Y] (a is a constant) when X, Y are

independent, and the last equality comes from the i.i.d. assumption. Therefore, if ϵ is

ignorable and α2σ2 < n(n−1)
n2 , we will have

Var

[
∂L

∂(αxi)

]
> Var

[
∂L

∂yi

]
, (4.7)

i.e., the BN layer magnifies the gradient variance when α2σ2 is small.

4.4.2 Visualizing the Learned Initializations

In this section, we give weight norms and gradient variances before and after Gra-

dInit is applied on various datasets and networks. We consider DenseNet-100 (w/o BN)

and DenseNet-100 (w/ BN) on CIFAR-10 in Figure 4.7 and Figure 4.8, as well as ResNet-

50 on ImageNet in Figure 4.2. We also compare the weight norms and gradient variances

of the Post-LN Transformer model initialized using GradInit with A set to Adam and

SGD respectively in Figure 4.9 and Figure 4.10.

99

2 4 6 8 10 12 14 16
Layer

10−1

100

||W
i||

1
/d

i

||Wi||1/di of VGG-19 BN weights

Kaiming’s

GradInit

2 4 6 8 10 12 14 16
Layer

10−7

10−6

10−5

10−4

10−3

10−2

σ
(g
i)

σ(gi) of VGG-19 BN weights

Kaiming’s

GradInit

2 4 6 8 10 12 14 16
Layer

10−4

10−3

10−2

10−1

||W
i||

1
/d

i

||Wi||1/di of VGG-19 Linear weights

Kaiming’s

GradInit

2 4 6 8 10 12 14 16
Layer

10−7

10−6

10−5

10−4

10−3

10−2

10−1

σ
(g
i)

σ(gi) of VGG-19 Linear weights

Kaiming’s

GradInit

Figure 4.4: Averaged per-dimension weight magnitudes (∥Wi∥/di) and standard devia-
tion of their gradient (σ(gi)) for each layer i of the VGG-19 (w/ BN) on CIFAR-10. The
ratio between the weight magnitudes of GradInit and Kaiming Initialization is the learned
scale factor of GradInit in each layer. The standard deviation is computed over the mini-
batches, with a batch size of 128, with the BN in its training mode. This VGG-19 on
CIFAR-10 has only one FC layer, but it has the same number of convolutional layers (16)
as its ImageNet version. All the weights are indexed from shallow to deep, so the first
16 entries of the Linear Weights are of Conv layers, while the 17th is the FC layer. Due
to the magnification effect of BN, σ(g1)/σ(g16) for the Conv layers is higher than it is in
VGG-19 without BN, shown in Figure 4.6. GradInit learns to reduce the magnification
effect of BN layers by scaling up all the Conv layers and most of the BN layers, given
it has greatly down scaled the last two BN layers and the final FC layer to reduce the
variance in the forward pass.

0 15 30 45 60 75 90 105
Layer

100

3× 10−1

4× 10−1

6× 10−1

||W
i||

1
/d

i

||Wi||1/di of ResNet-110 BN weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

10−5

10−4

10−3

10−2

10−1

σ
(g
i)

σ(gi) of ResNet-110 BN weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

10−3

10−2

10−1

||W
i||

1
/d

i

||Wi||1/di of ResNet-110 Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

10−5

10−4

10−3

10−2

10−1
σ

(g
i)

σ(gi) of ResNet-110 Linear weights

Kaiming’s

GradInit

Figure 4.5: Averaged per-dimension weight magnitude (∥Wi∥/di) and standard deviation
of their gradient ((σ(gi))) of the Batch Normalization (BN) layers and the linear layers
of the ResNet-110 on CIFAR-10. All the layers are indexed from shallow to deep. The
linear layers include all Conv layers (2 for each of the residual blocks) and the final FC
layer. The ratio between the weight magnitudes of GradInit and Kaiming Initialization is
the learned scale factor of GradInit in each layer. The gradient variance is computed with
a batch size of 128. GradInit finds a combination of weight norms where the gradient
variance is reduced for all layers. Specifically, it learns to further scale down the second
BN layer of each residual block in deeper layers, which is a useful strategy, as deeper
layers should have less marginal utility for the feature representations, and scaling down
those layers helps to alleviate the growth in variance in the forward pass [14]. GradInit
also learns to scale up weights of the first BN layer and all the Conv layers in each residual
block, which alleviates the magnification effect of the BN layers on the gradient variance
during backpropagation, happening if their input features in the forward pass have small
variances. The jump on the curves occur when the dimension of the convolutional filters
changes.

100

2 4 6 8 10 12 14 16
Layer

10−2

2× 10−2

3× 10−2

4× 10−2
||W

i||
1
/d

i

||Wi||1/di of VGG-19-nobn Linear weights

Kaiming’s

GradInit

2 4 6 8 10 12 14 16
Layer

10−5

10−4

10−3

σ
(g
i)

σ(gi) of VGG-19-nobn Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

10−1

2× 10−2

3× 10−2

4× 10−2

6× 10−2

||W
i||

1
/d

i

||Wi||1/di of ResNet-110 (No BN) Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90 105
Layer

10−3

10−1

101

103

105

107

σ
(g
i)

σ(gi) of ResNet-110 (No BN) Linear weights

Kaiming’s

GradInit

Figure 4.6: Averaged per-dimension weight magnitude (∥Wi∥/di) and standard deviation
of their gradient ((σ(gi))) of the VGG-19 (left two) and ResNet-110 (right two) without
BN on CIFAR-10, evaluated with a batch size of 128. For VGG-19 (w/o BN), σ(gi)
increases at Conv layers with different input and output dimensions during backpropa-
gation. For ResNet-110 without GradInit, the gradient variance is very high due to the
cumulative effect of skip connections during the forward pass. In this scenario, to reduce
the gradient variance, there is no reason to increase the weights, so GradInit downscales
the weights for all layers in both architectures, unlike the case with BN.

0 15 30 45 60 75 90
Layer

101

||W
i||

||Wi|| of DensetNet-100 (No BN) Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90
Layer

10−3

10−1

101

103

σ
(g
i)

σ(gi) of DensetNet-100 (No BN) Linear weights

Kaiming’s

GradInit

Figure 4.7: Averaged per-dimension weight magnitudes (∥Wi∥/di) and standard devia-
tion of their gradient (σ(gi)) for each linear layer i in DenseNet-100 (w/o BN). All the
layers are indexed from shallow to deep. The linear layers include all convolutional layers
and the final fully connected layer. Inside each dense block, each layer concatenates all
the preceding features, so their input dimension increases, the weight dimension increases
and the weight norm increases. Compared with Figure 4.6, DenseNet-100 does not signif-
icantly increase the gradient variance during backpropagation. The standard deviation of
the gradient is reduced by around 106 with GradInit, which explains why it is possible to
train DenseNet-100 (w/o BN) without gradient clipping after using GradInit. The major
source of gradient reduction of GradInit comes from reducing the weights in each layer.

0 15 30 45 60 75 90
Layer

100

7× 10−1

8× 10−1

9× 10−1||W
i||

1
/d

i

||Wi||1/di of DensetNet-100 BN weights

Kaiming’s

GradInit

0 15 30 45 60 75 90
Layer

10−6

10−5

10−4

10−3

σ
(g
i)

σ(gi) of DensetNet-100 BN weights

Kaiming’s

GradInit

0 15 30 45 60 75 90
Layer

10−3

10−2

10−1

||W
i||

1
/d

i

||Wi||1/di of DensetNet-100 Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90
Layer

10−6

10−5

10−4

10−3

10−2

σ
(g
i)

σ(gi) of DensetNet-100 Linear weights

Kaiming’s

GradInit

Figure 4.8: Averaged per-dimension weight magnitudes (∥Wi∥/di) and standard devia-
tion of their gradient (σ(gi)) for each (BN or linear) layer i in the DenseNet-100 (w/ BN).
All the layers are indexed from shallow to deep. The linear layers include all convolu-
tional layers and the final fully connected layer. The major source of variance reduction
comes from down-scaling the final FC layer.

101

0 5 10 15 20 25 30
Layer

100

6× 10−1

||W
i||

1
/d

i

||Wi||1/di of Transformer LN weights (Adam)

Xavier

GradInit

0 5 10 15 20 25 30
Layer

10−4

10−3

σ
(g
i)

σ(gi) of Transformer LN weights (Adam)

Xavier

GradInit

5 10 15
Layer

10−2

2× 10−2

3× 10−2

4× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Out-Projections weights (Adam)

Xavier

GradInit

5 10 15
Layer

10−4

10−3

σ
(g
i)

σ(gi) of Transformer Out-Projections weights (Adam)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−2

6× 10−3

2× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer FFN.FC1 weights (Adam)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−4

σ
(g
i)

σ(gi) of Transformer FFN.FC1 weights (Adam)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer FFN.FC2 weights (Adam)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−4

σ
(g
i)

σ(gi) of Transformer FFN.FC2 weights (Adam)

Xavier

GradInit

5 10 15
Layer

2× 10−2

3× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Query-Projection weights (Adam)

Xavier

GradInit

5 10 15
Layer

10−6

10−5

10−4

σ
(g
i)

σ(gi) of Transformer Query-Projection weights (Adam)

Xavier

GradInit

5 10 15
Layer

2× 10−2

3× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Key-Projections weights (Adam)

Xavier

GradInit

5 10 15
Layer

10−6

10−5

10−4

σ
(g
i)

σ(gi) of Transformer Key-Projections weights (Adam)

Xavier

GradInit

5 10 15
Layer

10−2

2× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Value-Projections weights (Adam)

Xavier

GradInit

5 10 15
Layer

10−4

10−3

σ
(g
i)

σ(gi) of Transformer Value-Projections weights (Adam)

Xavier

GradInit

Figure 4.9: Weight norm and averaged per-dimension standard deviation of each weight
of the normalization layers and linear layers in the Post-LN Transformer. Here, GradInit
setsA to Adam. The Transformer has 6 Transformer blocks in its encoder and decoder. In
each plot, we first list the values for weights in the encoder, and then those in the decoder.
Inside each encoder, we first list the weights from the self attention layers and then the
those from the FFN layers. Inside each decoder, we first list the weights in the order of
self attention, encoder attention and FFN. In general, GradInit reduces the variance for all
the weights, except for some of the Query-Projection and Key-Projection weights in the
decoder, which are inside the softmax operations in the self attention blocks. The major
source of gradient variance reduction comes from downscaling the final LN weights of the
decoder, as well as the linear layers of each residual branch (Out-Projection and Value-
Projection weights, FFN.FC1 and FFN.FC2 weights) in each block. The general strategy
is to reduce the norms of Out-Projection, Value-Projection and the FFN layers, which
reduces the magnitude of the feature in the residual branch and better preserves the signal
in the main branch during forward pass, which improves the stability of training. See
detailed analysis by Liu et al. [15].

102

0 5 10 15 20 25 30
Layer

100

6× 10−1

||W
i||

1
/d

i

||Wi||1/di of Transformer LN weights (SGD)

Xavier

GradInit

0 5 10 15 20 25 30
Layer

10−3

σ
(g
i)

σ(gi) of Transformer LN weights (SGD)

Xavier

GradInit

5 10 15
Layer

2× 10−2

3× 10−2

4× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Out-Projections weights (SGD)

Xavier

GradInit

5 10 15
Layer

10−4

10−3

σ
(g
i)

σ(gi) of Transformer Out-Projections weights (SGD)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−2

2× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer FFN.FC1 weights (SGD)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−4σ
(g
i)

σ(gi) of Transformer FFN.FC1 weights (SGD)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−2

2× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer FFN.FC2 weights (SGD)

Xavier

GradInit

2 4 6 8 10 12
Layer

10−4

σ
(g
i)

σ(gi) of Transformer FFN.FC2 weights (SGD)

Xavier

GradInit

5 10 15
Layer

3× 10−2

4× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Query-Projection weights (SGD)

Xavier

GradInit

5 10 15
Layer

10−6

10−5

10−4

σ
(g
i)

σ(gi) of Transformer Query-Projection weights (SGD)

Xavier

GradInit

5 10 15
Layer

3× 10−2

4× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Key-Projections weights (SGD)

Xavier

GradInit

5 10 15
Layer

10−6

10−5

10−4

σ
(g
i)

σ(gi) of Transformer Key-Projections weights (SGD)

Xavier

GradInit

5 10 15
Layer

10−2

2× 10−2

3× 10−2

||W
i||

1
/d

i

||Wi||1/di of Transformer Value-Projections weights (SGD)

Xavier

GradInit

5 10 15
Layer

10−4

10−3

σ
(g
i)

σ(gi) of Transformer Value-Projections weights (SGD)

Xavier

GradInit

Figure 4.10: Weight norm and averaged per-dimension standard deviation of each weight
of the normalization layers and linear layers in the Post-LN Transformer. Here, GradInit
sets A to SGD. The Transformer model and the way each weight is permuted are the
same as in Figure 4.9. Again, in general, GradInit reduces the variance for most of the
weights, except for some of the Query-Projection and Key-Projection weights in the de-
coder, which are inside the softmax operations in the self attention blocks. Different from
the patterns in the Adam version, which downscale all the weights in every layer except
for the Query-Projection and Key-Projection weights, the SGD version of GradInit mostly
reduces the weights in the final Transformer block of the decoder. Similar as the case for
Adam, the general strategy is to reduce the norms of Out-Projection, Value-Projection
and the FFN layers, which reduces the magnitude of the feature in the residual branch
and better preserves the signal in the main branch during forward pass, which improves
the stability of training. See detailed analysis by Liu et al. [15].

103

Chapter 5: Reducing Complexity of Transformer Models

Transformers have achieved success in both language and vision domains. How-

ever, it is prohibitively expensive to scale them to long sequences such as long docu-

ments or high-resolution images, because self-attention mechanism has quadratic time

and memory complexities with respect to the input sequence length. In this chapter,

we introduce our work on Long-Short Transformer (Transformer-LS), an efficient self-

attention mechanism for modeling long sequences with linear complexity for both lan-

guage and vision tasks [163]. It aggregates a novel long-range attention with dynamic

projection to model distant correlations and a short-term attention to capture fine-grained

local correlations. We propose a dual normalization strategy to account for the scale mis-

match between the two attention mechanisms. Transformer-LS can be applied to both

autoregressive and bidirectional models without additional complexity. Our method out-

performs the state-of-the-art models on multiple tasks in language and vision domains,

including the Long Range Arena benchmark, autoregressive language modeling, and Im-

ageNet classification.

104

5.1 Introduction

Transformer-based models [164] have achieved great success in the domains of nat-

ural language processing (NLP) [165, 166] and computer vision [167–169]. These models

benefit from the self-attention module, which can capture both adjacent and long-range

correlations between tokens while efficiently scaling on modern hardware. However, the

time and memory consumed by self-attention scale quadratically with the input length,

making it very expensive to process long sequences. Many language and vision tasks ben-

efit from modeling long sequences. In NLP, document-level tasks require processing long

articles [e.g., 170, 171], and the performance of language models often increases with

sequence length [e.g., 172, 173]. In computer vision, many tasks involve high-resolution

images, which are converted to long sequences of image patches before being processed

with Transformer models [167, 169, 174]. As a result, it is crucial to design an efficient

attention mechanism for long sequence modeling that generalizes well across different

domains.

Various methods have been proposed to reduce the quadratic cost of full attention.

However, an efficient attention mechanism that generalizes well in both language and

vision domains is less explored. One family of methods is to sparsify the attention ma-

trix with predefined patterns such as sliding windows [e.g., 175–178] and random sparse

patterns [179]. These methods leverage strong inductive biases to improve both computa-

tional and model performance, but they limit the capacity of a self-attention layer because

each specific token can only attend to a subset of tokens. Another family of methods

leverages low-rank projections to form a low resolution representation of the input se-

105

quence, but the successful application of these methods has been limited to certain NLP

tasks [e.g., 7, 180, 181]. Unlike sparse attention, this family of methods allows each

token to attend to the entire input sequence. However, due to the loss of high-fidelity

token-wise information, their performance sometimes is not as good as full attention or

sparse attention on tasks that require fine-grained local information, including standard

benchmarks in language [8] and vision [182].

Despite the rapid progress in efficient Transformers, some proposed architectures

can only be applied to bidirectional models [e.g., 7, 178, 179]. Transformer-based autore-

gressive models have achieved great successes in language modeling [36], image syn-

thesis [183], and text-to-image synthesis [184], which also involve long texts or high-

resolution images. It is desirable to design an efficient transformer that can be applied to

both autoregressive and bidirectional models.

5.1.1 Related Works

5.1.1.1 Efficient Transformers

In recent years, many methods have been introduced for dealing with the quadratic

cost of full attention. In general, they can be categorized as follows: i) Sparse atten-

tion mechanism with predefined patterns (e.g., sliding window), including Sparse Trans-

former [175], Image Transformer [176], Axial Transformer [185] for modeling images,

and Longformer [177], blockwise self-attention [186], ETC [178], Big Bird [179] for

modeling language. ii) Low-rank projection attention, including Linformer [180], Nyströmformer [7],

Synthesizer [181]. For example, Linformer uses linear layers to project the original high

106

resolution keys (K) and values (V) with length n to low resolution with size r (r ≪ n)

and allows all query tokens (Q) to attend these compressed representations. iii) Memory-

based mechanisms like Compressive Transformer [173] and Set Transformer [187], which

use extra memories for caching global long-range information for use in computing atten-

tion between distant tokens. iv) Kernel-based approximation of the attention matrix, in-

cluding Performer [188], Linear Transformer [189], and Random Feature Attention [190].

vi) Similarity and clustering based methods, including Reformer [191], Routing Trans-

former [192], and Sinkhorn Transformer [193].

Our method seamlessly integrates both low-rank projection and local window atten-

tions, to leverage their strengths for modeling long-range and short-term correlations. In

particular, our long-range attention uses a dynamic low-rank projection to encode the in-

put sequence, and outperforms the previous low-rank projection method used by the Lin-

former [180]. In the similar vein, a few other methods also try to combine the strengths

of different methods. For example, Longformer [177] and ETC [178] augment local win-

dow attention with task motivated global tokens. Such global tokens may not be applica-

ble for some tasks (e.g., autoregressive modelling). BigBird [179] further combines local

window and global token attention with random sparse attention. It is not applicable in

autoregressive tasks because the global token and random sparse pattern are introduced.

To compress the model footprint on edge devices, Lite Transformer [194] combines con-

volution and self-attention, but it still has quadratic complexity for long sequences.

107

5.1.1.2 Vision Transformers

Vision Transformer (ViT) [167] splits images as small patches and treats the patches

as the input word tokens. It uses a standard transformer for image classification and has

shown to outperform convolutional neural networks (e.g., ResNet [88]) with sufficient

training data. DeiT [195] has applied the teacher-student strategy to alleviate the data

efficiency problem of ViT and has shown strong comparable performance using only

the standard ImageNet dataset [196]. Instead of applying transformer at a single low

resolution of patches (e.g., 16×16 patches), very recent works, including Pyramid Vision

Transformer (PVT) [168], Swin-Transformer [197], T2T-ViT [198], Vision Longformer

(ViL) [174] and Convolutional Vision Transformer (CvT) [169], stack a pyramid of ViTs

to form a multi-scale architecture and model long sequences of image patches at much

higher resolution (e.g., 56×56 = 3136 patches for images with 224×224 pixels). Most of

these methods have quadratic complexity of self-attention with respect to the input image

size.

To reduce the complexity, Swin-Transformer [197] achieves linear complexity by

limiting the computation of self-attention only within each local window. HaloNet [199]

applies local attention on blocked images and only has quadratic complexity with respect

to the size of the block. Perceiver [200] uses cross-attention between data and latent ar-

rays to replace the self-attention on data to remove the quadratic complexity bottleneck.

Vision Longformer (ViL) [174], another concurrent work, achieves linear complexity by

adapting Longformer [177] to Vision. ViL augments local window attention with task-

specific global tokens, but the global tokens are not applicable for decoding task (e.g.,

108

image synthesis [183, 184]). In contrast, our method reduces the quadratic cost to lin-

ear cost by combining local window attention with global dynamic projection attention,

which can be applied to both encoding and decoding tasks.

5.1.2 Our contributions

In this work, we unify a local window attention and a novel long-range attention into

a single efficient attention mechanism. We show that these two kinds of attention have

complementary effects that together yield the state-of-the-art results on a range of tasks

in language and vision, for both autoregressive and bidirectional models. Specifically, we

make the following contributions:

• We propose Long-Short Transformer (Transformer-LS), an efficient Transformer that

integrates a dynamic projection based attention to model long-range correlations, and

a local window attention to capture fine-grained correlations. Transformer-LS can be

applied to both autoregressive and bidirectional models with linear time and memory

complexity.

• We compute a dynamic low-rank projection, which depends on the content of the input

sequence. In contrast to previous low-rank projection methods, our dynamic projection

method is more flexible and robust to semantic-preserving positional variations (e.g.,

insertion, paraphrasing). We demonstrate that it outperforms previous low-rank meth-

ods [7, 180] on Long Range Arena benchmark [8].

• We identify a scale mismatch problem between the embeddings from the long-range

and short-term attentions, and design a simple but effective dual normalization strategy,

109

K(V)

×
WP

Softmax

Dynamic Projection

Projection Matrix

K(V)

×
WK(WV)

× =
K̄(V̄)

Projected key (value)

Transpose
r

d

Repeat

Long-term Attention

LNG

LNL

Aggregation

Q

K̃(Ṽ)

d
r

Short-term Attention

Q

K̃(Ṽ)pad pad

w
d

n n timesn

Concatenate
r2w

d

n
Short-term

Long-term

Figure 5.1: Long-short term attention of a single attention head. Here, the sequence
length n = 8, hidden dimension d = 3, local window segment size w = 2, and rank
of dynamic projection r = 3. Within the figure, K(V) denotes key K or value V . In
the left figure, we virtually replicate K or V ∈ Rn×d into n rows, and highlight the keys
and values within the attention span (denoted as K̃(Ṽ)) of all n queries Q for the short-
term attention. In the middle figure, all queries attend to the same projected keys K̄ and
values V̄ within the long-term attention. In the right figure, K̃(Ṽ) and K̄(V̄) are first
normalized with two sets of LayerNorms, and the queries attend to normalized K̃(Ṽ) and
K̄(V̄) within their attention span simultaneously.

termed DualLN, to account for the mismatch and enhance the effectiveness of the

aggregation.

• We demonstrate that Long-Short Transformer, despite its low memory and runtime

complexity, outperforms the state-of-the-art models on a set of tasks from Long Range

Arena, and autoregressive language modeling on enwik8 and text8. In addition, the

proposed efficient attention mechanism can be easily applied to the most recent vision

transformer architectures [169, 174] and provides state-of-the-art results, while being

more scalable to high-resolution images. We also investigate the robustness properties

of the Transformer-LS on diverse ImageNet datasets.

5.2 Long-short Transformer

Transformer-LS approximates the full attention by aggregating long-range and short-

term attentions, while maintaining its ability to capture correlations between all input to-

110

kens. In this section, we first introduce the preliminaries of multi-head attention in Trans-

former. Then, we present the short-term attention via sliding window, and long-range

attention via dynamic projection, respectively. After that, we propose the aggregating

method and dual normalization (DualLN) strategy. See Figure 5.1 for an illustration of

our long-short term attention.

5.2.1 Preliminaries and Notations

Multi-head attention is a core component of the Transformer [164], which computes

contextual representations for each token by attending to the whole input sequence at

different representation subspaces. It is defined as

MultiHead(Q,K, V) = Concat(H1, H2, ..., Hh)W
O, (5.1)

where Q,K, V ∈ Rn×d are the query, key and value embeddings, WO ∈ Rd×d is the

projection matrix for output, the i-th head Hi ∈ Rn×dk is the scaled dot-product attention,

and dk = d/h is the embedding dimension of each head,

Hi = Attention(QWQ
i , KWK

i , V W V
i) = softmax

[
QWQ

i

(
KWK

i

)⊺
√
dk

]
VW V

i = AiVW V
i ,

(5.2)

where WQ
i ,WK

i ,W V
i ∈ Rd×dk are learned projection matrices, and Ai ∈ Rn×n denotes

the full attention matrix for each attention head. The complexity of computing and storing

Ai is O(n2), which can be prohibitive when n is large. For simplicity, our discussion

below is based on the case of 1D input sequences. It is straightforward to extend to the

111

Q

K

For Bidirectional Models

Q

K

For Autoregressive Models

pad pad pad pad

Figure 5.2: An illustration of our sliding window attention in 1D autoregressive and bidi-
rectional models. Here, we use a group size w = 2. Each token inside each group are
restricted to attend to at most 2w tokens. In the bidirectional model, they attend to w
tokens from the home segment, and w/2 tokens to the left and right of the home segment
respectively. In the autoregressive model, they attend to w tokens to the left of the home
segment, as well as all tokens within the home segment that is not a future token.

2D image data given a predetermined order.

5.2.2 Short-term Attention via Segment-wise Sliding Window

We use the simple yet effective sliding window attention to capture fine-grained

local correlations, where each query attends to nearby tokens within a fixed-size neigh-

borhood. Similar techniques have also been adopted in [174, 177, 179]. Specifically, we

divide the input sequence into disjoint segments with length w for efficiency reason. All

tokens within a segment attend to all tokens within its home segment, as well as w/2

consecutive tokens on the left and right side of its home segment (zero-padding when

necessary), resulting in an attention span over a total of 2w key-value pairs. See Fig-

ure 5.2 for an illustration. For each query Qt at the position t within the i-th head, we

denote the 2w key-value pairs within its window as K̃t, Ṽt ∈ R2w×d. For implementation

with PyTorch, this segment-wise sliding window attention is faster than the per-token

sliding window attention where each token attends to itself and w tokens to its left and

right, and its memory consumption scales linearly with sequence length; see [177] and

112

our Figure 5.5 for more details.

The sliding window attention can be augmented to capture long-range correlations

in part, by introducing different dilations to different heads of sliding window atten-

tion [177]. However, the dilation configurations for different heads need further tuning

and an efficient implementation of multi-head attention with different dilations is non-

trivial. A more efficient alternative is to augment sliding window attention with random

sparse attention [179], but this does not guarantee that the long-range correlations are cap-

tured in each layer as in full attention. In the following section, we propose our long-range

attention to address this issue.

5.2.3 Long-range Attention via Dynamic Projections

Previous works have shown that the self-attention matrix can be well approximated

by the product of low-rank matrices [180]. By replacing the full attention with the product

of low-rank matrices [7, 181, 188, 201, 202], each query is able to attend to all tokens.

Linformer [180] is one of the most representative models in this category. It learns a fixed

projection matrix to reduce the length of the keys and values, but the fixed projection is

inflexible to semantic-preserving positional variations.

Starting from these observations, we parameterize the dynamic low-rank projection

at i-th head as Pi = f(K) ∈ Rn×r, where r ≪ n is the low rank size and Pi depends

on all the keys K ∈ Rn×d of input sequence. It projects the (n × dk)-dimensional key

embeddings KWK
i and value embeddings VW V

i into shorter, (r × dk)-dimensional key

K̄i and value V̄i embeddings. Unlike Linformer [180], the low-rank projection matrix

113

is dynamic, which depends on the input sequence and is intended to be more flexible

and robust to, e.g., insertion, deletion, paraphrasing, and other operations that change

sequence length. See Table 5.3 for examples. Note that, the query embeddings QWQ
i ∈

Rn×dk are kept at the same length, and we let each query attend to K̄i and V̄i. In this way,

the full (n×n) attention matrix can be decomposed into the product of two matrices with

r columns or rows. Specifically, we define the dynamic projection matrix Pi ∈ Rn×r and

the key-value embeddings K̄i, V̄i ∈ Rr×dk of low-rank attention as

Pi = softmax(KW P
i), K̄i = P ⊺

i KWK
i , V̄i = P ⊺

i VW V
i , (5.3)

where W P
i ∈ Rd×r are learnable parameters,1 and the softmax normalizes the projection

weights on the first dimension over all n tokens, which stabilizes training in our experi-

ments. Note that K = V in all the experiments we have considered, so Pi remains the

same if it depends on V . The computational complexity of Eq. 5.3 is O(rn).

To see how the full attention is replaced by the product of low-rank matrices, we

compute each head Hi ∈ Rn×dk of long-range attention as,

H̄i = softmax

[
QWQ

i K̄⊺
i√

dk

]
︸ ︷︷ ︸

Āi

V̄i = Āi

(
P ⊺
i VW V

i

)
, (5.4)

so the full attention is now replaced with the implicit product of two low-rank matrices

Āi ∈ Rn×r and P ⊺
i ∈ Rr×n, and the computational complexity is reduced to O(rn). Note

the effective attention weights of a query on all tokens still sum to 1. Our global attention

1For the CvT-based vision transformer model, we replace WP
i with a depth-wise separable convolution,

just as its query, key and value projections.

114

allows each query to attend to all token embeddings within the same self-attention layer.

In contrast, the sparse attention mechanisms [177, 179] need stack multiple layers to build

such correlations.

Application to Autoregressive Models: In autoregressive models, each token can

only attend to the previous tokens, so the long-range attention should have a different

range for different tokens. A straightforward way to implement our global attention is

to update K̄i, V̄i for each query recurrently, but this requires re-computing the projection

in Eq. equation 5.3 for every token due to the nonlinearity of softmax, which results in

O(rn2) computational complexity. To preserve the linear complexity, for autoregressive

models, we first divide the input sequence into equal-length segments with length l, and

apply our dynamic projection to extract K̄i, V̄i from each segment. Each token can only

attend to K̄i, V̄i of segments that do not contain its future tokens. Formally, let Qt be the

query at position t, K(l−1)s:ls, V(l−1)s:ls be the key-value pairs from the s-th segment, and

st = ⌊t/l⌋. For autoregressive models, we compute the long-range attention of Qt by

attending to Ki,t, Vi,t, defined as

K̄i,t = [P ⊺
i,1K1:l; ...;P

⊺
i,st

K(l−1)st:lst]W
K
i , V̄i,t = [P ⊺

i,1V1:l; ...;P
⊺
i,st

V(l−1)st:lst]W
V
i . (5.5)

In this way, the dynamic low-rank projection is applied to each segment only once in

parallel, preserving the linear complexity and the high training speed. By comparison,

Random Feature Attention [190] is slow at training due to the requirement for recurrence.

115

5.2.4 Aggregating Long-range and Short-term Attentions

To aggregate the local and long-range attentions, instead of adopting different at-

tention mechanisms for different heads [175, 177, 194], we let each query at i-th head

attend to the union of keys and values from the local window and global low-rank pro-

jections, thus it can learn to select important information from either of them. We find

this aggregation strategy works better than separating the heads in our initial trials with

the autoregressive language models. Specifically, for the i-th head, we denote the global

low-rank projected keys and values as K̄i, V̄i ∈ Rr×dk , and the local keys and values as

K̃t, Ṽt ∈ R2w×d within the local window of position t for the query Qt. Then the i-th

attention Hi,t at position t is

Hi,t = softmax

QtW
Q
i

[
K̃tW

K
i ; K̄i

]⊺
√
dk

 [ṼtW
V
i ; V̄i]. (5.6)

where [· ; ·] denotes concatenating the matrices along the first dimension. Furthermore,

we find a scale mismatch between the initial norms of K̃tW
K
i and K̄i, which biases the

attention to the local window at initialization for both language and vision tasks. We intro-

duce a normalization strategy (DualLN) to align the norms and improve the effectiveness

of the aggregation in the following.

DualLN: For Transformers with Layer Normalization (LN) (see [134] for an il-

lustration), the Ki, Vi embeddings are the outputs of LN layers, so they have zero mean

and unit variance at initialization. The ℓ2 norm of vectors with zero-mean entries is pro-

portional to their variance in expectation. We note a weighted average will reduce the

116

1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

1.0

1.5

2.0

2.5
N

or
m

 R
at

io
s

Compare Local to Global Key/Value Norm Ratios

w/o DualLN (enwik8)
w/o DualLN (text8)
w/o DualLN (ImageNet)
w/ DualLN

w/o DualLN (enwik8)
w/o DualLN (text8)
w/o DualLN (ImageNet)
w/ DualLN

0k 100k 200k 300k 400k
Training Iterations

1.05

1.10

1.15

1.20

1.25

V
al

id
at

io
n

Lo
ss

Compare Validation Loss

w/o DualLN (enwik8)
w/ DualLN (enwik8)
w/o DualLN (text8)
w/ DualLN (text8)

Figure 5.3: Left: Ratios of the average ℓ2 norms of the local window to global low-
rank key/value embeddings at initialization. Without DualLN, the sparse and low-rank
embeddings have a magnitude mismatch. With DualLN, the ratios will be 1.0 at every
layer, which will facilitate optimization. Right: The validation loss of Transformer-LS
with and without DualLN on enwik8 and text8.

variance and therefore the norm of such zero-mean vectors.

Intuitively, at initialization, following similar assumptions as [16, 203], the entries

of K,V should have zero mean. Since each entry of K̄, V̄ is a weighted mean of K,V ,

they have smaller variance unless one of the weights is 1. Given that K̄, V̄ are also zero-

mean, the norm of their embedding vectors (their rows), which is proportional to the vari-

ance, is smaller. For the key-value embeddings from short-term attention, K̃, Ṽ are just a

subset of K,V , so their embedding vectors should have the same norm as rows of K,V in

expectation. As a result, the embedding vectors from low-rank attention in the weighted

average K̄i, V̄i of Eq. equation 5.3 will have smaller norms than the regular key and value

embeddings from sliding window attention (see Figure 5.3 Left for an illustration). This

scale mismatch causes two side effects. First, the inner product QtW
Q
i K̄⊺

i from local-rank

component tends to have smaller magnitude than the local window one, thus the atten-

tion scores on long-range attention is systematically smaller. Second, the key-value pairs

K̄i, V̄i for the low-rank attention will naturally have less impact on the direction of Hi

117

even when low-rank and local window are assigned with same attention scores, since V̄i

has smaller norms. Both effects lead to small gradients on the low-rank components and

hinders the model from learning to effectively use the long-range correlations.

To avoid such issues, we add two sets of Layer Normalizations after the key and

value projections for the local window and global low-rank attentions, so that their scales

are aligned at initialization, but the network can still learn to re-weight the norms after

training. Specifically, the aggregated attention is now computed as

Hi,t = softmax

QtW
Q
i

[
LNL(K̃tW

K
i);LNG(K̄i)

]⊺
√
dk

 [LNL(ṼtW
V
i);LNG(V̄i)], (5.7)

where LNL(·),LNG(·) denote the Layer Normalizations for the local and global attentions

respectively. In practice, to maintain the consistency between the local attention and dy-

namic projection, we use LNL(K),LNL(V) instead of K,V to compute K̄i, V̄i in Eq. 5.3.

As illustrated in Figure 5.3 Right, the Transformer-LS models trained with DualLN has

consistently lower validation loss than the models without DualLN.

5.2.5 Long-short Term Attention for Autoregressive Models

We give an illustration for the segment-wise dynamic projection for autoregressive

models as discussed in Section 5.2.3. With the segment-wise formulation, we can first

compute the low-rank projection for each segment in parallel, and each query will only

attend to the tokens from segments that do not contain the future token or the query token

itself. The whole process is efficient and maintain the O(n) complexity, unlike RFA [190]

which causes a slow-down in training due to the requirement for cumulative sum. How-

118

Q

Cache Input Sequence

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

s1 s2 s3 s4
Attention Span

: from sliding windowK(V)

Q

Cache Input Sequence

Attention Span

: segment in use for the query Qt

s1 s2 s3 s4
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

Figure 5.4: An illustration of effective attention span (colored regions) in Transformer-LS
when the segment size for the low-rank attention is ℓ = 4, and the segment size for the
sliding window attention is w = 2. Left: the attention span of only the low-rank attention
(segment-wise dynamic projection). Right: the attention span of the aggregated attention.

ever, in this way, some of the most recent tokens are ignored, as shown in Figure 5.4 (left).

The window attention (with segment size w ≥ l/2) becomes an indispensable component

in this way, since it fills the gap for the missing recent tokens, as shown in Figure 5.4.

5.3 Experiments

In this section, we demonstrate the effectiveness and efficiency of our method in

both language and vision domains. We use PyTorch for implementation and count the

FLOPs using fvcore [204].

5.3.1 Bidirectional Modeling on Long Range Arena and IMDb

Settings on LRA. To evaluate Long-Short Transformer as a bidirectional encoder

for long text, we train our models on the three NLP tasks, ListOps, Text, and Retrieval,

from the recently proposed Long Range Arena (LRA) benchmark [8], following the set-

ting of Peng et al. [190] and Tay et al. [205]. Details of the three tasks:

119

Table 5.1: Accuracy (%) and FLOPs (G) on Long Range Arena (LRA), with the model
configs annotated (see Table 5.2 for details). All results are averages of 4 runs with
different random seeds.

Task ListOps Text Retrieval Average
(mean ± std.) of sequence length (888 ± 339) (1296 ± 893) (3987 ± 560)

Model Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc.

Full Attention [164] 37.1 ± 0.4 1.21 65.4 ± 0.3 4.57 82.3 ± 0.4 9.14 61.59
Reformer [191] (2) 36.4 ± 0.4 0.27 64.9 ± 0.4 0.58 78.6 ± 0.7 1.15 59.99
Linformer [180] (k=256) 37.4 ± 0.4 0.41 56.1 ± 1.5 0.81 79.4 ± 0.9 1.62 57.62
Performer [188] (r = 256) 32.8 ± 9.4 0.41 65.2 ± 0.2 0.82 81.7 ± 0.2 1.63 59.90
Nyströmformer [7] (l = 128) 37.3 ± 0.2 0.61 65.8 ± 0.2 1.02 81.3 ± 0.3 2.03 61.46
Transformer-LS (w, r = 8, 32) 37.5 ± 0.3 0.20 66.0 ± 0.2 0.40 81.8 ± 0.3 0.80 61.77

Dynamic Projection (best) 37.8 ± 0.2 0.15 66.3 ± 0.7 0.69 81.9 ± 0.5 2.17 61.98
Transformer-LS (best) 38.4 ± 0.4 0.16 68.4 ± 0.8 0.29 82.0 ± 0.5 2.17 62.90

Table 5.2: Configurations of our method corresponding to the best results (Transformer-
LS (best)) in Table 5.1.

ListOps (2k) Text (4k) Retrieval (4k)
w r w r w r

Dynamic Projection 0 4 0 128 0 256
Transformer-LS 16 2 1 1 1 254

Table 5.3: Comparing the robustness of the models under test-time insertions and dele-
tions. DP refers to long-range attention via Dynamic Projection, and Win. refers to sliding
window attention.

Task Text Retrieval
Test Perturb None Insertion Deletion None Insertion Deletion

Linformer 56.12 55.94 54.91 79.37 53.66 51.75
DP 66.28 63.16 58.95 81.86 70.01 64.98
Linformer + Win. 59.63 56.69 56.29 79.68 52.83 52.13
DP + Win. (ours) 68.40 66.34 62.62 81.95 69.93 64.19

Table 5.4: Comparing the results of pretrained language models fine-tuned on IMDb.
Model RoBERTa-base RoBERTa-large Longformer-base LS-base LS-large

Accuracy 95.3 96.5 95.7 96.0 96.8

• ListOps. ListOps [206] is designed to measure the parsing ability of models through

hierarchically structured data. We follow the setting in [8] in which each instance

contains 500-2000 tokens.

• Text. This is a binary sentiment classification task of predicting whether a movie

120

review from IMDb is positive or negative [207]. Making correct predictions requires

a model to reason with compositional unsegmented char-level long sequences with a

maximum length of 4k.

• Retrieval. This task is based on the ACL Anthology Network dataset [208]. The

model needs to classify whether there is a common citation between a pair of papers,

which evaluates the model’s ability to encode long sequences for similarity-based

matching. The max sequence length for each byte-level document is 4k and the model

processes two documents in parallel each time.

On all LRA tasks, the models have 2 layers, with embedding dimension d = 64,

head number h = 2, FFN hidden dimension 128, smaller than those from [8]. Same as

[8], we add a CLS token as a global token and use its embedding in the last layer for

classification. We re-implement the methods evaluated by Xiong et al. [7], and report

the best results of our re-implementation and those reported by Xiong et al. [7]. For

our method, the results we run a grid search on the window size w and the projected

dimension r, and keep 2w+r ≤ 256 to make the complexity similar to the other methods.

The maximum sequence length for ListOps and Text are 2048 and 4096. For Retrieval,

we set the max sequence for each of the two documents to 4096.

LRA Results. For fair comparisons, we use the PyTorch implementation and the

same data preprocessing/split, training hyperparameters and model size from [7], except

for Retrieval where we accidentally used more warmup steps and improved the results

for all models. The results on these three tasks are given in Table 5.1. We give the results

of our model on the image-based tasks, implemented in PyTorch, in Table 5.5.

121

Table 5.5: Comparing our model (Transformer-LS) with other methods on the image-
based tasks of LRA. For the results of other models, we take their highest scores from [7]
and [8].
Model Transformer-LS Linformer Reformer Performer Sparse. Trans. Nystromformer Full Att.

Image 45.05 38.56 43.29 42.77 44.24 41.58 42.44
Pathfinder 76.48 76.34 69.36 77.05 71.71 70.94 74.16

To compare the results with the implementations from the original LRA paper [8],

we re-implement our method in JAX and give the comparisons with other methods in

Table 5.6. The accuracies of other methods come from the LRA paper. We evaluate

the per-batch latency of all models on A100 GPUs using their official JAX implementa-

tion from the LRA paper. Our method still achieves improvements while being efficient

enough. We were unable to run Reformer with the latest JAX since JAX has deleted

jax.custom transforms, which is required by the Reformer implementation, from

its API.2 Note the relative speedups from the LRA paper are evaluated on TPUs.

Table 5.6: Comparing the test scores and latency of models on LRA, implemented in
JAX.

Model
ListOps Text Retrieval

Acc. Latency (s) Acc. Latency (s) Acc. Latency (s)

Local Att 15.82 0.151 52.98 0.037 53.39 0.142
Linear Trans. 16.13 0.156 65.9 0.037 53.09 0.142
Reformer 37.27 - 56.10 - 53.40 -
Sparse Trans. 17.07 0.447 63.58 0.069 59.59 0.273
Sinkhorn Trans. 33.67 0.618 61.20 0.048 53.83 0.241
Linformer 35.70 0.135 53.94 0.031 52.27 0.117
Performer 18.01 0.138 65.40 0.031 53.82 0.120
Synthesizer 36.99 0.251 61.68 0.077 54.67 0.306
Longformer 35.63 0.380 62.85 0.112 56.89 0.486
Transformer 36.37 0.444 64.27 0.071 57.46 0.273
BigBird 36.05 0.269 64.02 0.067 59.29 0.351
Transformer-LS 37.65 0.187 76.64 0.037 66.67 0.201

Results on IMDb. In addition, we follow the pretraining procedure of Long-

2https://github.com/google/jax/pull/2026

122

https://github.com/google/jax/pull/2026

former [177] to pretrain our models based on RoBERTa-base and RoBERTa-large [4]

on the pre-training dataset similar to RoBERTa’s, and fine-tune it on the IMDb sentiment

classification dataset. The results are given in Table 5.4.

Discussions of the results. From Table 5.4, our base model outperforms Longformer-

base, and our large model achieves improvements over RoBERTa-large, demonstrating

the benefits of learning to model long sequences. Comparisons with models on LRA are

given in Table 5.1. Transformer-LS (best) with the best configurations of w, r for each

task are given in Table 5.2. We also report the results of using fixed hyperparameter

w = 8, r = 32 on all tasks. Overall, our Transformer-LS (best) is significantly better than

other efficient Transformers, and the model with w, r = 8, 32 performs favorably while

using only about 50% to 70% computation compared to other efficient Transformers on all

three tasks. The advantage of aggregating local and long-range attentions is the most sig-

nificant on ListOps, which requires the model to understand the tree structures involving

both long-term and short-term relations. On Retrieval, where document-level encoding

capability is tested, we find our global attention more effective than window attention.

The test accuracy of using only dynamic projection is about 10% higher than Linformer

on Text (i.e., 66.28 vs. 56.12), which has the highest variance in sequence length (i.e.

standard deviation 893). This demonstrates the improved flexibility of dynamic projec-

tion at learning representations for data with high variance in sequence length, compared

to the learned but fixed projection of Linformer. Similarly, Linformer, Nyströmformer

and our model outperform full attention on ListOps, indicating they may have better

inductive bias, and efficient Transformers can have better efficacy beyond efficiency.

Robustness of Dynamic Projection. In Table 5.3, we compare the robustness of

123

Linformer and the proposed Dynamic Projection (DP) against insertion and deletion on

Text and Retrieval tasks of LRA. We train the models on the original, clean training sets

and only perturb their test sets. For insertion, we insert 10 random punctuations at 10

random locations of each test sample. For deletion, we delete all punctuations from the

test samples. Both transforms are label-preserving in most cases. By design, dynamic

projection is more robust against location changes.

5.3.2 Autoregressive Language Modeling

We compare our method with other efficient transformers on the character-level

language modeling where each input token is a character.

Setup. We train and evaluate our model on enwik8 and text8, each with 100M

characters and are divided into 90M, 5M, 5M for train, dev, test, following [209]. Our

smaller 12-layer and larger 30-layer models are Pre-LN Transformers with the same width

and depth as Longformer [8], except that we add relative position encoding to the pro-

jected segments in each layer. We adopt the cache mechanism of Transformer-XL [172],

setting the cache size to be the same as the input sequence length. We follow similar

training schedule as Longformer, and train our model in 3 phases with increasing se-

quence lengths. The input sequence lengths are 2048, 4096 and 8192 respectively for the

3 phases. By comparison, Longformer trains their model in 5 phases on GPUs with 48GB

memory (The maximal of ours is 32GB) where the sequence length is 23,040 in the last

phase. The window size of Longformer increases with depth and its average window size

is 4352 in phase 5, while our effective number of attended tokens is 1280 on average in

124

the last phase. Each experiment takes around 8 days to finish on 8 V100 GPUs. For test-

ing, same as Longformer, we split the dataset into overlapping sequences of length 32K

at a step size of 512, and evaluate the BPCs for predicting the next 512 tokens given the

previous 32K characters.

Hyper-parameters. Throughout training, we set the window size w = 512, the

segment length l = 16, and the dimension of the dynamic low-rank projection r = 1,

which in our initial experiments achieved better efficiency-BPC trade-off than using l =

32, r = 1 or l = 64, r = 4. Our small and large models have the same architecture as

Longformer [177], except for the attention mechanisms. We use similar training sched-

ules as Longformer [177]. Specifically, for all models and both datasets, we train the

models for 430k/50k/50k steps with 10k/5k/5k linear learning rate warmup steps, and use

input sequence lengths 2048/4096/8192 for the 3 phases. We use constant learning rate

after warmup. We compared learning rates from {1.25e-4, 2.5e-4,5e-4,1e-3} for 100k

iterations and found 2.5e-4 to work the best for both models on enwik8, and 5e-4 to work

the best on text8. The batch sizes for the 3 phases are 32, 32, 16 respectively. Unlike

Longformer and Transformer-XL, we remove gradient clipping and found the model to

have slightly faster convergence in the beginning while converging reliably. For smaller

models, we use dropout rate 0.2 and weight decay 0.01. For the larger model, we use

dropout 0.4 and weight decay 0.1.

Results. Table 5.7 shows comparisons on text8 and enwik8. Our method has

achieved state-of-the-art results. On text8, we achieve a test BPC of 1.09 with the smaller

model. On enwik8, our smaller model achieves a test BPC of 0.99, and outperforms the

state-of-the-art models with comparable number of parameters. Our larger model obtains

125

0 2000 4000 6000 8000 10000 12000 14000
Sequence Length

0

5

10

15

20

25

G
P

U
 M

em
or

y
(G

B
)

Forward-backprop Peak GPU Memory (Autoregressive LM)

Batch=1
Batch=2
Batch=4
Transformer-XL
Transformer-LS

Batch=1
Batch=2
Batch=4
Transformer-XL
Transformer-LS

0 2000 4000 6000 8000 10000 12000 14000
Sequence Length

0.0

0.5

1.0

1.5

2.0

Ti
m

e/
Ite

ra
tio

n
(s

)

Forward-backprop Time per Iteration (Autoregressive LM)

Batch=1
Batch=2
Batch=4
Transformer-XL
Transformer-LS

Batch=1
Batch=2
Batch=4
Transformer-XL
Transformer-LS

Figure 5.5: Running time and memory consumption of Transformer-XL (full attention)
and our Transformer-LS on Char-LM. We increase the sequence length until we use up
the 32GB of memory on a V100 GPU. Transformer-LS is the same smaller model in
Table 5.7. We use dashed lines to represent the full attention Transformer and solid lines
to represent our model. We use different colors to represent different batch sizes.

Table 5.7: BPC (↓) of smaller models on enwik8 and text8 (left), and larger models on
enwik8 (right).

Method #Param
text8 enwik8

Dev Test Dev Test

T12 [210] 44M - 1.18 - 1.11
Transformer-XL [172] 41M - - - 1.06
Reformer [191] - - - - 1.05
Adaptive [211] 38M 1.05 1.11 1.04 1.02
BP-Transformer [212] 38M - 1.11 - 1.02
Longformer [8] 41M 1.04 1.10 1.02 1.00

Transformer-LS 44M 1.03 1.09 1.01 0.99

Method #Param Test BPC

Transformer-XL [172] 88M 1.03
Transformer-XL [172] 277M 0.99
Routing [192] 223M 0.99
Longformer [177] 102M 0.99
Sparse [175] 95M 0.99
Adaptive [211] 209M 0.98
Compressive [173] 227M 0.97

Transformer-LS 110M 0.97

a test BPC of 0.97, on par with the Compressive Transformer with 2× parameters. Our

results are consistently better than Longformer which is trained on longer sequences with

5 stages and 48 GPU memory. In Figure 5.5, we show our model is much more memory

and computational efficient than full attention.

5.3.3 ImageNet Classification

We train and evaluate the models on ImageNet-1K with 1.3M images and 1K

classes. We use CvT [169] and ViL [174], state-of-the art vision transformer architec-

tures, as the backbones and replace their attention mechanisms with our long-short term

126

Table 5.8: Test accuracies on ImageNet, ImageNet Real [9], and ImageNet V2 [10] of
models trained on ImageNet-1K. Grey-colored rows are our results. CvT∗-LS denotes
our long-short term attention based on the non-official CvT implementation. ViL models
with LS suffixes are our long-short term attention based on the official ViL implemen-
tation with relative positional bias. We also provide the latency of models tested using
batch size 32 on the same V100 GPU. Our improvements over ViL is mainly from a better
implementation of the short-term attention.

Model #Param Image FLOPs ImageNet Real V2 Latency
(M) Size (G) top-1 (%) top-1 (%) top-1 (%) (s)

ResNet-50 25 2242 4.1 76.2 82.5 63.3 -
ResNet-101 45 2242 7.9 77.4 83.7 65.7 -
ResNet-152 60 2242 11 78.3 84.1 67.0 -
DeiT-S [195] 22 2242 4.6 79.8 85.7 68.5 -
DeiT-B [195] 86 2242 17.6 81.8 86.7 70.9 -

PVT-Medium [168] 44 2242 6.7 81.2 - - -
PVT-Large [168] 61 2242 9.8 81.7 - - -
Swin-S [197] 50 2242 8.7 83.2 - - -
Swin-B [197] 88 2242 15.4 83.5 - - 0.115
PVTv2-B4 [213] 62.6 2242 10.1 83.6 - - -
PVTv2-B5 [213] 82.0 2242 11.8 83.8 - - -

ViT-B/16 [167] 86 3842 55.5 77.9 - - -
ViT-L/16 [167] 307 3842 191.1 76.5 - - -
DeiT-B [195] 86 3842 55.5 83.1 - - -
Swin-B [197] 88 3842 47.1 84.5 - - 0.378

CvT-13 [169] 20 2242 6.7 81.6 86.7 70.4 0.122
CvT-21 [169] 32 2242 10.1 82.5 87.2 71.3 0.165
CvT∗-LS-13 20.3 2242 4.9 81.9 87.0 70.5 0.083
CvT∗-LS-17 23.7 2242 9.8 82.5 87.2 71.6 -
CvT∗-LS-21 32.1 2242 7.9 82.7 87.5 71.9 0.122
CvT∗-LS-21S 30.1 2242 11.3 82.9 87.4 71.7 -

CvT-13 [169] 20 3842 31.9 83.0 87.9 71.9 -
CvT-21 [169] 32 3842 45.0 83.3 87.7 71.9 -
CvT∗-LS-21 32.1 3842 23.9 83.2 88.0 72.5 -
CvT∗-LS-21 32.1 4482 34.2 83.6 88.2 72.9 -

ViL-Small [177] 24.6 2242 4.9 82.4 - - -
ViL-Medium [177] 39.7 2242 8.7 83.5 - - 0.106
ViL-Base [177] 55.7 2242 13.4 83.7 - - 0.164
ViL-LS-Medium 39.8 2242 8.7 83.8 - - 0.075
ViL-LS-Base 55.8 2242 13.4 84.1 - - 0.113
ViL-LS-Medium 39.9 3842 28.7 84.4 - - 0.271

127

attention, denoted as CvT∗-LS and ViL-size-LS in Table 5.8. CvT uses overlapping

convolutions to extract dense patch embeddings from the input images and feature maps,

resulting in a long sequence length in the early stages (e.g., 56×56 = 3136 patches for im-

ages with 2242 pixels). For ViL, our sliding window uses the same group size w, but each

token attends to at most 2w×2w (rounding when necessary) tokens inside the window, in-

stead of 3w× 3w as ViL, which allows adding our dynamic projection without increasing

the FLOPs. We set r = 8 for the dynamic projections for both ViL-LS-Medium and ViL-

LS-Base. Note that, our efficient attention mechanism does not depend on the particular

architecture, and it can be applied to other vision transformers [e.g., 167, 168, 195].

Classification Results. The results are shown in the Table 5.8, where we also list

test accuracies on ImageNet Real and ImageNet V2. Except for CvT, we compare with

the original ViT [167] and the enhanced DeiT [195], PVT [168] that also uses multi-scale

stragey, ViL [174] that uses window attention and global tokens to improve the efficiency.

Training at high-resolution usually improves the test accuracy of vision transformer. With

our long-short term attention, we can easily scale the training to higher resolution, and the

performance of CvT∗-LS and ViL-LS also improves. Our best model with CvT (CvT∗-

LS-21 at 4482) achieves 0.3% higher accuracy than the best reported result of CvT while

using the same amount of parameters and 76% of its FLOPs. In CvT architecture, the spa-

tial dimension of feature maps in earlier stages are large, representing more fine-grained

details of the image. Similar to training with high-resolution images, the model should

also benefit from denser feature maps. With our efficient long-short term attention, we can

better utilize these fine-grained feature maps with less concerns about the computational

budget. In this way, our CvT∗-LS-17 achieves better result than CvT-21 at resolution 224

128

using fewer parameters and FLOPs, and our CvT∗-LS-21S model further improves our

CvT∗-LS-21 model.

Our ViL-LS-Medium and ViL-LS-Base with long-short term attention improve the

accuracies of ViL-Medium and ViL-Base from 83.5 and 83.7 to 83.8 and 84.1 respec-

tively, without an increase in FLOPs. When increasing the resolution for training ViL-

LS-Medium from 2242 to 3842, the FLOPs increased (approximately) linearly and the

accuracy improved by 0.6%, showing our method still benefits greatly from increased

resolution while maintaining the linear complexity in practice.

Short-term Attention Suppresses Oversmoothing. By restricting tokens from

different segments to attend to different windows, our short-term sparse local attention en-

courages diversity of the feature representations and helps to alleviate the over-smoothing

problem [214] (where all queries extract similar information in deeper layers and the at-

tention mechanism is less important), thus can fully utilize the depth of the network. As

in [214], we provide the cosine similarity of patch embeddings of our CvT∗-LS-13 and

re-implemented CvT-13 (81.1 accuracy) in Figure 5.6. This is one of the reasons why

our efficient attention mechanism can get even better results than the full attention CvT

model in the same setting.

5.3.4 Robustness Evaluation on ImageNet-derived Datasets.

As vision models have been widely used in safety-critical applications (e.g. au-

tonomous driving), their robustness is vital. In addition to out-of-distribution robust-

ness (ImageNet-Real and Imageet-v2), we further investigate the robustness of our vision

129

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0.65

0.70

0.75

0.80

0.85

C
os

in
e

S
im

ila
rit

y

CvT Trained
Ours Trained
CvT Init.
Ours Init.

Figure 5.6: Pairwise cosine similarity between patch embeddings at different layers of
CvT-13 and CvT∗-LS-13, averaged on 50k images of ImageNet validation set. The larger
cosine similarities at deeper layer suggest that the feature representation is less diverse.

Table 5.9: Robustness evaluation on various ImageNet datasets. Top-1/Acc.: Top-1 ac-
curacy. mCE: Mean Corrupution Error. Mixed-same/Mixed-rand: accuracies on MIXED-
SAME/MIXED-RAND subsets.

Model Params ImageNet IN-C [215] IN-A [216] IN-R [217] ImageNet-9 [218]

(M) Top-1 mCE (↓) Acc. Acc. Mixed-same Mixed-rand

ResNet-50 [88] 25.6 76.2 78.9 6.2 35.3 87.1 81.6
DeiT-S [195] 22.1 79.8 57.1 19.0 41.9 89.1 84.2
CvT-13 20 81.6 59.6 25.4 42.9 90.5 85.7
CvT-21 32 82.5 56.2 31.1 42.6 90.5 85.0
CvT∗-LS-13 20.3 81.9 58.7 27.0 42.6 90.7 85.6
CvT∗-LS-21 32.1 82.7 55.2 29.3 45.0 91.5 85.8

transformer against common corruption (ImageNet-C), semantic shifts (ImageNet-R),

Background dependence (ImageNet-9) and natural adversarial examples (ImageNet-A).

Table 5.10: Corruption Error (CE) on ImageNet-C

Arch.
Noise Blur Weather Digital

Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 34.24 49.25 55.84 56.24 57.04 63.53 63.68 64.02 64.04 64.89 69.25 70.72 73.14 75.29 75.76
DeiT-S 26.93 36.81 36.89 39.38 40.14 43.32 43.80 44.36 45.71 46.90 47.27 48.57 52.15 57.53 62.91
CvT∗-LS-13 25.64 36.89 37.06 38.06 43.78 43.78 44.62 45.92 47.77 47.91 49.60 49.66 54.92 57.24 68.72
CvT∗-LS-17 25.26 35.06 35.48 37.38 41.37 43.95 44.47 46.05 46.17 46.38 49.08 49.37 54.29 54.54 69.54
CvT∗-LS-21 24.28 34.95 35.03 35.93 39.86 40.71 41.27 41.78 44.72 45.24 45.50 47.19 51.84 53.78 67.05

For a fair comparison, we choose models with similar number of parameters. We

select two representative models, including the CNN-based model (ResNet) and the trans-

former based model (DeiT). We give detailed results on all types of image transforms on

130

Table 5.11: Robustness evaluation on ImageNet-9. We report Top-1 Accuracy.

Model Params (M) ImageNet (%)
ImageNet-9 [218](%)

Original Mixed-same Mixed-rand

ResNet-50 [88] 25.6 76.2 94.9 87.1 81.6
DeiT-S [195] 22.1 79.8 97.1 89.1 84.2
CvT∗-LS-13 20.3 81.9 97.0 90.7 85.6
CvT∗-LS-21 32.1 82.7 97.2 91.5 85.8

ImageNet-C in Table 5.10. We give a brief overview of the ImageNet robustness bench-

marks as follows:

• ImageNet-C. ImageNet-C refers to the common corruption dataset. It consists of 15

types of algorithmically common corruptions from noise, blur, weather, and digital

categories. Each type contains five levels of severity. In Table 4, we report the nor-

malized mean corruption error (mCE) defined in Hendrycks and Dietterich [215]. In

Table 5.10, we report the corruption error among different types. In both tables, the

lower value means higher robustness.

• ImageNet-A. ImageNet-A is the natural adversarial example dataset. It contains nat-

urally collected images from online that mislead the ImageNet classifiers. It contains

7,500 adversarially filtered images. We use accuracy as our evaluation metric. The

higher accuracy refers to better robustness.

• ImageNet-R. ImageNet-R (Rendition) aims to evaluate the model generalization per-

formance on out-of-distribution data. It contains renditions of 200 ImageNet classes

(e.g. cartoons, graffiti, embroidery). We use accuracy as the evaluation metric.

• ImageNet-9. ImageNet-9 aims to evaluate the model background robustness. It de-

signs to measure the extent of the model relying on the image background. Following

131

the standard setting [218], we evaluate the two categories, including MIXED-SAME

and MIXED-RAND. MIXED-SAME refers to replace the background of the selected

image with a random background of the same class by GrabCut [218]; MIXED-RAND

refers to replace the image background with a random background of the random

class.

From table 5.9, we find that our method achieves significant improvement compared

to CNN-based network (ResNet). For instance, our method improves the accuracy by

23.6%, 22.1%, 9.7% compared to ResNet on ImageNet-C, ImageNet-A, and ImageNet-

R, respectively. For ImageNet-9, our method also achieves favorable improvement by

4.3% on average (Mixed-same and Mixed-rand). It indicates that our method is insen-

sitive to background changes. We guess the potential reasons for these improvements

are (1) the attention mechanism and (2) the strong data augmentation strategies during

the training for vision transformer [167, 195]. The first design helps the model focus

more on the global context of the image as each patch could attend to the whole image

areas. It reduces the local texture bias of CNN. The latter design increases the diversity

of the training data to improve model’s generalization ability. Compared to DeiT, we also

surprisingly find that our method achieves slightly better performance. One plausible ex-

planation is that our long-term attention has a favorable smoothing effect on the noisy

representations. Such improvements also indicate that different designs of attention and

network architecture can be essential to improve the robustness. As the goal of this paper

is not to design a robust vision transformer, the robustness is an additional bonus of our

method. We believe that our observation opens new directions for designing robust vision

Transformers. We leave the in-depth study as an important future work.

132

The detailed results of ImageNet-C and ImageNet-9 are shown in Table 5.10 and

Table 5.11 respectively.

As shown in Table 5.9, we observe that our method significantly outperforms the

CNN-based method (ResNet-50).

5.4 Conclusion

In this chapter, we introduced Long-Short Transformer, an efficient transformer for

long sequence modeling for both language and vision domain, including both bidirec-

tional and autoregressive models. We design a novel global attention mechanism with

linear computational and memory complexity in sequence length based on a dynamic

projection. We identify the scale mismatch issue and propose the DualLN technique

to eliminate the mismatch at initialization and more effectively aggregate the local and

global attentions. We demonstrate that our method obtains the state-of-the-art results on

the Long Range Arena, char-level language modeling and ImageNet classification. We

look forward to extending our methods to more domains, including document QA, object

detection and semantic segmentation on high-resolution images.

133

Bibliography

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In NAACL-
HLT, 2019.

[2] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep
neural networks for natural language understanding. In ACL, 2019.

[3] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language under-
standing. In NeurIPS, 2019.

[4] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[5] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of lan-
guage representations. ICLR, 2020.

[6] Yann N Dauphin and Samuel Schoenholz. Metainit: Initializing learning by learn-
ing to initialize. In NeurIPS, pages 12645–12657, 2019.

[7] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn
Fung, Yin Li, and Vikas Singh. Nyströmformer: A nyström-based algorithm for
approximating self-attention. AAAI, 2021.

[8] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena:
A benchmark for efficient transformers. In ICLR, 2021.

[9] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron
van den Oord. Are we done with imagenet? arXiv preprint arXiv:2006.07159,
2020.

[10] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do
imagenet classifiers generalize to imagenet? In International Conference on Ma-
chine Learning, pages 5389–5400. PMLR, 2019.

134

[11] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam M. Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, Yaguang
Li, Hongrae Lee, Huaixiu Zheng, Amin Ghafouri, Marcelo Menegali, Yanping
Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong
Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi Zhou, Chung-Ching
Chang, I. A. Krivokon, Willard James Rusch, Marc Pickett, Kathleen S. Meier-
Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju
Duke, Johnny Hartz Søraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark
Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh
Lee, Lora Aroyo, Ravindran Rajakumar, Alena Butryna, Matthew Lamm, V. O.
Kuzmina, Joseph Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise
Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc Le. Lamda: Language
models for dialog applications. arXiv preprint arXiv:1906.02243, 2022.

[12] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy con-
siderations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[13] Training a single ai model can emit as much carbon as five cars in their lifetimes.
https://www.technologyreview.com/2019/06/06/239031/
training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/.
2019-06-06.

[14] Soham De and Sam Smith. Batch normalization biases residual blocks towards the
identity function in deep networks. NeurIPS, 2020.

[15] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Under-
standing the difficulty of training transformers. EMNLP, 2020.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification. In ICCV,
pages 1026–1034, 2015.

[17] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig. Achieving human parity in conversational
speech recognition. arXiv preprint arXiv:1610.05256, 2016.

[18] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta:
Decoding-enhanced bert with disentangled attention. In ICLR, 2021.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML, pages 448–456.
PMLR, 2015.

[21] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

135

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

[22] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. In ICML, pages 2048–2057. PMLR,
2015.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
NIPS, 30, 2017.

[24] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-
tance of initialization and momentum in deep learning. In ICML, pages 1139–1147.
PMLR, 2013.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
NIPS, 27, 2014.

[29] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In Interna-
tional Conference on Machine Learning, pages 2256–2265. PMLR, 2015.

[30] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[31] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[32] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new ap-
proach to self-supervised learning. Advances in Neural Information Processing
Systems, 33:21271–21284, 2020.

[33] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael
Auli. Data2vec: A general framework for self-supervised learning in speech, vision
and language. arXiv preprint arXiv:2202.03555, 2022.

136

[34] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances in
neural information processing systems, 32, 2019.

[35] Jeff Dean. Introducing pathways: A nextgeneration ai architecture. Google Blog,
2021.

[36] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901, 2020.

[37] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie
Bernauer, Bryan Catanzaro, et al. Efficient large-scale language model training on
gpu clusters using megatron-lm. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–15,
2021.

[38] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Baindoor Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcı́a, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Oliveira
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kath-
leen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel.
Palm: Scaling language modeling with pathways. ArXiv, abs/2204.02311, 2022.

[39] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[40] Training a single ai model can emit as much carbon as five cars in their lifetimes.
https://en.wikipedia.org/wiki/Tay_(bot). 2019-06-06.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

137

https://en.wikipedia.org/wiki/Tay_(bot)

[42] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
ICLR, 2018.

[43] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness may be at odds with accuracy. arXiv preprint
arXiv:1805.12152, 2018.

[44] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V
Le. Autoaugment: Learning augmentation policies from data. arXiv preprint
arXiv:1805.09501, 2018.

[45] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting
performance on text classification tasks. arXiv preprint arXiv:1901.11196, 2019.

[46] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent
adversarial rules for debugging nlp models. In Annual Meeting of the Association
for Computational Linguistics (ACL), 2018.

[47] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-
width neural networks. In ICML, pages 11727–11737. PMLR, 2021.

[48] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David
Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor
programs v: Tuning large neural networks via zero-shot hyperparameter transfer.
NeurIPS, 2021.

[49] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization
in the transformer architecture. In International Conference on Machine Learning,
pages 10524–10533. PMLR, 2020.

[50] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning
attacks on neural networks. arXiv preprint arXiv:1804.00792, 2018.

[51] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas Goldstein, and Jingjing Liu.
Freelb: Enhanced adversarial training for language understanding. arXiv preprint
arXiv:1909.11764, 2019.

[52] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu.
Large-scale adversarial training for vision-and-language representation learning.
NeurIPS, 33:6616–6628, 2020.

[53] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem,
Gavin Taylor, and Tom Goldstein. Flag: Adversarial data augmentation for graph
neural networks. CVPR, 2022.

138

[54] Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W Ronny Huang, and Tom Gold-
stein. Gradinit: Learning to initialize neural networks for stable and efficient train-
ing. Advances in Neural Information Processing Systems, 34, 2021.

[55] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Transferable clean-label poisoning attacks on deep neural nets. In
International Conference on Machine Learning, pages 7614–7623, 2019.

[56] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi,
Tom Goldstein, and John P Dickerson. Deep k-nn defense against clean-label data
poisoning attacks. In European Conference on Computer Vision, pages 55–70.
Springer, 2020.

[57] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Ce-
lik, and Ananthram Swami. Practical black-box attacks against machine learning.
In Proceedings of the 2017 ACM on Asia conference on computer and communi-
cations security, pages 506–519. ACM, 2017.

[58] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. arXiv preprint arXiv:1703.04730, 2017.

[59] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-
set attacks on machine learners. In AAAI, pages 2871–2877, 2015.

[60] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against sup-
port vector machines. arXiv preprint arXiv:1206.6389, 2012.

[61] Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé III, and Tudor
Dumitraş. When does machine learning fail? generalized transferability for eva-
sion and poisoning attacks. arXiv preprint arXiv:1803.06975, 2018.

[62] Saeed Mahloujifar, Dimitrios I. Diochnos, and Mohammad Mahmoody. Learn-
ing under p-tampering attacks. CoRR, abs/1711.03707, 2017. URL http:
//arxiv.org/abs/1711.03707.

[63] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine
learning at test time. In Joint European conference on machine learning and knowl-
edge discovery in databases, pages 387–402. Springer, 2013.

[64] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In International Conference on Learning Representa-
tions, 2015. URL http://arxiv.org/abs/1412.6572.

[65] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. Trojaning attack on neural networks. 2017.

139

http://arxiv.org/abs/1711.03707
http://arxiv.org/abs/1711.03707
http://arxiv.org/abs/1412.6572

[66] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted Back-
door Attacks on Deep Learning Systems Using Data Poisoning. arXiv preprint
arXiv:1712.05526, 2017. URL http://arxiv.org/abs/1712.05526.

[67] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor
attacks, 2019. URL https://people.csail.mit.edu/madry/lab/
cleanlabel.pdf.

[68] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data
poisoning attacks. CoRR, abs/1706.03691, 2017. URL http://arxiv.org/
abs/1706.03691.

[69] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. The space of transferable adversarial examples. arXiv preprint
arXiv:1704.03453, 2017.

[70] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. CoRR, abs/1611.02770, 2016. URL
http://arxiv.org/abs/1611.02770.

[71] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

[72] Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-
backward splitting with a fasta implementation. arXiv preprint arXiv:1411.3406,
2014.

[73] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[74] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 9185–9193,
2018.

[75] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

[76] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

140

http://arxiv.org/abs/1712.05526
https://people.csail.mit.edu/madry/lab/cleanlabel.pdf
https://people.csail.mit.edu/madry/lab/cleanlabel.pdf
http://arxiv.org/abs/1706.03691
http://arxiv.org/abs/1706.03691
http://arxiv.org/abs/1611.02770

[78] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7132–
7141, 2018.

[79] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. In Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE,
2017.

[80] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi
Feng. Dual path networks. In Advances in Neural Information Processing Systems,
pages 4467–4475, 2017.

[81] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. arXiv preprint
arXiv:1801.04381, 2018.

[82] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[83] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2261–2269. IEEE, 2017.

[84] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks
break data sanitization defenses. arXiv preprint arXiv:1811.00741, 2018.

[85] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[86] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features.
In Advances in Neural Information Processing Systems, pages 125–136, 2019.

[87] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

[88] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[89] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb:
Enhanced adversarial training for natural language understanding. ICLR, 2020.

[90] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In ICLR, 2015.

141

[91] Chaowei Xiao, Ruizhi Deng, Bo Li, Fisher Yu, Mingyan Liu, and Dawn Song.
Characterizing adversarial examples based on spatial consistency information for
semantic segmentation. In ECCV, 2018.

[92] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, and Kaiming He.
Feature denoising for improving adversarial robustness. In CVPR, 2019.

[93] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods
for semi-supervised text classification. In ICLR, 2017.

[94] Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation
with doubly adversarial inputs. In ACL, 2019.

[95] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[96] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Alhussein Fawzi, So-
ham De, Robert Stanforth, Pushmeet Kohli, et al. Adversarial robustness through
local linearization. arXiv preprint arXiv:1907.02610, 2019.

[97] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. Davis, G. Tay-
lor, and T. Goldstein. Adversarial Training for Free! In NeurIPS, 2019.

[98] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong.
You only propagate once: Accelerating adversarial training via maximal princi-
ple. arXiv preprint arXiv:1905.00877, 2019.

[99] Robin Jia and Percy Liang. Adversarial examples for evaluating reading compre-
hension systems. In EMNLP, 2017.

[100] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial
examples. In ICLR, 2018.

[101] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural
machine translation. In ICLR, 2018.

[102] Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Adversarial
example generation with syntactically controlled paraphrase networks. In NAACL,
2018.

[103] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adver-
sarial training: A regularization method for supervised and semi-supervised learn-
ing. TPAMI, 2019.

[104] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. HotFlip: White-box
adversarial examples for text classification. In ACL, 2018.

[105] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent
adversarial rules for debugging NLP models. In ACL, 2018.

142

[106] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. arXiv preprint 1910.10683,
2019.

[107] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In ACL, 2016.

[108] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in
signal processing. In Fixed-point algorithms for inverse problems in science and
engineering. 2011.

[109] Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nag-
purkar. Slow and stale gradients can win the race: Error-runtime trade-offs in
distributed sgd. In AISTATS, pages 803–812, 2018.

[110] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel Rodrigues. Generaliza-
tion error of invariant classifiers. In AISTATS, 2017.

[111] Huan Xu and Shie Mannor. Robustness and generalization. Machine learning,
2012.

[112] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
JMLR, 2014.

[113] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In NeurIPS, 2016.

[114] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for nat-
ural language understanding. In ICLR, 2019.

[115] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have solved question answering? try
arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.

[116] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Common-
senseqa: A question answering challenge targeting commonsense knowledge. In
NAACL, 2019.

[117] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network ac-
ceptability judgments. arXiv preprint 1805.12471, 2018.

[118] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In EMNLP, 2013.

143

[119] William B Dolan and Chris Brockett. Automatically constructing a corpus of sen-
tential paraphrases. In Proceedings of the International Workshop on Paraphras-
ing, 2005.

[120] Eneko Agirre, Llu’is M‘arquez, and Richard Wicentowski, editors. Proceedings
of the Fourth International Workshop on Semantic Evaluations (SemEval-2007).
Association for Computational Linguistics, 2007.

[121] Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. First quora dataset release:
Question pairs, 2017. URL https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

[122] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage chal-
lenge corpus for sentence understanding through inference. In NAACL, 2018.

[123] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. In EMNLP, 2016.

[124] Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising
textual entailment challenge. In Machine learning challenges. evaluating predic-
tive uncertainty, visual object classification, and recognising tectual entailment.
Springer, 2006.

[125] Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. The second PASCAL recognising textual entailment
challenge. 2006.

[126] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third
PASCAL recognizing textual entailment challenge. In Proceedings of the ACL-
PASCAL workshop on textual entailment and paraphrasing, 2007.

[127] Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo
Magnini. The fifth PASCAL recognizing textual entailment challenge. 2009.

[128] Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema
challenge. In AAAI Spring Symposium: Logical Formalizations of Commonsense
Reasoning, 2011.

[129] Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open mul-
tilingual graph of general knowledge. In AAAI, 2017.

[130] Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Improving machine reading
comprehension with general reading strategies. arXiv preprint arXiv:1810.13441,
2018.

[131] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race:
Large-scale reading comprehension dataset from examinations. arXiv preprint
arXiv:1704.04683, 2017.

144

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

[132] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of
armor conduct electricity? a new dataset for open book question answering. arXiv
preprint arXiv:1809.02789, 2018.

[133] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In AISTATS, 2010.

[134] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization
in the transformer architecture. In ICML. PMLR, 2020.

[135] Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving trans-
former optimization through better initialization. In ICML, 2020.

[136] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual
learning without normalization. In ICLR, 2019.

[137] Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation
to close the performance gap in unnormalized resnets. ICLR, 2021.

[138] Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-
performance large-scale image recognition without normalization. arXiv preprint
arXiv:2102.06171, 2021.

[139] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. ICLR, 2014.

[140] Dmytro Mishkin and Jiri Matas. All you need is a good init. ICLR, 2016.

[141] Mert Gurbuzbalaban and Yuanhan Hu. Fractional moment-preserving initializa-
tion schemes for training deep neural networks. In International Conference on
Artificial Intelligence and Statistics, pages 2233–2241. PMLR, 2021.

[142] Charles H Martin and Michael W Mahoney. Traditional and heavy-tailed self reg-
ularization in neural network models. arXiv preprint arXiv:1901.08276, 2019.

[143] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[144] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garri-
son W Cottrell, and Julian McAuley. Rezero is all you need: Fast convergence at
large depth. arXiv preprint arXiv:2003.04887, 2020.

[145] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim,
Sashank J Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good
for attention models? NeurIPS, 2020.

[146] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-
tuning by batch normalization. In International Conference on Learning Repre-
sentations, 2019.

145

[147] Ruosi Wan, Zhanxing Zhu, Xiangyu Zhang, and Jian Sun. Spherical motion dy-
namics of deep neural networks with batch normalization and weight decay. arXiv
preprint arXiv:2006.08419, 2020.

[148] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and
variance of stochastic gradients. In ICML, pages 404–413, 2018.

[149] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[150] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR, 2009.

[151] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello
Federico. Report on the 11th iwslt evaluation campaign, iwslt 2014. In IWSLT,
volume 57, 2014.

[152] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence
modeling. In NAACL-HLT (Demonstrations), 2019.

[153] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[154] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[155] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[156] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[157] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[158] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. ICLR, 2018.

[159] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations, 2018.

[160] Chen Zhu, Yu Cheng, Zhe Gan, Furong Huang, Jingjing Liu, and Tom Goldstein.
Maxva: Fast adaptation of step sizes by maximizing observed variance of gradi-
ents. In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pages 628–643. Springer, 2021.

146

[161] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree
Anandkumar. signsgd: Compressed optimisation for non-convex problems. In
ICML, 2018.

[162] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond.
ICLR, 2020.

[163] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima
Anandkumar, and Bryan Catanzaro. Long-short transformer: Efficient transform-
ers for language and vision. NeurIPS, 34, 2021.

[164] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NIPS, volume 30, 2017.

[165] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. NAACL,
2019.

[166] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1
(8):9, 2019.

[167] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR, 2021.

[168] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. arXiv preprint arXiv:2102.12122, 2021.

[169] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and
Lei Zhang. Cvt: Introducing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808, 2021.

[170] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. Natural questions: a benchmark for question answering research. TACL,
7:453–466, 2019.

[171] Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim
Dehak. Hierarchical transformers for long document classification. In 2019 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), pages 838–
844. IEEE, 2019.

147

[172] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. In ACL, 2019.

[173] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap.
Compressive Transformers for long-range sequence modelling. In ICLR, 2020.

[174] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and
Jianfeng Gao. Multi-scale vision longformer: A new vision transformer for high-
resolution image encoding. arXiv preprint arXiv:2103.15358, 2021.

[175] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long se-
quences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[176] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. In ICML, pages 4055–4064,
2018.

[177] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150, 2020.

[178] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher,
Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc:
Encoding long and structured inputs in transformers. In EMNLP, pages 268–284,
2020.

[179] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big
Bird: Transformers for longer sequences. In NeurIPS, 2020.

[180] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[181] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng.
Synthesizer: Rethinking self-attention in transformer models. In ICML, 2021.

[182] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and
Jianfeng Gao. Multi-scale vision longformer: A new vision transformer for high-
resolution image encoding. arXiv preprint arXiv:2103.15358, 2021.

[183] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-
fidelity images with vq-vae-2. arXiv preprint arXiv:1906.00446, 2019.

[184] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-
ford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. arXiv
preprint arXiv:2102.12092, 2021.

[185] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial at-
tention in multidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

148

[186] Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie
Tang. Blockwise self-attention for long document understanding. arXiv preprint
arXiv:1911.02972, 2019.

[187] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. Set transformer: A framework for attention-based permutation-
invariant neural networks. In ICML, 2019.

[188] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, An-
dreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz
Kaiser, et al. Rethinking attention with performers. ICLR, 2021.

[189] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are rnns: Fast autoregressive transformers with linear attention. In
ICML, 2020.

[190] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and
Lingpeng Kong. Random feature attention. ICLR, 2021.

[191] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient
transformer. In ICLR, 2020.

[192] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient
content-based sparse attention with routing transformers. TACL, 9:53–68, 2021.

[193] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse
sinkhorn attention. In ICML. PMLR, 2020.

[194] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with
long-short range attention. arXiv preprint arXiv:2004.11886, 2020.

[195] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & dis-
tillation through attention. arXiv preprint arXiv:2012.12877, 2020.

[196] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In CVPR, 2009.

[197] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. arXiv preprint arXiv:2103.14030, 2021.

[198] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Fran-
cis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision
transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

[199] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake
Hechtman, and Jonathon Shlens. Scaling local self-attention for parameter effi-
cient visual backbones. arXiv preprint arXiv:2103.12731, 2021.

149

[200] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals,
and Joao Carreira. Perceiver: General perception with iterative attention. arXiv
preprint arXiv:2103.03206, 2021.

[201] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are rnns: Fast autoregressive transformers with linear attention. In
ICML. PMLR, 2020.

[202] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and
Lingpeng Kong. Random feature attention. ICLR, 2021.

[203] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In AISTATS, 2010.

[204] fvcore: Flop counter for pytorch models. https://github.com/
facebookresearch/fvcore/blob/master/docs/flop_count.md,
2021.

[205] Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Gupta, Philip Pham, Zhen Qin,
Dara Bahri, Da-Cheng Juan, and Donald Metzler. Omninet: Omnidirectional rep-
resentations from transformers. ICML, 2021.

[206] Nikita Nangia and Samuel Bowman. Listops: A diagnostic dataset for latent tree
learning. In NAACL: Student Research Workshop, pages 92–99, 2018.

[207] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In ACL, 2011.

[208] Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-
Jbara. The acl anthology network corpus. Language Resources and Evaluation, 47
(4):919–944, 2013.

[209] Matt Mahoney. Large text compression benchmark. URL
http://mattmahoney.net/dc/textdata, 6, 2009.

[210] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones.
Character-level language modeling with deeper self-attention. In AAAI, volume 33,
pages 3159–3166, 2019.

[211] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin.
Adaptive attention span in transformers. ACL, 2019.

[212] Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-
transformer: Modelling long-range context via binary partitioning. arXiv preprint
arXiv:1911.04070, 2019.

[213] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang,
Tong Lu, Ping Luo, and Ling Shao. Pvtv2: Improved baselines with pyramid
vision transformer. 2021.

150

https://github.com/facebookresearch/fvcore/blob/master/docs/flop_count.md
https://github.com/facebookresearch/fvcore/blob/master/docs/flop_count.md

[214] Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, and Qiang Liu. Im-
prove vision transformers training by suppressing over-smoothing. arXiv preprint
arXiv:2104.12753, 2021.

[215] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness
to common corruptions and perturbations. In International Conference on Learn-
ing Representations, 2019.

[216] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.
Natural adversarial examples. arXiv preprint arXiv:1907.07174, 2019.

[217] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many
faces of robustness: A critical analysis of out-of-distribution generalization. arXiv
preprint arXiv:2006.16241, 2020.

[218] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or
signal: The role of image backgrounds in object recognition. ArXiv preprint
arXiv:2006.09994, 2020.

151

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Progress of Large-scale Representation Learning
	Reliability of Representation Learning
	Efficiency of Learning at Scale

	Organization
	Contributions

	Threat and Defense against Targeted Data Poisoning Attacks
	Definition of Targeted Poisoning Attacks, the Threat Model
	A Transferable Attack
	Overview
	Revisit Feature Collision Attack
	Challenges of Targeted Poisoning Attacks
	Better transferability with Convex Polytope Attack
	An Efficient Algorithm for Convex Polytope Attack
	Multi-Layer Convex Polytope Attack
	Improved Transferability via Network Randomization
	Experiments

	A defense in the supervised setting
	Overview
	Intuition behind Deep k-NN Defense
	Deep k-NN defense against Clean-Label Poisoning
	Evaluation
	Ablation Studies and Best Practices

	Improving Data Efficiency with Adversarial Training
	Related Works
	Adversarial Training
	Adversarial Examples in Natural Languages

	Adversarial Training for Pre-trained Language Models
	Where to add the perturbation?
	PGD-based Adversarial Training

	FreeLB: Better Efficiency through Gradient Accumulation
	Improving Dropout for Adversarial Training
	Experiments for FreeLB
	Datasets
	Results
	Ablation Study and Analysis

	Improving Stability and Efficiency with Automated Initialization
	Introduction
	Related Works
	Our contributions

	GradInit: an Automated Initialization
	Efficient Learning-based Initialization via Constrained Optimization
	Solving the Constrained Problem
	Stochasticity of mini-batching
	Setting and Enforcing the Constraint
	Setting the norm constraint through first-order analysis
	Why a constraint and not a penalty?

	Experiments
	Image Datasets with Various Architectures
	Training the Original Transformer Model without Warmup

	Rethinking the Learned Initializations
	Magnification Effect of BN
	Visualizing the Learned Initializations

	Reducing Complexity of Transformer Models
	Introduction
	Related Works
	Our contributions

	Long-short Transformer
	Preliminaries and Notations
	Short-term Attention via Segment-wise Sliding Window
	Long-range Attention via Dynamic Projections
	Aggregating Long-range and Short-term Attentions
	Long-short Term Attention for Autoregressive Models

	Experiments
	Bidirectional Modeling on Long Range Arena and IMDb
	Autoregressive Language Modeling
	ImageNet Classification
	Robustness Evaluation on ImageNet-derived Datasets.

	Conclusion

